2 * linux/arch/unicore32/mm/mmu.c
4 * Code specific to PKUnity SoC and UniCore ISA
6 * Copyright (C) 2001-2010 GUAN Xue-tao
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/errno.h>
15 #include <linux/init.h>
16 #include <linux/mman.h>
17 #include <linux/nodemask.h>
18 #include <linux/memblock.h>
20 #include <linux/bootmem.h>
23 #include <asm/cputype.h>
24 #include <asm/sections.h>
25 #include <asm/setup.h>
26 #include <asm/sizes.h>
28 #include <asm/memblock.h>
35 * empty_zero_page is a special page that is used for
36 * zero-initialized data and COW.
38 struct page
*empty_zero_page
;
39 EXPORT_SYMBOL(empty_zero_page
);
42 * The pmd table for the upper-most set of pages.
47 EXPORT_SYMBOL(pgprot_user
);
49 pgprot_t pgprot_kernel
;
50 EXPORT_SYMBOL(pgprot_kernel
);
52 static int __init
noalign_setup(char *__unused
)
54 cr_alignment
&= ~CR_A
;
55 cr_no_alignment
&= ~CR_A
;
59 __setup("noalign", noalign_setup
);
61 void adjust_cr(unsigned long mask
, unsigned long set
)
69 local_irq_save(flags
);
71 cr_no_alignment
= (cr_no_alignment
& ~mask
) | set
;
72 cr_alignment
= (cr_alignment
& ~mask
) | set
;
74 set_cr((get_cr() & ~mask
) | set
);
76 local_irq_restore(flags
);
80 unsigned long virtual;
86 #define PROT_PTE_DEVICE (PTE_PRESENT | PTE_YOUNG | \
87 PTE_DIRTY | PTE_READ | PTE_WRITE)
88 #define PROT_SECT_DEVICE (PMD_TYPE_SECT | PMD_PRESENT | \
89 PMD_SECT_READ | PMD_SECT_WRITE)
91 static struct mem_type mem_types
[] = {
92 [MT_DEVICE
] = { /* Strongly ordered */
93 .prot_pte
= PROT_PTE_DEVICE
,
94 .prot_l1
= PMD_TYPE_TABLE
| PMD_PRESENT
,
95 .prot_sect
= PROT_SECT_DEVICE
,
98 * MT_KUSER: pte for vecpage -- cacheable,
99 * and sect for unigfx mmap -- noncacheable
102 .prot_pte
= PTE_PRESENT
| PTE_YOUNG
| PTE_DIRTY
|
103 PTE_CACHEABLE
| PTE_READ
| PTE_EXEC
,
104 .prot_l1
= PMD_TYPE_TABLE
| PMD_PRESENT
,
105 .prot_sect
= PROT_SECT_DEVICE
,
107 [MT_HIGH_VECTORS
] = {
108 .prot_pte
= PTE_PRESENT
| PTE_YOUNG
| PTE_DIRTY
|
109 PTE_CACHEABLE
| PTE_READ
| PTE_WRITE
|
111 .prot_l1
= PMD_TYPE_TABLE
| PMD_PRESENT
,
114 .prot_pte
= PTE_PRESENT
| PTE_YOUNG
| PTE_DIRTY
|
115 PTE_WRITE
| PTE_EXEC
,
116 .prot_l1
= PMD_TYPE_TABLE
| PMD_PRESENT
,
117 .prot_sect
= PMD_TYPE_SECT
| PMD_PRESENT
| PMD_SECT_CACHEABLE
|
118 PMD_SECT_READ
| PMD_SECT_WRITE
| PMD_SECT_EXEC
,
121 .prot_sect
= PMD_TYPE_SECT
| PMD_PRESENT
| PMD_SECT_CACHEABLE
|
126 const struct mem_type
*get_mem_type(unsigned int type
)
128 return type
< ARRAY_SIZE(mem_types
) ? &mem_types
[type
] : NULL
;
130 EXPORT_SYMBOL(get_mem_type
);
133 * Adjust the PMD section entries according to the CPU in use.
