airport: remove useless return in a function returning void
[linux/fpc-iii.git] / arch / x86 / xen / mmu.c
blob636ef4caa52d3dee2a24fc3b1913fe23b8ab34db
1 /*
2 * Xen mmu operations
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
46 #include <asm/pgtable.h>
47 #include <asm/tlbflush.h>
48 #include <asm/fixmap.h>
49 #include <asm/mmu_context.h>
50 #include <asm/paravirt.h>
51 #include <asm/linkage.h>
53 #include <asm/xen/hypercall.h>
54 #include <asm/xen/hypervisor.h>
56 #include <xen/page.h>
57 #include <xen/interface/xen.h>
59 #include "multicalls.h"
60 #include "mmu.h"
61 #include "debugfs.h"
63 #define MMU_UPDATE_HISTO 30
65 #ifdef CONFIG_XEN_DEBUG_FS
67 static struct {
68 u32 pgd_update;
69 u32 pgd_update_pinned;
70 u32 pgd_update_batched;
72 u32 pud_update;
73 u32 pud_update_pinned;
74 u32 pud_update_batched;
76 u32 pmd_update;
77 u32 pmd_update_pinned;
78 u32 pmd_update_batched;
80 u32 pte_update;
81 u32 pte_update_pinned;
82 u32 pte_update_batched;
84 u32 mmu_update;
85 u32 mmu_update_extended;
86 u32 mmu_update_histo[MMU_UPDATE_HISTO];
88 u32 prot_commit;
89 u32 prot_commit_batched;
91 u32 set_pte_at;
92 u32 set_pte_at_batched;
93 u32 set_pte_at_pinned;
94 u32 set_pte_at_current;
95 u32 set_pte_at_kernel;
96 } mmu_stats;
98 static u8 zero_stats;
100 static inline void check_zero(void)
102 if (unlikely(zero_stats)) {
103 memset(&mmu_stats, 0, sizeof(mmu_stats));
104 zero_stats = 0;
108 #define ADD_STATS(elem, val) \
109 do { check_zero(); mmu_stats.elem += (val); } while(0)
111 #else /* !CONFIG_XEN_DEBUG_FS */
113 #define ADD_STATS(elem, val) do { (void)(val); } while(0)
115 #endif /* CONFIG_XEN_DEBUG_FS */
118 * Just beyond the highest usermode address. STACK_TOP_MAX has a
119 * redzone above it, so round it up to a PGD boundary.
121 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
124 #define P2M_ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
125 #define TOP_ENTRIES (MAX_DOMAIN_PAGES / P2M_ENTRIES_PER_PAGE)
127 /* Placeholder for holes in the address space */
128 static unsigned long p2m_missing[P2M_ENTRIES_PER_PAGE] __page_aligned_data =
129 { [ 0 ... P2M_ENTRIES_PER_PAGE-1 ] = ~0UL };
131 /* Array of pointers to pages containing p2m entries */
132 static unsigned long *p2m_top[TOP_ENTRIES] __page_aligned_data =
133 { [ 0 ... TOP_ENTRIES - 1] = &p2m_missing[0] };
135 /* Arrays of p2m arrays expressed in mfns used for save/restore */
136 static unsigned long p2m_top_mfn[TOP_ENTRIES] __page_aligned_bss;
138 static unsigned long p2m_top_mfn_list[TOP_ENTRIES / P2M_ENTRIES_PER_PAGE]
139 __page_aligned_bss;
141 static inline unsigned p2m_top_index(unsigned long pfn)
143 BUG_ON(pfn >= MAX_DOMAIN_PAGES);
144 return pfn / P2M_ENTRIES_PER_PAGE;
147 static inline unsigned p2m_index(unsigned long pfn)
149 return pfn % P2M_ENTRIES_PER_PAGE;
152 /* Build the parallel p2m_top_mfn structures */
153 void xen_setup_mfn_list_list(void)
155 unsigned pfn, idx;
157 for(pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_ENTRIES_PER_PAGE) {
158 unsigned topidx = p2m_top_index(pfn);
160 p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]);
163 for(idx = 0; idx < ARRAY_SIZE(p2m_top_mfn_list); idx++) {
164 unsigned topidx = idx * P2M_ENTRIES_PER_PAGE;
165 p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]);
168 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
170 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
171 virt_to_mfn(p2m_top_mfn_list);
172 HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages;
175 /* Set up p2m_top to point to the domain-builder provided p2m pages */
176 void __init xen_build_dynamic_phys_to_machine(void)
