Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[linux/fpc-iii.git] / drivers / crypto / ixp4xx_crypto.c
blobf757a0f428bde807a8e5402af8404e98314c2bf8
1 /*
2 * Intel IXP4xx NPE-C crypto driver
4 * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of version 2 of the GNU General Public License
8 * as published by the Free Software Foundation.
12 #include <linux/platform_device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/crypto.h>
16 #include <linux/kernel.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/gfp.h>
21 #include <linux/module.h>
23 #include <crypto/ctr.h>
24 #include <crypto/des.h>
25 #include <crypto/aes.h>
26 #include <crypto/sha.h>
27 #include <crypto/algapi.h>
28 #include <crypto/aead.h>
29 #include <crypto/authenc.h>
30 #include <crypto/scatterwalk.h>
32 #include <mach/npe.h>
33 #include <mach/qmgr.h>
35 #define MAX_KEYLEN 32
37 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
38 #define NPE_CTX_LEN 80
39 #define AES_BLOCK128 16
41 #define NPE_OP_HASH_VERIFY 0x01
42 #define NPE_OP_CCM_ENABLE 0x04
43 #define NPE_OP_CRYPT_ENABLE 0x08
44 #define NPE_OP_HASH_ENABLE 0x10
45 #define NPE_OP_NOT_IN_PLACE 0x20
46 #define NPE_OP_HMAC_DISABLE 0x40
47 #define NPE_OP_CRYPT_ENCRYPT 0x80
49 #define NPE_OP_CCM_GEN_MIC 0xcc
50 #define NPE_OP_HASH_GEN_ICV 0x50
51 #define NPE_OP_ENC_GEN_KEY 0xc9
53 #define MOD_ECB 0x0000
54 #define MOD_CTR 0x1000
55 #define MOD_CBC_ENC 0x2000
56 #define MOD_CBC_DEC 0x3000
57 #define MOD_CCM_ENC 0x4000
58 #define MOD_CCM_DEC 0x5000
60 #define KEYLEN_128 4
61 #define KEYLEN_192 6
62 #define KEYLEN_256 8
64 #define CIPH_DECR 0x0000
65 #define CIPH_ENCR 0x0400
67 #define MOD_DES 0x0000
68 #define MOD_TDEA2 0x0100
69 #define MOD_3DES 0x0200
70 #define MOD_AES 0x0800
71 #define MOD_AES128 (0x0800 | KEYLEN_128)
72 #define MOD_AES192 (0x0900 | KEYLEN_192)
73 #define MOD_AES256 (0x0a00 | KEYLEN_256)
75 #define MAX_IVLEN 16
76 #define NPE_ID 2 /* NPE C */
77 #define NPE_QLEN 16
78 /* Space for registering when the first
79 * NPE_QLEN crypt_ctl are busy */
80 #define NPE_QLEN_TOTAL 64
82 #define SEND_QID 29
83 #define RECV_QID 30
85 #define CTL_FLAG_UNUSED 0x0000
86 #define CTL_FLAG_USED 0x1000
87 #define CTL_FLAG_PERFORM_ABLK 0x0001
88 #define CTL_FLAG_GEN_ICV 0x0002
89 #define CTL_FLAG_GEN_REVAES 0x0004
90 #define CTL_FLAG_PERFORM_AEAD 0x0008
91 #define CTL_FLAG_MASK 0x000f
93 #define HMAC_IPAD_VALUE 0x36
94 #define HMAC_OPAD_VALUE 0x5C
95 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
97 #define MD5_DIGEST_SIZE 16
99 struct buffer_desc {
100 u32 phys_next;
101 #ifdef __ARMEB__
102 u16 buf_len;
103 u16 pkt_len;
104 #else
105 u16 pkt_len;
106 u16 buf_len;
107 #endif
108 u32 phys_addr;
109 u32 __reserved[4];
110 struct buffer_desc *next;
111 enum dma_data_direction dir;
114 struct crypt_ctl {
115 #ifdef __ARMEB__
116 u8 mode; /* NPE_OP_* operation mode */
117 u8 init_len;
118 u16 reserved;
119 #else
120 u16 reserved;
121 u8 init_len;
122 u8 mode; /* NPE_OP_* operation mode */
123 #endif
124 u8 iv[MAX_IVLEN]; /* IV for CBC mode or CTR IV for CTR mode */
125 u32 icv_rev_aes; /* icv or rev aes */
126 u32 src_buf;
127 u32 dst_buf;
128 #ifdef __ARMEB__
129 u16 auth_offs; /* Authentication start offset */
130 u16 auth_len; /* Authentication data length */
131 u16 crypt_offs; /* Cryption start offset */
132 u16 crypt_len; /* Cryption data length */
133 #else
134 u16 auth_len; /* Authentication data length */
135 u16 auth_offs; /* Authentication start offset */
136 u16 crypt_len; /* Cryption data length */
137 u16 crypt_offs; /* Cryption start offset */
138 #endif
139 u32 aadAddr; /* Additional Auth Data Addr for CCM mode */
140 u32 crypto_ctx; /* NPE Crypto Param structure address */
142 /* Used by Host: 4*4 bytes*/
143 unsigned ctl_flags;
144 union {
145 struct ablkcipher_request *ablk_req;
146 struct aead_request *aead_req;
147 struct crypto_tfm *tfm;
148 } data;
149 struct buffer_desc *regist_buf;
150 u8 *regist_ptr;
153 struct ablk_ctx {
154 struct buffer_desc *src;
155 struct buffer_desc *dst;
158 struct aead_ctx {
159 struct buffer_desc *buffer;
160 struct scatterlist ivlist;
161 /* used when the hmac is not on one sg entry */
162 u8 *hmac_virt;
163 int encrypt;
166 struct ix_hash_algo {
167 u32 cfgword;
168 unsigned char *icv;
171 struct ix_sa_dir {
172 unsigned char *npe_ctx;
173 dma_addr_t npe_ctx_phys;
174 int npe_ctx_idx;
175 u8 npe_mode;
178 struct ixp_ctx {
179 struct ix_sa_dir encrypt;
180 struct ix_sa_dir decrypt;
181 int authkey_len;
182 u8 authkey[MAX_KEYLEN];
183 int enckey_len;
184 u8 enckey[MAX_KEYLEN];
185 u8 salt[MAX_IVLEN];
186 u8 nonce[CTR_RFC3686_NONCE_SIZE];
187 unsigned salted;
188 atomic_t configuring;
189 struct completion completion;
192 struct ixp_alg {
193 struct crypto_alg crypto;
194 const struct ix_hash_algo *hash;
195 u32 cfg_enc;
196 u32 cfg_dec;
198 int registered;
201 static const struct ix_hash_algo hash_alg_md5 = {
202 .cfgword = 0xAA010004,
203 .icv = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
204 "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
