MIPS: config: Remove left-over BACKLIGHT_LCD_SUPPORT
[linux/fpc-iii.git] / mm / ksm.c
blob81c20ed57bf68077041f195e2e2d8283ce8c1eb7
1 /*
2 * Memory merging support.
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
14 * This work is licensed under the terms of the GNU GPL, version 2.
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
43 #include <asm/tlbflush.h>
44 #include "internal.h"
46 #ifdef CONFIG_NUMA
47 #define NUMA(x) (x)
48 #define DO_NUMA(x) do { (x); } while (0)
49 #else
50 #define NUMA(x) (0)
51 #define DO_NUMA(x) do { } while (0)
52 #endif
54 /**
55 * DOC: Overview
57 * A few notes about the KSM scanning process,
58 * to make it easier to understand the data structures below:
60 * In order to reduce excessive scanning, KSM sorts the memory pages by their
61 * contents into a data structure that holds pointers to the pages' locations.
63 * Since the contents of the pages may change at any moment, KSM cannot just
64 * insert the pages into a normal sorted tree and expect it to find anything.
65 * Therefore KSM uses two data structures - the stable and the unstable tree.
67 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68 * by their contents. Because each such page is write-protected, searching on
69 * this tree is fully assured to be working (except when pages are unmapped),
70 * and therefore this tree is called the stable tree.
72 * The stable tree node includes information required for reverse
73 * mapping from a KSM page to virtual addresses that map this page.
75 * In order to avoid large latencies of the rmap walks on KSM pages,
76 * KSM maintains two types of nodes in the stable tree:
78 * * the regular nodes that keep the reverse mapping structures in a
79 * linked list
80 * * the "chains" that link nodes ("dups") that represent the same
81 * write protected memory content, but each "dup" corresponds to a
82 * different KSM page copy of that content
84 * Internally, the regular nodes, "dups" and "chains" are represented
85 * using the same :c:type:`struct stable_node` structure.
87 * In addition to the stable tree, KSM uses a second data structure called the
88 * unstable tree: this tree holds pointers to pages which have been found to
89 * be "unchanged for a period of time". The unstable tree sorts these pages
90 * by their contents, but since they are not write-protected, KSM cannot rely
91 * upon the unstable tree to work correctly - the unstable tree is liable to
92 * be corrupted as its contents are modified, and so it is called unstable.
94 * KSM solves this problem by several techniques:
96 * 1) The unstable tree is flushed every time KSM completes scanning all
97 * memory areas, and then the tree is rebuilt again from the beginning.
98 * 2) KSM will only insert into the unstable tree, pages whose hash value
99 * has not changed since the previous scan of all memory areas.
100 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101 * colors of the nodes and not on their contents, assuring that even when
102 * the tree gets "corrupted" it won't get out of balance, so scanning time
103 * remains the same (also, searching and inserting nodes in an rbtree uses
104 * the same algorithm, so we have no overhead when we flush and rebuild).
105 * 4) KSM never flushes the stable tree, which means that even if it were to
106 * take 10 attempts to find a page in the unstable tree, once it is found,
107 * it is secured in the stable tree. (When we scan a new page, we first
108 * compare it against the stable tree, and then against the unstable tree.)
110 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111 * stable trees and multiple unstable trees: one of each for each NUMA node.
115 * struct mm_slot - ksm information per mm that is being scanned
116 * @link: link to the mm_slots hash list
117 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
119 * @mm: the mm that this information is valid for
121 struct mm_slot {
122 struct hlist_node link;
123 struct list_head mm_list;
124 struct rmap_item *rmap_list;
125 struct mm_struct *mm;
129 * struct ksm_scan - cursor for scanning
130 * @mm_slot: the current mm_slot we are scanning
131 * @address: the next address inside that to be scanned
132 * @rmap_list: link to the next rmap to be scanned in the rmap_list
133 * @seqnr: count of completed full scans (needed when removing unstable node)
135 * There is only the one ksm_scan instance of this cursor structure.
137 struct ksm_scan {
138 struct mm_slot *mm_slot;
139 unsigned long address;
140 struct rmap_item **rmap_list;
141 unsigned long seqnr;
145 * struct stable_node - node of the stable rbtree
146 * @node: rb node of this ksm page in the stable tree
147 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
148 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
149 * @list: linked into migrate_nodes, pending placement in the proper node tree
150 * @hlist: hlist head of rmap_items using this ksm page
151 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
152 * @chain_prune_time: time of the last full garbage collection
153 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
154 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
156 struct stable_node {
157 union {
158 struct rb_node node; /* when node of stable tree */
159 struct { /* when listed for migration */
160 struct list_head *head;
161 struct {
162 struct hlist_node hlist_dup;
163 struct list_head list;
167 struct hlist_head hlist;
168 union {
169 unsigned long kpfn;
170 unsigned long chain_prune_time;
173 * STABLE_NODE_CHAIN can be any negative number in
174 * rmap_hlist_len negative range, but better not -1 to be able
175 * to reliably detect underflows.
177 #define STABLE_NODE_CHAIN -1024
178 int rmap_hlist_len;
179 #ifdef CONFIG_NUMA
180 int nid;
181 #endif
185 * struct rmap_item - reverse mapping item for virtual addresses
186 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
187 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
188 * @nid: NUMA node id of unstable tree in which linked (may not match page)
189 * @mm: the memory structure this rmap_item is pointing into
190 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191 * @oldchecksum: previous checksum of the page at that virtual address
192 * @node: rb node of this rmap_item in the unstable tree
193 * @head: pointer to stable_node heading this list in the stable tree
194 * @hlist: link into hlist of rmap_items hanging off that stable_node
196 struct rmap_item {
197 struct rmap_item *rmap_list;
198 union {
199 struct anon_vma *anon_vma; /* when stable */
200 #ifdef CONFIG_NUMA
201 int nid; /* when node of unstable tree */
202 #endif
204 struct mm_struct *mm;
205 unsigned long address; /* + low bits used for flags below */
206 unsigned int oldchecksum; /* when unstable */
207 union {
208 struct rb_node node; /* when node of unstable tree */
209 struct { /* when listed from stable tree */
210 struct stable_node *head;
211 struct hlist_node hlist;
216 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
217 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
218 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
219 #define KSM_FLAG_MASK (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
220 /* to mask all the flags */
222 /* The stable and unstable tree heads */
223 static struct rb_root one_stable_tree[1] = { RB_ROOT };
224 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
225 static struct rb_root *root_stable_tree = one_stable_tree;
226 static struct rb_root *root_unstable_tree = one_unstable_tree;
228 /* Recently migrated nodes of stable tree, pending proper placement */
229 static LIST_HEAD(migrate_nodes);
230 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
232 #define MM_SLOTS_HASH_BITS 10
233 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
235 static struct mm_slot ksm_mm_head = {
236 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
238 static struct ksm_scan ksm_scan = {
239 .mm_slot = &ksm_mm_head,
242 static struct kmem_cache *rmap_item_cache;
243 static struct kmem_cache *stable_node_cache;
244 static struct kmem_cache *mm_slot_cache;
246 /* The number of nodes in the stable tree */
247 static unsigned long ksm_pages_shared;
249 /* The number of page slots additionally sharing those nodes */
250 static unsigned long ksm_pages_sharing;
252 /* The number of nodes in the unstable tree */
253 static unsigned long ksm_pages_unshared;
255 /* The number of rmap_items in use: to calculate pages_volatile */
256 static unsigned long ksm_rmap_items;
258 /* The number of stable_node chains */
259 static unsigned long ksm_stable_node_chains;
261 /* The number of stable_node dups linked to the stable_node chains */
262 static unsigned long ksm_stable_node_dups;
264 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
265 static int ksm_stable_node_chains_prune_millisecs = 2000;
267 /* Maximum number of page slots sharing a stable node */
268 static int ksm_max_page_sharing = 256;
270 /* Number of pages ksmd should scan in one batch */
271 static unsigned int ksm_thread_pages_to_scan = 100;
273 /* Milliseconds ksmd should sleep between batches */
274 static unsigned int ksm_thread_sleep_millisecs = 20;
276 /* Checksum of an empty (zeroed) page */
277 static unsigned int zero_checksum __read_mostly;
279 /* Whether to merge empty (zeroed) pages with actual zero pages */
280 static bool ksm_use_zero_pages __read_mostly;
282 #ifdef CONFIG_NUMA
283 /* Zeroed when merging across nodes is not allowed */
284 static unsigned int ksm_merge_across_nodes = 1;
285 static int ksm_nr_node_ids = 1;
286 #else
287 #define ksm_merge_across_nodes 1U
288 #define ksm_nr_node_ids 1
289 #endif
291 #define KSM_RUN_STOP 0
292 #define KSM_RUN_MERGE 1
293 #define KSM_RUN_UNMERGE 2
294 #define KSM_RUN_OFFLINE 4
295 static unsigned long ksm_run = KSM_RUN_STOP;
296 static void wait_while_offlining(void);
298 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
299 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
300 static DEFINE_MUTEX(ksm_thread_mutex);
301 static DEFINE_SPINLOCK(ksm_mmlist_lock);
303 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
304 sizeof(struct __struct), __alignof__(struct __struct),\
305 (__flags), NULL)
307 static int __init ksm_slab_init(void)
309 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
310 if (!rmap_item_cache)
311 goto out;
313 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
314 if (!stable_node_cache)
315 goto out_free1;
317 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
318 if (!mm_slot_cache)
319 goto out_free2;
321 return 0;
323 out_free2:
324 kmem_cache_destroy(stable_node_cache);
325 out_free1:
326 kmem_cache_destroy(rmap_item_cache);
327 out:
328 return -ENOMEM;
331 static void __init ksm_slab_free(void)
333 kmem_cache_destroy(mm_slot_cache);
334 kmem_cache_destroy(stable_node_cache);
335 kmem_cache_destroy(rmap_item_cache);
336 mm_slot_cache = NULL;
339 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
341 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
344 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
346 return dup->head == STABLE_NODE_DUP_HEAD;
349 static inline void stable_node_chain_add_dup(struct stable_node *dup,
350 struct stable_node *chain)
352 VM_BUG_ON(is_stable_node_dup(dup));
353 dup->head = STABLE_NODE_DUP_HEAD;
354 VM_BUG_ON(!is_stable_node_chain(chain));
355 hlist_add_head(&dup->hlist_dup, &chain->hlist);
356 ksm_stable_node_dups++;
359 static inline void __stable_node_dup_del(struct stable_node *dup)
361 VM_BUG_ON(!is_stable_node_dup(dup));
362 hlist_del(&dup->hlist_dup);
363 ksm_stable_node_dups--;
366 static inline void stable_node_dup_del(struct stable_node *dup)
368 VM_BUG_ON(is_stable_node_chain(dup));
369 if (is_stable_node_dup(dup))
370 __stable_node_dup_del(dup);
371 else
372 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
373 #ifdef CONFIG_DEBUG_VM
374 dup->head = NULL;
375 #endif
378 static inline struct rmap_item *alloc_rmap_item(void)
380 struct rmap_item *rmap_item;
382 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
383 __GFP_NORETRY | __GFP_NOWARN);
384 if (rmap_item)
385 ksm_rmap_items++;
386 return rmap_item;
389 static inline void free_rmap_item(struct rmap_item *rmap_item)
391 ksm_rmap_items--;
392 rmap_item->mm = NULL; /* debug safety */
393 kmem_cache_free(rmap_item_cache, rmap_item);
396 static inline struct stable_node *alloc_stable_node(void)
399 * The allocation can take too long with GFP_KERNEL when memory is under
400 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
401 * grants access to memory reserves, helping to avoid this problem.
