mwifiex: add missing endian conversions
[linux/fpc-iii.git] / fs / proc / task_mmu.c
blobdbf61f6174f0f473d3d9a19311a09170f8dab9f3
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/huge_mm.h>
4 #include <linux/mount.h>
5 #include <linux/seq_file.h>
6 #include <linux/highmem.h>
7 #include <linux/ptrace.h>
8 #include <linux/slab.h>
9 #include <linux/pagemap.h>
10 #include <linux/mempolicy.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/mmu_notifier.h>
16 #include <asm/elf.h>
17 #include <asm/uaccess.h>
18 #include <asm/tlbflush.h>
19 #include "internal.h"
21 void task_mem(struct seq_file *m, struct mm_struct *mm)
23 unsigned long data, text, lib, swap;
24 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
27 * Note: to minimize their overhead, mm maintains hiwater_vm and
28 * hiwater_rss only when about to *lower* total_vm or rss. Any
29 * collector of these hiwater stats must therefore get total_vm
30 * and rss too, which will usually be the higher. Barriers? not
31 * worth the effort, such snapshots can always be inconsistent.
33 hiwater_vm = total_vm = mm->total_vm;
34 if (hiwater_vm < mm->hiwater_vm)
35 hiwater_vm = mm->hiwater_vm;
36 hiwater_rss = total_rss = get_mm_rss(mm);
37 if (hiwater_rss < mm->hiwater_rss)
38 hiwater_rss = mm->hiwater_rss;
40 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
41 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
42 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
43 swap = get_mm_counter(mm, MM_SWAPENTS);
44 seq_printf(m,
45 "VmPeak:\t%8lu kB\n"
46 "VmSize:\t%8lu kB\n"
47 "VmLck:\t%8lu kB\n"
48 "VmPin:\t%8lu kB\n"
49 "VmHWM:\t%8lu kB\n"
50 "VmRSS:\t%8lu kB\n"
51 "VmData:\t%8lu kB\n"
52 "VmStk:\t%8lu kB\n"
53 "VmExe:\t%8lu kB\n"
54 "VmLib:\t%8lu kB\n"
55 "VmPTE:\t%8lu kB\n"
56 "VmSwap:\t%8lu kB\n",
57 hiwater_vm << (PAGE_SHIFT-10),
58 total_vm << (PAGE_SHIFT-10),
59 mm->locked_vm << (PAGE_SHIFT-10),
60 mm->pinned_vm << (PAGE_SHIFT-10),
61 hiwater_rss << (PAGE_SHIFT-10),
62 total_rss << (PAGE_SHIFT-10),
63 data << (PAGE_SHIFT-10),
64 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
65 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
66 swap << (PAGE_SHIFT-10));
69 unsigned long task_vsize(struct mm_struct *mm)
71 return PAGE_SIZE * mm->total_vm;
74 unsigned long task_statm(struct mm_struct *mm,
75 unsigned long *shared, unsigned long *text,
76 unsigned long *data, unsigned long *resident)
78 *shared = get_mm_counter(mm, MM_FILEPAGES);
79 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
80 >> PAGE_SHIFT;
81 *data = mm->total_vm - mm->shared_vm;
82 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
83 return mm->total_vm;
86 static void pad_len_spaces(struct seq_file *m, int len)
88 len = 25 + sizeof(void*) * 6 - len;
89 if (len < 1)
90 len = 1;
91 seq_printf(m, "%*c", len, ' ');
94 #ifdef CONFIG_NUMA
96 * These functions are for numa_maps but called in generic **maps seq_file
97 * ->start(), ->stop() ops.
99 * numa_maps scans all vmas under mmap_sem and checks their mempolicy.
100 * Each mempolicy object is controlled by reference counting. The problem here
101 * is how to avoid accessing dead mempolicy object.
103 * Because we're holding mmap_sem while reading seq_file, it's safe to access
104 * each vma's mempolicy, no vma objects will never drop refs to mempolicy.
106 * A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy
107 * is set and replaced under mmap_sem but unrefed and cleared under task_lock().
108 * So, without task_lock(), we cannot trust get_vma_policy() because we cannot
109 * gurantee the task never exits under us. But taking task_lock() around
110 * get_vma_plicy() causes lock order problem.
112 * To access task->mempolicy without lock, we hold a reference count of an
113 * object pointed by task->mempolicy and remember it. This will guarantee
114 * that task->mempolicy points to an alive object or NULL in numa_maps accesses.
116 static void hold_task_mempolicy(struct proc_maps_private *priv)
118 struct task_struct *task = priv->task;
120 task_lock(task);
121 priv->task_mempolicy = task->mempolicy;
122 mpol_get(priv->task_mempolicy);
123 task_unlock(task);
125 static void release_task_mempolicy(struct proc_maps_private *priv)
127 mpol_put(priv->task_mempolicy);
129 #else
130 static void hold_task_mempolicy(struct proc_maps_private *priv)
133 static void release_task_mempolicy(struct proc_maps_private *priv)
136 #endif
138 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
140 if (vma && vma != priv->tail_vma) {
141 struct mm_struct *mm = vma->vm_mm;
142 release_task_mempolicy(priv);
143 up_read(&mm->mmap_sem);
144 mmput(mm);
148 static void *m_start(struct seq_file *m, loff_t *pos)
150 struct proc_maps_private *priv = m->private;
151 unsigned long last_addr = m->version;
152 struct mm_struct *mm;
153 struct vm_area_struct *vma, *tail_vma = NULL;
154 loff_t l = *pos;
156 /* Clear the per syscall fields in priv */
157 priv->task = NULL;
158 priv->tail_vma = NULL;
161 * We remember last_addr rather than next_addr to hit with
162 * mmap_cache most of the time. We have zero last_addr at
163 * the beginning and also after lseek. We will have -1 last_addr
164 * after the end of the vmas.