206 static const struct ix_hash_algo hash_alg_sha1 = {
207 .cfgword = 0x00000005,
208 .icv = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
209 "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
212 static struct npe *npe_c;
213 static struct dma_pool *buffer_pool = NULL;
214 static struct dma_pool *ctx_pool = NULL;
216 static struct crypt_ctl *crypt_virt = NULL;
217 static dma_addr_t crypt_phys;
219 static int support_aes = 1;
221 #define DRIVER_NAME "ixp4xx_crypto"
223 static struct platform_device *pdev;
225 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
227 return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
230 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
232 return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
235 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
237 return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
240 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
242 return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
245 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
247 return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
250 static int setup_crypt_desc(void)
252 struct device *dev = &pdev->dev;
253 BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
254 crypt_virt = dma_alloc_coherent(dev,
255 NPE_QLEN * sizeof(struct crypt_ctl),
256 &crypt_phys, GFP_ATOMIC);
257 if (!crypt_virt)
258 return -ENOMEM;
259 memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl));
260 return 0;
263 static spinlock_t desc_lock;
264 static struct crypt_ctl *get_crypt_desc(void)
266 int i;
267 static int idx = 0;
268 unsigned long flags;
270 spin_lock_irqsave(&desc_lock, flags);
272 if (unlikely(!crypt_virt))
273 setup_crypt_desc();
274 if (unlikely(!crypt_virt)) {
275 spin_unlock_irqrestore(&desc_lock, flags);
276 return NULL;
278 i = idx;
279 if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
280 if (++idx >= NPE_QLEN)
281 idx = 0;
282 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
283 spin_unlock_irqrestore(&desc_lock, flags);
284 return crypt_virt +i;
285 } else {
286 spin_unlock_irqrestore(&desc_lock, flags);
287 return NULL;
291 static spinlock_t emerg_lock;
292 static struct crypt_ctl *get_crypt_desc_emerg(void)
294 int i;
295 static int idx = NPE_QLEN;
296 struct crypt_ctl *desc;
297 unsigned long flags;
299 desc = get_crypt_desc();
300 if (desc)
301 return desc;
302 if (unlikely(!crypt_virt))
303 return NULL;
305 spin_lock_irqsave(&emerg_lock, flags);
306 i = idx;
307 if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
308 if (++idx >= NPE_QLEN_TOTAL)
309 idx = NPE_QLEN;
310 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
311 spin_unlock_irqrestore(&emerg_lock, flags);
312 return crypt_virt +i;
313 } else {
314 spin_unlock_irqrestore(&emerg_lock, flags);
315 return NULL;
319 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys)
321 while (buf) {
322 struct buffer_desc *buf1;
323 u32 phys1;
325 buf1 = buf->next;
326 phys1 = buf->phys_next;
327 dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
328 dma_pool_free(buffer_pool, buf, phys);
329 buf = buf1;
330 phys = phys1;
334 static struct tasklet_struct crypto_done_tasklet;
336 static void finish_scattered_hmac(struct crypt_ctl *crypt)
338 struct aead_request *req = crypt->data.aead_req;
339 struct aead_ctx *req_ctx = aead_request_ctx(req);
340 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
341 int authsize = crypto_aead_authsize(tfm);
342 int decryptlen = req->cryptlen - authsize;
344 if (req_ctx->encrypt) {
345 scatterwalk_map_and_copy(req_ctx->hmac_virt,
346 req->src, decryptlen, authsize, 1);
348 dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
351 static void one_packet(dma_addr_t phys)
353 struct device *dev = &pdev->dev;
354 struct crypt_ctl *crypt;
355 struct ixp_ctx *ctx;
356 int failed;
358 failed = phys & 0x1 ? -EBADMSG : 0;
359 phys &= ~0x3;
360 crypt = crypt_phys2virt(phys);
362 switch (crypt->ctl_flags & CTL_FLAG_MASK) {
363 case CTL_FLAG_PERFORM_AEAD: {
364 struct aead_request *req = crypt->data.aead_req;
365 struct aead_ctx *req_ctx = aead_request_ctx(req);
367 free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
368 if (req_ctx->hmac_virt) {
369 finish_scattered_hmac(crypt);
371 req->base.complete(&req->base, failed);
372 break;
374 case CTL_FLAG_PERFORM_ABLK: {
375 struct ablkcipher_request *req = crypt->data.ablk_req;
376 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
378 if (req_ctx->dst) {
379 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
381 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
382 req->base.complete(&req->base, failed);
383 break;
385 case CTL_FLAG_GEN_ICV:
386 ctx = crypto_tfm_ctx(crypt->data.tfm);
387 dma_pool_free(ctx_pool, crypt->regist_ptr,
388 crypt->regist_buf->phys_addr);
389 dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
390 if (atomic_dec_and_test(&ctx->configuring))
391 complete(&ctx->completion);
392 break;
393 case CTL_FLAG_GEN_REVAES:
394 ctx = crypto_tfm_ctx(crypt->data.tfm);