403 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
406 static inline void free_stable_node(struct stable_node *stable_node)
408 VM_BUG_ON(stable_node->rmap_hlist_len &&
409 !is_stable_node_chain(stable_node));
410 kmem_cache_free(stable_node_cache, stable_node);
413 static inline struct mm_slot *alloc_mm_slot(void)
415 if (!mm_slot_cache) /* initialization failed */
416 return NULL;
417 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
420 static inline void free_mm_slot(struct mm_slot *mm_slot)
422 kmem_cache_free(mm_slot_cache, mm_slot);
425 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
427 struct mm_slot *slot;
429 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
430 if (slot->mm == mm)
431 return slot;
433 return NULL;
436 static void insert_to_mm_slots_hash(struct mm_struct *mm,
437 struct mm_slot *mm_slot)
439 mm_slot->mm = mm;
440 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
444 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
445 * page tables after it has passed through ksm_exit() - which, if necessary,
446 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
447 * a special flag: they can just back out as soon as mm_users goes to zero.
448 * ksm_test_exit() is used throughout to make this test for exit: in some
449 * places for correctness, in some places just to avoid unnecessary work.
451 static inline bool ksm_test_exit(struct mm_struct *mm)
453 return atomic_read(&mm->mm_users) == 0;
457 * We use break_ksm to break COW on a ksm page: it's a stripped down
459 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
460 * put_page(page);
462 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
463 * in case the application has unmapped and remapped mm,addr meanwhile.
464 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
465 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
467 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
468 * of the process that owns 'vma'. We also do not want to enforce
469 * protection keys here anyway.
471 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
473 struct page *page;
474 vm_fault_t ret = 0;
476 do {
477 cond_resched();
478 page = follow_page(vma, addr,
479 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
480 if (IS_ERR_OR_NULL(page))
481 break;
482 if (PageKsm(page))
483 ret = handle_mm_fault(vma, addr,
484 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
485 else
486 ret = VM_FAULT_WRITE;
487 put_page(page);
488 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
490 * We must loop because handle_mm_fault() may back out if there's
491 * any difficulty e.g. if pte accessed bit gets updated concurrently.
493 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
494 * COW has been broken, even if the vma does not permit VM_WRITE;
495 * but note that a concurrent fault might break PageKsm for us.
497 * VM_FAULT_SIGBUS could occur if we race with truncation of the
498 * backing file, which also invalidates anonymous pages: that's
499 * okay, that truncation will have unmapped the PageKsm for us.
501 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
502 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
503 * current task has TIF_MEMDIE set, and will be OOM killed on return
504 * to user; and ksmd, having no mm, would never be chosen for that.
506 * But if the mm is in a limited mem_cgroup, then the fault may fail
507 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
508 * even ksmd can fail in this way - though it's usually breaking ksm
509 * just to undo a merge it made a moment before, so unlikely to oom.
511 * That's a pity: we might therefore have more kernel pages allocated
512 * than we're counting as nodes in the stable tree; but ksm_do_scan
513 * will retry to break_cow on each pass, so should recover the page
514 * in due course. The important thing is to not let VM_MERGEABLE
515 * be cleared while any such pages might remain in the area.
517 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
520 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
521 unsigned long addr)
523 struct vm_area_struct *vma;
524 if (ksm_test_exit(mm))
525 return NULL;
526 vma = find_vma(mm, addr);
527 if (!vma || vma->vm_start > addr)
528 return NULL;
529 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
530 return NULL;
531 return vma;
534 static void break_cow(struct rmap_item *rmap_item)
536 struct mm_struct *mm = rmap_item->mm;
537 unsigned long addr = rmap_item->address;
538 struct vm_area_struct *vma;
541 * It is not an accident that whenever we want to break COW
542 * to undo, we also need to drop a reference to the anon_vma.
544 put_anon_vma(rmap_item->anon_vma);
546 down_read(&mm->mmap_sem);
547 vma = find_mergeable_vma(mm, addr);
548 if (vma)
549 break_ksm(vma, addr);
550 up_read(&mm->mmap_sem);
553 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
555 struct mm_struct *mm = rmap_item->mm;
556 unsigned long addr = rmap_item->address;
557 struct vm_area_struct *vma;
558 struct page *page;
560 down_read(&mm->mmap_sem);
561 vma = find_mergeable_vma(mm, addr);
562 if (!vma)
563 goto out;
565 page = follow_page(vma, addr, FOLL_GET);
566 if (IS_ERR_OR_NULL(page))
567 goto out;
568 if (PageAnon(page)) {
569 flush_anon_page(vma, page, addr);
570 flush_dcache_page(page);
571 } else {
572 put_page(page);
573 out:
574 page = NULL;
576 up_read(&mm->mmap_sem);
577 return page;
581 * This helper is used for getting right index into array of tree roots.
582 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
583 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
584 * every node has its own stable and unstable tree.
586 static inline int get_kpfn_nid(unsigned long kpfn)
588 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
591 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
592 struct rb_root *root)
594 struct stable_node *chain = alloc_stable_node();
595 VM_BUG_ON(is_stable_node_chain(dup));
596 if (likely(chain)) {
597 INIT_HLIST_HEAD(&chain->hlist);
598 chain->chain_prune_time = jiffies;
599 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
600 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
601 chain->nid = NUMA_NO_NODE; /* debug */
602 #endif
603 ksm_stable_node_chains++;
606 * Put the stable node chain in the first dimension of
607 * the stable tree and at the same time remove the old
608 * stable node.
610 rb_replace_node(&dup->node, &chain->node, root);
613 * Move the old stable node to the second dimension
614 * queued in the hlist_dup. The invariant is that all
615 * dup stable_nodes in the chain->hlist point to pages
616 * that are wrprotected and have the exact same
617 * content.
619 stable_node_chain_add_dup(dup, chain);
621 return chain;
624 static inline void free_stable_node_chain(struct stable_node *chain,
625 struct rb_root *root)
627 rb_erase(&chain->node, root);
628 free_stable_node(chain);
629 ksm_stable_node_chains--;
632 static void remove_node_from_stable_tree(struct stable_node *stable_node)
634 struct rmap_item *rmap_item;
636 /* check it's not STABLE_NODE_CHAIN or negative */
637 BUG_ON(stable_node->rmap_hlist_len < 0);
639 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
640 if (rmap_item->hlist.next)
641 ksm_pages_sharing--;
642 else
643 ksm_pages_shared--;
644 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
645 stable_node->rmap_hlist_len--;
646 put_anon_vma(rmap_item->anon_vma);
647 rmap_item->address &= PAGE_MASK;
648 cond_resched();
652 * We need the second aligned pointer of the migrate_nodes
653 * list_head to stay clear from the rb_parent_color union
654 * (aligned and different than any node) and also different
655 * from &migrate_nodes. This will verify that future list.h changes
656 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
658 #if defined(GCC_VERSION) && GCC_VERSION >= 40903
659 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
660 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
661 #endif
663 if (stable_node->head == &migrate_nodes)
664 list_del(&stable_node->list);
665 else
666 stable_node_dup_del(stable_node);
667 free_stable_node(stable_node);
670 enum get_ksm_page_flags {
671 GET_KSM_PAGE_NOLOCK,
672 GET_KSM_PAGE_LOCK,
673 GET_KSM_PAGE_TRYLOCK
677 * get_ksm_page: checks if the page indicated by the stable node
678 * is still its ksm page, despite having held no reference to it.
679 * In which case we can trust the content of the page, and it
680 * returns the gotten page; but if the page has now been zapped,
681 * remove the stale node from the stable tree and return NULL.
682 * But beware, the stable node's page might be being migrated.
684 * You would expect the stable_node to hold a reference to the ksm page.
685 * But if it increments the page's count, swapping out has to wait for
686 * ksmd to come around again before it can free the page, which may take
687 * seconds or even minutes: much too unresponsive. So instead we use a
688 * "keyhole reference": access to the ksm page from the stable node peeps
689 * out through its keyhole to see if that page still holds the right key,
690 * pointing back to this stable node. This relies on freeing a PageAnon
691 * page to reset its page->mapping to NULL, and relies on no other use of
692 * a page to put something that might look like our key in page->mapping.
693 * is on its way to being freed; but it is an anomaly to bear in mind.
695 static struct page *get_ksm_page(struct stable_node *stable_node,
696 enum get_ksm_page_flags flags)
698 struct page *page;
699 void *expected_mapping;
700 unsigned long kpfn;
702 expected_mapping = (void *)((unsigned long)stable_node |
703 PAGE_MAPPING_KSM);
704 again:
705 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
706 page = pfn_to_page(kpfn);
707 if (READ_ONCE(page->mapping) != expected_mapping)
708 goto stale;
711 * We cannot do anything with the page while its refcount is 0.
712 * Usually 0 means free, or tail of a higher-order page: in which
713 * case this node is no longer referenced, and should be freed;
714 * however, it might mean that the page is under page_ref_freeze().
715 * The __remove_mapping() case is easy, again the node is now stale;
716 * the same is in reuse_ksm_page() case; but if page is swapcache
717 * in migrate_page_move_mapping(), it might still be our page,
718 * in which case it's essential to keep the node.
720 while (!get_page_unless_zero(page)) {
722 * Another check for page->mapping != expected_mapping would
723 * work here too. We have chosen the !PageSwapCache test to
724 * optimize the common case, when the page is or is about to
725 * be freed: PageSwapCache is cleared (under spin_lock_irq)
726 * in the ref_freeze section of __remove_mapping(); but Anon
727 * page->mapping reset to NULL later, in free_pages_prepare().
729 if (!PageSwapCache(page))
730 goto stale;
731 cpu_relax();
734 if (READ_ONCE(page->mapping) != expected_mapping) {
735 put_page(page);
736 goto stale;
739 if (flags == GET_KSM_PAGE_TRYLOCK) {
740 if (!trylock_page(page)) {
741 put_page(page);
742 return ERR_PTR(-EBUSY);
744 } else if (flags == GET_KSM_PAGE_LOCK)
745 lock_page(page);
747 if (flags != GET_KSM_PAGE_NOLOCK) {
748 if (READ_ONCE(page->mapping) != expected_mapping) {
749 unlock_page(page);
750 put_page(page);
751 goto stale;
754 return page;
756 stale:
758 * We come here from above when page->mapping or !PageSwapCache
759 * suggests that the node is stale; but it might be under migration.
760 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
761 * before checking whether node->kpfn has been changed.
763 smp_rmb();
764 if (READ_ONCE(stable_node->kpfn) != kpfn)
765 goto again;
766 remove_node_from_stable_tree(stable_node);
767 return NULL;
771 * Removing rmap_item from stable or unstable tree.
772 * This function will clean the information from the stable/unstable tree.
774 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
776 if (rmap_item->address & STABLE_FLAG) {
777 struct stable_node *stable_node;
778 struct page *page;
780 stable_node = rmap_item->head;
781 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
782 if (!page)
783 goto out;
785 hlist_del(&rmap_item->hlist);
786 unlock_page(page);
787 put_page(page);
789 if (!hlist_empty(&stable_node->hlist))
790 ksm_pages_sharing--;
791 else
792 ksm_pages_shared--;
793 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
794 stable_node->rmap_hlist_len--;
796 put_anon_vma(rmap_item->anon_vma);
797 rmap_item->address &= PAGE_MASK;
799 } else if (rmap_item->address & UNSTABLE_FLAG) {
800 unsigned char age;
802 * Usually ksmd can and must skip the rb_erase, because
803 * root_unstable_tree was already reset to RB_ROOT.
804 * But be careful when an mm is exiting: do the rb_erase
805 * if this rmap_item was inserted by this scan, rather
806 * than left over from before.