167 if (last_addr == -1UL)
168 return NULL;
170 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
171 if (!priv->task)
172 return ERR_PTR(-ESRCH);
174 mm = mm_access(priv->task, PTRACE_MODE_READ);
175 if (!mm || IS_ERR(mm))
176 return mm;
177 down_read(&mm->mmap_sem);
179 tail_vma = get_gate_vma(priv->task->mm);
180 priv->tail_vma = tail_vma;
181 hold_task_mempolicy(priv);
182 /* Start with last addr hint */
183 vma = find_vma(mm, last_addr);
184 if (last_addr && vma) {
185 vma = vma->vm_next;
186 goto out;
190 * Check the vma index is within the range and do
191 * sequential scan until m_index.
193 vma = NULL;
194 if ((unsigned long)l < mm->map_count) {
195 vma = mm->mmap;
196 while (l-- && vma)
197 vma = vma->vm_next;
198 goto out;
201 if (l != mm->map_count)
202 tail_vma = NULL; /* After gate vma */
204 out:
205 if (vma)
206 return vma;
208 release_task_mempolicy(priv);
209 /* End of vmas has been reached */
210 m->version = (tail_vma != NULL)? 0: -1UL;
211 up_read(&mm->mmap_sem);
212 mmput(mm);
213 return tail_vma;
216 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
218 struct proc_maps_private *priv = m->private;
219 struct vm_area_struct *vma = v;
220 struct vm_area_struct *tail_vma = priv->tail_vma;
222 (*pos)++;
223 if (vma && (vma != tail_vma) && vma->vm_next)
224 return vma->vm_next;
225 vma_stop(priv, vma);
226 return (vma != tail_vma)? tail_vma: NULL;
229 static void m_stop(struct seq_file *m, void *v)
231 struct proc_maps_private *priv = m->private;
232 struct vm_area_struct *vma = v;
234 if (!IS_ERR(vma))
235 vma_stop(priv, vma);
236 if (priv->task)
237 put_task_struct(priv->task);
240 static int do_maps_open(struct inode *inode, struct file *file,
241 const struct seq_operations *ops)
243 struct proc_maps_private *priv;
244 int ret = -ENOMEM;
245 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
246 if (priv) {
247 priv->pid = proc_pid(inode);
248 ret = seq_open(file, ops);
249 if (!ret) {
250 struct seq_file *m = file->private_data;
251 m->private = priv;
252 } else {
253 kfree(priv);
256 return ret;
259 static void
260 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
262 struct mm_struct *mm = vma->vm_mm;
263 struct file *file = vma->vm_file;
264 struct proc_maps_private *priv = m->private;
265 struct task_struct *task = priv->task;
266 vm_flags_t flags = vma->vm_flags;
267 unsigned long ino = 0;
268 unsigned long long pgoff = 0;
269 unsigned long start, end;
270 dev_t dev = 0;
271 int len;
272 const char *name = NULL;
274 if (file) {
275 struct inode *inode = file_inode(vma->vm_file);
276 dev = inode->i_sb->s_dev;
277 ino = inode->i_ino;
278 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
281 /* We don't show the stack guard page in /proc/maps */
282 start = vma->vm_start;
283 if (stack_guard_page_start(vma, start))
284 start += PAGE_SIZE;
285 end = vma->vm_end;
286 if (stack_guard_page_end(vma, end))
287 end -= PAGE_SIZE;
289 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
290 start,
291 end,
292 flags & VM_READ ? 'r' : '-',
293 flags & VM_WRITE ? 'w' : '-',
294 flags & VM_EXEC ? 'x' : '-',
295 flags & VM_MAYSHARE ? 's' : 'p',
296 pgoff,
297 MAJOR(dev), MINOR(dev), ino, &len);
300 * Print the dentry name for named mappings, and a
301 * special [heap] marker for the heap:
303 if (file) {
304 pad_len_spaces(m, len);
305 seq_path(m, &file->f_path, "\n");
306 goto done;
309 name = arch_vma_name(vma);
310 if (!name) {
311 pid_t tid;
313 if (!mm) {
314 name = "[vdso]";
315 goto done;
318 if (vma->vm_start <= mm->brk &&
319 vma->vm_end >= mm->start_brk) {
320 name = "[heap]";
321 goto done;
324 tid = vm_is_stack(task, vma, is_pid);
326 if (tid != 0) {
328 * Thread stack in /proc/PID/task/TID/maps or
329 * the main process stack.
331 if (!is_pid || (vma->vm_start <= mm->start_stack &&
332 vma->vm_end >= mm->start_stack)) {
333 name = "[stack]";
334 } else {
335 /* Thread stack in /proc/PID/maps */
336 pad_len_spaces(m, len);
337 seq_printf(m, "[stack:%d]", tid);
342 done:
343 if (name) {
344 pad_len_spaces(m, len);
345 seq_puts(m, name);
347 seq_putc(m, '\n');
350 static int show_map(struct seq_file *m, void *v, int is_pid)
352 struct vm_area_struct *vma = v;
353 struct proc_maps_private *priv = m->private;
354 struct task_struct *task = priv->task;
356 show_map_vma(m, vma, is_pid);
358 if (m->count < m->size) /* vma is copied successfully */
359 m->version = (vma != get_gate_vma(task->mm))
360 ? vma->vm_start : 0;
361 return 0;
364 static int show_pid_map(struct seq_file *m, void *v)
366 return show_map(m, v, 1);
369 static int show_tid_map(struct seq_file *m, void *v)
371 return show_map(m, v, 0);
374 static const struct seq_operations proc_pid_maps_op = {
375 .start = m_start,
376 .next = m_next,
377 .stop = m_stop,
378 .show = show_pid_map
381 static const struct seq_operations proc_tid_maps_op = {
382 .start = m_start,
383 .next = m_next,
384 .stop = m_stop,
385 .show = show_tid_map
388 static int pid_maps_open(struct inode *inode, struct file *file)
390 return do_maps_open(inode, file, &proc_pid_maps_op);
393 static int tid_maps_open(struct inode *inode, struct file *file)
395 return do_maps_open(inode, file, &proc_tid_maps_op);
398 const struct file_operations proc_pid_maps_operations = {
399 .open = pid_maps_open,
400 .read = seq_read,
401 .llseek = seq_lseek,
402 .release = seq_release_private,
405 const struct file_operations proc_tid_maps_operations = {
406 .open = tid_maps_open,
407 .read = seq_read,
408 .llseek = seq_lseek,
409 .release = seq_release_private,
413 * Proportional Set Size(PSS): my share of RSS.
