LiteX: driver for MMCM
[linux/fpc-iii.git] / drivers / spi / spi-mxic.c
blob96b418293bf2a493dca92f016e7dc342120db141
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Copyright (C) 2018 Macronix International Co., Ltd.
4 //
5 // Authors:
6 // Mason Yang <masonccyang@mxic.com.tw>
7 // zhengxunli <zhengxunli@mxic.com.tw>
8 // Boris Brezillon <boris.brezillon@bootlin.com>
9 //
11 #include <linux/clk.h>
12 #include <linux/io.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/spi/spi.h>
18 #include <linux/spi/spi-mem.h>
20 #define HC_CFG 0x0
21 #define HC_CFG_IF_CFG(x) ((x) << 27)
22 #define HC_CFG_DUAL_SLAVE BIT(31)
23 #define HC_CFG_INDIVIDUAL BIT(30)
24 #define HC_CFG_NIO(x) (((x) / 4) << 27)
25 #define HC_CFG_TYPE(s, t) ((t) << (23 + ((s) * 2)))
26 #define HC_CFG_TYPE_SPI_NOR 0
27 #define HC_CFG_TYPE_SPI_NAND 1
28 #define HC_CFG_TYPE_SPI_RAM 2
29 #define HC_CFG_TYPE_RAW_NAND 3
30 #define HC_CFG_SLV_ACT(x) ((x) << 21)
31 #define HC_CFG_CLK_PH_EN BIT(20)
32 #define HC_CFG_CLK_POL_INV BIT(19)
33 #define HC_CFG_BIG_ENDIAN BIT(18)
34 #define HC_CFG_DATA_PASS BIT(17)
35 #define HC_CFG_IDLE_SIO_LVL(x) ((x) << 16)
36 #define HC_CFG_MAN_START_EN BIT(3)
37 #define HC_CFG_MAN_START BIT(2)
38 #define HC_CFG_MAN_CS_EN BIT(1)
39 #define HC_CFG_MAN_CS_ASSERT BIT(0)
41 #define INT_STS 0x4
42 #define INT_STS_EN 0x8
43 #define INT_SIG_EN 0xc
44 #define INT_STS_ALL GENMASK(31, 0)
45 #define INT_RDY_PIN BIT(26)
46 #define INT_RDY_SR BIT(25)
47 #define INT_LNR_SUSP BIT(24)
48 #define INT_ECC_ERR BIT(17)
49 #define INT_CRC_ERR BIT(16)
50 #define INT_LWR_DIS BIT(12)
51 #define INT_LRD_DIS BIT(11)
52 #define INT_SDMA_INT BIT(10)
53 #define INT_DMA_FINISH BIT(9)
54 #define INT_RX_NOT_FULL BIT(3)
55 #define INT_RX_NOT_EMPTY BIT(2)
56 #define INT_TX_NOT_FULL BIT(1)
57 #define INT_TX_EMPTY BIT(0)
59 #define HC_EN 0x10
60 #define HC_EN_BIT BIT(0)
62 #define TXD(x) (0x14 + ((x) * 4))
63 #define RXD 0x24
65 #define SS_CTRL(s) (0x30 + ((s) * 4))
66 #define LRD_CFG 0x44
67 #define LWR_CFG 0x80
68 #define RWW_CFG 0x70
69 #define OP_READ BIT(23)
70 #define OP_DUMMY_CYC(x) ((x) << 17)
71 #define OP_ADDR_BYTES(x) ((x) << 14)
72 #define OP_CMD_BYTES(x) (((x) - 1) << 13)
73 #define OP_OCTA_CRC_EN BIT(12)
74 #define OP_DQS_EN BIT(11)
75 #define OP_ENHC_EN BIT(10)
76 #define OP_PREAMBLE_EN BIT(9)
77 #define OP_DATA_DDR BIT(8)
78 #define OP_DATA_BUSW(x) ((x) << 6)
79 #define OP_ADDR_DDR BIT(5)
80 #define OP_ADDR_BUSW(x) ((x) << 3)
81 #define OP_CMD_DDR BIT(2)
82 #define OP_CMD_BUSW(x) (x)
83 #define OP_BUSW_1 0
84 #define OP_BUSW_2 1
85 #define OP_BUSW_4 2
86 #define OP_BUSW_8 3
88 #define OCTA_CRC 0x38
89 #define OCTA_CRC_IN_EN(s) BIT(3 + ((s) * 16))
90 #define OCTA_CRC_CHUNK(s, x) ((fls((x) / 32)) << (1 + ((s) * 16)))
91 #define OCTA_CRC_OUT_EN(s) BIT(0 + ((s) * 16))
93 #define ONFI_DIN_CNT(s) (0x3c + (s))
95 #define LRD_CTRL 0x48
96 #define RWW_CTRL 0x74
97 #define LWR_CTRL 0x84
98 #define LMODE_EN BIT(31)
99 #define LMODE_SLV_ACT(x) ((x) << 21)
100 #define LMODE_CMD1(x) ((x) << 8)
101 #define LMODE_CMD0(x) (x)
103 #define LRD_ADDR 0x4c
104 #define LWR_ADDR 0x88