808 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
809 BUG_ON(age > 1);
810 if (!age)
811 rb_erase(&rmap_item->node,
812 root_unstable_tree + NUMA(rmap_item->nid));
813 ksm_pages_unshared--;
814 rmap_item->address &= PAGE_MASK;
816 out:
817 cond_resched(); /* we're called from many long loops */
820 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
821 struct rmap_item **rmap_list)
823 while (*rmap_list) {
824 struct rmap_item *rmap_item = *rmap_list;
825 *rmap_list = rmap_item->rmap_list;
826 remove_rmap_item_from_tree(rmap_item);
827 free_rmap_item(rmap_item);
832 * Though it's very tempting to unmerge rmap_items from stable tree rather
833 * than check every pte of a given vma, the locking doesn't quite work for
834 * that - an rmap_item is assigned to the stable tree after inserting ksm
835 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
836 * rmap_items from parent to child at fork time (so as not to waste time
837 * if exit comes before the next scan reaches it).
839 * Similarly, although we'd like to remove rmap_items (so updating counts
840 * and freeing memory) when unmerging an area, it's easier to leave that
841 * to the next pass of ksmd - consider, for example, how ksmd might be
842 * in cmp_and_merge_page on one of the rmap_items we would be removing.
844 static int unmerge_ksm_pages(struct vm_area_struct *vma,
845 unsigned long start, unsigned long end)
847 unsigned long addr;
848 int err = 0;
850 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
851 if (ksm_test_exit(vma->vm_mm))
852 break;
853 if (signal_pending(current))
854 err = -ERESTARTSYS;
855 else
856 err = break_ksm(vma, addr);
858 return err;
861 static inline struct stable_node *page_stable_node(struct page *page)
863 return PageKsm(page) ? page_rmapping(page) : NULL;
866 static inline void set_page_stable_node(struct page *page,
867 struct stable_node *stable_node)
869 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
872 #ifdef CONFIG_SYSFS
874 * Only called through the sysfs control interface:
876 static int remove_stable_node(struct stable_node *stable_node)
878 struct page *page;
879 int err;
881 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
882 if (!page) {
884 * get_ksm_page did remove_node_from_stable_tree itself.
886 return 0;
889 if (WARN_ON_ONCE(page_mapped(page))) {
891 * This should not happen: but if it does, just refuse to let
892 * merge_across_nodes be switched - there is no need to panic.
894 err = -EBUSY;
895 } else {
897 * The stable node did not yet appear stale to get_ksm_page(),
898 * since that allows for an unmapped ksm page to be recognized
899 * right up until it is freed; but the node is safe to remove.
900 * This page might be in a pagevec waiting to be freed,
901 * or it might be PageSwapCache (perhaps under writeback),
902 * or it might have been removed from swapcache a moment ago.
904 set_page_stable_node(page, NULL);
905 remove_node_from_stable_tree(stable_node);
906 err = 0;
909 unlock_page(page);
910 put_page(page);
911 return err;
914 static int remove_stable_node_chain(struct stable_node *stable_node,
915 struct rb_root *root)
917 struct stable_node *dup;
918 struct hlist_node *hlist_safe;
920 if (!is_stable_node_chain(stable_node)) {
921 VM_BUG_ON(is_stable_node_dup(stable_node));
922 if (remove_stable_node(stable_node))
923 return true;
924 else
925 return false;
928 hlist_for_each_entry_safe(dup, hlist_safe,
929 &stable_node->hlist, hlist_dup) {
930 VM_BUG_ON(!is_stable_node_dup(dup));
931 if (remove_stable_node(dup))
932 return true;
934 BUG_ON(!hlist_empty(&stable_node->hlist));
935 free_stable_node_chain(stable_node, root);
936 return false;
939 static int remove_all_stable_nodes(void)
941 struct stable_node *stable_node, *next;
942 int nid;
943 int err = 0;
945 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
946 while (root_stable_tree[nid].rb_node) {
947 stable_node = rb_entry(root_stable_tree[nid].rb_node,
948 struct stable_node, node);
949 if (remove_stable_node_chain(stable_node,
950 root_stable_tree + nid)) {
951 err = -EBUSY;
952 break; /* proceed to next nid */
954 cond_resched();
957 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
958 if (remove_stable_node(stable_node))
959 err = -EBUSY;
960 cond_resched();
962 return err;
965 static int unmerge_and_remove_all_rmap_items(void)
967 struct mm_slot *mm_slot;
968 struct mm_struct *mm;
969 struct vm_area_struct *vma;
970 int err = 0;
972 spin_lock(&ksm_mmlist_lock);
973 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
974 struct mm_slot, mm_list);
975 spin_unlock(&ksm_mmlist_lock);
977 for (mm_slot = ksm_scan.mm_slot;
978 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
979 mm = mm_slot->mm;
980 down_read(&mm->mmap_sem);
981 for (vma = mm->mmap; vma; vma = vma->vm_next) {
982 if (ksm_test_exit(mm))
983 break;
984 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
985 continue;
986 err = unmerge_ksm_pages(vma,
987 vma->vm_start, vma->vm_end);
988 if (err)
989 goto error;
992 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
993 up_read(&mm->mmap_sem);
995 spin_lock(&ksm_mmlist_lock);
996 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
997 struct mm_slot, mm_list);
998 if (ksm_test_exit(mm)) {
999 hash_del(&mm_slot->link);
1000 list_del(&mm_slot->mm_list);
1001 spin_unlock(&ksm_mmlist_lock);
1003 free_mm_slot(mm_slot);
1004 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1005 mmdrop(mm);
1006 } else
1007 spin_unlock(&ksm_mmlist_lock);
1010 /* Clean up stable nodes, but don't worry if some are still busy */
1011 remove_all_stable_nodes();
1012 ksm_scan.seqnr = 0;
1013 return 0;
1015 error:
1016 up_read(&mm->mmap_sem);
1017 spin_lock(&ksm_mmlist_lock);
1018 ksm_scan.mm_slot = &ksm_mm_head;
1019 spin_unlock(&ksm_mmlist_lock);
1020 return err;
1022 #endif /* CONFIG_SYSFS */
1024 static u32 calc_checksum(struct page *page)
1026 u32 checksum;
1027 void *addr = kmap_atomic(page);
1028 checksum = xxhash(addr, PAGE_SIZE, 0);
1029 kunmap_atomic(addr);
1030 return checksum;
1033 static int memcmp_pages(struct page *page1, struct page *page2)
1035 char *addr1, *addr2;
1036 int ret;
1038 addr1 = kmap_atomic(page1);
1039 addr2 = kmap_atomic(page2);
1040 ret = memcmp(addr1, addr2, PAGE_SIZE);
1041 kunmap_atomic(addr2);
1042 kunmap_atomic(addr1);
1043 return ret;
1046 static inline int pages_identical(struct page *page1, struct page *page2)
1048 return !memcmp_pages(page1, page2);
1051 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1052 pte_t *orig_pte)
1054 struct mm_struct *mm = vma->vm_mm;
1055 struct page_vma_mapped_walk pvmw = {
1056 .page = page,
1057 .vma = vma,
1059 int swapped;
1060 int err = -EFAULT;
1061 struct mmu_notifier_range range;
1063 pvmw.address = page_address_in_vma(page, vma);
1064 if (pvmw.address == -EFAULT)
1065 goto out;
1067 BUG_ON(PageTransCompound(page));
1069 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1070 pvmw.address,
1071 pvmw.address + PAGE_SIZE);
1072 mmu_notifier_invalidate_range_start(&range);
1074 if (!page_vma_mapped_walk(&pvmw))
1075 goto out_mn;
1076 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1077 goto out_unlock;
1079 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1080 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1081 mm_tlb_flush_pending(mm)) {
1082 pte_t entry;
1084 swapped = PageSwapCache(page);
1085 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1087 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1088 * take any lock, therefore the check that we are going to make
1089 * with the pagecount against the mapcount is racey and
1090 * O_DIRECT can happen right after the check.
1091 * So we clear the pte and flush the tlb before the check
1092 * this assure us that no O_DIRECT can happen after the check
1093 * or in the middle of the check.
1095 * No need to notify as we are downgrading page table to read
1096 * only not changing it to point to a new page.
1098 * See Documentation/vm/mmu_notifier.rst
1100 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1102 * Check that no O_DIRECT or similar I/O is in progress on the
1103 * page
1105 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1106 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1107 goto out_unlock;
1109 if (pte_dirty(entry))
1110 set_page_dirty(page);
1112 if (pte_protnone(entry))
1113 entry = pte_mkclean(pte_clear_savedwrite(entry));
1114 else
1115 entry = pte_mkclean(pte_wrprotect(entry));
1116 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1118 *orig_pte = *pvmw.pte;
1119 err = 0;
1121 out_unlock:
1122 page_vma_mapped_walk_done(&pvmw);
1123 out_mn:
1124 mmu_notifier_invalidate_range_end(&range);
1125 out:
1126 return err;
1130 * replace_page - replace page in vma by new ksm page
1131 * @vma: vma that holds the pte pointing to page
1132 * @page: the page we are replacing by kpage
1133 * @kpage: the ksm page we replace page by
1134 * @orig_pte: the original value of the pte
1136 * Returns 0 on success, -EFAULT on failure.
1138 static int replace_page(struct vm_area_struct *vma, struct page *page,
1139 struct page *kpage, pte_t orig_pte)
1141 struct mm_struct *mm = vma->vm_mm;
1142 pmd_t *pmd;
1143 pte_t *ptep;
1144 pte_t newpte;
1145 spinlock_t *ptl;
1146 unsigned long addr;
1147 int err = -EFAULT;
1148 struct mmu_notifier_range range;
1150 addr = page_address_in_vma(page, vma);
1151 if (addr == -EFAULT)
1152 goto out;
1154 pmd = mm_find_pmd(mm, addr);
1155 if (!pmd)
1156 goto out;
1158 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1159 addr + PAGE_SIZE);
1160 mmu_notifier_invalidate_range_start(&range);
1162 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1163 if (!pte_same(*ptep, orig_pte)) {
1164 pte_unmap_unlock(ptep, ptl);
1165 goto out_mn;
1169 * No need to check ksm_use_zero_pages here: we can only have a
1170 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1172 if (!is_zero_pfn(page_to_pfn(kpage))) {
1173 get_page(kpage);
1174 page_add_anon_rmap(kpage, vma, addr, false);
1175 newpte = mk_pte(kpage, vma->vm_page_prot);
1176 } else {
1177 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1178 vma->vm_page_prot));
1180 * We're replacing an anonymous page with a zero page, which is
1181 * not anonymous. We need to do proper accounting otherwise we
1182 * will get wrong values in /proc, and a BUG message in dmesg
1183 * when tearing down the mm.
1185 dec_mm_counter(mm, MM_ANONPAGES);
1188 flush_cache_page(vma, addr, pte_pfn(*ptep));
1190 * No need to notify as we are replacing a read only page with another
1191 * read only page with the same content.
1193 * See Documentation/vm/mmu_notifier.rst
1195 ptep_clear_flush(vma, addr, ptep);
1196 set_pte_at_notify(mm, addr, ptep, newpte);
1198 page_remove_rmap(page, false);
1199 if (!page_mapped(page))
1200 try_to_free_swap(page);
1201 put_page(page);
1203 pte_unmap_unlock(ptep, ptl);
1204 err = 0;
1205 out_mn:
1206 mmu_notifier_invalidate_range_end(&range);
1207 out:
1208 return err;
1212 * try_to_merge_one_page - take two pages and merge them into one
1213 * @vma: the vma that holds the pte pointing to page
1214 * @page: the PageAnon page that we want to replace with kpage
1215 * @kpage: the PageKsm page that we want to map instead of page,
1216 * or NULL the first time when we want to use page as kpage.
1218 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1220 static int try_to_merge_one_page(struct vm_area_struct *vma,
1221 struct page *page, struct page *kpage)
1223 pte_t orig_pte = __pte(0);
1224 int err = -EFAULT;
1226 if (page == kpage) /* ksm page forked */
1227 return 0;
1229 if (!PageAnon(page))
1230 goto out;
1233 * We need the page lock to read a stable PageSwapCache in
1234 * write_protect_page(). We use trylock_page() instead of
1235 * lock_page() because we don't want to wait here - we
1236 * prefer to continue scanning and merging different pages,
1237 * then come back to this page when it is unlocked.