415 * PSS of a process is the count of pages it has in memory, where each
416 * page is divided by the number of processes sharing it. So if a
417 * process has 1000 pages all to itself, and 1000 shared with one other
418 * process, its PSS will be 1500.
420 * To keep (accumulated) division errors low, we adopt a 64bit
421 * fixed-point pss counter to minimize division errors. So (pss >>
422 * PSS_SHIFT) would be the real byte count.
424 * A shift of 12 before division means (assuming 4K page size):
425 * - 1M 3-user-pages add up to 8KB errors;
426 * - supports mapcount up to 2^24, or 16M;
427 * - supports PSS up to 2^52 bytes, or 4PB.
429 #define PSS_SHIFT 12
431 #ifdef CONFIG_PROC_PAGE_MONITOR
432 struct mem_size_stats {
433 struct vm_area_struct *vma;
434 unsigned long resident;
435 unsigned long shared_clean;
436 unsigned long shared_dirty;
437 unsigned long private_clean;
438 unsigned long private_dirty;
439 unsigned long referenced;
440 unsigned long anonymous;
441 unsigned long anonymous_thp;
442 unsigned long swap;
443 unsigned long nonlinear;
444 u64 pss;
448 static void smaps_pte_entry(pte_t ptent, unsigned long addr,
449 unsigned long ptent_size, struct mm_walk *walk)
451 struct mem_size_stats *mss = walk->private;
452 struct vm_area_struct *vma = mss->vma;
453 pgoff_t pgoff = linear_page_index(vma, addr);
454 struct page *page = NULL;
455 int mapcount;
457 if (pte_present(ptent)) {
458 page = vm_normal_page(vma, addr, ptent);
459 } else if (is_swap_pte(ptent)) {
460 swp_entry_t swpent = pte_to_swp_entry(ptent);
462 if (!non_swap_entry(swpent))
463 mss->swap += ptent_size;
464 else if (is_migration_entry(swpent))
465 page = migration_entry_to_page(swpent);
466 } else if (pte_file(ptent)) {
467 if (pte_to_pgoff(ptent) != pgoff)
468 mss->nonlinear += ptent_size;
471 if (!page)
472 return;
474 if (PageAnon(page))
475 mss->anonymous += ptent_size;
477 if (page->index != pgoff)
478 mss->nonlinear += ptent_size;
480 mss->resident += ptent_size;
481 /* Accumulate the size in pages that have been accessed. */
482 if (pte_young(ptent) || PageReferenced(page))
483 mss->referenced += ptent_size;
484 mapcount = page_mapcount(page);
485 if (mapcount >= 2) {
486 if (pte_dirty(ptent) || PageDirty(page))
487 mss->shared_dirty += ptent_size;
488 else
489 mss->shared_clean += ptent_size;
490 mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
491 } else {
492 if (pte_dirty(ptent) || PageDirty(page))
493 mss->private_dirty += ptent_size;
494 else
495 mss->private_clean += ptent_size;
496 mss->pss += (ptent_size << PSS_SHIFT);
500 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
501 struct mm_walk *walk)
503 struct mem_size_stats *mss = walk->private;
504 struct vm_area_struct *vma = mss->vma;
505 pte_t *pte;
506 spinlock_t *ptl;
508 if (pmd_trans_huge_lock(pmd, vma) == 1) {
509 smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
510 spin_unlock(&walk->mm->page_table_lock);
511 mss->anonymous_thp += HPAGE_PMD_SIZE;
512 return 0;
515 if (pmd_trans_unstable(pmd))
516 return 0;
518 * The mmap_sem held all the way back in m_start() is what
519 * keeps khugepaged out of here and from collapsing things
520 * in here.
522 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
523 for (; addr != end; pte++, addr += PAGE_SIZE)
524 smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
525 pte_unmap_unlock(pte - 1, ptl);
526 cond_resched();
527 return 0;
530 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
533 * Don't forget to update Documentation/ on changes.
535 static const char mnemonics[BITS_PER_LONG][2] = {
537 * In case if we meet a flag we don't know about.