135 static void __init
build_mem_type_table(void)
137 pgprot_user
= __pgprot(PTE_PRESENT
| PTE_YOUNG
| PTE_CACHEABLE
);
138 pgprot_kernel
= __pgprot(PTE_PRESENT
| PTE_YOUNG
|
139 PTE_DIRTY
| PTE_READ
| PTE_WRITE
|
140 PTE_EXEC
| PTE_CACHEABLE
);
143 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
145 static void __init
*early_alloc(unsigned long sz
)
147 void *ptr
= __va(memblock_alloc(sz
, sz
));
152 static pte_t
* __init
early_pte_alloc(pmd_t
*pmd
, unsigned long addr
,
155 if (pmd_none(*pmd
)) {
156 pte_t
*pte
= early_alloc(PTRS_PER_PTE
* sizeof(pte_t
));
157 __pmd_populate(pmd
, __pa(pte
) | prot
);
159 BUG_ON(pmd_bad(*pmd
));
160 return pte_offset_kernel(pmd
, addr
);
163 static void __init
alloc_init_pte(pmd_t
*pmd
, unsigned long addr
,
164 unsigned long end
, unsigned long pfn
,
165 const struct mem_type
*type
)
167 pte_t
*pte
= early_pte_alloc(pmd
, addr
, type
->prot_l1
);
169 set_pte(pte
, pfn_pte(pfn
, __pgprot(type
->prot_pte
)));
171 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
174 static void __init
alloc_init_section(pgd_t
*pgd
, unsigned long addr
,
175 unsigned long end
, unsigned long phys
,
176 const struct mem_type
*type
)
178 pmd_t
*pmd
= pmd_offset((pud_t
*)pgd
, addr
);
181 * Try a section mapping - end, addr and phys must all be aligned
182 * to a section boundary.
184 if (((addr
| end
| phys
) & ~SECTION_MASK
) == 0) {
188 set_pmd(pmd
, __pmd(phys
| type
->prot_sect
));
189 phys
+= SECTION_SIZE
;
190 } while (pmd
++, addr
+= SECTION_SIZE
, addr
!= end
);
195 * No need to loop; pte's aren't interested in the
196 * individual L1 entries.
198 alloc_init_pte(pmd
, addr
, end
, __phys_to_pfn(phys
), type
);
203 * Create the page directory entries and any necessary
204 * page tables for the mapping specified by `md'. We
205 * are able to cope here with varying sizes and address
206 * offsets, and we take full advantage of sections.
208 static void __init
create_mapping(struct map_desc
*md
)
210 unsigned long phys
, addr
, length
, end
;
211 const struct mem_type
*type
;
214 if (md
->virtual != vectors_base() && md
->virtual < TASK_SIZE
) {
215 printk(KERN_WARNING
"BUG: not creating mapping for "
216 "0x%08llx at 0x%08lx in user region\n",
217 __pfn_to_phys((u64
)md
->pfn
), md
->virtual);
221 if ((md
->type
== MT_DEVICE
|| md
->type
== MT_ROM
) &&
222 md
->virtual >= PAGE_OFFSET
&& md
->virtual < VMALLOC_END
) {
223 printk(KERN_WARNING
"BUG: mapping for 0x%08llx at 0x%08lx "
224 "overlaps vmalloc space\n",
225 __pfn_to_phys((u64
)md
->pfn
), md
->virtual);
228 type
= &mem_types
[md
->type
];
230 addr
= md
->virtual & PAGE_MASK
;
231 phys
= (unsigned long)__pfn_to_phys(md
->pfn
);
232 length
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
234 if (type
->prot_l1
== 0 && ((addr
| phys
| length
) & ~SECTION_MASK
)) {
235 printk(KERN_WARNING
"BUG: map for 0x%08lx at 0x%08lx can not "
236 "be mapped using pages, ignoring.\n",
237 __pfn_to_phys(md
->pfn
), addr
);
241 pgd
= pgd_offset_k(addr
);
244 unsigned long next
= pgd_addr_end(addr
, end
);
246 alloc_init_section(pgd
, addr
, next
, phys
, type
);
250 } while (pgd
++, addr
!= end
);
253 static void * __initdata vmalloc_min
= (void *)(VMALLOC_END
- SZ_128M
);
256 * vmalloc=size forces the vmalloc area to be exactly 'size'
257 * bytes. This can be used to increase (or decrease) the vmalloc
258 * area - the default is 128m.
