2 * kernel/workqueue.c - generic async execution with shared worker pool
4 * Copyright (C) 2002 Ingo Molnar
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
12 * Made to use alloc_percpu by Christoph Lameter.
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
24 * Please read Documentation/workqueue.txt for details.
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
52 #include "workqueue_internal.h"
58 * A bound pool is either associated or disassociated with its CPU.
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 * be executing on any CPU. The pool behaves as an unbound one.
67 * Note that DISASSOCIATED should be flipped only while holding
68 * attach_mutex to avoid changing binding state while
69 * worker_attach_to_pool() is in progress.
71 POOL_DISASSOCIATED
= 1 << 2, /* cpu can't serve workers */
74 WORKER_DIE
= 1 << 1, /* die die die */
75 WORKER_IDLE
= 1 << 2, /* is idle */
76 WORKER_PREP
= 1 << 3, /* preparing to run works */
77 WORKER_CPU_INTENSIVE
= 1 << 6, /* cpu intensive */
78 WORKER_UNBOUND
= 1 << 7, /* worker is unbound */
79 WORKER_REBOUND
= 1 << 8, /* worker was rebound */
81 WORKER_NOT_RUNNING
= WORKER_PREP
| WORKER_CPU_INTENSIVE
|
82 WORKER_UNBOUND
| WORKER_REBOUND
,
84 NR_STD_WORKER_POOLS
= 2, /* # standard pools per cpu */
86 UNBOUND_POOL_HASH_ORDER
= 6, /* hashed by pool->attrs */
87 BUSY_WORKER_HASH_ORDER
= 6, /* 64 pointers */
89 MAX_IDLE_WORKERS_RATIO
= 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT
= 300 * HZ
, /* keep idle ones for 5 mins */
92 MAYDAY_INITIAL_TIMEOUT
= HZ
/ 100 >= 2 ? HZ
/ 100 : 2,
93 /* call for help after 10ms
95 MAYDAY_INTERVAL
= HZ
/ 10, /* and then every 100ms */
96 CREATE_COOLDOWN
= HZ
, /* time to breath after fail */
99 * Rescue workers are used only on emergencies and shared by
100 * all cpus. Give MIN_NICE.
102 RESCUER_NICE_LEVEL
= MIN_NICE
,
103 HIGHPRI_NICE_LEVEL
= MIN_NICE
,
109 * Structure fields follow one of the following exclusion rules.
111 * I: Modifiable by initialization/destruction paths and read-only for
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
117 * L: pool->lock protected. Access with pool->lock held.
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
124 * A: pool->attach_mutex protected.
126 * PL: wq_pool_mutex protected.
128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
133 * sched-RCU for reads.
135 * WQ: wq->mutex protected.
137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
139 * MD: wq_mayday_lock protected.
142 /* struct worker is defined in workqueue_internal.h */
145 spinlock_t lock
; /* the pool lock */
146 int cpu
; /* I: the associated cpu */
147 int node
; /* I: the associated node ID */
148 int id
; /* I: pool ID */
149 unsigned int flags
; /* X: flags */
151 unsigned long watchdog_ts
; /* L: watchdog timestamp */
153 struct list_head worklist
; /* L: list of pending works */
154 int nr_workers
; /* L: total number of workers */
156 /* nr_idle includes the ones off idle_list for rebinding */
157 int nr_idle
; /* L: currently idle ones */
159 struct list_head idle_list
; /* X: list of idle workers */
160 struct timer_list idle_timer
; /* L: worker idle timeout */
161 struct timer_list mayday_timer
; /* L: SOS timer for workers */
163 /* a workers is either on busy_hash or idle_list, or the manager */
164 DECLARE_HASHTABLE(busy_hash
, BUSY_WORKER_HASH_ORDER
);
165 /* L: hash of busy workers */
167 /* see manage_workers() for details on the two manager mutexes */
168 struct mutex manager_arb
; /* manager arbitration */
169 struct worker
*manager
; /* L: purely informational */
170 struct mutex attach_mutex
; /* attach/detach exclusion */
171 struct list_head workers
; /* A: attached workers */
172 struct completion
*detach_completion
; /* all workers detached */
174 struct ida worker_ida
; /* worker IDs for task name */
176 struct workqueue_attrs
*attrs
; /* I: worker attributes */
177 struct hlist_node hash_node
; /* PL: unbound_pool_hash node */
178 int refcnt
; /* PL: refcnt for unbound pools */
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
185 atomic_t nr_running ____cacheline_aligned_in_smp
;
188 * Destruction of pool is sched-RCU protected to allow dereferences
189 * from get_work_pool().
192 } ____cacheline_aligned_in_smp
;
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
200 struct pool_workqueue
{
201 struct worker_pool
*pool
; /* I: the associated pool */
202 struct workqueue_struct
*wq
; /* I: the owning workqueue */
203 int work_color
; /* L: current color */
204 int flush_color
; /* L: flushing color */
205 int refcnt
; /* L: reference count */
206 int nr_in_flight
[WORK_NR_COLORS
];
207 /* L: nr of in_flight works */
208 int nr_active
; /* L: nr of active works */
209 int max_active
; /* L: max active works */
210 struct list_head delayed_works
; /* L: delayed works */
211 struct list_head pwqs_node
; /* WR: node on wq->pwqs */
212 struct list_head mayday_node
; /* MD: node on wq->maydays */
215 * Release of unbound pwq is punted to system_wq. See put_pwq()
216 * and pwq_unbound_release_workfn() for details. pool_workqueue
217 * itself is also sched-RCU protected so that the first pwq can be
218 * determined without grabbing wq->mutex.
220 struct work_struct unbound_release_work
;
222 } __aligned(1 << WORK_STRUCT_FLAG_BITS
);
225 * Structure used to wait for workqueue flush.
228 struct list_head list
; /* WQ: list of flushers */
229 int flush_color
; /* WQ: flush color waiting for */
230 struct completion done
; /* flush completion */
236 * The externally visible workqueue. It relays the issued work items to
237 * the appropriate worker_pool through its pool_workqueues.
239 struct workqueue_struct
{
240 struct list_head pwqs
; /* WR: all pwqs of this wq */
241 struct list_head list
; /* PR: list of all workqueues */
243 struct mutex mutex
; /* protects this wq */
244 int work_color
; /* WQ: current work color */
245 int flush_color
; /* WQ: current flush color */
246 atomic_t nr_pwqs_to_flush
; /* flush in progress */
247 struct wq_flusher
*first_flusher
; /* WQ: first flusher */
248 struct list_head flusher_queue
; /* WQ: flush waiters */
249 struct list_head flusher_overflow
; /* WQ: flush overflow list */
251 struct list_head maydays
; /* MD: pwqs requesting rescue */
252 struct worker
*rescuer
; /* I: rescue worker */
254 int nr_drainers
; /* WQ: drain in progress */
255 int saved_max_active
; /* WQ: saved pwq max_active */
257 struct workqueue_attrs
*unbound_attrs
; /* PW: only for unbound wqs */
258 struct pool_workqueue
*dfl_pwq
; /* PW: only for unbound wqs */
261 struct wq_device
*wq_dev
; /* I: for sysfs interface */
263 #ifdef CONFIG_LOCKDEP
264 struct lockdep_map lockdep_map
;
266 char name
[WQ_NAME_LEN
]; /* I: workqueue name */
269 * Destruction of workqueue_struct is sched-RCU protected to allow
270 * walking the workqueues list without grabbing wq_pool_mutex.
271 * This is used to dump all workqueues from sysrq.
275 /* hot fields used during command issue, aligned to cacheline */
276 unsigned int flags ____cacheline_aligned
; /* WQ: WQ_* flags */
277 struct pool_workqueue __percpu
*cpu_pwqs
; /* I: per-cpu pwqs */
278 struct pool_workqueue __rcu
*numa_pwq_tbl
[]; /* PWR: unbound pwqs indexed by node */
281 static struct kmem_cache
*pwq_cache
;
283 static cpumask_var_t
*wq_numa_possible_cpumask
;
284 /* possible CPUs of each node */
286 static bool wq_disable_numa
;
287 module_param_named(disable_numa
, wq_disable_numa
, bool, 0444);
289 /* see the comment above the definition of WQ_POWER_EFFICIENT */
290 static bool wq_power_efficient
= IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT
);
291 module_param_named(power_efficient
, wq_power_efficient
, bool, 0444);
293 static bool wq_numa_enabled
; /* unbound NUMA affinity enabled */
295 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
296 static struct workqueue_attrs
*wq_update_unbound_numa_attrs_buf
;
298 static DEFINE_MUTEX(wq_pool_mutex
); /* protects pools and workqueues list */
299 static DEFINE_SPINLOCK(wq_mayday_lock
); /* protects wq->maydays list */
301 static LIST_HEAD(workqueues
); /* PR: list of all workqueues */
302 static bool workqueue_freezing
; /* PL: have wqs started freezing? */
304 /* PL: allowable cpus for unbound wqs and work items */
305 static cpumask_var_t wq_unbound_cpumask
;
307 /* CPU where unbound work was last round robin scheduled from this CPU */
308 static DEFINE_PER_CPU(int, wq_rr_cpu_last
);
311 * Local execution of unbound work items is no longer guaranteed. The
312 * following always forces round-robin CPU selection on unbound work items
313 * to uncover usages which depend on it.
315 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
316 static bool wq_debug_force_rr_cpu
= true;
318 static bool wq_debug_force_rr_cpu
= false;
320 module_param_named(debug_force_rr_cpu
, wq_debug_force_rr_cpu
, bool, 0644);
322 /* the per-cpu worker pools */
323 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool
[NR_STD_WORKER_POOLS
], cpu_worker_pools
);
325 static DEFINE_IDR(worker_pool_idr
); /* PR: idr of all pools */
327 /* PL: hash of all unbound pools keyed by pool->attrs */
328 static DEFINE_HASHTABLE(unbound_pool_hash
, UNBOUND_POOL_HASH_ORDER
);
330 /* I: attributes used when instantiating standard unbound pools on demand */
331 static struct workqueue_attrs
*unbound_std_wq_attrs
[NR_STD_WORKER_POOLS
];
333 /* I: attributes used when instantiating ordered pools on demand */
334 static struct workqueue_attrs
*ordered_wq_attrs
[NR_STD_WORKER_POOLS
];
336 struct workqueue_struct
*system_wq __read_mostly
;
337 EXPORT_SYMBOL(system_wq
);
338 struct workqueue_struct
*system_highpri_wq __read_mostly
;
339 EXPORT_SYMBOL_GPL(system_highpri_wq
);
340 struct workqueue_struct
*system_long_wq __read_mostly
;
341 EXPORT_SYMBOL_GPL(system_long_wq
);
342 struct workqueue_struct
*system_unbound_wq __read_mostly
;
343 EXPORT_SYMBOL_GPL(system_unbound_wq
);
344 struct workqueue_struct
*system_freezable_wq __read_mostly
;
345 EXPORT_SYMBOL_GPL(system_freezable_wq
);
346 struct workqueue_struct
*system_power_efficient_wq __read_mostly
;
347 EXPORT_SYMBOL_GPL(system_power_efficient_wq
);
348 struct workqueue_struct
*system_freezable_power_efficient_wq __read_mostly
;
349 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq
);
351 static int worker_thread(void *__worker
);
352 static void workqueue_sysfs_unregister(struct workqueue_struct
*wq
);
354 #define CREATE_TRACE_POINTS
355 #include <trace/events/workqueue.h>
357 #define assert_rcu_or_pool_mutex() \
358 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
359 !lockdep_is_held(&wq_pool_mutex), \
360 "sched RCU or wq_pool_mutex should be held")
362 #define assert_rcu_or_wq_mutex(wq) \
363 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
364 !lockdep_is_held(&wq->mutex), \
365 "sched RCU or wq->mutex should be held")
367 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
368 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
369 !lockdep_is_held(&wq->mutex) && \
370 !lockdep_is_held(&wq_pool_mutex), \
371 "sched RCU, wq->mutex or wq_pool_mutex should be held")
373 #define for_each_cpu_worker_pool(pool, cpu) \
374 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
375 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
379 * for_each_pool - iterate through all worker_pools in the system
380 * @pool: iteration cursor
381 * @pi: integer used for iteration
383 * This must be called either with wq_pool_mutex held or sched RCU read
384 * locked. If the pool needs to be used beyond the locking in effect, the
385 * caller is responsible for guaranteeing that the pool stays online.
387 * The if/else clause exists only for the lockdep assertion and can be
390 #define for_each_pool(pool, pi) \
391 idr_for_each_entry(&worker_pool_idr, pool, pi) \
392 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
396 * for_each_pool_worker - iterate through all workers of a worker_pool
397 * @worker: iteration cursor
398 * @pool: worker_pool to iterate workers of
400 * This must be called with @pool->attach_mutex.
402 * The if/else clause exists only for the lockdep assertion and can be
405 #define for_each_pool_worker(worker, pool) \
406 list_for_each_entry((worker), &(pool)->workers, node) \
407 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
411 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
412 * @pwq: iteration cursor
413 * @wq: the target workqueue
415 * This must be called either with wq->mutex held or sched RCU read locked.
416 * If the pwq needs to be used beyond the locking in effect, the caller is
417 * responsible for guaranteeing that the pwq stays online.
419 * The if/else clause exists only for the lockdep assertion and can be
422 #define for_each_pwq(pwq, wq) \
423 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
424 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
427 #ifdef CONFIG_DEBUG_OBJECTS_WORK
429 static struct debug_obj_descr work_debug_descr
;
431 static void *work_debug_hint(void *addr
)
433 return ((struct work_struct
*) addr
)->func
;
436 static bool work_is_static_object(void *addr
)
438 struct work_struct
*work
= addr
;
440 return test_bit(WORK_STRUCT_STATIC_BIT
, work_data_bits(work
));
444 * fixup_init is called when:
445 * - an active object is initialized
447 static bool work_fixup_init(void *addr
, enum debug_obj_state state
)
449 struct work_struct
*work
= addr
;
452 case ODEBUG_STATE_ACTIVE
:
453 cancel_work_sync(work
);
454 debug_object_init(work
, &work_debug_descr
);
462 * fixup_free is called when:
463 * - an active object is freed
465 static bool work_fixup_free(void *addr
, enum debug_obj_state state
)
467 struct work_struct
*work
= addr
;
470 case ODEBUG_STATE_ACTIVE
:
471 cancel_work_sync(work
);
472 debug_object_free(work
, &work_debug_descr
);
479 static struct debug_obj_descr work_debug_descr
= {
480 .name
= "work_struct",
481 .debug_hint
= work_debug_hint
,
482 .is_static_object
= work_is_static_object
,
483 .fixup_init
= work_fixup_init
,
484 .fixup_free
= work_fixup_free
,
487 static inline void debug_work_activate(struct work_struct
*work
)
489 debug_object_activate(work
, &work_debug_descr
);
492 static inline void debug_work_deactivate(struct work_struct
*work
)
494 debug_object_deactivate(work
, &work_debug_descr
);
497 void __init_work(struct work_struct
*work
, int onstack
)
500 debug_object_init_on_stack(work
, &work_debug_descr
);
502 debug_object_init(work
, &work_debug_descr
);
504 EXPORT_SYMBOL_GPL(__init_work
);
506 void destroy_work_on_stack(struct work_struct
*work
)
508 debug_object_free(work
, &work_debug_descr
);
510 EXPORT_SYMBOL_GPL(destroy_work_on_stack
);
512 void destroy_delayed_work_on_stack(struct delayed_work
*work
)
514 destroy_timer_on_stack(&work
->timer
);
515 debug_object_free(&work
->work
, &work_debug_descr
);
517 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack
);
520 static inline void debug_work_activate(struct work_struct
*work
) { }
521 static inline void debug_work_deactivate(struct work_struct
*work
) { }
525 * worker_pool_assign_id - allocate ID and assing it to @pool
526 * @pool: the pool pointer of interest
528 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
529 * successfully, -errno on failure.
531 static int worker_pool_assign_id(struct worker_pool
*pool
)
535 lockdep_assert_held(&wq_pool_mutex
);
537 ret
= idr_alloc(&worker_pool_idr
, pool
, 0, WORK_OFFQ_POOL_NONE
,
547 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
548 * @wq: the target workqueue
551 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
553 * If the pwq needs to be used beyond the locking in effect, the caller is
554 * responsible for guaranteeing that the pwq stays online.
