acpiphp: Execute ACPI _REG method for hotadded devices
[linux/fpc-iii.git] / arch / ia64 / kernel / mca.c
blob378b4833024f110ac7e11265341774f3a6ee75be
1 /*
2 * File: mca.c
3 * Purpose: Generic MCA handling layer
5 * Copyright (C) 2003 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Copyright (C) 2002 Dell Inc.
9 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
11 * Copyright (C) 2002 Intel
12 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
14 * Copyright (C) 2001 Intel
15 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
17 * Copyright (C) 2000 Intel
18 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
20 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
21 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
23 * Copyright (C) 2006 FUJITSU LIMITED
24 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
26 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
27 * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
28 * added min save state dump, added INIT handler.
30 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
31 * Added setup of CMCI and CPEI IRQs, logging of corrected platform
32 * errors, completed code for logging of corrected & uncorrected
33 * machine check errors, and updated for conformance with Nov. 2000
34 * revision of the SAL 3.0 spec.
36 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
37 * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
38 * set SAL default return values, changed error record structure to
39 * linked list, added init call to sal_get_state_info_size().
41 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
42 * GUID cleanups.
44 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
45 * Added INIT backtrace support.
47 * 2003-12-08 Keith Owens <kaos@sgi.com>
48 * smp_call_function() must not be called from interrupt context
49 * (can deadlock on tasklist_lock).
50 * Use keventd to call smp_call_function().
52 * 2004-02-01 Keith Owens <kaos@sgi.com>
53 * Avoid deadlock when using printk() for MCA and INIT records.
54 * Delete all record printing code, moved to salinfo_decode in user
55 * space. Mark variables and functions static where possible.
56 * Delete dead variables and functions. Reorder to remove the need
57 * for forward declarations and to consolidate related code.
59 * 2005-08-12 Keith Owens <kaos@sgi.com>
60 * Convert MCA/INIT handlers to use per event stacks and SAL/OS
61 * state.
63 * 2005-10-07 Keith Owens <kaos@sgi.com>
64 * Add notify_die() hooks.
66 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
67 * Add printing support for MCA/INIT.
69 * 2007-04-27 Russ Anderson <rja@sgi.com>
70 * Support multiple cpus going through OS_MCA in the same event.
72 #include <linux/jiffies.h>
73 #include <linux/types.h>
74 #include <linux/init.h>
75 #include <linux/sched.h>
76 #include <linux/interrupt.h>
77 #include <linux/irq.h>
78 #include <linux/bootmem.h>
79 #include <linux/acpi.h>
80 #include <linux/timer.h>
81 #include <linux/module.h>
82 #include <linux/kernel.h>
83 #include <linux/smp.h>
84 #include <linux/workqueue.h>
85 #include <linux/cpumask.h>
86 #include <linux/kdebug.h>
87 #include <linux/cpu.h>
89 #include <asm/delay.h>
90 #include <asm/machvec.h>
91 #include <asm/meminit.h>
92 #include <asm/page.h>
93 #include <asm/ptrace.h>
94 #include <asm/system.h>
95 #include <asm/sal.h>
96 #include <asm/mca.h>
97 #include <asm/kexec.h>
99 #include <asm/irq.h>
100 #include <asm/hw_irq.h>
101 #include <asm/tlb.h>
103 #include "mca_drv.h"
104 #include "entry.h"
106 #if defined(IA64_MCA_DEBUG_INFO)
107 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
108 #else
109 # define IA64_MCA_DEBUG(fmt...)
110 #endif
112 #define NOTIFY_INIT(event, regs, arg, spin) \
113 do { \
114 if ((notify_die((event), "INIT", (regs), (arg), 0, 0) \
115 == NOTIFY_STOP) && ((spin) == 1)) \
116 ia64_mca_spin(__func__); \
117 } while (0)
119 #define NOTIFY_MCA(event, regs, arg, spin) \
120 do { \
121 if ((notify_die((event), "MCA", (regs), (arg), 0, 0) \
122 == NOTIFY_STOP) && ((spin) == 1)) \
123 ia64_mca_spin(__func__); \
124 } while (0)
126 /* Used by mca_asm.S */
127 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
128 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
129 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
130 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
131 DEFINE_PER_CPU(u64, ia64_mca_tr_reload); /* Flag for TR reload */
133 unsigned long __per_cpu_mca[NR_CPUS];
135 /* In mca_asm.S */
136 extern void ia64_os_init_dispatch_monarch (void);
137 extern void ia64_os_init_dispatch_slave (void);
139 static int monarch_cpu = -1;
141 static ia64_mc_info_t ia64_mc_info;
143 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
144 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
145 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
146 #define CPE_HISTORY_LENGTH 5
147 #define CMC_HISTORY_LENGTH 5
149 #ifdef CONFIG_ACPI
150 static struct timer_list cpe_poll_timer;
151 #endif
152 static struct timer_list cmc_poll_timer;
154 * This variable tells whether we are currently in polling mode.
155 * Start with this in the wrong state so we won't play w/ timers
156 * before the system is ready.
158 static int cmc_polling_enabled = 1;
161 * Clearing this variable prevents CPE polling from getting activated
162 * in mca_late_init. Use it if your system doesn't provide a CPEI,
163 * but encounters problems retrieving CPE logs. This should only be
164 * necessary for debugging.
166 static int cpe_poll_enabled = 1;
168 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
170 static int mca_init __initdata;
173 * limited & delayed printing support for MCA/INIT handler
176 #define mprintk(fmt...) ia64_mca_printk(fmt)
178 #define MLOGBUF_SIZE (512+256*NR_CPUS)
179 #define MLOGBUF_MSGMAX 256
180 static char mlogbuf[MLOGBUF_SIZE];
181 static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
182 static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
183 static unsigned long mlogbuf_start;
184 static unsigned long mlogbuf_end;
185 static unsigned int mlogbuf_finished = 0;
186 static unsigned long mlogbuf_timestamp = 0;
188 static int loglevel_save = -1;
189 #define BREAK_LOGLEVEL(__console_loglevel) \
190 oops_in_progress = 1; \
191 if (loglevel_save < 0) \
192 loglevel_save = __console_loglevel; \
193 __console_loglevel = 15;
195 #define RESTORE_LOGLEVEL(__console_loglevel) \
196 if (loglevel_save >= 0) { \
197 __console_loglevel = loglevel_save; \
198 loglevel_save = -1; \
200 mlogbuf_finished = 0; \
201 oops_in_progress = 0;
204 * Push messages into buffer, print them later if not urgent.
206 void ia64_mca_printk(const char *fmt, ...)
208 va_list args;
209 int printed_len;
210 char temp_buf[MLOGBUF_MSGMAX];
211 char *p;
213 va_start(args, fmt);
214 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
215 va_end(args);
217 /* Copy the output into mlogbuf */
218 if (oops_in_progress) {
219 /* mlogbuf was abandoned, use printk directly instead. */
220 printk(temp_buf);
221 } else {
222 spin_lock(&mlogbuf_wlock);
223 for (p = temp_buf; *p; p++) {
224 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
225 if (next != mlogbuf_start) {
226 mlogbuf[mlogbuf_end] = *p;
227 mlogbuf_end = next;
228 } else {
229 /* buffer full */
230 break;
233 mlogbuf[mlogbuf_end] = '\0';
234 spin_unlock(&mlogbuf_wlock);
237 EXPORT_SYMBOL(ia64_mca_printk);
240 * Print buffered messages.
