2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
37 #include <trace/events/kmem.h>
43 * 1. slab_mutex (Global Mutex)
45 * 3. slab_lock(page) (Only on some arches and for debugging)
49 * The role of the slab_mutex is to protect the list of all the slabs
50 * and to synchronize major metadata changes to slab cache structures.
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
86 * freed then the slab will show up again on the partial lists.
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
94 * Overloading of page flags that are otherwise used for LRU management.
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
117 static inline int kmem_cache_debug(struct kmem_cache
*s
)
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache
*s
)
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s
);
136 * Issues still to be resolved:
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140 * - Variable sizing of the per node arrays
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
153 #define MIN_PARTIAL 5
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
158 * sort the partial list by the number of objects in the.
160 #define MAX_PARTIAL 10
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
173 * Set of flags that will prevent slab merging
175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
180 SLAB_CACHE_DMA | SLAB_NOTRACK)
183 #define OO_MASK ((1 << OO_SHIFT) - 1)
184 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
186 /* Internal SLUB flags */
187 #define __OBJECT_POISON 0x80000000UL /* Poison object */
188 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
191 static struct notifier_block slab_notifier
;
195 * Tracking user of a slab.
197 #define TRACK_ADDRS_COUNT 16
199 unsigned long addr
; /* Called from address */
200 #ifdef CONFIG_STACKTRACE
201 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
203 int cpu
; /* Was running on cpu */
204 int pid
; /* Pid context */
205 unsigned long when
; /* When did the operation occur */
208 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
211 static int sysfs_slab_add(struct kmem_cache
*);
212 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
213 static void sysfs_slab_remove(struct kmem_cache
*);
214 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
);
216 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
217 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
219 static inline void sysfs_slab_remove(struct kmem_cache
*s
) { }
221 static inline void memcg_propagate_slab_attrs(struct kmem_cache
*s
) { }
224 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
226 #ifdef CONFIG_SLUB_STATS
227 __this_cpu_inc(s
->cpu_slab
->stat
[si
]);
231 /********************************************************************
232 * Core slab cache functions
233 *******************************************************************/
235 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
237 return s
->node
[node
];
240 /* Verify that a pointer has an address that is valid within a slab page */
241 static inline int check_valid_pointer(struct kmem_cache
*s
,
242 struct page
*page
, const void *object
)
249 base
= page_address(page
);
250 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
251 (object
- base
) % s
->size
) {
258 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
260 return *(void **)(object
+ s
->offset
);
263 static void prefetch_freepointer(const struct kmem_cache
*s
, void *object
)
265 prefetch(object
+ s
->offset
);
268 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
272 #ifdef CONFIG_DEBUG_PAGEALLOC
273 probe_kernel_read(&p
, (void **)(object
+ s
->offset
), sizeof(p
));
275 p
= get_freepointer(s
, object
);
280 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
282 *(void **)(object
+ s
->offset
) = fp
;
285 /* Loop over all objects in a slab */
286 #define for_each_object(__p, __s, __addr, __objects) \
287 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
290 /* Determine object index from a given position */
291 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
293 return (p
- addr
) / s
->size
;
296 static inline size_t slab_ksize(const struct kmem_cache
*s
)
298 #ifdef CONFIG_SLUB_DEBUG
300 * Debugging requires use of the padding between object
301 * and whatever may come after it.
303 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
304 return s
->object_size
;
308 * If we have the need to store the freelist pointer
309 * back there or track user information then we can
310 * only use the space before that information.
312 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
315 * Else we can use all the padding etc for the allocation
320 static inline int order_objects(int order
, unsigned long size
, int reserved
)
322 return ((PAGE_SIZE
<< order
) - reserved
) / size
;
325 static inline struct kmem_cache_order_objects
oo_make(int order
,
326 unsigned long size
, int reserved
)
328 struct kmem_cache_order_objects x
= {
329 (order
<< OO_SHIFT
) + order_objects(order
, size
, reserved
)
335 static inline int oo_order(struct kmem_cache_order_objects x
)
337 return x
.x
>> OO_SHIFT
;
340 static inline int oo_objects(struct kmem_cache_order_objects x
)
342 return x
.x
& OO_MASK
;
346 * Per slab locking using the pagelock
348 static __always_inline
void slab_lock(struct page
*page
)
350 bit_spin_lock(PG_locked
, &page
->flags
);
353 static __always_inline
void slab_unlock(struct page
*page
)
355 __bit_spin_unlock(PG_locked
, &page
->flags
);
358 /* Interrupts must be disabled (for the fallback code to work right) */
359 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
360 void *freelist_old
, unsigned long counters_old
,
361 void *freelist_new
, unsigned long counters_new
,
364 VM_BUG_ON(!irqs_disabled());
365 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
366 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
367 if (s
->flags
& __CMPXCHG_DOUBLE
) {
368 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
369 freelist_old
, counters_old
,
370 freelist_new
, counters_new
))
376 if (page
->freelist
== freelist_old
&& page
->counters
== counters_old
) {
377 page
->freelist
= freelist_new
;
378 page
->counters
= counters_new
;
386 stat(s
, CMPXCHG_DOUBLE_FAIL
);
388 #ifdef SLUB_DEBUG_CMPXCHG
389 printk(KERN_INFO
"%s %s: cmpxchg double redo ", n
, s
->name
);
395 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
396 void *freelist_old
, unsigned long counters_old
,
397 void *freelist_new
, unsigned long counters_new
,
400 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
401 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
402 if (s
->flags
& __CMPXCHG_DOUBLE
) {
403 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
404 freelist_old
, counters_old
,
405 freelist_new
, counters_new
))
412 local_irq_save(flags
);
414 if (page
->freelist
== freelist_old
&& page
->counters
== counters_old
) {
415 page
->freelist
= freelist_new
;
416 page
->counters
= counters_new
;
418 local_irq_restore(flags
);
422 local_irq_restore(flags
);
426 stat(s
, CMPXCHG_DOUBLE_FAIL
);
428 #ifdef SLUB_DEBUG_CMPXCHG
429 printk(KERN_INFO
"%s %s: cmpxchg double redo ", n
, s
->name
);
435 #ifdef CONFIG_SLUB_DEBUG
437 * Determine a map of object in use on a page.
439 * Node listlock must be held to guarantee that the page does
440 * not vanish from under us.
442 static void get_map(struct kmem_cache
*s
, struct page
*page
, unsigned long *map
)
445 void *addr
= page_address(page
);
447 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
448 set_bit(slab_index(p
, s
, addr
), map
);
454 #ifdef CONFIG_SLUB_DEBUG_ON
455 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
457 static int slub_debug
;
460 static char *slub_debug_slabs
;
461 static int disable_higher_order_debug
;
466 static void print_section(char *text
, u8
*addr
, unsigned int length
)
468 print_hex_dump(KERN_ERR
, text
, DUMP_PREFIX_ADDRESS
, 16, 1, addr
,
472 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
473 enum track_item alloc
)
478 p
= object
+ s
->offset
+ sizeof(void *);
480 p
= object
+ s
->inuse
;
485 static void set_track(struct kmem_cache
*s
, void *object
,
486 enum track_item alloc
, unsigned long addr
)
488 struct track
*p
= get_track(s
, object
, alloc
);
491 #ifdef CONFIG_STACKTRACE
492 struct stack_trace trace
;
495 trace
.nr_entries
= 0;
496 trace
.max_entries
= TRACK_ADDRS_COUNT
;
497 trace
.entries
= p
->addrs
;
499 save_stack_trace(&trace
);
501 /* See rant in lockdep.c */
502 if (trace
.nr_entries
!= 0 &&
503 trace
.entries
[trace
.nr_entries
- 1] == ULONG_MAX
)
506 for (i
= trace
.nr_entries
; i
< TRACK_ADDRS_COUNT
; i
++)
510 p
->cpu
= smp_processor_id();
511 p
->pid
= current
->pid
;
514 memset(p
, 0, sizeof(struct track
));
517 static void init_tracking(struct kmem_cache
*s
, void *object
)
519 if (!(s
->flags
& SLAB_STORE_USER
))
522 set_track(s
, object
, TRACK_FREE
, 0UL);
523 set_track(s
, object
, TRACK_ALLOC
, 0UL);
526 static void print_track(const char *s
, struct track
*t
)
531 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
532 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
533 #ifdef CONFIG_STACKTRACE
536 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
538 printk(KERN_ERR
"\t%pS\n", (void *)t
->addrs
[i
]);
545 static void print_tracking(struct kmem_cache
*s
, void *object
)
547 if (!(s
->flags
& SLAB_STORE_USER
))
550 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
551 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
554 static void print_page_info(struct page
*page
)
556 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
557 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
561 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
567 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
569 printk(KERN_ERR
"========================================"
570 "=====================================\n");
571 printk(KERN_ERR
"BUG %s (%s): %s\n", s
->name
, print_tainted(), buf
);
572 printk(KERN_ERR
"----------------------------------------"
573 "-------------------------------------\n\n");
575 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
578 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
584 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
586 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
589 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
591 unsigned int off
; /* Offset of last byte */
592 u8
*addr
= page_address(page
);
594 print_tracking(s
, p
);
596 print_page_info(page
);
598 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
599 p
, p
- addr
, get_freepointer(s
, p
));
602 print_section("Bytes b4 ", p
- 16, 16);
604 print_section("Object ", p
, min_t(unsigned long, s
->object_size
,
606 if (s
->flags
& SLAB_RED_ZONE
)
607 print_section("Redzone ", p
+ s
->object_size
,
608 s
->inuse
- s
->object_size
);
611 off
= s
->offset
+ sizeof(void *);
615 if (s
->flags
& SLAB_STORE_USER
)
616 off
+= 2 * sizeof(struct track
);
619 /* Beginning of the filler is the free pointer */
620 print_section("Padding ", p
+ off
, s
->size
- off
);
625 static void object_err(struct kmem_cache
*s
, struct page
*page
,
626 u8
*object
, char *reason
)
628 slab_bug(s
, "%s", reason
);
629 print_trailer(s
, page
, object
);
632 static void slab_err(struct kmem_cache
*s
, struct page
*page
, const char *fmt
, ...)
638 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
640 slab_bug(s
, "%s", buf
);
641 print_page_info(page
);
645 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
649 if (s
->flags
& __OBJECT_POISON
) {
650 memset(p
, POISON_FREE
, s
->object_size
- 1);
651 p
[s
->object_size
- 1] = POISON_END
;
654 if (s
->flags
& SLAB_RED_ZONE
)
655 memset(p
+ s
->object_size
, val
, s
->inuse
- s
->object_size
);
658 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
659 void *from
, void *to
)
661 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
662 memset(from
, data
, to
- from
);
665 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
666 u8
*object
, char *what
,
667 u8
*start
, unsigned int value
, unsigned int bytes
)
672 fault
= memchr_inv(start
, value
, bytes
);
677 while (end
> fault
&& end
[-1] == value
)
680 slab_bug(s
, "%s overwritten", what
);
681 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
682 fault
, end
- 1, fault
[0], value
);
683 print_trailer(s
, page
, object
);
685 restore_bytes(s
, what
, value
, fault
, end
);
693 * Bytes of the object to be managed.
694 * If the freepointer may overlay the object then the free
695 * pointer is the first word of the object.
697 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
700 * object + s->object_size
701 * Padding to reach word boundary. This is also used for Redzoning.
702 * Padding is extended by another word if Redzoning is enabled and
703 * object_size == inuse.
705 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
706 * 0xcc (RED_ACTIVE) for objects in use.
709 * Meta data starts here.
711 * A. Free pointer (if we cannot overwrite object on free)
712 * B. Tracking data for SLAB_STORE_USER
713 * C. Padding to reach required alignment boundary or at mininum
714 * one word if debugging is on to be able to detect writes
715 * before the word boundary.
717 * Padding is done using 0x5a (POISON_INUSE)
720 * Nothing is used beyond s->size.
722 * If slabcaches are merged then the object_size and inuse boundaries are mostly
723 * ignored. And therefore no slab options that rely on these boundaries
724 * may be used with merged slabcaches.
727 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
729 unsigned long off
= s
->inuse
; /* The end of info */
732 /* Freepointer is placed after the object. */
733 off
+= sizeof(void *);
735 if (s
->flags
& SLAB_STORE_USER
)
736 /* We also have user information there */
737 off
+= 2 * sizeof(struct track
);
742 return check_bytes_and_report(s
, page
, p
, "Object padding",
743 p
+ off
, POISON_INUSE
, s
->size
- off
);
746 /* Check the pad bytes at the end of a slab page */
747 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
755 if (!(s
->flags
& SLAB_POISON
))
758 start
= page_address(page
);
759 length
= (PAGE_SIZE
<< compound_order(page
)) - s
->reserved
;
760 end
= start
+ length
;
761 remainder
= length
% s
->size
;
765 fault
= memchr_inv(end
- remainder
, POISON_INUSE
, remainder
);
768 while (end
> fault
&& end
[-1] == POISON_INUSE
)
771 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
772 print_section("Padding ", end
- remainder
, remainder
);
774 restore_bytes(s
, "slab padding", POISON_INUSE
, end
- remainder
, end
);
778 static int check_object(struct kmem_cache
*s
, struct page
*page
,
779 void *object
, u8 val
)
782 u8
*endobject
= object
+ s
->object_size
;
784 if (s
->flags
& SLAB_RED_ZONE
) {
785 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
786 endobject
, val
, s
->inuse
- s
->object_size
))
789 if ((s
->flags
& SLAB_POISON
) && s
->object_size
< s
->inuse
) {
790 check_bytes_and_report(s
, page
, p
, "Alignment padding",
791 endobject
, POISON_INUSE
, s
->inuse
- s
->object_size
);
795 if (s
->flags
& SLAB_POISON
) {
796 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
797 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
798 POISON_FREE
, s
->object_size
- 1) ||
799 !check_bytes_and_report(s
, page
, p
, "Poison",
800 p
+ s
->object_size
- 1, POISON_END
, 1)))
803 * check_pad_bytes cleans up on its own.
805 check_pad_bytes(s
, page
, p
);
808 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
810 * Object and freepointer overlap. Cannot check
811 * freepointer while object is allocated.
