2 #include <linux/hugetlb.h>
3 #include <linux/huge_mm.h>
4 #include <linux/mount.h>
5 #include <linux/seq_file.h>
6 #include <linux/highmem.h>
7 #include <linux/ptrace.h>
8 #include <linux/slab.h>
9 #include <linux/pagemap.h>
10 #include <linux/mempolicy.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/mmu_notifier.h>
17 #include <asm/uaccess.h>
18 #include <asm/tlbflush.h>
21 void task_mem(struct seq_file
*m
, struct mm_struct
*mm
)
23 unsigned long data
, text
, lib
, swap
;
24 unsigned long hiwater_vm
, total_vm
, hiwater_rss
, total_rss
;
27 * Note: to minimize their overhead, mm maintains hiwater_vm and
28 * hiwater_rss only when about to *lower* total_vm or rss. Any
29 * collector of these hiwater stats must therefore get total_vm
30 * and rss too, which will usually be the higher. Barriers? not
31 * worth the effort, such snapshots can always be inconsistent.
33 hiwater_vm
= total_vm
= mm
->total_vm
;
34 if (hiwater_vm
< mm
->hiwater_vm
)
35 hiwater_vm
= mm
->hiwater_vm
;
36 hiwater_rss
= total_rss
= get_mm_rss(mm
);
37 if (hiwater_rss
< mm
->hiwater_rss
)
38 hiwater_rss
= mm
->hiwater_rss
;
40 data
= mm
->total_vm
- mm
->shared_vm
- mm
->stack_vm
;
41 text
= (PAGE_ALIGN(mm
->end_code
) - (mm
->start_code
& PAGE_MASK
)) >> 10;
42 lib
= (mm
->exec_vm
<< (PAGE_SHIFT
-10)) - text
;
43 swap
= get_mm_counter(mm
, MM_SWAPENTS
);
57 hiwater_vm
<< (PAGE_SHIFT
-10),
58 total_vm
<< (PAGE_SHIFT
-10),
59 mm
->locked_vm
<< (PAGE_SHIFT
-10),
60 mm
->pinned_vm
<< (PAGE_SHIFT
-10),
61 hiwater_rss
<< (PAGE_SHIFT
-10),
62 total_rss
<< (PAGE_SHIFT
-10),
63 data
<< (PAGE_SHIFT
-10),
64 mm
->stack_vm
<< (PAGE_SHIFT
-10), text
, lib
,
65 (PTRS_PER_PTE
*sizeof(pte_t
)*mm
->nr_ptes
) >> 10,
66 swap
<< (PAGE_SHIFT
-10));
69 unsigned long task_vsize(struct mm_struct
*mm
)
71 return PAGE_SIZE
* mm
->total_vm
;
74 unsigned long task_statm(struct mm_struct
*mm
,
75 unsigned long *shared
, unsigned long *text
,
76 unsigned long *data
, unsigned long *resident
)
78 *shared
= get_mm_counter(mm
, MM_FILEPAGES
);
79 *text
= (PAGE_ALIGN(mm
->end_code
) - (mm
->start_code
& PAGE_MASK
))
81 *data
= mm
->total_vm
- mm
->shared_vm
;
82 *resident
= *shared
+ get_mm_counter(mm
, MM_ANONPAGES
);
86 static void pad_len_spaces(struct seq_file
*m
, int len
)
88 len
= 25 + sizeof(void*) * 6 - len
;
91 seq_printf(m
, "%*c", len
, ' ');
96 * These functions are for numa_maps but called in generic **maps seq_file
97 * ->start(), ->stop() ops.
99 * numa_maps scans all vmas under mmap_sem and checks their mempolicy.
100 * Each mempolicy object is controlled by reference counting. The problem here
101 * is how to avoid accessing dead mempolicy object.
103 * Because we're holding mmap_sem while reading seq_file, it's safe to access
104 * each vma's mempolicy, no vma objects will never drop refs to mempolicy.
106 * A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy
107 * is set and replaced under mmap_sem but unrefed and cleared under task_lock().
108 * So, without task_lock(), we cannot trust get_vma_policy() because we cannot
109 * gurantee the task never exits under us. But taking task_lock() around
110 * get_vma_plicy() causes lock order problem.
112 * To access task->mempolicy without lock, we hold a reference count of an
113 * object pointed by task->mempolicy and remember it. This will guarantee
114 * that task->mempolicy points to an alive object or NULL in numa_maps accesses.
116 static void hold_task_mempolicy(struct proc_maps_private
*priv
)
118 struct task_struct
*task
= priv
->task
;
121 priv
->task_mempolicy
= task
->mempolicy
;
122 mpol_get(priv
->task_mempolicy
);
125 static void release_task_mempolicy(struct proc_maps_private
*priv
)
127 mpol_put(priv
->task_mempolicy
);
130 static void hold_task_mempolicy(struct proc_maps_private
*priv
)
133 static void release_task_mempolicy(struct proc_maps_private
*priv
)
138 static void vma_stop(struct proc_maps_private
*priv
, struct vm_area_struct
*vma
)
140 if (vma
&& vma
!= priv
->tail_vma
) {
141 struct mm_struct
*mm
= vma
->vm_mm
;
142 release_task_mempolicy(priv
);
143 up_read(&mm
->mmap_sem
);
148 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
150 struct proc_maps_private
*priv
= m
->private;
151 unsigned long last_addr
= m
->version
;
152 struct mm_struct
*mm
;
153 struct vm_area_struct
*vma
, *tail_vma
= NULL
;
156 /* Clear the per syscall fields in priv */
158 priv
->tail_vma
= NULL
;
161 * We remember last_addr rather than next_addr to hit with
162 * mmap_cache most of the time. We have zero last_addr at
163 * the beginning and also after lseek. We will have -1 last_addr
164 * after the end of the vmas.