241 * NOTE: call this after returning normal context. (ex. from salinfod)
243 void ia64_mlogbuf_dump(void)
245 char temp_buf[MLOGBUF_MSGMAX];
246 char *p;
247 unsigned long index;
248 unsigned long flags;
249 unsigned int printed_len;
251 /* Get output from mlogbuf */
252 while (mlogbuf_start != mlogbuf_end) {
253 temp_buf[0] = '\0';
254 p = temp_buf;
255 printed_len = 0;
257 spin_lock_irqsave(&mlogbuf_rlock, flags);
259 index = mlogbuf_start;
260 while (index != mlogbuf_end) {
261 *p = mlogbuf[index];
262 index = (index + 1) % MLOGBUF_SIZE;
263 if (!*p)
264 break;
265 p++;
266 if (++printed_len >= MLOGBUF_MSGMAX - 1)
267 break;
269 *p = '\0';
270 if (temp_buf[0])
271 printk(temp_buf);
272 mlogbuf_start = index;
274 mlogbuf_timestamp = 0;
275 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
278 EXPORT_SYMBOL(ia64_mlogbuf_dump);
281 * Call this if system is going to down or if immediate flushing messages to
282 * console is required. (ex. recovery was failed, crash dump is going to be
283 * invoked, long-wait rendezvous etc.)
284 * NOTE: this should be called from monarch.
286 static void ia64_mlogbuf_finish(int wait)
288 BREAK_LOGLEVEL(console_loglevel);
290 spin_lock_init(&mlogbuf_rlock);
291 ia64_mlogbuf_dump();
292 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
293 "MCA/INIT might be dodgy or fail.\n");
295 if (!wait)
296 return;
298 /* wait for console */
299 printk("Delaying for 5 seconds...\n");
300 udelay(5*1000000);
302 mlogbuf_finished = 1;
306 * Print buffered messages from INIT context.
308 static void ia64_mlogbuf_dump_from_init(void)
310 if (mlogbuf_finished)
311 return;
313 if (mlogbuf_timestamp &&
314 time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
315 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
316 " and the system seems to be messed up.\n");
317 ia64_mlogbuf_finish(0);
318 return;
321 if (!spin_trylock(&mlogbuf_rlock)) {
322 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
323 "Generated messages other than stack dump will be "
324 "buffered to mlogbuf and will be printed later.\n");
325 printk(KERN_ERR "INIT: If messages would not printed after "
326 "this INIT, wait 30sec and assert INIT again.\n");
327 if (!mlogbuf_timestamp)
328 mlogbuf_timestamp = jiffies;
329 return;
331 spin_unlock(&mlogbuf_rlock);
332 ia64_mlogbuf_dump();
335 static void inline
336 ia64_mca_spin(const char *func)
338 if (monarch_cpu == smp_processor_id())
339 ia64_mlogbuf_finish(0);
340 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
341 while (1)
342 cpu_relax();
345 * IA64_MCA log support
347 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
348 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
350 typedef struct ia64_state_log_s
352 spinlock_t isl_lock;
353 int isl_index;
354 unsigned long isl_count;
355 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
356 } ia64_state_log_t;
358 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
360 #define IA64_LOG_ALLOCATE(it, size) \
361 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
362 (ia64_err_rec_t *)alloc_bootmem(size); \
363 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
364 (ia64_err_rec_t *)alloc_bootmem(size);}
365 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
366 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
367 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
368 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
369 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
370 #define IA64_LOG_INDEX_INC(it) \
371 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
372 ia64_state_log[it].isl_count++;}
373 #define IA64_LOG_INDEX_DEC(it) \
374 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
375 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
376 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
377 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
380 * ia64_log_init
381 * Reset the OS ia64 log buffer
382 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
383 * Outputs : None
385 static void __init
386 ia64_log_init(int sal_info_type)
388 u64 max_size = 0;
390 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
391 IA64_LOG_LOCK_INIT(sal_info_type);
393 // SAL will tell us the maximum size of any error record of this type
394 max_size = ia64_sal_get_state_info_size(sal_info_type);
395 if (!max_size)
396 /* alloc_bootmem() doesn't like zero-sized allocations! */
397 return;
399 // set up OS data structures to hold error info
400 IA64_LOG_ALLOCATE(sal_info_type, max_size);
401 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
402 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
406 * ia64_log_get
408 * Get the current MCA log from SAL and copy it into the OS log buffer.
410 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
411 * irq_safe whether you can use printk at this point
412 * Outputs : size (total record length)
413 * *buffer (ptr to error record)
416 static u64
417 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
419 sal_log_record_header_t *log_buffer;
420 u64 total_len = 0;
421 unsigned long s;
423 IA64_LOG_LOCK(sal_info_type);
425 /* Get the process state information */
426 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
428 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
430 if (total_len) {
431 IA64_LOG_INDEX_INC(sal_info_type);
432 IA64_LOG_UNLOCK(sal_info_type);
433 if (irq_safe) {
434 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
435 __func__, sal_info_type, total_len);
437 *buffer = (u8 *) log_buffer;
438 return total_len;
439 } else {
440 IA64_LOG_UNLOCK(sal_info_type);
441 return 0;
446 * ia64_mca_log_sal_error_record
448 * This function retrieves a specified error record type from SAL
449 * and wakes up any processes waiting for error records.
451 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
452 * FIXME: remove MCA and irq_safe.
454 static void
455 ia64_mca_log_sal_error_record(int sal_info_type)
457 u8 *buffer;
458 sal_log_record_header_t *rh;
459 u64 size;
460 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
461 #ifdef IA64_MCA_DEBUG_INFO
462 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
463 #endif
465 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
466 if (!size)
467 return;
469 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
471 if (irq_safe)
472 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
473 smp_processor_id(),
474 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
476 /* Clear logs from corrected errors in case there's no user-level logger */
477 rh = (sal_log_record_header_t *)buffer;
478 if (rh->severity == sal_log_severity_corrected)
479 ia64_sal_clear_state_info(sal_info_type);
483 * search_mca_table
484 * See if the MCA surfaced in an instruction range
485 * that has been tagged as recoverable.
487 * Inputs
488 * first First address range to check
489 * last Last address range to check
490 * ip Instruction pointer, address we are looking for
492 * Return value:
493 * 1 on Success (in the table)/ 0 on Failure (not in the table)
496 search_mca_table (const struct mca_table_entry *first,
497 const struct mca_table_entry *last,
498 unsigned long ip)
500 const struct mca_table_entry *curr;
501 u64 curr_start, curr_end;
503 curr = first;
504 while (curr <= last) {
505 curr_start = (u64) &curr->start_addr + curr->start_addr;
506 curr_end = (u64) &curr->end_addr + curr->end_addr;
508 if ((ip >= curr_start) && (ip <= curr_end)) {
509 return 1;
511 curr++;
513 return 0;
516 /* Given an address, look for it in the mca tables. */
517 int mca_recover_range(unsigned long addr)
519 extern struct mca_table_entry __start___mca_table[];
520 extern struct mca_table_entry __stop___mca_table[];
522 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
524 EXPORT_SYMBOL_GPL(mca_recover_range);
526 #ifdef CONFIG_ACPI
528 int cpe_vector = -1;
529 int ia64_cpe_irq = -1;
531 static irqreturn_t
532 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
534 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
535 static int index;
536 static DEFINE_SPINLOCK(cpe_history_lock);
538 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
539 __func__, cpe_irq, smp_processor_id());
541 /* SAL spec states this should run w/ interrupts enabled */
542 local_irq_enable();
544 spin_lock(&cpe_history_lock);
545 if (!cpe_poll_enabled && cpe_vector >= 0) {
547 int i, count = 1; /* we know 1 happened now */
548 unsigned long now = jiffies;
550 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
551 if (now - cpe_history[i] <= HZ)
552 count++;
555 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
556 if (count >= CPE_HISTORY_LENGTH) {
558 cpe_poll_enabled = 1;
559 spin_unlock(&cpe_history_lock);
560 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
563 * Corrected errors will still be corrected, but
564 * make sure there's a log somewhere that indicates
565 * something is generating more than we can handle.
