1 // SPDX-License-Identifier: GPL-2.0-only
3 * Basic general purpose allocator for managing special purpose
4 * memory, for example, memory that is not managed by the regular
5 * kmalloc/kfree interface. Uses for this includes on-device special
6 * memory, uncached memory etc.
8 * It is safe to use the allocator in NMI handlers and other special
9 * unblockable contexts that could otherwise deadlock on locks. This
10 * is implemented by using atomic operations and retries on any
11 * conflicts. The disadvantage is that there may be livelocks in
12 * extreme cases. For better scalability, one allocator can be used
15 * The lockless operation only works if there is enough memory
16 * available. If new memory is added to the pool a lock has to be
17 * still taken. So any user relying on locklessness has to ensure
18 * that sufficient memory is preallocated.
20 * The basic atomic operation of this allocator is cmpxchg on long.
21 * On architectures that don't have NMI-safe cmpxchg implementation,
22 * the allocator can NOT be used in NMI handler. So code uses the
23 * allocator in NMI handler should depend on
24 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
26 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/bitmap.h>
32 #include <linux/rculist.h>
33 #include <linux/interrupt.h>
34 #include <linux/genalloc.h>
35 #include <linux/of_device.h>
36 #include <linux/vmalloc.h>
38 static inline size_t chunk_size(const struct gen_pool_chunk
*chunk
)
40 return chunk
->end_addr
- chunk
->start_addr
+ 1;
43 static int set_bits_ll(unsigned long *addr
, unsigned long mask_to_set
)
45 unsigned long val
, nval
;
50 if (val
& mask_to_set
)
53 } while ((nval
= cmpxchg(addr
, val
, val
| mask_to_set
)) != val
);
58 static int clear_bits_ll(unsigned long *addr
, unsigned long mask_to_clear
)
60 unsigned long val
, nval
;
65 if ((val
& mask_to_clear
) != mask_to_clear
)
68 } while ((nval
= cmpxchg(addr
, val
, val
& ~mask_to_clear
)) != val
);
74 * bitmap_set_ll - set the specified number of bits at the specified position
75 * @map: pointer to a bitmap
76 * @start: a bit position in @map
77 * @nr: number of bits to set
79 * Set @nr bits start from @start in @map lock-lessly. Several users
80 * can set/clear the same bitmap simultaneously without lock. If two
81 * users set the same bit, one user will return remain bits, otherwise
84 static int bitmap_set_ll(unsigned long *map
, int start
, int nr
)
86 unsigned long *p
= map
+ BIT_WORD(start
);
87 const int size
= start
+ nr
;
88 int bits_to_set
= BITS_PER_LONG
- (start
% BITS_PER_LONG
);
89 unsigned long mask_to_set
= BITMAP_FIRST_WORD_MASK(start
);
91 while (nr
- bits_to_set
>= 0) {
92 if (set_bits_ll(p
, mask_to_set
))
95 bits_to_set
= BITS_PER_LONG
;
100 mask_to_set
&= BITMAP_LAST_WORD_MASK(size
);
101 if (set_bits_ll(p
, mask_to_set
))
109 * bitmap_clear_ll - clear the specified number of bits at the specified position
110 * @map: pointer to a bitmap
111 * @start: a bit position in @map
112 * @nr: number of bits to set
114 * Clear @nr bits start from @start in @map lock-lessly. Several users
115 * can set/clear the same bitmap simultaneously without lock. If two
116 * users clear the same bit, one user will return remain bits,
117 * otherwise return 0.
119 static int bitmap_clear_ll(unsigned long *map
, int start
, int nr
)
121 unsigned long *p
= map
+ BIT_WORD(start
);
122 const int size
= start
+ nr
;
123 int bits_to_clear
= BITS_PER_LONG
- (start
% BITS_PER_LONG
);
124 unsigned long mask_to_clear
= BITMAP_FIRST_WORD_MASK(start
);
126 while (nr
- bits_to_clear
>= 0) {
127 if (clear_bits_ll(p
, mask_to_clear
))
130 bits_to_clear
= BITS_PER_LONG
;
131 mask_to_clear
= ~0UL;
135 mask_to_clear
&= BITMAP_LAST_WORD_MASK(size
);
136 if (clear_bits_ll(p
, mask_to_clear
))
144 * gen_pool_create - create a new special memory pool
145 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
146 * @nid: node id of the node the pool structure should be allocated on, or -1
148 * Create a new special memory pool that can be used to manage special purpose
149 * memory not managed by the regular kmalloc/kfree interface.