167 if (last_addr
== -1UL)
170 priv
->task
= get_pid_task(priv
->pid
, PIDTYPE_PID
);
172 return ERR_PTR(-ESRCH
);
174 mm
= mm_access(priv
->task
, PTRACE_MODE_READ
);
175 if (!mm
|| IS_ERR(mm
))
177 down_read(&mm
->mmap_sem
);
179 tail_vma
= get_gate_vma(priv
->task
->mm
);
180 priv
->tail_vma
= tail_vma
;
181 hold_task_mempolicy(priv
);
182 /* Start with last addr hint */
183 vma
= find_vma(mm
, last_addr
);
184 if (last_addr
&& vma
) {
190 * Check the vma index is within the range and do
191 * sequential scan until m_index.
194 if ((unsigned long)l
< mm
->map_count
) {
201 if (l
!= mm
->map_count
)
202 tail_vma
= NULL
; /* After gate vma */
208 release_task_mempolicy(priv
);
209 /* End of vmas has been reached */
210 m
->version
= (tail_vma
!= NULL
)? 0: -1UL;
211 up_read(&mm
->mmap_sem
);
216 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
218 struct proc_maps_private
*priv
= m
->private;
219 struct vm_area_struct
*vma
= v
;
220 struct vm_area_struct
*tail_vma
= priv
->tail_vma
;
223 if (vma
&& (vma
!= tail_vma
) && vma
->vm_next
)
226 return (vma
!= tail_vma
)? tail_vma
: NULL
;
229 static void m_stop(struct seq_file
*m
, void *v
)
231 struct proc_maps_private
*priv
= m
->private;
232 struct vm_area_struct
*vma
= v
;
237 put_task_struct(priv
->task
);
240 static int do_maps_open(struct inode
*inode
, struct file
*file
,
241 const struct seq_operations
*ops
)
243 struct proc_maps_private
*priv
;
245 priv
= kzalloc(sizeof(*priv
), GFP_KERNEL
);
247 priv
->pid
= proc_pid(inode
);
248 ret
= seq_open(file
, ops
);
250 struct seq_file
*m
= file
->private_data
;
260 show_map_vma(struct seq_file
*m
, struct vm_area_struct
*vma
, int is_pid
)
262 struct mm_struct
*mm
= vma
->vm_mm
;
263 struct file
*file
= vma
->vm_file
;
264 struct proc_maps_private
*priv
= m
->private;
265 struct task_struct
*task
= priv
->task
;
266 vm_flags_t flags
= vma
->vm_flags
;
267 unsigned long ino
= 0;
268 unsigned long long pgoff
= 0;
269 unsigned long start
, end
;
272 const char *name
= NULL
;
275 struct inode
*inode
= file_inode(vma
->vm_file
);
276 dev
= inode
->i_sb
->s_dev
;
278 pgoff
= ((loff_t
)vma
->vm_pgoff
) << PAGE_SHIFT
;
281 /* We don't show the stack guard page in /proc/maps */
282 start
= vma
->vm_start
;
283 if (stack_guard_page_start(vma
, start
))
286 if (stack_guard_page_end(vma
, end
))
289 seq_printf(m
, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
292 flags
& VM_READ
? 'r' : '-',
293 flags
& VM_WRITE
? 'w' : '-',
294 flags
& VM_EXEC
? 'x' : '-',
295 flags
& VM_MAYSHARE
? 's' : 'p',
297 MAJOR(dev
), MINOR(dev
), ino
, &len
);
300 * Print the dentry name for named mappings, and a
301 * special [heap] marker for the heap:
304 pad_len_spaces(m
, len
);
305 seq_path(m
, &file
->f_path
, "\n");
309 name
= arch_vma_name(vma
);
318 if (vma
->vm_start
<= mm
->brk
&&
319 vma
->vm_end
>= mm
->start_brk
) {
324 tid
= vm_is_stack(task
, vma
, is_pid
);
328 * Thread stack in /proc/PID/task/TID/maps or
329 * the main process stack.
331 if (!is_pid
|| (vma
->vm_start
<= mm
->start_stack
&&
332 vma
->vm_end
>= mm
->start_stack
)) {
335 /* Thread stack in /proc/PID/maps */
336 pad_len_spaces(m
, len
);
337 seq_printf(m
, "[stack:%d]", tid
);
344 pad_len_spaces(m
, len
);
350 static int show_map(struct seq_file
*m
, void *v
, int is_pid
)
352 struct vm_area_struct
*vma
= v
;
353 struct proc_maps_private
*priv
= m
->private;
354 struct task_struct
*task
= priv
->task
;
356 show_map_vma(m
, vma
, is_pid
);
358 if (m
->count
< m
->size
) /* vma is copied successfully */
359 m
->version
= (vma
!= get_gate_vma(task
->mm
))
364 static int show_pid_map(struct seq_file
*m
, void *v
)
366 return show_map(m
, v
, 1);
369 static int show_tid_map(struct seq_file
*m
, void *v
)
371 return show_map(m
, v
, 0);
374 static const struct seq_operations proc_pid_maps_op
= {
381 static const struct seq_operations proc_tid_maps_op
= {
388 static int pid_maps_open(struct inode
*inode
, struct file
*file
)
390 return do_maps_open(inode
, file
, &proc_pid_maps_op
);
393 static int tid_maps_open(struct inode
*inode
, struct file
*file
)
395 return do_maps_open(inode
, file
, &proc_tid_maps_op
);
398 const struct file_operations proc_pid_maps_operations
= {
399 .open
= pid_maps_open
,
402 .release
= seq_release_private
,
405 const struct file_operations proc_tid_maps_operations
= {
406 .open
= tid_maps_open
,
409 .release
= seq_release_private
,
413 * Proportional Set Size(PSS): my share of RSS.