815 /* Check free pointer validity */
816 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
817 object_err(s
, page
, p
, "Freepointer corrupt");
819 * No choice but to zap it and thus lose the remainder
820 * of the free objects in this slab. May cause
821 * another error because the object count is now wrong.
823 set_freepointer(s
, p
, NULL
);
829 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
833 VM_BUG_ON(!irqs_disabled());
835 if (!PageSlab(page
)) {
836 slab_err(s
, page
, "Not a valid slab page");
840 maxobj
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
841 if (page
->objects
> maxobj
) {
842 slab_err(s
, page
, "objects %u > max %u",
843 s
->name
, page
->objects
, maxobj
);
846 if (page
->inuse
> page
->objects
) {
847 slab_err(s
, page
, "inuse %u > max %u",
848 s
->name
, page
->inuse
, page
->objects
);
851 /* Slab_pad_check fixes things up after itself */
852 slab_pad_check(s
, page
);
857 * Determine if a certain object on a page is on the freelist. Must hold the
858 * slab lock to guarantee that the chains are in a consistent state.
860 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
865 unsigned long max_objects
;
868 while (fp
&& nr
<= page
->objects
) {
871 if (!check_valid_pointer(s
, page
, fp
)) {
873 object_err(s
, page
, object
,
874 "Freechain corrupt");
875 set_freepointer(s
, object
, NULL
);
878 slab_err(s
, page
, "Freepointer corrupt");
879 page
->freelist
= NULL
;
880 page
->inuse
= page
->objects
;
881 slab_fix(s
, "Freelist cleared");
887 fp
= get_freepointer(s
, object
);
891 max_objects
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
892 if (max_objects
> MAX_OBJS_PER_PAGE
)
893 max_objects
= MAX_OBJS_PER_PAGE
;
895 if (page
->objects
!= max_objects
) {
896 slab_err(s
, page
, "Wrong number of objects. Found %d but "
897 "should be %d", page
->objects
, max_objects
);
898 page
->objects
= max_objects
;
899 slab_fix(s
, "Number of objects adjusted.");
901 if (page
->inuse
!= page
->objects
- nr
) {
902 slab_err(s
, page
, "Wrong object count. Counter is %d but "
903 "counted were %d", page
->inuse
, page
->objects
- nr
);
904 page
->inuse
= page
->objects
- nr
;
905 slab_fix(s
, "Object count adjusted.");
907 return search
== NULL
;
910 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
913 if (s
->flags
& SLAB_TRACE
) {
914 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
916 alloc
? "alloc" : "free",
921 print_section("Object ", (void *)object
, s
->object_size
);
928 * Hooks for other subsystems that check memory allocations. In a typical
929 * production configuration these hooks all should produce no code at all.
931 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
933 flags
&= gfp_allowed_mask
;
934 lockdep_trace_alloc(flags
);
935 might_sleep_if(flags
& __GFP_WAIT
);
937 return should_failslab(s
->object_size
, flags
, s
->flags
);
940 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
, void *object
)
942 flags
&= gfp_allowed_mask
;
943 kmemcheck_slab_alloc(s
, flags
, object
, slab_ksize(s
));
944 kmemleak_alloc_recursive(object
, s
->object_size
, 1, s
->flags
, flags
);
947 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
)
949 kmemleak_free_recursive(x
, s
->flags
);
952 * Trouble is that we may no longer disable interupts in the fast path
953 * So in order to make the debug calls that expect irqs to be
954 * disabled we need to disable interrupts temporarily.
956 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
960 local_irq_save(flags
);
961 kmemcheck_slab_free(s
, x
, s
->object_size
);
962 debug_check_no_locks_freed(x
, s
->object_size
);
963 local_irq_restore(flags
);
966 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
967 debug_check_no_obj_freed(x
, s
->object_size
);
971 * Tracking of fully allocated slabs for debugging purposes.
973 * list_lock must be held.
975 static void add_full(struct kmem_cache
*s
,
976 struct kmem_cache_node
*n
, struct page
*page
)
978 if (!(s
->flags
& SLAB_STORE_USER
))
981 list_add(&page
->lru
, &n
->full
);
985 * list_lock must be held.
987 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
989 if (!(s
->flags
& SLAB_STORE_USER
))
992 list_del(&page
->lru
);
995 /* Tracking of the number of slabs for debugging purposes */
996 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
998 struct kmem_cache_node
*n
= get_node(s
, node
);
1000 return atomic_long_read(&n
->nr_slabs
);
1003 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1005 return atomic_long_read(&n
->nr_slabs
);
1008 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1010 struct kmem_cache_node
*n
= get_node(s
, node
);
1013 * May be called early in order to allocate a slab for the
1014 * kmem_cache_node structure. Solve the chicken-egg
1015 * dilemma by deferring the increment of the count during
1016 * bootstrap (see early_kmem_cache_node_alloc).
1019 atomic_long_inc(&n
->nr_slabs
);
1020 atomic_long_add(objects
, &n
->total_objects
);
1023 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1025 struct kmem_cache_node
*n
= get_node(s
, node
);
1027 atomic_long_dec(&n
->nr_slabs
);
1028 atomic_long_sub(objects
, &n
->total_objects
);
1031 /* Object debug checks for alloc/free paths */
1032 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1035 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1038 init_object(s
, object
, SLUB_RED_INACTIVE
);
1039 init_tracking(s
, object
);
1042 static noinline
int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
1043 void *object
, unsigned long addr
)
1045 if (!check_slab(s
, page
))
1048 if (!check_valid_pointer(s
, page
, object
)) {
1049 object_err(s
, page
, object
, "Freelist Pointer check fails");
1053 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1056 /* Success perform special debug activities for allocs */
1057 if (s
->flags
& SLAB_STORE_USER
)
1058 set_track(s
, object
, TRACK_ALLOC
, addr
);
1059 trace(s
, page
, object
, 1);
1060 init_object(s
, object
, SLUB_RED_ACTIVE
);
1064 if (PageSlab(page
)) {
1066 * If this is a slab page then lets do the best we can
1067 * to avoid issues in the future. Marking all objects
1068 * as used avoids touching the remaining objects.
1070 slab_fix(s
, "Marking all objects used");
1071 page
->inuse
= page
->objects
;
1072 page
->freelist
= NULL
;
1077 static noinline
struct kmem_cache_node
*free_debug_processing(
1078 struct kmem_cache
*s
, struct page
*page
, void *object
,
1079 unsigned long addr
, unsigned long *flags
)
1081 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1083 spin_lock_irqsave(&n
->list_lock
, *flags
);
1086 if (!check_slab(s
, page
))
1089 if (!check_valid_pointer(s
, page
, object
)) {
1090 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1094 if (on_freelist(s
, page
, object
)) {
1095 object_err(s
, page
, object
, "Object already free");
1099 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1102 if (unlikely(s
!= page
->slab_cache
)) {
1103 if (!PageSlab(page
)) {
1104 slab_err(s
, page
, "Attempt to free object(0x%p) "
1105 "outside of slab", object
);
1106 } else if (!page
->slab_cache
) {
1108 "SLUB <none>: no slab for object 0x%p.\n",
1112 object_err(s
, page
, object
,
1113 "page slab pointer corrupt.");
1117 if (s
->flags
& SLAB_STORE_USER
)
1118 set_track(s
, object
, TRACK_FREE
, addr
);
1119 trace(s
, page
, object
, 0);
1120 init_object(s
, object
, SLUB_RED_INACTIVE
);
1124 * Keep node_lock to preserve integrity
1125 * until the object is actually freed
1131 spin_unlock_irqrestore(&n
->list_lock
, *flags
);
1132 slab_fix(s
, "Object at 0x%p not freed", object
);
1136 static int __init
setup_slub_debug(char *str
)
1138 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1139 if (*str
++ != '=' || !*str
)
1141 * No options specified. Switch on full debugging.
1147 * No options but restriction on slabs. This means full
1148 * debugging for slabs matching a pattern.
1152 if (tolower(*str
) == 'o') {
1154 * Avoid enabling debugging on caches if its minimum order
1155 * would increase as a result.
1157 disable_higher_order_debug
= 1;
1164 * Switch off all debugging measures.
1169 * Determine which debug features should be switched on
1171 for (; *str
&& *str
!= ','; str
++) {
1172 switch (tolower(*str
)) {
1174 slub_debug
|= SLAB_DEBUG_FREE
;
1177 slub_debug
|= SLAB_RED_ZONE
;
1180 slub_debug
|= SLAB_POISON
;
1183 slub_debug
|= SLAB_STORE_USER
;
1186 slub_debug
|= SLAB_TRACE
;
1189 slub_debug
|= SLAB_FAILSLAB
;
1192 printk(KERN_ERR
"slub_debug option '%c' "
1193 "unknown. skipped\n", *str
);
1199 slub_debug_slabs
= str
+ 1;
1204 __setup("slub_debug", setup_slub_debug
);
1206 static unsigned long kmem_cache_flags(unsigned long object_size
,
1207 unsigned long flags
, const char *name
,
1208 void (*ctor
)(void *))
1211 * Enable debugging if selected on the kernel commandline.
1213 if (slub_debug
&& (!slub_debug_slabs
||
1214 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
))))
1215 flags
|= slub_debug
;
1220 static inline void setup_object_debug(struct kmem_cache
*s
,
1221 struct page
*page
, void *object
) {}
1223 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1224 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1226 static inline struct kmem_cache_node
*free_debug_processing(
1227 struct kmem_cache
*s
, struct page
*page
, void *object
,
1228 unsigned long addr
, unsigned long *flags
) { return NULL
; }
1230 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1232 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1233 void *object
, u8 val
) { return 1; }
1234 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1235 struct page
*page
) {}
1236 static inline void remove_full(struct kmem_cache
*s
, struct page
*page
) {}
1237 static inline unsigned long kmem_cache_flags(unsigned long object_size
,
1238 unsigned long flags
, const char *name
,
1239 void (*ctor
)(void *))
1243 #define slub_debug 0
1245 #define disable_higher_order_debug 0
1247 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1249 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1251 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1253 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1256 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
1259 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
,
1262 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
) {}
1264 #endif /* CONFIG_SLUB_DEBUG */
1267 * Slab allocation and freeing
1269 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1270 struct kmem_cache_order_objects oo
)
1272 int order
= oo_order(oo
);
1274 flags
|= __GFP_NOTRACK
;
1276 if (node
== NUMA_NO_NODE
)
1277 return alloc_pages(flags
, order
);
1279 return alloc_pages_exact_node(node
, flags
, order
);
1282 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1285 struct kmem_cache_order_objects oo
= s
->oo
;
1288 flags
&= gfp_allowed_mask
;
1290 if (flags
& __GFP_WAIT
)
1293 flags
|= s
->allocflags
;
1296 * Let the initial higher-order allocation fail under memory pressure
1297 * so we fall-back to the minimum order allocation.
1299 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1301 page
= alloc_slab_page(alloc_gfp
, node
, oo
);
1302 if (unlikely(!page
)) {
1305 * Allocation may have failed due to fragmentation.
1306 * Try a lower order alloc if possible
1308 page
= alloc_slab_page(flags
, node
, oo
);
1311 stat(s
, ORDER_FALLBACK
);
1314 if (kmemcheck_enabled
&& page
1315 && !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
))) {
1316 int pages
= 1 << oo_order(oo
);
1318 kmemcheck_alloc_shadow(page
, oo_order(oo
), flags
, node
);
1321 * Objects from caches that have a constructor don't get
1322 * cleared when they're allocated, so we need to do it here.
1325 kmemcheck_mark_uninitialized_pages(page
, pages
);
1327 kmemcheck_mark_unallocated_pages(page
, pages
);
1330 if (flags
& __GFP_WAIT
)
1331 local_irq_disable();
1335 page
->objects
= oo_objects(oo
);
1336 mod_zone_page_state(page_zone(page
),
1337 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1338 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1344 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1347 setup_object_debug(s
, page
, object
);
1348 if (unlikely(s
->ctor
))
1352 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1360 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1362 page
= allocate_slab(s
,
1363 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1367 order
= compound_order(page
);
1368 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1369 memcg_bind_pages(s
, order
);
1370 page
->slab_cache
= s
;
1371 __SetPageSlab(page
);
1372 if (page
->pfmemalloc
)
1373 SetPageSlabPfmemalloc(page
);
1375 start
= page_address(page
);
1377 if (unlikely(s
->flags
& SLAB_POISON
))
1378 memset(start
, POISON_INUSE
, PAGE_SIZE
<< order
);
1381 for_each_object(p
, s
, start
, page
->objects
) {
1382 setup_object(s
, page
, last
);
1383 set_freepointer(s
, last
, p
);
1386 setup_object(s
, page
, last
);
1387 set_freepointer(s
, last
, NULL
);
1389 page
->freelist
= start
;
1390 page
->inuse
= page
->objects
;
1396 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1398 int order
= compound_order(page
);
1399 int pages
= 1 << order
;
1401 if (kmem_cache_debug(s
)) {
1404 slab_pad_check(s
, page
);
1405 for_each_object(p
, s
, page_address(page
),
1407 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1410 kmemcheck_free_shadow(page
, compound_order(page
));
1412 mod_zone_page_state(page_zone(page
),
1413 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1414 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1417 __ClearPageSlabPfmemalloc(page
);
1418 __ClearPageSlab(page
);
1420 memcg_release_pages(s
, order
);
1421 page_mapcount_reset(page
);
1422 if (current
->reclaim_state
)
1423 current
->reclaim_state
->reclaimed_slab
+= pages
;
1424 __free_memcg_kmem_pages(page
, order
);
1427 #define need_reserve_slab_rcu \
1428 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1430 static void rcu_free_slab(struct rcu_head
*h
)
1434 if (need_reserve_slab_rcu
)
1435 page
= virt_to_head_page(h
);
1437 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1439 __free_slab(page
->slab_cache
, page
);
1442 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1444 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1445 struct rcu_head
*head
;
1447 if (need_reserve_slab_rcu
) {
1448 int order
= compound_order(page
);
1449 int offset
= (PAGE_SIZE
<< order
) - s
->reserved
;
1451 VM_BUG_ON(s
->reserved
!= sizeof(*head
));
1452 head
= page_address(page
) + offset
;
1455 * RCU free overloads the RCU head over the LRU
1457 head
= (void *)&page
->lru
;
1460 call_rcu(head
, rcu_free_slab
);
1462 __free_slab(s
, page
);
1465 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1467 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1472 * Management of partially allocated slabs.