556 * Return: The unbound pool_workqueue for @node.
558 static struct pool_workqueue
*unbound_pwq_by_node(struct workqueue_struct
*wq
,
561 assert_rcu_or_wq_mutex_or_pool_mutex(wq
);
564 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
565 * delayed item is pending. The plan is to keep CPU -> NODE
566 * mapping valid and stable across CPU on/offlines. Once that
567 * happens, this workaround can be removed.
569 if (unlikely(node
== NUMA_NO_NODE
))
572 return rcu_dereference_raw(wq
->numa_pwq_tbl
[node
]);
575 static unsigned int work_color_to_flags(int color
)
577 return color
<< WORK_STRUCT_COLOR_SHIFT
;
580 static int get_work_color(struct work_struct
*work
)
582 return (*work_data_bits(work
) >> WORK_STRUCT_COLOR_SHIFT
) &
583 ((1 << WORK_STRUCT_COLOR_BITS
) - 1);
586 static int work_next_color(int color
)
588 return (color
+ 1) % WORK_NR_COLORS
;
592 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
593 * contain the pointer to the queued pwq. Once execution starts, the flag
594 * is cleared and the high bits contain OFFQ flags and pool ID.
596 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
597 * and clear_work_data() can be used to set the pwq, pool or clear
598 * work->data. These functions should only be called while the work is
599 * owned - ie. while the PENDING bit is set.
601 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
602 * corresponding to a work. Pool is available once the work has been
603 * queued anywhere after initialization until it is sync canceled. pwq is
604 * available only while the work item is queued.
606 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
607 * canceled. While being canceled, a work item may have its PENDING set
608 * but stay off timer and worklist for arbitrarily long and nobody should
609 * try to steal the PENDING bit.
611 static inline void set_work_data(struct work_struct
*work
, unsigned long data
,
614 WARN_ON_ONCE(!work_pending(work
));
615 atomic_long_set(&work
->data
, data
| flags
| work_static(work
));
618 static void set_work_pwq(struct work_struct
*work
, struct pool_workqueue
*pwq
,
619 unsigned long extra_flags
)
621 set_work_data(work
, (unsigned long)pwq
,
622 WORK_STRUCT_PENDING
| WORK_STRUCT_PWQ
| extra_flags
);
625 static void set_work_pool_and_keep_pending(struct work_struct
*work
,
628 set_work_data(work
, (unsigned long)pool_id
<< WORK_OFFQ_POOL_SHIFT
,
629 WORK_STRUCT_PENDING
);
632 static void set_work_pool_and_clear_pending(struct work_struct
*work
,
636 * The following wmb is paired with the implied mb in
637 * test_and_set_bit(PENDING) and ensures all updates to @work made
638 * here are visible to and precede any updates by the next PENDING
642 set_work_data(work
, (unsigned long)pool_id
<< WORK_OFFQ_POOL_SHIFT
, 0);
644 * The following mb guarantees that previous clear of a PENDING bit
645 * will not be reordered with any speculative LOADS or STORES from
646 * work->current_func, which is executed afterwards. This possible
647 * reordering can lead to a missed execution on attempt to qeueue
648 * the same @work. E.g. consider this case:
651 * ---------------------------- --------------------------------
653 * 1 STORE event_indicated
654 * 2 queue_work_on() {
655 * 3 test_and_set_bit(PENDING)
656 * 4 } set_..._and_clear_pending() {
657 * 5 set_work_data() # clear bit
659 * 7 work->current_func() {
660 * 8 LOAD event_indicated
663 * Without an explicit full barrier speculative LOAD on line 8 can
664 * be executed before CPU#0 does STORE on line 1. If that happens,
665 * CPU#0 observes the PENDING bit is still set and new execution of
666 * a @work is not queued in a hope, that CPU#1 will eventually
667 * finish the queued @work. Meanwhile CPU#1 does not see
668 * event_indicated is set, because speculative LOAD was executed
669 * before actual STORE.
674 static void clear_work_data(struct work_struct
*work
)
676 smp_wmb(); /* see set_work_pool_and_clear_pending() */
677 set_work_data(work
, WORK_STRUCT_NO_POOL
, 0);
680 static struct pool_workqueue
*get_work_pwq(struct work_struct
*work
)
682 unsigned long data
= atomic_long_read(&work
->data
);
684 if (data
& WORK_STRUCT_PWQ
)
685 return (void *)(data
& WORK_STRUCT_WQ_DATA_MASK
);
691 * get_work_pool - return the worker_pool a given work was associated with
692 * @work: the work item of interest
694 * Pools are created and destroyed under wq_pool_mutex, and allows read
695 * access under sched-RCU read lock. As such, this function should be
696 * called under wq_pool_mutex or with preemption disabled.
698 * All fields of the returned pool are accessible as long as the above
699 * mentioned locking is in effect. If the returned pool needs to be used
700 * beyond the critical section, the caller is responsible for ensuring the
701 * returned pool is and stays online.
703 * Return: The worker_pool @work was last associated with. %NULL if none.
705 static struct worker_pool
*get_work_pool(struct work_struct
*work
)
707 unsigned long data
= atomic_long_read(&work
->data
);
710 assert_rcu_or_pool_mutex();
712 if (data
& WORK_STRUCT_PWQ
)
713 return ((struct pool_workqueue
*)
714 (data
& WORK_STRUCT_WQ_DATA_MASK
))->pool
;
716 pool_id
= data
>> WORK_OFFQ_POOL_SHIFT
;
717 if (pool_id
== WORK_OFFQ_POOL_NONE
)
720 return idr_find(&worker_pool_idr
, pool_id
);
724 * get_work_pool_id - return the worker pool ID a given work is associated with
725 * @work: the work item of interest
727 * Return: The worker_pool ID @work was last associated with.
728 * %WORK_OFFQ_POOL_NONE if none.
730 static int get_work_pool_id(struct work_struct
*work
)
732 unsigned long data
= atomic_long_read(&work
->data
);
734 if (data
& WORK_STRUCT_PWQ
)
735 return ((struct pool_workqueue
*)
736 (data
& WORK_STRUCT_WQ_DATA_MASK
))->pool
->id
;
738 return data
>> WORK_OFFQ_POOL_SHIFT
;
741 static void mark_work_canceling(struct work_struct
*work
)
743 unsigned long pool_id
= get_work_pool_id(work
);
745 pool_id
<<= WORK_OFFQ_POOL_SHIFT
;
746 set_work_data(work
, pool_id
| WORK_OFFQ_CANCELING
, WORK_STRUCT_PENDING
);
749 static bool work_is_canceling(struct work_struct
*work
)
751 unsigned long data
= atomic_long_read(&work
->data
);
753 return !(data
& WORK_STRUCT_PWQ
) && (data
& WORK_OFFQ_CANCELING
);
757 * Policy functions. These define the policies on how the global worker
758 * pools are managed. Unless noted otherwise, these functions assume that
759 * they're being called with pool->lock held.
762 static bool __need_more_worker(struct worker_pool
*pool
)
764 return !atomic_read(&pool
->nr_running
);
768 * Need to wake up a worker? Called from anything but currently
771 * Note that, because unbound workers never contribute to nr_running, this
772 * function will always return %true for unbound pools as long as the
773 * worklist isn't empty.
775 static bool need_more_worker(struct worker_pool
*pool
)
777 return !list_empty(&pool
->worklist
) && __need_more_worker(pool
);
780 /* Can I start working? Called from busy but !running workers. */
781 static bool may_start_working(struct worker_pool
*pool
)
783 return pool
->nr_idle
;
786 /* Do I need to keep working? Called from currently running workers. */
787 static bool keep_working(struct worker_pool
*pool
)
789 return !list_empty(&pool
->worklist
) &&
790 atomic_read(&pool
->nr_running
) <= 1;
793 /* Do we need a new worker? Called from manager. */
794 static bool need_to_create_worker(struct worker_pool
*pool
)
796 return need_more_worker(pool
) && !may_start_working(pool
);
799 /* Do we have too many workers and should some go away? */
800 static bool too_many_workers(struct worker_pool
*pool
)
802 bool managing
= mutex_is_locked(&pool
->manager_arb
);
803 int nr_idle
= pool
->nr_idle
+ managing
; /* manager is considered idle */
804 int nr_busy
= pool
->nr_workers
- nr_idle
;
806 return nr_idle
> 2 && (nr_idle
- 2) * MAX_IDLE_WORKERS_RATIO
>= nr_busy
;
813 /* Return the first idle worker. Safe with preemption disabled */
814 static struct worker
*first_idle_worker(struct worker_pool
*pool
)
816 if (unlikely(list_empty(&pool
->idle_list
)))
819 return list_first_entry(&pool
->idle_list
, struct worker
, entry
);
823 * wake_up_worker - wake up an idle worker
824 * @pool: worker pool to wake worker from
826 * Wake up the first idle worker of @pool.
829 * spin_lock_irq(pool->lock).
831 static void wake_up_worker(struct worker_pool
*pool
)
833 struct worker
*worker
= first_idle_worker(pool
);
836 wake_up_process(worker
->task
);
840 * wq_worker_waking_up - a worker is waking up
841 * @task: task waking up
842 * @cpu: CPU @task is waking up to
844 * This function is called during try_to_wake_up() when a worker is
848 * spin_lock_irq(rq->lock)
850 void wq_worker_waking_up(struct task_struct
*task
, int cpu
)
852 struct worker
*worker
= kthread_data(task
);
854 if (!(worker
->flags
& WORKER_NOT_RUNNING
)) {
855 WARN_ON_ONCE(worker
->pool
->cpu
!= cpu
);
856 atomic_inc(&worker
->pool
->nr_running
);
861 * wq_worker_sleeping - a worker is going to sleep
862 * @task: task going to sleep
864 * This function is called during schedule() when a busy worker is
865 * going to sleep. Worker on the same cpu can be woken up by
866 * returning pointer to its task.
869 * spin_lock_irq(rq->lock)
872 * Worker task on @cpu to wake up, %NULL if none.
874 struct task_struct
*wq_worker_sleeping(struct task_struct
*task
)
876 struct worker
*worker
= kthread_data(task
), *to_wakeup
= NULL
;
877 struct worker_pool
*pool
;
880 * Rescuers, which may not have all the fields set up like normal
881 * workers, also reach here, let's not access anything before
882 * checking NOT_RUNNING.
884 if (worker
->flags
& WORKER_NOT_RUNNING
)
889 /* this can only happen on the local cpu */
890 if (WARN_ON_ONCE(pool
->cpu
!= raw_smp_processor_id()))
894 * The counterpart of the following dec_and_test, implied mb,
895 * worklist not empty test sequence is in insert_work().
896 * Please read comment there.
898 * NOT_RUNNING is clear. This means that we're bound to and
899 * running on the local cpu w/ rq lock held and preemption
900 * disabled, which in turn means that none else could be
901 * manipulating idle_list, so dereferencing idle_list without pool
904 if (atomic_dec_and_test(&pool
->nr_running
) &&
905 !list_empty(&pool
->worklist
))
906 to_wakeup
= first_idle_worker(pool
);
907 return to_wakeup
? to_wakeup
->task
: NULL
;
911 * worker_set_flags - set worker flags and adjust nr_running accordingly
913 * @flags: flags to set
915 * Set @flags in @worker->flags and adjust nr_running accordingly.
918 * spin_lock_irq(pool->lock)
920 static inline void worker_set_flags(struct worker
*worker
, unsigned int flags
)
922 struct worker_pool
*pool
= worker
->pool
;
924 WARN_ON_ONCE(worker
->task
!= current
);
926 /* If transitioning into NOT_RUNNING, adjust nr_running. */
927 if ((flags
& WORKER_NOT_RUNNING
) &&
928 !(worker
->flags
& WORKER_NOT_RUNNING
)) {
929 atomic_dec(&pool
->nr_running
);
932 worker
->flags
|= flags
;
936 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
938 * @flags: flags to clear
940 * Clear @flags in @worker->flags and adjust nr_running accordingly.
943 * spin_lock_irq(pool->lock)
945 static inline void worker_clr_flags(struct worker
*worker
, unsigned int flags
)
947 struct worker_pool
*pool
= worker
->pool
;
948 unsigned int oflags
= worker
->flags
;
950 WARN_ON_ONCE(worker
->task
!= current
);
952 worker
->flags
&= ~flags
;
955 * If transitioning out of NOT_RUNNING, increment nr_running. Note
956 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
957 * of multiple flags, not a single flag.
959 if ((flags
& WORKER_NOT_RUNNING
) && (oflags
& WORKER_NOT_RUNNING
))
960 if (!(worker
->flags
& WORKER_NOT_RUNNING
))
961 atomic_inc(&pool
->nr_running
);
965 * find_worker_executing_work - find worker which is executing a work
966 * @pool: pool of interest
967 * @work: work to find worker for
969 * Find a worker which is executing @work on @pool by searching
970 * @pool->busy_hash which is keyed by the address of @work. For a worker
971 * to match, its current execution should match the address of @work and
972 * its work function. This is to avoid unwanted dependency between
973 * unrelated work executions through a work item being recycled while still
976 * This is a bit tricky. A work item may be freed once its execution
977 * starts and nothing prevents the freed area from being recycled for
978 * another work item. If the same work item address ends up being reused
979 * before the original execution finishes, workqueue will identify the
980 * recycled work item as currently executing and make it wait until the
981 * current execution finishes, introducing an unwanted dependency.
983 * This function checks the work item address and work function to avoid
984 * false positives. Note that this isn't complete as one may construct a
985 * work function which can introduce dependency onto itself through a
986 * recycled work item. Well, if somebody wants to shoot oneself in the
987 * foot that badly, there's only so much we can do, and if such deadlock
988 * actually occurs, it should be easy to locate the culprit work function.
991 * spin_lock_irq(pool->lock).
994 * Pointer to worker which is executing @work if found, %NULL
997 static struct worker
*find_worker_executing_work(struct worker_pool
*pool
,
998 struct work_struct
*work
)
1000 struct worker
*worker
;
1002 hash_for_each_possible(pool
->busy_hash
, worker
, hentry
,
1003 (unsigned long)work
)
1004 if (worker
->current_work
== work
&&
1005 worker
->current_func
== work
->func
)
1012 * move_linked_works - move linked works to a list
1013 * @work: start of series of works to be scheduled
1014 * @head: target list to append @work to
1015 * @nextp: out parameter for nested worklist walking
1017 * Schedule linked works starting from @work to @head. Work series to
1018 * be scheduled starts at @work and includes any consecutive work with
1019 * WORK_STRUCT_LINKED set in its predecessor.
1021 * If @nextp is not NULL, it's updated to point to the next work of
1022 * the last scheduled work. This allows move_linked_works() to be
1023 * nested inside outer list_for_each_entry_safe().
1026 * spin_lock_irq(pool->lock).
1028 static void move_linked_works(struct work_struct
*work
, struct list_head
*head
,
1029 struct work_struct
**nextp
)
1031 struct work_struct
*n
;
1034 * Linked worklist will always end before the end of the list,
1035 * use NULL for list head.
1037 list_for_each_entry_safe_from(work
, n
, NULL
, entry
) {
1038 list_move_tail(&work
->entry
, head
);
1039 if (!(*work_data_bits(work
) & WORK_STRUCT_LINKED
))
1044 * If we're already inside safe list traversal and have moved
1045 * multiple works to the scheduled queue, the next position
1046 * needs to be updated.
1053 * get_pwq - get an extra reference on the specified pool_workqueue
1054 * @pwq: pool_workqueue to get
1056 * Obtain an extra reference on @pwq. The caller should guarantee that
1057 * @pwq has positive refcnt and be holding the matching pool->lock.
1059 static void get_pwq(struct pool_workqueue
*pwq
)
1061 lockdep_assert_held(&pwq
->pool
->lock
);
1062 WARN_ON_ONCE(pwq
->refcnt
<= 0);
1067 * put_pwq - put a pool_workqueue reference
1068 * @pwq: pool_workqueue to put
1070 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1071 * destruction. The caller should be holding the matching pool->lock.