415 * PSS of a process is the count of pages it has in memory, where each
416 * page is divided by the number of processes sharing it. So if a
417 * process has 1000 pages all to itself, and 1000 shared with one other
418 * process, its PSS will be 1500.
420 * To keep (accumulated) division errors low, we adopt a 64bit
421 * fixed-point pss counter to minimize division errors. So (pss >>
422 * PSS_SHIFT) would be the real byte count.
424 * A shift of 12 before division means (assuming 4K page size):
425 * - 1M 3-user-pages add up to 8KB errors;
426 * - supports mapcount up to 2^24, or 16M;
427 * - supports PSS up to 2^52 bytes, or 4PB.
431 #ifdef CONFIG_PROC_PAGE_MONITOR
432 struct mem_size_stats
{
433 struct vm_area_struct
*vma
;
434 unsigned long resident
;
435 unsigned long shared_clean
;
436 unsigned long shared_dirty
;
437 unsigned long private_clean
;
438 unsigned long private_dirty
;
439 unsigned long referenced
;
440 unsigned long anonymous
;
441 unsigned long anonymous_thp
;
443 unsigned long nonlinear
;
448 static void smaps_pte_entry(pte_t ptent
, unsigned long addr
,
449 unsigned long ptent_size
, struct mm_walk
*walk
)
451 struct mem_size_stats
*mss
= walk
->private;
452 struct vm_area_struct
*vma
= mss
->vma
;
453 pgoff_t pgoff
= linear_page_index(vma
, addr
);
454 struct page
*page
= NULL
;
457 if (pte_present(ptent
)) {
458 page
= vm_normal_page(vma
, addr
, ptent
);
459 } else if (is_swap_pte(ptent
)) {
460 swp_entry_t swpent
= pte_to_swp_entry(ptent
);
462 if (!non_swap_entry(swpent
))
463 mss
->swap
+= ptent_size
;
464 else if (is_migration_entry(swpent
))
465 page
= migration_entry_to_page(swpent
);
466 } else if (pte_file(ptent
)) {
467 if (pte_to_pgoff(ptent
) != pgoff
)
468 mss
->nonlinear
+= ptent_size
;
475 mss
->anonymous
+= ptent_size
;
477 if (page
->index
!= pgoff
)
478 mss
->nonlinear
+= ptent_size
;
480 mss
->resident
+= ptent_size
;
481 /* Accumulate the size in pages that have been accessed. */
482 if (pte_young(ptent
) || PageReferenced(page
))
483 mss
->referenced
+= ptent_size
;
484 mapcount
= page_mapcount(page
);
486 if (pte_dirty(ptent
) || PageDirty(page
))
487 mss
->shared_dirty
+= ptent_size
;
489 mss
->shared_clean
+= ptent_size
;
490 mss
->pss
+= (ptent_size
<< PSS_SHIFT
) / mapcount
;
492 if (pte_dirty(ptent
) || PageDirty(page
))
493 mss
->private_dirty
+= ptent_size
;
495 mss
->private_clean
+= ptent_size
;
496 mss
->pss
+= (ptent_size
<< PSS_SHIFT
);
500 static int smaps_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
,
501 struct mm_walk
*walk
)
503 struct mem_size_stats
*mss
= walk
->private;
504 struct vm_area_struct
*vma
= mss
->vma
;
508 if (pmd_trans_huge_lock(pmd
, vma
) == 1) {
509 smaps_pte_entry(*(pte_t
*)pmd
, addr
, HPAGE_PMD_SIZE
, walk
);
510 spin_unlock(&walk
->mm
->page_table_lock
);
511 mss
->anonymous_thp
+= HPAGE_PMD_SIZE
;
515 if (pmd_trans_unstable(pmd
))
518 * The mmap_sem held all the way back in m_start() is what
519 * keeps khugepaged out of here and from collapsing things
522 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
523 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
524 smaps_pte_entry(*pte
, addr
, PAGE_SIZE
, walk
);
525 pte_unmap_unlock(pte
- 1, ptl
);
530 static void show_smap_vma_flags(struct seq_file
*m
, struct vm_area_struct
*vma
)
533 * Don't forget to update Documentation/ on changes.
535 static const char mnemonics
[BITS_PER_LONG
][2] = {
537 * In case if we meet a flag we don't know about.