1474 * list_lock must be held.
1476 static inline void add_partial(struct kmem_cache_node
*n
,
1477 struct page
*page
, int tail
)
1480 if (tail
== DEACTIVATE_TO_TAIL
)
1481 list_add_tail(&page
->lru
, &n
->partial
);
1483 list_add(&page
->lru
, &n
->partial
);
1487 * list_lock must be held.
1489 static inline void remove_partial(struct kmem_cache_node
*n
,
1492 list_del(&page
->lru
);
1497 * Remove slab from the partial list, freeze it and
1498 * return the pointer to the freelist.
1500 * Returns a list of objects or NULL if it fails.
1502 * Must hold list_lock since we modify the partial list.
1504 static inline void *acquire_slab(struct kmem_cache
*s
,
1505 struct kmem_cache_node
*n
, struct page
*page
,
1506 int mode
, int *objects
)
1509 unsigned long counters
;
1513 * Zap the freelist and set the frozen bit.
1514 * The old freelist is the list of objects for the
1515 * per cpu allocation list.
1517 freelist
= page
->freelist
;
1518 counters
= page
->counters
;
1519 new.counters
= counters
;
1520 *objects
= new.objects
- new.inuse
;
1522 new.inuse
= page
->objects
;
1523 new.freelist
= NULL
;
1525 new.freelist
= freelist
;
1528 VM_BUG_ON(new.frozen
);
1531 if (!__cmpxchg_double_slab(s
, page
,
1533 new.freelist
, new.counters
,
1537 remove_partial(n
, page
);
1542 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
);
1543 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
);
1546 * Try to allocate a partial slab from a specific node.
1548 static void *get_partial_node(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1549 struct kmem_cache_cpu
*c
, gfp_t flags
)
1551 struct page
*page
, *page2
;
1552 void *object
= NULL
;
1557 * Racy check. If we mistakenly see no partial slabs then we
1558 * just allocate an empty slab. If we mistakenly try to get a
1559 * partial slab and there is none available then get_partials()
1562 if (!n
|| !n
->nr_partial
)
1565 spin_lock(&n
->list_lock
);
1566 list_for_each_entry_safe(page
, page2
, &n
->partial
, lru
) {
1569 if (!pfmemalloc_match(page
, flags
))
1572 t
= acquire_slab(s
, n
, page
, object
== NULL
, &objects
);
1576 available
+= objects
;
1579 stat(s
, ALLOC_FROM_PARTIAL
);
1582 put_cpu_partial(s
, page
, 0);
1583 stat(s
, CPU_PARTIAL_NODE
);
1585 if (!kmem_cache_has_cpu_partial(s
)
1586 || available
> s
->cpu_partial
/ 2)
1590 spin_unlock(&n
->list_lock
);
1595 * Get a page from somewhere. Search in increasing NUMA distances.
1597 static void *get_any_partial(struct kmem_cache
*s
, gfp_t flags
,
1598 struct kmem_cache_cpu
*c
)
1601 struct zonelist
*zonelist
;
1604 enum zone_type high_zoneidx
= gfp_zone(flags
);
1606 unsigned int cpuset_mems_cookie
;
1609 * The defrag ratio allows a configuration of the tradeoffs between
1610 * inter node defragmentation and node local allocations. A lower
1611 * defrag_ratio increases the tendency to do local allocations
1612 * instead of attempting to obtain partial slabs from other nodes.
1614 * If the defrag_ratio is set to 0 then kmalloc() always
1615 * returns node local objects. If the ratio is higher then kmalloc()
1616 * may return off node objects because partial slabs are obtained
1617 * from other nodes and filled up.
1619 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1620 * defrag_ratio = 1000) then every (well almost) allocation will
1621 * first attempt to defrag slab caches on other nodes. This means
1622 * scanning over all nodes to look for partial slabs which may be
1623 * expensive if we do it every time we are trying to find a slab
1624 * with available objects.
1626 if (!s
->remote_node_defrag_ratio
||
1627 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1631 cpuset_mems_cookie
= get_mems_allowed();
1632 zonelist
= node_zonelist(slab_node(), flags
);
1633 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1634 struct kmem_cache_node
*n
;
1636 n
= get_node(s
, zone_to_nid(zone
));
1638 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1639 n
->nr_partial
> s
->min_partial
) {
1640 object
= get_partial_node(s
, n
, c
, flags
);
1643 * Return the object even if
1644 * put_mems_allowed indicated that
1645 * the cpuset mems_allowed was
1646 * updated in parallel. It's a
1647 * harmless race between the alloc
1648 * and the cpuset update.
1650 put_mems_allowed(cpuset_mems_cookie
);
1655 } while (!put_mems_allowed(cpuset_mems_cookie
));
1661 * Get a partial page, lock it and return it.
1663 static void *get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
,
1664 struct kmem_cache_cpu
*c
)
1667 int searchnode
= (node
== NUMA_NO_NODE
) ? numa_node_id() : node
;
1669 object
= get_partial_node(s
, get_node(s
, searchnode
), c
, flags
);
1670 if (object
|| node
!= NUMA_NO_NODE
)
1673 return get_any_partial(s
, flags
, c
);
1676 #ifdef CONFIG_PREEMPT
1678 * Calculate the next globally unique transaction for disambiguiation
1679 * during cmpxchg. The transactions start with the cpu number and are then
1680 * incremented by CONFIG_NR_CPUS.
1682 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1685 * No preemption supported therefore also no need to check for
1691 static inline unsigned long next_tid(unsigned long tid
)
1693 return tid
+ TID_STEP
;
1696 static inline unsigned int tid_to_cpu(unsigned long tid
)
1698 return tid
% TID_STEP
;
1701 static inline unsigned long tid_to_event(unsigned long tid
)
1703 return tid
/ TID_STEP
;
1706 static inline unsigned int init_tid(int cpu
)
1711 static inline void note_cmpxchg_failure(const char *n
,
1712 const struct kmem_cache
*s
, unsigned long tid
)
1714 #ifdef SLUB_DEBUG_CMPXCHG
1715 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
1717 printk(KERN_INFO
"%s %s: cmpxchg redo ", n
, s
->name
);
1719 #ifdef CONFIG_PREEMPT
1720 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
1721 printk("due to cpu change %d -> %d\n",
1722 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
1725 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
1726 printk("due to cpu running other code. Event %ld->%ld\n",
1727 tid_to_event(tid
), tid_to_event(actual_tid
));
1729 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1730 actual_tid
, tid
, next_tid(tid
));
1732 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
1735 static void init_kmem_cache_cpus(struct kmem_cache
*s
)
1739 for_each_possible_cpu(cpu
)
1740 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
1744 * Remove the cpu slab
1746 static void deactivate_slab(struct kmem_cache
*s
, struct page
*page
, void *freelist
)
1748 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
1749 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1751 enum slab_modes l
= M_NONE
, m
= M_NONE
;
1753 int tail
= DEACTIVATE_TO_HEAD
;
1757 if (page
->freelist
) {
1758 stat(s
, DEACTIVATE_REMOTE_FREES
);
1759 tail
= DEACTIVATE_TO_TAIL
;
1763 * Stage one: Free all available per cpu objects back
1764 * to the page freelist while it is still frozen. Leave the
1767 * There is no need to take the list->lock because the page
1770 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
1772 unsigned long counters
;
1775 prior
= page
->freelist
;
1776 counters
= page
->counters
;
1777 set_freepointer(s
, freelist
, prior
);
1778 new.counters
= counters
;
1780 VM_BUG_ON(!new.frozen
);
1782 } while (!__cmpxchg_double_slab(s
, page
,
1784 freelist
, new.counters
,
1785 "drain percpu freelist"));
1787 freelist
= nextfree
;
1791 * Stage two: Ensure that the page is unfrozen while the
1792 * list presence reflects the actual number of objects
1795 * We setup the list membership and then perform a cmpxchg
1796 * with the count. If there is a mismatch then the page
1797 * is not unfrozen but the page is on the wrong list.
1799 * Then we restart the process which may have to remove
1800 * the page from the list that we just put it on again
1801 * because the number of objects in the slab may have
1806 old
.freelist
= page
->freelist
;
1807 old
.counters
= page
->counters
;
1808 VM_BUG_ON(!old
.frozen
);
1810 /* Determine target state of the slab */
1811 new.counters
= old
.counters
;
1814 set_freepointer(s
, freelist
, old
.freelist
);
1815 new.freelist
= freelist
;
1817 new.freelist
= old
.freelist
;
1821 if (!new.inuse
&& n
->nr_partial
> s
->min_partial
)
1823 else if (new.freelist
) {
1828 * Taking the spinlock removes the possiblity
1829 * that acquire_slab() will see a slab page that
1832 spin_lock(&n
->list_lock
);
1836 if (kmem_cache_debug(s
) && !lock
) {
1839 * This also ensures that the scanning of full
1840 * slabs from diagnostic functions will not see
1843 spin_lock(&n
->list_lock
);
1851 remove_partial(n
, page
);
1853 else if (l
== M_FULL
)
1855 remove_full(s
, page
);
1857 if (m
== M_PARTIAL
) {
1859 add_partial(n
, page
, tail
);
1862 } else if (m
== M_FULL
) {
1864 stat(s
, DEACTIVATE_FULL
);
1865 add_full(s
, n
, page
);
1871 if (!__cmpxchg_double_slab(s
, page
,
1872 old
.freelist
, old
.counters
,
1873 new.freelist
, new.counters
,
1878 spin_unlock(&n
->list_lock
);
1881 stat(s
, DEACTIVATE_EMPTY
);
1882 discard_slab(s
, page
);
1888 * Unfreeze all the cpu partial slabs.
1890 * This function must be called with interrupts disabled
1891 * for the cpu using c (or some other guarantee must be there
1892 * to guarantee no concurrent accesses).
1894 static void unfreeze_partials(struct kmem_cache
*s
,
1895 struct kmem_cache_cpu
*c
)
1897 #ifdef CONFIG_SLUB_CPU_PARTIAL
1898 struct kmem_cache_node
*n
= NULL
, *n2
= NULL
;
1899 struct page
*page
, *discard_page
= NULL
;
1901 while ((page
= c
->partial
)) {
1905 c
->partial
= page
->next
;
1907 n2
= get_node(s
, page_to_nid(page
));
1910 spin_unlock(&n
->list_lock
);
1913 spin_lock(&n
->list_lock
);
1918 old
.freelist
= page
->freelist
;
1919 old
.counters
= page
->counters
;
1920 VM_BUG_ON(!old
.frozen
);
1922 new.counters
= old
.counters
;
1923 new.freelist
= old
.freelist
;
1927 } while (!__cmpxchg_double_slab(s
, page
,
1928 old
.freelist
, old
.counters
,
1929 new.freelist
, new.counters
,
1930 "unfreezing slab"));
1932 if (unlikely(!new.inuse
&& n
->nr_partial
> s
->min_partial
)) {
1933 page
->next
= discard_page
;
1934 discard_page
= page
;
1936 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
1937 stat(s
, FREE_ADD_PARTIAL
);
1942 spin_unlock(&n
->list_lock
);
1944 while (discard_page
) {
1945 page
= discard_page
;
1946 discard_page
= discard_page
->next
;
1948 stat(s
, DEACTIVATE_EMPTY
);
1949 discard_slab(s
, page
);
1956 * Put a page that was just frozen (in __slab_free) into a partial page
1957 * slot if available. This is done without interrupts disabled and without
1958 * preemption disabled. The cmpxchg is racy and may put the partial page
1959 * onto a random cpus partial slot.
1961 * If we did not find a slot then simply move all the partials to the
1962 * per node partial list.
1964 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
)
1966 #ifdef CONFIG_SLUB_CPU_PARTIAL
1967 struct page
*oldpage
;
1974 oldpage
= this_cpu_read(s
->cpu_slab
->partial
);
1977 pobjects
= oldpage
->pobjects
;
1978 pages
= oldpage
->pages
;
1979 if (drain
&& pobjects
> s
->cpu_partial
) {
1980 unsigned long flags
;
1982 * partial array is full. Move the existing
1983 * set to the per node partial list.
1985 local_irq_save(flags
);
1986 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
1987 local_irq_restore(flags
);
1991 stat(s
, CPU_PARTIAL_DRAIN
);
1996 pobjects
+= page
->objects
- page
->inuse
;
1998 page
->pages
= pages
;
1999 page
->pobjects
= pobjects
;
2000 page
->next
= oldpage
;
2002 } while (this_cpu_cmpxchg(s
->cpu_slab
->partial
, oldpage
, page
) != oldpage
);
2006 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
2008 stat(s
, CPUSLAB_FLUSH
);
2009 deactivate_slab(s
, c
->page
, c
->freelist
);
2011 c
->tid
= next_tid(c
->tid
);
2019 * Called from IPI handler with interrupts disabled.
2021 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
2023 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2029 unfreeze_partials(s
, c
);
2033 static void flush_cpu_slab(void *d
)
2035 struct kmem_cache
*s
= d
;
2037 __flush_cpu_slab(s
, smp_processor_id());
2040 static bool has_cpu_slab(int cpu
, void *info
)
2042 struct kmem_cache
*s
= info
;
2043 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2045 return c
->page
|| c
->partial
;
2048 static void flush_all(struct kmem_cache
*s
)
2050 on_each_cpu_cond(has_cpu_slab
, flush_cpu_slab
, s
, 1, GFP_ATOMIC
);
2054 * Check if the objects in a per cpu structure fit numa
2055 * locality expectations.