105 #define LRD_RANGE 0x50
106 #define LWR_RANGE 0x8c
108 #define AXI_SLV_ADDR 0x54
110 #define DMAC_RD_CFG 0x58
111 #define DMAC_WR_CFG 0x94
112 #define DMAC_CFG_PERIPH_EN BIT(31)
113 #define DMAC_CFG_ALLFLUSH_EN BIT(30)
114 #define DMAC_CFG_LASTFLUSH_EN BIT(29)
115 #define DMAC_CFG_QE(x) (((x) + 1) << 16)
116 #define DMAC_CFG_BURST_LEN(x) (((x) + 1) << 12)
117 #define DMAC_CFG_BURST_SZ(x) ((x) << 8)
118 #define DMAC_CFG_DIR_READ BIT(1)
119 #define DMAC_CFG_START BIT(0)
121 #define DMAC_RD_CNT 0x5c
122 #define DMAC_WR_CNT 0x98
124 #define SDMA_ADDR 0x60
126 #define DMAM_CFG 0x64
127 #define DMAM_CFG_START BIT(31)
128 #define DMAM_CFG_CONT BIT(30)
129 #define DMAM_CFG_SDMA_GAP(x) (fls((x) / 8192) << 2)
130 #define DMAM_CFG_DIR_READ BIT(1)
131 #define DMAM_CFG_EN BIT(0)
133 #define DMAM_CNT 0x68
135 #define LNR_TIMER_TH 0x6c
137 #define RDM_CFG0 0x78
138 #define RDM_CFG0_POLY(x) (x)
140 #define RDM_CFG1 0x7c
141 #define RDM_CFG1_RDM_EN BIT(31)
142 #define RDM_CFG1_SEED(x) (x)
144 #define LWR_SUSP_CTRL 0x90
145 #define LWR_SUSP_CTRL_EN BIT(31)
147 #define DMAS_CTRL 0x9c
148 #define DMAS_CTRL_EN BIT(31)
149 #define DMAS_CTRL_DIR_READ BIT(30)
151 #define DATA_STROB 0xa0
152 #define DATA_STROB_EDO_EN BIT(2)
153 #define DATA_STROB_INV_POL BIT(1)
154 #define DATA_STROB_DELAY_2CYC BIT(0)
156 #define IDLY_CODE(x) (0xa4 + ((x) * 4))
157 #define IDLY_CODE_VAL(x, v) ((v) << (((x) % 4) * 8))
159 #define GPIO 0xc4
160 #define GPIO_PT(x) BIT(3 + ((x) * 16))
161 #define GPIO_RESET(x) BIT(2 + ((x) * 16))
162 #define GPIO_HOLDB(x) BIT(1 + ((x) * 16))
163 #define GPIO_WPB(x) BIT((x) * 16)
165 #define HC_VER 0xd0
167 #define HW_TEST(x) (0xe0 + ((x) * 4))
169 struct mxic_spi {
170 struct clk *ps_clk;
171 struct clk *send_clk;
172 struct clk *send_dly_clk;
173 void __iomem *regs;
174 u32 cur_speed_hz;
177 static int mxic_spi_clk_enable(struct mxic_spi *mxic)
179 int ret;
181 ret = clk_prepare_enable(mxic->send_clk);
182 if (ret)
183 return ret;
185 ret = clk_prepare_enable(mxic->send_dly_clk);
186 if (ret)
187 goto err_send_dly_clk;
189 return ret;
191 err_send_dly_clk:
192 clk_disable_unprepare(mxic->send_clk);
194 return ret;
197 static void mxic_spi_clk_disable(struct mxic_spi *mxic)
199 clk_disable_unprepare(mxic->send_clk);
200 clk_disable_unprepare(mxic->send_dly_clk);
203 static void mxic_spi_set_input_delay_dqs(struct mxic_spi *mxic, u8 idly_code)
205 writel(IDLY_CODE_VAL(0, idly_code) |
206 IDLY_CODE_VAL(1, idly_code) |
207 IDLY_CODE_VAL(2, idly_code) |
208 IDLY_CODE_VAL(3, idly_code),
209 mxic->regs + IDLY_CODE(0));
210 writel(IDLY_CODE_VAL(4, idly_code) |
211 IDLY_CODE_VAL(5, idly_code) |
212 IDLY_CODE_VAL(6, idly_code) |
213 IDLY_CODE_VAL(7, idly_code),
214 mxic->regs + IDLY_CODE(1));
217 static int mxic_spi_clk_setup(struct mxic_spi *mxic, unsigned long freq)
219 int ret;
221 ret = clk_set_rate(mxic->send_clk, freq);
222 if (ret)
223 return ret;
225 ret = clk_set_rate(mxic->send_dly_clk, freq);
226 if (ret)
227 return ret;
230 * A constant delay range from 0x0 ~ 0x1F for input delay,
231 * the unit is 78 ps, the max input delay is 2.418 ns.