539 [0 ... (BITS_PER_LONG
-1)] = "??",
541 [ilog2(VM_READ
)] = "rd",
542 [ilog2(VM_WRITE
)] = "wr",
543 [ilog2(VM_EXEC
)] = "ex",
544 [ilog2(VM_SHARED
)] = "sh",
545 [ilog2(VM_MAYREAD
)] = "mr",
546 [ilog2(VM_MAYWRITE
)] = "mw",
547 [ilog2(VM_MAYEXEC
)] = "me",
548 [ilog2(VM_MAYSHARE
)] = "ms",
549 [ilog2(VM_GROWSDOWN
)] = "gd",
550 [ilog2(VM_PFNMAP
)] = "pf",
551 [ilog2(VM_DENYWRITE
)] = "dw",
552 [ilog2(VM_LOCKED
)] = "lo",
553 [ilog2(VM_IO
)] = "io",
554 [ilog2(VM_SEQ_READ
)] = "sr",
555 [ilog2(VM_RAND_READ
)] = "rr",
556 [ilog2(VM_DONTCOPY
)] = "dc",
557 [ilog2(VM_DONTEXPAND
)] = "de",
558 [ilog2(VM_ACCOUNT
)] = "ac",
559 [ilog2(VM_NORESERVE
)] = "nr",
560 [ilog2(VM_HUGETLB
)] = "ht",
561 [ilog2(VM_NONLINEAR
)] = "nl",
562 [ilog2(VM_ARCH_1
)] = "ar",
563 [ilog2(VM_DONTDUMP
)] = "dd",
564 [ilog2(VM_MIXEDMAP
)] = "mm",
565 [ilog2(VM_HUGEPAGE
)] = "hg",
566 [ilog2(VM_NOHUGEPAGE
)] = "nh",
567 [ilog2(VM_MERGEABLE
)] = "mg",
571 seq_puts(m
, "VmFlags: ");
572 for (i
= 0; i
< BITS_PER_LONG
; i
++) {
573 if (vma
->vm_flags
& (1UL << i
)) {
574 seq_printf(m
, "%c%c ",
575 mnemonics
[i
][0], mnemonics
[i
][1]);
581 static int show_smap(struct seq_file
*m
, void *v
, int is_pid
)
583 struct proc_maps_private
*priv
= m
->private;
584 struct task_struct
*task
= priv
->task
;
585 struct vm_area_struct
*vma
= v
;
586 struct mem_size_stats mss
;
587 struct mm_walk smaps_walk
= {
588 .pmd_entry
= smaps_pte_range
,
593 memset(&mss
, 0, sizeof mss
);
595 /* mmap_sem is held in m_start */
596 if (vma
->vm_mm
&& !is_vm_hugetlb_page(vma
))
597 walk_page_range(vma
->vm_start
, vma
->vm_end
, &smaps_walk
);
599 show_map_vma(m
, vma
, is_pid
);
605 "Shared_Clean: %8lu kB\n"
606 "Shared_Dirty: %8lu kB\n"
607 "Private_Clean: %8lu kB\n"
608 "Private_Dirty: %8lu kB\n"
609 "Referenced: %8lu kB\n"
610 "Anonymous: %8lu kB\n"
611 "AnonHugePages: %8lu kB\n"
613 "KernelPageSize: %8lu kB\n"
614 "MMUPageSize: %8lu kB\n"
616 (vma
->vm_end
- vma
->vm_start
) >> 10,
618 (unsigned long)(mss
.pss
>> (10 + PSS_SHIFT
)),
619 mss
.shared_clean
>> 10,
620 mss
.shared_dirty
>> 10,
621 mss
.private_clean
>> 10,
622 mss
.private_dirty
>> 10,
623 mss
.referenced
>> 10,
625 mss
.anonymous_thp
>> 10,
627 vma_kernel_pagesize(vma
) >> 10,
628 vma_mmu_pagesize(vma
) >> 10,
629 (vma
->vm_flags
& VM_LOCKED
) ?
630 (unsigned long)(mss
.pss
>> (10 + PSS_SHIFT
)) : 0);
632 if (vma
->vm_flags
& VM_NONLINEAR
)
633 seq_printf(m
, "Nonlinear: %8lu kB\n",
634 mss
.nonlinear
>> 10);
636 show_smap_vma_flags(m
, vma
);
638 if (m
->count
< m
->size
) /* vma is copied successfully */
639 m
->version
= (vma
!= get_gate_vma(task
->mm
))
644 static int show_pid_smap(struct seq_file
*m
, void *v
)
646 return show_smap(m
, v
, 1);
649 static int show_tid_smap(struct seq_file
*m
, void *v
)
651 return show_smap(m
, v
, 0);
654 static const struct seq_operations proc_pid_smaps_op
= {
658 .show
= show_pid_smap
661 static const struct seq_operations proc_tid_smaps_op
= {
665 .show
= show_tid_smap
668 static int pid_smaps_open(struct inode
*inode
, struct file
*file
)
670 return do_maps_open(inode
, file
, &proc_pid_smaps_op
);
673 static int tid_smaps_open(struct inode
*inode
, struct file
*file
)
675 return do_maps_open(inode
, file
, &proc_tid_smaps_op
);
678 const struct file_operations proc_pid_smaps_operations
= {
679 .open
= pid_smaps_open
,
682 .release
= seq_release_private
,
685 const struct file_operations proc_tid_smaps_operations
= {
686 .open
= tid_smaps_open
,
689 .release
= seq_release_private
,
693 * We do not want to have constant page-shift bits sitting in
694 * pagemap entries and are about to reuse them some time soon.
696 * Here's the "migration strategy":
697 * 1. when the system boots these bits remain what they are,
698 * but a warning about future change is printed in log;
699 * 2. once anyone clears soft-dirty bits via clear_refs file,
700 * these flag is set to denote, that user is aware of the
701 * new API and those page-shift bits change their meaning.
702 * The respective warning is printed in dmesg;
703 * 3. In a couple of releases we will remove all the mentions
704 * of page-shift in pagemap entries.
707 static bool soft_dirty_cleared __read_mostly
;
709 enum clear_refs_types
{
713 CLEAR_REFS_SOFT_DIRTY
,
717 struct clear_refs_private
{
718 struct vm_area_struct
*vma
;
719 enum clear_refs_types type
;
722 static inline void clear_soft_dirty(struct vm_area_struct
*vma
,
723 unsigned long addr
, pte_t
*pte
)
725 #ifdef CONFIG_MEM_SOFT_DIRTY
727 * The soft-dirty tracker uses #PF-s to catch writes
728 * to pages, so write-protect the pte as well. See the
729 * Documentation/vm/soft-dirty.txt for full description
730 * of how soft-dirty works.