1073 static void put_pwq(struct pool_workqueue
*pwq
)
1075 lockdep_assert_held(&pwq
->pool
->lock
);
1076 if (likely(--pwq
->refcnt
))
1078 if (WARN_ON_ONCE(!(pwq
->wq
->flags
& WQ_UNBOUND
)))
1081 * @pwq can't be released under pool->lock, bounce to
1082 * pwq_unbound_release_workfn(). This never recurses on the same
1083 * pool->lock as this path is taken only for unbound workqueues and
1084 * the release work item is scheduled on a per-cpu workqueue. To
1085 * avoid lockdep warning, unbound pool->locks are given lockdep
1086 * subclass of 1 in get_unbound_pool().
1088 schedule_work(&pwq
->unbound_release_work
);
1092 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1093 * @pwq: pool_workqueue to put (can be %NULL)
1095 * put_pwq() with locking. This function also allows %NULL @pwq.
1097 static void put_pwq_unlocked(struct pool_workqueue
*pwq
)
1101 * As both pwqs and pools are sched-RCU protected, the
1102 * following lock operations are safe.
1104 spin_lock_irq(&pwq
->pool
->lock
);
1106 spin_unlock_irq(&pwq
->pool
->lock
);
1110 static void pwq_activate_delayed_work(struct work_struct
*work
)
1112 struct pool_workqueue
*pwq
= get_work_pwq(work
);
1114 trace_workqueue_activate_work(work
);
1115 if (list_empty(&pwq
->pool
->worklist
))
1116 pwq
->pool
->watchdog_ts
= jiffies
;
1117 move_linked_works(work
, &pwq
->pool
->worklist
, NULL
);
1118 __clear_bit(WORK_STRUCT_DELAYED_BIT
, work_data_bits(work
));
1122 static void pwq_activate_first_delayed(struct pool_workqueue
*pwq
)
1124 struct work_struct
*work
= list_first_entry(&pwq
->delayed_works
,
1125 struct work_struct
, entry
);
1127 pwq_activate_delayed_work(work
);
1131 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1132 * @pwq: pwq of interest
1133 * @color: color of work which left the queue
1135 * A work either has completed or is removed from pending queue,
1136 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1139 * spin_lock_irq(pool->lock).
1141 static void pwq_dec_nr_in_flight(struct pool_workqueue
*pwq
, int color
)
1143 /* uncolored work items don't participate in flushing or nr_active */
1144 if (color
== WORK_NO_COLOR
)
1147 pwq
->nr_in_flight
[color
]--;
1150 if (!list_empty(&pwq
->delayed_works
)) {
1151 /* one down, submit a delayed one */
1152 if (pwq
->nr_active
< pwq
->max_active
)
1153 pwq_activate_first_delayed(pwq
);
1156 /* is flush in progress and are we at the flushing tip? */
1157 if (likely(pwq
->flush_color
!= color
))
1160 /* are there still in-flight works? */
1161 if (pwq
->nr_in_flight
[color
])
1164 /* this pwq is done, clear flush_color */
1165 pwq
->flush_color
= -1;
1168 * If this was the last pwq, wake up the first flusher. It
1169 * will handle the rest.
1171 if (atomic_dec_and_test(&pwq
->wq
->nr_pwqs_to_flush
))
1172 complete(&pwq
->wq
->first_flusher
->done
);
1178 * try_to_grab_pending - steal work item from worklist and disable irq
1179 * @work: work item to steal
1180 * @is_dwork: @work is a delayed_work
1181 * @flags: place to store irq state
1183 * Try to grab PENDING bit of @work. This function can handle @work in any
1184 * stable state - idle, on timer or on worklist.
1187 * 1 if @work was pending and we successfully stole PENDING
1188 * 0 if @work was idle and we claimed PENDING
1189 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1190 * -ENOENT if someone else is canceling @work, this state may persist
1191 * for arbitrarily long
1194 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1195 * interrupted while holding PENDING and @work off queue, irq must be
1196 * disabled on entry. This, combined with delayed_work->timer being
1197 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1199 * On successful return, >= 0, irq is disabled and the caller is
1200 * responsible for releasing it using local_irq_restore(*@flags).
1202 * This function is safe to call from any context including IRQ handler.
1204 static int try_to_grab_pending(struct work_struct
*work
, bool is_dwork
,
1205 unsigned long *flags
)
1207 struct worker_pool
*pool
;
1208 struct pool_workqueue
*pwq
;
1210 local_irq_save(*flags
);
1212 /* try to steal the timer if it exists */
1214 struct delayed_work
*dwork
= to_delayed_work(work
);
1217 * dwork->timer is irqsafe. If del_timer() fails, it's
1218 * guaranteed that the timer is not queued anywhere and not
1219 * running on the local CPU.
1221 if (likely(del_timer(&dwork
->timer
)))
1225 /* try to claim PENDING the normal way */
1226 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT
, work_data_bits(work
)))
1230 * The queueing is in progress, or it is already queued. Try to
1231 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1233 pool
= get_work_pool(work
);
1237 spin_lock(&pool
->lock
);
1239 * work->data is guaranteed to point to pwq only while the work
1240 * item is queued on pwq->wq, and both updating work->data to point
1241 * to pwq on queueing and to pool on dequeueing are done under
1242 * pwq->pool->lock. This in turn guarantees that, if work->data
1243 * points to pwq which is associated with a locked pool, the work
1244 * item is currently queued on that pool.
1246 pwq
= get_work_pwq(work
);
1247 if (pwq
&& pwq
->pool
== pool
) {
1248 debug_work_deactivate(work
);
1251 * A delayed work item cannot be grabbed directly because
1252 * it might have linked NO_COLOR work items which, if left
1253 * on the delayed_list, will confuse pwq->nr_active
1254 * management later on and cause stall. Make sure the work
1255 * item is activated before grabbing.
1257 if (*work_data_bits(work
) & WORK_STRUCT_DELAYED
)
1258 pwq_activate_delayed_work(work
);
1260 list_del_init(&work
->entry
);
1261 pwq_dec_nr_in_flight(pwq
, get_work_color(work
));
1263 /* work->data points to pwq iff queued, point to pool */
1264 set_work_pool_and_keep_pending(work
, pool
->id
);
1266 spin_unlock(&pool
->lock
);
1269 spin_unlock(&pool
->lock
);
1271 local_irq_restore(*flags
);
1272 if (work_is_canceling(work
))
1279 * insert_work - insert a work into a pool
1280 * @pwq: pwq @work belongs to
1281 * @work: work to insert
1282 * @head: insertion point
1283 * @extra_flags: extra WORK_STRUCT_* flags to set
1285 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1286 * work_struct flags.
1289 * spin_lock_irq(pool->lock).
1291 static void insert_work(struct pool_workqueue
*pwq
, struct work_struct
*work
,
1292 struct list_head
*head
, unsigned int extra_flags
)
1294 struct worker_pool
*pool
= pwq
->pool
;
1296 /* we own @work, set data and link */
1297 set_work_pwq(work
, pwq
, extra_flags
);
1298 list_add_tail(&work
->entry
, head
);
1302 * Ensure either wq_worker_sleeping() sees the above
1303 * list_add_tail() or we see zero nr_running to avoid workers lying
1304 * around lazily while there are works to be processed.
1308 if (__need_more_worker(pool
))
1309 wake_up_worker(pool
);
1313 * Test whether @work is being queued from another work executing on the
1316 static bool is_chained_work(struct workqueue_struct
*wq
)
1318 struct worker
*worker
;
1320 worker
= current_wq_worker();
1322 * Return %true iff I'm a worker execuing a work item on @wq. If
1323 * I'm @worker, it's safe to dereference it without locking.
1325 return worker
&& worker
->current_pwq
->wq
== wq
;
1329 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1330 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1331 * avoid perturbing sensitive tasks.
1333 static int wq_select_unbound_cpu(int cpu
)
1335 static bool printed_dbg_warning
;
1338 if (likely(!wq_debug_force_rr_cpu
)) {
1339 if (cpumask_test_cpu(cpu
, wq_unbound_cpumask
))
1341 } else if (!printed_dbg_warning
) {
1342 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1343 printed_dbg_warning
= true;
1346 if (cpumask_empty(wq_unbound_cpumask
))
1349 new_cpu
= __this_cpu_read(wq_rr_cpu_last
);
1350 new_cpu
= cpumask_next_and(new_cpu
, wq_unbound_cpumask
, cpu_online_mask
);
1351 if (unlikely(new_cpu
>= nr_cpu_ids
)) {
1352 new_cpu
= cpumask_first_and(wq_unbound_cpumask
, cpu_online_mask
);
1353 if (unlikely(new_cpu
>= nr_cpu_ids
))
1356 __this_cpu_write(wq_rr_cpu_last
, new_cpu
);
1361 static void __queue_work(int cpu
, struct workqueue_struct
*wq
,
1362 struct work_struct
*work
)
1364 struct pool_workqueue
*pwq
;
1365 struct worker_pool
*last_pool
;
1366 struct list_head
*worklist
;
1367 unsigned int work_flags
;
1368 unsigned int req_cpu
= cpu
;
1371 * While a work item is PENDING && off queue, a task trying to
1372 * steal the PENDING will busy-loop waiting for it to either get
1373 * queued or lose PENDING. Grabbing PENDING and queueing should
1374 * happen with IRQ disabled.
1376 WARN_ON_ONCE(!irqs_disabled());
1378 debug_work_activate(work
);
1380 /* if draining, only works from the same workqueue are allowed */
1381 if (unlikely(wq
->flags
& __WQ_DRAINING
) &&
1382 WARN_ON_ONCE(!is_chained_work(wq
)))
1385 if (req_cpu
== WORK_CPU_UNBOUND
)
1386 cpu
= wq_select_unbound_cpu(raw_smp_processor_id());
1388 /* pwq which will be used unless @work is executing elsewhere */
1389 if (!(wq
->flags
& WQ_UNBOUND
))
1390 pwq
= per_cpu_ptr(wq
->cpu_pwqs
, cpu
);
1392 pwq
= unbound_pwq_by_node(wq
, cpu_to_node(cpu
));
1395 * If @work was previously on a different pool, it might still be
1396 * running there, in which case the work needs to be queued on that
1397 * pool to guarantee non-reentrancy.
1399 last_pool
= get_work_pool(work
);
1400 if (last_pool
&& last_pool
!= pwq
->pool
) {
1401 struct worker
*worker
;
1403 spin_lock(&last_pool
->lock
);
1405 worker
= find_worker_executing_work(last_pool
, work
);
1407 if (worker
&& worker
->current_pwq
->wq
== wq
) {
1408 pwq
= worker
->current_pwq
;
1410 /* meh... not running there, queue here */
1411 spin_unlock(&last_pool
->lock
);
1412 spin_lock(&pwq
->pool
->lock
);
1415 spin_lock(&pwq
->pool
->lock
);
1419 * pwq is determined and locked. For unbound pools, we could have
1420 * raced with pwq release and it could already be dead. If its
1421 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1422 * without another pwq replacing it in the numa_pwq_tbl or while
1423 * work items are executing on it, so the retrying is guaranteed to
1424 * make forward-progress.
1426 if (unlikely(!pwq
->refcnt
)) {
1427 if (wq
->flags
& WQ_UNBOUND
) {
1428 spin_unlock(&pwq
->pool
->lock
);
1433 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1437 /* pwq determined, queue */
1438 trace_workqueue_queue_work(req_cpu
, pwq
, work
);
1440 if (WARN_ON(!list_empty(&work
->entry
))) {
1441 spin_unlock(&pwq
->pool
->lock
);
1445 pwq
->nr_in_flight
[pwq
->work_color
]++;
1446 work_flags
= work_color_to_flags(pwq
->work_color
);
1448 if (likely(pwq
->nr_active
< pwq
->max_active
)) {
1449 trace_workqueue_activate_work(work
);
1451 worklist
= &pwq
->pool
->worklist
;
1452 if (list_empty(worklist
))
1453 pwq
->pool
->watchdog_ts
= jiffies
;
1455 work_flags
|= WORK_STRUCT_DELAYED
;
1456 worklist
= &pwq
->delayed_works
;
1459 insert_work(pwq
, work
, worklist
, work_flags
);
1461 spin_unlock(&pwq
->pool
->lock
);
1465 * queue_work_on - queue work on specific cpu
1466 * @cpu: CPU number to execute work on
1467 * @wq: workqueue to use
1468 * @work: work to queue
1470 * We queue the work to a specific CPU, the caller must ensure it
1473 * Return: %false if @work was already on a queue, %true otherwise.
1475 bool queue_work_on(int cpu
, struct workqueue_struct
*wq
,
1476 struct work_struct
*work
)
1479 unsigned long flags
;
1481 local_irq_save(flags
);
1483 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT
, work_data_bits(work
))) {
1484 __queue_work(cpu
, wq
, work
);
1488 local_irq_restore(flags
);
1491 EXPORT_SYMBOL(queue_work_on
);
1493 void delayed_work_timer_fn(unsigned long __data
)
1495 struct delayed_work
*dwork
= (struct delayed_work
*)__data
;
1497 /* should have been called from irqsafe timer with irq already off */
1498 __queue_work(dwork
->cpu
, dwork
->wq
, &dwork
->work
);
1500 EXPORT_SYMBOL(delayed_work_timer_fn
);
1502 static void __queue_delayed_work(int cpu
, struct workqueue_struct
*wq
,
1503 struct delayed_work
*dwork
, unsigned long delay
)
1505 struct timer_list
*timer
= &dwork
->timer
;
1506 struct work_struct
*work
= &dwork
->work
;
1508 WARN_ON_ONCE(timer
->function
!= delayed_work_timer_fn
||
1509 timer
->data
!= (unsigned long)dwork
);
1510 WARN_ON_ONCE(timer_pending(timer
));
1511 WARN_ON_ONCE(!list_empty(&work
->entry
));
1514 * If @delay is 0, queue @dwork->work immediately. This is for
1515 * both optimization and correctness. The earliest @timer can
1516 * expire is on the closest next tick and delayed_work users depend
1517 * on that there's no such delay when @delay is 0.
1520 __queue_work(cpu
, wq
, &dwork
->work
);
1524 timer_stats_timer_set_start_info(&dwork
->timer
);
1528 timer
->expires
= jiffies
+ delay
;
1530 if (unlikely(cpu
!= WORK_CPU_UNBOUND
))
1531 add_timer_on(timer
, cpu
);
1537 * queue_delayed_work_on - queue work on specific CPU after delay
1538 * @cpu: CPU number to execute work on
1539 * @wq: workqueue to use
1540 * @dwork: work to queue
1541 * @delay: number of jiffies to wait before queueing
1543 * Return: %false if @work was already on a queue, %true otherwise. If
1544 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1547 bool queue_delayed_work_on(int cpu
, struct workqueue_struct
*wq
,
1548 struct delayed_work
*dwork
, unsigned long delay
)
1550 struct work_struct
*work
= &dwork
->work
;
1552 unsigned long flags
;
1554 /* read the comment in __queue_work() */
1555 local_irq_save(flags
);
1557 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT
, work_data_bits(work
))) {
1558 __queue_delayed_work(cpu
, wq
, dwork
, delay
);
1562 local_irq_restore(flags
);
1565 EXPORT_SYMBOL(queue_delayed_work_on
);
1568 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1569 * @cpu: CPU number to execute work on
1570 * @wq: workqueue to use
1571 * @dwork: work to queue
1572 * @delay: number of jiffies to wait before queueing
1574 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1575 * modify @dwork's timer so that it expires after @delay. If @delay is
1576 * zero, @work is guaranteed to be scheduled immediately regardless of its
1579 * Return: %false if @dwork was idle and queued, %true if @dwork was
1580 * pending and its timer was modified.
1582 * This function is safe to call from any context including IRQ handler.
1583 * See try_to_grab_pending() for details.