1239 if (!trylock_page(page))
1240 goto out;
1242 if (PageTransCompound(page)) {
1243 if (split_huge_page(page))
1244 goto out_unlock;
1248 * If this anonymous page is mapped only here, its pte may need
1249 * to be write-protected. If it's mapped elsewhere, all of its
1250 * ptes are necessarily already write-protected. But in either
1251 * case, we need to lock and check page_count is not raised.
1253 if (write_protect_page(vma, page, &orig_pte) == 0) {
1254 if (!kpage) {
1256 * While we hold page lock, upgrade page from
1257 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1258 * stable_tree_insert() will update stable_node.
1260 set_page_stable_node(page, NULL);
1261 mark_page_accessed(page);
1263 * Page reclaim just frees a clean page with no dirty
1264 * ptes: make sure that the ksm page would be swapped.
1266 if (!PageDirty(page))
1267 SetPageDirty(page);
1268 err = 0;
1269 } else if (pages_identical(page, kpage))
1270 err = replace_page(vma, page, kpage, orig_pte);
1273 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1274 munlock_vma_page(page);
1275 if (!PageMlocked(kpage)) {
1276 unlock_page(page);
1277 lock_page(kpage);
1278 mlock_vma_page(kpage);
1279 page = kpage; /* for final unlock */
1283 out_unlock:
1284 unlock_page(page);
1285 out:
1286 return err;
1290 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1291 * but no new kernel page is allocated: kpage must already be a ksm page.
1293 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1295 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1296 struct page *page, struct page *kpage)
1298 struct mm_struct *mm = rmap_item->mm;
1299 struct vm_area_struct *vma;
1300 int err = -EFAULT;
1302 down_read(&mm->mmap_sem);
1303 vma = find_mergeable_vma(mm, rmap_item->address);
1304 if (!vma)
1305 goto out;
1307 err = try_to_merge_one_page(vma, page, kpage);
1308 if (err)
1309 goto out;
1311 /* Unstable nid is in union with stable anon_vma: remove first */
1312 remove_rmap_item_from_tree(rmap_item);
1314 /* Must get reference to anon_vma while still holding mmap_sem */
1315 rmap_item->anon_vma = vma->anon_vma;
1316 get_anon_vma(vma->anon_vma);
1317 out:
1318 up_read(&mm->mmap_sem);
1319 return err;
1323 * try_to_merge_two_pages - take two identical pages and prepare them
1324 * to be merged into one page.
1326 * This function returns the kpage if we successfully merged two identical
1327 * pages into one ksm page, NULL otherwise.
1329 * Note that this function upgrades page to ksm page: if one of the pages
1330 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1332 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1333 struct page *page,
1334 struct rmap_item *tree_rmap_item,
1335 struct page *tree_page)
1337 int err;
1339 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1340 if (!err) {
1341 err = try_to_merge_with_ksm_page(tree_rmap_item,
1342 tree_page, page);
1344 * If that fails, we have a ksm page with only one pte
1345 * pointing to it: so break it.
1347 if (err)
1348 break_cow(rmap_item);
1350 return err ? NULL : page;
1353 static __always_inline
1354 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1356 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1358 * Check that at least one mapping still exists, otherwise
1359 * there's no much point to merge and share with this
1360 * stable_node, as the underlying tree_page of the other
1361 * sharer is going to be freed soon.
1363 return stable_node->rmap_hlist_len &&
1364 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1367 static __always_inline
1368 bool is_page_sharing_candidate(struct stable_node *stable_node)
1370 return __is_page_sharing_candidate(stable_node, 0);
1373 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1374 struct stable_node **_stable_node,
1375 struct rb_root *root,
1376 bool prune_stale_stable_nodes)
1378 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1379 struct hlist_node *hlist_safe;
1380 struct page *_tree_page, *tree_page = NULL;
1381 int nr = 0;
1382 int found_rmap_hlist_len;
1384 if (!prune_stale_stable_nodes ||
1385 time_before(jiffies, stable_node->chain_prune_time +
1386 msecs_to_jiffies(
1387 ksm_stable_node_chains_prune_millisecs)))
1388 prune_stale_stable_nodes = false;
1389 else
1390 stable_node->chain_prune_time = jiffies;
1392 hlist_for_each_entry_safe(dup, hlist_safe,
1393 &stable_node->hlist, hlist_dup) {
1394 cond_resched();
1396 * We must walk all stable_node_dup to prune the stale
1397 * stable nodes during lookup.
1399 * get_ksm_page can drop the nodes from the
1400 * stable_node->hlist if they point to freed pages
1401 * (that's why we do a _safe walk). The "dup"
1402 * stable_node parameter itself will be freed from
1403 * under us if it returns NULL.
1405 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1406 if (!_tree_page)
1407 continue;
1408 nr += 1;
1409 if (is_page_sharing_candidate(dup)) {
1410 if (!found ||
1411 dup->rmap_hlist_len > found_rmap_hlist_len) {
1412 if (found)
1413 put_page(tree_page);
1414 found = dup;
1415 found_rmap_hlist_len = found->rmap_hlist_len;
1416 tree_page = _tree_page;
1418 /* skip put_page for found dup */
1419 if (!prune_stale_stable_nodes)
1420 break;
1421 continue;
1424 put_page(_tree_page);
1427 if (found) {
1429 * nr is counting all dups in the chain only if
1430 * prune_stale_stable_nodes is true, otherwise we may
1431 * break the loop at nr == 1 even if there are
1432 * multiple entries.
1434 if (prune_stale_stable_nodes && nr == 1) {
1436 * If there's not just one entry it would
1437 * corrupt memory, better BUG_ON. In KSM
1438 * context with no lock held it's not even
1439 * fatal.
1441 BUG_ON(stable_node->hlist.first->next);
1444 * There's just one entry and it is below the
1445 * deduplication limit so drop the chain.
1447 rb_replace_node(&stable_node->node, &found->node,
1448 root);
1449 free_stable_node(stable_node);
1450 ksm_stable_node_chains--;
1451 ksm_stable_node_dups--;
1453 * NOTE: the caller depends on the stable_node
1454 * to be equal to stable_node_dup if the chain
1455 * was collapsed.
1457 *_stable_node = found;
1459 * Just for robustneess as stable_node is
1460 * otherwise left as a stable pointer, the
1461 * compiler shall optimize it away at build
1462 * time.
1464 stable_node = NULL;
1465 } else if (stable_node->hlist.first != &found->hlist_dup &&
1466 __is_page_sharing_candidate(found, 1)) {
1468 * If the found stable_node dup can accept one
1469 * more future merge (in addition to the one
1470 * that is underway) and is not at the head of
1471 * the chain, put it there so next search will
1472 * be quicker in the !prune_stale_stable_nodes
1473 * case.
1475 * NOTE: it would be inaccurate to use nr > 1
1476 * instead of checking the hlist.first pointer
1477 * directly, because in the
1478 * prune_stale_stable_nodes case "nr" isn't
1479 * the position of the found dup in the chain,
1480 * but the total number of dups in the chain.
1482 hlist_del(&found->hlist_dup);
1483 hlist_add_head(&found->hlist_dup,
1484 &stable_node->hlist);
1488 *_stable_node_dup = found;
1489 return tree_page;
1492 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1493 struct rb_root *root)
1495 if (!is_stable_node_chain(stable_node))
1496 return stable_node;
1497 if (hlist_empty(&stable_node->hlist)) {
1498 free_stable_node_chain(stable_node, root);
1499 return NULL;
1501 return hlist_entry(stable_node->hlist.first,
1502 typeof(*stable_node), hlist_dup);
1506 * Like for get_ksm_page, this function can free the *_stable_node and
1507 * *_stable_node_dup if the returned tree_page is NULL.
1509 * It can also free and overwrite *_stable_node with the found
1510 * stable_node_dup if the chain is collapsed (in which case
1511 * *_stable_node will be equal to *_stable_node_dup like if the chain
1512 * never existed). It's up to the caller to verify tree_page is not
1513 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1515 * *_stable_node_dup is really a second output parameter of this
1516 * function and will be overwritten in all cases, the caller doesn't
1517 * need to initialize it.
1519 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1520 struct stable_node **_stable_node,
1521 struct rb_root *root,
1522 bool prune_stale_stable_nodes)
1524 struct stable_node *stable_node = *_stable_node;
1525 if (!is_stable_node_chain(stable_node)) {
1526 if (is_page_sharing_candidate(stable_node)) {
1527 *_stable_node_dup = stable_node;
1528 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1531 * _stable_node_dup set to NULL means the stable_node
1532 * reached the ksm_max_page_sharing limit.
1534 *_stable_node_dup = NULL;
1535 return NULL;
1537 return stable_node_dup(_stable_node_dup, _stable_node, root,
1538 prune_stale_stable_nodes);
1541 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1542 struct stable_node **s_n,
1543 struct rb_root *root)
1545 return __stable_node_chain(s_n_d, s_n, root, true);
1548 static __always_inline struct page *chain(struct stable_node **s_n_d,
1549 struct stable_node *s_n,
1550 struct rb_root *root)
1552 struct stable_node *old_stable_node = s_n;
1553 struct page *tree_page;
1555 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1556 /* not pruning dups so s_n cannot have changed */
1557 VM_BUG_ON(s_n != old_stable_node);
1558 return tree_page;
1562 * stable_tree_search - search for page inside the stable tree
1564 * This function checks if there is a page inside the stable tree
1565 * with identical content to the page that we are scanning right now.
1567 * This function returns the stable tree node of identical content if found,
1568 * NULL otherwise.
1570 static struct page *stable_tree_search(struct page *page)
1572 int nid;
1573 struct rb_root *root;
1574 struct rb_node **new;
1575 struct rb_node *parent;
1576 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1577 struct stable_node *page_node;
1579 page_node = page_stable_node(page);
1580 if (page_node && page_node->head != &migrate_nodes) {
1581 /* ksm page forked */
1582 get_page(page);
1583 return page;
1586 nid = get_kpfn_nid(page_to_pfn(page));
1587 root = root_stable_tree + nid;
1588 again:
1589 new = &root->rb_node;
1590 parent = NULL;
1592 while (*new) {
1593 struct page *tree_page;
1594 int ret;
1596 cond_resched();
1597 stable_node = rb_entry(*new, struct stable_node, node);
1598 stable_node_any = NULL;
1599 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1601 * NOTE: stable_node may have been freed by
1602 * chain_prune() if the returned stable_node_dup is
1603 * not NULL. stable_node_dup may have been inserted in
1604 * the rbtree instead as a regular stable_node (in
1605 * order to collapse the stable_node chain if a single
1606 * stable_node dup was found in it). In such case the
1607 * stable_node is overwritten by the calleee to point
1608 * to the stable_node_dup that was collapsed in the
1609 * stable rbtree and stable_node will be equal to
1610 * stable_node_dup like if the chain never existed.
1612 if (!stable_node_dup) {
1614 * Either all stable_node dups were full in
1615 * this stable_node chain, or this chain was
1616 * empty and should be rb_erased.
1618 stable_node_any = stable_node_dup_any(stable_node,
1619 root);
1620 if (!stable_node_any) {
1621 /* rb_erase just run */
1622 goto again;
1625 * Take any of the stable_node dups page of
1626 * this stable_node chain to let the tree walk
1627 * continue. All KSM pages belonging to the
1628 * stable_node dups in a stable_node chain
1629 * have the same content and they're
1630 * wrprotected at all times. Any will work
1631 * fine to continue the walk.
1633 tree_page = get_ksm_page(stable_node_any,
1634 GET_KSM_PAGE_NOLOCK);
1636 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1637 if (!tree_page) {
1639 * If we walked over a stale stable_node,
1640 * get_ksm_page() will call rb_erase() and it
1641 * may rebalance the tree from under us. So
1642 * restart the search from scratch. Returning
1643 * NULL would be safe too, but we'd generate
1644 * false negative insertions just because some
1645 * stable_node was stale.