395 *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
396 if (atomic_dec_and_test(&ctx->configuring))
397 complete(&ctx->completion);
398 break;
399 default:
400 BUG();
402 crypt->ctl_flags = CTL_FLAG_UNUSED;
405 static void irqhandler(void *_unused)
407 tasklet_schedule(&crypto_done_tasklet);
410 static void crypto_done_action(unsigned long arg)
412 int i;
414 for(i=0; i<4; i++) {
415 dma_addr_t phys = qmgr_get_entry(RECV_QID);
416 if (!phys)
417 return;
418 one_packet(phys);
420 tasklet_schedule(&crypto_done_tasklet);
423 static int init_ixp_crypto(struct device *dev)
425 int ret = -ENODEV;
426 u32 msg[2] = { 0, 0 };
428 if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
429 IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
430 printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
431 return ret;
433 npe_c = npe_request(NPE_ID);
434 if (!npe_c)
435 return ret;
437 if (!npe_running(npe_c)) {
438 ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
439 if (ret) {
440 return ret;
442 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
443 goto npe_error;
444 } else {
445 if (npe_send_message(npe_c, msg, "STATUS_MSG"))
446 goto npe_error;
448 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
449 goto npe_error;
452 switch ((msg[1]>>16) & 0xff) {
453 case 3:
454 printk(KERN_WARNING "Firmware of %s lacks AES support\n",
455 npe_name(npe_c));
456 support_aes = 0;
457 break;
458 case 4:
459 case 5:
460 support_aes = 1;
461 break;
462 default:
463 printk(KERN_ERR "Firmware of %s lacks crypto support\n",
464 npe_name(npe_c));
465 return -ENODEV;
467 /* buffer_pool will also be used to sometimes store the hmac,
468 * so assure it is large enough
470 BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
471 buffer_pool = dma_pool_create("buffer", dev,
472 sizeof(struct buffer_desc), 32, 0);
473 ret = -ENOMEM;
474 if (!buffer_pool) {
475 goto err;
477 ctx_pool = dma_pool_create("context", dev,
478 NPE_CTX_LEN, 16, 0);
479 if (!ctx_pool) {
480 goto err;
482 ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
483 "ixp_crypto:out", NULL);
484 if (ret)
485 goto err;
486 ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
487 "ixp_crypto:in", NULL);
488 if (ret) {
489 qmgr_release_queue(SEND_QID);
490 goto err;
492 qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
493 tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
495 qmgr_enable_irq(RECV_QID);
496 return 0;
498 npe_error:
499 printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
500 ret = -EIO;
501 err:
502 if (ctx_pool)
503 dma_pool_destroy(ctx_pool);
504 if (buffer_pool)
505 dma_pool_destroy(buffer_pool);
506 npe_release(npe_c);
507 return ret;
510 static void release_ixp_crypto(struct device *dev)
512 qmgr_disable_irq(RECV_QID);
513 tasklet_kill(&crypto_done_tasklet);
515 qmgr_release_queue(SEND_QID);
516 qmgr_release_queue(RECV_QID);
518 dma_pool_destroy(ctx_pool);
519 dma_pool_destroy(buffer_pool);
521 npe_release(npe_c);
523 if (crypt_virt) {
524 dma_free_coherent(dev,
525 NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
526 crypt_virt, crypt_phys);
528 return;
531 static void reset_sa_dir(struct ix_sa_dir *dir)
533 memset(dir->npe_ctx, 0, NPE_CTX_LEN);
534 dir->npe_ctx_idx = 0;
535 dir->npe_mode = 0;
538 static int init_sa_dir(struct ix_sa_dir *dir)
540 dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
541 if (!dir->npe_ctx) {
542 return -ENOMEM;
544 reset_sa_dir(dir);
545 return 0;
548 static void free_sa_dir(struct ix_sa_dir *dir)
550 memset(dir->npe_ctx, 0, NPE_CTX_LEN);
551 dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
554 static int init_tfm(struct crypto_tfm *tfm)
556 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
557 int ret;
559 atomic_set(&ctx->configuring, 0);
560 ret = init_sa_dir(&ctx->encrypt);
561 if (ret)
562 return ret;
563 ret = init_sa_dir(&ctx->decrypt);
564 if (ret) {
565 free_sa_dir(&ctx->encrypt);
567 return ret;
570 static int init_tfm_ablk(struct crypto_tfm *tfm)
572 tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
573 return init_tfm(tfm);
576 static int init_tfm_aead(struct crypto_tfm *tfm)
578 tfm->crt_aead.reqsize = sizeof(struct aead_ctx);
579 return init_tfm(tfm);
582 static void exit_tfm(struct crypto_tfm *tfm)
584 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
585 free_sa_dir(&ctx->encrypt);
586 free_sa_dir(&ctx->decrypt);
589 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
590 int init_len, u32 ctx_addr, const u8 *key, int key_len)
592 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
593 struct crypt_ctl *crypt;
594 struct buffer_desc *buf;
595 int i;
596 u8 *pad;
597 u32 pad_phys, buf_phys;
599 BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
600 pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
601 if (!pad)
602 return -ENOMEM;
603 buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
604 if (!buf) {
605 dma_pool_free(ctx_pool, pad, pad_phys);
606 return -ENOMEM;
608 crypt = get_crypt_desc_emerg();
609 if (!crypt) {