178 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
179 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
180 unsigned pfn;
182 for(pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
183 unsigned topidx = p2m_top_index(pfn);
185 p2m_top[topidx] = &mfn_list[pfn];
189 unsigned long get_phys_to_machine(unsigned long pfn)
191 unsigned topidx, idx;
193 if (unlikely(pfn >= MAX_DOMAIN_PAGES))
194 return INVALID_P2M_ENTRY;
196 topidx = p2m_top_index(pfn);
197 idx = p2m_index(pfn);
198 return p2m_top[topidx][idx];
200 EXPORT_SYMBOL_GPL(get_phys_to_machine);
202 static void alloc_p2m(unsigned long **pp, unsigned long *mfnp)
204 unsigned long *p;
205 unsigned i;
207 p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL);
208 BUG_ON(p == NULL);
210 for(i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
211 p[i] = INVALID_P2M_ENTRY;
213 if (cmpxchg(pp, p2m_missing, p) != p2m_missing)
214 free_page((unsigned long)p);
215 else
216 *mfnp = virt_to_mfn(p);
219 void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
221 unsigned topidx, idx;
223 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
224 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
225 return;
228 if (unlikely(pfn >= MAX_DOMAIN_PAGES)) {
229 BUG_ON(mfn != INVALID_P2M_ENTRY);
230 return;
233 topidx = p2m_top_index(pfn);
234 if (p2m_top[topidx] == p2m_missing) {
235 /* no need to allocate a page to store an invalid entry */
236 if (mfn == INVALID_P2M_ENTRY)
237 return;
238 alloc_p2m(&p2m_top[topidx], &p2m_top_mfn[topidx]);
241 idx = p2m_index(pfn);
242 p2m_top[topidx][idx] = mfn;
245 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
247 unsigned long address = (unsigned long)vaddr;
248 unsigned int level;
249 pte_t *pte;
250 unsigned offset;
253 * if the PFN is in the linear mapped vaddr range, we can just use
254 * the (quick) virt_to_machine() p2m lookup
256 if (virt_addr_valid(vaddr))
257 return virt_to_machine(vaddr);
259 /* otherwise we have to do a (slower) full page-table walk */
261 pte = lookup_address(address, &level);
262 BUG_ON(pte == NULL);
263 offset = address & ~PAGE_MASK;
264 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
267 void make_lowmem_page_readonly(void *vaddr)
269 pte_t *pte, ptev;
270 unsigned long address = (unsigned long)vaddr;
271 unsigned int level;
273 pte = lookup_address(address, &level);
274 BUG_ON(pte == NULL);
276 ptev = pte_wrprotect(*pte);
278 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
279 BUG();
282 void make_lowmem_page_readwrite(void *vaddr)
284 pte_t *pte, ptev;
285 unsigned long address = (unsigned long)vaddr;
286 unsigned int level;
288 pte = lookup_address(address, &level);
289 BUG_ON(pte == NULL);
291 ptev = pte_mkwrite(*pte);
293 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
294 BUG();
298 static bool xen_page_pinned(void *ptr)
300 struct page *page = virt_to_page(ptr);
302 return PagePinned(page);
305 static void xen_extend_mmu_update(const struct mmu_update *update)
307 struct multicall_space mcs;
308 struct mmu_update *u;
310 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
312 if (mcs.mc != NULL) {
313 ADD_STATS(mmu_update_extended, 1);
314 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
316 mcs.mc->args[1]++;
318 if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
319 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
320 else
321 ADD_STATS(mmu_update_histo[0], 1);
322 } else {
323 ADD_STATS(mmu_update, 1);
324 mcs = __xen_mc_entry(sizeof(*u));
325 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
326 ADD_STATS(mmu_update_histo[1], 1);