151 struct gen_pool
*gen_pool_create(int min_alloc_order
, int nid
)
153 struct gen_pool
*pool
;
155 pool
= kmalloc_node(sizeof(struct gen_pool
), GFP_KERNEL
, nid
);
157 spin_lock_init(&pool
->lock
);
158 INIT_LIST_HEAD(&pool
->chunks
);
159 pool
->min_alloc_order
= min_alloc_order
;
160 pool
->algo
= gen_pool_first_fit
;
166 EXPORT_SYMBOL(gen_pool_create
);
169 * gen_pool_add_owner- add a new chunk of special memory to the pool
170 * @pool: pool to add new memory chunk to
171 * @virt: virtual starting address of memory chunk to add to pool
172 * @phys: physical starting address of memory chunk to add to pool
173 * @size: size in bytes of the memory chunk to add to pool
174 * @nid: node id of the node the chunk structure and bitmap should be
175 * allocated on, or -1
176 * @owner: private data the publisher would like to recall at alloc time
178 * Add a new chunk of special memory to the specified pool.
180 * Returns 0 on success or a -ve errno on failure.
182 int gen_pool_add_owner(struct gen_pool
*pool
, unsigned long virt
, phys_addr_t phys
,
183 size_t size
, int nid
, void *owner
)
185 struct gen_pool_chunk
*chunk
;
186 int nbits
= size
>> pool
->min_alloc_order
;
187 int nbytes
= sizeof(struct gen_pool_chunk
) +
188 BITS_TO_LONGS(nbits
) * sizeof(long);
190 chunk
= vzalloc_node(nbytes
, nid
);
191 if (unlikely(chunk
== NULL
))
194 chunk
->phys_addr
= phys
;
195 chunk
->start_addr
= virt
;
196 chunk
->end_addr
= virt
+ size
- 1;
197 chunk
->owner
= owner
;
198 atomic_long_set(&chunk
->avail
, size
);
200 spin_lock(&pool
->lock
);
201 list_add_rcu(&chunk
->next_chunk
, &pool
->chunks
);
202 spin_unlock(&pool
->lock
);
206 EXPORT_SYMBOL(gen_pool_add_owner
);
209 * gen_pool_virt_to_phys - return the physical address of memory
210 * @pool: pool to allocate from
211 * @addr: starting address of memory
213 * Returns the physical address on success, or -1 on error.
215 phys_addr_t
gen_pool_virt_to_phys(struct gen_pool
*pool
, unsigned long addr
)
217 struct gen_pool_chunk
*chunk
;
218 phys_addr_t paddr
= -1;
221 list_for_each_entry_rcu(chunk
, &pool
->chunks
, next_chunk
) {
222 if (addr
>= chunk
->start_addr
&& addr
<= chunk
->end_addr
) {
223 paddr
= chunk
->phys_addr
+ (addr
- chunk
->start_addr
);
231 EXPORT_SYMBOL(gen_pool_virt_to_phys
);
234 * gen_pool_destroy - destroy a special memory pool
235 * @pool: pool to destroy
237 * Destroy the specified special memory pool. Verifies that there are no
238 * outstanding allocations.
240 void gen_pool_destroy(struct gen_pool
*pool
)
242 struct list_head
*_chunk
, *_next_chunk
;
243 struct gen_pool_chunk
*chunk
;
244 int order
= pool
->min_alloc_order
;
247 list_for_each_safe(_chunk
, _next_chunk
, &pool
->chunks
) {
248 chunk
= list_entry(_chunk
, struct gen_pool_chunk
, next_chunk
);
249 list_del(&chunk
->next_chunk
);
251 end_bit
= chunk_size(chunk
) >> order
;
252 bit
= find_next_bit(chunk
->bits
, end_bit
, 0);
253 BUG_ON(bit
< end_bit
);
257 kfree_const(pool
->name
);
260 EXPORT_SYMBOL(gen_pool_destroy
);
263 * gen_pool_alloc_algo_owner - allocate special memory from the pool
264 * @pool: pool to allocate from
265 * @size: number of bytes to allocate from the pool
266 * @algo: algorithm passed from caller
267 * @data: data passed to algorithm
268 * @owner: optionally retrieve the chunk owner
270 * Allocate the requested number of bytes from the specified pool.