610 dma_pool_free(ctx_pool, pad, pad_phys);
611 dma_pool_free(buffer_pool, buf, buf_phys);
612 return -EAGAIN;
615 memcpy(pad, key, key_len);
616 memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
617 for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
618 pad[i] ^= xpad;
621 crypt->data.tfm = tfm;
622 crypt->regist_ptr = pad;
623 crypt->regist_buf = buf;
625 crypt->auth_offs = 0;
626 crypt->auth_len = HMAC_PAD_BLOCKLEN;
627 crypt->crypto_ctx = ctx_addr;
628 crypt->src_buf = buf_phys;
629 crypt->icv_rev_aes = target;
630 crypt->mode = NPE_OP_HASH_GEN_ICV;
631 crypt->init_len = init_len;
632 crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
634 buf->next = 0;
635 buf->buf_len = HMAC_PAD_BLOCKLEN;
636 buf->pkt_len = 0;
637 buf->phys_addr = pad_phys;
639 atomic_inc(&ctx->configuring);
640 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
641 BUG_ON(qmgr_stat_overflow(SEND_QID));
642 return 0;
645 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
646 const u8 *key, int key_len, unsigned digest_len)
648 u32 itarget, otarget, npe_ctx_addr;
649 unsigned char *cinfo;
650 int init_len, ret = 0;
651 u32 cfgword;
652 struct ix_sa_dir *dir;
653 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
654 const struct ix_hash_algo *algo;
656 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
657 cinfo = dir->npe_ctx + dir->npe_ctx_idx;
658 algo = ix_hash(tfm);
660 /* write cfg word to cryptinfo */
661 cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
662 #ifndef __ARMEB__
663 cfgword ^= 0xAA000000; /* change the "byte swap" flags */
664 #endif
665 *(u32*)cinfo = cpu_to_be32(cfgword);
666 cinfo += sizeof(cfgword);
668 /* write ICV to cryptinfo */
669 memcpy(cinfo, algo->icv, digest_len);
670 cinfo += digest_len;
672 itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
673 + sizeof(algo->cfgword);
674 otarget = itarget + digest_len;
675 init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
676 npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
678 dir->npe_ctx_idx += init_len;
679 dir->npe_mode |= NPE_OP_HASH_ENABLE;
681 if (!encrypt)
682 dir->npe_mode |= NPE_OP_HASH_VERIFY;
684 ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
685 init_len, npe_ctx_addr, key, key_len);
686 if (ret)
687 return ret;
688 return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
689 init_len, npe_ctx_addr, key, key_len);
692 static int gen_rev_aes_key(struct crypto_tfm *tfm)
694 struct crypt_ctl *crypt;
695 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
696 struct ix_sa_dir *dir = &ctx->decrypt;
698 crypt = get_crypt_desc_emerg();
699 if (!crypt) {
700 return -EAGAIN;
702 *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
704 crypt->data.tfm = tfm;
705 crypt->crypt_offs = 0;
706 crypt->crypt_len = AES_BLOCK128;
707 crypt->src_buf = 0;
708 crypt->crypto_ctx = dir->npe_ctx_phys;
709 crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
710 crypt->mode = NPE_OP_ENC_GEN_KEY;
711 crypt->init_len = dir->npe_ctx_idx;
712 crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
714 atomic_inc(&ctx->configuring);
715 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
716 BUG_ON(qmgr_stat_overflow(SEND_QID));
717 return 0;
720 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
721 const u8 *key, int key_len)
723 u8 *cinfo;
724 u32 cipher_cfg;
725 u32 keylen_cfg = 0;
726 struct ix_sa_dir *dir;
727 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
728 u32 *flags = &tfm->crt_flags;
730 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
731 cinfo = dir->npe_ctx;
733 if (encrypt) {
734 cipher_cfg = cipher_cfg_enc(tfm);
735 dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
736 } else {
737 cipher_cfg = cipher_cfg_dec(tfm);
739 if (cipher_cfg & MOD_AES) {
740 switch (key_len) {
741 case 16: keylen_cfg = MOD_AES128; break;
742 case 24: keylen_cfg = MOD_AES192; break;
743 case 32: keylen_cfg = MOD_AES256; break;
744 default:
745 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
746 return -EINVAL;
748 cipher_cfg |= keylen_cfg;
749 } else if (cipher_cfg & MOD_3DES) {
750 const u32 *K = (const u32 *)key;
751 if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
752 !((K[2] ^ K[4]) | (K[3] ^ K[5]))))
754 *flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED;
755 return -EINVAL;
757 } else {
758 u32 tmp[DES_EXPKEY_WORDS];
759 if (des_ekey(tmp, key) == 0) {
760 *flags |= CRYPTO_TFM_RES_WEAK_KEY;
763 /* write cfg word to cryptinfo */
764 *(u32*)cinfo = cpu_to_be32(cipher_cfg);
765 cinfo += sizeof(cipher_cfg);
767 /* write cipher key to cryptinfo */
768 memcpy(cinfo, key, key_len);
769 /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
770 if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
771 memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
772 key_len = DES3_EDE_KEY_SIZE;
774 dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
775 dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
776 if ((cipher_cfg & MOD_AES) && !encrypt) {
777 return gen_rev_aes_key(tfm);
779 return 0;