329 u = mcs.args;
330 *u = *update;
333 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
335 struct mmu_update u;
337 preempt_disable();
339 xen_mc_batch();
341 /* ptr may be ioremapped for 64-bit pagetable setup */
342 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
343 u.val = pmd_val_ma(val);
344 xen_extend_mmu_update(&u);
346 ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
348 xen_mc_issue(PARAVIRT_LAZY_MMU);
350 preempt_enable();
353 void xen_set_pmd(pmd_t *ptr, pmd_t val)
355 ADD_STATS(pmd_update, 1);
357 /* If page is not pinned, we can just update the entry
358 directly */
359 if (!xen_page_pinned(ptr)) {
360 *ptr = val;
361 return;
364 ADD_STATS(pmd_update_pinned, 1);
366 xen_set_pmd_hyper(ptr, val);
370 * Associate a virtual page frame with a given physical page frame
371 * and protection flags for that frame.
373 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
375 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
378 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
379 pte_t *ptep, pte_t pteval)
381 /* updates to init_mm may be done without lock */
382 if (mm == &init_mm)
383 preempt_disable();
385 ADD_STATS(set_pte_at, 1);
386 // ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
387 ADD_STATS(set_pte_at_current, mm == current->mm);
388 ADD_STATS(set_pte_at_kernel, mm == &init_mm);
390 if (mm == current->mm || mm == &init_mm) {
391 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
392 struct multicall_space mcs;
393 mcs = xen_mc_entry(0);
395 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
396 ADD_STATS(set_pte_at_batched, 1);
397 xen_mc_issue(PARAVIRT_LAZY_MMU);
398 goto out;
399 } else
400 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
401 goto out;
403 xen_set_pte(ptep, pteval);
405 out:
406 if (mm == &init_mm)
407 preempt_enable();
410 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
412 /* Just return the pte as-is. We preserve the bits on commit */
413 return *ptep;
416 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
417 pte_t *ptep, pte_t pte)
419 struct mmu_update u;
421 xen_mc_batch();
423 u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
424 u.val = pte_val_ma(pte);
425 xen_extend_mmu_update(&u);
427 ADD_STATS(prot_commit, 1);
428 ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
430 xen_mc_issue(PARAVIRT_LAZY_MMU);
433 /* Assume pteval_t is equivalent to all the other *val_t types. */
434 static pteval_t pte_mfn_to_pfn(pteval_t val)
436 if (val & _PAGE_PRESENT) {
437 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
438 pteval_t flags = val & PTE_FLAGS_MASK;
439 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
442 return val;
445 static pteval_t pte_pfn_to_mfn(pteval_t val)
447 if (val & _PAGE_PRESENT) {
448 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
449 pteval_t flags = val & PTE_FLAGS_MASK;
450 val = ((pteval_t)pfn_to_mfn(pfn) << PAGE_SHIFT) | flags;
453 return val;
456 pteval_t xen_pte_val(pte_t pte)
458 return pte_mfn_to_pfn(pte.pte);
461 pgdval_t xen_pgd_val(pgd_t pgd)
463 return pte_mfn_to_pfn(pgd.pgd);
466 pte_t xen_make_pte(pteval_t pte)
468 pte = pte_pfn_to_mfn(pte);
469 return native_make_pte(pte);
472 pgd_t xen_make_pgd(pgdval_t pgd)
474 pgd = pte_pfn_to_mfn(pgd);
475 return native_make_pgd(pgd);
478 pmdval_t xen_pmd_val(pmd_t pmd)
480 return pte_mfn_to_pfn(pmd.pmd);
483 void xen_set_pud_hyper(pud_t *ptr, pud_t val)
485 struct mmu_update u;
487 preempt_disable();
489 xen_mc_batch();
491 /* ptr may be ioremapped for 64-bit pagetable setup */
492 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
493 u.val = pud_val_ma(val);