733 ptent
= pte_wrprotect(ptent
);
734 ptent
= pte_clear_flags(ptent
, _PAGE_SOFT_DIRTY
);
735 set_pte_at(vma
->vm_mm
, addr
, pte
, ptent
);
739 static int clear_refs_pte_range(pmd_t
*pmd
, unsigned long addr
,
740 unsigned long end
, struct mm_walk
*walk
)
742 struct clear_refs_private
*cp
= walk
->private;
743 struct vm_area_struct
*vma
= cp
->vma
;
748 split_huge_page_pmd(vma
, addr
, pmd
);
749 if (pmd_trans_unstable(pmd
))
752 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
753 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
) {
755 if (!pte_present(ptent
))
758 if (cp
->type
== CLEAR_REFS_SOFT_DIRTY
) {
759 clear_soft_dirty(vma
, addr
, pte
);
763 page
= vm_normal_page(vma
, addr
, ptent
);
767 /* Clear accessed and referenced bits. */
768 ptep_test_and_clear_young(vma
, addr
, pte
);
769 ClearPageReferenced(page
);
771 pte_unmap_unlock(pte
- 1, ptl
);
776 static ssize_t
clear_refs_write(struct file
*file
, const char __user
*buf
,
777 size_t count
, loff_t
*ppos
)
779 struct task_struct
*task
;
780 char buffer
[PROC_NUMBUF
];
781 struct mm_struct
*mm
;
782 struct vm_area_struct
*vma
;
783 enum clear_refs_types type
;
787 memset(buffer
, 0, sizeof(buffer
));
788 if (count
> sizeof(buffer
) - 1)
789 count
= sizeof(buffer
) - 1;
790 if (copy_from_user(buffer
, buf
, count
))
792 rv
= kstrtoint(strstrip(buffer
), 10, &itype
);
795 type
= (enum clear_refs_types
)itype
;
796 if (type
< CLEAR_REFS_ALL
|| type
>= CLEAR_REFS_LAST
)
799 if (type
== CLEAR_REFS_SOFT_DIRTY
) {
800 soft_dirty_cleared
= true;
801 pr_warn_once("The pagemap bits 55-60 has changed their meaning! "
802 "See the linux/Documentation/vm/pagemap.txt for details.\n");
805 task
= get_proc_task(file_inode(file
));
808 mm
= get_task_mm(task
);
810 struct clear_refs_private cp
= {
813 struct mm_walk clear_refs_walk
= {
814 .pmd_entry
= clear_refs_pte_range
,
818 down_read(&mm
->mmap_sem
);
819 if (type
== CLEAR_REFS_SOFT_DIRTY
)
820 mmu_notifier_invalidate_range_start(mm
, 0, -1);
821 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
823 if (is_vm_hugetlb_page(vma
))
826 * Writing 1 to /proc/pid/clear_refs affects all pages.
828 * Writing 2 to /proc/pid/clear_refs only affects
831 * Writing 3 to /proc/pid/clear_refs only affects file
834 if (type
== CLEAR_REFS_ANON
&& vma
->vm_file
)
836 if (type
== CLEAR_REFS_MAPPED
&& !vma
->vm_file
)
838 walk_page_range(vma
->vm_start
, vma
->vm_end
,
841 if (type
== CLEAR_REFS_SOFT_DIRTY
)
842 mmu_notifier_invalidate_range_end(mm
, 0, -1);
844 up_read(&mm
->mmap_sem
);
847 put_task_struct(task
);
852 const struct file_operations proc_clear_refs_operations
= {
853 .write
= clear_refs_write
,
854 .llseek
= noop_llseek
,
863 pagemap_entry_t
*buffer
;
867 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
868 #define PAGEMAP_WALK_MASK (PMD_MASK)
870 #define PM_ENTRY_BYTES sizeof(u64)
871 #define PM_STATUS_BITS 3
872 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
873 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
874 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
875 #define PM_PSHIFT_BITS 6
876 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
877 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
878 #define __PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
879 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
880 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
881 /* in "new" pagemap pshift bits are occupied with more status bits */
882 #define PM_STATUS2(v2, x) (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
884 #define __PM_SOFT_DIRTY (1LL)
885 #define PM_PRESENT PM_STATUS(4LL)
886 #define PM_SWAP PM_STATUS(2LL)
887 #define PM_FILE PM_STATUS(1LL)
888 #define PM_NOT_PRESENT(v2) PM_STATUS2(v2, 0)
889 #define PM_END_OF_BUFFER 1
891 static inline pagemap_entry_t
make_pme(u64 val
)
893 return (pagemap_entry_t
) { .pme
= val
};
896 static int add_to_pagemap(unsigned long addr
, pagemap_entry_t
*pme
,
897 struct pagemapread
*pm
)
899 pm
->buffer
[pm
->pos
++] = *pme
;
900 if (pm
->pos
>= pm
->len
)
901 return PM_END_OF_BUFFER
;
905 static int pagemap_pte_hole(unsigned long start
, unsigned long end
,
906 struct mm_walk
*walk
)
908 struct pagemapread
*pm
= walk
->private;
911 pagemap_entry_t pme
= make_pme(PM_NOT_PRESENT(pm
->v2
));
913 for (addr
= start
; addr
< end
; addr
+= PAGE_SIZE
) {
914 err
= add_to_pagemap(addr
, &pme
, pm
);
921 static void pte_to_pagemap_entry(pagemap_entry_t
*pme
, struct pagemapread
*pm
,
922 struct vm_area_struct
*vma
, unsigned long addr
, pte_t pte
)
925 struct page
*page
= NULL
;
928 if (pte_present(pte
)) {
929 frame
= pte_pfn(pte
);
931 page
= vm_normal_page(vma
, addr
, pte
);
932 } else if (is_swap_pte(pte
)) {
933 swp_entry_t entry
= pte_to_swp_entry(pte
);
935 frame
= swp_type(entry
) |
936 (swp_offset(entry
) << MAX_SWAPFILES_SHIFT
);
938 if (is_migration_entry(entry
))
939 page
= migration_entry_to_page(entry
);
941 *pme
= make_pme(PM_NOT_PRESENT(pm
->v2
));
945 if (page
&& !PageAnon(page
))
947 if (pte_soft_dirty(pte
))
948 flags2
|= __PM_SOFT_DIRTY
;
950 *pme
= make_pme(PM_PFRAME(frame
) | PM_STATUS2(pm
->v2
, flags2
) | flags
);
953 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
954 static void thp_pmd_to_pagemap_entry(pagemap_entry_t
*pme
, struct pagemapread
*pm
,
955 pmd_t pmd
, int offset
, int pmd_flags2
)
958 * Currently pmd for thp is always present because thp can not be
959 * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
960 * This if-check is just to prepare for future implementation.