2057 static inline int node_match(struct page
*page
, int node
)
2060 if (!page
|| (node
!= NUMA_NO_NODE
&& page_to_nid(page
) != node
))
2066 static int count_free(struct page
*page
)
2068 return page
->objects
- page
->inuse
;
2071 static unsigned long count_partial(struct kmem_cache_node
*n
,
2072 int (*get_count
)(struct page
*))
2074 unsigned long flags
;
2075 unsigned long x
= 0;
2078 spin_lock_irqsave(&n
->list_lock
, flags
);
2079 list_for_each_entry(page
, &n
->partial
, lru
)
2080 x
+= get_count(page
);
2081 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2085 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
2087 #ifdef CONFIG_SLUB_DEBUG
2088 return atomic_long_read(&n
->total_objects
);
2094 static noinline
void
2095 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2100 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2102 printk(KERN_WARNING
" cache: %s, object size: %d, buffer size: %d, "
2103 "default order: %d, min order: %d\n", s
->name
, s
->object_size
,
2104 s
->size
, oo_order(s
->oo
), oo_order(s
->min
));
2106 if (oo_order(s
->min
) > get_order(s
->object_size
))
2107 printk(KERN_WARNING
" %s debugging increased min order, use "
2108 "slub_debug=O to disable.\n", s
->name
);
2110 for_each_online_node(node
) {
2111 struct kmem_cache_node
*n
= get_node(s
, node
);
2112 unsigned long nr_slabs
;
2113 unsigned long nr_objs
;
2114 unsigned long nr_free
;
2119 nr_free
= count_partial(n
, count_free
);
2120 nr_slabs
= node_nr_slabs(n
);
2121 nr_objs
= node_nr_objs(n
);
2124 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2125 node
, nr_slabs
, nr_objs
, nr_free
);
2129 static inline void *new_slab_objects(struct kmem_cache
*s
, gfp_t flags
,
2130 int node
, struct kmem_cache_cpu
**pc
)
2133 struct kmem_cache_cpu
*c
= *pc
;
2136 freelist
= get_partial(s
, flags
, node
, c
);
2141 page
= new_slab(s
, flags
, node
);
2143 c
= __this_cpu_ptr(s
->cpu_slab
);
2148 * No other reference to the page yet so we can
2149 * muck around with it freely without cmpxchg
2151 freelist
= page
->freelist
;
2152 page
->freelist
= NULL
;
2154 stat(s
, ALLOC_SLAB
);
2163 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
)
2165 if (unlikely(PageSlabPfmemalloc(page
)))
2166 return gfp_pfmemalloc_allowed(gfpflags
);
2172 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2173 * or deactivate the page.
2175 * The page is still frozen if the return value is not NULL.
2177 * If this function returns NULL then the page has been unfrozen.
2179 * This function must be called with interrupt disabled.
2181 static inline void *get_freelist(struct kmem_cache
*s
, struct page
*page
)
2184 unsigned long counters
;
2188 freelist
= page
->freelist
;
2189 counters
= page
->counters
;
2191 new.counters
= counters
;
2192 VM_BUG_ON(!new.frozen
);
2194 new.inuse
= page
->objects
;
2195 new.frozen
= freelist
!= NULL
;
2197 } while (!__cmpxchg_double_slab(s
, page
,
2206 * Slow path. The lockless freelist is empty or we need to perform
2209 * Processing is still very fast if new objects have been freed to the
2210 * regular freelist. In that case we simply take over the regular freelist
2211 * as the lockless freelist and zap the regular freelist.
2213 * If that is not working then we fall back to the partial lists. We take the
2214 * first element of the freelist as the object to allocate now and move the
2215 * rest of the freelist to the lockless freelist.
2217 * And if we were unable to get a new slab from the partial slab lists then
2218 * we need to allocate a new slab. This is the slowest path since it involves
2219 * a call to the page allocator and the setup of a new slab.
2221 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2222 unsigned long addr
, struct kmem_cache_cpu
*c
)
2226 unsigned long flags
;
2228 local_irq_save(flags
);
2229 #ifdef CONFIG_PREEMPT
2231 * We may have been preempted and rescheduled on a different
2232 * cpu before disabling interrupts. Need to reload cpu area
2235 c
= this_cpu_ptr(s
->cpu_slab
);
2243 if (unlikely(!node_match(page
, node
))) {
2244 stat(s
, ALLOC_NODE_MISMATCH
);
2245 deactivate_slab(s
, page
, c
->freelist
);
2252 * By rights, we should be searching for a slab page that was
2253 * PFMEMALLOC but right now, we are losing the pfmemalloc
2254 * information when the page leaves the per-cpu allocator
2256 if (unlikely(!pfmemalloc_match(page
, gfpflags
))) {
2257 deactivate_slab(s
, page
, c
->freelist
);
2263 /* must check again c->freelist in case of cpu migration or IRQ */
2264 freelist
= c
->freelist
;
2268 stat(s
, ALLOC_SLOWPATH
);
2270 freelist
= get_freelist(s
, page
);
2274 stat(s
, DEACTIVATE_BYPASS
);
2278 stat(s
, ALLOC_REFILL
);
2282 * freelist is pointing to the list of objects to be used.
2283 * page is pointing to the page from which the objects are obtained.
2284 * That page must be frozen for per cpu allocations to work.
2286 VM_BUG_ON(!c
->page
->frozen
);
2287 c
->freelist
= get_freepointer(s
, freelist
);
2288 c
->tid
= next_tid(c
->tid
);
2289 local_irq_restore(flags
);
2295 page
= c
->page
= c
->partial
;
2296 c
->partial
= page
->next
;
2297 stat(s
, CPU_PARTIAL_ALLOC
);
2302 freelist
= new_slab_objects(s
, gfpflags
, node
, &c
);
2304 if (unlikely(!freelist
)) {
2305 if (!(gfpflags
& __GFP_NOWARN
) && printk_ratelimit())
2306 slab_out_of_memory(s
, gfpflags
, node
);
2308 local_irq_restore(flags
);
2313 if (likely(!kmem_cache_debug(s
) && pfmemalloc_match(page
, gfpflags
)))
2316 /* Only entered in the debug case */
2317 if (kmem_cache_debug(s
) && !alloc_debug_processing(s
, page
, freelist
, addr
))
2318 goto new_slab
; /* Slab failed checks. Next slab needed */
2320 deactivate_slab(s
, page
, get_freepointer(s
, freelist
));
2323 local_irq_restore(flags
);
2328 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2329 * have the fastpath folded into their functions. So no function call
2330 * overhead for requests that can be satisfied on the fastpath.
2332 * The fastpath works by first checking if the lockless freelist can be used.
2333 * If not then __slab_alloc is called for slow processing.
2335 * Otherwise we can simply pick the next object from the lockless free list.
2337 static __always_inline
void *slab_alloc_node(struct kmem_cache
*s
,
2338 gfp_t gfpflags
, int node
, unsigned long addr
)
2341 struct kmem_cache_cpu
*c
;
2345 if (slab_pre_alloc_hook(s
, gfpflags
))
2348 s
= memcg_kmem_get_cache(s
, gfpflags
);
2351 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2352 * enabled. We may switch back and forth between cpus while
2353 * reading from one cpu area. That does not matter as long
2354 * as we end up on the original cpu again when doing the cmpxchg.
2356 * Preemption is disabled for the retrieval of the tid because that
2357 * must occur from the current processor. We cannot allow rescheduling
2358 * on a different processor between the determination of the pointer
2359 * and the retrieval of the tid.
2362 c
= __this_cpu_ptr(s
->cpu_slab
);
2365 * The transaction ids are globally unique per cpu and per operation on
2366 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2367 * occurs on the right processor and that there was no operation on the
2368 * linked list in between.
2373 object
= c
->freelist
;
2375 if (unlikely(!object
|| !page
|| !node_match(page
, node
)))
2376 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2379 void *next_object
= get_freepointer_safe(s
, object
);
2382 * The cmpxchg will only match if there was no additional
2383 * operation and if we are on the right processor.
2385 * The cmpxchg does the following atomically (without lock semantics!)
2386 * 1. Relocate first pointer to the current per cpu area.
2387 * 2. Verify that tid and freelist have not been changed
2388 * 3. If they were not changed replace tid and freelist
2390 * Since this is without lock semantics the protection is only against
2391 * code executing on this cpu *not* from access by other cpus.
2393 if (unlikely(!this_cpu_cmpxchg_double(
2394 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2396 next_object
, next_tid(tid
)))) {
2398 note_cmpxchg_failure("slab_alloc", s
, tid
);
2401 prefetch_freepointer(s
, next_object
);
2402 stat(s
, ALLOC_FASTPATH
);
2405 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
2406 memset(object
, 0, s
->object_size
);
2408 slab_post_alloc_hook(s
, gfpflags
, object
);
2413 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2414 gfp_t gfpflags
, unsigned long addr
)
2416 return slab_alloc_node(s
, gfpflags
, NUMA_NO_NODE
, addr
);
2419 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2421 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2423 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->object_size
, s
->size
, gfpflags
);
2427 EXPORT_SYMBOL(kmem_cache_alloc
);
2429 #ifdef CONFIG_TRACING
2430 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2432 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2433 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2436 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2438 void *kmalloc_order_trace(size_t size
, gfp_t flags
, unsigned int order
)
2440 void *ret
= kmalloc_order(size
, flags
, order
);
2441 trace_kmalloc(_RET_IP_
, ret
, size
, PAGE_SIZE
<< order
, flags
);
2444 EXPORT_SYMBOL(kmalloc_order_trace
);
2448 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2450 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2452 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2453 s
->object_size
, s
->size
, gfpflags
, node
);
2457 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2459 #ifdef CONFIG_TRACING
2460 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2462 int node
, size_t size
)
2464 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2466 trace_kmalloc_node(_RET_IP_
, ret
,
2467 size
, s
->size
, gfpflags
, node
);
2470 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2475 * Slow patch handling. This may still be called frequently since objects
2476 * have a longer lifetime than the cpu slabs in most processing loads.
2478 * So we still attempt to reduce cache line usage. Just take the slab
2479 * lock and free the item. If there is no additional partial page
2480 * handling required then we can return immediately.
2482 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2483 void *x
, unsigned long addr
)
2486 void **object
= (void *)x
;
2489 unsigned long counters
;
2490 struct kmem_cache_node
*n
= NULL
;
2491 unsigned long uninitialized_var(flags
);
2493 stat(s
, FREE_SLOWPATH
);
2495 if (kmem_cache_debug(s
) &&
2496 !(n
= free_debug_processing(s
, page
, x
, addr
, &flags
)))
2501 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2504 prior
= page
->freelist
;
2505 counters
= page
->counters
;
2506 set_freepointer(s
, object
, prior
);
2507 new.counters
= counters
;
2508 was_frozen
= new.frozen
;
2510 if ((!new.inuse
|| !prior
) && !was_frozen
) {
2512 if (kmem_cache_has_cpu_partial(s
) && !prior
)
2515 * Slab was on no list before and will be partially empty
2516 * We can defer the list move and instead freeze it.
2520 else { /* Needs to be taken off a list */
2522 n
= get_node(s
, page_to_nid(page
));
2524 * Speculatively acquire the list_lock.
2525 * If the cmpxchg does not succeed then we may
2526 * drop the list_lock without any processing.
2528 * Otherwise the list_lock will synchronize with
2529 * other processors updating the list of slabs.
2531 spin_lock_irqsave(&n
->list_lock
, flags
);
2536 } while (!cmpxchg_double_slab(s
, page
,
2538 object
, new.counters
,
2544 * If we just froze the page then put it onto the
2545 * per cpu partial list.
2547 if (new.frozen
&& !was_frozen
) {
2548 put_cpu_partial(s
, page
, 1);
2549 stat(s
, CPU_PARTIAL_FREE
);
2552 * The list lock was not taken therefore no list
2553 * activity can be necessary.
2556 stat(s
, FREE_FROZEN
);
2560 if (unlikely(!new.inuse
&& n
->nr_partial
> s
->min_partial
))
2564 * Objects left in the slab. If it was not on the partial list before
2567 if (!kmem_cache_has_cpu_partial(s
) && unlikely(!prior
)) {
2568 if (kmem_cache_debug(s
))
2569 remove_full(s
, page
);
2570 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2571 stat(s
, FREE_ADD_PARTIAL
);
2573 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2579 * Slab on the partial list.
2581 remove_partial(n
, page
);
2582 stat(s
, FREE_REMOVE_PARTIAL
);
2584 /* Slab must be on the full list */
2585 remove_full(s
, page
);
2587 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2589 discard_slab(s
, page
);
2593 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2594 * can perform fastpath freeing without additional function calls.
2596 * The fastpath is only possible if we are freeing to the current cpu slab
2597 * of this processor. This typically the case if we have just allocated
2600 * If fastpath is not possible then fall back to __slab_free where we deal
2601 * with all sorts of special processing.
2603 static __always_inline
void slab_free(struct kmem_cache
*s
,
2604 struct page
*page
, void *x
, unsigned long addr
)
2606 void **object
= (void *)x
;
2607 struct kmem_cache_cpu
*c
;
2610 slab_free_hook(s
, x
);
2614 * Determine the currently cpus per cpu slab.
2615 * The cpu may change afterward. However that does not matter since
2616 * data is retrieved via this pointer. If we are on the same cpu
2617 * during the cmpxchg then the free will succedd.
2620 c
= __this_cpu_ptr(s
->cpu_slab
);
2625 if (likely(page
== c
->page
)) {
2626 set_freepointer(s
, object
, c
->freelist
);
2628 if (unlikely(!this_cpu_cmpxchg_double(
2629 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2631 object
, next_tid(tid
)))) {
2633 note_cmpxchg_failure("slab_free", s
, tid
);
2636 stat(s
, FREE_FASTPATH
);
2638 __slab_free(s
, page
, x
, addr
);
2642 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
2644 s
= cache_from_obj(s
, x
);
2647 slab_free(s
, virt_to_head_page(x
), x
, _RET_IP_
);
2648 trace_kmem_cache_free(_RET_IP_
, x
);
2650 EXPORT_SYMBOL(kmem_cache_free
);
2653 * Object placement in a slab is made very easy because we always start at
2654 * offset 0. If we tune the size of the object to the alignment then we can
2655 * get the required alignment by putting one properly sized object after
2658 * Notice that the allocation order determines the sizes of the per cpu
2659 * caches. Each processor has always one slab available for allocations.
2660 * Increasing the allocation order reduces the number of times that slabs
2661 * must be moved on and off the partial lists and is therefore a factor in
2666 * Mininum / Maximum order of slab pages. This influences locking overhead
2667 * and slab fragmentation. A higher order reduces the number of partial slabs
2668 * and increases the number of allocations possible without having to
2669 * take the list_lock.