494 xen_extend_mmu_update(&u);
496 ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
498 xen_mc_issue(PARAVIRT_LAZY_MMU);
500 preempt_enable();
503 void xen_set_pud(pud_t *ptr, pud_t val)
505 ADD_STATS(pud_update, 1);
507 /* If page is not pinned, we can just update the entry
508 directly */
509 if (!xen_page_pinned(ptr)) {
510 *ptr = val;
511 return;
514 ADD_STATS(pud_update_pinned, 1);
516 xen_set_pud_hyper(ptr, val);
519 void xen_set_pte(pte_t *ptep, pte_t pte)
521 ADD_STATS(pte_update, 1);
522 // ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
523 ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
525 #ifdef CONFIG_X86_PAE
526 ptep->pte_high = pte.pte_high;
527 smp_wmb();
528 ptep->pte_low = pte.pte_low;
529 #else
530 *ptep = pte;
531 #endif
534 #ifdef CONFIG_X86_PAE
535 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
537 set_64bit((u64 *)ptep, native_pte_val(pte));
540 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
542 ptep->pte_low = 0;
543 smp_wmb(); /* make sure low gets written first */
544 ptep->pte_high = 0;
547 void xen_pmd_clear(pmd_t *pmdp)
549 set_pmd(pmdp, __pmd(0));
551 #endif /* CONFIG_X86_PAE */
553 pmd_t xen_make_pmd(pmdval_t pmd)
555 pmd = pte_pfn_to_mfn(pmd);
556 return native_make_pmd(pmd);
559 #if PAGETABLE_LEVELS == 4
560 pudval_t xen_pud_val(pud_t pud)
562 return pte_mfn_to_pfn(pud.pud);
565 pud_t xen_make_pud(pudval_t pud)
567 pud = pte_pfn_to_mfn(pud);
569 return native_make_pud(pud);
572 pgd_t *xen_get_user_pgd(pgd_t *pgd)
574 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
575 unsigned offset = pgd - pgd_page;
576 pgd_t *user_ptr = NULL;
578 if (offset < pgd_index(USER_LIMIT)) {
579 struct page *page = virt_to_page(pgd_page);
580 user_ptr = (pgd_t *)page->private;
581 if (user_ptr)
582 user_ptr += offset;
585 return user_ptr;
588 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
590 struct mmu_update u;
592 u.ptr = virt_to_machine(ptr).maddr;
593 u.val = pgd_val_ma(val);
594 xen_extend_mmu_update(&u);
598 * Raw hypercall-based set_pgd, intended for in early boot before
599 * there's a page structure. This implies:
600 * 1. The only existing pagetable is the kernel's
601 * 2. It is always pinned
602 * 3. It has no user pagetable attached to it
604 void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
606 preempt_disable();
608 xen_mc_batch();
610 __xen_set_pgd_hyper(ptr, val);
612 xen_mc_issue(PARAVIRT_LAZY_MMU);
614 preempt_enable();
617 void xen_set_pgd(pgd_t *ptr, pgd_t val)
619 pgd_t *user_ptr = xen_get_user_pgd(ptr);
621 ADD_STATS(pgd_update, 1);
623 /* If page is not pinned, we can just update the entry
624 directly */
625 if (!xen_page_pinned(ptr)) {
626 *ptr = val;
627 if (user_ptr) {
628 WARN_ON(xen_page_pinned(user_ptr));
629 *user_ptr = val;
631 return;
634 ADD_STATS(pgd_update_pinned, 1);
635 ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
637 /* If it's pinned, then we can at least batch the kernel and
638 user updates together. */
639 xen_mc_batch();
641 __xen_set_pgd_hyper(ptr, val);
642 if (user_ptr)
643 __xen_set_pgd_hyper(user_ptr, val);
645 xen_mc_issue(PARAVIRT_LAZY_MMU);
647 #endif /* PAGETABLE_LEVELS == 4 */
650 * (Yet another) pagetable walker. This one is intended for pinning a
651 * pagetable. This means that it walks a pagetable and calls the
652 * callback function on each page it finds making up the page table,
653 * at every level. It walks the entire pagetable, but it only bothers
654 * pinning pte pages which are below limit. In the normal case this
655 * will be STACK_TOP_MAX, but at boot we need to pin up to
656 * FIXADDR_TOP.