962 if (pmd_present(pmd
))
963 *pme
= make_pme(PM_PFRAME(pmd_pfn(pmd
) + offset
)
964 | PM_STATUS2(pm
->v2
, pmd_flags2
) | PM_PRESENT
);
966 *pme
= make_pme(PM_NOT_PRESENT(pm
->v2
));
969 static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t
*pme
, struct pagemapread
*pm
,
970 pmd_t pmd
, int offset
, int pmd_flags2
)
975 static int pagemap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
,
976 struct mm_walk
*walk
)
978 struct vm_area_struct
*vma
;
979 struct pagemapread
*pm
= walk
->private;
982 pagemap_entry_t pme
= make_pme(PM_NOT_PRESENT(pm
->v2
));
984 /* find the first VMA at or above 'addr' */
985 vma
= find_vma(walk
->mm
, addr
);
986 if (vma
&& pmd_trans_huge_lock(pmd
, vma
) == 1) {
989 pmd_flags2
= (pmd_soft_dirty(*pmd
) ? __PM_SOFT_DIRTY
: 0);
990 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
991 unsigned long offset
;
993 offset
= (addr
& ~PAGEMAP_WALK_MASK
) >>
995 thp_pmd_to_pagemap_entry(&pme
, pm
, *pmd
, offset
, pmd_flags2
);
996 err
= add_to_pagemap(addr
, &pme
, pm
);
1000 spin_unlock(&walk
->mm
->page_table_lock
);
1004 if (pmd_trans_unstable(pmd
))
1006 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
1008 /* check to see if we've left 'vma' behind
1009 * and need a new, higher one */
1010 if (vma
&& (addr
>= vma
->vm_end
)) {
1011 vma
= find_vma(walk
->mm
, addr
);
1012 pme
= make_pme(PM_NOT_PRESENT(pm
->v2
));
1015 /* check that 'vma' actually covers this address,
1016 * and that it isn't a huge page vma */
1017 if (vma
&& (vma
->vm_start
<= addr
) &&
1018 !is_vm_hugetlb_page(vma
)) {
1019 pte
= pte_offset_map(pmd
, addr
);
1020 pte_to_pagemap_entry(&pme
, pm
, vma
, addr
, *pte
);
1021 /* unmap before userspace copy */
1024 err
= add_to_pagemap(addr
, &pme
, pm
);
1034 #ifdef CONFIG_HUGETLB_PAGE
1035 static void huge_pte_to_pagemap_entry(pagemap_entry_t
*pme
, struct pagemapread
*pm
,
1036 pte_t pte
, int offset
)
1038 if (pte_present(pte
))
1039 *pme
= make_pme(PM_PFRAME(pte_pfn(pte
) + offset
)
1040 | PM_STATUS2(pm
->v2
, 0) | PM_PRESENT
);
1042 *pme
= make_pme(PM_NOT_PRESENT(pm
->v2
));
1045 /* This function walks within one hugetlb entry in the single call */
1046 static int pagemap_hugetlb_range(pte_t
*pte
, unsigned long hmask
,
1047 unsigned long addr
, unsigned long end
,
1048 struct mm_walk
*walk
)
1050 struct pagemapread
*pm
= walk
->private;
1052 pagemap_entry_t pme
;
1054 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
1055 int offset
= (addr
& ~hmask
) >> PAGE_SHIFT
;
1056 huge_pte_to_pagemap_entry(&pme
, pm
, *pte
, offset
);
1057 err
= add_to_pagemap(addr
, &pme
, pm
);
1066 #endif /* HUGETLB_PAGE */
1069 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1071 * For each page in the address space, this file contains one 64-bit entry
1072 * consisting of the following:
1074 * Bits 0-54 page frame number (PFN) if present
1075 * Bits 0-4 swap type if swapped
1076 * Bits 5-54 swap offset if swapped
1077 * Bits 55-60 page shift (page size = 1<<page shift)
1078 * Bit 61 page is file-page or shared-anon
1079 * Bit 62 page swapped
1080 * Bit 63 page present
1082 * If the page is not present but in swap, then the PFN contains an
1083 * encoding of the swap file number and the page's offset into the
1084 * swap. Unmapped pages return a null PFN. This allows determining
1085 * precisely which pages are mapped (or in swap) and comparing mapped
1086 * pages between processes.
1088 * Efficient users of this interface will use /proc/pid/maps to
1089 * determine which areas of memory are actually mapped and llseek to
1090 * skip over unmapped regions.