1647 goto again;
1650 ret = memcmp_pages(page, tree_page);
1651 put_page(tree_page);
1653 parent = *new;
1654 if (ret < 0)
1655 new = &parent->rb_left;
1656 else if (ret > 0)
1657 new = &parent->rb_right;
1658 else {
1659 if (page_node) {
1660 VM_BUG_ON(page_node->head != &migrate_nodes);
1662 * Test if the migrated page should be merged
1663 * into a stable node dup. If the mapcount is
1664 * 1 we can migrate it with another KSM page
1665 * without adding it to the chain.
1667 if (page_mapcount(page) > 1)
1668 goto chain_append;
1671 if (!stable_node_dup) {
1673 * If the stable_node is a chain and
1674 * we got a payload match in memcmp
1675 * but we cannot merge the scanned
1676 * page in any of the existing
1677 * stable_node dups because they're
1678 * all full, we need to wait the
1679 * scanned page to find itself a match
1680 * in the unstable tree to create a
1681 * brand new KSM page to add later to
1682 * the dups of this stable_node.
1684 return NULL;
1688 * Lock and unlock the stable_node's page (which
1689 * might already have been migrated) so that page
1690 * migration is sure to notice its raised count.
1691 * It would be more elegant to return stable_node
1692 * than kpage, but that involves more changes.
1694 tree_page = get_ksm_page(stable_node_dup,
1695 GET_KSM_PAGE_TRYLOCK);
1697 if (PTR_ERR(tree_page) == -EBUSY)
1698 return ERR_PTR(-EBUSY);
1700 if (unlikely(!tree_page))
1702 * The tree may have been rebalanced,
1703 * so re-evaluate parent and new.
1705 goto again;
1706 unlock_page(tree_page);
1708 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1709 NUMA(stable_node_dup->nid)) {
1710 put_page(tree_page);
1711 goto replace;
1713 return tree_page;
1717 if (!page_node)
1718 return NULL;
1720 list_del(&page_node->list);
1721 DO_NUMA(page_node->nid = nid);
1722 rb_link_node(&page_node->node, parent, new);
1723 rb_insert_color(&page_node->node, root);
1724 out:
1725 if (is_page_sharing_candidate(page_node)) {
1726 get_page(page);
1727 return page;
1728 } else
1729 return NULL;
1731 replace:
1733 * If stable_node was a chain and chain_prune collapsed it,
1734 * stable_node has been updated to be the new regular
1735 * stable_node. A collapse of the chain is indistinguishable
1736 * from the case there was no chain in the stable
1737 * rbtree. Otherwise stable_node is the chain and
1738 * stable_node_dup is the dup to replace.
1740 if (stable_node_dup == stable_node) {
1741 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1742 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1743 /* there is no chain */
1744 if (page_node) {
1745 VM_BUG_ON(page_node->head != &migrate_nodes);
1746 list_del(&page_node->list);
1747 DO_NUMA(page_node->nid = nid);
1748 rb_replace_node(&stable_node_dup->node,
1749 &page_node->node,
1750 root);
1751 if (is_page_sharing_candidate(page_node))
1752 get_page(page);
1753 else
1754 page = NULL;
1755 } else {
1756 rb_erase(&stable_node_dup->node, root);
1757 page = NULL;
1759 } else {
1760 VM_BUG_ON(!is_stable_node_chain(stable_node));
1761 __stable_node_dup_del(stable_node_dup);
1762 if (page_node) {
1763 VM_BUG_ON(page_node->head != &migrate_nodes);
1764 list_del(&page_node->list);
1765 DO_NUMA(page_node->nid = nid);
1766 stable_node_chain_add_dup(page_node, stable_node);
1767 if (is_page_sharing_candidate(page_node))
1768 get_page(page);
1769 else
1770 page = NULL;
1771 } else {
1772 page = NULL;
1775 stable_node_dup->head = &migrate_nodes;
1776 list_add(&stable_node_dup->list, stable_node_dup->head);
1777 return page;
1779 chain_append:
1780 /* stable_node_dup could be null if it reached the limit */
1781 if (!stable_node_dup)
1782 stable_node_dup = stable_node_any;
1784 * If stable_node was a chain and chain_prune collapsed it,
1785 * stable_node has been updated to be the new regular
1786 * stable_node. A collapse of the chain is indistinguishable
1787 * from the case there was no chain in the stable
1788 * rbtree. Otherwise stable_node is the chain and
1789 * stable_node_dup is the dup to replace.
1791 if (stable_node_dup == stable_node) {
1792 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1793 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1794 /* chain is missing so create it */
1795 stable_node = alloc_stable_node_chain(stable_node_dup,
1796 root);
1797 if (!stable_node)
1798 return NULL;
1801 * Add this stable_node dup that was
1802 * migrated to the stable_node chain
1803 * of the current nid for this page
1804 * content.
1806 VM_BUG_ON(!is_stable_node_chain(stable_node));
1807 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1808 VM_BUG_ON(page_node->head != &migrate_nodes);
1809 list_del(&page_node->list);
1810 DO_NUMA(page_node->nid = nid);
1811 stable_node_chain_add_dup(page_node, stable_node);
1812 goto out;
1816 * stable_tree_insert - insert stable tree node pointing to new ksm page
1817 * into the stable tree.
1819 * This function returns the stable tree node just allocated on success,
1820 * NULL otherwise.
1822 static struct stable_node *stable_tree_insert(struct page *kpage)
1824 int nid;
1825 unsigned long kpfn;
1826 struct rb_root *root;
1827 struct rb_node **new;
1828 struct rb_node *parent;
1829 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1830 bool need_chain = false;
1832 kpfn = page_to_pfn(kpage);
1833 nid = get_kpfn_nid(kpfn);
1834 root = root_stable_tree + nid;
1835 again:
1836 parent = NULL;
1837 new = &root->rb_node;
1839 while (*new) {
1840 struct page *tree_page;
1841 int ret;
1843 cond_resched();
1844 stable_node = rb_entry(*new, struct stable_node, node);
1845 stable_node_any = NULL;
1846 tree_page = chain(&stable_node_dup, stable_node, root);
1847 if (!stable_node_dup) {
1849 * Either all stable_node dups were full in
1850 * this stable_node chain, or this chain was
1851 * empty and should be rb_erased.
1853 stable_node_any = stable_node_dup_any(stable_node,
1854 root);
1855 if (!stable_node_any) {
1856 /* rb_erase just run */
1857 goto again;
1860 * Take any of the stable_node dups page of
1861 * this stable_node chain to let the tree walk
1862 * continue. All KSM pages belonging to the
1863 * stable_node dups in a stable_node chain
1864 * have the same content and they're
1865 * wrprotected at all times. Any will work
1866 * fine to continue the walk.
1868 tree_page = get_ksm_page(stable_node_any,
1869 GET_KSM_PAGE_NOLOCK);
1871 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1872 if (!tree_page) {
1874 * If we walked over a stale stable_node,
1875 * get_ksm_page() will call rb_erase() and it
1876 * may rebalance the tree from under us. So
1877 * restart the search from scratch. Returning
1878 * NULL would be safe too, but we'd generate
1879 * false negative insertions just because some
1880 * stable_node was stale.
1882 goto again;
1885 ret = memcmp_pages(kpage, tree_page);
1886 put_page(tree_page);
1888 parent = *new;
1889 if (ret < 0)
1890 new = &parent->rb_left;
1891 else if (ret > 0)
1892 new = &parent->rb_right;
1893 else {
1894 need_chain = true;
1895 break;
1899 stable_node_dup = alloc_stable_node();
1900 if (!stable_node_dup)
1901 return NULL;
1903 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1904 stable_node_dup->kpfn = kpfn;
1905 set_page_stable_node(kpage, stable_node_dup);
1906 stable_node_dup->rmap_hlist_len = 0;
1907 DO_NUMA(stable_node_dup->nid = nid);
1908 if (!need_chain) {
1909 rb_link_node(&stable_node_dup->node, parent, new);
1910 rb_insert_color(&stable_node_dup->node, root);
1911 } else {
1912 if (!is_stable_node_chain(stable_node)) {
1913 struct stable_node *orig = stable_node;
1914 /* chain is missing so create it */
1915 stable_node = alloc_stable_node_chain(orig, root);
1916 if (!stable_node) {
1917 free_stable_node(stable_node_dup);
1918 return NULL;
1921 stable_node_chain_add_dup(stable_node_dup, stable_node);
1924 return stable_node_dup;
1928 * unstable_tree_search_insert - search for identical page,
1929 * else insert rmap_item into the unstable tree.
1931 * This function searches for a page in the unstable tree identical to the
1932 * page currently being scanned; and if no identical page is found in the
1933 * tree, we insert rmap_item as a new object into the unstable tree.
1935 * This function returns pointer to rmap_item found to be identical
1936 * to the currently scanned page, NULL otherwise.
1938 * This function does both searching and inserting, because they share
1939 * the same walking algorithm in an rbtree.
1941 static
1942 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1943 struct page *page,
1944 struct page **tree_pagep)
1946 struct rb_node **new;
1947 struct rb_root *root;
1948 struct rb_node *parent = NULL;
1949 int nid;
1951 nid = get_kpfn_nid(page_to_pfn(page));
1952 root = root_unstable_tree + nid;
1953 new = &root->rb_node;
1955 while (*new) {
1956 struct rmap_item *tree_rmap_item;
1957 struct page *tree_page;
1958 int ret;
1960 cond_resched();
1961 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1962 tree_page = get_mergeable_page(tree_rmap_item);
1963 if (!tree_page)
1964 return NULL;
1967 * Don't substitute a ksm page for a forked page.
1969 if (page == tree_page) {
1970 put_page(tree_page);
1971 return NULL;
1974 ret = memcmp_pages(page, tree_page);
1976 parent = *new;
1977 if (ret < 0) {
1978 put_page(tree_page);
1979 new = &parent->rb_left;
1980 } else if (ret > 0) {
1981 put_page(tree_page);
1982 new = &parent->rb_right;
1983 } else if (!ksm_merge_across_nodes &&
1984 page_to_nid(tree_page) != nid) {
1986 * If tree_page has been migrated to another NUMA node,
1987 * it will be flushed out and put in the right unstable
1988 * tree next time: only merge with it when across_nodes.
1990 put_page(tree_page);
1991 return NULL;
1992 } else {
1993 *tree_pagep = tree_page;
1994 return tree_rmap_item;
1998 rmap_item->address |= UNSTABLE_FLAG;
1999 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2000 DO_NUMA(rmap_item->nid = nid);
2001 rb_link_node(&rmap_item->node, parent, new);
2002 rb_insert_color(&rmap_item->node, root);
2004 ksm_pages_unshared++;
2005 return NULL;
2009 * stable_tree_append - add another rmap_item to the linked list of
2010 * rmap_items hanging off a given node of the stable tree, all sharing
2011 * the same ksm page.
2013 static void stable_tree_append(struct rmap_item *rmap_item,
2014 struct stable_node *stable_node,
2015 bool max_page_sharing_bypass)
2018 * rmap won't find this mapping if we don't insert the
2019 * rmap_item in the right stable_node
2020 * duplicate. page_migration could break later if rmap breaks,
2021 * so we can as well crash here. We really need to check for
2022 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2023 * for other negative values as an undeflow if detected here
2024 * for the first time (and not when decreasing rmap_hlist_len)
2025 * would be sign of memory corruption in the stable_node.