539 [0 ... (BITS_PER_LONG-1)] = "??",
541 [ilog2(VM_READ)] = "rd",
542 [ilog2(VM_WRITE)] = "wr",
543 [ilog2(VM_EXEC)] = "ex",
544 [ilog2(VM_SHARED)] = "sh",
545 [ilog2(VM_MAYREAD)] = "mr",
546 [ilog2(VM_MAYWRITE)] = "mw",
547 [ilog2(VM_MAYEXEC)] = "me",
548 [ilog2(VM_MAYSHARE)] = "ms",
549 [ilog2(VM_GROWSDOWN)] = "gd",
550 [ilog2(VM_PFNMAP)] = "pf",
551 [ilog2(VM_DENYWRITE)] = "dw",
552 [ilog2(VM_LOCKED)] = "lo",
553 [ilog2(VM_IO)] = "io",
554 [ilog2(VM_SEQ_READ)] = "sr",
555 [ilog2(VM_RAND_READ)] = "rr",
556 [ilog2(VM_DONTCOPY)] = "dc",
557 [ilog2(VM_DONTEXPAND)] = "de",
558 [ilog2(VM_ACCOUNT)] = "ac",
559 [ilog2(VM_NORESERVE)] = "nr",
560 [ilog2(VM_HUGETLB)] = "ht",
561 [ilog2(VM_NONLINEAR)] = "nl",
562 [ilog2(VM_ARCH_1)] = "ar",
563 [ilog2(VM_DONTDUMP)] = "dd",
564 [ilog2(VM_MIXEDMAP)] = "mm",
565 [ilog2(VM_HUGEPAGE)] = "hg",
566 [ilog2(VM_NOHUGEPAGE)] = "nh",
567 [ilog2(VM_MERGEABLE)] = "mg",
569 size_t i;
571 seq_puts(m, "VmFlags: ");
572 for (i = 0; i < BITS_PER_LONG; i++) {
573 if (vma->vm_flags & (1UL << i)) {
574 seq_printf(m, "%c%c ",
575 mnemonics[i][0], mnemonics[i][1]);
578 seq_putc(m, '\n');
581 static int show_smap(struct seq_file *m, void *v, int is_pid)
583 struct proc_maps_private *priv = m->private;
584 struct task_struct *task = priv->task;
585 struct vm_area_struct *vma = v;
586 struct mem_size_stats mss;
587 struct mm_walk smaps_walk = {
588 .pmd_entry = smaps_pte_range,
589 .mm = vma->vm_mm,
590 .private = &mss,
593 memset(&mss, 0, sizeof mss);
594 mss.vma = vma;
595 /* mmap_sem is held in m_start */
596 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
597 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
599 show_map_vma(m, vma, is_pid);
601 seq_printf(m,
602 "Size: %8lu kB\n"
603 "Rss: %8lu kB\n"
604 "Pss: %8lu kB\n"
605 "Shared_Clean: %8lu kB\n"
606 "Shared_Dirty: %8lu kB\n"
607 "Private_Clean: %8lu kB\n"
608 "Private_Dirty: %8lu kB\n"
609 "Referenced: %8lu kB\n"
610 "Anonymous: %8lu kB\n"
611 "AnonHugePages: %8lu kB\n"
612 "Swap: %8lu kB\n"
613 "KernelPageSize: %8lu kB\n"
614 "MMUPageSize: %8lu kB\n"
615 "Locked: %8lu kB\n",
616 (vma->vm_end - vma->vm_start) >> 10,
617 mss.resident >> 10,
618 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
619 mss.shared_clean >> 10,
620 mss.shared_dirty >> 10,
621 mss.private_clean >> 10,
622 mss.private_dirty >> 10,
623 mss.referenced >> 10,
624 mss.anonymous >> 10,
625 mss.anonymous_thp >> 10,
626 mss.swap >> 10,
627 vma_kernel_pagesize(vma) >> 10,
628 vma_mmu_pagesize(vma) >> 10,
629 (vma->vm_flags & VM_LOCKED) ?
630 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
632 if (vma->vm_flags & VM_NONLINEAR)
633 seq_printf(m, "Nonlinear: %8lu kB\n",
634 mss.nonlinear >> 10);
636 show_smap_vma_flags(m, vma);
638 if (m->count < m->size) /* vma is copied successfully */
639 m->version = (vma != get_gate_vma(task->mm))
640 ? vma->vm_start : 0;
641 return 0;
644 static int show_pid_smap(struct seq_file *m, void *v)
646 return show_smap(m, v, 1);
649 static int show_tid_smap(struct seq_file *m, void *v)
651 return show_smap(m, v, 0);
654 static const struct seq_operations proc_pid_smaps_op = {
655 .start = m_start,
656 .next = m_next,
657 .stop = m_stop,
658 .show = show_pid_smap
661 static const struct seq_operations proc_tid_smaps_op = {
662 .start = m_start,
663 .next = m_next,
664 .stop = m_stop,
665 .show = show_tid_smap
668 static int pid_smaps_open(struct inode *inode, struct file *file)
670 return do_maps_open(inode, file, &proc_pid_smaps_op);
673 static int tid_smaps_open(struct inode *inode, struct file *file)
675 return do_maps_open(inode, file, &proc_tid_smaps_op);
678 const struct file_operations proc_pid_smaps_operations = {
679 .open = pid_smaps_open,
680 .read = seq_read,
681 .llseek = seq_lseek,
682 .release = seq_release_private,
685 const struct file_operations proc_tid_smaps_operations = {
686 .open = tid_smaps_open,
687 .read = seq_read,
688 .llseek = seq_lseek,
689 .release = seq_release_private,
693 * We do not want to have constant page-shift bits sitting in
694 * pagemap entries and are about to reuse them some time soon.
696 * Here's the "migration strategy":
697 * 1. when the system boots these bits remain what they are,
698 * but a warning about future change is printed in log;
699 * 2. once anyone clears soft-dirty bits via clear_refs file,
700 * these flag is set to denote, that user is aware of the
701 * new API and those page-shift bits change their meaning.
702 * The respective warning is printed in dmesg;
703 * 3. In a couple of releases we will remove all the mentions
704 * of page-shift in pagemap entries.