271 * Uses the pool allocation function (with first-fit algorithm by default).
272 * Can not be used in NMI handler on architectures without
273 * NMI-safe cmpxchg implementation.
275 unsigned long gen_pool_alloc_algo_owner(struct gen_pool
*pool
, size_t size
,
276 genpool_algo_t algo
, void *data
, void **owner
)
278 struct gen_pool_chunk
*chunk
;
279 unsigned long addr
= 0;
280 int order
= pool
->min_alloc_order
;
281 int nbits
, start_bit
, end_bit
, remain
;
283 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
293 nbits
= (size
+ (1UL << order
) - 1) >> order
;
295 list_for_each_entry_rcu(chunk
, &pool
->chunks
, next_chunk
) {
296 if (size
> atomic_long_read(&chunk
->avail
))
300 end_bit
= chunk_size(chunk
) >> order
;
302 start_bit
= algo(chunk
->bits
, end_bit
, start_bit
,
303 nbits
, data
, pool
, chunk
->start_addr
);
304 if (start_bit
>= end_bit
)
306 remain
= bitmap_set_ll(chunk
->bits
, start_bit
, nbits
);
308 remain
= bitmap_clear_ll(chunk
->bits
, start_bit
,
314 addr
= chunk
->start_addr
+ ((unsigned long)start_bit
<< order
);
315 size
= nbits
<< order
;
316 atomic_long_sub(size
, &chunk
->avail
);
318 *owner
= chunk
->owner
;
324 EXPORT_SYMBOL(gen_pool_alloc_algo_owner
);
327 * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
328 * @pool: pool to allocate from
329 * @size: number of bytes to allocate from the pool
330 * @dma: dma-view physical address return value. Use %NULL if unneeded.
332 * Allocate the requested number of bytes from the specified pool.
333 * Uses the pool allocation function (with first-fit algorithm by default).
334 * Can not be used in NMI handler on architectures without
335 * NMI-safe cmpxchg implementation.
337 * Return: virtual address of the allocated memory, or %NULL on failure
339 void *gen_pool_dma_alloc(struct gen_pool
*pool
, size_t size
, dma_addr_t
*dma
)
341 return gen_pool_dma_alloc_algo(pool
, size
, dma
, pool
->algo
, pool
->data
);
343 EXPORT_SYMBOL(gen_pool_dma_alloc
);
346 * gen_pool_dma_alloc_algo - allocate special memory from the pool for DMA
347 * usage with the given pool algorithm
348 * @pool: pool to allocate from
349 * @size: number of bytes to allocate from the pool
350 * @dma: DMA-view physical address return value. Use %NULL if unneeded.
351 * @algo: algorithm passed from caller
352 * @data: data passed to algorithm
354 * Allocate the requested number of bytes from the specified pool. Uses the
355 * given pool allocation function. Can not be used in NMI handler on
356 * architectures without NMI-safe cmpxchg implementation.
358 * Return: virtual address of the allocated memory, or %NULL on failure
360 void *gen_pool_dma_alloc_algo(struct gen_pool
*pool
, size_t size
,
361 dma_addr_t
*dma
, genpool_algo_t algo
, void *data
)
368 vaddr
= gen_pool_alloc_algo(pool
, size
, algo
, data
);
373 *dma
= gen_pool_virt_to_phys(pool
, vaddr
);
375 return (void *)vaddr
;
377 EXPORT_SYMBOL(gen_pool_dma_alloc_algo
);
380 * gen_pool_dma_alloc_align - allocate special memory from the pool for DMA
381 * usage with the given alignment
382 * @pool: pool to allocate from
383 * @size: number of bytes to allocate from the pool
384 * @dma: DMA-view physical address return value. Use %NULL if unneeded.