567 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
569 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
571 /* lock already released, get out now */
572 goto out;
573 } else {
574 cpe_history[index++] = now;
575 if (index == CPE_HISTORY_LENGTH)
576 index = 0;
579 spin_unlock(&cpe_history_lock);
580 out:
581 /* Get the CPE error record and log it */
582 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
584 return IRQ_HANDLED;
587 #endif /* CONFIG_ACPI */
589 #ifdef CONFIG_ACPI
591 * ia64_mca_register_cpev
593 * Register the corrected platform error vector with SAL.
595 * Inputs
596 * cpev Corrected Platform Error Vector number
598 * Outputs
599 * None
601 void
602 ia64_mca_register_cpev (int cpev)
604 /* Register the CPE interrupt vector with SAL */
605 struct ia64_sal_retval isrv;
607 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
608 if (isrv.status) {
609 printk(KERN_ERR "Failed to register Corrected Platform "
610 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
611 return;
614 IA64_MCA_DEBUG("%s: corrected platform error "
615 "vector %#x registered\n", __func__, cpev);
617 #endif /* CONFIG_ACPI */
620 * ia64_mca_cmc_vector_setup
622 * Setup the corrected machine check vector register in the processor.
623 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
624 * This function is invoked on a per-processor basis.
626 * Inputs
627 * None
629 * Outputs
630 * None
632 void __cpuinit
633 ia64_mca_cmc_vector_setup (void)
635 cmcv_reg_t cmcv;
637 cmcv.cmcv_regval = 0;
638 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
639 cmcv.cmcv_vector = IA64_CMC_VECTOR;
640 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
642 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
643 __func__, smp_processor_id(), IA64_CMC_VECTOR);
645 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
646 __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
650 * ia64_mca_cmc_vector_disable
652 * Mask the corrected machine check vector register in the processor.
653 * This function is invoked on a per-processor basis.
655 * Inputs
656 * dummy(unused)
658 * Outputs
659 * None
661 static void
662 ia64_mca_cmc_vector_disable (void *dummy)
664 cmcv_reg_t cmcv;
666 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
668 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
669 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
671 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
672 __func__, smp_processor_id(), cmcv.cmcv_vector);
676 * ia64_mca_cmc_vector_enable
678 * Unmask the corrected machine check vector register in the processor.
679 * This function is invoked on a per-processor basis.
681 * Inputs
682 * dummy(unused)
684 * Outputs
685 * None
687 static void
688 ia64_mca_cmc_vector_enable (void *dummy)
690 cmcv_reg_t cmcv;
692 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
694 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
695 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
697 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
698 __func__, smp_processor_id(), cmcv.cmcv_vector);
702 * ia64_mca_cmc_vector_disable_keventd
704 * Called via keventd (smp_call_function() is not safe in interrupt context) to
705 * disable the cmc interrupt vector.
707 static void
708 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
710 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
714 * ia64_mca_cmc_vector_enable_keventd
716 * Called via keventd (smp_call_function() is not safe in interrupt context) to
717 * enable the cmc interrupt vector.
719 static void
720 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
722 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
726 * ia64_mca_wakeup
728 * Send an inter-cpu interrupt to wake-up a particular cpu.
730 * Inputs : cpuid
731 * Outputs : None
733 static void
734 ia64_mca_wakeup(int cpu)
736 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
740 * ia64_mca_wakeup_all
742 * Wakeup all the slave cpus which have rendez'ed previously.
744 * Inputs : None
745 * Outputs : None
747 static void
748 ia64_mca_wakeup_all(void)
750 int cpu;
752 /* Clear the Rendez checkin flag for all cpus */
753 for_each_online_cpu(cpu) {
754 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
755 ia64_mca_wakeup(cpu);
761 * ia64_mca_rendez_interrupt_handler
763 * This is handler used to put slave processors into spinloop
764 * while the monarch processor does the mca handling and later
765 * wake each slave up once the monarch is done. The state
766 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
767 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
768 * the cpu has come out of OS rendezvous.
770 * Inputs : None
771 * Outputs : None
773 static irqreturn_t
774 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
776 unsigned long flags;
777 int cpu = smp_processor_id();
778 struct ia64_mca_notify_die nd =
779 { .sos = NULL, .monarch_cpu = &monarch_cpu };
781 /* Mask all interrupts */
782 local_irq_save(flags);
784 NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
786 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
787 /* Register with the SAL monarch that the slave has
788 * reached SAL
790 ia64_sal_mc_rendez();
792 NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
794 /* Wait for the monarch cpu to exit. */
795 while (monarch_cpu != -1)
796 cpu_relax(); /* spin until monarch leaves */
798 NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
800 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
801 /* Enable all interrupts */
802 local_irq_restore(flags);
803 return IRQ_HANDLED;
807 * ia64_mca_wakeup_int_handler
809 * The interrupt handler for processing the inter-cpu interrupt to the
810 * slave cpu which was spinning in the rendez loop.
811 * Since this spinning is done by turning off the interrupts and
812 * polling on the wakeup-interrupt bit in the IRR, there is
813 * nothing useful to be done in the handler.
815 * Inputs : wakeup_irq (Wakeup-interrupt bit)
816 * arg (Interrupt handler specific argument)
817 * Outputs : None
820 static irqreturn_t
821 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
823 return IRQ_HANDLED;
826 /* Function pointer for extra MCA recovery */
827 int (*ia64_mca_ucmc_extension)
828 (void*,struct ia64_sal_os_state*)
829 = NULL;
832 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
834 if (ia64_mca_ucmc_extension)
835 return 1;
837 ia64_mca_ucmc_extension = fn;
838 return 0;
841 void
842 ia64_unreg_MCA_extension(void)
844 if (ia64_mca_ucmc_extension)
845 ia64_mca_ucmc_extension = NULL;
848 EXPORT_SYMBOL(ia64_reg_MCA_extension);
849 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
852 static inline void
853 copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat)
855 u64 fslot, tslot, nat;
856 *tr = *fr;
857 fslot = ((unsigned long)fr >> 3) & 63;
858 tslot = ((unsigned long)tr >> 3) & 63;
859 *tnat &= ~(1UL << tslot);
860 nat = (fnat >> fslot) & 1;
861 *tnat |= (nat << tslot);
864 /* Change the comm field on the MCA/INT task to include the pid that
865 * was interrupted, it makes for easier debugging. If that pid was 0
866 * (swapper or nested MCA/INIT) then use the start of the previous comm
867 * field suffixed with its cpu.
