LiteX: driver for MMCM
[linux/fpc-iii.git] / drivers / spi / spi-bitbang.c
blob1a7352abd87860956d6f989eb638ad2c42a0003b
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * polling/bitbanging SPI master controller driver utilities
4 */
6 #include <linux/spinlock.h>
7 #include <linux/workqueue.h>
8 #include <linux/interrupt.h>
9 #include <linux/module.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/platform_device.h>
13 #include <linux/slab.h>
15 #include <linux/spi/spi.h>
16 #include <linux/spi/spi_bitbang.h>
18 #define SPI_BITBANG_CS_DELAY 100
21 /*----------------------------------------------------------------------*/
24 * FIRST PART (OPTIONAL): word-at-a-time spi_transfer support.
25 * Use this for GPIO or shift-register level hardware APIs.
27 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
28 * to glue code. These bitbang setup() and cleanup() routines are always
29 * used, though maybe they're called from controller-aware code.
31 * chipselect() and friends may use spi_device->controller_data and
32 * controller registers as appropriate.
35 * NOTE: SPI controller pins can often be used as GPIO pins instead,
36 * which means you could use a bitbang driver either to get hardware
37 * working quickly, or testing for differences that aren't speed related.
40 struct spi_bitbang_cs {
41 unsigned nsecs; /* (clock cycle time)/2 */
42 u32 (*txrx_word)(struct spi_device *spi, unsigned nsecs,
43 u32 word, u8 bits, unsigned flags);
44 unsigned (*txrx_bufs)(struct spi_device *,
45 u32 (*txrx_word)(
46 struct spi_device *spi,
47 unsigned nsecs,
48 u32 word, u8 bits,
49 unsigned flags),
50 unsigned, struct spi_transfer *,
51 unsigned);
54 static unsigned bitbang_txrx_8(
55 struct spi_device *spi,
56 u32 (*txrx_word)(struct spi_device *spi,
57 unsigned nsecs,
58 u32 word, u8 bits,
59 unsigned flags),
60 unsigned ns,
61 struct spi_transfer *t,
62 unsigned flags
63 ) {
64 unsigned bits = t->bits_per_word;
65 unsigned count = t->len;
66 const u8 *tx = t->tx_buf;
67 u8 *rx = t->rx_buf;
69 while (likely(count > 0)) {
70 u8 word = 0;
72 if (tx)
73 word = *tx++;
74 word = txrx_word(spi, ns, word, bits, flags);
75 if (rx)
76 *rx++ = word;
77 count -= 1;
79 return t->len - count;
82 static unsigned bitbang_txrx_16(
83 struct spi_device *spi,
84 u32 (*txrx_word)(struct spi_device *spi,
85 unsigned nsecs,
86 u32 word, u8 bits,
87 unsigned flags),
88 unsigned ns,
89 struct spi_transfer *t,
90 unsigned flags
91 ) {
92 unsigned bits = t->bits_per_word;
93 unsigned count = t->len;
94 const u16 *tx = t->tx_buf;
95 u16 *rx = t->rx_buf;
97 while (likely(count > 1)) {
98 u16 word = 0;
100 if (tx)
101 word = *tx++;
102 word = txrx_word(spi, ns, word, bits, flags);
103 if (rx)
104 *rx++ = word;
105 count -= 2;
107 return t->len - count;
110 static unsigned bitbang_txrx_32(
111 struct spi_device *spi,
112 u32 (*txrx_word)(struct spi_device *spi,
113 unsigned nsecs,
114 u32 word, u8 bits,
115 unsigned flags),
116 unsigned ns,
117 struct spi_transfer *t,
118 unsigned flags
120 unsigned bits = t->bits_per_word;
121 unsigned count = t->len;
122 const u32 *tx = t->tx_buf;
123 u32 *rx = t->rx_buf;
125 while (likely(count > 3)) {
126 u32 word = 0;
128 if (tx)
129 word = *tx++;
130 word = txrx_word(spi, ns, word, bits, flags);
131 if (rx)
132 *rx++ = word;
133 count -= 4;
135 return t->len - count;
138 int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
140 struct spi_bitbang_cs *cs = spi->controller_state;
141 u8 bits_per_word;
142 u32 hz;
144 if (t) {
145 bits_per_word = t->bits_per_word;
146 hz = t->speed_hz;
147 } else {
148 bits_per_word = 0;
149 hz = 0;
152 /* spi_transfer level calls that work per-word */
153 if (!bits_per_word)
154 bits_per_word = spi->bits_per_word;
155 if (bits_per_word <= 8)
156 cs->txrx_bufs = bitbang_txrx_8;
157 else if (bits_per_word <= 16)
158 cs->txrx_bufs = bitbang_txrx_16;
159 else if (bits_per_word <= 32)
160 cs->txrx_bufs = bitbang_txrx_32;
161 else
162 return -EINVAL;
164 /* nsecs = (clock period)/2 */
165 if (!hz)
166 hz = spi->max_speed_hz;
167 if (hz) {
168 cs->nsecs = (1000000000/2) / hz;
169 if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
170 return -EINVAL;