385 * @align: alignment in bytes for starting address
387 * Allocate the requested number bytes from the specified pool, with the given
388 * alignment restriction. Can not be used in NMI handler on architectures
389 * without NMI-safe cmpxchg implementation.
391 * Return: virtual address of the allocated memory, or %NULL on failure
393 void *gen_pool_dma_alloc_align(struct gen_pool
*pool
, size_t size
,
394 dma_addr_t
*dma
, int align
)
396 struct genpool_data_align data
= { .align
= align
};
398 return gen_pool_dma_alloc_algo(pool
, size
, dma
,
399 gen_pool_first_fit_align
, &data
);
401 EXPORT_SYMBOL(gen_pool_dma_alloc_align
);
404 * gen_pool_dma_zalloc - allocate special zeroed memory from the pool for
406 * @pool: pool to allocate from
407 * @size: number of bytes to allocate from the pool
408 * @dma: dma-view physical address return value. Use %NULL if unneeded.
410 * Allocate the requested number of zeroed bytes from the specified pool.
411 * Uses the pool allocation function (with first-fit algorithm by default).
412 * Can not be used in NMI handler on architectures without
413 * NMI-safe cmpxchg implementation.
415 * Return: virtual address of the allocated zeroed memory, or %NULL on failure
417 void *gen_pool_dma_zalloc(struct gen_pool
*pool
, size_t size
, dma_addr_t
*dma
)
419 return gen_pool_dma_zalloc_algo(pool
, size
, dma
, pool
->algo
, pool
->data
);
421 EXPORT_SYMBOL(gen_pool_dma_zalloc
);
424 * gen_pool_dma_zalloc_algo - allocate special zeroed memory from the pool for
425 * DMA usage with the given pool algorithm
426 * @pool: pool to allocate from
427 * @size: number of bytes to allocate from the pool
428 * @dma: DMA-view physical address return value. Use %NULL if unneeded.
429 * @algo: algorithm passed from caller
430 * @data: data passed to algorithm
432 * Allocate the requested number of zeroed bytes from the specified pool. Uses
433 * the given pool allocation function. Can not be used in NMI handler on
434 * architectures without NMI-safe cmpxchg implementation.
436 * Return: virtual address of the allocated zeroed memory, or %NULL on failure
438 void *gen_pool_dma_zalloc_algo(struct gen_pool
*pool
, size_t size
,
439 dma_addr_t
*dma
, genpool_algo_t algo
, void *data
)
441 void *vaddr
= gen_pool_dma_alloc_algo(pool
, size
, dma
, algo
, data
);
444 memset(vaddr
, 0, size
);
448 EXPORT_SYMBOL(gen_pool_dma_zalloc_algo
);
451 * gen_pool_dma_zalloc_align - allocate special zeroed memory from the pool for
452 * DMA usage with the given alignment
453 * @pool: pool to allocate from
454 * @size: number of bytes to allocate from the pool
455 * @dma: DMA-view physical address return value. Use %NULL if unneeded.
456 * @align: alignment in bytes for starting address
458 * Allocate the requested number of zeroed bytes from the specified pool,
459 * with the given alignment restriction. Can not be used in NMI handler on
460 * architectures without NMI-safe cmpxchg implementation.
462 * Return: virtual address of the allocated zeroed memory, or %NULL on failure
464 void *gen_pool_dma_zalloc_align(struct gen_pool
*pool
, size_t size
,
465 dma_addr_t
*dma
, int align
)
467 struct genpool_data_align data
= { .align
= align
};
469 return gen_pool_dma_zalloc_algo(pool
, size
, dma
,
470 gen_pool_first_fit_align
, &data
);
472 EXPORT_SYMBOL(gen_pool_dma_zalloc_align
);
475 * gen_pool_free_owner - free allocated special memory back to the pool
476 * @pool: pool to free to
477 * @addr: starting address of memory to free back to pool
478 * @size: size in bytes of memory to free
479 * @owner: private data stashed at gen_pool_add() time
481 * Free previously allocated special memory back to the specified
482 * pool. Can not be used in NMI handler on architectures without
483 * NMI-safe cmpxchg implementation.