2027 BUG_ON(stable_node->rmap_hlist_len < 0);
2029 stable_node->rmap_hlist_len++;
2030 if (!max_page_sharing_bypass)
2031 /* possibly non fatal but unexpected overflow, only warn */
2032 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2033 ksm_max_page_sharing);
2035 rmap_item->head = stable_node;
2036 rmap_item->address |= STABLE_FLAG;
2037 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2039 if (rmap_item->hlist.next)
2040 ksm_pages_sharing++;
2041 else
2042 ksm_pages_shared++;
2046 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2047 * if not, compare checksum to previous and if it's the same, see if page can
2048 * be inserted into the unstable tree, or merged with a page already there and
2049 * both transferred to the stable tree.
2051 * @page: the page that we are searching identical page to.
2052 * @rmap_item: the reverse mapping into the virtual address of this page
2054 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2056 struct mm_struct *mm = rmap_item->mm;
2057 struct rmap_item *tree_rmap_item;
2058 struct page *tree_page = NULL;
2059 struct stable_node *stable_node;
2060 struct page *kpage;
2061 unsigned int checksum;
2062 int err;
2063 bool max_page_sharing_bypass = false;
2065 stable_node = page_stable_node(page);
2066 if (stable_node) {
2067 if (stable_node->head != &migrate_nodes &&
2068 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2069 NUMA(stable_node->nid)) {
2070 stable_node_dup_del(stable_node);
2071 stable_node->head = &migrate_nodes;
2072 list_add(&stable_node->list, stable_node->head);
2074 if (stable_node->head != &migrate_nodes &&
2075 rmap_item->head == stable_node)
2076 return;
2078 * If it's a KSM fork, allow it to go over the sharing limit
2079 * without warnings.
2081 if (!is_page_sharing_candidate(stable_node))
2082 max_page_sharing_bypass = true;
2085 /* We first start with searching the page inside the stable tree */
2086 kpage = stable_tree_search(page);
2087 if (kpage == page && rmap_item->head == stable_node) {
2088 put_page(kpage);
2089 return;
2092 remove_rmap_item_from_tree(rmap_item);
2094 if (kpage) {
2095 if (PTR_ERR(kpage) == -EBUSY)
2096 return;
2098 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2099 if (!err) {
2101 * The page was successfully merged:
2102 * add its rmap_item to the stable tree.
2104 lock_page(kpage);
2105 stable_tree_append(rmap_item, page_stable_node(kpage),
2106 max_page_sharing_bypass);
2107 unlock_page(kpage);
2109 put_page(kpage);
2110 return;
2114 * If the hash value of the page has changed from the last time
2115 * we calculated it, this page is changing frequently: therefore we
2116 * don't want to insert it in the unstable tree, and we don't want
2117 * to waste our time searching for something identical to it there.
2119 checksum = calc_checksum(page);
2120 if (rmap_item->oldchecksum != checksum) {
2121 rmap_item->oldchecksum = checksum;
2122 return;
2126 * Same checksum as an empty page. We attempt to merge it with the
2127 * appropriate zero page if the user enabled this via sysfs.
2129 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2130 struct vm_area_struct *vma;
2132 down_read(&mm->mmap_sem);
2133 vma = find_mergeable_vma(mm, rmap_item->address);
2134 err = try_to_merge_one_page(vma, page,
2135 ZERO_PAGE(rmap_item->address));
2136 up_read(&mm->mmap_sem);
2138 * In case of failure, the page was not really empty, so we
2139 * need to continue. Otherwise we're done.
2141 if (!err)
2142 return;
2144 tree_rmap_item =
2145 unstable_tree_search_insert(rmap_item, page, &tree_page);
2146 if (tree_rmap_item) {
2147 bool split;
2149 kpage = try_to_merge_two_pages(rmap_item, page,
2150 tree_rmap_item, tree_page);
2152 * If both pages we tried to merge belong to the same compound
2153 * page, then we actually ended up increasing the reference
2154 * count of the same compound page twice, and split_huge_page
2155 * failed.
2156 * Here we set a flag if that happened, and we use it later to
2157 * try split_huge_page again. Since we call put_page right
2158 * afterwards, the reference count will be correct and
2159 * split_huge_page should succeed.
2161 split = PageTransCompound(page)
2162 && compound_head(page) == compound_head(tree_page);
2163 put_page(tree_page);
2164 if (kpage) {
2166 * The pages were successfully merged: insert new
2167 * node in the stable tree and add both rmap_items.
2169 lock_page(kpage);
2170 stable_node = stable_tree_insert(kpage);
2171 if (stable_node) {
2172 stable_tree_append(tree_rmap_item, stable_node,
2173 false);
2174 stable_tree_append(rmap_item, stable_node,
2175 false);
2177 unlock_page(kpage);
2180 * If we fail to insert the page into the stable tree,
2181 * we will have 2 virtual addresses that are pointing
2182 * to a ksm page left outside the stable tree,
2183 * in which case we need to break_cow on both.
2185 if (!stable_node) {
2186 break_cow(tree_rmap_item);
2187 break_cow(rmap_item);
2189 } else if (split) {
2191 * We are here if we tried to merge two pages and
2192 * failed because they both belonged to the same
2193 * compound page. We will split the page now, but no
2194 * merging will take place.
2195 * We do not want to add the cost of a full lock; if
2196 * the page is locked, it is better to skip it and
2197 * perhaps try again later.
2199 if (!trylock_page(page))
2200 return;
2201 split_huge_page(page);
2202 unlock_page(page);
2207 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2208 struct rmap_item **rmap_list,
2209 unsigned long addr)
2211 struct rmap_item *rmap_item;
2213 while (*rmap_list) {
2214 rmap_item = *rmap_list;
2215 if ((rmap_item->address & PAGE_MASK) == addr)
2216 return rmap_item;
2217 if (rmap_item->address > addr)
2218 break;
2219 *rmap_list = rmap_item->rmap_list;
2220 remove_rmap_item_from_tree(rmap_item);
2221 free_rmap_item(rmap_item);
2224 rmap_item = alloc_rmap_item();
2225 if (rmap_item) {
2226 /* It has already been zeroed */
2227 rmap_item->mm = mm_slot->mm;
2228 rmap_item->address = addr;
2229 rmap_item->rmap_list = *rmap_list;
2230 *rmap_list = rmap_item;
2232 return rmap_item;
2235 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2237 struct mm_struct *mm;
2238 struct mm_slot *slot;
2239 struct vm_area_struct *vma;
2240 struct rmap_item *rmap_item;
2241 int nid;
2243 if (list_empty(&ksm_mm_head.mm_list))
2244 return NULL;
2246 slot = ksm_scan.mm_slot;
2247 if (slot == &ksm_mm_head) {
2249 * A number of pages can hang around indefinitely on per-cpu
2250 * pagevecs, raised page count preventing write_protect_page
2251 * from merging them. Though it doesn't really matter much,
2252 * it is puzzling to see some stuck in pages_volatile until
2253 * other activity jostles them out, and they also prevented
2254 * LTP's KSM test from succeeding deterministically; so drain
2255 * them here (here rather than on entry to ksm_do_scan(),
2256 * so we don't IPI too often when pages_to_scan is set low).
2258 lru_add_drain_all();
2261 * Whereas stale stable_nodes on the stable_tree itself
2262 * get pruned in the regular course of stable_tree_search(),
2263 * those moved out to the migrate_nodes list can accumulate:
2264 * so prune them once before each full scan.
2266 if (!ksm_merge_across_nodes) {
2267 struct stable_node *stable_node, *next;
2268 struct page *page;
2270 list_for_each_entry_safe(stable_node, next,
2271 &migrate_nodes, list) {
2272 page = get_ksm_page(stable_node,
2273 GET_KSM_PAGE_NOLOCK);
2274 if (page)
2275 put_page(page);
2276 cond_resched();
2280 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2281 root_unstable_tree[nid] = RB_ROOT;
2283 spin_lock(&ksm_mmlist_lock);
2284 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2285 ksm_scan.mm_slot = slot;
2286 spin_unlock(&ksm_mmlist_lock);
2288 * Although we tested list_empty() above, a racing __ksm_exit
2289 * of the last mm on the list may have removed it since then.
2291 if (slot == &ksm_mm_head)
2292 return NULL;
2293 next_mm:
2294 ksm_scan.address = 0;
2295 ksm_scan.rmap_list = &slot->rmap_list;
2298 mm = slot->mm;
2299 down_read(&mm->mmap_sem);
2300 if (ksm_test_exit(mm))
2301 vma = NULL;
2302 else
2303 vma = find_vma(mm, ksm_scan.address);
2305 for (; vma; vma = vma->vm_next) {
2306 if (!(vma->vm_flags & VM_MERGEABLE))
2307 continue;
2308 if (ksm_scan.address < vma->vm_start)
2309 ksm_scan.address = vma->vm_start;
2310 if (!vma->anon_vma)
2311 ksm_scan.address = vma->vm_end;
2313 while (ksm_scan.address < vma->vm_end) {
2314 if (ksm_test_exit(mm))
2315 break;
2316 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2317 if (IS_ERR_OR_NULL(*page)) {
2318 ksm_scan.address += PAGE_SIZE;
2319 cond_resched();
2320 continue;
2322 if (PageAnon(*page)) {
2323 flush_anon_page(vma, *page, ksm_scan.address);
2324 flush_dcache_page(*page);
2325 rmap_item = get_next_rmap_item(slot,
2326 ksm_scan.rmap_list, ksm_scan.address);
2327 if (rmap_item) {
2328 ksm_scan.rmap_list =
2329 &rmap_item->rmap_list;
2330 ksm_scan.address += PAGE_SIZE;
2331 } else
2332 put_page(*page);
2333 up_read(&mm->mmap_sem);
2334 return rmap_item;
2336 put_page(*page);
2337 ksm_scan.address += PAGE_SIZE;
2338 cond_resched();
2342 if (ksm_test_exit(mm)) {
2343 ksm_scan.address = 0;
2344 ksm_scan.rmap_list = &slot->rmap_list;
2347 * Nuke all the rmap_items that are above this current rmap:
2348 * because there were no VM_MERGEABLE vmas with such addresses.
2350 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2352 spin_lock(&ksm_mmlist_lock);
2353 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2354 struct mm_slot, mm_list);
2355 if (ksm_scan.address == 0) {
2357 * We've completed a full scan of all vmas, holding mmap_sem
2358 * throughout, and found no VM_MERGEABLE: so do the same as
2359 * __ksm_exit does to remove this mm from all our lists now.
2360 * This applies either when cleaning up after __ksm_exit
2361 * (but beware: we can reach here even before __ksm_exit),
2362 * or when all VM_MERGEABLE areas have been unmapped (and
2363 * mmap_sem then protects against race with MADV_MERGEABLE).
2365 hash_del(&slot->link);
2366 list_del(&slot->mm_list);
2367 spin_unlock(&ksm_mmlist_lock);
2369 free_mm_slot(slot);
2370 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2371 up_read(&mm->mmap_sem);
2372 mmdrop(mm);
2373 } else {
2374 up_read(&mm->mmap_sem);
2376 * up_read(&mm->mmap_sem) first because after
2377 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2378 * already have been freed under us by __ksm_exit()
2379 * because the "mm_slot" is still hashed and
2380 * ksm_scan.mm_slot doesn't point to it anymore.
2382 spin_unlock(&ksm_mmlist_lock);
2385 /* Repeat until we've completed scanning the whole list */
2386 slot = ksm_scan.mm_slot;
2387 if (slot != &ksm_mm_head)
2388 goto next_mm;
2390 ksm_scan.seqnr++;
2391 return NULL;
2395 * ksm_do_scan - the ksm scanner main worker function.
2396 * @scan_npages: number of pages we want to scan before we return.