1585 bool mod_delayed_work_on(int cpu
, struct workqueue_struct
*wq
,
1586 struct delayed_work
*dwork
, unsigned long delay
)
1588 unsigned long flags
;
1592 ret
= try_to_grab_pending(&dwork
->work
, true, &flags
);
1593 } while (unlikely(ret
== -EAGAIN
));
1595 if (likely(ret
>= 0)) {
1596 __queue_delayed_work(cpu
, wq
, dwork
, delay
);
1597 local_irq_restore(flags
);
1600 /* -ENOENT from try_to_grab_pending() becomes %true */
1603 EXPORT_SYMBOL_GPL(mod_delayed_work_on
);
1606 * worker_enter_idle - enter idle state
1607 * @worker: worker which is entering idle state
1609 * @worker is entering idle state. Update stats and idle timer if
1613 * spin_lock_irq(pool->lock).
1615 static void worker_enter_idle(struct worker
*worker
)
1617 struct worker_pool
*pool
= worker
->pool
;
1619 if (WARN_ON_ONCE(worker
->flags
& WORKER_IDLE
) ||
1620 WARN_ON_ONCE(!list_empty(&worker
->entry
) &&
1621 (worker
->hentry
.next
|| worker
->hentry
.pprev
)))
1624 /* can't use worker_set_flags(), also called from create_worker() */
1625 worker
->flags
|= WORKER_IDLE
;
1627 worker
->last_active
= jiffies
;
1629 /* idle_list is LIFO */
1630 list_add(&worker
->entry
, &pool
->idle_list
);
1632 if (too_many_workers(pool
) && !timer_pending(&pool
->idle_timer
))
1633 mod_timer(&pool
->idle_timer
, jiffies
+ IDLE_WORKER_TIMEOUT
);
1636 * Sanity check nr_running. Because wq_unbind_fn() releases
1637 * pool->lock between setting %WORKER_UNBOUND and zapping
1638 * nr_running, the warning may trigger spuriously. Check iff
1639 * unbind is not in progress.
1641 WARN_ON_ONCE(!(pool
->flags
& POOL_DISASSOCIATED
) &&
1642 pool
->nr_workers
== pool
->nr_idle
&&
1643 atomic_read(&pool
->nr_running
));
1647 * worker_leave_idle - leave idle state
1648 * @worker: worker which is leaving idle state
1650 * @worker is leaving idle state. Update stats.
1653 * spin_lock_irq(pool->lock).
1655 static void worker_leave_idle(struct worker
*worker
)
1657 struct worker_pool
*pool
= worker
->pool
;
1659 if (WARN_ON_ONCE(!(worker
->flags
& WORKER_IDLE
)))
1661 worker_clr_flags(worker
, WORKER_IDLE
);
1663 list_del_init(&worker
->entry
);
1666 static struct worker
*alloc_worker(int node
)
1668 struct worker
*worker
;
1670 worker
= kzalloc_node(sizeof(*worker
), GFP_KERNEL
, node
);
1672 INIT_LIST_HEAD(&worker
->entry
);
1673 INIT_LIST_HEAD(&worker
->scheduled
);
1674 INIT_LIST_HEAD(&worker
->node
);
1675 /* on creation a worker is in !idle && prep state */
1676 worker
->flags
= WORKER_PREP
;
1682 * worker_attach_to_pool() - attach a worker to a pool
1683 * @worker: worker to be attached
1684 * @pool: the target pool
1686 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1687 * cpu-binding of @worker are kept coordinated with the pool across
1690 static void worker_attach_to_pool(struct worker
*worker
,
1691 struct worker_pool
*pool
)
1693 mutex_lock(&pool
->attach_mutex
);
1696 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1697 * online CPUs. It'll be re-applied when any of the CPUs come up.
1699 set_cpus_allowed_ptr(worker
->task
, pool
->attrs
->cpumask
);
1702 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1703 * stable across this function. See the comments above the
1704 * flag definition for details.
1706 if (pool
->flags
& POOL_DISASSOCIATED
)
1707 worker
->flags
|= WORKER_UNBOUND
;
1709 list_add_tail(&worker
->node
, &pool
->workers
);
1711 mutex_unlock(&pool
->attach_mutex
);
1715 * worker_detach_from_pool() - detach a worker from its pool
1716 * @worker: worker which is attached to its pool
1717 * @pool: the pool @worker is attached to
1719 * Undo the attaching which had been done in worker_attach_to_pool(). The
1720 * caller worker shouldn't access to the pool after detached except it has
1721 * other reference to the pool.
1723 static void worker_detach_from_pool(struct worker
*worker
,
1724 struct worker_pool
*pool
)
1726 struct completion
*detach_completion
= NULL
;
1728 mutex_lock(&pool
->attach_mutex
);
1729 list_del(&worker
->node
);
1730 if (list_empty(&pool
->workers
))
1731 detach_completion
= pool
->detach_completion
;
1732 mutex_unlock(&pool
->attach_mutex
);
1734 /* clear leftover flags without pool->lock after it is detached */
1735 worker
->flags
&= ~(WORKER_UNBOUND
| WORKER_REBOUND
);
1737 if (detach_completion
)
1738 complete(detach_completion
);
1742 * create_worker - create a new workqueue worker
1743 * @pool: pool the new worker will belong to
1745 * Create and start a new worker which is attached to @pool.
1748 * Might sleep. Does GFP_KERNEL allocations.
1751 * Pointer to the newly created worker.
1753 static struct worker
*create_worker(struct worker_pool
*pool
)
1755 struct worker
*worker
= NULL
;
1759 /* ID is needed to determine kthread name */
1760 id
= ida_simple_get(&pool
->worker_ida
, 0, 0, GFP_KERNEL
);
1764 worker
= alloc_worker(pool
->node
);
1768 worker
->pool
= pool
;
1772 snprintf(id_buf
, sizeof(id_buf
), "%d:%d%s", pool
->cpu
, id
,
1773 pool
->attrs
->nice
< 0 ? "H" : "");
1775 snprintf(id_buf
, sizeof(id_buf
), "u%d:%d", pool
->id
, id
);
1777 worker
->task
= kthread_create_on_node(worker_thread
, worker
, pool
->node
,
1778 "kworker/%s", id_buf
);
1779 if (IS_ERR(worker
->task
))
1782 set_user_nice(worker
->task
, pool
->attrs
->nice
);
1783 kthread_bind_mask(worker
->task
, pool
->attrs
->cpumask
);
1785 /* successful, attach the worker to the pool */
1786 worker_attach_to_pool(worker
, pool
);
1788 /* start the newly created worker */
1789 spin_lock_irq(&pool
->lock
);
1790 worker
->pool
->nr_workers
++;
1791 worker_enter_idle(worker
);
1792 wake_up_process(worker
->task
);
1793 spin_unlock_irq(&pool
->lock
);
1799 ida_simple_remove(&pool
->worker_ida
, id
);
1805 * destroy_worker - destroy a workqueue worker
1806 * @worker: worker to be destroyed
1808 * Destroy @worker and adjust @pool stats accordingly. The worker should
1812 * spin_lock_irq(pool->lock).
1814 static void destroy_worker(struct worker
*worker
)
1816 struct worker_pool
*pool
= worker
->pool
;
1818 lockdep_assert_held(&pool
->lock
);
1820 /* sanity check frenzy */
1821 if (WARN_ON(worker
->current_work
) ||
1822 WARN_ON(!list_empty(&worker
->scheduled
)) ||
1823 WARN_ON(!(worker
->flags
& WORKER_IDLE
)))
1829 list_del_init(&worker
->entry
);
1830 worker
->flags
|= WORKER_DIE
;
1831 wake_up_process(worker
->task
);
1834 static void idle_worker_timeout(unsigned long __pool
)
1836 struct worker_pool
*pool
= (void *)__pool
;
1838 spin_lock_irq(&pool
->lock
);
1840 while (too_many_workers(pool
)) {
1841 struct worker
*worker
;
1842 unsigned long expires
;
1844 /* idle_list is kept in LIFO order, check the last one */
1845 worker
= list_entry(pool
->idle_list
.prev
, struct worker
, entry
);
1846 expires
= worker
->last_active
+ IDLE_WORKER_TIMEOUT
;
1848 if (time_before(jiffies
, expires
)) {
1849 mod_timer(&pool
->idle_timer
, expires
);
1853 destroy_worker(worker
);
1856 spin_unlock_irq(&pool
->lock
);
1859 static void send_mayday(struct work_struct
*work
)
1861 struct pool_workqueue
*pwq
= get_work_pwq(work
);
1862 struct workqueue_struct
*wq
= pwq
->wq
;
1864 lockdep_assert_held(&wq_mayday_lock
);
1869 /* mayday mayday mayday */
1870 if (list_empty(&pwq
->mayday_node
)) {
1872 * If @pwq is for an unbound wq, its base ref may be put at
1873 * any time due to an attribute change. Pin @pwq until the
1874 * rescuer is done with it.
1877 list_add_tail(&pwq
->mayday_node
, &wq
->maydays
);
1878 wake_up_process(wq
->rescuer
->task
);
1882 static void pool_mayday_timeout(unsigned long __pool
)
1884 struct worker_pool
*pool
= (void *)__pool
;
1885 struct work_struct
*work
;
1887 spin_lock_irq(&pool
->lock
);
1888 spin_lock(&wq_mayday_lock
); /* for wq->maydays */
1890 if (need_to_create_worker(pool
)) {
1892 * We've been trying to create a new worker but
1893 * haven't been successful. We might be hitting an
1894 * allocation deadlock. Send distress signals to
1897 list_for_each_entry(work
, &pool
->worklist
, entry
)
1901 spin_unlock(&wq_mayday_lock
);
1902 spin_unlock_irq(&pool
->lock
);
1904 mod_timer(&pool
->mayday_timer
, jiffies
+ MAYDAY_INTERVAL
);
1908 * maybe_create_worker - create a new worker if necessary
1909 * @pool: pool to create a new worker for
1911 * Create a new worker for @pool if necessary. @pool is guaranteed to
1912 * have at least one idle worker on return from this function. If
1913 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1914 * sent to all rescuers with works scheduled on @pool to resolve
1915 * possible allocation deadlock.
1917 * On return, need_to_create_worker() is guaranteed to be %false and
1918 * may_start_working() %true.
1921 * spin_lock_irq(pool->lock) which may be released and regrabbed
1922 * multiple times. Does GFP_KERNEL allocations. Called only from
1925 static void maybe_create_worker(struct worker_pool
*pool
)
1926 __releases(&pool
->lock
)
1927 __acquires(&pool
->lock
)
1930 spin_unlock_irq(&pool
->lock
);
1932 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1933 mod_timer(&pool
->mayday_timer
, jiffies
+ MAYDAY_INITIAL_TIMEOUT
);
1936 if (create_worker(pool
) || !need_to_create_worker(pool
))
1939 schedule_timeout_interruptible(CREATE_COOLDOWN
);
1941 if (!need_to_create_worker(pool
))
1945 del_timer_sync(&pool
->mayday_timer
);
1946 spin_lock_irq(&pool
->lock
);
1948 * This is necessary even after a new worker was just successfully
1949 * created as @pool->lock was dropped and the new worker might have
1950 * already become busy.
1952 if (need_to_create_worker(pool
))
1957 * manage_workers - manage worker pool
1960 * Assume the manager role and manage the worker pool @worker belongs
1961 * to. At any given time, there can be only zero or one manager per
1962 * pool. The exclusion is handled automatically by this function.
1964 * The caller can safely start processing works on false return. On
1965 * true return, it's guaranteed that need_to_create_worker() is false
1966 * and may_start_working() is true.
1969 * spin_lock_irq(pool->lock) which may be released and regrabbed
1970 * multiple times. Does GFP_KERNEL allocations.
1973 * %false if the pool doesn't need management and the caller can safely
1974 * start processing works, %true if management function was performed and
1975 * the conditions that the caller verified before calling the function may
1976 * no longer be true.
1978 static bool manage_workers(struct worker
*worker
)
1980 struct worker_pool
*pool
= worker
->pool
;
1983 * Anyone who successfully grabs manager_arb wins the arbitration
1984 * and becomes the manager. mutex_trylock() on pool->manager_arb
1985 * failure while holding pool->lock reliably indicates that someone
1986 * else is managing the pool and the worker which failed trylock
1987 * can proceed to executing work items. This means that anyone
1988 * grabbing manager_arb is responsible for actually performing
1989 * manager duties. If manager_arb is grabbed and released without
1990 * actual management, the pool may stall indefinitely.
1992 if (!mutex_trylock(&pool
->manager_arb
))
1994 pool
->manager
= worker
;
1996 maybe_create_worker(pool
);
1998 pool
->manager
= NULL
;
1999 mutex_unlock(&pool
->manager_arb
);
2004 * process_one_work - process single work
2006 * @work: work to process
2008 * Process @work. This function contains all the logics necessary to
2009 * process a single work including synchronization against and
2010 * interaction with other workers on the same cpu, queueing and
2011 * flushing. As long as context requirement is met, any worker can
2012 * call this function to process a work.
2015 * spin_lock_irq(pool->lock) which is released and regrabbed.
2017 static void process_one_work(struct worker
*worker
, struct work_struct
*work
)
2018 __releases(&pool
->lock
)
2019 __acquires(&pool
->lock
)
2021 struct pool_workqueue
*pwq
= get_work_pwq(work
);
2022 struct worker_pool
*pool
= worker
->pool
;
2023 bool cpu_intensive
= pwq
->wq
->flags
& WQ_CPU_INTENSIVE
;
2025 struct worker
*collision
;
2026 #ifdef CONFIG_LOCKDEP
2028 * It is permissible to free the struct work_struct from
2029 * inside the function that is called from it, this we need to
2030 * take into account for lockdep too. To avoid bogus "held
2031 * lock freed" warnings as well as problems when looking into
2032 * work->lockdep_map, make a copy and use that here.
2034 struct lockdep_map lockdep_map
;
2036 lockdep_copy_map(&lockdep_map
, &work
->lockdep_map
);
2038 /* ensure we're on the correct CPU */
2039 WARN_ON_ONCE(!(pool
->flags
& POOL_DISASSOCIATED
) &&
2040 raw_smp_processor_id() != pool
->cpu
);
2043 * A single work shouldn't be executed concurrently by
2044 * multiple workers on a single cpu. Check whether anyone is
2045 * already processing the work. If so, defer the work to the
2046 * currently executing one.
2048 collision
= find_worker_executing_work(pool
, work
);
2049 if (unlikely(collision
)) {
2050 move_linked_works(work
, &collision
->scheduled
, NULL
);
2054 /* claim and dequeue */
2055 debug_work_deactivate(work
);
2056 hash_add(pool
->busy_hash
, &worker
->hentry
, (unsigned long)work
);
2057 worker
->current_work
= work
;
2058 worker
->current_func
= work
->func
;
2059 worker
->current_pwq
= pwq
;
2060 work_color
= get_work_color(work
);
2062 list_del_init(&work
->entry
);
2065 * CPU intensive works don't participate in concurrency management.
2066 * They're the scheduler's responsibility. This takes @worker out
2067 * of concurrency management and the next code block will chain
2068 * execution of the pending work items.
2070 if (unlikely(cpu_intensive
))
2071 worker_set_flags(worker
, WORKER_CPU_INTENSIVE
);
2074 * Wake up another worker if necessary. The condition is always
2075 * false for normal per-cpu workers since nr_running would always
2076 * be >= 1 at this point. This is used to chain execution of the
2077 * pending work items for WORKER_NOT_RUNNING workers such as the
2078 * UNBOUND and CPU_INTENSIVE ones.
2080 if (need_more_worker(pool
))
2081 wake_up_worker(pool
);
2084 * Record the last pool and clear PENDING which should be the last
2085 * update to @work. Also, do this inside @pool->lock so that
2086 * PENDING and queued state changes happen together while IRQ is
2089 set_work_pool_and_clear_pending(work
, pool
->id
);
2091 spin_unlock_irq(&pool
->lock
);
2093 lock_map_acquire_read(&pwq
->wq
->lockdep_map
);
2094 lock_map_acquire(&lockdep_map
);
2095 trace_workqueue_execute_start(work
);
2096 worker
->current_func(work
);
2098 * While we must be careful to not use "work" after this, the trace
2099 * point will only record its address.