1092 static ssize_t
pagemap_read(struct file
*file
, char __user
*buf
,
1093 size_t count
, loff_t
*ppos
)
1095 struct task_struct
*task
= get_proc_task(file_inode(file
));
1096 struct mm_struct
*mm
;
1097 struct pagemapread pm
;
1099 struct mm_walk pagemap_walk
= {};
1101 unsigned long svpfn
;
1102 unsigned long start_vaddr
;
1103 unsigned long end_vaddr
;
1110 /* file position must be aligned */
1111 if ((*ppos
% PM_ENTRY_BYTES
) || (count
% PM_ENTRY_BYTES
))
1118 pm
.v2
= soft_dirty_cleared
;
1119 pm
.len
= PM_ENTRY_BYTES
* (PAGEMAP_WALK_SIZE
>> PAGE_SHIFT
);
1120 pm
.buffer
= kmalloc(pm
.len
, GFP_TEMPORARY
);
1125 mm
= mm_access(task
, PTRACE_MODE_READ
);
1127 if (!mm
|| IS_ERR(mm
))
1130 pagemap_walk
.pmd_entry
= pagemap_pte_range
;
1131 pagemap_walk
.pte_hole
= pagemap_pte_hole
;
1132 #ifdef CONFIG_HUGETLB_PAGE
1133 pagemap_walk
.hugetlb_entry
= pagemap_hugetlb_range
;
1135 pagemap_walk
.mm
= mm
;
1136 pagemap_walk
.private = &pm
;
1139 svpfn
= src
/ PM_ENTRY_BYTES
;
1140 start_vaddr
= svpfn
<< PAGE_SHIFT
;
1141 end_vaddr
= TASK_SIZE_OF(task
);
1143 /* watch out for wraparound */
1144 if (svpfn
> TASK_SIZE_OF(task
) >> PAGE_SHIFT
)
1145 start_vaddr
= end_vaddr
;
1148 * The odds are that this will stop walking way
1149 * before end_vaddr, because the length of the
1150 * user buffer is tracked in "pm", and the walk
1151 * will stop when we hit the end of the buffer.
1154 while (count
&& (start_vaddr
< end_vaddr
)) {
1159 end
= (start_vaddr
+ PAGEMAP_WALK_SIZE
) & PAGEMAP_WALK_MASK
;
1161 if (end
< start_vaddr
|| end
> end_vaddr
)
1163 down_read(&mm
->mmap_sem
);
1164 ret
= walk_page_range(start_vaddr
, end
, &pagemap_walk
);
1165 up_read(&mm
->mmap_sem
);
1168 len
= min(count
, PM_ENTRY_BYTES
* pm
.pos
);
1169 if (copy_to_user(buf
, pm
.buffer
, len
)) {
1178 if (!ret
|| ret
== PM_END_OF_BUFFER
)
1186 put_task_struct(task
);
1191 static int pagemap_open(struct inode
*inode
, struct file
*file
)
1193 pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
1194 "to stop being page-shift some time soon. See the "
1195 "linux/Documentation/vm/pagemap.txt for details.\n");
1199 const struct file_operations proc_pagemap_operations
= {
1200 .llseek
= mem_lseek
, /* borrow this */
1201 .read
= pagemap_read
,
1202 .open
= pagemap_open
,
1204 #endif /* CONFIG_PROC_PAGE_MONITOR */
1209 struct vm_area_struct
*vma
;
1210 unsigned long pages
;
1212 unsigned long active
;
1213 unsigned long writeback
;
1214 unsigned long mapcount_max
;
1215 unsigned long dirty
;
1216 unsigned long swapcache
;
1217 unsigned long node
[MAX_NUMNODES
];
1220 struct numa_maps_private
{
1221 struct proc_maps_private proc_maps
;
1222 struct numa_maps md
;
1225 static void gather_stats(struct page
*page
, struct numa_maps
*md
, int pte_dirty
,
1226 unsigned long nr_pages
)
1228 int count
= page_mapcount(page
);
1230 md
->pages
+= nr_pages
;
1231 if (pte_dirty
|| PageDirty(page
))
1232 md
->dirty
+= nr_pages
;
1234 if (PageSwapCache(page
))
1235 md
->swapcache
+= nr_pages
;
1237 if (PageActive(page
) || PageUnevictable(page
))
1238 md
->active
+= nr_pages
;
1240 if (PageWriteback(page
))
1241 md
->writeback
+= nr_pages
;
1244 md
->anon
+= nr_pages
;
1246 if (count
> md
->mapcount_max
)
1247 md
->mapcount_max
= count
;
1249 md
->node
[page_to_nid(page
)] += nr_pages
;
1252 static struct page
*can_gather_numa_stats(pte_t pte
, struct vm_area_struct
*vma
,
1258 if (!pte_present(pte
))
1261 page
= vm_normal_page(vma
, addr
, pte
);
1265 if (PageReserved(page
))
1268 nid
= page_to_nid(page
);
1269 if (!node_isset(nid
, node_states
[N_MEMORY
]))
1275 static int gather_pte_stats(pmd_t
*pmd
, unsigned long addr
,
1276 unsigned long end
, struct mm_walk
*walk
)
1278 struct numa_maps
*md
;
1285 if (pmd_trans_huge_lock(pmd
, md
->vma
) == 1) {
1286 pte_t huge_pte
= *(pte_t
*)pmd
;
1289 page
= can_gather_numa_stats(huge_pte
, md
->vma
, addr
);
1291 gather_stats(page
, md
, pte_dirty(huge_pte
),
1292 HPAGE_PMD_SIZE
/PAGE_SIZE
);
1293 spin_unlock(&walk
->mm
->page_table_lock
);
1297 if (pmd_trans_unstable(pmd
))
1299 orig_pte
= pte
= pte_offset_map_lock(walk
->mm
, pmd
, addr
, &ptl
);
1301 struct page
*page
= can_gather_numa_stats(*pte
, md
->vma
, addr
);
1304 gather_stats(page
, md
, pte_dirty(*pte
), 1);
1306 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1307 pte_unmap_unlock(orig_pte
, ptl
);
1310 #ifdef CONFIG_HUGETLB_PAGE
1311 static int gather_hugetbl_stats(pte_t
*pte
, unsigned long hmask
,
1312 unsigned long addr
, unsigned long end
, struct mm_walk
*walk
)
1314 struct numa_maps
*md
;
1320 page
= pte_page(*pte
);
1325 gather_stats(page
, md
, pte_dirty(*pte
), 1);
1330 static int gather_hugetbl_stats(pte_t
*pte
, unsigned long hmask
,
1331 unsigned long addr
, unsigned long end
, struct mm_walk
*walk
)
1338 * Display pages allocated per node and memory policy via /proc.