2671 static int slub_min_order
;
2672 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
2673 static int slub_min_objects
;
2676 * Merge control. If this is set then no merging of slab caches will occur.
2677 * (Could be removed. This was introduced to pacify the merge skeptics.)
2679 static int slub_nomerge
;
2682 * Calculate the order of allocation given an slab object size.
2684 * The order of allocation has significant impact on performance and other
2685 * system components. Generally order 0 allocations should be preferred since
2686 * order 0 does not cause fragmentation in the page allocator. Larger objects
2687 * be problematic to put into order 0 slabs because there may be too much
2688 * unused space left. We go to a higher order if more than 1/16th of the slab
2691 * In order to reach satisfactory performance we must ensure that a minimum
2692 * number of objects is in one slab. Otherwise we may generate too much
2693 * activity on the partial lists which requires taking the list_lock. This is
2694 * less a concern for large slabs though which are rarely used.
2696 * slub_max_order specifies the order where we begin to stop considering the
2697 * number of objects in a slab as critical. If we reach slub_max_order then
2698 * we try to keep the page order as low as possible. So we accept more waste
2699 * of space in favor of a small page order.
2701 * Higher order allocations also allow the placement of more objects in a
2702 * slab and thereby reduce object handling overhead. If the user has
2703 * requested a higher mininum order then we start with that one instead of
2704 * the smallest order which will fit the object.
2706 static inline int slab_order(int size
, int min_objects
,
2707 int max_order
, int fract_leftover
, int reserved
)
2711 int min_order
= slub_min_order
;
2713 if (order_objects(min_order
, size
, reserved
) > MAX_OBJS_PER_PAGE
)
2714 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
2716 for (order
= max(min_order
,
2717 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
2718 order
<= max_order
; order
++) {
2720 unsigned long slab_size
= PAGE_SIZE
<< order
;
2722 if (slab_size
< min_objects
* size
+ reserved
)
2725 rem
= (slab_size
- reserved
) % size
;
2727 if (rem
<= slab_size
/ fract_leftover
)
2735 static inline int calculate_order(int size
, int reserved
)
2743 * Attempt to find best configuration for a slab. This
2744 * works by first attempting to generate a layout with
2745 * the best configuration and backing off gradually.
2747 * First we reduce the acceptable waste in a slab. Then
2748 * we reduce the minimum objects required in a slab.
2750 min_objects
= slub_min_objects
;
2752 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
2753 max_objects
= order_objects(slub_max_order
, size
, reserved
);
2754 min_objects
= min(min_objects
, max_objects
);
2756 while (min_objects
> 1) {
2758 while (fraction
>= 4) {
2759 order
= slab_order(size
, min_objects
,
2760 slub_max_order
, fraction
, reserved
);
2761 if (order
<= slub_max_order
)
2769 * We were unable to place multiple objects in a slab. Now
2770 * lets see if we can place a single object there.
2772 order
= slab_order(size
, 1, slub_max_order
, 1, reserved
);
2773 if (order
<= slub_max_order
)
2777 * Doh this slab cannot be placed using slub_max_order.
2779 order
= slab_order(size
, 1, MAX_ORDER
, 1, reserved
);
2780 if (order
< MAX_ORDER
)
2786 init_kmem_cache_node(struct kmem_cache_node
*n
)
2789 spin_lock_init(&n
->list_lock
);
2790 INIT_LIST_HEAD(&n
->partial
);
2791 #ifdef CONFIG_SLUB_DEBUG
2792 atomic_long_set(&n
->nr_slabs
, 0);
2793 atomic_long_set(&n
->total_objects
, 0);
2794 INIT_LIST_HEAD(&n
->full
);
2798 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
2800 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
2801 KMALLOC_SHIFT_HIGH
* sizeof(struct kmem_cache_cpu
));
2804 * Must align to double word boundary for the double cmpxchg
2805 * instructions to work; see __pcpu_double_call_return_bool().
2807 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
2808 2 * sizeof(void *));
2813 init_kmem_cache_cpus(s
);
2818 static struct kmem_cache
*kmem_cache_node
;
2821 * No kmalloc_node yet so do it by hand. We know that this is the first
2822 * slab on the node for this slabcache. There are no concurrent accesses
2825 * Note that this function only works on the kmalloc_node_cache
2826 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2827 * memory on a fresh node that has no slab structures yet.
2829 static void early_kmem_cache_node_alloc(int node
)
2832 struct kmem_cache_node
*n
;
2834 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
2836 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
2839 if (page_to_nid(page
) != node
) {
2840 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2842 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2843 "in order to be able to continue\n");
2848 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
2851 kmem_cache_node
->node
[node
] = n
;
2852 #ifdef CONFIG_SLUB_DEBUG
2853 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
2854 init_tracking(kmem_cache_node
, n
);
2856 init_kmem_cache_node(n
);
2857 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
2859 add_partial(n
, page
, DEACTIVATE_TO_HEAD
);
2862 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2866 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2867 struct kmem_cache_node
*n
= s
->node
[node
];
2870 kmem_cache_free(kmem_cache_node
, n
);
2872 s
->node
[node
] = NULL
;
2876 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
2880 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2881 struct kmem_cache_node
*n
;
2883 if (slab_state
== DOWN
) {
2884 early_kmem_cache_node_alloc(node
);
2887 n
= kmem_cache_alloc_node(kmem_cache_node
,
2891 free_kmem_cache_nodes(s
);
2896 init_kmem_cache_node(n
);
2901 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
2903 if (min
< MIN_PARTIAL
)
2905 else if (min
> MAX_PARTIAL
)
2907 s
->min_partial
= min
;
2911 * calculate_sizes() determines the order and the distribution of data within
2914 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2916 unsigned long flags
= s
->flags
;
2917 unsigned long size
= s
->object_size
;
2921 * Round up object size to the next word boundary. We can only
2922 * place the free pointer at word boundaries and this determines
2923 * the possible location of the free pointer.
2925 size
= ALIGN(size
, sizeof(void *));
2927 #ifdef CONFIG_SLUB_DEBUG
2929 * Determine if we can poison the object itself. If the user of
2930 * the slab may touch the object after free or before allocation
2931 * then we should never poison the object itself.
2933 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2935 s
->flags
|= __OBJECT_POISON
;
2937 s
->flags
&= ~__OBJECT_POISON
;
2941 * If we are Redzoning then check if there is some space between the
2942 * end of the object and the free pointer. If not then add an
2943 * additional word to have some bytes to store Redzone information.
2945 if ((flags
& SLAB_RED_ZONE
) && size
== s
->object_size
)
2946 size
+= sizeof(void *);
2950 * With that we have determined the number of bytes in actual use
2951 * by the object. This is the potential offset to the free pointer.
2955 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2958 * Relocate free pointer after the object if it is not
2959 * permitted to overwrite the first word of the object on
2962 * This is the case if we do RCU, have a constructor or
2963 * destructor or are poisoning the objects.
2966 size
+= sizeof(void *);
2969 #ifdef CONFIG_SLUB_DEBUG
2970 if (flags
& SLAB_STORE_USER
)
2972 * Need to store information about allocs and frees after
2975 size
+= 2 * sizeof(struct track
);
2977 if (flags
& SLAB_RED_ZONE
)
2979 * Add some empty padding so that we can catch
2980 * overwrites from earlier objects rather than let
2981 * tracking information or the free pointer be
2982 * corrupted if a user writes before the start
2985 size
+= sizeof(void *);
2989 * SLUB stores one object immediately after another beginning from
2990 * offset 0. In order to align the objects we have to simply size
2991 * each object to conform to the alignment.
2993 size
= ALIGN(size
, s
->align
);
2995 if (forced_order
>= 0)
2996 order
= forced_order
;
2998 order
= calculate_order(size
, s
->reserved
);
3005 s
->allocflags
|= __GFP_COMP
;
3007 if (s
->flags
& SLAB_CACHE_DMA
)
3008 s
->allocflags
|= GFP_DMA
;
3010 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
3011 s
->allocflags
|= __GFP_RECLAIMABLE
;
3014 * Determine the number of objects per slab
3016 s
->oo
= oo_make(order
, size
, s
->reserved
);
3017 s
->min
= oo_make(get_order(size
), size
, s
->reserved
);
3018 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
3021 return !!oo_objects(s
->oo
);
3024 static int kmem_cache_open(struct kmem_cache
*s
, unsigned long flags
)
3026 s
->flags
= kmem_cache_flags(s
->size
, flags
, s
->name
, s
->ctor
);
3029 if (need_reserve_slab_rcu
&& (s
->flags
& SLAB_DESTROY_BY_RCU
))
3030 s
->reserved
= sizeof(struct rcu_head
);
3032 if (!calculate_sizes(s
, -1))
3034 if (disable_higher_order_debug
) {
3036 * Disable debugging flags that store metadata if the min slab
3039 if (get_order(s
->size
) > get_order(s
->object_size
)) {
3040 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
3042 if (!calculate_sizes(s
, -1))
3047 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3048 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3049 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_DEBUG_FLAGS
) == 0)
3050 /* Enable fast mode */
3051 s
->flags
|= __CMPXCHG_DOUBLE
;
3055 * The larger the object size is, the more pages we want on the partial
3056 * list to avoid pounding the page allocator excessively.
3058 set_min_partial(s
, ilog2(s
->size
) / 2);
3061 * cpu_partial determined the maximum number of objects kept in the
3062 * per cpu partial lists of a processor.
3064 * Per cpu partial lists mainly contain slabs that just have one
3065 * object freed. If they are used for allocation then they can be
3066 * filled up again with minimal effort. The slab will never hit the
3067 * per node partial lists and therefore no locking will be required.
3069 * This setting also determines
3071 * A) The number of objects from per cpu partial slabs dumped to the
3072 * per node list when we reach the limit.
3073 * B) The number of objects in cpu partial slabs to extract from the
3074 * per node list when we run out of per cpu objects. We only fetch 50%
3075 * to keep some capacity around for frees.
3077 if (!kmem_cache_has_cpu_partial(s
))
3079 else if (s
->size
>= PAGE_SIZE
)
3081 else if (s
->size
>= 1024)
3083 else if (s
->size
>= 256)
3084 s
->cpu_partial
= 13;
3086 s
->cpu_partial
= 30;
3089 s
->remote_node_defrag_ratio
= 1000;
3091 if (!init_kmem_cache_nodes(s
))
3094 if (alloc_kmem_cache_cpus(s
))
3097 free_kmem_cache_nodes(s
);
3099 if (flags
& SLAB_PANIC
)
3100 panic("Cannot create slab %s size=%lu realsize=%u "
3101 "order=%u offset=%u flags=%lx\n",
3102 s
->name
, (unsigned long)s
->size
, s
->size
, oo_order(s
->oo
),
3107 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
3110 #ifdef CONFIG_SLUB_DEBUG
3111 void *addr
= page_address(page
);
3113 unsigned long *map
= kzalloc(BITS_TO_LONGS(page
->objects
) *
3114 sizeof(long), GFP_ATOMIC
);
3117 slab_err(s
, page
, text
, s
->name
);
3120 get_map(s
, page
, map
);
3121 for_each_object(p
, s
, addr
, page
->objects
) {
3123 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
3124 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
3126 print_tracking(s
, p
);
3135 * Attempt to free all partial slabs on a node.
3136 * This is called from kmem_cache_close(). We must be the last thread
3137 * using the cache and therefore we do not need to lock anymore.
3139 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
3141 struct page
*page
, *h
;
3143 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
3145 remove_partial(n
, page
);
3146 discard_slab(s
, page
);
3148 list_slab_objects(s
, page
,
3149 "Objects remaining in %s on kmem_cache_close()");
3155 * Release all resources used by a slab cache.
3157 static inline int kmem_cache_close(struct kmem_cache
*s
)
3162 /* Attempt to free all objects */
3163 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3164 struct kmem_cache_node
*n
= get_node(s
, node
);
3167 if (n
->nr_partial
|| slabs_node(s
, node
))
3170 free_percpu(s
->cpu_slab
);
3171 free_kmem_cache_nodes(s
);
3175 int __kmem_cache_shutdown(struct kmem_cache
*s
)
3177 int rc
= kmem_cache_close(s
);
3181 * We do the same lock strategy around sysfs_slab_add, see
3182 * __kmem_cache_create. Because this is pretty much the last
3183 * operation we do and the lock will be released shortly after
3184 * that in slab_common.c, we could just move sysfs_slab_remove
3185 * to a later point in common code. We should do that when we
3186 * have a common sysfs framework for all allocators.