658 * For 32-bit the important bit is that we don't pin beyond there,
659 * because then we start getting into Xen's ptes.
661 * For 64-bit, we must skip the Xen hole in the middle of the address
662 * space, just after the big x86-64 virtual hole.
664 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
665 int (*func)(struct mm_struct *mm, struct page *,
666 enum pt_level),
667 unsigned long limit)
669 int flush = 0;
670 unsigned hole_low, hole_high;
671 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
672 unsigned pgdidx, pudidx, pmdidx;
674 /* The limit is the last byte to be touched */
675 limit--;
676 BUG_ON(limit >= FIXADDR_TOP);
678 if (xen_feature(XENFEAT_auto_translated_physmap))
679 return 0;
682 * 64-bit has a great big hole in the middle of the address
683 * space, which contains the Xen mappings. On 32-bit these
684 * will end up making a zero-sized hole and so is a no-op.
686 hole_low = pgd_index(USER_LIMIT);
687 hole_high = pgd_index(PAGE_OFFSET);
689 pgdidx_limit = pgd_index(limit);
690 #if PTRS_PER_PUD > 1
691 pudidx_limit = pud_index(limit);
692 #else
693 pudidx_limit = 0;
694 #endif
695 #if PTRS_PER_PMD > 1
696 pmdidx_limit = pmd_index(limit);
697 #else
698 pmdidx_limit = 0;
699 #endif
701 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
702 pud_t *pud;
704 if (pgdidx >= hole_low && pgdidx < hole_high)
705 continue;
707 if (!pgd_val(pgd[pgdidx]))
708 continue;
710 pud = pud_offset(&pgd[pgdidx], 0);
712 if (PTRS_PER_PUD > 1) /* not folded */
713 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
715 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
716 pmd_t *pmd;
718 if (pgdidx == pgdidx_limit &&
719 pudidx > pudidx_limit)
720 goto out;
722 if (pud_none(pud[pudidx]))
723 continue;
725 pmd = pmd_offset(&pud[pudidx], 0);
727 if (PTRS_PER_PMD > 1) /* not folded */
728 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
730 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
731 struct page *pte;
733 if (pgdidx == pgdidx_limit &&
734 pudidx == pudidx_limit &&
735 pmdidx > pmdidx_limit)
736 goto out;
738 if (pmd_none(pmd[pmdidx]))
739 continue;
741 pte = pmd_page(pmd[pmdidx]);
742 flush |= (*func)(mm, pte, PT_PTE);
747 out:
748 /* Do the top level last, so that the callbacks can use it as
749 a cue to do final things like tlb flushes. */
750 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
752 return flush;
755 static int xen_pgd_walk(struct mm_struct *mm,
756 int (*func)(struct mm_struct *mm, struct page *,
757 enum pt_level),
758 unsigned long limit)
760 return __xen_pgd_walk(mm, mm->pgd, func, limit);
763 /* If we're using split pte locks, then take the page's lock and
764 return a pointer to it. Otherwise return NULL. */
765 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
767 spinlock_t *ptl = NULL;
769 #if USE_SPLIT_PTLOCKS
770 ptl = __pte_lockptr(page);
771 spin_lock_nest_lock(ptl, &mm->page_table_lock);
772 #endif
774 return ptl;
777 static void xen_pte_unlock(void *v)
779 spinlock_t *ptl = v;
780 spin_unlock(ptl);
783 static void xen_do_pin(unsigned level, unsigned long pfn)
785 struct mmuext_op *op;
786 struct multicall_space mcs;
788 mcs = __xen_mc_entry(sizeof(*op));
789 op = mcs.args;
790 op->cmd = level;
791 op->arg1.mfn = pfn_to_mfn(pfn);
792 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