782 static struct buffer_desc *chainup_buffers(struct device *dev,
783 struct scatterlist *sg, unsigned nbytes,
784 struct buffer_desc *buf, gfp_t flags,
785 enum dma_data_direction dir)
787 for (;nbytes > 0; sg = scatterwalk_sg_next(sg)) {
788 unsigned len = min(nbytes, sg->length);
789 struct buffer_desc *next_buf;
790 u32 next_buf_phys;
791 void *ptr;
793 nbytes -= len;
794 ptr = page_address(sg_page(sg)) + sg->offset;
795 next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
796 if (!next_buf) {
797 buf = NULL;
798 break;
800 sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
801 buf->next = next_buf;
802 buf->phys_next = next_buf_phys;
803 buf = next_buf;
805 buf->phys_addr = sg_dma_address(sg);
806 buf->buf_len = len;
807 buf->dir = dir;
809 buf->next = NULL;
810 buf->phys_next = 0;
811 return buf;
814 static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
815 unsigned int key_len)
817 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
818 u32 *flags = &tfm->base.crt_flags;
819 int ret;
821 init_completion(&ctx->completion);
822 atomic_inc(&ctx->configuring);
824 reset_sa_dir(&ctx->encrypt);
825 reset_sa_dir(&ctx->decrypt);
827 ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
828 ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
830 ret = setup_cipher(&tfm->base, 0, key, key_len);
831 if (ret)
832 goto out;
833 ret = setup_cipher(&tfm->base, 1, key, key_len);
834 if (ret)
835 goto out;
837 if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
838 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
839 ret = -EINVAL;
840 } else {
841 *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
844 out:
845 if (!atomic_dec_and_test(&ctx->configuring))
846 wait_for_completion(&ctx->completion);
847 return ret;
850 static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
851 unsigned int key_len)
853 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
855 /* the nonce is stored in bytes at end of key */
856 if (key_len < CTR_RFC3686_NONCE_SIZE)
857 return -EINVAL;
859 memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
860 CTR_RFC3686_NONCE_SIZE);
862 key_len -= CTR_RFC3686_NONCE_SIZE;
863 return ablk_setkey(tfm, key, key_len);
866 static int ablk_perform(struct ablkcipher_request *req, int encrypt)
868 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
869 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
870 unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
871 struct ix_sa_dir *dir;
872 struct crypt_ctl *crypt;
873 unsigned int nbytes = req->nbytes;
874 enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
875 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
876 struct buffer_desc src_hook;
877 struct device *dev = &pdev->dev;
878 gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
879 GFP_KERNEL : GFP_ATOMIC;
881 if (qmgr_stat_full(SEND_QID))
882 return -EAGAIN;
883 if (atomic_read(&ctx->configuring))
884 return -EAGAIN;
886 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
888 crypt = get_crypt_desc();
889 if (!crypt)
890 return -ENOMEM;
892 crypt->data.ablk_req = req;
893 crypt->crypto_ctx = dir->npe_ctx_phys;
894 crypt->mode = dir->npe_mode;
895 crypt->init_len = dir->npe_ctx_idx;
897 crypt->crypt_offs = 0;
898 crypt->crypt_len = nbytes;
900 BUG_ON(ivsize && !req->info);
901 memcpy(crypt->iv, req->info, ivsize);
902 if (req->src != req->dst) {
903 struct buffer_desc dst_hook;
904 crypt->mode |= NPE_OP_NOT_IN_PLACE;
905 /* This was never tested by Intel
906 * for more than one dst buffer, I think. */
907 BUG_ON(req->dst->length < nbytes);
908 req_ctx->dst = NULL;
909 if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
910 flags, DMA_FROM_DEVICE))
911 goto free_buf_dest;
912 src_direction = DMA_TO_DEVICE;
913 req_ctx->dst = dst_hook.next;
914 crypt->dst_buf = dst_hook.phys_next;
915 } else {
916 req_ctx->dst = NULL;
918 req_ctx->src = NULL;
919 if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
920 flags, src_direction))
921 goto free_buf_src;
923 req_ctx->src = src_hook.next;
924 crypt->src_buf = src_hook.phys_next;
925 crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
926 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
927 BUG_ON(qmgr_stat_overflow(SEND_QID));
928 return -EINPROGRESS;
930 free_buf_src:
931 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
932 free_buf_dest:
933 if (req->src != req->dst) {
934 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
936 crypt->ctl_flags = CTL_FLAG_UNUSED;
937 return -ENOMEM;
940 static int ablk_encrypt(struct ablkcipher_request *req)
942 return ablk_perform(req, 1);
945 static int ablk_decrypt(struct ablkcipher_request *req)
947 return ablk_perform(req, 0);
950 static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
952 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
953 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
954 u8 iv[CTR_RFC3686_BLOCK_SIZE];
955 u8 *info = req->info;
956 int ret;
958 /* set up counter block */
959 memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