3188 mutex_unlock(&slab_mutex
);
3189 sysfs_slab_remove(s
);
3190 mutex_lock(&slab_mutex
);
3196 /********************************************************************
3198 *******************************************************************/
3200 static int __init
setup_slub_min_order(char *str
)
3202 get_option(&str
, &slub_min_order
);
3207 __setup("slub_min_order=", setup_slub_min_order
);
3209 static int __init
setup_slub_max_order(char *str
)
3211 get_option(&str
, &slub_max_order
);
3212 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
3217 __setup("slub_max_order=", setup_slub_max_order
);
3219 static int __init
setup_slub_min_objects(char *str
)
3221 get_option(&str
, &slub_min_objects
);
3226 __setup("slub_min_objects=", setup_slub_min_objects
);
3228 static int __init
setup_slub_nomerge(char *str
)
3234 __setup("slub_nomerge", setup_slub_nomerge
);
3236 void *__kmalloc(size_t size
, gfp_t flags
)
3238 struct kmem_cache
*s
;
3241 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3242 return kmalloc_large(size
, flags
);
3244 s
= kmalloc_slab(size
, flags
);
3246 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3249 ret
= slab_alloc(s
, flags
, _RET_IP_
);
3251 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3255 EXPORT_SYMBOL(__kmalloc
);
3258 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3263 flags
|= __GFP_COMP
| __GFP_NOTRACK
| __GFP_KMEMCG
;
3264 page
= alloc_pages_node(node
, flags
, get_order(size
));
3266 ptr
= page_address(page
);
3268 kmemleak_alloc(ptr
, size
, 1, flags
);
3272 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3274 struct kmem_cache
*s
;
3277 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
3278 ret
= kmalloc_large_node(size
, flags
, node
);
3280 trace_kmalloc_node(_RET_IP_
, ret
,
3281 size
, PAGE_SIZE
<< get_order(size
),
3287 s
= kmalloc_slab(size
, flags
);
3289 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3292 ret
= slab_alloc_node(s
, flags
, node
, _RET_IP_
);
3294 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3298 EXPORT_SYMBOL(__kmalloc_node
);
3301 size_t ksize(const void *object
)
3305 if (unlikely(object
== ZERO_SIZE_PTR
))
3308 page
= virt_to_head_page(object
);
3310 if (unlikely(!PageSlab(page
))) {
3311 WARN_ON(!PageCompound(page
));
3312 return PAGE_SIZE
<< compound_order(page
);
3315 return slab_ksize(page
->slab_cache
);
3317 EXPORT_SYMBOL(ksize
);
3319 #ifdef CONFIG_SLUB_DEBUG
3320 bool verify_mem_not_deleted(const void *x
)
3323 void *object
= (void *)x
;
3324 unsigned long flags
;
3327 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3330 local_irq_save(flags
);
3332 page
= virt_to_head_page(x
);
3333 if (unlikely(!PageSlab(page
))) {
3334 /* maybe it was from stack? */
3340 if (on_freelist(page
->slab_cache
, page
, object
)) {
3341 object_err(page
->slab_cache
, page
, object
, "Object is on free-list");
3349 local_irq_restore(flags
);
3352 EXPORT_SYMBOL(verify_mem_not_deleted
);
3355 void kfree(const void *x
)
3358 void *object
= (void *)x
;
3360 trace_kfree(_RET_IP_
, x
);
3362 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3365 page
= virt_to_head_page(x
);
3366 if (unlikely(!PageSlab(page
))) {
3367 BUG_ON(!PageCompound(page
));
3369 __free_memcg_kmem_pages(page
, compound_order(page
));
3372 slab_free(page
->slab_cache
, page
, object
, _RET_IP_
);
3374 EXPORT_SYMBOL(kfree
);
3377 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3378 * the remaining slabs by the number of items in use. The slabs with the
3379 * most items in use come first. New allocations will then fill those up
3380 * and thus they can be removed from the partial lists.
3382 * The slabs with the least items are placed last. This results in them
3383 * being allocated from last increasing the chance that the last objects
3384 * are freed in them.
3386 int kmem_cache_shrink(struct kmem_cache
*s
)
3390 struct kmem_cache_node
*n
;
3393 int objects
= oo_objects(s
->max
);
3394 struct list_head
*slabs_by_inuse
=
3395 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
3396 unsigned long flags
;
3398 if (!slabs_by_inuse
)
3402 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3403 n
= get_node(s
, node
);
3408 for (i
= 0; i
< objects
; i
++)
3409 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
3411 spin_lock_irqsave(&n
->list_lock
, flags
);
3414 * Build lists indexed by the items in use in each slab.
3416 * Note that concurrent frees may occur while we hold the
3417 * list_lock. page->inuse here is the upper limit.
3419 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3420 list_move(&page
->lru
, slabs_by_inuse
+ page
->inuse
);
3426 * Rebuild the partial list with the slabs filled up most
3427 * first and the least used slabs at the end.
3429 for (i
= objects
- 1; i
> 0; i
--)
3430 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
3432 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3434 /* Release empty slabs */
3435 list_for_each_entry_safe(page
, t
, slabs_by_inuse
, lru
)
3436 discard_slab(s
, page
);
3439 kfree(slabs_by_inuse
);
3442 EXPORT_SYMBOL(kmem_cache_shrink
);
3444 static int slab_mem_going_offline_callback(void *arg
)
3446 struct kmem_cache
*s
;
3448 mutex_lock(&slab_mutex
);
3449 list_for_each_entry(s
, &slab_caches
, list
)
3450 kmem_cache_shrink(s
);
3451 mutex_unlock(&slab_mutex
);
3456 static void slab_mem_offline_callback(void *arg
)
3458 struct kmem_cache_node
*n
;
3459 struct kmem_cache
*s
;
3460 struct memory_notify
*marg
= arg
;
3463 offline_node
= marg
->status_change_nid_normal
;
3466 * If the node still has available memory. we need kmem_cache_node
3469 if (offline_node
< 0)
3472 mutex_lock(&slab_mutex
);
3473 list_for_each_entry(s
, &slab_caches
, list
) {
3474 n
= get_node(s
, offline_node
);
3477 * if n->nr_slabs > 0, slabs still exist on the node
3478 * that is going down. We were unable to free them,
3479 * and offline_pages() function shouldn't call this
3480 * callback. So, we must fail.
3482 BUG_ON(slabs_node(s
, offline_node
));
3484 s
->node
[offline_node
] = NULL
;
3485 kmem_cache_free(kmem_cache_node
, n
);
3488 mutex_unlock(&slab_mutex
);
3491 static int slab_mem_going_online_callback(void *arg
)
3493 struct kmem_cache_node
*n
;
3494 struct kmem_cache
*s
;
3495 struct memory_notify
*marg
= arg
;
3496 int nid
= marg
->status_change_nid_normal
;
3500 * If the node's memory is already available, then kmem_cache_node is
3501 * already created. Nothing to do.
3507 * We are bringing a node online. No memory is available yet. We must
3508 * allocate a kmem_cache_node structure in order to bring the node
3511 mutex_lock(&slab_mutex
);
3512 list_for_each_entry(s
, &slab_caches
, list
) {
3514 * XXX: kmem_cache_alloc_node will fallback to other nodes
3515 * since memory is not yet available from the node that
3518 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
3523 init_kmem_cache_node(n
);
3527 mutex_unlock(&slab_mutex
);
3531 static int slab_memory_callback(struct notifier_block
*self
,
3532 unsigned long action
, void *arg
)
3537 case MEM_GOING_ONLINE
:
3538 ret
= slab_mem_going_online_callback(arg
);
3540 case MEM_GOING_OFFLINE
:
3541 ret
= slab_mem_going_offline_callback(arg
);
3544 case MEM_CANCEL_ONLINE
:
3545 slab_mem_offline_callback(arg
);
3548 case MEM_CANCEL_OFFLINE
:
3552 ret
= notifier_from_errno(ret
);
3558 static struct notifier_block slab_memory_callback_nb
= {
3559 .notifier_call
= slab_memory_callback
,
3560 .priority
= SLAB_CALLBACK_PRI
,
3563 /********************************************************************
3564 * Basic setup of slabs
3565 *******************************************************************/
3568 * Used for early kmem_cache structures that were allocated using
3569 * the page allocator. Allocate them properly then fix up the pointers
3570 * that may be pointing to the wrong kmem_cache structure.
3573 static struct kmem_cache
* __init
bootstrap(struct kmem_cache
*static_cache
)
3576 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
3578 memcpy(s
, static_cache
, kmem_cache
->object_size
);
3581 * This runs very early, and only the boot processor is supposed to be
3582 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3585 __flush_cpu_slab(s
, smp_processor_id());
3586 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3587 struct kmem_cache_node
*n
= get_node(s
, node
);
3591 list_for_each_entry(p
, &n
->partial
, lru
)
3594 #ifdef CONFIG_SLUB_DEBUG
3595 list_for_each_entry(p
, &n
->full
, lru
)
3600 list_add(&s
->list
, &slab_caches
);
3604 void __init
kmem_cache_init(void)
3606 static __initdata
struct kmem_cache boot_kmem_cache
,
3607 boot_kmem_cache_node
;
3609 if (debug_guardpage_minorder())
3612 kmem_cache_node
= &boot_kmem_cache_node
;
3613 kmem_cache
= &boot_kmem_cache
;
3615 create_boot_cache(kmem_cache_node
, "kmem_cache_node",
3616 sizeof(struct kmem_cache_node
), SLAB_HWCACHE_ALIGN
);
3618 register_hotmemory_notifier(&slab_memory_callback_nb
);
3620 /* Able to allocate the per node structures */
3621 slab_state
= PARTIAL
;
3623 create_boot_cache(kmem_cache
, "kmem_cache",
3624 offsetof(struct kmem_cache
, node
) +
3625 nr_node_ids
* sizeof(struct kmem_cache_node
*),
3626 SLAB_HWCACHE_ALIGN
);
3628 kmem_cache
= bootstrap(&boot_kmem_cache
);
3631 * Allocate kmem_cache_node properly from the kmem_cache slab.
3632 * kmem_cache_node is separately allocated so no need to
3633 * update any list pointers.
3635 kmem_cache_node
= bootstrap(&boot_kmem_cache_node
);
3637 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3638 create_kmalloc_caches(0);
3641 register_cpu_notifier(&slab_notifier
);
3645 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3646 " CPUs=%d, Nodes=%d\n",
3648 slub_min_order
, slub_max_order
, slub_min_objects
,
3649 nr_cpu_ids
, nr_node_ids
);
3652 void __init
kmem_cache_init_late(void)
3657 * Find a mergeable slab cache
3659 static int slab_unmergeable(struct kmem_cache
*s
)
3661 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3668 * We may have set a slab to be unmergeable during bootstrap.
3670 if (s
->refcount
< 0)
3676 static struct kmem_cache
*find_mergeable(struct mem_cgroup
*memcg
, size_t size
,
3677 size_t align
, unsigned long flags
, const char *name
,
3678 void (*ctor
)(void *))
3680 struct kmem_cache
*s
;
3682 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3688 size
= ALIGN(size
, sizeof(void *));
3689 align
= calculate_alignment(flags
, align
, size
);
3690 size
= ALIGN(size
, align
);
3691 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3693 list_for_each_entry(s
, &slab_caches
, list
) {
3694 if (slab_unmergeable(s
))
3700 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3703 * Check if alignment is compatible.
3704 * Courtesy of Adrian Drzewiecki
3706 if ((s
->size
& ~(align
- 1)) != s
->size
)
3709 if (s
->size
- size
>= sizeof(void *))
3712 if (!cache_match_memcg(s
, memcg
))
3721 __kmem_cache_alias(struct mem_cgroup
*memcg
, const char *name
, size_t size
,
3722 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3724 struct kmem_cache
*s
;
3726 s
= find_mergeable(memcg
, size
, align
, flags
, name
, ctor
);
3730 * Adjust the object sizes so that we clear
3731 * the complete object on kzalloc.
3733 s
->object_size
= max(s
->object_size
, (int)size
);
3734 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3736 if (sysfs_slab_alias(s
, name
)) {
3745 int __kmem_cache_create(struct kmem_cache
*s
, unsigned long flags
)
3749 err
= kmem_cache_open(s
, flags
);
3753 /* Mutex is not taken during early boot */
3754 if (slab_state
<= UP
)
3757 memcg_propagate_slab_attrs(s
);
3758 mutex_unlock(&slab_mutex
);
3759 err
= sysfs_slab_add(s
);
3760 mutex_lock(&slab_mutex
);
3763 kmem_cache_close(s
);
3770 * Use the cpu notifier to insure that the cpu slabs are flushed when
3773 static int slab_cpuup_callback(struct notifier_block
*nfb
,
3774 unsigned long action
, void *hcpu
)
3776 long cpu
= (long)hcpu
;
3777 struct kmem_cache
*s
;
3778 unsigned long flags
;
3781 case CPU_UP_CANCELED
:
3782 case CPU_UP_CANCELED_FROZEN
:
3784 case CPU_DEAD_FROZEN
:
3785 mutex_lock(&slab_mutex
);
3786 list_for_each_entry(s
, &slab_caches
, list
) {
3787 local_irq_save(flags
);
3788 __flush_cpu_slab(s
, cpu
);
3789 local_irq_restore(flags
);
3791 mutex_unlock(&slab_mutex
);
3799 static struct notifier_block slab_notifier
= {
3800 .notifier_call
= slab_cpuup_callback
3805 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
3807 struct kmem_cache
*s
;
3810 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3811 return kmalloc_large(size
, gfpflags
);
3813 s
= kmalloc_slab(size
, gfpflags
);
3815 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3818 ret
= slab_alloc(s
, gfpflags
, caller
);
3820 /* Honor the call site pointer we received. */
3821 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
3827 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3828 int node
, unsigned long caller
)
3830 struct kmem_cache
*s
;
3833 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
3834 ret
= kmalloc_large_node(size
, gfpflags
, node
);
3836 trace_kmalloc_node(caller
, ret
,
3837 size
, PAGE_SIZE
<< get_order(size
),
3843 s
= kmalloc_slab(size
, gfpflags
);
3845 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3848 ret
= slab_alloc_node(s
, gfpflags
, node
, caller
);
3850 /* Honor the call site pointer we received. */
3851 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
3858 static int count_inuse(struct page
*page
)
3863 static int count_total(struct page
*page
)
3865 return page
->objects
;
3869 #ifdef CONFIG_SLUB_DEBUG
3870 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3874 void *addr
= page_address(page
);
3876 if (!check_slab(s
, page
) ||
3877 !on_freelist(s
, page
, NULL
))
3880 /* Now we know that a valid freelist exists */
3881 bitmap_zero(map
, page
->objects
);
3883 get_map(s
, page
, map
);
3884 for_each_object(p
, s
, addr
, page
->objects
) {
3885 if (test_bit(slab_index(p
, s
, addr
), map
))
3886 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
3890 for_each_object(p
, s
, addr
, page
->objects
)
3891 if (!test_bit(slab_index(p
, s
, addr
), map
))
3892 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
3897 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3901 validate_slab(s
, page
, map
);
3905 static int validate_slab_node(struct kmem_cache
*s
,
3906 struct kmem_cache_node
*n
, unsigned long *map
)
3908 unsigned long count
= 0;
3910 unsigned long flags
;
3912 spin_lock_irqsave(&n
->list_lock
, flags
);
3914 list_for_each_entry(page
, &n
->partial
, lru
) {
3915 validate_slab_slab(s
, page
, map
);
3918 if (count
!= n
->nr_partial
)
3919 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3920 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3922 if (!(s
->flags
& SLAB_STORE_USER
))
3925 list_for_each_entry(page
, &n
->full
, lru
) {
3926 validate_slab_slab(s
, page
, map
);
3929 if (count
!= atomic_long_read(&n
->nr_slabs
))
3930 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3931 "counter=%ld\n", s
->name
, count
,
3932 atomic_long_read(&n
->nr_slabs
));
3935 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3939 static long validate_slab_cache(struct kmem_cache
*s
)
3942 unsigned long count
= 0;
3943 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3944 sizeof(unsigned long), GFP_KERNEL
);
3950 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3951 struct kmem_cache_node
*n
= get_node(s
, node
);
3953 count
+= validate_slab_node(s
, n
, map
);
3959 * Generate lists of code addresses where slabcache objects are allocated
3964 unsigned long count
;
3971 DECLARE_BITMAP(cpus
, NR_CPUS
);
3977 unsigned long count
;
3978 struct location
*loc
;
3981 static void free_loc_track(struct loc_track
*t
)
3984 free_pages((unsigned long)t
->loc
,
3985 get_order(sizeof(struct location
) * t
->max
));
3988 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3993 order
= get_order(sizeof(struct location
) * max
);
3995 l
= (void *)__get_free_pages(flags
, order
);
4000 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4008 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4009 const struct track
*track
)
4011 long start
, end
, pos
;
4013 unsigned long caddr
;
4014 unsigned long age
= jiffies
- track
->when
;
4020 pos
= start
+ (end
- start
+ 1) / 2;
4023 * There is nothing at "end". If we end up there
4024 * we need to add something to before end.