260 static int __init
early_vmalloc(char *arg
)
262 unsigned long vmalloc_reserve
= memparse(arg
, NULL
);
264 if (vmalloc_reserve
< SZ_16M
) {
265 vmalloc_reserve
= SZ_16M
;
267 "vmalloc area too small, limiting to %luMB\n",
268 vmalloc_reserve
>> 20);
271 if (vmalloc_reserve
> VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
)) {
272 vmalloc_reserve
= VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
);
274 "vmalloc area is too big, limiting to %luMB\n",
275 vmalloc_reserve
>> 20);
278 vmalloc_min
= (void *)(VMALLOC_END
- vmalloc_reserve
);
281 early_param("vmalloc", early_vmalloc
);
283 static phys_addr_t lowmem_limit __initdata
= SZ_1G
;
285 static void __init
sanity_check_meminfo(void)
289 lowmem_limit
= __pa(vmalloc_min
- 1) + 1;
290 memblock_set_current_limit(lowmem_limit
);
292 for (i
= 0, j
= 0; i
< meminfo
.nr_banks
; i
++) {
293 struct membank
*bank
= &meminfo
.bank
[j
];
294 *bank
= meminfo
.bank
[i
];
297 meminfo
.nr_banks
= j
;
300 static inline void prepare_page_table(void)
306 * Clear out all the mappings below the kernel image.
308 for (addr
= 0; addr
< MODULES_VADDR
; addr
+= PGDIR_SIZE
)
309 pmd_clear(pmd_off_k(addr
));
311 for ( ; addr
< PAGE_OFFSET
; addr
+= PGDIR_SIZE
)
312 pmd_clear(pmd_off_k(addr
));
315 * Find the end of the first block of lowmem.
317 end
= memblock
.memory
.regions
[0].base
+ memblock
.memory
.regions
[0].size
;
318 if (end
>= lowmem_limit
)
322 * Clear out all the kernel space mappings, except for the first
323 * memory bank, up to the end of the vmalloc region.
325 for (addr
= __phys_to_virt(end
);
326 addr
< VMALLOC_END
; addr
+= PGDIR_SIZE
)
327 pmd_clear(pmd_off_k(addr
));
331 * Reserve the special regions of memory
333 void __init
uc32_mm_memblock_reserve(void)
336 * Reserve the page tables. These are already in use,
337 * and can only be in node 0.
339 memblock_reserve(__pa(swapper_pg_dir
), PTRS_PER_PGD
* sizeof(pgd_t
));
343 * Set up device the mappings. Since we clear out the page tables for all
344 * mappings above VMALLOC_END, we will remove any debug device mappings.
345 * This means you have to be careful how you debug this function, or any
346 * called function. This means you can't use any function or debugging
347 * method which may touch any device, otherwise the kernel _will_ crash.
349 static void __init
devicemaps_init(void)
356 * Allocate the vector page early.
358 vectors
= early_alloc(PAGE_SIZE
);
360 for (addr
= VMALLOC_END
; addr
; addr
+= PGDIR_SIZE
)
361 pmd_clear(pmd_off_k(addr
));
364 * Create a mapping for the machine vectors at the high-vectors
365 * location (0xffff0000). If we aren't using high-vectors, also
366 * create a mapping at the low-vectors virtual address.