707 static bool soft_dirty_cleared __read_mostly;
709 enum clear_refs_types {
710 CLEAR_REFS_ALL = 1,
711 CLEAR_REFS_ANON,
712 CLEAR_REFS_MAPPED,
713 CLEAR_REFS_SOFT_DIRTY,
714 CLEAR_REFS_LAST,
717 struct clear_refs_private {
718 struct vm_area_struct *vma;
719 enum clear_refs_types type;
722 static inline void clear_soft_dirty(struct vm_area_struct *vma,
723 unsigned long addr, pte_t *pte)
725 #ifdef CONFIG_MEM_SOFT_DIRTY
727 * The soft-dirty tracker uses #PF-s to catch writes
728 * to pages, so write-protect the pte as well. See the
729 * Documentation/vm/soft-dirty.txt for full description
730 * of how soft-dirty works.
732 pte_t ptent = *pte;
733 ptent = pte_wrprotect(ptent);
734 ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
735 set_pte_at(vma->vm_mm, addr, pte, ptent);
736 #endif
739 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
740 unsigned long end, struct mm_walk *walk)
742 struct clear_refs_private *cp = walk->private;
743 struct vm_area_struct *vma = cp->vma;
744 pte_t *pte, ptent;
745 spinlock_t *ptl;
746 struct page *page;
748 split_huge_page_pmd(vma, addr, pmd);
749 if (pmd_trans_unstable(pmd))
750 return 0;
752 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
753 for (; addr != end; pte++, addr += PAGE_SIZE) {
754 ptent = *pte;
755 if (!pte_present(ptent))
756 continue;
758 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
759 clear_soft_dirty(vma, addr, pte);
760 continue;
763 page = vm_normal_page(vma, addr, ptent);
764 if (!page)
765 continue;
767 /* Clear accessed and referenced bits. */
768 ptep_test_and_clear_young(vma, addr, pte);
769 ClearPageReferenced(page);
771 pte_unmap_unlock(pte - 1, ptl);
772 cond_resched();
773 return 0;
776 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
777 size_t count, loff_t *ppos)
779 struct task_struct *task;
780 char buffer[PROC_NUMBUF];
781 struct mm_struct *mm;
782 struct vm_area_struct *vma;
783 enum clear_refs_types type;
784 int itype;
785 int rv;
787 memset(buffer, 0, sizeof(buffer));
788 if (count > sizeof(buffer) - 1)
789 count = sizeof(buffer) - 1;
790 if (copy_from_user(buffer, buf, count))
791 return -EFAULT;
792 rv = kstrtoint(strstrip(buffer), 10, &itype);
793 if (rv < 0)
794 return rv;
795 type = (enum clear_refs_types)itype;
796 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
797 return -EINVAL;
799 if (type == CLEAR_REFS_SOFT_DIRTY) {
800 soft_dirty_cleared = true;
801 pr_warn_once("The pagemap bits 55-60 has changed their meaning! "
802 "See the linux/Documentation/vm/pagemap.txt for details.\n");
805 task = get_proc_task(file_inode(file));
806 if (!task)
807 return -ESRCH;
808 mm = get_task_mm(task);
809 if (mm) {
810 struct clear_refs_private cp = {
811 .type = type,
813 struct mm_walk clear_refs_walk = {
814 .pmd_entry = clear_refs_pte_range,
815 .mm = mm,
816 .private = &cp,
818 down_read(&mm->mmap_sem);
819 if (type == CLEAR_REFS_SOFT_DIRTY)
820 mmu_notifier_invalidate_range_start(mm, 0, -1);
821 for (vma = mm->mmap; vma; vma = vma->vm_next) {
822 cp.vma = vma;
823 if (is_vm_hugetlb_page(vma))
824 continue;
826 * Writing 1 to /proc/pid/clear_refs affects all pages.
828 * Writing 2 to /proc/pid/clear_refs only affects
829 * Anonymous pages.
831 * Writing 3 to /proc/pid/clear_refs only affects file
832 * mapped pages.
834 if (type == CLEAR_REFS_ANON && vma->vm_file)
835 continue;
836 if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
837 continue;
838 walk_page_range(vma->vm_start, vma->vm_end,
839 &clear_refs_walk);
841 if (type == CLEAR_REFS_SOFT_DIRTY)
842 mmu_notifier_invalidate_range_end(mm, 0, -1);
843 flush_tlb_mm(mm);
844 up_read(&mm->mmap_sem);
845 mmput(mm);
847 put_task_struct(task);
849 return count;
852 const struct file_operations proc_clear_refs_operations = {
853 .write = clear_refs_write,
854 .llseek = noop_llseek,
857 typedef struct {
858 u64 pme;
859 } pagemap_entry_t;
861 struct pagemapread {
862 int pos, len;
863 pagemap_entry_t *buffer;
864 bool v2;
867 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
868 #define PAGEMAP_WALK_MASK (PMD_MASK)
870 #define PM_ENTRY_BYTES sizeof(u64)
871 #define PM_STATUS_BITS 3
872 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
873 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
874 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
875 #define PM_PSHIFT_BITS 6
876 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
877 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
878 #define __PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
879 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
880 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
881 /* in "new" pagemap pshift bits are occupied with more status bits */
882 #define PM_STATUS2(v2, x) (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
884 #define __PM_SOFT_DIRTY (1LL)
885 #define PM_PRESENT PM_STATUS(4LL)
886 #define PM_SWAP PM_STATUS(2LL)
887 #define PM_FILE PM_STATUS(1LL)
888 #define PM_NOT_PRESENT(v2) PM_STATUS2(v2, 0)
889 #define PM_END_OF_BUFFER 1
891 static inline pagemap_entry_t make_pme(u64 val)
893 return (pagemap_entry_t) { .pme = val };
896 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
897 struct pagemapread *pm)
899 pm->buffer[pm->pos++] = *pme;
900 if (pm->pos >= pm->len)
901 return PM_END_OF_BUFFER;
902 return 0;
905 static int pagemap_pte_hole(unsigned long start, unsigned long end,
906 struct mm_walk *walk)
908 struct pagemapread *pm = walk->private;
909 unsigned long addr;
910 int err = 0;
911 pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
913 for (addr = start; addr < end; addr += PAGE_SIZE) {
914 err = add_to_pagemap(addr, &pme, pm);
915 if (err)
916 break;
918 return err;
921 static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
922 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
924 u64 frame, flags;
925 struct page *page = NULL;
926 int flags2 = 0;
928 if (pte_present(pte)) {
929 frame = pte_pfn(pte);
930 flags = PM_PRESENT;
931 page = vm_normal_page(vma, addr, pte);
932 } else if (is_swap_pte(pte)) {
933 swp_entry_t entry = pte_to_swp_entry(pte);
935 frame = swp_type(entry) |
936 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
937 flags = PM_SWAP;
938 if (is_migration_entry(entry))
939 page = migration_entry_to_page(entry);
940 } else {
941 *pme = make_pme(PM_NOT_PRESENT(pm->v2));
942 return;
945 if (page && !PageAnon(page))
946 flags |= PM_FILE;
947 if (pte_soft_dirty(pte))
948 flags2 |= __PM_SOFT_DIRTY;
950 *pme = make_pme(PM_PFRAME(frame) | PM_STATUS2(pm->v2, flags2) | flags);
953 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
954 static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
955 pmd_t pmd, int offset, int pmd_flags2)
958 * Currently pmd for thp is always present because thp can not be
959 * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
960 * This if-check is just to prepare for future implementation.