2398 static void ksm_do_scan(unsigned int scan_npages)
2400 struct rmap_item *rmap_item;
2401 struct page *uninitialized_var(page);
2403 while (scan_npages-- && likely(!freezing(current))) {
2404 cond_resched();
2405 rmap_item = scan_get_next_rmap_item(&page);
2406 if (!rmap_item)
2407 return;
2408 cmp_and_merge_page(page, rmap_item);
2409 put_page(page);
2413 static int ksmd_should_run(void)
2415 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2418 static int ksm_scan_thread(void *nothing)
2420 unsigned int sleep_ms;
2422 set_freezable();
2423 set_user_nice(current, 5);
2425 while (!kthread_should_stop()) {
2426 mutex_lock(&ksm_thread_mutex);
2427 wait_while_offlining();
2428 if (ksmd_should_run())
2429 ksm_do_scan(ksm_thread_pages_to_scan);
2430 mutex_unlock(&ksm_thread_mutex);
2432 try_to_freeze();
2434 if (ksmd_should_run()) {
2435 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2436 wait_event_interruptible_timeout(ksm_iter_wait,
2437 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2438 msecs_to_jiffies(sleep_ms));
2439 } else {
2440 wait_event_freezable(ksm_thread_wait,
2441 ksmd_should_run() || kthread_should_stop());
2444 return 0;
2447 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2448 unsigned long end, int advice, unsigned long *vm_flags)
2450 struct mm_struct *mm = vma->vm_mm;
2451 int err;
2453 switch (advice) {
2454 case MADV_MERGEABLE:
2456 * Be somewhat over-protective for now!
2458 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2459 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
2460 VM_HUGETLB | VM_MIXEDMAP))
2461 return 0; /* just ignore the advice */
2463 if (vma_is_dax(vma))
2464 return 0;
2466 #ifdef VM_SAO
2467 if (*vm_flags & VM_SAO)
2468 return 0;
2469 #endif
2470 #ifdef VM_SPARC_ADI
2471 if (*vm_flags & VM_SPARC_ADI)
2472 return 0;
2473 #endif
2475 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2476 err = __ksm_enter(mm);
2477 if (err)
2478 return err;
2481 *vm_flags |= VM_MERGEABLE;
2482 break;
2484 case MADV_UNMERGEABLE:
2485 if (!(*vm_flags & VM_MERGEABLE))
2486 return 0; /* just ignore the advice */
2488 if (vma->anon_vma) {
2489 err = unmerge_ksm_pages(vma, start, end);
2490 if (err)
2491 return err;
2494 *vm_flags &= ~VM_MERGEABLE;
2495 break;
2498 return 0;
2501 int __ksm_enter(struct mm_struct *mm)
2503 struct mm_slot *mm_slot;
2504 int needs_wakeup;
2506 mm_slot = alloc_mm_slot();
2507 if (!mm_slot)
2508 return -ENOMEM;
2510 /* Check ksm_run too? Would need tighter locking */
2511 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2513 spin_lock(&ksm_mmlist_lock);
2514 insert_to_mm_slots_hash(mm, mm_slot);
2516 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2517 * insert just behind the scanning cursor, to let the area settle
2518 * down a little; when fork is followed by immediate exec, we don't
2519 * want ksmd to waste time setting up and tearing down an rmap_list.
2521 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2522 * scanning cursor, otherwise KSM pages in newly forked mms will be
2523 * missed: then we might as well insert at the end of the list.
2525 if (ksm_run & KSM_RUN_UNMERGE)
2526 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2527 else
2528 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2529 spin_unlock(&ksm_mmlist_lock);
2531 set_bit(MMF_VM_MERGEABLE, &mm->flags);
2532 mmgrab(mm);
2534 if (needs_wakeup)
2535 wake_up_interruptible(&ksm_thread_wait);
2537 return 0;
2540 void __ksm_exit(struct mm_struct *mm)
2542 struct mm_slot *mm_slot;
2543 int easy_to_free = 0;
2546 * This process is exiting: if it's straightforward (as is the
2547 * case when ksmd was never running), free mm_slot immediately.
2548 * But if it's at the cursor or has rmap_items linked to it, use
2549 * mmap_sem to synchronize with any break_cows before pagetables
2550 * are freed, and leave the mm_slot on the list for ksmd to free.
2551 * Beware: ksm may already have noticed it exiting and freed the slot.
2554 spin_lock(&ksm_mmlist_lock);
2555 mm_slot = get_mm_slot(mm);
2556 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2557 if (!mm_slot->rmap_list) {
2558 hash_del(&mm_slot->link);
2559 list_del(&mm_slot->mm_list);
2560 easy_to_free = 1;
2561 } else {
2562 list_move(&mm_slot->mm_list,
2563 &ksm_scan.mm_slot->mm_list);
2566 spin_unlock(&ksm_mmlist_lock);
2568 if (easy_to_free) {
2569 free_mm_slot(mm_slot);
2570 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2571 mmdrop(mm);
2572 } else if (mm_slot) {
2573 down_write(&mm->mmap_sem);
2574 up_write(&mm->mmap_sem);
2578 struct page *ksm_might_need_to_copy(struct page *page,
2579 struct vm_area_struct *vma, unsigned long address)
2581 struct anon_vma *anon_vma = page_anon_vma(page);
2582 struct page *new_page;
2584 if (PageKsm(page)) {
2585 if (page_stable_node(page) &&
2586 !(ksm_run & KSM_RUN_UNMERGE))
2587 return page; /* no need to copy it */
2588 } else if (!anon_vma) {
2589 return page; /* no need to copy it */
2590 } else if (anon_vma->root == vma->anon_vma->root &&
2591 page->index == linear_page_index(vma, address)) {
2592 return page; /* still no need to copy it */
2594 if (!PageUptodate(page))
2595 return page; /* let do_swap_page report the error */
2597 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2598 if (new_page) {
2599 copy_user_highpage(new_page, page, address, vma);
2601 SetPageDirty(new_page);
2602 __SetPageUptodate(new_page);
2603 __SetPageLocked(new_page);
2606 return new_page;
2609 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2611 struct stable_node *stable_node;
2612 struct rmap_item *rmap_item;
2613 int search_new_forks = 0;
2615 VM_BUG_ON_PAGE(!PageKsm(page), page);
2618 * Rely on the page lock to protect against concurrent modifications
2619 * to that page's node of the stable tree.
2621 VM_BUG_ON_PAGE(!PageLocked(page), page);
2623 stable_node = page_stable_node(page);
2624 if (!stable_node)
2625 return;
2626 again:
2627 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2628 struct anon_vma *anon_vma = rmap_item->anon_vma;
2629 struct anon_vma_chain *vmac;
2630 struct vm_area_struct *vma;
2632 cond_resched();
2633 anon_vma_lock_read(anon_vma);
2634 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2635 0, ULONG_MAX) {
2636 unsigned long addr;
2638 cond_resched();
2639 vma = vmac->vma;
2641 /* Ignore the stable/unstable/sqnr flags */
2642 addr = rmap_item->address & ~KSM_FLAG_MASK;
2644 if (addr < vma->vm_start || addr >= vma->vm_end)
2645 continue;
2647 * Initially we examine only the vma which covers this
2648 * rmap_item; but later, if there is still work to do,
2649 * we examine covering vmas in other mms: in case they
2650 * were forked from the original since ksmd passed.
2652 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2653 continue;
2655 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2656 continue;
2658 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2659 anon_vma_unlock_read(anon_vma);
2660 return;
2662 if (rwc->done && rwc->done(page)) {
2663 anon_vma_unlock_read(anon_vma);
2664 return;
2667 anon_vma_unlock_read(anon_vma);
2669 if (!search_new_forks++)
2670 goto again;
2673 bool reuse_ksm_page(struct page *page,
2674 struct vm_area_struct *vma,
2675 unsigned long address)
2677 #ifdef CONFIG_DEBUG_VM
2678 if (WARN_ON(is_zero_pfn(page_to_pfn(page))) ||
2679 WARN_ON(!page_mapped(page)) ||
2680 WARN_ON(!PageLocked(page))) {
2681 dump_page(page, "reuse_ksm_page");
2682 return false;
2684 #endif
2686 if (PageSwapCache(page) || !page_stable_node(page))
2687 return false;
2688 /* Prohibit parallel get_ksm_page() */
2689 if (!page_ref_freeze(page, 1))
2690 return false;
2692 page_move_anon_rmap(page, vma);
2693 page->index = linear_page_index(vma, address);
2694 page_ref_unfreeze(page, 1);
2696 return true;
2698 #ifdef CONFIG_MIGRATION
2699 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2701 struct stable_node *stable_node;
2703 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2704 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2705 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2707 stable_node = page_stable_node(newpage);
2708 if (stable_node) {
2709 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2710 stable_node->kpfn = page_to_pfn(newpage);
2712 * newpage->mapping was set in advance; now we need smp_wmb()
2713 * to make sure that the new stable_node->kpfn is visible
2714 * to get_ksm_page() before it can see that oldpage->mapping
2715 * has gone stale (or that PageSwapCache has been cleared).
2717 smp_wmb();
2718 set_page_stable_node(oldpage, NULL);
2721 #endif /* CONFIG_MIGRATION */
2723 #ifdef CONFIG_MEMORY_HOTREMOVE
2724 static void wait_while_offlining(void)
2726 while (ksm_run & KSM_RUN_OFFLINE) {
2727 mutex_unlock(&ksm_thread_mutex);
2728 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2729 TASK_UNINTERRUPTIBLE);
2730 mutex_lock(&ksm_thread_mutex);
2734 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2735 unsigned long start_pfn,
2736 unsigned long end_pfn)
2738 if (stable_node->kpfn >= start_pfn &&
2739 stable_node->kpfn < end_pfn) {
2741 * Don't get_ksm_page, page has already gone:
2742 * which is why we keep kpfn instead of page*
2744 remove_node_from_stable_tree(stable_node);
2745 return true;
2747 return false;
2750 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2751 unsigned long start_pfn,
2752 unsigned long end_pfn,
2753 struct rb_root *root)
2755 struct stable_node *dup;
2756 struct hlist_node *hlist_safe;
2758 if (!is_stable_node_chain(stable_node)) {
2759 VM_BUG_ON(is_stable_node_dup(stable_node));
2760 return stable_node_dup_remove_range(stable_node, start_pfn,
2761 end_pfn);
2764 hlist_for_each_entry_safe(dup, hlist_safe,
2765 &stable_node->hlist, hlist_dup) {
2766 VM_BUG_ON(!is_stable_node_dup(dup));
2767 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2769 if (hlist_empty(&stable_node->hlist)) {
2770 free_stable_node_chain(stable_node, root);
2771 return true; /* notify caller that tree was rebalanced */
2772 } else
2773 return false;
2776 static void ksm_check_stable_tree(unsigned long start_pfn,
2777 unsigned long end_pfn)
2779 struct stable_node *stable_node, *next;
2780 struct rb_node *node;
2781 int nid;
2783 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2784 node = rb_first(root_stable_tree + nid);
2785 while (node) {
2786 stable_node = rb_entry(node, struct stable_node, node);
2787 if (stable_node_chain_remove_range(stable_node,
2788 start_pfn, end_pfn,
2789 root_stable_tree +
2790 nid))
2791 node = rb_first(root_stable_tree + nid);
2792 else
2793 node = rb_next(node);
2794 cond_resched();
2797 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2798 if (stable_node->kpfn >= start_pfn &&
2799 stable_node->kpfn < end_pfn)
2800 remove_node_from_stable_tree(stable_node);
2801 cond_resched();
2805 static int ksm_memory_callback(struct notifier_block *self,
2806 unsigned long action, void *arg)
2808 struct memory_notify *mn = arg;
2810 switch (action) {
2811 case MEM_GOING_OFFLINE:
2813 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2814 * and remove_all_stable_nodes() while memory is going offline:
2815 * it is unsafe for them to touch the stable tree at this time.
2816 * But unmerge_ksm_pages(), rmap lookups and other entry points
2817 * which do not need the ksm_thread_mutex are all safe.