173 return 0;
175 EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
178 * spi_bitbang_setup - default setup for per-word I/O loops
180 int spi_bitbang_setup(struct spi_device *spi)
182 struct spi_bitbang_cs *cs = spi->controller_state;
183 struct spi_bitbang *bitbang;
185 bitbang = spi_master_get_devdata(spi->master);
187 if (!cs) {
188 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
189 if (!cs)
190 return -ENOMEM;
191 spi->controller_state = cs;
194 /* per-word shift register access, in hardware or bitbanging */
195 cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
196 if (!cs->txrx_word)
197 return -EINVAL;
199 if (bitbang->setup_transfer) {
200 int retval = bitbang->setup_transfer(spi, NULL);
201 if (retval < 0)
202 return retval;
205 dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
207 return 0;
209 EXPORT_SYMBOL_GPL(spi_bitbang_setup);
212 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
214 void spi_bitbang_cleanup(struct spi_device *spi)
216 kfree(spi->controller_state);
218 EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
220 static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
222 struct spi_bitbang_cs *cs = spi->controller_state;
223 unsigned nsecs = cs->nsecs;
224 struct spi_bitbang *bitbang;
226 bitbang = spi_master_get_devdata(spi->master);
227 if (bitbang->set_line_direction) {
228 int err;
230 err = bitbang->set_line_direction(spi, !!(t->tx_buf));
231 if (err < 0)
232 return err;
235 if (spi->mode & SPI_3WIRE) {
236 unsigned flags;
238 flags = t->tx_buf ? SPI_MASTER_NO_RX : SPI_MASTER_NO_TX;
239 return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, flags);
241 return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, 0);
244 /*----------------------------------------------------------------------*/
247 * SECOND PART ... simple transfer queue runner.
249 * This costs a task context per controller, running the queue by
250 * performing each transfer in sequence. Smarter hardware can queue
251 * several DMA transfers at once, and process several controller queues
252 * in parallel; this driver doesn't match such hardware very well.
254 * Drivers can provide word-at-a-time i/o primitives, or provide
255 * transfer-at-a-time ones to leverage dma or fifo hardware.
258 static int spi_bitbang_prepare_hardware(struct spi_master *spi)
260 struct spi_bitbang *bitbang;
262 bitbang = spi_master_get_devdata(spi);
264 mutex_lock(&bitbang->lock);
265 bitbang->busy = 1;
266 mutex_unlock(&bitbang->lock);
268 return 0;
271 static int spi_bitbang_transfer_one(struct spi_master *master,
272 struct spi_device *spi,
273 struct spi_transfer *transfer)
275 struct spi_bitbang *bitbang = spi_master_get_devdata(master);
276 int status = 0;
278 if (bitbang->setup_transfer) {
279 status = bitbang->setup_transfer(spi, transfer);
280 if (status < 0)
281 goto out;
284 if (transfer->len)
285 status = bitbang->txrx_bufs(spi, transfer);
287 if (status == transfer->len)
288 status = 0;
289 else if (status >= 0)
290 status = -EREMOTEIO;
292 out:
293 spi_finalize_current_transfer(master);
295 return status;
298 static int spi_bitbang_unprepare_hardware(struct spi_master *spi)
300 struct spi_bitbang *bitbang;
302 bitbang = spi_master_get_devdata(spi);
304 mutex_lock(&bitbang->lock);
305 bitbang->busy = 0;
306 mutex_unlock(&bitbang->lock);
308 return 0;
311 static void spi_bitbang_set_cs(struct spi_device *spi, bool enable)
313 struct spi_bitbang *bitbang = spi_master_get_devdata(spi->master);
315 /* SPI core provides CS high / low, but bitbang driver
316 * expects CS active
317 * spi device driver takes care of handling SPI_CS_HIGH
319 enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
321 ndelay(SPI_BITBANG_CS_DELAY);
322 bitbang->chipselect(spi, enable ? BITBANG_CS_ACTIVE :
323 BITBANG_CS_INACTIVE);
324 ndelay(SPI_BITBANG_CS_DELAY);
327 /*----------------------------------------------------------------------*/
329 int spi_bitbang_init(struct spi_bitbang *bitbang)
331 struct spi_master *master = bitbang->master;
332 bool custom_cs;
334 if (!master)
335 return -EINVAL;
337 * We only need the chipselect callback if we are actually using it.