962 if (pmd_present(pmd))
963 *pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
964 | PM_STATUS2(pm->v2, pmd_flags2) | PM_PRESENT);
965 else
966 *pme = make_pme(PM_NOT_PRESENT(pm->v2));
968 #else
969 static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
970 pmd_t pmd, int offset, int pmd_flags2)
973 #endif
975 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
976 struct mm_walk *walk)
978 struct vm_area_struct *vma;
979 struct pagemapread *pm = walk->private;
980 pte_t *pte;
981 int err = 0;
982 pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
984 /* find the first VMA at or above 'addr' */
985 vma = find_vma(walk->mm, addr);
986 if (vma && pmd_trans_huge_lock(pmd, vma) == 1) {
987 int pmd_flags2;
989 pmd_flags2 = (pmd_soft_dirty(*pmd) ? __PM_SOFT_DIRTY : 0);
990 for (; addr != end; addr += PAGE_SIZE) {
991 unsigned long offset;
993 offset = (addr & ~PAGEMAP_WALK_MASK) >>
994 PAGE_SHIFT;
995 thp_pmd_to_pagemap_entry(&pme, pm, *pmd, offset, pmd_flags2);
996 err = add_to_pagemap(addr, &pme, pm);
997 if (err)
998 break;
1000 spin_unlock(&walk->mm->page_table_lock);
1001 return err;
1004 if (pmd_trans_unstable(pmd))
1005 return 0;
1006 for (; addr != end; addr += PAGE_SIZE) {
1008 /* check to see if we've left 'vma' behind
1009 * and need a new, higher one */
1010 if (vma && (addr >= vma->vm_end)) {
1011 vma = find_vma(walk->mm, addr);
1012 pme = make_pme(PM_NOT_PRESENT(pm->v2));
1015 /* check that 'vma' actually covers this address,
1016 * and that it isn't a huge page vma */
1017 if (vma && (vma->vm_start <= addr) &&
1018 !is_vm_hugetlb_page(vma)) {
1019 pte = pte_offset_map(pmd, addr);
1020 pte_to_pagemap_entry(&pme, pm, vma, addr, *pte);
1021 /* unmap before userspace copy */
1022 pte_unmap(pte);
1024 err = add_to_pagemap(addr, &pme, pm);
1025 if (err)
1026 return err;
1029 cond_resched();
1031 return err;
1034 #ifdef CONFIG_HUGETLB_PAGE
1035 static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
1036 pte_t pte, int offset)
1038 if (pte_present(pte))
1039 *pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset)
1040 | PM_STATUS2(pm->v2, 0) | PM_PRESENT);
1041 else
1042 *pme = make_pme(PM_NOT_PRESENT(pm->v2));
1045 /* This function walks within one hugetlb entry in the single call */
1046 static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
1047 unsigned long addr, unsigned long end,
1048 struct mm_walk *walk)
1050 struct pagemapread *pm = walk->private;
1051 int err = 0;
1052 pagemap_entry_t pme;
1054 for (; addr != end; addr += PAGE_SIZE) {
1055 int offset = (addr & ~hmask) >> PAGE_SHIFT;
1056 huge_pte_to_pagemap_entry(&pme, pm, *pte, offset);
1057 err = add_to_pagemap(addr, &pme, pm);
1058 if (err)
1059 return err;
1062 cond_resched();
1064 return err;
1066 #endif /* HUGETLB_PAGE */
1069 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1071 * For each page in the address space, this file contains one 64-bit entry
1072 * consisting of the following:
1074 * Bits 0-54 page frame number (PFN) if present
1075 * Bits 0-4 swap type if swapped
1076 * Bits 5-54 swap offset if swapped
1077 * Bits 55-60 page shift (page size = 1<<page shift)
1078 * Bit 61 page is file-page or shared-anon
1079 * Bit 62 page swapped
1080 * Bit 63 page present
1082 * If the page is not present but in swap, then the PFN contains an
1083 * encoding of the swap file number and the page's offset into the
1084 * swap. Unmapped pages return a null PFN. This allows determining
1085 * precisely which pages are mapped (or in swap) and comparing mapped
1086 * pages between processes.