4029 caddr
= t
->loc
[pos
].addr
;
4030 if (track
->addr
== caddr
) {
4036 if (age
< l
->min_time
)
4038 if (age
> l
->max_time
)
4041 if (track
->pid
< l
->min_pid
)
4042 l
->min_pid
= track
->pid
;
4043 if (track
->pid
> l
->max_pid
)
4044 l
->max_pid
= track
->pid
;
4046 cpumask_set_cpu(track
->cpu
,
4047 to_cpumask(l
->cpus
));
4049 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4053 if (track
->addr
< caddr
)
4060 * Not found. Insert new tracking element.
4062 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4068 (t
->count
- pos
) * sizeof(struct location
));
4071 l
->addr
= track
->addr
;
4075 l
->min_pid
= track
->pid
;
4076 l
->max_pid
= track
->pid
;
4077 cpumask_clear(to_cpumask(l
->cpus
));
4078 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4079 nodes_clear(l
->nodes
);
4080 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4084 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4085 struct page
*page
, enum track_item alloc
,
4088 void *addr
= page_address(page
);
4091 bitmap_zero(map
, page
->objects
);
4092 get_map(s
, page
, map
);
4094 for_each_object(p
, s
, addr
, page
->objects
)
4095 if (!test_bit(slab_index(p
, s
, addr
), map
))
4096 add_location(t
, s
, get_track(s
, p
, alloc
));
4099 static int list_locations(struct kmem_cache
*s
, char *buf
,
4100 enum track_item alloc
)
4104 struct loc_track t
= { 0, 0, NULL
};
4106 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4107 sizeof(unsigned long), GFP_KERNEL
);
4109 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4112 return sprintf(buf
, "Out of memory\n");
4114 /* Push back cpu slabs */
4117 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4118 struct kmem_cache_node
*n
= get_node(s
, node
);
4119 unsigned long flags
;
4122 if (!atomic_long_read(&n
->nr_slabs
))
4125 spin_lock_irqsave(&n
->list_lock
, flags
);
4126 list_for_each_entry(page
, &n
->partial
, lru
)
4127 process_slab(&t
, s
, page
, alloc
, map
);
4128 list_for_each_entry(page
, &n
->full
, lru
)
4129 process_slab(&t
, s
, page
, alloc
, map
);
4130 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4133 for (i
= 0; i
< t
.count
; i
++) {
4134 struct location
*l
= &t
.loc
[i
];
4136 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4138 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4141 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4143 len
+= sprintf(buf
+ len
, "<not-available>");
4145 if (l
->sum_time
!= l
->min_time
) {
4146 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4148 (long)div_u64(l
->sum_time
, l
->count
),
4151 len
+= sprintf(buf
+ len
, " age=%ld",
4154 if (l
->min_pid
!= l
->max_pid
)
4155 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4156 l
->min_pid
, l
->max_pid
);
4158 len
+= sprintf(buf
+ len
, " pid=%ld",
4161 if (num_online_cpus() > 1 &&
4162 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4163 len
< PAGE_SIZE
- 60) {
4164 len
+= sprintf(buf
+ len
, " cpus=");
4165 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4166 to_cpumask(l
->cpus
));
4169 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4170 len
< PAGE_SIZE
- 60) {
4171 len
+= sprintf(buf
+ len
, " nodes=");
4172 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4176 len
+= sprintf(buf
+ len
, "\n");
4182 len
+= sprintf(buf
, "No data\n");
4187 #ifdef SLUB_RESILIENCY_TEST
4188 static void resiliency_test(void)
4192 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || KMALLOC_SHIFT_HIGH
< 10);
4194 printk(KERN_ERR
"SLUB resiliency testing\n");
4195 printk(KERN_ERR
"-----------------------\n");
4196 printk(KERN_ERR
"A. Corruption after allocation\n");
4198 p
= kzalloc(16, GFP_KERNEL
);
4200 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
4201 " 0x12->0x%p\n\n", p
+ 16);
4203 validate_slab_cache(kmalloc_caches
[4]);
4205 /* Hmmm... The next two are dangerous */
4206 p
= kzalloc(32, GFP_KERNEL
);
4207 p
[32 + sizeof(void *)] = 0x34;
4208 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
4209 " 0x34 -> -0x%p\n", p
);
4211 "If allocated object is overwritten then not detectable\n\n");
4213 validate_slab_cache(kmalloc_caches
[5]);
4214 p
= kzalloc(64, GFP_KERNEL
);
4215 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4217 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4220 "If allocated object is overwritten then not detectable\n\n");
4221 validate_slab_cache(kmalloc_caches
[6]);
4223 printk(KERN_ERR
"\nB. Corruption after free\n");
4224 p
= kzalloc(128, GFP_KERNEL
);
4227 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4228 validate_slab_cache(kmalloc_caches
[7]);
4230 p
= kzalloc(256, GFP_KERNEL
);
4233 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4235 validate_slab_cache(kmalloc_caches
[8]);
4237 p
= kzalloc(512, GFP_KERNEL
);
4240 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4241 validate_slab_cache(kmalloc_caches
[9]);
4245 static void resiliency_test(void) {};
4250 enum slab_stat_type
{
4251 SL_ALL
, /* All slabs */
4252 SL_PARTIAL
, /* Only partially allocated slabs */
4253 SL_CPU
, /* Only slabs used for cpu caches */
4254 SL_OBJECTS
, /* Determine allocated objects not slabs */
4255 SL_TOTAL
/* Determine object capacity not slabs */
4258 #define SO_ALL (1 << SL_ALL)
4259 #define SO_PARTIAL (1 << SL_PARTIAL)
4260 #define SO_CPU (1 << SL_CPU)
4261 #define SO_OBJECTS (1 << SL_OBJECTS)
4262 #define SO_TOTAL (1 << SL_TOTAL)
4264 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4265 char *buf
, unsigned long flags
)
4267 unsigned long total
= 0;
4270 unsigned long *nodes
;
4271 unsigned long *per_cpu
;
4273 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
4276 per_cpu
= nodes
+ nr_node_ids
;
4278 if (flags
& SO_CPU
) {
4281 for_each_possible_cpu(cpu
) {
4282 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
4286 page
= ACCESS_ONCE(c
->page
);
4290 node
= page_to_nid(page
);
4291 if (flags
& SO_TOTAL
)
4293 else if (flags
& SO_OBJECTS
)
4301 page
= ACCESS_ONCE(c
->partial
);
4312 lock_memory_hotplug();
4313 #ifdef CONFIG_SLUB_DEBUG
4314 if (flags
& SO_ALL
) {
4315 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4316 struct kmem_cache_node
*n
= get_node(s
, node
);
4318 if (flags
& SO_TOTAL
)
4319 x
= atomic_long_read(&n
->total_objects
);
4320 else if (flags
& SO_OBJECTS
)
4321 x
= atomic_long_read(&n
->total_objects
) -
4322 count_partial(n
, count_free
);
4325 x
= atomic_long_read(&n
->nr_slabs
);
4332 if (flags
& SO_PARTIAL
) {
4333 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4334 struct kmem_cache_node
*n
= get_node(s
, node
);
4336 if (flags
& SO_TOTAL
)
4337 x
= count_partial(n
, count_total
);
4338 else if (flags
& SO_OBJECTS
)
4339 x
= count_partial(n
, count_inuse
);
4346 x
= sprintf(buf
, "%lu", total
);
4348 for_each_node_state(node
, N_NORMAL_MEMORY
)
4350 x
+= sprintf(buf
+ x
, " N%d=%lu",
4353 unlock_memory_hotplug();
4355 return x
+ sprintf(buf
+ x
, "\n");
4358 #ifdef CONFIG_SLUB_DEBUG
4359 static int any_slab_objects(struct kmem_cache
*s
)
4363 for_each_online_node(node
) {
4364 struct kmem_cache_node
*n
= get_node(s
, node
);
4369 if (atomic_long_read(&n
->total_objects
))
4376 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4377 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4379 struct slab_attribute
{
4380 struct attribute attr
;
4381 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4382 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4385 #define SLAB_ATTR_RO(_name) \
4386 static struct slab_attribute _name##_attr = \
4387 __ATTR(_name, 0400, _name##_show, NULL)
4389 #define SLAB_ATTR(_name) \
4390 static struct slab_attribute _name##_attr = \
4391 __ATTR(_name, 0600, _name##_show, _name##_store)
4393 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4395 return sprintf(buf
, "%d\n", s
->size
);
4397 SLAB_ATTR_RO(slab_size
);
4399 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4401 return sprintf(buf
, "%d\n", s
->align
);
4403 SLAB_ATTR_RO(align
);
4405 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4407 return sprintf(buf
, "%d\n", s
->object_size
);
4409 SLAB_ATTR_RO(object_size
);
4411 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4413 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
4415 SLAB_ATTR_RO(objs_per_slab
);
4417 static ssize_t
order_store(struct kmem_cache
*s
,
4418 const char *buf
, size_t length
)
4420 unsigned long order
;
4423 err
= strict_strtoul(buf
, 10, &order
);
4427 if (order
> slub_max_order
|| order
< slub_min_order
)
4430 calculate_sizes(s
, order
);
4434 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4436 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4440 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4442 return sprintf(buf
, "%lu\n", s
->min_partial
);
4445 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4451 err
= strict_strtoul(buf
, 10, &min
);
4455 set_min_partial(s
, min
);
4458 SLAB_ATTR(min_partial
);
4460 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4462 return sprintf(buf
, "%u\n", s
->cpu_partial
);
4465 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
4468 unsigned long objects
;
4471 err
= strict_strtoul(buf
, 10, &objects
);
4474 if (objects
&& !kmem_cache_has_cpu_partial(s
))
4477 s
->cpu_partial
= objects
;
4481 SLAB_ATTR(cpu_partial
);
4483 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4487 return sprintf(buf
, "%pS\n", s
->ctor
);
4491 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4493 return sprintf(buf
, "%d\n", s
->refcount
- 1);
4495 SLAB_ATTR_RO(aliases
);
4497 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4499 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4501 SLAB_ATTR_RO(partial
);
4503 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4505 return show_slab_objects(s
, buf
, SO_CPU
);
4507 SLAB_ATTR_RO(cpu_slabs
);
4509 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4511 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4513 SLAB_ATTR_RO(objects
);
4515 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
4517 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
4519 SLAB_ATTR_RO(objects_partial
);
4521 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4528 for_each_online_cpu(cpu
) {
4529 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
)->partial
;
4532 pages
+= page
->pages
;
4533 objects
+= page
->pobjects
;
4537 len
= sprintf(buf
, "%d(%d)", objects
, pages
);
4540 for_each_online_cpu(cpu
) {
4541 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
) ->partial
;
4543 if (page
&& len
< PAGE_SIZE
- 20)
4544 len
+= sprintf(buf
+ len
, " C%d=%d(%d)", cpu
,
4545 page
->pobjects
, page
->pages
);
4548 return len
+ sprintf(buf
+ len
, "\n");
4550 SLAB_ATTR_RO(slabs_cpu_partial
);
4552 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4554 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4557 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4558 const char *buf
, size_t length
)
4560 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4562 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4565 SLAB_ATTR(reclaim_account
);
4567 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4569 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4571 SLAB_ATTR_RO(hwcache_align
);
4573 #ifdef CONFIG_ZONE_DMA
4574 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4576 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4578 SLAB_ATTR_RO(cache_dma
);
4581 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4583 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4585 SLAB_ATTR_RO(destroy_by_rcu
);
4587 static ssize_t
reserved_show(struct kmem_cache
*s
, char *buf
)
4589 return sprintf(buf
, "%d\n", s
->reserved
);
4591 SLAB_ATTR_RO(reserved
);
4593 #ifdef CONFIG_SLUB_DEBUG
4594 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
4596 return show_slab_objects(s
, buf
, SO_ALL
);
4598 SLAB_ATTR_RO(slabs
);
4600 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
4602 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
4604 SLAB_ATTR_RO(total_objects
);
4606 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
4608 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
4611 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
4612 const char *buf
, size_t length
)
4614 s
->flags
&= ~SLAB_DEBUG_FREE
;
4615 if (buf
[0] == '1') {
4616 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4617 s
->flags
|= SLAB_DEBUG_FREE
;
4621 SLAB_ATTR(sanity_checks
);
4623 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
4625 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
4628 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
4631 s
->flags
&= ~SLAB_TRACE
;
4632 if (buf
[0] == '1') {
4633 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4634 s
->flags
|= SLAB_TRACE
;
4640 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4642 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4645 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4646 const char *buf
, size_t length
)
4648 if (any_slab_objects(s
))
4651 s
->flags
&= ~SLAB_RED_ZONE
;
4652 if (buf
[0] == '1') {
4653 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4654 s
->flags
|= SLAB_RED_ZONE
;
4656 calculate_sizes(s
, -1);
4659 SLAB_ATTR(red_zone
);
4661 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4663 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4666 static ssize_t
poison_store(struct kmem_cache
*s
,
4667 const char *buf
, size_t length
)
4669 if (any_slab_objects(s
))
4672 s
->flags
&= ~SLAB_POISON
;
4673 if (buf
[0] == '1') {
4674 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4675 s
->flags
|= SLAB_POISON
;
4677 calculate_sizes(s
, -1);
4682 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4684 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4687 static ssize_t