870 static void
871 ia64_mca_modify_comm(const struct task_struct *previous_current)
873 char *p, comm[sizeof(current->comm)];
874 if (previous_current->pid)
875 snprintf(comm, sizeof(comm), "%s %d",
876 current->comm, previous_current->pid);
877 else {
878 int l;
879 if ((p = strchr(previous_current->comm, ' ')))
880 l = p - previous_current->comm;
881 else
882 l = strlen(previous_current->comm);
883 snprintf(comm, sizeof(comm), "%s %*s %d",
884 current->comm, l, previous_current->comm,
885 task_thread_info(previous_current)->cpu);
887 memcpy(current->comm, comm, sizeof(current->comm));
890 static void
891 finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos,
892 unsigned long *nat)
894 const pal_min_state_area_t *ms = sos->pal_min_state;
895 const u64 *bank;
897 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
898 * pmsa_{xip,xpsr,xfs}
900 if (ia64_psr(regs)->ic) {
901 regs->cr_iip = ms->pmsa_iip;
902 regs->cr_ipsr = ms->pmsa_ipsr;
903 regs->cr_ifs = ms->pmsa_ifs;
904 } else {
905 regs->cr_iip = ms->pmsa_xip;
906 regs->cr_ipsr = ms->pmsa_xpsr;
907 regs->cr_ifs = ms->pmsa_xfs;
909 sos->iip = ms->pmsa_iip;
910 sos->ipsr = ms->pmsa_ipsr;
911 sos->ifs = ms->pmsa_ifs;
913 regs->pr = ms->pmsa_pr;
914 regs->b0 = ms->pmsa_br0;
915 regs->ar_rsc = ms->pmsa_rsc;
916 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &regs->r1, nat);
917 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &regs->r2, nat);
918 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &regs->r3, nat);
919 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &regs->r8, nat);
920 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &regs->r9, nat);
921 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &regs->r10, nat);
922 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &regs->r11, nat);
923 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &regs->r12, nat);
924 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &regs->r13, nat);
925 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &regs->r14, nat);
926 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &regs->r15, nat);
927 if (ia64_psr(regs)->bn)
928 bank = ms->pmsa_bank1_gr;
929 else
930 bank = ms->pmsa_bank0_gr;
931 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &regs->r16, nat);
932 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &regs->r17, nat);
933 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &regs->r18, nat);
934 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &regs->r19, nat);
935 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &regs->r20, nat);
936 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &regs->r21, nat);
937 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &regs->r22, nat);
938 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &regs->r23, nat);
939 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &regs->r24, nat);
940 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &regs->r25, nat);
941 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &regs->r26, nat);
942 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &regs->r27, nat);
943 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &regs->r28, nat);
944 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &regs->r29, nat);
945 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &regs->r30, nat);
946 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &regs->r31, nat);
949 /* On entry to this routine, we are running on the per cpu stack, see
950 * mca_asm.h. The original stack has not been touched by this event. Some of
951 * the original stack's registers will be in the RBS on this stack. This stack
952 * also contains a partial pt_regs and switch_stack, the rest of the data is in
953 * PAL minstate.
955 * The first thing to do is modify the original stack to look like a blocked
956 * task so we can run backtrace on the original task. Also mark the per cpu
957 * stack as current to ensure that we use the correct task state, it also means
958 * that we can do backtrace on the MCA/INIT handler code itself.
961 static struct task_struct *
962 ia64_mca_modify_original_stack(struct pt_regs *regs,
963 const struct switch_stack *sw,
964 struct ia64_sal_os_state *sos,
965 const char *type)
967 char *p;
968 ia64_va va;
969 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
970 const pal_min_state_area_t *ms = sos->pal_min_state;
971 struct task_struct *previous_current;
972 struct pt_regs *old_regs;
973 struct switch_stack *old_sw;
974 unsigned size = sizeof(struct pt_regs) +
975 sizeof(struct switch_stack) + 16;
976 unsigned long *old_bspstore, *old_bsp;
977 unsigned long *new_bspstore, *new_bsp;
978 unsigned long old_unat, old_rnat, new_rnat, nat;
979 u64 slots, loadrs = regs->loadrs;
980 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
981 u64 ar_bspstore = regs->ar_bspstore;
982 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
983 const char *msg;
984 int cpu = smp_processor_id();
986 previous_current = curr_task(cpu);
987 set_curr_task(cpu, current);
988 if ((p = strchr(current->comm, ' ')))
989 *p = '\0';
991 /* Best effort attempt to cope with MCA/INIT delivered while in
992 * physical mode.
994 regs->cr_ipsr = ms->pmsa_ipsr;
995 if (ia64_psr(regs)->dt == 0) {
996 va.l = r12;
997 if (va.f.reg == 0) {
998 va.f.reg = 7;
999 r12 = va.l;
1001 va.l = r13;
1002 if (va.f.reg == 0) {
1003 va.f.reg = 7;
1004 r13 = va.l;
1007 if (ia64_psr(regs)->rt == 0) {
1008 va.l = ar_bspstore;
1009 if (va.f.reg == 0) {
1010 va.f.reg = 7;
1011 ar_bspstore = va.l;
1013 va.l = ar_bsp;
1014 if (va.f.reg == 0) {
1015 va.f.reg = 7;
1016 ar_bsp = va.l;
1020 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
1021 * have been copied to the old stack, the old stack may fail the
1022 * validation tests below. So ia64_old_stack() must restore the dirty
1023 * registers from the new stack. The old and new bspstore probably
1024 * have different alignments, so loadrs calculated on the old bsp
1025 * cannot be used to restore from the new bsp. Calculate a suitable
1026 * loadrs for the new stack and save it in the new pt_regs, where
1027 * ia64_old_stack() can get it.
1029 old_bspstore = (unsigned long *)ar_bspstore;
1030 old_bsp = (unsigned long *)ar_bsp;
1031 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
1032 new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET);
1033 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
1034 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
1036 /* Verify the previous stack state before we change it */
1037 if (user_mode(regs)) {
1038 msg = "occurred in user space";
1039 /* previous_current is guaranteed to be valid when the task was
1040 * in user space, so ...
1042 ia64_mca_modify_comm(previous_current);
1043 goto no_mod;
1046 if (r13 != sos->prev_IA64_KR_CURRENT) {
1047 msg = "inconsistent previous current and r13";
1048 goto no_mod;
1051 if (!mca_recover_range(ms->pmsa_iip)) {
1052 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
1053 msg = "inconsistent r12 and r13";
1054 goto no_mod;
1056 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
1057 msg = "inconsistent ar.bspstore and r13";
1058 goto no_mod;
1060 va.p = old_bspstore;
1061 if (va.f.reg < 5) {
1062 msg = "old_bspstore is in the wrong region";
1063 goto no_mod;
1065 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1066 msg = "inconsistent ar.bsp and r13";
1067 goto no_mod;
1069 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1070 if (ar_bspstore + size > r12) {
1071 msg = "no room for blocked state";
1072 goto no_mod;
1076 ia64_mca_modify_comm(previous_current);
1078 /* Make the original task look blocked. First stack a struct pt_regs,
1079 * describing the state at the time of interrupt. mca_asm.S built a
1080 * partial pt_regs, copy it and fill in the blanks using minstate.
1082 p = (char *)r12 - sizeof(*regs);
1083 old_regs = (struct pt_regs *)p;
1084 memcpy(old_regs, regs, sizeof(*regs));
1085 old_regs->loadrs = loadrs;
1086 old_unat = old_regs->ar_unat;
1087 finish_pt_regs(old_regs, sos, &old_unat);
1089 /* Next stack a struct switch_stack. mca_asm.S built a partial
1090 * switch_stack, copy it and fill in the blanks using pt_regs and
1091 * minstate.