338 * If we just use GPIO descriptors, it is surplus. If the
339 * SPI_MASTER_GPIO_SS flag is set, we always need to call the
340 * driver-specific chipselect routine.
342 custom_cs = (!master->use_gpio_descriptors ||
343 (master->flags & SPI_MASTER_GPIO_SS));
345 if (custom_cs && !bitbang->chipselect)
346 return -EINVAL;
348 mutex_init(&bitbang->lock);
350 if (!master->mode_bits)
351 master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
353 if (master->transfer || master->transfer_one_message)
354 return -EINVAL;
356 master->prepare_transfer_hardware = spi_bitbang_prepare_hardware;
357 master->unprepare_transfer_hardware = spi_bitbang_unprepare_hardware;
358 master->transfer_one = spi_bitbang_transfer_one;
360 * When using GPIO descriptors, the ->set_cs() callback doesn't even
361 * get called unless SPI_MASTER_GPIO_SS is set.
363 if (custom_cs)
364 master->set_cs = spi_bitbang_set_cs;
366 if (!bitbang->txrx_bufs) {
367 bitbang->use_dma = 0;
368 bitbang->txrx_bufs = spi_bitbang_bufs;
369 if (!master->setup) {
370 if (!bitbang->setup_transfer)
371 bitbang->setup_transfer =
372 spi_bitbang_setup_transfer;
373 master->setup = spi_bitbang_setup;
374 master->cleanup = spi_bitbang_cleanup;
378 return 0;
380 EXPORT_SYMBOL_GPL(spi_bitbang_init);
383 * spi_bitbang_start - start up a polled/bitbanging SPI master driver
384 * @bitbang: driver handle
386 * Caller should have zero-initialized all parts of the structure, and then
387 * provided callbacks for chip selection and I/O loops. If the master has
388 * a transfer method, its final step should call spi_bitbang_transfer; or,
389 * that's the default if the transfer routine is not initialized. It should
390 * also set up the bus number and number of chipselects.
392 * For i/o loops, provide callbacks either per-word (for bitbanging, or for
393 * hardware that basically exposes a shift register) or per-spi_transfer
394 * (which takes better advantage of hardware like fifos or DMA engines).
396 * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
397 * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
398 * master methods. Those methods are the defaults if the bitbang->txrx_bufs
399 * routine isn't initialized.
401 * This routine registers the spi_master, which will process requests in a
402 * dedicated task, keeping IRQs unblocked most of the time. To stop
403 * processing those requests, call spi_bitbang_stop().
405 * On success, this routine will take a reference to master. The caller is
406 * responsible for calling spi_bitbang_stop() to decrement the reference and
407 * spi_master_put() as counterpart of spi_alloc_master() to prevent a memory
408 * leak.
410 int spi_bitbang_start(struct spi_bitbang *bitbang)
412 struct spi_master *master = bitbang->master;
413 int ret;
415 ret = spi_bitbang_init(bitbang);
416 if (ret)
417 return ret;
419 /* driver may get busy before register() returns, especially
420 * if someone registered boardinfo for devices
422 ret = spi_register_master(spi_master_get(master));
423 if (ret)
424 spi_master_put(master);
426 return ret;
428 EXPORT_SYMBOL_GPL(spi_bitbang_start);
431 * spi_bitbang_stop - stops the task providing spi communication
433 void spi_bitbang_stop(struct spi_bitbang *bitbang)
435 spi_unregister_master(bitbang->master);
437 EXPORT_SYMBOL_GPL(spi_bitbang_stop);
439 MODULE_LICENSE("GPL");