485 void gen_pool_free_owner(struct gen_pool
*pool
, unsigned long addr
, size_t size
,
488 struct gen_pool_chunk
*chunk
;
489 int order
= pool
->min_alloc_order
;
490 int start_bit
, nbits
, remain
;
492 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
499 nbits
= (size
+ (1UL << order
) - 1) >> order
;
501 list_for_each_entry_rcu(chunk
, &pool
->chunks
, next_chunk
) {
502 if (addr
>= chunk
->start_addr
&& addr
<= chunk
->end_addr
) {
503 BUG_ON(addr
+ size
- 1 > chunk
->end_addr
);
504 start_bit
= (addr
- chunk
->start_addr
) >> order
;
505 remain
= bitmap_clear_ll(chunk
->bits
, start_bit
, nbits
);
507 size
= nbits
<< order
;
508 atomic_long_add(size
, &chunk
->avail
);
510 *owner
= chunk
->owner
;
518 EXPORT_SYMBOL(gen_pool_free_owner
);
521 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
522 * @pool: the generic memory pool
523 * @func: func to call
524 * @data: additional data used by @func
526 * Call @func for every chunk of generic memory pool. The @func is
527 * called with rcu_read_lock held.
529 void gen_pool_for_each_chunk(struct gen_pool
*pool
,
530 void (*func
)(struct gen_pool
*pool
, struct gen_pool_chunk
*chunk
, void *data
),
533 struct gen_pool_chunk
*chunk
;
536 list_for_each_entry_rcu(chunk
, &(pool
)->chunks
, next_chunk
)
537 func(pool
, chunk
, data
);
540 EXPORT_SYMBOL(gen_pool_for_each_chunk
);
543 * gen_pool_has_addr - checks if an address falls within the range of a pool
544 * @pool: the generic memory pool
545 * @start: start address
546 * @size: size of the region
548 * Check if the range of addresses falls within the specified pool. Returns
549 * true if the entire range is contained in the pool and false otherwise.
551 bool gen_pool_has_addr(struct gen_pool
*pool
, unsigned long start
,
555 unsigned long end
= start
+ size
- 1;
556 struct gen_pool_chunk
*chunk
;
559 list_for_each_entry_rcu(chunk
, &(pool
)->chunks
, next_chunk
) {
560 if (start
>= chunk
->start_addr
&& start
<= chunk
->end_addr
) {
561 if (end
<= chunk
->end_addr
) {
570 EXPORT_SYMBOL(gen_pool_has_addr
);
573 * gen_pool_avail - get available free space of the pool
574 * @pool: pool to get available free space
576 * Return available free space of the specified pool.
578 size_t gen_pool_avail(struct gen_pool
*pool
)
580 struct gen_pool_chunk
*chunk
;
584 list_for_each_entry_rcu(chunk
, &pool
->chunks
, next_chunk
)
585 avail
+= atomic_long_read(&chunk
->avail
);
589 EXPORT_SYMBOL_GPL(gen_pool_avail
);
592 * gen_pool_size - get size in bytes of memory managed by the pool
593 * @pool: pool to get size
595 * Return size in bytes of memory managed by the pool.
597 size_t gen_pool_size(struct gen_pool
*pool
)
599 struct gen_pool_chunk
*chunk
;
603 list_for_each_entry_rcu(chunk
, &pool
->chunks
, next_chunk
)
604 size
+= chunk_size(chunk
);
608 EXPORT_SYMBOL_GPL(gen_pool_size
);
611 * gen_pool_set_algo - set the allocation algorithm
612 * @pool: pool to change allocation algorithm
613 * @algo: custom algorithm function
614 * @data: additional data used by @algo
616 * Call @algo for each memory allocation in the pool.
617 * If @algo is NULL use gen_pool_first_fit as default
618 * memory allocation function.