1093 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1094 * ar.pfs is set to 0.
1096 * unwind.c::unw_unwind() does special processing for interrupt frames.
1097 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1098 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1099 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1100 * switch_stack on the original stack so it will unwind correctly when
1101 * unwind.c reads pt_regs.
1103 * thread.ksp is updated to point to the synthesized switch_stack.
1105 p -= sizeof(struct switch_stack);
1106 old_sw = (struct switch_stack *)p;
1107 memcpy(old_sw, sw, sizeof(*sw));
1108 old_sw->caller_unat = old_unat;
1109 old_sw->ar_fpsr = old_regs->ar_fpsr;
1110 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1111 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1112 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1113 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1114 old_sw->b0 = (u64)ia64_leave_kernel;
1115 old_sw->b1 = ms->pmsa_br1;
1116 old_sw->ar_pfs = 0;
1117 old_sw->ar_unat = old_unat;
1118 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1119 previous_current->thread.ksp = (u64)p - 16;
1121 /* Finally copy the original stack's registers back to its RBS.
1122 * Registers from ar.bspstore through ar.bsp at the time of the event
1123 * are in the current RBS, copy them back to the original stack. The
1124 * copy must be done register by register because the original bspstore
1125 * and the current one have different alignments, so the saved RNAT
1126 * data occurs at different places.
1128 * mca_asm does cover, so the old_bsp already includes all registers at
1129 * the time of MCA/INIT. It also does flushrs, so all registers before
1130 * this function have been written to backing store on the MCA/INIT
1131 * stack.
1133 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1134 old_rnat = regs->ar_rnat;
1135 while (slots--) {
1136 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1137 new_rnat = ia64_get_rnat(new_bspstore++);
1139 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1140 *old_bspstore++ = old_rnat;
1141 old_rnat = 0;
1143 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1144 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1145 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1146 *old_bspstore++ = *new_bspstore++;
1148 old_sw->ar_bspstore = (unsigned long)old_bspstore;
1149 old_sw->ar_rnat = old_rnat;
1151 sos->prev_task = previous_current;
1152 return previous_current;
1154 no_mod:
1155 mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1156 smp_processor_id(), type, msg);
1157 old_unat = regs->ar_unat;
1158 finish_pt_regs(regs, sos, &old_unat);
1159 return previous_current;
1162 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1163 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1164 * not entered rendezvous yet then wait a bit. The assumption is that any
1165 * slave that has not rendezvoused after a reasonable time is never going to do
1166 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1167 * interrupt, as well as cpus that receive the INIT slave event.
1170 static void
1171 ia64_wait_for_slaves(int monarch, const char *type)
1173 int c, i , wait;
1176 * wait 5 seconds total for slaves (arbitrary)
1178 for (i = 0; i < 5000; i++) {
1179 wait = 0;
1180 for_each_online_cpu(c) {
1181 if (c == monarch)
1182 continue;
1183 if (ia64_mc_info.imi_rendez_checkin[c]
1184 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1185 udelay(1000); /* short wait */
1186 wait = 1;
1187 break;
1190 if (!wait)
1191 goto all_in;
1195 * Maybe slave(s) dead. Print buffered messages immediately.
1197 ia64_mlogbuf_finish(0);
1198 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1199 for_each_online_cpu(c) {
1200 if (c == monarch)
1201 continue;
1202 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1203 mprintk(" %d", c);
1205 mprintk("\n");
1206 return;
1208 all_in:
1209 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1210 return;
1213 /* mca_insert_tr
1215 * Switch rid when TR reload and needed!
1216 * iord: 1: itr, 2: itr;
1219 static void mca_insert_tr(u64 iord)
1222 int i;
1223 u64 old_rr;
1224 struct ia64_tr_entry *p;
1225 unsigned long psr;
1226 int cpu = smp_processor_id();
1228 if (!ia64_idtrs[cpu])
1229 return;
1231 psr = ia64_clear_ic();
1232 for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1233 p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX;
1234 if (p->pte & 0x1) {
1235 old_rr = ia64_get_rr(p->ifa);
1236 if (old_rr != p->rr) {
1237 ia64_set_rr(p->ifa, p->rr);
1238 ia64_srlz_d();
1240 ia64_ptr(iord, p->ifa, p->itir >> 2);
1241 ia64_srlz_i();
1242 if (iord & 0x1) {
1243 ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1244 ia64_srlz_i();
1246 if (iord & 0x2) {
1247 ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1248 ia64_srlz_i();
1250 if (old_rr != p->rr) {
1251 ia64_set_rr(p->ifa, old_rr);
1252 ia64_srlz_d();
1256 ia64_set_psr(psr);
1260 * ia64_mca_handler
1262 * This is uncorrectable machine check handler called from OS_MCA
1263 * dispatch code which is in turn called from SAL_CHECK().
1264 * This is the place where the core of OS MCA handling is done.
1265 * Right now the logs are extracted and displayed in a well-defined
1266 * format. This handler code is supposed to be run only on the
1267 * monarch processor. Once the monarch is done with MCA handling
1268 * further MCA logging is enabled by clearing logs.
1269 * Monarch also has the duty of sending wakeup-IPIs to pull the
1270 * slave processors out of rendezvous spinloop.
1272 * If multiple processors call into OS_MCA, the first will become
1273 * the monarch. Subsequent cpus will be recorded in the mca_cpu
1274 * bitmask. After the first monarch has processed its MCA, it
1275 * will wake up the next cpu in the mca_cpu bitmask and then go
1276 * into the rendezvous loop. When all processors have serviced
1277 * their MCA, the last monarch frees up the rest of the processors.
1279 void
1280 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1281 struct ia64_sal_os_state *sos)
1283 int recover, cpu = smp_processor_id();
1284 struct task_struct *previous_current;
1285 struct ia64_mca_notify_die nd =
1286 { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1287 static atomic_t mca_count;
1288 static cpumask_t mca_cpu;
1290 if (atomic_add_return(1, &mca_count) == 1) {
1291 monarch_cpu = cpu;
1292 sos->monarch = 1;
1293 } else {
1294 cpu_set(cpu, mca_cpu);
1295 sos->monarch = 0;
1297 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1298 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1300 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1302 NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
1304 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1305 if (sos->monarch) {
1306 ia64_wait_for_slaves(cpu, "MCA");
1308 /* Wakeup all the processors which are spinning in the
1309 * rendezvous loop. They will leave SAL, then spin in the OS
1310 * with interrupts disabled until this monarch cpu leaves the
1311 * MCA handler. That gets control back to the OS so we can
1312 * backtrace the other cpus, backtrace when spinning in SAL
1313 * does not work.
1315 ia64_mca_wakeup_all();
1316 } else {
1317 while (cpu_isset(cpu, mca_cpu))
1318 cpu_relax(); /* spin until monarch wakes us */
1321 NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
1323 /* Get the MCA error record and log it */
1324 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1326 /* MCA error recovery */
1327 recover = (ia64_mca_ucmc_extension
1328 && ia64_mca_ucmc_extension(
1329 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1330 sos));
1332 if (recover) {
1333 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1334 rh->severity = sal_log_severity_corrected;
1335 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1336 sos->os_status = IA64_MCA_CORRECTED;
1337 } else {
1338 /* Dump buffered message to console */
1339 ia64_mlogbuf_finish(1);
1342 if (__get_cpu_var(ia64_mca_tr_reload)) {
1343 mca_insert_tr(0x1); /*Reload dynamic itrs*/
1344 mca_insert_tr(0x2); /*Reload dynamic itrs*/
1347 NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1349 if (atomic_dec_return(&mca_count) > 0) {
1350 int i;
1352 /* wake up the next monarch cpu,
1353 * and put this cpu in the rendez loop.
