Merge branch 'akpm' (patches from Andrew)
[linux/fpc-iii.git] / drivers / crypto / qce / sha.c
blob1ab62e7d5f3cbc726001dbbdd8e98e789e4943b1
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
4 */
6 #include <linux/device.h>
7 #include <linux/interrupt.h>
8 #include <crypto/internal/hash.h>
10 #include "common.h"
11 #include "core.h"
12 #include "sha.h"
14 /* crypto hw padding constant for first operation */
15 #define SHA_PADDING 64
16 #define SHA_PADDING_MASK (SHA_PADDING - 1)
18 static LIST_HEAD(ahash_algs);
20 static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
21 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
24 static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
25 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
26 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
29 static void qce_ahash_done(void *data)
31 struct crypto_async_request *async_req = data;
32 struct ahash_request *req = ahash_request_cast(async_req);
33 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
34 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
35 struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
36 struct qce_device *qce = tmpl->qce;
37 struct qce_result_dump *result = qce->dma.result_buf;
38 unsigned int digestsize = crypto_ahash_digestsize(ahash);
39 int error;
40 u32 status;
42 error = qce_dma_terminate_all(&qce->dma);
43 if (error)
44 dev_dbg(qce->dev, "ahash dma termination error (%d)\n", error);
46 dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
47 dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
49 memcpy(rctx->digest, result->auth_iv, digestsize);
50 if (req->result)
51 memcpy(req->result, result->auth_iv, digestsize);
53 rctx->byte_count[0] = cpu_to_be32(result->auth_byte_count[0]);
54 rctx->byte_count[1] = cpu_to_be32(result->auth_byte_count[1]);
56 error = qce_check_status(qce, &status);
57 if (error < 0)
58 dev_dbg(qce->dev, "ahash operation error (%x)\n", status);
60 req->src = rctx->src_orig;
61 req->nbytes = rctx->nbytes_orig;
62 rctx->last_blk = false;
63 rctx->first_blk = false;
65 qce->async_req_done(tmpl->qce, error);
68 static int qce_ahash_async_req_handle(struct crypto_async_request *async_req)
70 struct ahash_request *req = ahash_request_cast(async_req);
71 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
72 struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
73 struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
74 struct qce_device *qce = tmpl->qce;
75 unsigned long flags = rctx->flags;
76 int ret;
78 if (IS_SHA_HMAC(flags)) {
79 rctx->authkey = ctx->authkey;
80 rctx->authklen = QCE_SHA_HMAC_KEY_SIZE;
81 } else if (IS_CMAC(flags)) {
82 rctx->authkey = ctx->authkey;
83 rctx->authklen = AES_KEYSIZE_128;
86 rctx->src_nents = sg_nents_for_len(req->src, req->nbytes);
87 if (rctx->src_nents < 0) {
88 dev_err(qce->dev, "Invalid numbers of src SG.\n");
89 return rctx->src_nents;
92 ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
93 if (ret < 0)
94 return ret;
96 sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);
98 ret = dma_map_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
99 if (ret < 0)
100 goto error_unmap_src;
102 ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents,
103 &rctx->result_sg, 1, qce_ahash_done, async_req);
104 if (ret)
105 goto error_unmap_dst;
107 qce_dma_issue_pending(&qce->dma);
109 ret = qce_start(async_req, tmpl->crypto_alg_type, 0, 0);
110 if (ret)
111 goto error_terminate;
113 return 0;
115 error_terminate:
116 qce_dma_terminate_all(&qce->dma);
117 error_unmap_dst:
118 dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
119 error_unmap_src:
120 dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
121 return ret;
124 static int qce_ahash_init(struct ahash_request *req)
126 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
127 struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
128 const u32 *std_iv = tmpl->std_iv;