795 static int xen_pin_page(struct mm_struct *mm, struct page *page,
796 enum pt_level level)
798 unsigned pgfl = TestSetPagePinned(page);
799 int flush;
801 if (pgfl)
802 flush = 0; /* already pinned */
803 else if (PageHighMem(page))
804 /* kmaps need flushing if we found an unpinned
805 highpage */
806 flush = 1;
807 else {
808 void *pt = lowmem_page_address(page);
809 unsigned long pfn = page_to_pfn(page);
810 struct multicall_space mcs = __xen_mc_entry(0);
811 spinlock_t *ptl;
813 flush = 0;
816 * We need to hold the pagetable lock between the time
817 * we make the pagetable RO and when we actually pin
818 * it. If we don't, then other users may come in and
819 * attempt to update the pagetable by writing it,
820 * which will fail because the memory is RO but not
821 * pinned, so Xen won't do the trap'n'emulate.
823 * If we're using split pte locks, we can't hold the
824 * entire pagetable's worth of locks during the
825 * traverse, because we may wrap the preempt count (8
826 * bits). The solution is to mark RO and pin each PTE
827 * page while holding the lock. This means the number
828 * of locks we end up holding is never more than a
829 * batch size (~32 entries, at present).
831 * If we're not using split pte locks, we needn't pin
832 * the PTE pages independently, because we're
833 * protected by the overall pagetable lock.
835 ptl = NULL;
836 if (level == PT_PTE)
837 ptl = xen_pte_lock(page, mm);
839 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
840 pfn_pte(pfn, PAGE_KERNEL_RO),
841 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
843 if (ptl) {
844 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
846 /* Queue a deferred unlock for when this batch
847 is completed. */
848 xen_mc_callback(xen_pte_unlock, ptl);
852 return flush;
855 /* This is called just after a mm has been created, but it has not
856 been used yet. We need to make sure that its pagetable is all
857 read-only, and can be pinned. */
858 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
860 vm_unmap_aliases();
862 xen_mc_batch();
864 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
865 /* re-enable interrupts for flushing */
866 xen_mc_issue(0);
868 kmap_flush_unused();
870 xen_mc_batch();
873 #ifdef CONFIG_X86_64
875 pgd_t *user_pgd = xen_get_user_pgd(pgd);
877 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
879 if (user_pgd) {
880 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
881 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(user_pgd)));
884 #else /* CONFIG_X86_32 */
885 #ifdef CONFIG_X86_PAE
886 /* Need to make sure unshared kernel PMD is pinnable */
887 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
888 PT_PMD);
889 #endif
890 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
891 #endif /* CONFIG_X86_64 */
892 xen_mc_issue(0);
895 static void xen_pgd_pin(struct mm_struct *mm)
897 __xen_pgd_pin(mm, mm->pgd);
901 * On save, we need to pin all pagetables to make sure they get their
902 * mfns turned into pfns. Search the list for any unpinned pgds and pin
903 * them (unpinned pgds are not currently in use, probably because the
904 * process is under construction or destruction).
906 * Expected to be called in stop_machine() ("equivalent to taking
907 * every spinlock in the system"), so the locking doesn't really
908 * matter all that much.