620 void gen_pool_set_algo(struct gen_pool
*pool
, genpool_algo_t algo
, void *data
)
626 pool
->algo
= gen_pool_first_fit
;
632 EXPORT_SYMBOL(gen_pool_set_algo
);
635 * gen_pool_first_fit - find the first available region
636 * of memory matching the size requirement (no alignment constraint)
637 * @map: The address to base the search on
638 * @size: The bitmap size in bits
639 * @start: The bitnumber to start searching at
640 * @nr: The number of zeroed bits we're looking for
641 * @data: additional data - unused
642 * @pool: pool to find the fit region memory from
644 unsigned long gen_pool_first_fit(unsigned long *map
, unsigned long size
,
645 unsigned long start
, unsigned int nr
, void *data
,
646 struct gen_pool
*pool
, unsigned long start_addr
)
648 return bitmap_find_next_zero_area(map
, size
, start
, nr
, 0);
650 EXPORT_SYMBOL(gen_pool_first_fit
);
653 * gen_pool_first_fit_align - find the first available region
654 * of memory matching the size requirement (alignment constraint)
655 * @map: The address to base the search on
656 * @size: The bitmap size in bits
657 * @start: The bitnumber to start searching at
658 * @nr: The number of zeroed bits we're looking for
659 * @data: data for alignment
660 * @pool: pool to get order from
662 unsigned long gen_pool_first_fit_align(unsigned long *map
, unsigned long size
,
663 unsigned long start
, unsigned int nr
, void *data
,
664 struct gen_pool
*pool
, unsigned long start_addr
)
666 struct genpool_data_align
*alignment
;
667 unsigned long align_mask
, align_off
;
671 order
= pool
->min_alloc_order
;
672 align_mask
= ((alignment
->align
+ (1UL << order
) - 1) >> order
) - 1;
673 align_off
= (start_addr
& (alignment
->align
- 1)) >> order
;
675 return bitmap_find_next_zero_area_off(map
, size
, start
, nr
,
676 align_mask
, align_off
);
678 EXPORT_SYMBOL(gen_pool_first_fit_align
);
681 * gen_pool_fixed_alloc - reserve a specific region
682 * @map: The address to base the search on
683 * @size: The bitmap size in bits
684 * @start: The bitnumber to start searching at
685 * @nr: The number of zeroed bits we're looking for
686 * @data: data for alignment
687 * @pool: pool to get order from
689 unsigned long gen_pool_fixed_alloc(unsigned long *map
, unsigned long size
,
690 unsigned long start
, unsigned int nr
, void *data
,
691 struct gen_pool
*pool
, unsigned long start_addr
)
693 struct genpool_data_fixed
*fixed_data
;
695 unsigned long offset_bit
;
696 unsigned long start_bit
;
699 order
= pool
->min_alloc_order
;
700 offset_bit
= fixed_data
->offset
>> order
;
701 if (WARN_ON(fixed_data
->offset
& ((1UL << order
) - 1)))
704 start_bit
= bitmap_find_next_zero_area(map
, size
,
705 start
+ offset_bit
, nr
, 0);
706 if (start_bit
!= offset_bit
)
710 EXPORT_SYMBOL(gen_pool_fixed_alloc
);
713 * gen_pool_first_fit_order_align - find the first available region
714 * of memory matching the size requirement. The region will be aligned
715 * to the order of the size specified.
716 * @map: The address to base the search on
717 * @size: The bitmap size in bits
718 * @start: The bitnumber to start searching at
719 * @nr: The number of zeroed bits we're looking for
720 * @data: additional data - unused
721 * @pool: pool to find the fit region memory from
723 unsigned long gen_pool_first_fit_order_align(unsigned long *map
,
724 unsigned long size
, unsigned long start
,
725 unsigned int nr
, void *data
, struct gen_pool
*pool
,
726 unsigned long start_addr
)
728 unsigned long align_mask
= roundup_pow_of_two(nr
) - 1;
730 return bitmap_find_next_zero_area(map
, size
, start
, nr
, align_mask
);
732 EXPORT_SYMBOL(gen_pool_first_fit_order_align
);
735 * gen_pool_best_fit - find the best fitting region of memory
736 * macthing the size requirement (no alignment constraint)
737 * @map: The address to base the search on
738 * @size: The bitmap size in bits
739 * @start: The bitnumber to start searching at
740 * @nr: The number of zeroed bits we're looking for
741 * @data: additional data - unused
742 * @pool: pool to find the fit region memory from
744 * Iterate over the bitmap to find the smallest free region
745 * which we can allocate the memory.