960 memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
962 /* initialize counter portion of counter block */
963 *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
964 cpu_to_be32(1);
966 req->info = iv;
967 ret = ablk_perform(req, 1);
968 req->info = info;
969 return ret;
972 static int hmac_inconsistent(struct scatterlist *sg, unsigned start,
973 unsigned int nbytes)
975 int offset = 0;
977 if (!nbytes)
978 return 0;
980 for (;;) {
981 if (start < offset + sg->length)
982 break;
984 offset += sg->length;
985 sg = scatterwalk_sg_next(sg);
987 return (start + nbytes > offset + sg->length);
990 static int aead_perform(struct aead_request *req, int encrypt,
991 int cryptoffset, int eff_cryptlen, u8 *iv)
993 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
994 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
995 unsigned ivsize = crypto_aead_ivsize(tfm);
996 unsigned authsize = crypto_aead_authsize(tfm);
997 struct ix_sa_dir *dir;
998 struct crypt_ctl *crypt;
999 unsigned int cryptlen;
1000 struct buffer_desc *buf, src_hook;
1001 struct aead_ctx *req_ctx = aead_request_ctx(req);
1002 struct device *dev = &pdev->dev;
1003 gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
1004 GFP_KERNEL : GFP_ATOMIC;
1006 if (qmgr_stat_full(SEND_QID))
1007 return -EAGAIN;
1008 if (atomic_read(&ctx->configuring))
1009 return -EAGAIN;
1011 if (encrypt) {
1012 dir = &ctx->encrypt;
1013 cryptlen = req->cryptlen;
1014 } else {
1015 dir = &ctx->decrypt;
1016 /* req->cryptlen includes the authsize when decrypting */
1017 cryptlen = req->cryptlen -authsize;
1018 eff_cryptlen -= authsize;
1020 crypt = get_crypt_desc();
1021 if (!crypt)
1022 return -ENOMEM;
1024 crypt->data.aead_req = req;
1025 crypt->crypto_ctx = dir->npe_ctx_phys;
1026 crypt->mode = dir->npe_mode;
1027 crypt->init_len = dir->npe_ctx_idx;
1029 crypt->crypt_offs = cryptoffset;
1030 crypt->crypt_len = eff_cryptlen;
1032 crypt->auth_offs = 0;
1033 crypt->auth_len = req->assoclen + ivsize + cryptlen;
1034 BUG_ON(ivsize && !req->iv);
1035 memcpy(crypt->iv, req->iv, ivsize);
1037 if (req->src != req->dst) {
1038 BUG(); /* -ENOTSUP because of my laziness */
1041 /* ASSOC data */
1042 buf = chainup_buffers(dev, req->assoc, req->assoclen, &src_hook,
1043 flags, DMA_TO_DEVICE);
1044 req_ctx->buffer = src_hook.next;
1045 crypt->src_buf = src_hook.phys_next;
1046 if (!buf)
1047 goto out;
1048 /* IV */
1049 sg_init_table(&req_ctx->ivlist, 1);
1050 sg_set_buf(&req_ctx->ivlist, iv, ivsize);
1051 buf = chainup_buffers(dev, &req_ctx->ivlist, ivsize, buf, flags,
1052 DMA_BIDIRECTIONAL);
1053 if (!buf)
1054 goto free_chain;
1055 if (unlikely(hmac_inconsistent(req->src, cryptlen, authsize))) {
1056 /* The 12 hmac bytes are scattered,
1057 * we need to copy them into a safe buffer */
1058 req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1059 &crypt->icv_rev_aes);
1060 if (unlikely(!req_ctx->hmac_virt))
1061 goto free_chain;
1062 if (!encrypt) {
1063 scatterwalk_map_and_copy(req_ctx->hmac_virt,
1064 req->src, cryptlen, authsize, 0);
1066 req_ctx->encrypt = encrypt;
1067 } else {
1068 req_ctx->hmac_virt = NULL;
1070 /* Crypt */
1071 buf = chainup_buffers(dev, req->src, cryptlen + authsize, buf, flags,
1072 DMA_BIDIRECTIONAL);
1073 if (!buf)
1074 goto free_hmac_virt;
1075 if (!req_ctx->hmac_virt) {
1076 crypt->icv_rev_aes = buf->phys_addr + buf->buf_len - authsize;
1079 crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1080 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1081 BUG_ON(qmgr_stat_overflow(SEND_QID));
1082 return -EINPROGRESS;
1083 free_hmac_virt:
1084 if (req_ctx->hmac_virt) {
1085 dma_pool_free(buffer_pool, req_ctx->hmac_virt,
1086 crypt->icv_rev_aes);
1088 free_chain:
1089 free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
1090 out:
1091 crypt->ctl_flags = CTL_FLAG_UNUSED;
1092 return -ENOMEM;
1095 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1097 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1098 u32 *flags = &tfm->base.crt_flags;
1099 unsigned digest_len = crypto_aead_alg(tfm)->maxauthsize;
1100 int ret;
1102 if (!ctx->enckey_len && !ctx->authkey_len)
1103 return 0;
1104 init_completion(&ctx->completion);
1105 atomic_inc(&ctx->configuring);
1107 reset_sa_dir(&ctx->encrypt);
1108 reset_sa_dir(&ctx->decrypt);
1110 ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1111 if (ret)
1112 goto out;
1113 ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1114 if (ret)
1115 goto out;
1116 ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1117 ctx->authkey_len, digest_len);
1118 if (ret)
1119 goto out;
1120 ret = setup_auth(&tfm->base, 1, authsize, ctx->authkey,
1121 ctx->authkey_len, digest_len);
1122 if (ret)
1123 goto out;
1125 if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
1126 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
1127 ret = -EINVAL;
1128 goto out;
1129 } else {
1130 *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
1133 out:
1134 if (!atomic_dec_and_test(&ctx->configuring))
1135 wait_for_completion(&ctx->completion);