233 mxic_spi_set_input_delay_dqs(mxic, 0xf);
236 * Phase degree = 360 * freq * output-delay
237 * where output-delay is a constant value 1 ns in FPGA.
239 * Get Phase degree = 360 * freq * 1 ns
240 * = 360 * freq * 1 sec / 1000000000
241 * = 9 * freq / 25000000
243 ret = clk_set_phase(mxic->send_dly_clk, 9 * freq / 25000000);
244 if (ret)
245 return ret;
247 return 0;
250 static int mxic_spi_set_freq(struct mxic_spi *mxic, unsigned long freq)
252 int ret;
254 if (mxic->cur_speed_hz == freq)
255 return 0;
257 mxic_spi_clk_disable(mxic);
258 ret = mxic_spi_clk_setup(mxic, freq);
259 if (ret)
260 return ret;
262 ret = mxic_spi_clk_enable(mxic);
263 if (ret)
264 return ret;
266 mxic->cur_speed_hz = freq;
268 return 0;
271 static void mxic_spi_hw_init(struct mxic_spi *mxic)
273 writel(0, mxic->regs + DATA_STROB);
274 writel(INT_STS_ALL, mxic->regs + INT_STS_EN);
275 writel(0, mxic->regs + HC_EN);
276 writel(0, mxic->regs + LRD_CFG);
277 writel(0, mxic->regs + LRD_CTRL);
278 writel(HC_CFG_NIO(1) | HC_CFG_TYPE(0, HC_CFG_TYPE_SPI_NOR) |
279 HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN | HC_CFG_IDLE_SIO_LVL(1),
280 mxic->regs + HC_CFG);
283 static int mxic_spi_data_xfer(struct mxic_spi *mxic, const void *txbuf,
284 void *rxbuf, unsigned int len)
286 unsigned int pos = 0;
288 while (pos < len) {
289 unsigned int nbytes = len - pos;
290 u32 data = 0xffffffff;
291 u32 sts;
292 int ret;
294 if (nbytes > 4)
295 nbytes = 4;
297 if (txbuf)
298 memcpy(&data, txbuf + pos, nbytes);
300 ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
301 sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
302 if (ret)
303 return ret;
305 writel(data, mxic->regs + TXD(nbytes % 4));
307 if (rxbuf) {
308 ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
309 sts & INT_TX_EMPTY, 0,
310 USEC_PER_SEC);
311 if (ret)
312 return ret;
314 ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
315 sts & INT_RX_NOT_EMPTY, 0,
316 USEC_PER_SEC);
317 if (ret)
318 return ret;
320 data = readl(mxic->regs + RXD);
321 data >>= (8 * (4 - nbytes));
322 memcpy(rxbuf + pos, &data, nbytes);
323 WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY);
324 } else {
325 readl(mxic->regs + RXD);
327 WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY);
329 pos += nbytes;
332 return 0;
335 static bool mxic_spi_mem_supports_op(struct spi_mem *mem,
336 const struct spi_mem_op *op)
338 if (op->data.buswidth > 4 || op->addr.buswidth > 4 ||
339 op->dummy.buswidth > 4 || op->cmd.buswidth > 4)
340 return false;
342 if (op->data.nbytes && op->dummy.nbytes &&
343 op->data.buswidth != op->dummy.buswidth)
344 return false;
346 if (op->addr.nbytes > 7)
347 return false;
349 return spi_mem_default_supports_op(mem, op);
352 static int mxic_spi_mem_exec_op(struct spi_mem *mem,
353 const struct spi_mem_op *op)
355 struct mxic_spi *mxic = spi_master_get_devdata(mem->spi->master);
356 int nio = 1, i, ret;
357 u32 ss_ctrl;
358 u8 addr[8];
359 u8 opcode = op->cmd.opcode;
361 ret = mxic_spi_set_freq(mxic, mem->spi->max_speed_hz);
362 if (ret)
363 return ret;
365 if (mem->spi->mode & (SPI_TX_QUAD | SPI_RX_QUAD))
366 nio = 4;
367 else if (mem->spi->mode & (SPI_TX_DUAL | SPI_RX_DUAL))
368 nio = 2;