910 void xen_mm_pin_all(void)
912 unsigned long flags;
913 struct page *page;
915 spin_lock_irqsave(&pgd_lock, flags);
917 list_for_each_entry(page, &pgd_list, lru) {
918 if (!PagePinned(page)) {
919 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
920 SetPageSavePinned(page);
924 spin_unlock_irqrestore(&pgd_lock, flags);
928 * The init_mm pagetable is really pinned as soon as its created, but
929 * that's before we have page structures to store the bits. So do all
930 * the book-keeping now.
932 static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
933 enum pt_level level)
935 SetPagePinned(page);
936 return 0;
939 void __init xen_mark_init_mm_pinned(void)
941 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
944 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
945 enum pt_level level)
947 unsigned pgfl = TestClearPagePinned(page);
949 if (pgfl && !PageHighMem(page)) {
950 void *pt = lowmem_page_address(page);
951 unsigned long pfn = page_to_pfn(page);
952 spinlock_t *ptl = NULL;
953 struct multicall_space mcs;
956 * Do the converse to pin_page. If we're using split
957 * pte locks, we must be holding the lock for while
958 * the pte page is unpinned but still RO to prevent
959 * concurrent updates from seeing it in this
960 * partially-pinned state.
962 if (level == PT_PTE) {
963 ptl = xen_pte_lock(page, mm);
965 if (ptl)
966 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
969 mcs = __xen_mc_entry(0);
971 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
972 pfn_pte(pfn, PAGE_KERNEL),
973 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
975 if (ptl) {
976 /* unlock when batch completed */
977 xen_mc_callback(xen_pte_unlock, ptl);
981 return 0; /* never need to flush on unpin */
984 /* Release a pagetables pages back as normal RW */
985 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
987 xen_mc_batch();
989 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
991 #ifdef CONFIG_X86_64
993 pgd_t *user_pgd = xen_get_user_pgd(pgd);
995 if (user_pgd) {
996 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(user_pgd)));
997 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1000 #endif
1002 #ifdef CONFIG_X86_PAE
1003 /* Need to make sure unshared kernel PMD is unpinned */
1004 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1005 PT_PMD);
1006 #endif
1008 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1010 xen_mc_issue(0);
1013 static void xen_pgd_unpin(struct mm_struct *mm)
1015 __xen_pgd_unpin(mm, mm->pgd);
1019 * On resume, undo any pinning done at save, so that the rest of the
1020 * kernel doesn't see any unexpected pinned pagetables.
1022 void xen_mm_unpin_all(void)
1024 unsigned long flags;
1025 struct page *page;
1027 spin_lock_irqsave(&pgd_lock, flags);
1029 list_for_each_entry(page, &pgd_list, lru) {
1030 if (PageSavePinned(page)) {
1031 BUG_ON(!PagePinned(page));
1032 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1033 ClearPageSavePinned(page);
1037 spin_unlock_irqrestore(&pgd_lock, flags);
1040 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1042 spin_lock(&next->page_table_lock);
1043 xen_pgd_pin(next);
1044 spin_unlock(&next->page_table_lock);
1047 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1049 spin_lock(&mm->page_table_lock);
1050 xen_pgd_pin(mm);
1051 spin_unlock(&mm->page_table_lock);
1055 #ifdef CONFIG_SMP
1056 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1057 we need to repoint it somewhere else before we can unpin it. */
1058 static void drop_other_mm_ref(void *info)
1060 struct mm_struct *mm = info;
1061 struct mm_struct *active_mm;
1063 #ifdef CONFIG_X86_64
1064 active_mm = read_pda(active_mm);
1065 #else
1066 active_mm = __get_cpu_var(cpu_tlbstate).active_mm;
1067 #endif
1069 if (active_mm == mm)
1070 leave_mm(smp_processor_id());
1072 /* If this cpu still has a stale cr3 reference, then make sure
1073 it has been flushed. */
1074 if (x86_read_percpu(xen_current_cr3) == __pa(mm->pgd)) {
1075 load_cr3(swapper_pg_dir);
1076 arch_flush_lazy_cpu_mode();
1080 static void xen_drop_mm_ref(struct mm_struct *mm)
1082 cpumask_t mask;
1083 unsigned cpu;
1085 if (current->active_mm == mm) {