368 map
.pfn
= __phys_to_pfn(virt_to_phys(vectors
));
369 map
.virtual = VECTORS_BASE
;
370 map
.length
= PAGE_SIZE
;
371 map
.type
= MT_HIGH_VECTORS
;
372 create_mapping(&map
);
375 * Create a mapping for the kuser page at the special
376 * location (0xbfff0000) to the same vectors location.
378 map
.pfn
= __phys_to_pfn(virt_to_phys(vectors
));
379 map
.virtual = KUSER_VECPAGE_BASE
;
380 map
.length
= PAGE_SIZE
;
382 create_mapping(&map
);
385 * Finally flush the caches and tlb to ensure that we're in a
386 * consistent state wrt the writebuffer. This also ensures that
387 * any write-allocated cache lines in the vector page are written
388 * back. After this point, we can start to touch devices again.
390 local_flush_tlb_all();
394 static void __init
map_lowmem(void)
396 struct memblock_region
*reg
;
398 /* Map all the lowmem memory banks. */
399 for_each_memblock(memory
, reg
) {
400 phys_addr_t start
= reg
->base
;
401 phys_addr_t end
= start
+ reg
->size
;
404 if (end
> lowmem_limit
)
409 map
.pfn
= __phys_to_pfn(start
);
410 map
.virtual = __phys_to_virt(start
);
411 map
.length
= end
- start
;
412 map
.type
= MT_MEMORY
;
414 create_mapping(&map
);
419 * paging_init() sets up the page tables, initialises the zone memory
420 * maps, and sets up the zero page, bad page and bad page tables.
422 void __init
paging_init(void)
426 build_mem_type_table();
427 sanity_check_meminfo();
428 prepare_page_table();
432 top_pmd
= pmd_off_k(0xffff0000);
434 /* allocate the zero page. */
435 zero_page
= early_alloc(PAGE_SIZE
);
439 empty_zero_page
= virt_to_page(zero_page
);
440 __flush_dcache_page(NULL
, empty_zero_page
);
444 * In order to soft-boot, we need to insert a 1:1 mapping in place of
445 * the user-mode pages. This will then ensure that we have predictable
446 * results when turning the mmu off
448 void setup_mm_for_reboot(void)
450 unsigned long base_pmdval
;
455 * We need to access to user-mode page tables here. For kernel threads
456 * we don't have any user-mode mappings so we use the context that we
459 pgd
= current
->active_mm
->pgd
;
461 base_pmdval
= PMD_SECT_WRITE
| PMD_SECT_READ
| PMD_TYPE_SECT
;
463 for (i
= 0; i
< FIRST_USER_PGD_NR
+ USER_PTRS_PER_PGD
; i
++, pgd
++) {
464 unsigned long pmdval
= (i
<< PGDIR_SHIFT
) | base_pmdval
;
467 pmd
= pmd_off(pgd
, i
<< PGDIR_SHIFT
);
468 set_pmd(pmd
, __pmd(pmdval
));
469 flush_pmd_entry(pmd
);
472 local_flush_tlb_all();
476 * Take care of architecture specific things when placing a new PTE into
477 * a page table, or changing an existing PTE. Basically, there are two
478 * things that we need to take care of:
480 * 1. If PG_dcache_clean is not set for the page, we need to ensure
481 * that any cache entries for the kernels virtual memory
482 * range are written back to the page.
483 * 2. If we have multiple shared mappings of the same space in
484 * an object, we need to deal with the cache aliasing issues.
486 * Note that the pte lock will be held.
488 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long addr
,
491 unsigned long pfn
= pte_pfn(*ptep
);
492 struct address_space
*mapping
;
499 * The zero page is never written to, so never has any dirty
500 * cache lines, and therefore never needs to be flushed.
502 page
= pfn_to_page(pfn
);
503 if (page
== ZERO_PAGE(0))
506 mapping
= page_mapping(page
);
507 if (!test_and_set_bit(PG_dcache_clean
, &page
->flags
))
508 __flush_dcache_page(mapping
, page
);
510 if (vma
->vm_flags
& VM_EXEC
)
511 __flush_icache_all();