2101 trace_workqueue_execute_end(work
);
2102 lock_map_release(&lockdep_map
);
2103 lock_map_release(&pwq
->wq
->lockdep_map
);
2105 if (unlikely(in_atomic() || lockdep_depth(current
) > 0)) {
2106 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2107 " last function: %pf\n",
2108 current
->comm
, preempt_count(), task_pid_nr(current
),
2109 worker
->current_func
);
2110 debug_show_held_locks(current
);
2115 * The following prevents a kworker from hogging CPU on !PREEMPT
2116 * kernels, where a requeueing work item waiting for something to
2117 * happen could deadlock with stop_machine as such work item could
2118 * indefinitely requeue itself while all other CPUs are trapped in
2119 * stop_machine. At the same time, report a quiescent RCU state so
2120 * the same condition doesn't freeze RCU.
2122 cond_resched_rcu_qs();
2124 spin_lock_irq(&pool
->lock
);
2126 /* clear cpu intensive status */
2127 if (unlikely(cpu_intensive
))
2128 worker_clr_flags(worker
, WORKER_CPU_INTENSIVE
);
2130 /* we're done with it, release */
2131 hash_del(&worker
->hentry
);
2132 worker
->current_work
= NULL
;
2133 worker
->current_func
= NULL
;
2134 worker
->current_pwq
= NULL
;
2135 worker
->desc_valid
= false;
2136 pwq_dec_nr_in_flight(pwq
, work_color
);
2140 * process_scheduled_works - process scheduled works
2143 * Process all scheduled works. Please note that the scheduled list
2144 * may change while processing a work, so this function repeatedly
2145 * fetches a work from the top and executes it.
2148 * spin_lock_irq(pool->lock) which may be released and regrabbed
2151 static void process_scheduled_works(struct worker
*worker
)
2153 while (!list_empty(&worker
->scheduled
)) {
2154 struct work_struct
*work
= list_first_entry(&worker
->scheduled
,
2155 struct work_struct
, entry
);
2156 process_one_work(worker
, work
);
2161 * worker_thread - the worker thread function
2164 * The worker thread function. All workers belong to a worker_pool -
2165 * either a per-cpu one or dynamic unbound one. These workers process all
2166 * work items regardless of their specific target workqueue. The only
2167 * exception is work items which belong to workqueues with a rescuer which
2168 * will be explained in rescuer_thread().
2172 static int worker_thread(void *__worker
)
2174 struct worker
*worker
= __worker
;
2175 struct worker_pool
*pool
= worker
->pool
;
2177 /* tell the scheduler that this is a workqueue worker */
2178 worker
->task
->flags
|= PF_WQ_WORKER
;
2180 spin_lock_irq(&pool
->lock
);
2182 /* am I supposed to die? */
2183 if (unlikely(worker
->flags
& WORKER_DIE
)) {
2184 spin_unlock_irq(&pool
->lock
);
2185 WARN_ON_ONCE(!list_empty(&worker
->entry
));
2186 worker
->task
->flags
&= ~PF_WQ_WORKER
;
2188 set_task_comm(worker
->task
, "kworker/dying");
2189 ida_simple_remove(&pool
->worker_ida
, worker
->id
);
2190 worker_detach_from_pool(worker
, pool
);
2195 worker_leave_idle(worker
);
2197 /* no more worker necessary? */
2198 if (!need_more_worker(pool
))
2201 /* do we need to manage? */
2202 if (unlikely(!may_start_working(pool
)) && manage_workers(worker
))
2206 * ->scheduled list can only be filled while a worker is
2207 * preparing to process a work or actually processing it.
2208 * Make sure nobody diddled with it while I was sleeping.
2210 WARN_ON_ONCE(!list_empty(&worker
->scheduled
));
2213 * Finish PREP stage. We're guaranteed to have at least one idle
2214 * worker or that someone else has already assumed the manager
2215 * role. This is where @worker starts participating in concurrency
2216 * management if applicable and concurrency management is restored
2217 * after being rebound. See rebind_workers() for details.
2219 worker_clr_flags(worker
, WORKER_PREP
| WORKER_REBOUND
);
2222 struct work_struct
*work
=
2223 list_first_entry(&pool
->worklist
,
2224 struct work_struct
, entry
);
2226 pool
->watchdog_ts
= jiffies
;
2228 if (likely(!(*work_data_bits(work
) & WORK_STRUCT_LINKED
))) {
2229 /* optimization path, not strictly necessary */
2230 process_one_work(worker
, work
);
2231 if (unlikely(!list_empty(&worker
->scheduled
)))
2232 process_scheduled_works(worker
);
2234 move_linked_works(work
, &worker
->scheduled
, NULL
);
2235 process_scheduled_works(worker
);
2237 } while (keep_working(pool
));
2239 worker_set_flags(worker
, WORKER_PREP
);
2242 * pool->lock is held and there's no work to process and no need to
2243 * manage, sleep. Workers are woken up only while holding
2244 * pool->lock or from local cpu, so setting the current state
2245 * before releasing pool->lock is enough to prevent losing any
2248 worker_enter_idle(worker
);
2249 __set_current_state(TASK_INTERRUPTIBLE
);
2250 spin_unlock_irq(&pool
->lock
);
2256 * rescuer_thread - the rescuer thread function
2259 * Workqueue rescuer thread function. There's one rescuer for each
2260 * workqueue which has WQ_MEM_RECLAIM set.
2262 * Regular work processing on a pool may block trying to create a new
2263 * worker which uses GFP_KERNEL allocation which has slight chance of
2264 * developing into deadlock if some works currently on the same queue
2265 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2266 * the problem rescuer solves.
2268 * When such condition is possible, the pool summons rescuers of all
2269 * workqueues which have works queued on the pool and let them process
2270 * those works so that forward progress can be guaranteed.
2272 * This should happen rarely.
2276 static int rescuer_thread(void *__rescuer
)
2278 struct worker
*rescuer
= __rescuer
;
2279 struct workqueue_struct
*wq
= rescuer
->rescue_wq
;
2280 struct list_head
*scheduled
= &rescuer
->scheduled
;
2283 set_user_nice(current
, RESCUER_NICE_LEVEL
);
2286 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2287 * doesn't participate in concurrency management.
2289 rescuer
->task
->flags
|= PF_WQ_WORKER
;
2291 set_current_state(TASK_INTERRUPTIBLE
);
2294 * By the time the rescuer is requested to stop, the workqueue
2295 * shouldn't have any work pending, but @wq->maydays may still have
2296 * pwq(s) queued. This can happen by non-rescuer workers consuming
2297 * all the work items before the rescuer got to them. Go through
2298 * @wq->maydays processing before acting on should_stop so that the
2299 * list is always empty on exit.
2301 should_stop
= kthread_should_stop();
2303 /* see whether any pwq is asking for help */
2304 spin_lock_irq(&wq_mayday_lock
);
2306 while (!list_empty(&wq
->maydays
)) {
2307 struct pool_workqueue
*pwq
= list_first_entry(&wq
->maydays
,
2308 struct pool_workqueue
, mayday_node
);
2309 struct worker_pool
*pool
= pwq
->pool
;
2310 struct work_struct
*work
, *n
;
2313 __set_current_state(TASK_RUNNING
);
2314 list_del_init(&pwq
->mayday_node
);
2316 spin_unlock_irq(&wq_mayday_lock
);
2318 worker_attach_to_pool(rescuer
, pool
);
2320 spin_lock_irq(&pool
->lock
);
2321 rescuer
->pool
= pool
;
2324 * Slurp in all works issued via this workqueue and
2327 WARN_ON_ONCE(!list_empty(scheduled
));
2328 list_for_each_entry_safe(work
, n
, &pool
->worklist
, entry
) {
2329 if (get_work_pwq(work
) == pwq
) {
2331 pool
->watchdog_ts
= jiffies
;
2332 move_linked_works(work
, scheduled
, &n
);
2337 if (!list_empty(scheduled
)) {
2338 process_scheduled_works(rescuer
);
2341 * The above execution of rescued work items could
2342 * have created more to rescue through
2343 * pwq_activate_first_delayed() or chained
2344 * queueing. Let's put @pwq back on mayday list so
2345 * that such back-to-back work items, which may be
2346 * being used to relieve memory pressure, don't
2347 * incur MAYDAY_INTERVAL delay inbetween.
2349 if (need_to_create_worker(pool
)) {
2350 spin_lock(&wq_mayday_lock
);
2352 list_move_tail(&pwq
->mayday_node
, &wq
->maydays
);
2353 spin_unlock(&wq_mayday_lock
);
2358 * Put the reference grabbed by send_mayday(). @pool won't
2359 * go away while we're still attached to it.
2364 * Leave this pool. If need_more_worker() is %true, notify a
2365 * regular worker; otherwise, we end up with 0 concurrency
2366 * and stalling the execution.
2368 if (need_more_worker(pool
))
2369 wake_up_worker(pool
);
2371 rescuer
->pool
= NULL
;
2372 spin_unlock_irq(&pool
->lock
);
2374 worker_detach_from_pool(rescuer
, pool
);
2376 spin_lock_irq(&wq_mayday_lock
);
2379 spin_unlock_irq(&wq_mayday_lock
);
2382 __set_current_state(TASK_RUNNING
);
2383 rescuer
->task
->flags
&= ~PF_WQ_WORKER
;
2387 /* rescuers should never participate in concurrency management */
2388 WARN_ON_ONCE(!(rescuer
->flags
& WORKER_NOT_RUNNING
));
2394 * check_flush_dependency - check for flush dependency sanity
2395 * @target_wq: workqueue being flushed
2396 * @target_work: work item being flushed (NULL for workqueue flushes)
2398 * %current is trying to flush the whole @target_wq or @target_work on it.
2399 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2400 * reclaiming memory or running on a workqueue which doesn't have
2401 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2404 static void check_flush_dependency(struct workqueue_struct
*target_wq
,
2405 struct work_struct
*target_work
)
2407 work_func_t target_func
= target_work
? target_work
->func
: NULL
;
2408 struct worker
*worker
;
2410 if (target_wq
->flags
& WQ_MEM_RECLAIM
)
2413 worker
= current_wq_worker();
2415 WARN_ONCE(current
->flags
& PF_MEMALLOC
,
2416 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2417 current
->pid
, current
->comm
, target_wq
->name
, target_func
);
2418 WARN_ONCE(worker
&& ((worker
->current_pwq
->wq
->flags
&
2419 (WQ_MEM_RECLAIM
| __WQ_LEGACY
)) == WQ_MEM_RECLAIM
),
2420 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2421 worker
->current_pwq
->wq
->name
, worker
->current_func
,
2422 target_wq
->name
, target_func
);
2426 struct work_struct work
;
2427 struct completion done
;
2428 struct task_struct
*task
; /* purely informational */
2431 static void wq_barrier_func(struct work_struct
*work
)
2433 struct wq_barrier
*barr
= container_of(work
, struct wq_barrier
, work
);
2434 complete(&barr
->done
);
2438 * insert_wq_barrier - insert a barrier work
2439 * @pwq: pwq to insert barrier into
2440 * @barr: wq_barrier to insert
2441 * @target: target work to attach @barr to
2442 * @worker: worker currently executing @target, NULL if @target is not executing
2444 * @barr is linked to @target such that @barr is completed only after
2445 * @target finishes execution. Please note that the ordering
2446 * guarantee is observed only with respect to @target and on the local
2449 * Currently, a queued barrier can't be canceled. This is because
2450 * try_to_grab_pending() can't determine whether the work to be
2451 * grabbed is at the head of the queue and thus can't clear LINKED
2452 * flag of the previous work while there must be a valid next work
2453 * after a work with LINKED flag set.
2455 * Note that when @worker is non-NULL, @target may be modified
2456 * underneath us, so we can't reliably determine pwq from @target.
2459 * spin_lock_irq(pool->lock).
2461 static void insert_wq_barrier(struct pool_workqueue
*pwq
,
2462 struct wq_barrier
*barr
,
2463 struct work_struct
*target
, struct worker
*worker
)
2465 struct list_head
*head
;
2466 unsigned int linked
= 0;
2469 * debugobject calls are safe here even with pool->lock locked
2470 * as we know for sure that this will not trigger any of the
2471 * checks and call back into the fixup functions where we
2474 INIT_WORK_ONSTACK(&barr
->work
, wq_barrier_func
);
2475 __set_bit(WORK_STRUCT_PENDING_BIT
, work_data_bits(&barr
->work
));
2476 init_completion(&barr
->done
);
2477 barr
->task
= current
;
2480 * If @target is currently being executed, schedule the
2481 * barrier to the worker; otherwise, put it after @target.
2484 head
= worker
->scheduled
.next
;
2486 unsigned long *bits
= work_data_bits(target
);
2488 head
= target
->entry
.next
;
2489 /* there can already be other linked works, inherit and set */
2490 linked
= *bits
& WORK_STRUCT_LINKED
;
2491 __set_bit(WORK_STRUCT_LINKED_BIT
, bits
);
2494 debug_work_activate(&barr
->work
);
2495 insert_work(pwq
, &barr
->work
, head
,
2496 work_color_to_flags(WORK_NO_COLOR
) | linked
);
2500 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2501 * @wq: workqueue being flushed
2502 * @flush_color: new flush color, < 0 for no-op
2503 * @work_color: new work color, < 0 for no-op
2505 * Prepare pwqs for workqueue flushing.
2507 * If @flush_color is non-negative, flush_color on all pwqs should be
2508 * -1. If no pwq has in-flight commands at the specified color, all
2509 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2510 * has in flight commands, its pwq->flush_color is set to
2511 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2512 * wakeup logic is armed and %true is returned.
2514 * The caller should have initialized @wq->first_flusher prior to
2515 * calling this function with non-negative @flush_color. If
2516 * @flush_color is negative, no flush color update is done and %false
2519 * If @work_color is non-negative, all pwqs should have the same
2520 * work_color which is previous to @work_color and all will be
2521 * advanced to @work_color.
2524 * mutex_lock(wq->mutex).
2527 * %true if @flush_color >= 0 and there's something to flush. %false
2530 static bool flush_workqueue_prep_pwqs(struct workqueue_struct
*wq
,
2531 int flush_color
, int work_color
)
2534 struct pool_workqueue
*pwq
;
2536 if (flush_color
>= 0) {
2537 WARN_ON_ONCE(atomic_read(&wq
->nr_pwqs_to_flush
));
2538 atomic_set(&wq
->nr_pwqs_to_flush
, 1);
2541 for_each_pwq(pwq
, wq
) {
2542 struct worker_pool
*pool
= pwq
->pool
;
2544 spin_lock_irq(&pool
->lock
);
2546 if (flush_color
>= 0) {
2547 WARN_ON_ONCE(pwq
->flush_color
!= -1);
2549 if (pwq
->nr_in_flight
[flush_color
]) {
2550 pwq
->flush_color
= flush_color
;
2551 atomic_inc(&wq
->nr_pwqs_to_flush
);
2556 if (work_color
>= 0) {
2557 WARN_ON_ONCE(work_color
!= work_next_color(pwq
->work_color
));
2558 pwq
->work_color
= work_color
;
2561 spin_unlock_irq(&pool
->lock
);
2564 if (flush_color
>= 0 && atomic_dec_and_test(&wq
->nr_pwqs_to_flush
))
2565 complete(&wq
->first_flusher
->done
);
2571 * flush_workqueue - ensure that any scheduled work has run to completion.
2572 * @wq: workqueue to flush
2574 * This function sleeps until all work items which were queued on entry
2575 * have finished execution, but it is not livelocked by new incoming ones.