1136 return ret;
1139 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1141 int max = crypto_aead_alg(tfm)->maxauthsize >> 2;
1143 if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1144 return -EINVAL;
1145 return aead_setup(tfm, authsize);
1148 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1149 unsigned int keylen)
1151 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1152 struct crypto_authenc_keys keys;
1154 if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1155 goto badkey;
1157 if (keys.authkeylen > sizeof(ctx->authkey))
1158 goto badkey;
1160 if (keys.enckeylen > sizeof(ctx->enckey))
1161 goto badkey;
1163 memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1164 memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1165 ctx->authkey_len = keys.authkeylen;
1166 ctx->enckey_len = keys.enckeylen;
1168 return aead_setup(tfm, crypto_aead_authsize(tfm));
1169 badkey:
1170 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1171 return -EINVAL;
1174 static int aead_encrypt(struct aead_request *req)
1176 unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1177 return aead_perform(req, 1, req->assoclen + ivsize,
1178 req->cryptlen, req->iv);
1181 static int aead_decrypt(struct aead_request *req)
1183 unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1184 return aead_perform(req, 0, req->assoclen + ivsize,
1185 req->cryptlen, req->iv);
1188 static int aead_givencrypt(struct aead_givcrypt_request *req)
1190 struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
1191 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1192 unsigned len, ivsize = crypto_aead_ivsize(tfm);
1193 __be64 seq;
1195 /* copied from eseqiv.c */
1196 if (!ctx->salted) {
1197 get_random_bytes(ctx->salt, ivsize);
1198 ctx->salted = 1;
1200 memcpy(req->areq.iv, ctx->salt, ivsize);
1201 len = ivsize;
1202 if (ivsize > sizeof(u64)) {
1203 memset(req->giv, 0, ivsize - sizeof(u64));
1204 len = sizeof(u64);
1206 seq = cpu_to_be64(req->seq);
1207 memcpy(req->giv + ivsize - len, &seq, len);
1208 return aead_perform(&req->areq, 1, req->areq.assoclen,
1209 req->areq.cryptlen +ivsize, req->giv);
1212 static struct ixp_alg ixp4xx_algos[] = {
1214 .crypto = {
1215 .cra_name = "cbc(des)",
1216 .cra_blocksize = DES_BLOCK_SIZE,
1217 .cra_u = { .ablkcipher = {
1218 .min_keysize = DES_KEY_SIZE,
1219 .max_keysize = DES_KEY_SIZE,
1220 .ivsize = DES_BLOCK_SIZE,
1221 .geniv = "eseqiv",
1225 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1226 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1228 }, {
1229 .crypto = {
1230 .cra_name = "ecb(des)",
1231 .cra_blocksize = DES_BLOCK_SIZE,
1232 .cra_u = { .ablkcipher = {
1233 .min_keysize = DES_KEY_SIZE,
1234 .max_keysize = DES_KEY_SIZE,
1238 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1239 .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1240 }, {
1241 .crypto = {
1242 .cra_name = "cbc(des3_ede)",
1243 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1244 .cra_u = { .ablkcipher = {
1245 .min_keysize = DES3_EDE_KEY_SIZE,
1246 .max_keysize = DES3_EDE_KEY_SIZE,
1247 .ivsize = DES3_EDE_BLOCK_SIZE,
1248 .geniv = "eseqiv",
1252 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1253 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1254 }, {
1255 .crypto = {
1256 .cra_name = "ecb(des3_ede)",
1257 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1258 .cra_u = { .ablkcipher = {
1259 .min_keysize = DES3_EDE_KEY_SIZE,
1260 .max_keysize = DES3_EDE_KEY_SIZE,
1264 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1265 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1266 }, {
1267 .crypto = {
1268 .cra_name = "cbc(aes)",
1269 .cra_blocksize = AES_BLOCK_SIZE,
1270 .cra_u = { .ablkcipher = {
1271 .min_keysize = AES_MIN_KEY_SIZE,
1272 .max_keysize = AES_MAX_KEY_SIZE,
1273 .ivsize = AES_BLOCK_SIZE,
1274 .geniv = "eseqiv",
1278 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1279 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1280 }, {
1281 .crypto = {
1282 .cra_name = "ecb(aes)",
1283 .cra_blocksize = AES_BLOCK_SIZE,
1284 .cra_u = { .ablkcipher = {
1285 .min_keysize = AES_MIN_KEY_SIZE,
1286 .max_keysize = AES_MAX_KEY_SIZE,
1290 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1291 .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1292 }, {
1293 .crypto = {
1294 .cra_name = "ctr(aes)",
1295 .cra_blocksize = AES_BLOCK_SIZE,
1296 .cra_u = { .ablkcipher = {
1297 .min_keysize = AES_MIN_KEY_SIZE,
1298 .max_keysize = AES_MAX_KEY_SIZE,
1299 .ivsize = AES_BLOCK_SIZE,
1300 .geniv = "eseqiv",
1304 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1305 .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1306 }, {
1307 .crypto = {
1308 .cra_name = "rfc3686(ctr(aes))",
1309 .cra_blocksize = AES_BLOCK_SIZE,
1310 .cra_u = { .ablkcipher = {
1311 .min_keysize = AES_MIN_KEY_SIZE,
1312 .max_keysize = AES_MAX_KEY_SIZE,
1313 .ivsize = AES_BLOCK_SIZE,
1314 .geniv = "eseqiv",
1315 .setkey = ablk_rfc3686_setkey,
1316 .encrypt = ablk_rfc3686_crypt,