130 memset(rctx, 0, sizeof(*rctx));
131 rctx->first_blk = true;
132 rctx->last_blk = false;
133 rctx->flags = tmpl->alg_flags;
134 memcpy(rctx->digest, std_iv, sizeof(rctx->digest));
136 return 0;
139 static int qce_ahash_export(struct ahash_request *req, void *out)
141 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
142 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
143 unsigned long flags = rctx->flags;
144 unsigned int digestsize = crypto_ahash_digestsize(ahash);
145 unsigned int blocksize =
146 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
148 if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
149 struct sha1_state *out_state = out;
151 out_state->count = rctx->count;
152 qce_cpu_to_be32p_array((__be32 *)out_state->state,
153 rctx->digest, digestsize);
154 memcpy(out_state->buffer, rctx->buf, blocksize);
155 } else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
156 struct sha256_state *out_state = out;
158 out_state->count = rctx->count;
159 qce_cpu_to_be32p_array((__be32 *)out_state->state,
160 rctx->digest, digestsize);
161 memcpy(out_state->buf, rctx->buf, blocksize);
162 } else {
163 return -EINVAL;
166 return 0;
169 static int qce_import_common(struct ahash_request *req, u64 in_count,
170 const u32 *state, const u8 *buffer, bool hmac)
172 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
173 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
174 unsigned int digestsize = crypto_ahash_digestsize(ahash);
175 unsigned int blocksize;
176 u64 count = in_count;
178 blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
179 rctx->count = in_count;
180 memcpy(rctx->buf, buffer, blocksize);
182 if (in_count <= blocksize) {
183 rctx->first_blk = 1;
184 } else {
185 rctx->first_blk = 0;
187 * For HMAC, there is a hardware padding done when first block
188 * is set. Therefore the byte_count must be incremened by 64
189 * after the first block operation.
191 if (hmac)
192 count += SHA_PADDING;
195 rctx->byte_count[0] = (__force __be32)(count & ~SHA_PADDING_MASK);
196 rctx->byte_count[1] = (__force __be32)(count >> 32);
197 qce_cpu_to_be32p_array((__be32 *)rctx->digest, (const u8 *)state,
198 digestsize);
199 rctx->buflen = (unsigned int)(in_count & (blocksize - 1));
201 return 0;
204 static int qce_ahash_import(struct ahash_request *req, const void *in)
206 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
207 unsigned long flags = rctx->flags;
208 bool hmac = IS_SHA_HMAC(flags);
209 int ret = -EINVAL;
211 if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
212 const struct sha1_state *state = in;
214 ret = qce_import_common(req, state->count, state->state,
215 state->buffer, hmac);
216 } else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
217 const struct sha256_state *state = in;
219 ret = qce_import_common(req, state->count, state->state,
220 state->buf, hmac);
223 return ret;
226 static int qce_ahash_update(struct ahash_request *req)
228 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
229 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
230 struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
231 struct qce_device *qce = tmpl->qce;
232 struct scatterlist *sg_last, *sg;
233 unsigned int total, len;
234 unsigned int hash_later;
235 unsigned int nbytes;
236 unsigned int blocksize;
238 blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
239 rctx->count += req->nbytes;
241 /* check for buffer from previous updates and append it */
242 total = req->nbytes + rctx->buflen;
244 if (total <= blocksize) {
245 scatterwalk_map_and_copy(rctx->buf + rctx->buflen, req->src,
246 0, req->nbytes, 0);
247 rctx->buflen += req->nbytes;
248 return 0;
251 /* save the original req structure fields */
252 rctx->src_orig = req->src;
253 rctx->nbytes_orig = req->nbytes;
256 * if we have data from previous update copy them on buffer. The old
257 * data will be combined with current request bytes.