2577 void flush_workqueue(struct workqueue_struct
*wq
)
2579 struct wq_flusher this_flusher
= {
2580 .list
= LIST_HEAD_INIT(this_flusher
.list
),
2582 .done
= COMPLETION_INITIALIZER_ONSTACK(this_flusher
.done
),
2586 lock_map_acquire(&wq
->lockdep_map
);
2587 lock_map_release(&wq
->lockdep_map
);
2589 mutex_lock(&wq
->mutex
);
2592 * Start-to-wait phase
2594 next_color
= work_next_color(wq
->work_color
);
2596 if (next_color
!= wq
->flush_color
) {
2598 * Color space is not full. The current work_color
2599 * becomes our flush_color and work_color is advanced
2602 WARN_ON_ONCE(!list_empty(&wq
->flusher_overflow
));
2603 this_flusher
.flush_color
= wq
->work_color
;
2604 wq
->work_color
= next_color
;
2606 if (!wq
->first_flusher
) {
2607 /* no flush in progress, become the first flusher */
2608 WARN_ON_ONCE(wq
->flush_color
!= this_flusher
.flush_color
);
2610 wq
->first_flusher
= &this_flusher
;
2612 if (!flush_workqueue_prep_pwqs(wq
, wq
->flush_color
,
2614 /* nothing to flush, done */
2615 wq
->flush_color
= next_color
;
2616 wq
->first_flusher
= NULL
;
2621 WARN_ON_ONCE(wq
->flush_color
== this_flusher
.flush_color
);
2622 list_add_tail(&this_flusher
.list
, &wq
->flusher_queue
);
2623 flush_workqueue_prep_pwqs(wq
, -1, wq
->work_color
);
2627 * Oops, color space is full, wait on overflow queue.
2628 * The next flush completion will assign us
2629 * flush_color and transfer to flusher_queue.
2631 list_add_tail(&this_flusher
.list
, &wq
->flusher_overflow
);
2634 check_flush_dependency(wq
, NULL
);
2636 mutex_unlock(&wq
->mutex
);
2638 wait_for_completion(&this_flusher
.done
);
2641 * Wake-up-and-cascade phase
2643 * First flushers are responsible for cascading flushes and
2644 * handling overflow. Non-first flushers can simply return.
2646 if (wq
->first_flusher
!= &this_flusher
)
2649 mutex_lock(&wq
->mutex
);
2651 /* we might have raced, check again with mutex held */
2652 if (wq
->first_flusher
!= &this_flusher
)
2655 wq
->first_flusher
= NULL
;
2657 WARN_ON_ONCE(!list_empty(&this_flusher
.list
));
2658 WARN_ON_ONCE(wq
->flush_color
!= this_flusher
.flush_color
);
2661 struct wq_flusher
*next
, *tmp
;
2663 /* complete all the flushers sharing the current flush color */
2664 list_for_each_entry_safe(next
, tmp
, &wq
->flusher_queue
, list
) {
2665 if (next
->flush_color
!= wq
->flush_color
)
2667 list_del_init(&next
->list
);
2668 complete(&next
->done
);
2671 WARN_ON_ONCE(!list_empty(&wq
->flusher_overflow
) &&
2672 wq
->flush_color
!= work_next_color(wq
->work_color
));
2674 /* this flush_color is finished, advance by one */
2675 wq
->flush_color
= work_next_color(wq
->flush_color
);
2677 /* one color has been freed, handle overflow queue */
2678 if (!list_empty(&wq
->flusher_overflow
)) {
2680 * Assign the same color to all overflowed
2681 * flushers, advance work_color and append to
2682 * flusher_queue. This is the start-to-wait
2683 * phase for these overflowed flushers.
2685 list_for_each_entry(tmp
, &wq
->flusher_overflow
, list
)
2686 tmp
->flush_color
= wq
->work_color
;
2688 wq
->work_color
= work_next_color(wq
->work_color
);
2690 list_splice_tail_init(&wq
->flusher_overflow
,
2691 &wq
->flusher_queue
);
2692 flush_workqueue_prep_pwqs(wq
, -1, wq
->work_color
);
2695 if (list_empty(&wq
->flusher_queue
)) {
2696 WARN_ON_ONCE(wq
->flush_color
!= wq
->work_color
);
2701 * Need to flush more colors. Make the next flusher
2702 * the new first flusher and arm pwqs.
2704 WARN_ON_ONCE(wq
->flush_color
== wq
->work_color
);
2705 WARN_ON_ONCE(wq
->flush_color
!= next
->flush_color
);
2707 list_del_init(&next
->list
);
2708 wq
->first_flusher
= next
;
2710 if (flush_workqueue_prep_pwqs(wq
, wq
->flush_color
, -1))
2714 * Meh... this color is already done, clear first
2715 * flusher and repeat cascading.
2717 wq
->first_flusher
= NULL
;
2721 mutex_unlock(&wq
->mutex
);
2723 EXPORT_SYMBOL(flush_workqueue
);
2726 * drain_workqueue - drain a workqueue
2727 * @wq: workqueue to drain
2729 * Wait until the workqueue becomes empty. While draining is in progress,
2730 * only chain queueing is allowed. IOW, only currently pending or running
2731 * work items on @wq can queue further work items on it. @wq is flushed
2732 * repeatedly until it becomes empty. The number of flushing is determined
2733 * by the depth of chaining and should be relatively short. Whine if it
2736 void drain_workqueue(struct workqueue_struct
*wq
)
2738 unsigned int flush_cnt
= 0;
2739 struct pool_workqueue
*pwq
;
2742 * __queue_work() needs to test whether there are drainers, is much
2743 * hotter than drain_workqueue() and already looks at @wq->flags.
2744 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2746 mutex_lock(&wq
->mutex
);
2747 if (!wq
->nr_drainers
++)
2748 wq
->flags
|= __WQ_DRAINING
;
2749 mutex_unlock(&wq
->mutex
);
2751 flush_workqueue(wq
);
2753 mutex_lock(&wq
->mutex
);
2755 for_each_pwq(pwq
, wq
) {
2758 spin_lock_irq(&pwq
->pool
->lock
);
2759 drained
= !pwq
->nr_active
&& list_empty(&pwq
->delayed_works
);
2760 spin_unlock_irq(&pwq
->pool
->lock
);
2765 if (++flush_cnt
== 10 ||
2766 (flush_cnt
% 100 == 0 && flush_cnt
<= 1000))
2767 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2768 wq
->name
, flush_cnt
);
2770 mutex_unlock(&wq
->mutex
);
2774 if (!--wq
->nr_drainers
)
2775 wq
->flags
&= ~__WQ_DRAINING
;
2776 mutex_unlock(&wq
->mutex
);
2778 EXPORT_SYMBOL_GPL(drain_workqueue
);
2780 static bool start_flush_work(struct work_struct
*work
, struct wq_barrier
*barr
)
2782 struct worker
*worker
= NULL
;
2783 struct worker_pool
*pool
;
2784 struct pool_workqueue
*pwq
;
2788 local_irq_disable();
2789 pool
= get_work_pool(work
);
2795 spin_lock(&pool
->lock
);
2796 /* see the comment in try_to_grab_pending() with the same code */
2797 pwq
= get_work_pwq(work
);
2799 if (unlikely(pwq
->pool
!= pool
))
2802 worker
= find_worker_executing_work(pool
, work
);
2805 pwq
= worker
->current_pwq
;
2808 check_flush_dependency(pwq
->wq
, work
);
2810 insert_wq_barrier(pwq
, barr
, work
, worker
);
2811 spin_unlock_irq(&pool
->lock
);
2814 * If @max_active is 1 or rescuer is in use, flushing another work
2815 * item on the same workqueue may lead to deadlock. Make sure the
2816 * flusher is not running on the same workqueue by verifying write
2819 if (pwq
->wq
->saved_max_active
== 1 || pwq
->wq
->rescuer
)
2820 lock_map_acquire(&pwq
->wq
->lockdep_map
);
2822 lock_map_acquire_read(&pwq
->wq
->lockdep_map
);
2823 lock_map_release(&pwq
->wq
->lockdep_map
);
2827 spin_unlock_irq(&pool
->lock
);
2832 * flush_work - wait for a work to finish executing the last queueing instance
2833 * @work: the work to flush
2835 * Wait until @work has finished execution. @work is guaranteed to be idle
2836 * on return if it hasn't been requeued since flush started.
2839 * %true if flush_work() waited for the work to finish execution,
2840 * %false if it was already idle.
2842 bool flush_work(struct work_struct
*work
)
2844 struct wq_barrier barr
;
2846 lock_map_acquire(&work
->lockdep_map
);
2847 lock_map_release(&work
->lockdep_map
);
2849 if (start_flush_work(work
, &barr
)) {
2850 wait_for_completion(&barr
.done
);
2851 destroy_work_on_stack(&barr
.work
);
2857 EXPORT_SYMBOL_GPL(flush_work
);
2861 struct work_struct
*work
;
2864 static int cwt_wakefn(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
2866 struct cwt_wait
*cwait
= container_of(wait
, struct cwt_wait
, wait
);
2868 if (cwait
->work
!= key
)
2870 return autoremove_wake_function(wait
, mode
, sync
, key
);
2873 static bool __cancel_work_timer(struct work_struct
*work
, bool is_dwork
)
2875 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq
);
2876 unsigned long flags
;
2880 ret
= try_to_grab_pending(work
, is_dwork
, &flags
);
2882 * If someone else is already canceling, wait for it to
2883 * finish. flush_work() doesn't work for PREEMPT_NONE
2884 * because we may get scheduled between @work's completion
2885 * and the other canceling task resuming and clearing
2886 * CANCELING - flush_work() will return false immediately
2887 * as @work is no longer busy, try_to_grab_pending() will
2888 * return -ENOENT as @work is still being canceled and the
2889 * other canceling task won't be able to clear CANCELING as
2890 * we're hogging the CPU.
2892 * Let's wait for completion using a waitqueue. As this
2893 * may lead to the thundering herd problem, use a custom
2894 * wake function which matches @work along with exclusive
2897 if (unlikely(ret
== -ENOENT
)) {
2898 struct cwt_wait cwait
;
2900 init_wait(&cwait
.wait
);
2901 cwait
.wait
.func
= cwt_wakefn
;
2904 prepare_to_wait_exclusive(&cancel_waitq
, &cwait
.wait
,
2905 TASK_UNINTERRUPTIBLE
);
2906 if (work_is_canceling(work
))
2908 finish_wait(&cancel_waitq
, &cwait
.wait
);
2910 } while (unlikely(ret
< 0));
2912 /* tell other tasks trying to grab @work to back off */
2913 mark_work_canceling(work
);
2914 local_irq_restore(flags
);
2917 clear_work_data(work
);
2920 * Paired with prepare_to_wait() above so that either
2921 * waitqueue_active() is visible here or !work_is_canceling() is
2925 if (waitqueue_active(&cancel_waitq
))
2926 __wake_up(&cancel_waitq
, TASK_NORMAL
, 1, work
);
2932 * cancel_work_sync - cancel a work and wait for it to finish
2933 * @work: the work to cancel
2935 * Cancel @work and wait for its execution to finish. This function
2936 * can be used even if the work re-queues itself or migrates to
2937 * another workqueue. On return from this function, @work is
2938 * guaranteed to be not pending or executing on any CPU.
2940 * cancel_work_sync(&delayed_work->work) must not be used for
2941 * delayed_work's. Use cancel_delayed_work_sync() instead.
2943 * The caller must ensure that the workqueue on which @work was last
2944 * queued can't be destroyed before this function returns.
2947 * %true if @work was pending, %false otherwise.
2949 bool cancel_work_sync(struct work_struct
*work
)
2951 return __cancel_work_timer(work
, false);
2953 EXPORT_SYMBOL_GPL(cancel_work_sync
);
2956 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2957 * @dwork: the delayed work to flush
2959 * Delayed timer is cancelled and the pending work is queued for
2960 * immediate execution. Like flush_work(), this function only
2961 * considers the last queueing instance of @dwork.
2964 * %true if flush_work() waited for the work to finish execution,
2965 * %false if it was already idle.
2967 bool flush_delayed_work(struct delayed_work
*dwork
)
2969 local_irq_disable();
2970 if (del_timer_sync(&dwork
->timer
))
2971 __queue_work(dwork
->cpu
, dwork
->wq
, &dwork
->work
);
2973 return flush_work(&dwork
->work
);
2975 EXPORT_SYMBOL(flush_delayed_work
);
2978 * cancel_delayed_work - cancel a delayed work
2979 * @dwork: delayed_work to cancel
2981 * Kill off a pending delayed_work.
2983 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2987 * The work callback function may still be running on return, unless
2988 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2989 * use cancel_delayed_work_sync() to wait on it.
2991 * This function is safe to call from any context including IRQ handler.
2993 bool cancel_delayed_work(struct delayed_work
*dwork
)
2995 unsigned long flags
;
2999 ret
= try_to_grab_pending(&dwork
->work
, true, &flags
);
3000 } while (unlikely(ret
== -EAGAIN
));
3002 if (unlikely(ret
< 0))
3005 set_work_pool_and_clear_pending(&dwork
->work
,
3006 get_work_pool_id(&dwork
->work
));
3007 local_irq_restore(flags
);
3010 EXPORT_SYMBOL(cancel_delayed_work
);
3013 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3014 * @dwork: the delayed work cancel
3016 * This is cancel_work_sync() for delayed works.
3019 * %true if @dwork was pending, %false otherwise.
3021 bool cancel_delayed_work_sync(struct delayed_work
*dwork
)
3023 return __cancel_work_timer(&dwork
->work
, true);
3025 EXPORT_SYMBOL(cancel_delayed_work_sync
);
3028 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3029 * @func: the function to call
3031 * schedule_on_each_cpu() executes @func on each online CPU using the
3032 * system workqueue and blocks until all CPUs have completed.
3033 * schedule_on_each_cpu() is very slow.
3036 * 0 on success, -errno on failure.
3038 int schedule_on_each_cpu(work_func_t func
)
3041 struct work_struct __percpu
*works
;
3043 works
= alloc_percpu(struct work_struct
);
3049 for_each_online_cpu(cpu
) {
3050 struct work_struct
*work
= per_cpu_ptr(works
, cpu
);
3052 INIT_WORK(work
, func
);
3053 schedule_work_on(cpu
, work
);
3056 for_each_online_cpu(cpu
)
3057 flush_work(per_cpu_ptr(works
, cpu
));
3065 * execute_in_process_context - reliably execute the routine with user context
3066 * @fn: the function to execute
3067 * @ew: guaranteed storage for the execute work structure (must
3068 * be available when the work executes)
3070 * Executes the function immediately if process context is available,
3071 * otherwise schedules the function for delayed execution.
3073 * Return: 0 - function was executed
3074 * 1 - function was scheduled for execution
3076 int execute_in_process_context(work_func_t fn
, struct execute_work
*ew
)
3078 if (!in_interrupt()) {
3083 INIT_WORK(&ew
->work
, fn
);
3084 schedule_work(&ew
->work
);
3088 EXPORT_SYMBOL_GPL(execute_in_process_context
);
3091 * free_workqueue_attrs - free a workqueue_attrs
3092 * @attrs: workqueue_attrs to free
3094 * Undo alloc_workqueue_attrs().
3096 void free_workqueue_attrs(struct workqueue_attrs
*attrs
)
3099 free_cpumask_var(attrs
->cpumask
);
3105 * alloc_workqueue_attrs - allocate a workqueue_attrs
3106 * @gfp_mask: allocation mask to use
3108 * Allocate a new workqueue_attrs, initialize with default settings and
3111 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3113 struct workqueue_attrs
*alloc_workqueue_attrs(gfp_t gfp_mask
)
3115 struct workqueue_attrs
*attrs
;
3117 attrs
= kzalloc(sizeof(*attrs
), gfp_mask
);
3120 if (!alloc_cpumask_var(&attrs
->cpumask
, gfp_mask
))
3123 cpumask_copy(attrs
->cpumask
, cpu_possible_mask
);
3126 free_workqueue_attrs(attrs
);
3130 static void copy_workqueue_attrs(struct workqueue_attrs
*to
,
3131 const struct workqueue_attrs
*from
)
3133 to
->nice
= from
->nice
;
3134 cpumask_copy(to
->cpumask
, from
->cpumask
);
3136 * Unlike hash and equality test, this function doesn't ignore
3137 * ->no_numa as it is used for both pool and wq attrs. Instead,
3138 * get_unbound_pool() explicitly clears ->no_numa after copying.