1355 for_each_online_cpu(i) {
1356 if (cpu_isset(i, mca_cpu)) {
1357 monarch_cpu = i;
1358 cpu_clear(i, mca_cpu); /* wake next cpu */
1359 while (monarch_cpu != -1)
1360 cpu_relax(); /* spin until last cpu leaves */
1361 set_curr_task(cpu, previous_current);
1362 ia64_mc_info.imi_rendez_checkin[cpu]
1363 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1364 return;
1368 set_curr_task(cpu, previous_current);
1369 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1370 monarch_cpu = -1; /* This frees the slaves and previous monarchs */
1373 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1374 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1377 * ia64_mca_cmc_int_handler
1379 * This is corrected machine check interrupt handler.
1380 * Right now the logs are extracted and displayed in a well-defined
1381 * format.
1383 * Inputs
1384 * interrupt number
1385 * client data arg ptr
1387 * Outputs
1388 * None
1390 static irqreturn_t
1391 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1393 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1394 static int index;
1395 static DEFINE_SPINLOCK(cmc_history_lock);
1397 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1398 __func__, cmc_irq, smp_processor_id());
1400 /* SAL spec states this should run w/ interrupts enabled */
1401 local_irq_enable();
1403 spin_lock(&cmc_history_lock);
1404 if (!cmc_polling_enabled) {
1405 int i, count = 1; /* we know 1 happened now */
1406 unsigned long now = jiffies;
1408 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1409 if (now - cmc_history[i] <= HZ)
1410 count++;
1413 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1414 if (count >= CMC_HISTORY_LENGTH) {
1416 cmc_polling_enabled = 1;
1417 spin_unlock(&cmc_history_lock);
1418 /* If we're being hit with CMC interrupts, we won't
1419 * ever execute the schedule_work() below. Need to
1420 * disable CMC interrupts on this processor now.
1422 ia64_mca_cmc_vector_disable(NULL);
1423 schedule_work(&cmc_disable_work);
1426 * Corrected errors will still be corrected, but
1427 * make sure there's a log somewhere that indicates
1428 * something is generating more than we can handle.
1430 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1432 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1434 /* lock already released, get out now */
1435 goto out;
1436 } else {
1437 cmc_history[index++] = now;
1438 if (index == CMC_HISTORY_LENGTH)
1439 index = 0;
1442 spin_unlock(&cmc_history_lock);
1443 out:
1444 /* Get the CMC error record and log it */
1445 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1447 return IRQ_HANDLED;
1451 * ia64_mca_cmc_int_caller
1453 * Triggered by sw interrupt from CMC polling routine. Calls
1454 * real interrupt handler and either triggers a sw interrupt
1455 * on the next cpu or does cleanup at the end.
1457 * Inputs
1458 * interrupt number
1459 * client data arg ptr
1460 * Outputs
1461 * handled
1463 static irqreturn_t
1464 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1466 static int start_count = -1;
1467 unsigned int cpuid;
1469 cpuid = smp_processor_id();
1471 /* If first cpu, update count */
1472 if (start_count == -1)
1473 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1475 ia64_mca_cmc_int_handler(cmc_irq, arg);
1477 cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1479 if (cpuid < nr_cpu_ids) {
1480 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1481 } else {
1482 /* If no log record, switch out of polling mode */
1483 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1485 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1486 schedule_work(&cmc_enable_work);
1487 cmc_polling_enabled = 0;
1489 } else {
1491 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1494 start_count = -1;
1497 return IRQ_HANDLED;
1501 * ia64_mca_cmc_poll
1503 * Poll for Corrected Machine Checks (CMCs)
1505 * Inputs : dummy(unused)
1506 * Outputs : None
1509 static void
1510 ia64_mca_cmc_poll (unsigned long dummy)
1512 /* Trigger a CMC interrupt cascade */
1513 platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1517 * ia64_mca_cpe_int_caller
1519 * Triggered by sw interrupt from CPE polling routine. Calls
1520 * real interrupt handler and either triggers a sw interrupt
1521 * on the next cpu or does cleanup at the end.
1523 * Inputs
1524 * interrupt number
1525 * client data arg ptr
1526 * Outputs
1527 * handled
1529 #ifdef CONFIG_ACPI
1531 static irqreturn_t
1532 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1534 static int start_count = -1;
1535 static int poll_time = MIN_CPE_POLL_INTERVAL;
1536 unsigned int cpuid;
1538 cpuid = smp_processor_id();
1540 /* If first cpu, update count */
1541 if (start_count == -1)
1542 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1544 ia64_mca_cpe_int_handler(cpe_irq, arg);
1546 cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1548 if (cpuid < NR_CPUS) {
1549 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1550 } else {
1552 * If a log was recorded, increase our polling frequency,
1553 * otherwise, backoff or return to interrupt mode.
1555 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1556 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1557 } else if (cpe_vector < 0) {
1558 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1559 } else {
1560 poll_time = MIN_CPE_POLL_INTERVAL;
1562 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1563 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1564 cpe_poll_enabled = 0;
1567 if (cpe_poll_enabled)
1568 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1569 start_count = -1;
1572 return IRQ_HANDLED;
1576 * ia64_mca_cpe_poll
1578 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1579 * on first cpu, from there it will trickle through all the cpus.
1581 * Inputs : dummy(unused)
1582 * Outputs : None
1585 static void
1586 ia64_mca_cpe_poll (unsigned long dummy)
1588 /* Trigger a CPE interrupt cascade */
1589 platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1592 #endif /* CONFIG_ACPI */
1594 static int
1595 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1597 int c;
1598 struct task_struct *g, *t;
1599 if (val != DIE_INIT_MONARCH_PROCESS)
1600 return NOTIFY_DONE;
1601 #ifdef CONFIG_KEXEC
1602 if (atomic_read(&kdump_in_progress))
1603 return NOTIFY_DONE;
1604 #endif
1607 * FIXME: mlogbuf will brim over with INIT stack dumps.
1608 * To enable show_stack from INIT, we use oops_in_progress which should
1609 * be used in real oops. This would cause something wrong after INIT.
1611 BREAK_LOGLEVEL(console_loglevel);
1612 ia64_mlogbuf_dump_from_init();
1614 printk(KERN_ERR "Processes interrupted by INIT -");
1615 for_each_online_cpu(c) {
1616 struct ia64_sal_os_state *s;
1617 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1618 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1619 g = s->prev_task;
1620 if (g) {
1621 if (g->pid)
1622 printk(" %d", g->pid);
1623 else
1624 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1627 printk("\n\n");
1628 if (read_trylock(&tasklist_lock)) {
1629 do_each_thread (g, t) {
1630 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1631 show_stack(t, NULL);
1632 } while_each_thread (g, t);
1633 read_unlock(&tasklist_lock);
1635 /* FIXME: This will not restore zapped printk locks. */
1636 RESTORE_LOGLEVEL(console_loglevel);
1637 return NOTIFY_DONE;
1641 * C portion of the OS INIT handler
1643 * Called from ia64_os_init_dispatch
1645 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1646 * this event. This code is used for both monarch and slave INIT events, see
1647 * sos->monarch.