259 if (rctx->buflen)
260 memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
262 /* calculate how many bytes will be hashed later */
263 hash_later = total % blocksize;
264 if (hash_later) {
265 unsigned int src_offset = req->nbytes - hash_later;
266 scatterwalk_map_and_copy(rctx->buf, req->src, src_offset,
267 hash_later, 0);
270 /* here nbytes is multiple of blocksize */
271 nbytes = total - hash_later;
273 len = rctx->buflen;
274 sg = sg_last = req->src;
276 while (len < nbytes && sg) {
277 if (len + sg_dma_len(sg) > nbytes)
278 break;
279 len += sg_dma_len(sg);
280 sg_last = sg;
281 sg = sg_next(sg);
284 if (!sg_last)
285 return -EINVAL;
287 sg_mark_end(sg_last);
289 if (rctx->buflen) {
290 sg_init_table(rctx->sg, 2);
291 sg_set_buf(rctx->sg, rctx->tmpbuf, rctx->buflen);
292 sg_chain(rctx->sg, 2, req->src);
293 req->src = rctx->sg;
296 req->nbytes = nbytes;
297 rctx->buflen = hash_later;
299 return qce->async_req_enqueue(tmpl->qce, &req->base);
302 static int qce_ahash_final(struct ahash_request *req)
304 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
305 struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
306 struct qce_device *qce = tmpl->qce;
308 if (!rctx->buflen)
309 return 0;
311 rctx->last_blk = true;
313 rctx->src_orig = req->src;
314 rctx->nbytes_orig = req->nbytes;
316 memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
317 sg_init_one(rctx->sg, rctx->tmpbuf, rctx->buflen);
319 req->src = rctx->sg;
320 req->nbytes = rctx->buflen;
322 return qce->async_req_enqueue(tmpl->qce, &req->base);
325 static int qce_ahash_digest(struct ahash_request *req)
327 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
328 struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
329 struct qce_device *qce = tmpl->qce;
330 int ret;
332 ret = qce_ahash_init(req);
333 if (ret)
334 return ret;
336 rctx->src_orig = req->src;
337 rctx->nbytes_orig = req->nbytes;
338 rctx->first_blk = true;
339 rctx->last_blk = true;
341 return qce->async_req_enqueue(tmpl->qce, &req->base);
344 static int qce_ahash_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
345 unsigned int keylen)
347 unsigned int digestsize = crypto_ahash_digestsize(tfm);
348 struct qce_sha_ctx *ctx = crypto_tfm_ctx(&tfm->base);
349 struct crypto_wait wait;
350 struct ahash_request *req;
351 struct scatterlist sg;
352 unsigned int blocksize;
353 struct crypto_ahash *ahash_tfm;
354 u8 *buf;
355 int ret;
356 const char *alg_name;
358 blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
359 memset(ctx->authkey, 0, sizeof(ctx->authkey));
361 if (keylen <= blocksize) {
362 memcpy(ctx->authkey, key, keylen);
363 return 0;
366 if (digestsize == SHA1_DIGEST_SIZE)
367 alg_name = "sha1-qce";
368 else if (digestsize == SHA256_DIGEST_SIZE)
369 alg_name = "sha256-qce";
370 else
371 return -EINVAL;
373 ahash_tfm = crypto_alloc_ahash(alg_name, 0, 0);
374 if (IS_ERR(ahash_tfm))
375 return PTR_ERR(ahash_tfm);
377 req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
378 if (!req) {
379 ret = -ENOMEM;
380 goto err_free_ahash;
383 crypto_init_wait(&wait);
384 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
385 crypto_req_done, &wait);
386 crypto_ahash_clear_flags(ahash_tfm, ~0);
388 buf = kzalloc(keylen + QCE_MAX_ALIGN_SIZE, GFP_KERNEL);
389 if (!buf) {
390 ret = -ENOMEM;
391 goto err_free_req;
394 memcpy(buf, key, keylen);
395 sg_init_one(&sg, buf, keylen);
396 ahash_request_set_crypt(req, &sg, ctx->authkey, keylen);
398 ret = crypto_wait_req(crypto_ahash_digest(req), &wait);
400 kfree(buf);
401 err_free_req:
402 ahash_request_free(req);
403 err_free_ahash:
404 crypto_free_ahash(ahash_tfm);
405 return ret;
408 static int qce_ahash_cra_init(struct crypto_tfm *tfm)
410 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