1088 * Efficient users of this interface will use /proc/pid/maps to
1089 * determine which areas of memory are actually mapped and llseek to
1090 * skip over unmapped regions.
1092 static ssize_t pagemap_read(struct file *file, char __user *buf,
1093 size_t count, loff_t *ppos)
1095 struct task_struct *task = get_proc_task(file_inode(file));
1096 struct mm_struct *mm;
1097 struct pagemapread pm;
1098 int ret = -ESRCH;
1099 struct mm_walk pagemap_walk = {};
1100 unsigned long src;
1101 unsigned long svpfn;
1102 unsigned long start_vaddr;
1103 unsigned long end_vaddr;
1104 int copied = 0;
1106 if (!task)
1107 goto out;
1109 ret = -EINVAL;
1110 /* file position must be aligned */
1111 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1112 goto out_task;
1114 ret = 0;
1115 if (!count)
1116 goto out_task;
1118 pm.v2 = soft_dirty_cleared;
1119 pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1120 pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
1121 ret = -ENOMEM;
1122 if (!pm.buffer)
1123 goto out_task;
1125 mm = mm_access(task, PTRACE_MODE_READ);
1126 ret = PTR_ERR(mm);
1127 if (!mm || IS_ERR(mm))
1128 goto out_free;
1130 pagemap_walk.pmd_entry = pagemap_pte_range;
1131 pagemap_walk.pte_hole = pagemap_pte_hole;
1132 #ifdef CONFIG_HUGETLB_PAGE
1133 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1134 #endif
1135 pagemap_walk.mm = mm;
1136 pagemap_walk.private = &pm;
1138 src = *ppos;
1139 svpfn = src / PM_ENTRY_BYTES;
1140 start_vaddr = svpfn << PAGE_SHIFT;
1141 end_vaddr = TASK_SIZE_OF(task);
1143 /* watch out for wraparound */
1144 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
1145 start_vaddr = end_vaddr;
1148 * The odds are that this will stop walking way
1149 * before end_vaddr, because the length of the
1150 * user buffer is tracked in "pm", and the walk
1151 * will stop when we hit the end of the buffer.
1153 ret = 0;
1154 while (count && (start_vaddr < end_vaddr)) {
1155 int len;
1156 unsigned long end;
1158 pm.pos = 0;
1159 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1160 /* overflow ? */
1161 if (end < start_vaddr || end > end_vaddr)
1162 end = end_vaddr;
1163 down_read(&mm->mmap_sem);
1164 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1165 up_read(&mm->mmap_sem);
1166 start_vaddr = end;
1168 len = min(count, PM_ENTRY_BYTES * pm.pos);
1169 if (copy_to_user(buf, pm.buffer, len)) {
1170 ret = -EFAULT;
1171 goto out_mm;
1173 copied += len;
1174 buf += len;
1175 count -= len;
1177 *ppos += copied;
1178 if (!ret || ret == PM_END_OF_BUFFER)
1179 ret = copied;
1181 out_mm:
1182 mmput(mm);
1183 out_free:
1184 kfree(pm.buffer);
1185 out_task:
1186 put_task_struct(task);
1187 out:
1188 return ret;
1191 static int pagemap_open(struct inode *inode, struct file *file)
1193 pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
1194 "to stop being page-shift some time soon. See the "
1195 "linux/Documentation/vm/pagemap.txt for details.\n");
1196 return 0;
1199 const struct file_operations proc_pagemap_operations = {
1200 .llseek = mem_lseek, /* borrow this */
1201 .read = pagemap_read,
1202 .open = pagemap_open,
1204 #endif /* CONFIG_PROC_PAGE_MONITOR */
1206 #ifdef CONFIG_NUMA
1208 struct numa_maps {
1209 struct vm_area_struct *vma;
1210 unsigned long pages;
1211 unsigned long anon;
1212 unsigned long active;
1213 unsigned long writeback;
1214 unsigned long mapcount_max;
1215 unsigned long dirty;
1216 unsigned long swapcache;
1217 unsigned long node[MAX_NUMNODES];
1220 struct numa_maps_private {
1221 struct proc_maps_private proc_maps;
1222 struct numa_maps md;
1225 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1226 unsigned long nr_pages)
1228 int count = page_mapcount(page);
1230 md->pages += nr_pages;
1231 if (pte_dirty || PageDirty(page))
1232 md->dirty += nr_pages;
1234 if (PageSwapCache(page))
1235 md->swapcache += nr_pages;
1237 if (PageActive(page) || PageUnevictable(page))
1238 md->active += nr_pages;
1240 if (PageWriteback(page))
1241 md->writeback += nr_pages;
1243 if (PageAnon(page))
1244 md->anon += nr_pages;
1246 if (count > md->mapcount_max)
1247 md->mapcount_max = count;
1249 md->node[page_to_nid(page)] += nr_pages;
1252 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1253 unsigned long addr)
1255 struct page *page;
1256 int nid;
1258 if (!pte_present(pte))
1259 return NULL;
1261 page = vm_normal_page(vma, addr, pte);
1262 if (!page)
1263 return NULL;
1265 if (PageReserved(page))
1266 return NULL;
1268 nid = page_to_nid(page);
1269 if (!node_isset(nid, node_states[N_MEMORY]))
1270 return NULL;
1272 return page;
1275 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1276 unsigned long end, struct mm_walk *walk)
1278 struct numa_maps *md;
1279 spinlock_t *ptl;
1280 pte_t *orig_pte;
1281 pte_t *pte;
1283 md = walk->private;
1285 if (pmd_trans_huge_lock(pmd, md->vma) == 1) {
1286 pte_t huge_pte = *(pte_t *)pmd;
1287 struct page *page;
1289 page = can_gather_numa_stats(huge_pte, md->vma, addr);
1290 if (page)
1291 gather_stats(page, md, pte_dirty(huge_pte),
1292 HPAGE_PMD_SIZE/PAGE_SIZE);
1293 spin_unlock(&walk->mm->page_table_lock);
1294 return 0;
1297 if (pmd_trans_unstable(pmd))
1298 return 0;
1299 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1300 do {
1301 struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
1302 if (!page)
1303 continue;
1304 gather_stats(page, md, pte_dirty(*pte), 1);
1306 } while (pte++, addr += PAGE_SIZE, addr != end);
1307 pte_unmap_unlock(orig_pte, ptl);
1308 return 0;
1310 #ifdef CONFIG_HUGETLB_PAGE
1311 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1312 unsigned long addr, unsigned long end, struct mm_walk *walk)
1314 struct numa_maps *md;
1315 struct page *page;
1317 if (pte_none(*pte))
1318 return 0;
1320 page = pte_page(*pte);
1321 if (!page)
1322 return 0;
1324 md = walk->private;
1325 gather_stats(page, md, pte_dirty(*pte), 1);
1326 return 0;
1329 #else
1330 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1331 unsigned long addr, unsigned long end, struct mm_walk *walk)
1333 return 0;
1335 #endif
1338 * Display pages allocated per node and memory policy via /proc.