2819 mutex_lock(&ksm_thread_mutex);
2820 ksm_run |= KSM_RUN_OFFLINE;
2821 mutex_unlock(&ksm_thread_mutex);
2822 break;
2824 case MEM_OFFLINE:
2826 * Most of the work is done by page migration; but there might
2827 * be a few stable_nodes left over, still pointing to struct
2828 * pages which have been offlined: prune those from the tree,
2829 * otherwise get_ksm_page() might later try to access a
2830 * non-existent struct page.
2832 ksm_check_stable_tree(mn->start_pfn,
2833 mn->start_pfn + mn->nr_pages);
2834 /* fallthrough */
2836 case MEM_CANCEL_OFFLINE:
2837 mutex_lock(&ksm_thread_mutex);
2838 ksm_run &= ~KSM_RUN_OFFLINE;
2839 mutex_unlock(&ksm_thread_mutex);
2841 smp_mb(); /* wake_up_bit advises this */
2842 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2843 break;
2845 return NOTIFY_OK;
2847 #else
2848 static void wait_while_offlining(void)
2851 #endif /* CONFIG_MEMORY_HOTREMOVE */
2853 #ifdef CONFIG_SYSFS
2855 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2858 #define KSM_ATTR_RO(_name) \
2859 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2860 #define KSM_ATTR(_name) \
2861 static struct kobj_attribute _name##_attr = \
2862 __ATTR(_name, 0644, _name##_show, _name##_store)
2864 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2865 struct kobj_attribute *attr, char *buf)
2867 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2870 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2871 struct kobj_attribute *attr,
2872 const char *buf, size_t count)
2874 unsigned long msecs;
2875 int err;
2877 err = kstrtoul(buf, 10, &msecs);
2878 if (err || msecs > UINT_MAX)
2879 return -EINVAL;
2881 ksm_thread_sleep_millisecs = msecs;
2882 wake_up_interruptible(&ksm_iter_wait);
2884 return count;
2886 KSM_ATTR(sleep_millisecs);
2888 static ssize_t pages_to_scan_show(struct kobject *kobj,
2889 struct kobj_attribute *attr, char *buf)
2891 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2894 static ssize_t pages_to_scan_store(struct kobject *kobj,
2895 struct kobj_attribute *attr,
2896 const char *buf, size_t count)
2898 int err;
2899 unsigned long nr_pages;
2901 err = kstrtoul(buf, 10, &nr_pages);
2902 if (err || nr_pages > UINT_MAX)
2903 return -EINVAL;
2905 ksm_thread_pages_to_scan = nr_pages;
2907 return count;
2909 KSM_ATTR(pages_to_scan);
2911 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2912 char *buf)
2914 return sprintf(buf, "%lu\n", ksm_run);
2917 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2918 const char *buf, size_t count)
2920 int err;
2921 unsigned long flags;
2923 err = kstrtoul(buf, 10, &flags);
2924 if (err || flags > UINT_MAX)
2925 return -EINVAL;
2926 if (flags > KSM_RUN_UNMERGE)
2927 return -EINVAL;
2930 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2931 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2932 * breaking COW to free the pages_shared (but leaves mm_slots
2933 * on the list for when ksmd may be set running again).
2936 mutex_lock(&ksm_thread_mutex);
2937 wait_while_offlining();
2938 if (ksm_run != flags) {
2939 ksm_run = flags;
2940 if (flags & KSM_RUN_UNMERGE) {
2941 set_current_oom_origin();
2942 err = unmerge_and_remove_all_rmap_items();
2943 clear_current_oom_origin();
2944 if (err) {
2945 ksm_run = KSM_RUN_STOP;
2946 count = err;
2950 mutex_unlock(&ksm_thread_mutex);
2952 if (flags & KSM_RUN_MERGE)
2953 wake_up_interruptible(&ksm_thread_wait);
2955 return count;
2957 KSM_ATTR(run);
2959 #ifdef CONFIG_NUMA
2960 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2961 struct kobj_attribute *attr, char *buf)
2963 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2966 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2967 struct kobj_attribute *attr,
2968 const char *buf, size_t count)
2970 int err;
2971 unsigned long knob;
2973 err = kstrtoul(buf, 10, &knob);
2974 if (err)
2975 return err;
2976 if (knob > 1)
2977 return -EINVAL;
2979 mutex_lock(&ksm_thread_mutex);
2980 wait_while_offlining();
2981 if (ksm_merge_across_nodes != knob) {
2982 if (ksm_pages_shared || remove_all_stable_nodes())
2983 err = -EBUSY;
2984 else if (root_stable_tree == one_stable_tree) {
2985 struct rb_root *buf;
2987 * This is the first time that we switch away from the
2988 * default of merging across nodes: must now allocate
2989 * a buffer to hold as many roots as may be needed.
2990 * Allocate stable and unstable together:
2991 * MAXSMP NODES_SHIFT 10 will use 16kB.
2993 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2994 GFP_KERNEL);
2995 /* Let us assume that RB_ROOT is NULL is zero */
2996 if (!buf)
2997 err = -ENOMEM;
2998 else {
2999 root_stable_tree = buf;
3000 root_unstable_tree = buf + nr_node_ids;
3001 /* Stable tree is empty but not the unstable */
3002 root_unstable_tree[0] = one_unstable_tree[0];
3005 if (!err) {
3006 ksm_merge_across_nodes = knob;
3007 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3010 mutex_unlock(&ksm_thread_mutex);
3012 return err ? err : count;
3014 KSM_ATTR(merge_across_nodes);
3015 #endif
3017 static ssize_t use_zero_pages_show(struct kobject *kobj,
3018 struct kobj_attribute *attr, char *buf)
3020 return sprintf(buf, "%u\n", ksm_use_zero_pages);
3022 static ssize_t use_zero_pages_store(struct kobject *kobj,
3023 struct kobj_attribute *attr,
3024 const char *buf, size_t count)
3026 int err;
3027 bool value;
3029 err = kstrtobool(buf, &value);
3030 if (err)
3031 return -EINVAL;
3033 ksm_use_zero_pages = value;
3035 return count;
3037 KSM_ATTR(use_zero_pages);
3039 static ssize_t max_page_sharing_show(struct kobject *kobj,
3040 struct kobj_attribute *attr, char *buf)
3042 return sprintf(buf, "%u\n", ksm_max_page_sharing);
3045 static ssize_t max_page_sharing_store(struct kobject *kobj,
3046 struct kobj_attribute *attr,
3047 const char *buf, size_t count)
3049 int err;
3050 int knob;
3052 err = kstrtoint(buf, 10, &knob);
3053 if (err)
3054 return err;
3056 * When a KSM page is created it is shared by 2 mappings. This
3057 * being a signed comparison, it implicitly verifies it's not
3058 * negative.
3060 if (knob < 2)
3061 return -EINVAL;
3063 if (READ_ONCE(ksm_max_page_sharing) == knob)
3064 return count;
3066 mutex_lock(&ksm_thread_mutex);
3067 wait_while_offlining();
3068 if (ksm_max_page_sharing != knob) {
3069 if (ksm_pages_shared || remove_all_stable_nodes())
3070 err = -EBUSY;
3071 else
3072 ksm_max_page_sharing = knob;
3074 mutex_unlock(&ksm_thread_mutex);
3076 return err ? err : count;
3078 KSM_ATTR(max_page_sharing);
3080 static ssize_t pages_shared_show(struct kobject *kobj,
3081 struct kobj_attribute *attr, char *buf)
3083 return sprintf(buf, "%lu\n", ksm_pages_shared);
3085 KSM_ATTR_RO(pages_shared);
3087 static ssize_t pages_sharing_show(struct kobject *kobj,
3088 struct kobj_attribute *attr, char *buf)
3090 return sprintf(buf, "%lu\n", ksm_pages_sharing);
3092 KSM_ATTR_RO(pages_sharing);
3094 static ssize_t pages_unshared_show(struct kobject *kobj,
3095 struct kobj_attribute *attr, char *buf)
3097 return sprintf(buf, "%lu\n", ksm_pages_unshared);
3099 KSM_ATTR_RO(pages_unshared);
3101 static ssize_t pages_volatile_show(struct kobject *kobj,
3102 struct kobj_attribute *attr, char *buf)
3104 long ksm_pages_volatile;
3106 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3107 - ksm_pages_sharing - ksm_pages_unshared;
3109 * It was not worth any locking to calculate that statistic,
3110 * but it might therefore sometimes be negative: conceal that.
3112 if (ksm_pages_volatile < 0)
3113 ksm_pages_volatile = 0;
3114 return sprintf(buf, "%ld\n", ksm_pages_volatile);
3116 KSM_ATTR_RO(pages_volatile);
3118 static ssize_t stable_node_dups_show(struct kobject *kobj,
3119 struct kobj_attribute *attr, char *buf)
3121 return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3123 KSM_ATTR_RO(stable_node_dups);
3125 static ssize_t stable_node_chains_show(struct kobject *kobj,
3126 struct kobj_attribute *attr, char *buf)
3128 return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3130 KSM_ATTR_RO(stable_node_chains);
3132 static ssize_t
3133 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3134 struct kobj_attribute *attr,
3135 char *buf)
3137 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3140 static ssize_t
3141 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3142 struct kobj_attribute *attr,
3143 const char *buf, size_t count)
3145 unsigned long msecs;
3146 int err;
3148 err = kstrtoul(buf, 10, &msecs);
3149 if (err || msecs > UINT_MAX)
3150 return -EINVAL;
3152 ksm_stable_node_chains_prune_millisecs = msecs;
3154 return count;
3156 KSM_ATTR(stable_node_chains_prune_millisecs);
3158 static ssize_t full_scans_show(struct kobject *kobj,
3159 struct kobj_attribute *attr, char *buf)
3161 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3163 KSM_ATTR_RO(full_scans);
3165 static struct attribute *ksm_attrs[] = {
3166 &sleep_millisecs_attr.attr,
3167 &pages_to_scan_attr.attr,
3168 &run_attr.attr,
3169 &pages_shared_attr.attr,
3170 &pages_sharing_attr.attr,
3171 &pages_unshared_attr.attr,
3172 &pages_volatile_attr.attr,
3173 &full_scans_attr.attr,
3174 #ifdef CONFIG_NUMA
3175 &merge_across_nodes_attr.attr,
3176 #endif
3177 &max_page_sharing_attr.attr,
3178 &stable_node_chains_attr.attr,
3179 &stable_node_dups_attr.attr,
3180 &stable_node_chains_prune_millisecs_attr.attr,
3181 &use_zero_pages_attr.attr,
3182 NULL,
3185 static const struct attribute_group ksm_attr_group = {
3186 .attrs = ksm_attrs,
3187 .name = "ksm",
3189 #endif /* CONFIG_SYSFS */
3191 static int __init ksm_init(void)
3193 struct task_struct *ksm_thread;
3194 int err;
3196 /* The correct value depends on page size and endianness */
3197 zero_checksum = calc_checksum(ZERO_PAGE(0));
3198 /* Default to false for backwards compatibility */
3199 ksm_use_zero_pages = false;
3201 err = ksm_slab_init();
3202 if (err)
3203 goto out;
3205 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3206 if (IS_ERR(ksm_thread)) {
3207 pr_err("ksm: creating kthread failed\n");
3208 err = PTR_ERR(ksm_thread);
3209 goto out_free;
3212 #ifdef CONFIG_SYSFS
3213 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3214 if (err) {
3215 pr_err("ksm: register sysfs failed\n");
3216 kthread_stop(ksm_thread);
3217 goto out_free;
3219 #else
3220 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3222 #endif /* CONFIG_SYSFS */
3224 #ifdef CONFIG_MEMORY_HOTREMOVE
3225 /* There is no significance to this priority 100 */
3226 hotplug_memory_notifier(ksm_memory_callback, 100);
3227 #endif
3228 return 0;
3230 out_free:
3231 ksm_slab_free();
3232 out:
3233 return err;
3235 subsys_initcall(ksm_init);