3140 to
->no_numa
= from
->no_numa
;
3143 /* hash value of the content of @attr */
3144 static u32
wqattrs_hash(const struct workqueue_attrs
*attrs
)
3148 hash
= jhash_1word(attrs
->nice
, hash
);
3149 hash
= jhash(cpumask_bits(attrs
->cpumask
),
3150 BITS_TO_LONGS(nr_cpumask_bits
) * sizeof(long), hash
);
3154 /* content equality test */
3155 static bool wqattrs_equal(const struct workqueue_attrs
*a
,
3156 const struct workqueue_attrs
*b
)
3158 if (a
->nice
!= b
->nice
)
3160 if (!cpumask_equal(a
->cpumask
, b
->cpumask
))
3166 * init_worker_pool - initialize a newly zalloc'd worker_pool
3167 * @pool: worker_pool to initialize
3169 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3171 * Return: 0 on success, -errno on failure. Even on failure, all fields
3172 * inside @pool proper are initialized and put_unbound_pool() can be called
3173 * on @pool safely to release it.
3175 static int init_worker_pool(struct worker_pool
*pool
)
3177 spin_lock_init(&pool
->lock
);
3180 pool
->node
= NUMA_NO_NODE
;
3181 pool
->flags
|= POOL_DISASSOCIATED
;
3182 pool
->watchdog_ts
= jiffies
;
3183 INIT_LIST_HEAD(&pool
->worklist
);
3184 INIT_LIST_HEAD(&pool
->idle_list
);
3185 hash_init(pool
->busy_hash
);
3187 init_timer_deferrable(&pool
->idle_timer
);
3188 pool
->idle_timer
.function
= idle_worker_timeout
;
3189 pool
->idle_timer
.data
= (unsigned long)pool
;
3191 setup_timer(&pool
->mayday_timer
, pool_mayday_timeout
,
3192 (unsigned long)pool
);
3194 mutex_init(&pool
->manager_arb
);
3195 mutex_init(&pool
->attach_mutex
);
3196 INIT_LIST_HEAD(&pool
->workers
);
3198 ida_init(&pool
->worker_ida
);
3199 INIT_HLIST_NODE(&pool
->hash_node
);
3202 /* shouldn't fail above this point */
3203 pool
->attrs
= alloc_workqueue_attrs(GFP_KERNEL
);
3209 static void rcu_free_wq(struct rcu_head
*rcu
)
3211 struct workqueue_struct
*wq
=
3212 container_of(rcu
, struct workqueue_struct
, rcu
);
3214 if (!(wq
->flags
& WQ_UNBOUND
))
3215 free_percpu(wq
->cpu_pwqs
);
3217 free_workqueue_attrs(wq
->unbound_attrs
);
3223 static void rcu_free_pool(struct rcu_head
*rcu
)
3225 struct worker_pool
*pool
= container_of(rcu
, struct worker_pool
, rcu
);
3227 ida_destroy(&pool
->worker_ida
);
3228 free_workqueue_attrs(pool
->attrs
);
3233 * put_unbound_pool - put a worker_pool
3234 * @pool: worker_pool to put
3236 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3237 * safe manner. get_unbound_pool() calls this function on its failure path
3238 * and this function should be able to release pools which went through,
3239 * successfully or not, init_worker_pool().
3241 * Should be called with wq_pool_mutex held.
3243 static void put_unbound_pool(struct worker_pool
*pool
)
3245 DECLARE_COMPLETION_ONSTACK(detach_completion
);
3246 struct worker
*worker
;
3248 lockdep_assert_held(&wq_pool_mutex
);
3254 if (WARN_ON(!(pool
->cpu
< 0)) ||
3255 WARN_ON(!list_empty(&pool
->worklist
)))
3258 /* release id and unhash */
3260 idr_remove(&worker_pool_idr
, pool
->id
);
3261 hash_del(&pool
->hash_node
);
3264 * Become the manager and destroy all workers. Grabbing
3265 * manager_arb prevents @pool's workers from blocking on
3268 mutex_lock(&pool
->manager_arb
);
3270 spin_lock_irq(&pool
->lock
);
3271 while ((worker
= first_idle_worker(pool
)))
3272 destroy_worker(worker
);
3273 WARN_ON(pool
->nr_workers
|| pool
->nr_idle
);
3274 spin_unlock_irq(&pool
->lock
);
3276 mutex_lock(&pool
->attach_mutex
);
3277 if (!list_empty(&pool
->workers
))
3278 pool
->detach_completion
= &detach_completion
;
3279 mutex_unlock(&pool
->attach_mutex
);
3281 if (pool
->detach_completion
)
3282 wait_for_completion(pool
->detach_completion
);
3284 mutex_unlock(&pool
->manager_arb
);
3286 /* shut down the timers */
3287 del_timer_sync(&pool
->idle_timer
);
3288 del_timer_sync(&pool
->mayday_timer
);
3290 /* sched-RCU protected to allow dereferences from get_work_pool() */
3291 call_rcu_sched(&pool
->rcu
, rcu_free_pool
);
3295 * get_unbound_pool - get a worker_pool with the specified attributes
3296 * @attrs: the attributes of the worker_pool to get
3298 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3299 * reference count and return it. If there already is a matching
3300 * worker_pool, it will be used; otherwise, this function attempts to
3303 * Should be called with wq_pool_mutex held.
3305 * Return: On success, a worker_pool with the same attributes as @attrs.
3306 * On failure, %NULL.
3308 static struct worker_pool
*get_unbound_pool(const struct workqueue_attrs
*attrs
)
3310 u32 hash
= wqattrs_hash(attrs
);
3311 struct worker_pool
*pool
;
3313 int target_node
= NUMA_NO_NODE
;
3315 lockdep_assert_held(&wq_pool_mutex
);
3317 /* do we already have a matching pool? */
3318 hash_for_each_possible(unbound_pool_hash
, pool
, hash_node
, hash
) {
3319 if (wqattrs_equal(pool
->attrs
, attrs
)) {
3325 /* if cpumask is contained inside a NUMA node, we belong to that node */
3326 if (wq_numa_enabled
) {
3327 for_each_node(node
) {
3328 if (cpumask_subset(attrs
->cpumask
,
3329 wq_numa_possible_cpumask
[node
])) {
3336 /* nope, create a new one */
3337 pool
= kzalloc_node(sizeof(*pool
), GFP_KERNEL
, target_node
);
3338 if (!pool
|| init_worker_pool(pool
) < 0)
3341 lockdep_set_subclass(&pool
->lock
, 1); /* see put_pwq() */
3342 copy_workqueue_attrs(pool
->attrs
, attrs
);
3343 pool
->node
= target_node
;
3346 * no_numa isn't a worker_pool attribute, always clear it. See
3347 * 'struct workqueue_attrs' comments for detail.
3349 pool
->attrs
->no_numa
= false;
3351 if (worker_pool_assign_id(pool
) < 0)
3354 /* create and start the initial worker */
3355 if (!create_worker(pool
))
3359 hash_add(unbound_pool_hash
, &pool
->hash_node
, hash
);
3364 put_unbound_pool(pool
);
3368 static void rcu_free_pwq(struct rcu_head
*rcu
)
3370 kmem_cache_free(pwq_cache
,
3371 container_of(rcu
, struct pool_workqueue
, rcu
));
3375 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3376 * and needs to be destroyed.
3378 static void pwq_unbound_release_workfn(struct work_struct
*work
)
3380 struct pool_workqueue
*pwq
= container_of(work
, struct pool_workqueue
,
3381 unbound_release_work
);
3382 struct workqueue_struct
*wq
= pwq
->wq
;
3383 struct worker_pool
*pool
= pwq
->pool
;
3386 if (WARN_ON_ONCE(!(wq
->flags
& WQ_UNBOUND
)))
3389 mutex_lock(&wq
->mutex
);
3390 list_del_rcu(&pwq
->pwqs_node
);
3391 is_last
= list_empty(&wq
->pwqs
);
3392 mutex_unlock(&wq
->mutex
);
3394 mutex_lock(&wq_pool_mutex
);
3395 put_unbound_pool(pool
);
3396 mutex_unlock(&wq_pool_mutex
);
3398 call_rcu_sched(&pwq
->rcu
, rcu_free_pwq
);
3401 * If we're the last pwq going away, @wq is already dead and no one
3402 * is gonna access it anymore. Schedule RCU free.
3405 call_rcu_sched(&wq
->rcu
, rcu_free_wq
);
3409 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3410 * @pwq: target pool_workqueue
3412 * If @pwq isn't freezing, set @pwq->max_active to the associated
3413 * workqueue's saved_max_active and activate delayed work items
3414 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3416 static void pwq_adjust_max_active(struct pool_workqueue
*pwq
)
3418 struct workqueue_struct
*wq
= pwq
->wq
;
3419 bool freezable
= wq
->flags
& WQ_FREEZABLE
;
3421 /* for @wq->saved_max_active */
3422 lockdep_assert_held(&wq
->mutex
);
3424 /* fast exit for non-freezable wqs */
3425 if (!freezable
&& pwq
->max_active
== wq
->saved_max_active
)
3428 spin_lock_irq(&pwq
->pool
->lock
);
3431 * During [un]freezing, the caller is responsible for ensuring that
3432 * this function is called at least once after @workqueue_freezing
3433 * is updated and visible.
3435 if (!freezable
|| !workqueue_freezing
) {
3436 pwq
->max_active
= wq
->saved_max_active
;
3438 while (!list_empty(&pwq
->delayed_works
) &&
3439 pwq
->nr_active
< pwq
->max_active
)
3440 pwq_activate_first_delayed(pwq
);
3443 * Need to kick a worker after thawed or an unbound wq's
3444 * max_active is bumped. It's a slow path. Do it always.
3446 wake_up_worker(pwq
->pool
);
3448 pwq
->max_active
= 0;
3451 spin_unlock_irq(&pwq
->pool
->lock
);
3454 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3455 static void init_pwq(struct pool_workqueue
*pwq
, struct workqueue_struct
*wq
,
3456 struct worker_pool
*pool
)
3458 BUG_ON((unsigned long)pwq
& WORK_STRUCT_FLAG_MASK
);
3460 memset(pwq
, 0, sizeof(*pwq
));
3464 pwq
->flush_color
= -1;
3466 INIT_LIST_HEAD(&pwq
->delayed_works
);
3467 INIT_LIST_HEAD(&pwq
->pwqs_node
);
3468 INIT_LIST_HEAD(&pwq
->mayday_node
);
3469 INIT_WORK(&pwq
->unbound_release_work
, pwq_unbound_release_workfn
);
3472 /* sync @pwq with the current state of its associated wq and link it */
3473 static void link_pwq(struct pool_workqueue
*pwq
)
3475 struct workqueue_struct
*wq
= pwq
->wq
;
3477 lockdep_assert_held(&wq
->mutex
);
3479 /* may be called multiple times, ignore if already linked */
3480 if (!list_empty(&pwq
->pwqs_node
))
3483 /* set the matching work_color */
3484 pwq
->work_color
= wq
->work_color
;
3486 /* sync max_active to the current setting */
3487 pwq_adjust_max_active(pwq
);
3490 list_add_rcu(&pwq
->pwqs_node
, &wq
->pwqs
);
3493 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3494 static struct pool_workqueue
*alloc_unbound_pwq(struct workqueue_struct
*wq
,
3495 const struct workqueue_attrs
*attrs
)
3497 struct worker_pool
*pool
;
3498 struct pool_workqueue
*pwq
;
3500 lockdep_assert_held(&wq_pool_mutex
);
3502 pool
= get_unbound_pool(attrs
);
3506 pwq
= kmem_cache_alloc_node(pwq_cache
, GFP_KERNEL
, pool
->node
);
3508 put_unbound_pool(pool
);
3512 init_pwq(pwq
, wq
, pool
);
3517 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3518 * @attrs: the wq_attrs of the default pwq of the target workqueue
3519 * @node: the target NUMA node
3520 * @cpu_going_down: if >= 0, the CPU to consider as offline
3521 * @cpumask: outarg, the resulting cpumask
3523 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3524 * @cpu_going_down is >= 0, that cpu is considered offline during
3525 * calculation. The result is stored in @cpumask.
3527 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3528 * enabled and @node has online CPUs requested by @attrs, the returned
3529 * cpumask is the intersection of the possible CPUs of @node and
3532 * The caller is responsible for ensuring that the cpumask of @node stays
3535 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3538 static bool wq_calc_node_cpumask(const struct workqueue_attrs
*attrs
, int node
,
3539 int cpu_going_down
, cpumask_t
*cpumask
)
3541 if (!wq_numa_enabled
|| attrs
->no_numa
)
3544 /* does @node have any online CPUs @attrs wants? */
3545 cpumask_and(cpumask
, cpumask_of_node(node
), attrs
->cpumask
);
3546 if (cpu_going_down
>= 0)
3547 cpumask_clear_cpu(cpu_going_down
, cpumask
);
3549 if (cpumask_empty(cpumask
))
3552 /* yeap, return possible CPUs in @node that @attrs wants */
3553 cpumask_and(cpumask
, attrs
->cpumask
, wq_numa_possible_cpumask
[node
]);
3554 return !cpumask_equal(cpumask
, attrs
->cpumask
);
3557 cpumask_copy(cpumask
, attrs
->cpumask
);
3561 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3562 static struct pool_workqueue
*numa_pwq_tbl_install(struct workqueue_struct
*wq
,
3564 struct pool_workqueue
*pwq
)
3566 struct pool_workqueue
*old_pwq
;
3568 lockdep_assert_held(&wq_pool_mutex
);
3569 lockdep_assert_held(&wq
->mutex
);
3571 /* link_pwq() can handle duplicate calls */
3574 old_pwq
= rcu_access_pointer(wq
->numa_pwq_tbl
[node
]);
3575 rcu_assign_pointer(wq
->numa_pwq_tbl
[node
], pwq
);
3579 /* context to store the prepared attrs & pwqs before applying */
3580 struct apply_wqattrs_ctx
{
3581 struct workqueue_struct
*wq
; /* target workqueue */
3582 struct workqueue_attrs
*attrs
; /* attrs to apply */
3583 struct list_head list
; /* queued for batching commit */
3584 struct pool_workqueue
*dfl_pwq
;
3585 struct pool_workqueue
*pwq_tbl
[];
3588 /* free the resources after success or abort */
3589 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx
*ctx
)
3595 put_pwq_unlocked(ctx
->pwq_tbl
[node
]);
3596 put_pwq_unlocked(ctx
->dfl_pwq
);
3598 free_workqueue_attrs(ctx
->attrs
);
3604 /* allocate the attrs and pwqs for later installation */
3605 static struct apply_wqattrs_ctx
*
3606 apply_wqattrs_prepare(struct workqueue_struct
*wq
,
3607 const struct workqueue_attrs
*attrs
)
3609 struct apply_wqattrs_ctx
*ctx
;
3610 struct workqueue_attrs
*new_attrs
, *tmp_attrs
;
3613 lockdep_assert_held(&wq_pool_mutex
);
3615 ctx
= kzalloc(sizeof(*ctx
) + nr_node_ids
* sizeof(ctx
->pwq_tbl
[0]),
3618 new_attrs
= alloc_workqueue_attrs(GFP_KERNEL
);
3619 tmp_attrs
= alloc_workqueue_attrs(GFP_KERNEL
);
3620 if (!ctx
|| !new_attrs
|| !tmp_attrs
)
3624 * Calculate the attrs of the default pwq.
3625 * If the user configured cpumask doesn't overlap with the
3626 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3628 copy_workqueue_attrs(new_attrs
, attrs
);
3629 cpumask_and(new_attrs
->cpumask
, new_attrs
->cpumask
, wq_unbound_cpumask
);
3630 if (unlikely(cpumask_empty(new_attrs
->cpumask
)))
3631 cpumask_copy(new_attrs
->cpumask
, wq_unbound_cpumask
);
3634 * We may create multiple pwqs with differing cpumasks. Make a
3635 * copy of @new_attrs which will be modified and used to obtain
3638 copy_workqueue_attrs(tmp_attrs
, new_attrs
);
3641 * If something goes wrong during CPU up/down, we'll fall back to
3642 * the default pwq covering whole @attrs->cpumask. Always create
3643 * it even if we don't use it immediately.