1649 * All INIT events switch to the INIT stack and change the previous process to
1650 * blocked status. If one of the INIT events is the monarch then we are
1651 * probably processing the nmi button/command. Use the monarch cpu to dump all
1652 * the processes. The slave INIT events all spin until the monarch cpu
1653 * returns. We can also get INIT slave events for MCA, in which case the MCA
1654 * process is the monarch.
1657 void
1658 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1659 struct ia64_sal_os_state *sos)
1661 static atomic_t slaves;
1662 static atomic_t monarchs;
1663 struct task_struct *previous_current;
1664 int cpu = smp_processor_id();
1665 struct ia64_mca_notify_die nd =
1666 { .sos = sos, .monarch_cpu = &monarch_cpu };
1668 NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
1670 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1671 sos->proc_state_param, cpu, sos->monarch);
1672 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1674 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1675 sos->os_status = IA64_INIT_RESUME;
1677 /* FIXME: Workaround for broken proms that drive all INIT events as
1678 * slaves. The last slave that enters is promoted to be a monarch.
1679 * Remove this code in September 2006, that gives platforms a year to
1680 * fix their proms and get their customers updated.
1682 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1683 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1684 __func__, cpu);
1685 atomic_dec(&slaves);
1686 sos->monarch = 1;
1689 /* FIXME: Workaround for broken proms that drive all INIT events as
1690 * monarchs. Second and subsequent monarchs are demoted to slaves.
1691 * Remove this code in September 2006, that gives platforms a year to
1692 * fix their proms and get their customers updated.
1694 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1695 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1696 __func__, cpu);
1697 atomic_dec(&monarchs);
1698 sos->monarch = 0;
1701 if (!sos->monarch) {
1702 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1704 #ifdef CONFIG_KEXEC
1705 while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress))
1706 udelay(1000);
1707 #else
1708 while (monarch_cpu == -1)
1709 cpu_relax(); /* spin until monarch enters */
1710 #endif
1712 NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1713 NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1715 #ifdef CONFIG_KEXEC
1716 while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress))
1717 udelay(1000);
1718 #else
1719 while (monarch_cpu != -1)
1720 cpu_relax(); /* spin until monarch leaves */
1721 #endif
1723 NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1725 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1726 set_curr_task(cpu, previous_current);
1727 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1728 atomic_dec(&slaves);
1729 return;
1732 monarch_cpu = cpu;
1733 NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
1736 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1737 * generated via the BMC's command-line interface, but since the console is on the
1738 * same serial line, the user will need some time to switch out of the BMC before
1739 * the dump begins.
1741 mprintk("Delaying for 5 seconds...\n");
1742 udelay(5*1000000);
1743 ia64_wait_for_slaves(cpu, "INIT");
1744 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1745 * to default_monarch_init_process() above and just print all the
1746 * tasks.
1748 NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1749 NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1751 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1752 atomic_dec(&monarchs);
1753 set_curr_task(cpu, previous_current);
1754 monarch_cpu = -1;
1755 return;
1758 static int __init
1759 ia64_mca_disable_cpe_polling(char *str)
1761 cpe_poll_enabled = 0;
1762 return 1;
1765 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1767 static struct irqaction cmci_irqaction = {
1768 .handler = ia64_mca_cmc_int_handler,
1769 .flags = IRQF_DISABLED,
1770 .name = "cmc_hndlr"
1773 static struct irqaction cmcp_irqaction = {
1774 .handler = ia64_mca_cmc_int_caller,
1775 .flags = IRQF_DISABLED,
1776 .name = "cmc_poll"
1779 static struct irqaction mca_rdzv_irqaction = {
1780 .handler = ia64_mca_rendez_int_handler,
1781 .flags = IRQF_DISABLED,
1782 .name = "mca_rdzv"
1785 static struct irqaction mca_wkup_irqaction = {
1786 .handler = ia64_mca_wakeup_int_handler,
1787 .flags = IRQF_DISABLED,
1788 .name = "mca_wkup"
1791 #ifdef CONFIG_ACPI
1792 static struct irqaction mca_cpe_irqaction = {
1793 .handler = ia64_mca_cpe_int_handler,
1794 .flags = IRQF_DISABLED,
1795 .name = "cpe_hndlr"
1798 static struct irqaction mca_cpep_irqaction = {
1799 .handler = ia64_mca_cpe_int_caller,
1800 .flags = IRQF_DISABLED,
1801 .name = "cpe_poll"
1803 #endif /* CONFIG_ACPI */
1805 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1806 * these stacks can never sleep, they cannot return from the kernel to user
1807 * space, they do not appear in a normal ps listing. So there is no need to
1808 * format most of the fields.
1811 static void __cpuinit
1812 format_mca_init_stack(void *mca_data, unsigned long offset,
1813 const char *type, int cpu)
1815 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1816 struct thread_info *ti;
1817 memset(p, 0, KERNEL_STACK_SIZE);
1818 ti = task_thread_info(p);
1819 ti->flags = _TIF_MCA_INIT;
1820 ti->preempt_count = 1;
1821 ti->task = p;
1822 ti->cpu = cpu;
1823 p->stack = ti;
1824 p->state = TASK_UNINTERRUPTIBLE;
1825 cpu_set(cpu, p->cpus_allowed);
1826 INIT_LIST_HEAD(&p->tasks);
1827 p->parent = p->real_parent = p->group_leader = p;
1828 INIT_LIST_HEAD(&p->children);
1829 INIT_LIST_HEAD(&p->sibling);
1830 strncpy(p->comm, type, sizeof(p->comm)-1);
1833 /* Caller prevents this from being called after init */
1834 static void * __init_refok mca_bootmem(void)
1836 return __alloc_bootmem(sizeof(struct ia64_mca_cpu),
1837 KERNEL_STACK_SIZE, 0);
1840 /* Do per-CPU MCA-related initialization. */
1841 void __cpuinit
1842 ia64_mca_cpu_init(void *cpu_data)
1844 void *pal_vaddr;
1845 void *data;
1846 long sz = sizeof(struct ia64_mca_cpu);
1847 int cpu = smp_processor_id();
1848 static int first_time = 1;
1851 * Structure will already be allocated if cpu has been online,
1852 * then offlined.
1854 if (__per_cpu_mca[cpu]) {
1855 data = __va(__per_cpu_mca[cpu]);
1856 } else {
1857 if (first_time) {
1858 data = mca_bootmem();
1859 first_time = 0;
1860 } else
1861 data = __get_free_pages(GFP_KERNEL, get_order(sz));
1862 if (!data)
1863 panic("Could not allocate MCA memory for cpu %d\n",
1864 cpu);
1866 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1867 "MCA", cpu);
1868 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1869 "INIT", cpu);
1870 __get_cpu_var(ia64_mca_data) = __per_cpu_mca[cpu] = __pa(data);
1873 * Stash away a copy of the PTE needed to map the per-CPU page.
1874 * We may need it during MCA recovery.
1876 __get_cpu_var(ia64_mca_per_cpu_pte) =
1877 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1880 * Also, stash away a copy of the PAL address and the PTE
1881 * needed to map it.