370 writel(HC_CFG_NIO(nio) |
371 HC_CFG_TYPE(mem->spi->chip_select, HC_CFG_TYPE_SPI_NOR) |
372 HC_CFG_SLV_ACT(mem->spi->chip_select) | HC_CFG_IDLE_SIO_LVL(1) |
373 HC_CFG_MAN_CS_EN,
374 mxic->regs + HC_CFG);
375 writel(HC_EN_BIT, mxic->regs + HC_EN);
377 ss_ctrl = OP_CMD_BYTES(1) | OP_CMD_BUSW(fls(op->cmd.buswidth) - 1);
379 if (op->addr.nbytes)
380 ss_ctrl |= OP_ADDR_BYTES(op->addr.nbytes) |
381 OP_ADDR_BUSW(fls(op->addr.buswidth) - 1);
383 if (op->dummy.nbytes)
384 ss_ctrl |= OP_DUMMY_CYC(op->dummy.nbytes);
386 if (op->data.nbytes) {
387 ss_ctrl |= OP_DATA_BUSW(fls(op->data.buswidth) - 1);
388 if (op->data.dir == SPI_MEM_DATA_IN)
389 ss_ctrl |= OP_READ;
392 writel(ss_ctrl, mxic->regs + SS_CTRL(mem->spi->chip_select));
394 writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
395 mxic->regs + HC_CFG);
397 ret = mxic_spi_data_xfer(mxic, &opcode, NULL, 1);
398 if (ret)
399 goto out;
401 for (i = 0; i < op->addr.nbytes; i++)
402 addr[i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
404 ret = mxic_spi_data_xfer(mxic, addr, NULL, op->addr.nbytes);
405 if (ret)
406 goto out;
408 ret = mxic_spi_data_xfer(mxic, NULL, NULL, op->dummy.nbytes);
409 if (ret)
410 goto out;
412 ret = mxic_spi_data_xfer(mxic,
413 op->data.dir == SPI_MEM_DATA_OUT ?
414 op->data.buf.out : NULL,
415 op->data.dir == SPI_MEM_DATA_IN ?
416 op->data.buf.in : NULL,
417 op->data.nbytes);
419 out:
420 writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
421 mxic->regs + HC_CFG);
422 writel(0, mxic->regs + HC_EN);
424 return ret;
427 static const struct spi_controller_mem_ops mxic_spi_mem_ops = {
428 .supports_op = mxic_spi_mem_supports_op,
429 .exec_op = mxic_spi_mem_exec_op,
432 static void mxic_spi_set_cs(struct spi_device *spi, bool lvl)
434 struct mxic_spi *mxic = spi_master_get_devdata(spi->master);
436 if (!lvl) {
437 writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_EN,
438 mxic->regs + HC_CFG);
439 writel(HC_EN_BIT, mxic->regs + HC_EN);
440 writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
441 mxic->regs + HC_CFG);
442 } else {
443 writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
444 mxic->regs + HC_CFG);
445 writel(0, mxic->regs + HC_EN);
449 static int mxic_spi_transfer_one(struct spi_master *master,
450 struct spi_device *spi,
451 struct spi_transfer *t)
453 struct mxic_spi *mxic = spi_master_get_devdata(master);
454 unsigned int busw = OP_BUSW_1;
455 int ret;
457 if (t->rx_buf && t->tx_buf) {
458 if (((spi->mode & SPI_TX_QUAD) &&
459 !(spi->mode & SPI_RX_QUAD)) ||
460 ((spi->mode & SPI_TX_DUAL) &&
461 !(spi->mode & SPI_RX_DUAL)))
462 return -ENOTSUPP;
465 ret = mxic_spi_set_freq(mxic, t->speed_hz);
466 if (ret)
467 return ret;
469 if (t->tx_buf) {
470 if (spi->mode & SPI_TX_QUAD)
471 busw = OP_BUSW_4;
472 else if (spi->mode & SPI_TX_DUAL)
473 busw = OP_BUSW_2;
474 } else if (t->rx_buf) {
475 if (spi->mode & SPI_RX_QUAD)
476 busw = OP_BUSW_4;
477 else if (spi->mode & SPI_RX_DUAL)
478 busw = OP_BUSW_2;
481 writel(OP_CMD_BYTES(1) | OP_CMD_BUSW(busw) |
482 OP_DATA_BUSW(busw) | (t->rx_buf ? OP_READ : 0),
483 mxic->regs + SS_CTRL(0));
485 ret = mxic_spi_data_xfer(mxic, t->tx_buf, t->rx_buf, t->len);
486 if (ret)
487 return ret;