store_user_store(struct kmem_cache
*s
,
4688 const char *buf
, size_t length
)
4690 if (any_slab_objects(s
))
4693 s
->flags
&= ~SLAB_STORE_USER
;
4694 if (buf
[0] == '1') {
4695 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4696 s
->flags
|= SLAB_STORE_USER
;
4698 calculate_sizes(s
, -1);
4701 SLAB_ATTR(store_user
);
4703 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4708 static ssize_t
validate_store(struct kmem_cache
*s
,
4709 const char *buf
, size_t length
)
4713 if (buf
[0] == '1') {
4714 ret
= validate_slab_cache(s
);
4720 SLAB_ATTR(validate
);
4722 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4724 if (!(s
->flags
& SLAB_STORE_USER
))
4726 return list_locations(s
, buf
, TRACK_ALLOC
);
4728 SLAB_ATTR_RO(alloc_calls
);
4730 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4732 if (!(s
->flags
& SLAB_STORE_USER
))
4734 return list_locations(s
, buf
, TRACK_FREE
);
4736 SLAB_ATTR_RO(free_calls
);
4737 #endif /* CONFIG_SLUB_DEBUG */
4739 #ifdef CONFIG_FAILSLAB
4740 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
4742 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
4745 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
4748 s
->flags
&= ~SLAB_FAILSLAB
;
4750 s
->flags
|= SLAB_FAILSLAB
;
4753 SLAB_ATTR(failslab
);
4756 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4761 static ssize_t
shrink_store(struct kmem_cache
*s
,
4762 const char *buf
, size_t length
)
4764 if (buf
[0] == '1') {
4765 int rc
= kmem_cache_shrink(s
);
4776 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4778 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4781 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4782 const char *buf
, size_t length
)
4784 unsigned long ratio
;
4787 err
= strict_strtoul(buf
, 10, &ratio
);
4792 s
->remote_node_defrag_ratio
= ratio
* 10;
4796 SLAB_ATTR(remote_node_defrag_ratio
);
4799 #ifdef CONFIG_SLUB_STATS
4800 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4802 unsigned long sum
= 0;
4805 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4810 for_each_online_cpu(cpu
) {
4811 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
4817 len
= sprintf(buf
, "%lu", sum
);
4820 for_each_online_cpu(cpu
) {
4821 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4822 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4826 return len
+ sprintf(buf
+ len
, "\n");
4829 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
4833 for_each_online_cpu(cpu
)
4834 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
4837 #define STAT_ATTR(si, text) \
4838 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4840 return show_stat(s, buf, si); \
4842 static ssize_t text##_store(struct kmem_cache *s, \
4843 const char *buf, size_t length) \
4845 if (buf[0] != '0') \
4847 clear_stat(s, si); \
4852 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4853 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4854 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4855 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4856 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4857 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4858 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4859 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4860 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4861 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4862 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
4863 STAT_ATTR(FREE_SLAB
, free_slab
);
4864 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4865 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4866 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4867 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4868 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4869 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4870 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
4871 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4872 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
4873 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
4874 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
4875 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
4876 STAT_ATTR(CPU_PARTIAL_NODE
, cpu_partial_node
);
4877 STAT_ATTR(CPU_PARTIAL_DRAIN
, cpu_partial_drain
);
4880 static struct attribute
*slab_attrs
[] = {
4881 &slab_size_attr
.attr
,
4882 &object_size_attr
.attr
,
4883 &objs_per_slab_attr
.attr
,
4885 &min_partial_attr
.attr
,
4886 &cpu_partial_attr
.attr
,
4888 &objects_partial_attr
.attr
,
4890 &cpu_slabs_attr
.attr
,
4894 &hwcache_align_attr
.attr
,
4895 &reclaim_account_attr
.attr
,
4896 &destroy_by_rcu_attr
.attr
,
4898 &reserved_attr
.attr
,
4899 &slabs_cpu_partial_attr
.attr
,
4900 #ifdef CONFIG_SLUB_DEBUG
4901 &total_objects_attr
.attr
,
4903 &sanity_checks_attr
.attr
,
4905 &red_zone_attr
.attr
,
4907 &store_user_attr
.attr
,
4908 &validate_attr
.attr
,
4909 &alloc_calls_attr
.attr
,
4910 &free_calls_attr
.attr
,
4912 #ifdef CONFIG_ZONE_DMA
4913 &cache_dma_attr
.attr
,
4916 &remote_node_defrag_ratio_attr
.attr
,
4918 #ifdef CONFIG_SLUB_STATS
4919 &alloc_fastpath_attr
.attr
,
4920 &alloc_slowpath_attr
.attr
,
4921 &free_fastpath_attr
.attr
,
4922 &free_slowpath_attr
.attr
,
4923 &free_frozen_attr
.attr
,
4924 &free_add_partial_attr
.attr
,
4925 &free_remove_partial_attr
.attr
,
4926 &alloc_from_partial_attr
.attr
,
4927 &alloc_slab_attr
.attr
,
4928 &alloc_refill_attr
.attr
,
4929 &alloc_node_mismatch_attr
.attr
,
4930 &free_slab_attr
.attr
,
4931 &cpuslab_flush_attr
.attr
,
4932 &deactivate_full_attr
.attr
,
4933 &deactivate_empty_attr
.attr
,
4934 &deactivate_to_head_attr
.attr
,
4935 &deactivate_to_tail_attr
.attr
,
4936 &deactivate_remote_frees_attr
.attr
,
4937 &deactivate_bypass_attr
.attr
,
4938 &order_fallback_attr
.attr
,
4939 &cmpxchg_double_fail_attr
.attr
,
4940 &cmpxchg_double_cpu_fail_attr
.attr
,
4941 &cpu_partial_alloc_attr
.attr
,
4942 &cpu_partial_free_attr
.attr
,
4943 &cpu_partial_node_attr
.attr
,
4944 &cpu_partial_drain_attr
.attr
,
4946 #ifdef CONFIG_FAILSLAB
4947 &failslab_attr
.attr
,
4953 static struct attribute_group slab_attr_group
= {
4954 .attrs
= slab_attrs
,
4957 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4958 struct attribute
*attr
,
4961 struct slab_attribute
*attribute
;
4962 struct kmem_cache
*s
;
4965 attribute
= to_slab_attr(attr
);
4968 if (!attribute
->show
)
4971 err
= attribute
->show(s
, buf
);
4976 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4977 struct attribute
*attr
,
4978 const char *buf
, size_t len
)
4980 struct slab_attribute
*attribute
;
4981 struct kmem_cache
*s
;
4984 attribute
= to_slab_attr(attr
);
4987 if (!attribute
->store
)
4990 err
= attribute
->store(s
, buf
, len
);
4991 #ifdef CONFIG_MEMCG_KMEM
4992 if (slab_state
>= FULL
&& err
>= 0 && is_root_cache(s
)) {
4995 mutex_lock(&slab_mutex
);
4996 if (s
->max_attr_size
< len
)
4997 s
->max_attr_size
= len
;
5000 * This is a best effort propagation, so this function's return
5001 * value will be determined by the parent cache only. This is
5002 * basically because not all attributes will have a well
5003 * defined semantics for rollbacks - most of the actions will
5004 * have permanent effects.
5006 * Returning the error value of any of the children that fail
5007 * is not 100 % defined, in the sense that users seeing the
5008 * error code won't be able to know anything about the state of
5011 * Only returning the error code for the parent cache at least
5012 * has well defined semantics. The cache being written to
5013 * directly either failed or succeeded, in which case we loop
5014 * through the descendants with best-effort propagation.
5016 for_each_memcg_cache_index(i
) {
5017 struct kmem_cache
*c
= cache_from_memcg(s
, i
);
5019 attribute
->store(c
, buf
, len
);
5021 mutex_unlock(&slab_mutex
);
5027 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
)
5029 #ifdef CONFIG_MEMCG_KMEM
5031 char *buffer
= NULL
;
5033 if (!is_root_cache(s
))
5037 * This mean this cache had no attribute written. Therefore, no point
5038 * in copying default values around
5040 if (!s
->max_attr_size
)
5043 for (i
= 0; i
< ARRAY_SIZE(slab_attrs
); i
++) {
5046 struct slab_attribute
*attr
= to_slab_attr(slab_attrs
[i
]);
5048 if (!attr
|| !attr
->store
|| !attr
->show
)
5052 * It is really bad that we have to allocate here, so we will
5053 * do it only as a fallback. If we actually allocate, though,
5054 * we can just use the allocated buffer until the end.
5056 * Most of the slub attributes will tend to be very small in
5057 * size, but sysfs allows buffers up to a page, so they can
5058 * theoretically happen.
5062 else if (s
->max_attr_size
< ARRAY_SIZE(mbuf
))
5065 buffer
= (char *) get_zeroed_page(GFP_KERNEL
);
5066 if (WARN_ON(!buffer
))
5071 attr
->show(s
->memcg_params
->root_cache
, buf
);
5072 attr
->store(s
, buf
, strlen(buf
));
5076 free_page((unsigned long)buffer
);
5080 static const struct sysfs_ops slab_sysfs_ops
= {
5081 .show
= slab_attr_show
,
5082 .store
= slab_attr_store
,
5085 static struct kobj_type slab_ktype
= {
5086 .sysfs_ops
= &slab_sysfs_ops
,
5089 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
5091 struct kobj_type
*ktype
= get_ktype(kobj
);
5093 if (ktype
== &slab_ktype
)
5098 static const struct kset_uevent_ops slab_uevent_ops
= {
5099 .filter
= uevent_filter
,
5102 static struct kset
*slab_kset
;
5104 #define ID_STR_LENGTH 64
5106 /* Create a unique string id for a slab cache:
5108 * Format :[flags-]size
5110 static char *create_unique_id(struct kmem_cache
*s
)
5112 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5119 * First flags affecting slabcache operations. We will only
5120 * get here for aliasable slabs so we do not need to support
5121 * too many flags. The flags here must cover all flags that
5122 * are matched during merging to guarantee that the id is
5125 if (s
->flags
& SLAB_CACHE_DMA
)
5127 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5129 if (s
->flags
& SLAB_DEBUG_FREE
)
5131 if (!(s
->flags
& SLAB_NOTRACK
))
5135 p
+= sprintf(p
, "%07d", s
->size
);
5137 #ifdef CONFIG_MEMCG_KMEM
5138 if (!is_root_cache(s
))
5139 p
+= sprintf(p
, "-%08d", memcg_cache_id(s
->memcg_params
->memcg
));
5142 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5146 static int sysfs_slab_add(struct kmem_cache
*s
)
5150 int unmergeable
= slab_unmergeable(s
);
5154 * Slabcache can never be merged so we can use the name proper.
5155 * This is typically the case for debug situations. In that
5156 * case we can catch duplicate names easily.
5158 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5162 * Create a unique name for the slab as a target
5165 name
= create_unique_id(s
);
5168 s
->kobj
.kset
= slab_kset
;
5169 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
5171 kobject_put(&s
->kobj
);
5175 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5177 kobject_del(&s
->kobj
);
5178 kobject_put(&s
->kobj
);
5181 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5183 /* Setup first alias */
5184 sysfs_slab_alias(s
, s
->name
);
5190 static void sysfs_slab_remove(struct kmem_cache
*s
)
5192 if (slab_state
< FULL
)
5194 * Sysfs has not been setup yet so no need to remove the
5199 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5200 kobject_del(&s
->kobj
);
5201 kobject_put(&s
->kobj
);
5205 * Need to buffer aliases during bootup until sysfs becomes
5206 * available lest we lose that information.
5208 struct saved_alias
{
5209 struct kmem_cache
*s
;
5211 struct saved_alias
*next
;
5214 static struct saved_alias
*alias_list
;
5216 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5218 struct saved_alias
*al
;
5220 if (slab_state
== FULL
) {
5222 * If we have a leftover link then remove it.
5224 sysfs_remove_link(&slab_kset
->kobj
, name
);
5225 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5228 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5234 al
->next
= alias_list
;
5239 static int __init
slab_sysfs_init(void)
5241 struct kmem_cache
*s
;
5244 mutex_lock(&slab_mutex
);
5246 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5248 mutex_unlock(&slab_mutex
);
5249 printk(KERN_ERR
"Cannot register slab subsystem.\n");
5255 list_for_each_entry(s
, &slab_caches
, list
) {
5256 err
= sysfs_slab_add(s
);
5258 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
5259 " to sysfs\n", s
->name
);
5262 while (alias_list
) {
5263 struct saved_alias
*al
= alias_list
;
5265 alias_list
= alias_list
->next
;
5266 err
= sysfs_slab_alias(al
->s
, al
->name
);
5268 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
5269 " %s to sysfs\n", al
->name
);
5273 mutex_unlock(&slab_mutex
);
5278 __initcall(slab_sysfs_init
);
5279 #endif /* CONFIG_SYSFS */
5282 * The /proc/slabinfo ABI
5284 #ifdef CONFIG_SLABINFO
5285 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
)
5287 unsigned long nr_slabs
= 0;
5288 unsigned long nr_objs
= 0;
5289 unsigned long nr_free
= 0;
5292 for_each_online_node(node
) {
5293 struct kmem_cache_node
*n
= get_node(s
, node
);
5298 nr_slabs
+= node_nr_slabs(n
);
5299 nr_objs
+= node_nr_objs(n
);
5300 nr_free
+= count_partial(n
, count_free
);
5303 sinfo
->active_objs
= nr_objs
- nr_free
;
5304 sinfo
->num_objs
= nr_objs
;
5305 sinfo
->active_slabs
= nr_slabs
;
5306 sinfo
->num_slabs
= nr_slabs
;
5307 sinfo
->objects_per_slab
= oo_objects(s
->oo
);
5308 sinfo
->cache_order
= oo_order(s
->oo
);
5311 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
)
5315 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
5316 size_t count
, loff_t
*ppos
)
5320 #endif /* CONFIG_SLABINFO */