1340 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1342 struct numa_maps_private *numa_priv = m->private;
1343 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1344 struct vm_area_struct *vma = v;
1345 struct numa_maps *md = &numa_priv->md;
1346 struct file *file = vma->vm_file;
1347 struct task_struct *task = proc_priv->task;
1348 struct mm_struct *mm = vma->vm_mm;
1349 struct mm_walk walk = {};
1350 struct mempolicy *pol;
1351 int n;
1352 char buffer[50];
1354 if (!mm)
1355 return 0;
1357 /* Ensure we start with an empty set of numa_maps statistics. */
1358 memset(md, 0, sizeof(*md));
1360 md->vma = vma;
1362 walk.hugetlb_entry = gather_hugetbl_stats;
1363 walk.pmd_entry = gather_pte_stats;
1364 walk.private = md;
1365 walk.mm = mm;
1367 pol = get_vma_policy(task, vma, vma->vm_start);
1368 mpol_to_str(buffer, sizeof(buffer), pol);
1369 mpol_cond_put(pol);
1371 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1373 if (file) {
1374 seq_printf(m, " file=");
1375 seq_path(m, &file->f_path, "\n\t= ");
1376 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1377 seq_printf(m, " heap");
1378 } else {
1379 pid_t tid = vm_is_stack(task, vma, is_pid);
1380 if (tid != 0) {
1382 * Thread stack in /proc/PID/task/TID/maps or
1383 * the main process stack.
1385 if (!is_pid || (vma->vm_start <= mm->start_stack &&
1386 vma->vm_end >= mm->start_stack))
1387 seq_printf(m, " stack");
1388 else
1389 seq_printf(m, " stack:%d", tid);
1393 if (is_vm_hugetlb_page(vma))
1394 seq_printf(m, " huge");
1396 walk_page_range(vma->vm_start, vma->vm_end, &walk);
1398 if (!md->pages)
1399 goto out;
1401 if (md->anon)
1402 seq_printf(m, " anon=%lu", md->anon);
1404 if (md->dirty)
1405 seq_printf(m, " dirty=%lu", md->dirty);
1407 if (md->pages != md->anon && md->pages != md->dirty)
1408 seq_printf(m, " mapped=%lu", md->pages);
1410 if (md->mapcount_max > 1)
1411 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1413 if (md->swapcache)
1414 seq_printf(m, " swapcache=%lu", md->swapcache);
1416 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1417 seq_printf(m, " active=%lu", md->active);
1419 if (md->writeback)
1420 seq_printf(m, " writeback=%lu", md->writeback);
1422 for_each_node_state(n, N_MEMORY)
1423 if (md->node[n])
1424 seq_printf(m, " N%d=%lu", n, md->node[n]);
1425 out:
1426 seq_putc(m, '\n');
1428 if (m->count < m->size)
1429 m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
1430 return 0;
1433 static int show_pid_numa_map(struct seq_file *m, void *v)
1435 return show_numa_map(m, v, 1);
1438 static int show_tid_numa_map(struct seq_file *m, void *v)
1440 return show_numa_map(m, v, 0);
1443 static const struct seq_operations proc_pid_numa_maps_op = {
1444 .start = m_start,
1445 .next = m_next,
1446 .stop = m_stop,
1447 .show = show_pid_numa_map,
1450 static const struct seq_operations proc_tid_numa_maps_op = {
1451 .start = m_start,
1452 .next = m_next,
1453 .stop = m_stop,
1454 .show = show_tid_numa_map,
1457 static int numa_maps_open(struct inode *inode, struct file *file,
1458 const struct seq_operations *ops)
1460 struct numa_maps_private *priv;
1461 int ret = -ENOMEM;
1462 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1463 if (priv) {
1464 priv->proc_maps.pid = proc_pid(inode);
1465 ret = seq_open(file, ops);
1466 if (!ret) {
1467 struct seq_file *m = file->private_data;
1468 m->private = priv;
1469 } else {
1470 kfree(priv);
1473 return ret;
1476 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1478 return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1481 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1483 return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1486 const struct file_operations proc_pid_numa_maps_operations = {
1487 .open = pid_numa_maps_open,
1488 .read = seq_read,
1489 .llseek = seq_lseek,
1490 .release = seq_release_private,
1493 const struct file_operations proc_tid_numa_maps_operations = {
1494 .open = tid_numa_maps_open,
1495 .read = seq_read,
1496 .llseek = seq_lseek,
1497 .release = seq_release_private,
1499 #endif /* CONFIG_NUMA */