411 struct qce_sha_ctx *ctx = crypto_tfm_ctx(tfm);
413 crypto_ahash_set_reqsize(ahash, sizeof(struct qce_sha_reqctx));
414 memset(ctx, 0, sizeof(*ctx));
415 return 0;
418 struct qce_ahash_def {
419 unsigned long flags;
420 const char *name;
421 const char *drv_name;
422 unsigned int digestsize;
423 unsigned int blocksize;
424 unsigned int statesize;
425 const u32 *std_iv;
428 static const struct qce_ahash_def ahash_def[] = {
430 .flags = QCE_HASH_SHA1,
431 .name = "sha1",
432 .drv_name = "sha1-qce",
433 .digestsize = SHA1_DIGEST_SIZE,
434 .blocksize = SHA1_BLOCK_SIZE,
435 .statesize = sizeof(struct sha1_state),
436 .std_iv = std_iv_sha1,
439 .flags = QCE_HASH_SHA256,
440 .name = "sha256",
441 .drv_name = "sha256-qce",
442 .digestsize = SHA256_DIGEST_SIZE,
443 .blocksize = SHA256_BLOCK_SIZE,
444 .statesize = sizeof(struct sha256_state),
445 .std_iv = std_iv_sha256,
448 .flags = QCE_HASH_SHA1_HMAC,
449 .name = "hmac(sha1)",
450 .drv_name = "hmac-sha1-qce",
451 .digestsize = SHA1_DIGEST_SIZE,
452 .blocksize = SHA1_BLOCK_SIZE,
453 .statesize = sizeof(struct sha1_state),
454 .std_iv = std_iv_sha1,
457 .flags = QCE_HASH_SHA256_HMAC,
458 .name = "hmac(sha256)",
459 .drv_name = "hmac-sha256-qce",
460 .digestsize = SHA256_DIGEST_SIZE,
461 .blocksize = SHA256_BLOCK_SIZE,
462 .statesize = sizeof(struct sha256_state),
463 .std_iv = std_iv_sha256,
467 static int qce_ahash_register_one(const struct qce_ahash_def *def,
468 struct qce_device *qce)
470 struct qce_alg_template *tmpl;
471 struct ahash_alg *alg;
472 struct crypto_alg *base;
473 int ret;
475 tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
476 if (!tmpl)
477 return -ENOMEM;
479 tmpl->std_iv = def->std_iv;
481 alg = &tmpl->alg.ahash;
482 alg->init = qce_ahash_init;
483 alg->update = qce_ahash_update;
484 alg->final = qce_ahash_final;
485 alg->digest = qce_ahash_digest;
486 alg->export = qce_ahash_export;
487 alg->import = qce_ahash_import;
488 if (IS_SHA_HMAC(def->flags))
489 alg->setkey = qce_ahash_hmac_setkey;
490 alg->halg.digestsize = def->digestsize;
491 alg->halg.statesize = def->statesize;
493 base = &alg->halg.base;
494 base->cra_blocksize = def->blocksize;
495 base->cra_priority = 300;
496 base->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
497 base->cra_ctxsize = sizeof(struct qce_sha_ctx);
498 base->cra_alignmask = 0;
499 base->cra_module = THIS_MODULE;
500 base->cra_init = qce_ahash_cra_init;
502 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
503 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
504 def->drv_name);
506 INIT_LIST_HEAD(&tmpl->entry);
507 tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AHASH;
508 tmpl->alg_flags = def->flags;
509 tmpl->qce = qce;
511 ret = crypto_register_ahash(alg);
512 if (ret) {
513 kfree(tmpl);
514 dev_err(qce->dev, "%s registration failed\n", base->cra_name);
515 return ret;
518 list_add_tail(&tmpl->entry, &ahash_algs);
519 dev_dbg(qce->dev, "%s is registered\n", base->cra_name);
520 return 0;
523 static void qce_ahash_unregister(struct qce_device *qce)
525 struct qce_alg_template *tmpl, *n;
527 list_for_each_entry_safe(tmpl, n, &ahash_algs, entry) {
528 crypto_unregister_ahash(&tmpl->alg.ahash);
529 list_del(&tmpl->entry);
530 kfree(tmpl);
534 static int qce_ahash_register(struct qce_device *qce)
536 int ret, i;
538 for (i = 0; i < ARRAY_SIZE(ahash_def); i++) {
539 ret = qce_ahash_register_one(&ahash_def[i], qce);
540 if (ret)
541 goto err;
544 return 0;
545 err:
546 qce_ahash_unregister(qce);
547 return ret;
550 const struct qce_algo_ops ahash_ops = {
551 .type = CRYPTO_ALG_TYPE_AHASH,
552 .register_algs = qce_ahash_register,
553 .unregister_algs = qce_ahash_unregister,
554 .async_req_handle = qce_ahash_async_req_handle,