747 unsigned long gen_pool_best_fit(unsigned long *map
, unsigned long size
,
748 unsigned long start
, unsigned int nr
, void *data
,
749 struct gen_pool
*pool
, unsigned long start_addr
)
751 unsigned long start_bit
= size
;
752 unsigned long len
= size
+ 1;
755 index
= bitmap_find_next_zero_area(map
, size
, start
, nr
, 0);
757 while (index
< size
) {
758 int next_bit
= find_next_bit(map
, size
, index
+ nr
);
759 if ((next_bit
- index
) < len
) {
760 len
= next_bit
- index
;
765 index
= bitmap_find_next_zero_area(map
, size
,
766 next_bit
+ 1, nr
, 0);
771 EXPORT_SYMBOL(gen_pool_best_fit
);
773 static void devm_gen_pool_release(struct device
*dev
, void *res
)
775 gen_pool_destroy(*(struct gen_pool
**)res
);
778 static int devm_gen_pool_match(struct device
*dev
, void *res
, void *data
)
780 struct gen_pool
**p
= res
;
782 /* NULL data matches only a pool without an assigned name */
783 if (!data
&& !(*p
)->name
)
786 if (!data
|| !(*p
)->name
)
789 return !strcmp((*p
)->name
, data
);
793 * gen_pool_get - Obtain the gen_pool (if any) for a device
794 * @dev: device to retrieve the gen_pool from
795 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
797 * Returns the gen_pool for the device if one is present, or NULL.
799 struct gen_pool
*gen_pool_get(struct device
*dev
, const char *name
)
803 p
= devres_find(dev
, devm_gen_pool_release
, devm_gen_pool_match
,
809 EXPORT_SYMBOL_GPL(gen_pool_get
);
812 * devm_gen_pool_create - managed gen_pool_create
813 * @dev: device that provides the gen_pool
814 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
815 * @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes
816 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
818 * Create a new special memory pool that can be used to manage special purpose
819 * memory not managed by the regular kmalloc/kfree interface. The pool will be
820 * automatically destroyed by the device management code.
822 struct gen_pool
*devm_gen_pool_create(struct device
*dev
, int min_alloc_order
,
823 int nid
, const char *name
)
825 struct gen_pool
**ptr
, *pool
;
826 const char *pool_name
= NULL
;
828 /* Check that genpool to be created is uniquely addressed on device */
829 if (gen_pool_get(dev
, name
))
830 return ERR_PTR(-EINVAL
);
833 pool_name
= kstrdup_const(name
, GFP_KERNEL
);
835 return ERR_PTR(-ENOMEM
);
838 ptr
= devres_alloc(devm_gen_pool_release
, sizeof(*ptr
), GFP_KERNEL
);
842 pool
= gen_pool_create(min_alloc_order
, nid
);
847 pool
->name
= pool_name
;
848 devres_add(dev
, ptr
);
855 kfree_const(pool_name
);
857 return ERR_PTR(-ENOMEM
);
859 EXPORT_SYMBOL(devm_gen_pool_create
);
863 * of_gen_pool_get - find a pool by phandle property
865 * @propname: property name containing phandle(s)
866 * @index: index into the phandle array
868 * Returns the pool that contains the chunk starting at the physical
869 * address of the device tree node pointed at by the phandle property,
870 * or NULL if not found.
872 struct gen_pool
*of_gen_pool_get(struct device_node
*np
,
873 const char *propname
, int index
)
875 struct platform_device
*pdev
;
876 struct device_node
*np_pool
, *parent
;
877 const char *name
= NULL
;
878 struct gen_pool
*pool
= NULL
;
880 np_pool
= of_parse_phandle(np
, propname
, index
);
884 pdev
= of_find_device_by_node(np_pool
);
886 /* Check if named gen_pool is created by parent node device */
887 parent
= of_get_parent(np_pool
);
888 pdev
= of_find_device_by_node(parent
);
891 of_property_read_string(np_pool
, "label", &name
);
893 name
= np_pool
->name
;
896 pool
= gen_pool_get(&pdev
->dev
, name
);
897 of_node_put(np_pool
);
901 EXPORT_SYMBOL_GPL(of_gen_pool_get
);
902 #endif /* CONFIG_OF */