1317 .decrypt = ablk_rfc3686_crypt }
1320 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1321 .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1322 }, {
1323 .crypto = {
1324 .cra_name = "authenc(hmac(md5),cbc(des))",
1325 .cra_blocksize = DES_BLOCK_SIZE,
1326 .cra_u = { .aead = {
1327 .ivsize = DES_BLOCK_SIZE,
1328 .maxauthsize = MD5_DIGEST_SIZE,
1332 .hash = &hash_alg_md5,
1333 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1334 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1335 }, {
1336 .crypto = {
1337 .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1338 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1339 .cra_u = { .aead = {
1340 .ivsize = DES3_EDE_BLOCK_SIZE,
1341 .maxauthsize = MD5_DIGEST_SIZE,
1345 .hash = &hash_alg_md5,
1346 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1347 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1348 }, {
1349 .crypto = {
1350 .cra_name = "authenc(hmac(sha1),cbc(des))",
1351 .cra_blocksize = DES_BLOCK_SIZE,
1352 .cra_u = { .aead = {
1353 .ivsize = DES_BLOCK_SIZE,
1354 .maxauthsize = SHA1_DIGEST_SIZE,
1358 .hash = &hash_alg_sha1,
1359 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1360 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1361 }, {
1362 .crypto = {
1363 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1364 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1365 .cra_u = { .aead = {
1366 .ivsize = DES3_EDE_BLOCK_SIZE,
1367 .maxauthsize = SHA1_DIGEST_SIZE,
1371 .hash = &hash_alg_sha1,
1372 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1373 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1374 }, {
1375 .crypto = {
1376 .cra_name = "authenc(hmac(md5),cbc(aes))",
1377 .cra_blocksize = AES_BLOCK_SIZE,
1378 .cra_u = { .aead = {
1379 .ivsize = AES_BLOCK_SIZE,
1380 .maxauthsize = MD5_DIGEST_SIZE,
1384 .hash = &hash_alg_md5,
1385 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1386 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1387 }, {
1388 .crypto = {
1389 .cra_name = "authenc(hmac(sha1),cbc(aes))",
1390 .cra_blocksize = AES_BLOCK_SIZE,
1391 .cra_u = { .aead = {
1392 .ivsize = AES_BLOCK_SIZE,
1393 .maxauthsize = SHA1_DIGEST_SIZE,
1397 .hash = &hash_alg_sha1,
1398 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1399 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1400 } };
1402 #define IXP_POSTFIX "-ixp4xx"
1404 static const struct platform_device_info ixp_dev_info __initdata = {
1405 .name = DRIVER_NAME,
1406 .id = 0,
1407 .dma_mask = DMA_BIT_MASK(32),
1410 static int __init ixp_module_init(void)
1412 int num = ARRAY_SIZE(ixp4xx_algos);
1413 int i, err;
1415 pdev = platform_device_register_full(&ixp_dev_info);
1416 if (IS_ERR(pdev))
1417 return PTR_ERR(pdev);
1419 spin_lock_init(&desc_lock);
1420 spin_lock_init(&emerg_lock);
1422 err = init_ixp_crypto(&pdev->dev);
1423 if (err) {
1424 platform_device_unregister(pdev);
1425 return err;
1427 for (i=0; i< num; i++) {
1428 struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
1430 if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
1431 "%s"IXP_POSTFIX, cra->cra_name) >=
1432 CRYPTO_MAX_ALG_NAME)
1434 continue;
1436 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1437 continue;
1439 if (!ixp4xx_algos[i].hash) {
1440 /* block ciphers */
1441 cra->cra_type = &crypto_ablkcipher_type;
1442 cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1443 CRYPTO_ALG_KERN_DRIVER_ONLY |
1444 CRYPTO_ALG_ASYNC;
1445 if (!cra->cra_ablkcipher.setkey)
1446 cra->cra_ablkcipher.setkey = ablk_setkey;
1447 if (!cra->cra_ablkcipher.encrypt)
1448 cra->cra_ablkcipher.encrypt = ablk_encrypt;
1449 if (!cra->cra_ablkcipher.decrypt)
1450 cra->cra_ablkcipher.decrypt = ablk_decrypt;
1451 cra->cra_init = init_tfm_ablk;
1452 } else {
1453 /* authenc */
1454 cra->cra_type = &crypto_aead_type;
1455 cra->cra_flags = CRYPTO_ALG_TYPE_AEAD |
1456 CRYPTO_ALG_KERN_DRIVER_ONLY |
1457 CRYPTO_ALG_ASYNC;
1458 cra->cra_aead.setkey = aead_setkey;
1459 cra->cra_aead.setauthsize = aead_setauthsize;
1460 cra->cra_aead.encrypt = aead_encrypt;
1461 cra->cra_aead.decrypt = aead_decrypt;
1462 cra->cra_aead.givencrypt = aead_givencrypt;
1463 cra->cra_init = init_tfm_aead;
1465 cra->cra_ctxsize = sizeof(struct ixp_ctx);
1466 cra->cra_module = THIS_MODULE;
1467 cra->cra_alignmask = 3;
1468 cra->cra_priority = 300;
1469 cra->cra_exit = exit_tfm;
1470 if (crypto_register_alg(cra))
1471 printk(KERN_ERR "Failed to register '%s'\n",
1472 cra->cra_name);
1473 else
1474 ixp4xx_algos[i].registered = 1;
1476 return 0;
1479 static void __exit ixp_module_exit(void)
1481 int num = ARRAY_SIZE(ixp4xx_algos);
1482 int i;
1484 for (i=0; i< num; i++) {
1485 if (ixp4xx_algos[i].registered)
1486 crypto_unregister_alg(&ixp4xx_algos[i].crypto);
1488 release_ixp_crypto(&pdev->dev);
1489 platform_device_unregister(pdev);
1492 module_init(ixp_module_init);
1493 module_exit(ixp_module_exit);
1495 MODULE_LICENSE("GPL");
1496 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1497 MODULE_DESCRIPTION("IXP4xx hardware crypto");