1340 static int show_numa_map(struct seq_file
*m
, void *v
, int is_pid
)
1342 struct numa_maps_private
*numa_priv
= m
->private;
1343 struct proc_maps_private
*proc_priv
= &numa_priv
->proc_maps
;
1344 struct vm_area_struct
*vma
= v
;
1345 struct numa_maps
*md
= &numa_priv
->md
;
1346 struct file
*file
= vma
->vm_file
;
1347 struct task_struct
*task
= proc_priv
->task
;
1348 struct mm_struct
*mm
= vma
->vm_mm
;
1349 struct mm_walk walk
= {};
1350 struct mempolicy
*pol
;
1357 /* Ensure we start with an empty set of numa_maps statistics. */
1358 memset(md
, 0, sizeof(*md
));
1362 walk
.hugetlb_entry
= gather_hugetbl_stats
;
1363 walk
.pmd_entry
= gather_pte_stats
;
1367 pol
= get_vma_policy(task
, vma
, vma
->vm_start
);
1368 mpol_to_str(buffer
, sizeof(buffer
), pol
);
1371 seq_printf(m
, "%08lx %s", vma
->vm_start
, buffer
);
1374 seq_printf(m
, " file=");
1375 seq_path(m
, &file
->f_path
, "\n\t= ");
1376 } else if (vma
->vm_start
<= mm
->brk
&& vma
->vm_end
>= mm
->start_brk
) {
1377 seq_printf(m
, " heap");
1379 pid_t tid
= vm_is_stack(task
, vma
, is_pid
);
1382 * Thread stack in /proc/PID/task/TID/maps or
1383 * the main process stack.
1385 if (!is_pid
|| (vma
->vm_start
<= mm
->start_stack
&&
1386 vma
->vm_end
>= mm
->start_stack
))
1387 seq_printf(m
, " stack");
1389 seq_printf(m
, " stack:%d", tid
);
1393 if (is_vm_hugetlb_page(vma
))
1394 seq_printf(m
, " huge");
1396 walk_page_range(vma
->vm_start
, vma
->vm_end
, &walk
);
1402 seq_printf(m
, " anon=%lu", md
->anon
);
1405 seq_printf(m
, " dirty=%lu", md
->dirty
);
1407 if (md
->pages
!= md
->anon
&& md
->pages
!= md
->dirty
)
1408 seq_printf(m
, " mapped=%lu", md
->pages
);
1410 if (md
->mapcount_max
> 1)
1411 seq_printf(m
, " mapmax=%lu", md
->mapcount_max
);
1414 seq_printf(m
, " swapcache=%lu", md
->swapcache
);
1416 if (md
->active
< md
->pages
&& !is_vm_hugetlb_page(vma
))
1417 seq_printf(m
, " active=%lu", md
->active
);
1420 seq_printf(m
, " writeback=%lu", md
->writeback
);
1422 for_each_node_state(n
, N_MEMORY
)
1424 seq_printf(m
, " N%d=%lu", n
, md
->node
[n
]);
1428 if (m
->count
< m
->size
)
1429 m
->version
= (vma
!= proc_priv
->tail_vma
) ? vma
->vm_start
: 0;
1433 static int show_pid_numa_map(struct seq_file
*m
, void *v
)
1435 return show_numa_map(m
, v
, 1);
1438 static int show_tid_numa_map(struct seq_file
*m
, void *v
)
1440 return show_numa_map(m
, v
, 0);
1443 static const struct seq_operations proc_pid_numa_maps_op
= {
1447 .show
= show_pid_numa_map
,
1450 static const struct seq_operations proc_tid_numa_maps_op
= {
1454 .show
= show_tid_numa_map
,
1457 static int numa_maps_open(struct inode
*inode
, struct file
*file
,
1458 const struct seq_operations
*ops
)
1460 struct numa_maps_private
*priv
;
1462 priv
= kzalloc(sizeof(*priv
), GFP_KERNEL
);
1464 priv
->proc_maps
.pid
= proc_pid(inode
);
1465 ret
= seq_open(file
, ops
);
1467 struct seq_file
*m
= file
->private_data
;
1476 static int pid_numa_maps_open(struct inode
*inode
, struct file
*file
)
1478 return numa_maps_open(inode
, file
, &proc_pid_numa_maps_op
);
1481 static int tid_numa_maps_open(struct inode
*inode
, struct file
*file
)
1483 return numa_maps_open(inode
, file
, &proc_tid_numa_maps_op
);
1486 const struct file_operations proc_pid_numa_maps_operations
= {
1487 .open
= pid_numa_maps_open
,
1489 .llseek
= seq_lseek
,
1490 .release
= seq_release_private
,
1493 const struct file_operations proc_tid_numa_maps_operations
= {
1494 .open
= tid_numa_maps_open
,
1496 .llseek
= seq_lseek
,
1497 .release
= seq_release_private
,
1499 #endif /* CONFIG_NUMA */