1086 if (current->mm == mm)
1087 load_cr3(swapper_pg_dir);
1088 else
1089 leave_mm(smp_processor_id());
1090 arch_flush_lazy_cpu_mode();
1093 /* Get the "official" set of cpus referring to our pagetable. */
1094 mask = mm->cpu_vm_mask;
1096 /* It's possible that a vcpu may have a stale reference to our
1097 cr3, because its in lazy mode, and it hasn't yet flushed
1098 its set of pending hypercalls yet. In this case, we can
1099 look at its actual current cr3 value, and force it to flush
1100 if needed. */
1101 for_each_online_cpu(cpu) {
1102 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1103 cpu_set(cpu, mask);
1106 if (!cpus_empty(mask))
1107 smp_call_function_mask(mask, drop_other_mm_ref, mm, 1);
1109 #else
1110 static void xen_drop_mm_ref(struct mm_struct *mm)
1112 if (current->active_mm == mm)
1113 load_cr3(swapper_pg_dir);
1115 #endif
1118 * While a process runs, Xen pins its pagetables, which means that the
1119 * hypervisor forces it to be read-only, and it controls all updates
1120 * to it. This means that all pagetable updates have to go via the
1121 * hypervisor, which is moderately expensive.
1123 * Since we're pulling the pagetable down, we switch to use init_mm,
1124 * unpin old process pagetable and mark it all read-write, which
1125 * allows further operations on it to be simple memory accesses.
1127 * The only subtle point is that another CPU may be still using the
1128 * pagetable because of lazy tlb flushing. This means we need need to
1129 * switch all CPUs off this pagetable before we can unpin it.
1131 void xen_exit_mmap(struct mm_struct *mm)
1133 get_cpu(); /* make sure we don't move around */
1134 xen_drop_mm_ref(mm);
1135 put_cpu();
1137 spin_lock(&mm->page_table_lock);
1139 /* pgd may not be pinned in the error exit path of execve */
1140 if (xen_page_pinned(mm->pgd))
1141 xen_pgd_unpin(mm);
1143 spin_unlock(&mm->page_table_lock);
1146 #ifdef CONFIG_XEN_DEBUG_FS
1148 static struct dentry *d_mmu_debug;
1150 static int __init xen_mmu_debugfs(void)
1152 struct dentry *d_xen = xen_init_debugfs();
1154 if (d_xen == NULL)
1155 return -ENOMEM;
1157 d_mmu_debug = debugfs_create_dir("mmu", d_xen);
1159 debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
1161 debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
1162 debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
1163 &mmu_stats.pgd_update_pinned);
1164 debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
1165 &mmu_stats.pgd_update_pinned);
1167 debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
1168 debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
1169 &mmu_stats.pud_update_pinned);
1170 debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
1171 &mmu_stats.pud_update_pinned);
1173 debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
1174 debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
1175 &mmu_stats.pmd_update_pinned);
1176 debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
1177 &mmu_stats.pmd_update_pinned);
1179 debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
1180 // debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
1181 // &mmu_stats.pte_update_pinned);
1182 debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
1183 &mmu_stats.pte_update_pinned);
1185 debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
1186 debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
1187 &mmu_stats.mmu_update_extended);
1188 xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
1189 mmu_stats.mmu_update_histo, 20);
1191 debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
1192 debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
1193 &mmu_stats.set_pte_at_batched);
1194 debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
1195 &mmu_stats.set_pte_at_current);
1196 debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
1197 &mmu_stats.set_pte_at_kernel);
1199 debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
1200 debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
1201 &mmu_stats.prot_commit_batched);
1203 return 0;
1205 fs_initcall(xen_mmu_debugfs);
1207 #endif /* CONFIG_XEN_DEBUG_FS */