1883 pal_vaddr = efi_get_pal_addr();
1884 if (!pal_vaddr)
1885 return;
1886 __get_cpu_var(ia64_mca_pal_base) =
1887 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1888 __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1889 PAGE_KERNEL));
1892 static void __cpuinit ia64_mca_cmc_vector_adjust(void *dummy)
1894 unsigned long flags;
1896 local_irq_save(flags);
1897 if (!cmc_polling_enabled)
1898 ia64_mca_cmc_vector_enable(NULL);
1899 local_irq_restore(flags);
1902 static int __cpuinit mca_cpu_callback(struct notifier_block *nfb,
1903 unsigned long action,
1904 void *hcpu)
1906 int hotcpu = (unsigned long) hcpu;
1908 switch (action) {
1909 case CPU_ONLINE:
1910 case CPU_ONLINE_FROZEN:
1911 smp_call_function_single(hotcpu, ia64_mca_cmc_vector_adjust,
1912 NULL, 0);
1913 break;
1915 return NOTIFY_OK;
1918 static struct notifier_block mca_cpu_notifier __cpuinitdata = {
1919 .notifier_call = mca_cpu_callback
1923 * ia64_mca_init
1925 * Do all the system level mca specific initialization.
1927 * 1. Register spinloop and wakeup request interrupt vectors
1929 * 2. Register OS_MCA handler entry point
1931 * 3. Register OS_INIT handler entry point
1933 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1935 * Note that this initialization is done very early before some kernel
1936 * services are available.
1938 * Inputs : None
1940 * Outputs : None
1942 void __init
1943 ia64_mca_init(void)
1945 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1946 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1947 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1948 int i;
1949 long rc;
1950 struct ia64_sal_retval isrv;
1951 unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1952 static struct notifier_block default_init_monarch_nb = {
1953 .notifier_call = default_monarch_init_process,
1954 .priority = 0/* we need to notified last */
1957 IA64_MCA_DEBUG("%s: begin\n", __func__);
1959 /* Clear the Rendez checkin flag for all cpus */
1960 for(i = 0 ; i < NR_CPUS; i++)
1961 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1964 * Register the rendezvous spinloop and wakeup mechanism with SAL
1967 /* Register the rendezvous interrupt vector with SAL */
1968 while (1) {
1969 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1970 SAL_MC_PARAM_MECHANISM_INT,
1971 IA64_MCA_RENDEZ_VECTOR,
1972 timeout,
1973 SAL_MC_PARAM_RZ_ALWAYS);
1974 rc = isrv.status;
1975 if (rc == 0)
1976 break;
1977 if (rc == -2) {
1978 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1979 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1980 timeout = isrv.v0;
1981 NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1982 continue;
1984 printk(KERN_ERR "Failed to register rendezvous interrupt "
1985 "with SAL (status %ld)\n", rc);
1986 return;
1989 /* Register the wakeup interrupt vector with SAL */
1990 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1991 SAL_MC_PARAM_MECHANISM_INT,
1992 IA64_MCA_WAKEUP_VECTOR,
1993 0, 0);
1994 rc = isrv.status;
1995 if (rc) {
1996 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1997 "(status %ld)\n", rc);
1998 return;
2001 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
2003 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
2005 * XXX - disable SAL checksum by setting size to 0; should be
2006 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
2008 ia64_mc_info.imi_mca_handler_size = 0;
2010 /* Register the os mca handler with SAL */
2011 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
2012 ia64_mc_info.imi_mca_handler,
2013 ia64_tpa(mca_hldlr_ptr->gp),
2014 ia64_mc_info.imi_mca_handler_size,
2015 0, 0, 0)))
2017 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
2018 "(status %ld)\n", rc);
2019 return;
2022 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
2023 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
2026 * XXX - disable SAL checksum by setting size to 0, should be
2027 * size of the actual init handler in mca_asm.S.
2029 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
2030 ia64_mc_info.imi_monarch_init_handler_size = 0;
2031 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
2032 ia64_mc_info.imi_slave_init_handler_size = 0;
2034 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
2035 ia64_mc_info.imi_monarch_init_handler);
2037 /* Register the os init handler with SAL */
2038 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
2039 ia64_mc_info.imi_monarch_init_handler,
2040 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2041 ia64_mc_info.imi_monarch_init_handler_size,
2042 ia64_mc_info.imi_slave_init_handler,
2043 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2044 ia64_mc_info.imi_slave_init_handler_size)))
2046 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
2047 "(status %ld)\n", rc);
2048 return;
2050 if (register_die_notifier(&default_init_monarch_nb)) {
2051 printk(KERN_ERR "Failed to register default monarch INIT process\n");
2052 return;
2055 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2058 * Configure the CMCI/P vector and handler. Interrupts for CMC are
2059 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2061 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
2062 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
2063 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
2065 /* Setup the MCA rendezvous interrupt vector */
2066 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
2068 /* Setup the MCA wakeup interrupt vector */
2069 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
2071 #ifdef CONFIG_ACPI
2072 /* Setup the CPEI/P handler */
2073 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
2074 #endif
2076 /* Initialize the areas set aside by the OS to buffer the
2077 * platform/processor error states for MCA/INIT/CMC
2078 * handling.
2080 ia64_log_init(SAL_INFO_TYPE_MCA);
2081 ia64_log_init(SAL_INFO_TYPE_INIT);
2082 ia64_log_init(SAL_INFO_TYPE_CMC);
2083 ia64_log_init(SAL_INFO_TYPE_CPE);
2085 mca_init = 1;
2086 printk(KERN_INFO "MCA related initialization done\n");
2090 * ia64_mca_late_init
2092 * Opportunity to setup things that require initialization later
2093 * than ia64_mca_init. Setup a timer to poll for CPEs if the
2094 * platform doesn't support an interrupt driven mechanism.
2096 * Inputs : None
2097 * Outputs : Status
2099 static int __init
2100 ia64_mca_late_init(void)
2102 if (!mca_init)
2103 return 0;
2105 register_hotcpu_notifier(&mca_cpu_notifier);
2107 /* Setup the CMCI/P vector and handler */
2108 init_timer(&cmc_poll_timer);
2109 cmc_poll_timer.function = ia64_mca_cmc_poll;
2111 /* Unmask/enable the vector */
2112 cmc_polling_enabled = 0;
2113 schedule_work(&cmc_enable_work);
2115 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2117 #ifdef CONFIG_ACPI
2118 /* Setup the CPEI/P vector and handler */
2119 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2120 init_timer(&cpe_poll_timer);
2121 cpe_poll_timer.function = ia64_mca_cpe_poll;
2124 struct irq_desc *desc;
2125 unsigned int irq;
2127 if (cpe_vector >= 0) {
2128 /* If platform supports CPEI, enable the irq. */
2129 irq = local_vector_to_irq(cpe_vector);
2130 if (irq > 0) {
2131 cpe_poll_enabled = 0;
2132 desc = irq_desc + irq;
2133 desc->status |= IRQ_PER_CPU;
2134 setup_irq(irq, &mca_cpe_irqaction);
2135 ia64_cpe_irq = irq;
2136 ia64_mca_register_cpev(cpe_vector);
2137 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2138 __func__);
2139 return 0;
2141 printk(KERN_ERR "%s: Failed to find irq for CPE "
2142 "interrupt handler, vector %d\n",
2143 __func__, cpe_vector);
2145 /* If platform doesn't support CPEI, get the timer going. */
2146 if (cpe_poll_enabled) {
2147 ia64_mca_cpe_poll(0UL);
2148 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2151 #endif
2153 return 0;
2156 device_initcall(ia64_mca_late_init);