489 spi_finalize_current_transfer(master);
491 return 0;
494 static int __maybe_unused mxic_spi_runtime_suspend(struct device *dev)
496 struct spi_master *master = dev_get_drvdata(dev);
497 struct mxic_spi *mxic = spi_master_get_devdata(master);
499 mxic_spi_clk_disable(mxic);
500 clk_disable_unprepare(mxic->ps_clk);
502 return 0;
505 static int __maybe_unused mxic_spi_runtime_resume(struct device *dev)
507 struct spi_master *master = dev_get_drvdata(dev);
508 struct mxic_spi *mxic = spi_master_get_devdata(master);
509 int ret;
511 ret = clk_prepare_enable(mxic->ps_clk);
512 if (ret) {
513 dev_err(dev, "Cannot enable ps_clock.\n");
514 return ret;
517 return mxic_spi_clk_enable(mxic);
520 static const struct dev_pm_ops mxic_spi_dev_pm_ops = {
521 SET_RUNTIME_PM_OPS(mxic_spi_runtime_suspend,
522 mxic_spi_runtime_resume, NULL)
525 static int mxic_spi_probe(struct platform_device *pdev)
527 struct spi_master *master;
528 struct resource *res;
529 struct mxic_spi *mxic;
530 int ret;
532 master = devm_spi_alloc_master(&pdev->dev, sizeof(struct mxic_spi));
533 if (!master)
534 return -ENOMEM;
536 platform_set_drvdata(pdev, master);
538 mxic = spi_master_get_devdata(master);
540 master->dev.of_node = pdev->dev.of_node;
542 mxic->ps_clk = devm_clk_get(&pdev->dev, "ps_clk");
543 if (IS_ERR(mxic->ps_clk))
544 return PTR_ERR(mxic->ps_clk);
546 mxic->send_clk = devm_clk_get(&pdev->dev, "send_clk");
547 if (IS_ERR(mxic->send_clk))
548 return PTR_ERR(mxic->send_clk);
550 mxic->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly_clk");
551 if (IS_ERR(mxic->send_dly_clk))
552 return PTR_ERR(mxic->send_dly_clk);
554 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
555 mxic->regs = devm_ioremap_resource(&pdev->dev, res);
556 if (IS_ERR(mxic->regs))
557 return PTR_ERR(mxic->regs);
559 pm_runtime_enable(&pdev->dev);
560 master->auto_runtime_pm = true;
562 master->num_chipselect = 1;
563 master->mem_ops = &mxic_spi_mem_ops;
565 master->set_cs = mxic_spi_set_cs;
566 master->transfer_one = mxic_spi_transfer_one;
567 master->bits_per_word_mask = SPI_BPW_MASK(8);
568 master->mode_bits = SPI_CPOL | SPI_CPHA |
569 SPI_RX_DUAL | SPI_TX_DUAL |
570 SPI_RX_QUAD | SPI_TX_QUAD;
572 mxic_spi_hw_init(mxic);
574 ret = spi_register_master(master);
575 if (ret) {
576 dev_err(&pdev->dev, "spi_register_master failed\n");
577 pm_runtime_disable(&pdev->dev);
580 return ret;
583 static int mxic_spi_remove(struct platform_device *pdev)
585 struct spi_master *master = platform_get_drvdata(pdev);
587 pm_runtime_disable(&pdev->dev);
588 spi_unregister_master(master);
590 return 0;
593 static const struct of_device_id mxic_spi_of_ids[] = {
594 { .compatible = "mxicy,mx25f0a-spi", },
595 { /* sentinel */ }
597 MODULE_DEVICE_TABLE(of, mxic_spi_of_ids);
599 static struct platform_driver mxic_spi_driver = {
600 .probe = mxic_spi_probe,
601 .remove = mxic_spi_remove,
602 .driver = {
603 .name = "mxic-spi",
604 .of_match_table = mxic_spi_of_ids,
605 .pm = &mxic_spi_dev_pm_ops,
608 module_platform_driver(mxic_spi_driver);
610 MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>");
611 MODULE_DESCRIPTION("MX25F0A SPI controller driver");
612 MODULE_LICENSE("GPL v2");