3645 ctx
->dfl_pwq
= alloc_unbound_pwq(wq
, new_attrs
);
3649 for_each_node(node
) {
3650 if (wq_calc_node_cpumask(new_attrs
, node
, -1, tmp_attrs
->cpumask
)) {
3651 ctx
->pwq_tbl
[node
] = alloc_unbound_pwq(wq
, tmp_attrs
);
3652 if (!ctx
->pwq_tbl
[node
])
3655 ctx
->dfl_pwq
->refcnt
++;
3656 ctx
->pwq_tbl
[node
] = ctx
->dfl_pwq
;
3660 /* save the user configured attrs and sanitize it. */
3661 copy_workqueue_attrs(new_attrs
, attrs
);
3662 cpumask_and(new_attrs
->cpumask
, new_attrs
->cpumask
, cpu_possible_mask
);
3663 ctx
->attrs
= new_attrs
;
3666 free_workqueue_attrs(tmp_attrs
);
3670 free_workqueue_attrs(tmp_attrs
);
3671 free_workqueue_attrs(new_attrs
);
3672 apply_wqattrs_cleanup(ctx
);
3676 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3677 static void apply_wqattrs_commit(struct apply_wqattrs_ctx
*ctx
)
3681 /* all pwqs have been created successfully, let's install'em */
3682 mutex_lock(&ctx
->wq
->mutex
);
3684 copy_workqueue_attrs(ctx
->wq
->unbound_attrs
, ctx
->attrs
);
3686 /* save the previous pwq and install the new one */
3688 ctx
->pwq_tbl
[node
] = numa_pwq_tbl_install(ctx
->wq
, node
,
3689 ctx
->pwq_tbl
[node
]);
3691 /* @dfl_pwq might not have been used, ensure it's linked */
3692 link_pwq(ctx
->dfl_pwq
);
3693 swap(ctx
->wq
->dfl_pwq
, ctx
->dfl_pwq
);
3695 mutex_unlock(&ctx
->wq
->mutex
);
3698 static void apply_wqattrs_lock(void)
3700 /* CPUs should stay stable across pwq creations and installations */
3702 mutex_lock(&wq_pool_mutex
);
3705 static void apply_wqattrs_unlock(void)
3707 mutex_unlock(&wq_pool_mutex
);
3711 static int apply_workqueue_attrs_locked(struct workqueue_struct
*wq
,
3712 const struct workqueue_attrs
*attrs
)
3714 struct apply_wqattrs_ctx
*ctx
;
3716 /* only unbound workqueues can change attributes */
3717 if (WARN_ON(!(wq
->flags
& WQ_UNBOUND
)))
3720 /* creating multiple pwqs breaks ordering guarantee */
3721 if (WARN_ON((wq
->flags
& __WQ_ORDERED
) && !list_empty(&wq
->pwqs
)))
3724 ctx
= apply_wqattrs_prepare(wq
, attrs
);
3728 /* the ctx has been prepared successfully, let's commit it */
3729 apply_wqattrs_commit(ctx
);
3730 apply_wqattrs_cleanup(ctx
);
3736 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3737 * @wq: the target workqueue
3738 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3740 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3741 * machines, this function maps a separate pwq to each NUMA node with
3742 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3743 * NUMA node it was issued on. Older pwqs are released as in-flight work
3744 * items finish. Note that a work item which repeatedly requeues itself
3745 * back-to-back will stay on its current pwq.
3747 * Performs GFP_KERNEL allocations.
3749 * Return: 0 on success and -errno on failure.
3751 int apply_workqueue_attrs(struct workqueue_struct
*wq
,
3752 const struct workqueue_attrs
*attrs
)
3756 apply_wqattrs_lock();
3757 ret
= apply_workqueue_attrs_locked(wq
, attrs
);
3758 apply_wqattrs_unlock();
3764 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3765 * @wq: the target workqueue
3766 * @cpu: the CPU coming up or going down
3767 * @online: whether @cpu is coming up or going down
3769 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3770 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3773 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3774 * falls back to @wq->dfl_pwq which may not be optimal but is always
3777 * Note that when the last allowed CPU of a NUMA node goes offline for a
3778 * workqueue with a cpumask spanning multiple nodes, the workers which were
3779 * already executing the work items for the workqueue will lose their CPU
3780 * affinity and may execute on any CPU. This is similar to how per-cpu
3781 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3782 * affinity, it's the user's responsibility to flush the work item from
3785 static void wq_update_unbound_numa(struct workqueue_struct
*wq
, int cpu
,
3788 int node
= cpu_to_node(cpu
);
3789 int cpu_off
= online
? -1 : cpu
;
3790 struct pool_workqueue
*old_pwq
= NULL
, *pwq
;
3791 struct workqueue_attrs
*target_attrs
;
3794 lockdep_assert_held(&wq_pool_mutex
);
3796 if (!wq_numa_enabled
|| !(wq
->flags
& WQ_UNBOUND
) ||
3797 wq
->unbound_attrs
->no_numa
)
3801 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3802 * Let's use a preallocated one. The following buf is protected by
3803 * CPU hotplug exclusion.
3805 target_attrs
= wq_update_unbound_numa_attrs_buf
;
3806 cpumask
= target_attrs
->cpumask
;
3808 copy_workqueue_attrs(target_attrs
, wq
->unbound_attrs
);
3809 pwq
= unbound_pwq_by_node(wq
, node
);
3812 * Let's determine what needs to be done. If the target cpumask is
3813 * different from the default pwq's, we need to compare it to @pwq's
3814 * and create a new one if they don't match. If the target cpumask
3815 * equals the default pwq's, the default pwq should be used.
3817 if (wq_calc_node_cpumask(wq
->dfl_pwq
->pool
->attrs
, node
, cpu_off
, cpumask
)) {
3818 if (cpumask_equal(cpumask
, pwq
->pool
->attrs
->cpumask
))
3824 /* create a new pwq */
3825 pwq
= alloc_unbound_pwq(wq
, target_attrs
);
3827 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3832 /* Install the new pwq. */
3833 mutex_lock(&wq
->mutex
);
3834 old_pwq
= numa_pwq_tbl_install(wq
, node
, pwq
);
3838 mutex_lock(&wq
->mutex
);
3839 spin_lock_irq(&wq
->dfl_pwq
->pool
->lock
);
3840 get_pwq(wq
->dfl_pwq
);
3841 spin_unlock_irq(&wq
->dfl_pwq
->pool
->lock
);
3842 old_pwq
= numa_pwq_tbl_install(wq
, node
, wq
->dfl_pwq
);
3844 mutex_unlock(&wq
->mutex
);
3845 put_pwq_unlocked(old_pwq
);
3848 static int alloc_and_link_pwqs(struct workqueue_struct
*wq
)
3850 bool highpri
= wq
->flags
& WQ_HIGHPRI
;
3853 if (!(wq
->flags
& WQ_UNBOUND
)) {
3854 wq
->cpu_pwqs
= alloc_percpu(struct pool_workqueue
);
3858 for_each_possible_cpu(cpu
) {
3859 struct pool_workqueue
*pwq
=
3860 per_cpu_ptr(wq
->cpu_pwqs
, cpu
);
3861 struct worker_pool
*cpu_pools
=
3862 per_cpu(cpu_worker_pools
, cpu
);
3864 init_pwq(pwq
, wq
, &cpu_pools
[highpri
]);
3866 mutex_lock(&wq
->mutex
);
3868 mutex_unlock(&wq
->mutex
);
3871 } else if (wq
->flags
& __WQ_ORDERED
) {
3872 ret
= apply_workqueue_attrs(wq
, ordered_wq_attrs
[highpri
]);
3873 /* there should only be single pwq for ordering guarantee */
3874 WARN(!ret
&& (wq
->pwqs
.next
!= &wq
->dfl_pwq
->pwqs_node
||
3875 wq
->pwqs
.prev
!= &wq
->dfl_pwq
->pwqs_node
),
3876 "ordering guarantee broken for workqueue %s\n", wq
->name
);
3879 return apply_workqueue_attrs(wq
, unbound_std_wq_attrs
[highpri
]);
3883 static int wq_clamp_max_active(int max_active
, unsigned int flags
,
3886 int lim
= flags
& WQ_UNBOUND
? WQ_UNBOUND_MAX_ACTIVE
: WQ_MAX_ACTIVE
;
3888 if (max_active
< 1 || max_active
> lim
)
3889 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3890 max_active
, name
, 1, lim
);
3892 return clamp_val(max_active
, 1, lim
);
3895 struct workqueue_struct
*__alloc_workqueue_key(const char *fmt
,
3898 struct lock_class_key
*key
,
3899 const char *lock_name
, ...)
3901 size_t tbl_size
= 0;
3903 struct workqueue_struct
*wq
;
3904 struct pool_workqueue
*pwq
;
3906 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3907 if ((flags
& WQ_POWER_EFFICIENT
) && wq_power_efficient
)
3908 flags
|= WQ_UNBOUND
;
3910 /* allocate wq and format name */
3911 if (flags
& WQ_UNBOUND
)
3912 tbl_size
= nr_node_ids
* sizeof(wq
->numa_pwq_tbl
[0]);
3914 wq
= kzalloc(sizeof(*wq
) + tbl_size
, GFP_KERNEL
);
3918 if (flags
& WQ_UNBOUND
) {
3919 wq
->unbound_attrs
= alloc_workqueue_attrs(GFP_KERNEL
);
3920 if (!wq
->unbound_attrs
)
3924 va_start(args
, lock_name
);
3925 vsnprintf(wq
->name
, sizeof(wq
->name
), fmt
, args
);
3928 max_active
= max_active
?: WQ_DFL_ACTIVE
;
3929 max_active
= wq_clamp_max_active(max_active
, flags
, wq
->name
);
3933 wq
->saved_max_active
= max_active
;
3934 mutex_init(&wq
->mutex
);
3935 atomic_set(&wq
->nr_pwqs_to_flush
, 0);
3936 INIT_LIST_HEAD(&wq
->pwqs
);
3937 INIT_LIST_HEAD(&wq
->flusher_queue
);
3938 INIT_LIST_HEAD(&wq
->flusher_overflow
);
3939 INIT_LIST_HEAD(&wq
->maydays
);
3941 lockdep_init_map(&wq
->lockdep_map
, lock_name
, key
, 0);
3942 INIT_LIST_HEAD(&wq
->list
);
3944 if (alloc_and_link_pwqs(wq
) < 0)
3948 * Workqueues which may be used during memory reclaim should
3949 * have a rescuer to guarantee forward progress.
3951 if (flags
& WQ_MEM_RECLAIM
) {
3952 struct worker
*rescuer
;
3954 rescuer
= alloc_worker(NUMA_NO_NODE
);
3958 rescuer
->rescue_wq
= wq
;
3959 rescuer
->task
= kthread_create(rescuer_thread
, rescuer
, "%s",
3961 if (IS_ERR(rescuer
->task
)) {
3966 wq
->rescuer
= rescuer
;
3967 kthread_bind_mask(rescuer
->task
, cpu_possible_mask
);
3968 wake_up_process(rescuer
->task
);
3971 if ((wq
->flags
& WQ_SYSFS
) && workqueue_sysfs_register(wq
))
3975 * wq_pool_mutex protects global freeze state and workqueues list.
3976 * Grab it, adjust max_active and add the new @wq to workqueues
3979 mutex_lock(&wq_pool_mutex
);
3981 mutex_lock(&wq
->mutex
);
3982 for_each_pwq(pwq
, wq
)
3983 pwq_adjust_max_active(pwq
);
3984 mutex_unlock(&wq
->mutex
);
3986 list_add_tail_rcu(&wq
->list
, &workqueues
);
3988 mutex_unlock(&wq_pool_mutex
);
3993 free_workqueue_attrs(wq
->unbound_attrs
);
3997 destroy_workqueue(wq
);
4000 EXPORT_SYMBOL_GPL(__alloc_workqueue_key
);
4003 * destroy_workqueue - safely terminate a workqueue
4004 * @wq: target workqueue
4006 * Safely destroy a workqueue. All work currently pending will be done first.
4008 void destroy_workqueue(struct workqueue_struct
*wq
)
4010 struct pool_workqueue
*pwq
;
4013 /* drain it before proceeding with destruction */
4014 drain_workqueue(wq
);
4017 mutex_lock(&wq
->mutex
);
4018 for_each_pwq(pwq
, wq
) {
4021 for (i
= 0; i
< WORK_NR_COLORS
; i
++) {
4022 if (WARN_ON(pwq
->nr_in_flight
[i
])) {
4023 mutex_unlock(&wq
->mutex
);
4028 if (WARN_ON((pwq
!= wq
->dfl_pwq
) && (pwq
->refcnt
> 1)) ||
4029 WARN_ON(pwq
->nr_active
) ||
4030 WARN_ON(!list_empty(&pwq
->delayed_works
))) {
4031 mutex_unlock(&wq
->mutex
);
4035 mutex_unlock(&wq
->mutex
);
4038 * wq list is used to freeze wq, remove from list after
4039 * flushing is complete in case freeze races us.
4041 mutex_lock(&wq_pool_mutex
);
4042 list_del_rcu(&wq
->list
);
4043 mutex_unlock(&wq_pool_mutex
);
4045 workqueue_sysfs_unregister(wq
);
4048 kthread_stop(wq
->rescuer
->task
);
4050 if (!(wq
->flags
& WQ_UNBOUND
)) {
4052 * The base ref is never dropped on per-cpu pwqs. Directly
4053 * schedule RCU free.
4055 call_rcu_sched(&wq
->rcu
, rcu_free_wq
);
4058 * We're the sole accessor of @wq at this point. Directly
4059 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4060 * @wq will be freed when the last pwq is released.
4062 for_each_node(node
) {
4063 pwq
= rcu_access_pointer(wq
->numa_pwq_tbl
[node
]);
4064 RCU_INIT_POINTER(wq
->numa_pwq_tbl
[node
], NULL
);
4065 put_pwq_unlocked(pwq
);
4069 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4070 * put. Don't access it afterwards.
4074 put_pwq_unlocked(pwq
);
4077 EXPORT_SYMBOL_GPL(destroy_workqueue
);
4080 * workqueue_set_max_active - adjust max_active of a workqueue
4081 * @wq: target workqueue
4082 * @max_active: new max_active value.
4084 * Set max_active of @wq to @max_active.
4087 * Don't call from IRQ context.
4089 void workqueue_set_max_active(struct workqueue_struct
*wq
, int max_active
)
4091 struct pool_workqueue
*pwq
;
4093 /* disallow meddling with max_active for ordered workqueues */
4094 if (WARN_ON(wq
->flags
& __WQ_ORDERED
))
4097 max_active
= wq_clamp_max_active(max_active
, wq
->flags
, wq
->name
);
4099 mutex_lock(&wq
->mutex
);
4101 wq
->saved_max_active
= max_active
;
4103 for_each_pwq(pwq
, wq
)
4104 pwq_adjust_max_active(pwq
);
4106 mutex_unlock(&wq
->mutex
);
4108 EXPORT_SYMBOL_GPL(workqueue_set_max_active
);
4111 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4113 * Determine whether %current is a workqueue rescuer. Can be used from
4114 * work functions to determine whether it's being run off the rescuer task.
4116 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4118 bool current_is_workqueue_rescuer(void)
4120 struct worker
*worker
= current_wq_worker();
4122 return worker
&& worker
->rescue_wq
;
4126 * workqueue_congested - test whether a workqueue is congested
4127 * @cpu: CPU in question
4128 * @wq: target workqueue
4130 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4131 * no synchronization around this function and the test result is
4132 * unreliable and only useful as advisory hints or for debugging.
4134 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4135 * Note that both per-cpu and unbound workqueues may be associated with
4136 * multiple pool_workqueues which have separate congested states. A
4137 * workqueue being congested on one CPU doesn't mean the workqueue is also
4138 * contested on other CPUs / NUMA nodes.
4141 * %true if congested, %false otherwise.
4143 bool workqueue_congested(int cpu
, struct workqueue_struct
*wq
)
4145 struct pool_workqueue
*pwq
;
4148 rcu_read_lock_sched();
4150 if (cpu
== WORK_CPU_UNBOUND
)
4151 cpu
= smp_processor_id();
4153 if (!(wq
->flags
& WQ_UNBOUND
))
4154 pwq
= per_cpu_ptr(wq
->cpu_pwqs
, cpu
);
4156 pwq
= unbound_pwq_by_node(wq
, cpu_to_node(cpu
));
4158 ret
= !list_empty(&pwq
->delayed_works
);
4159 rcu_read_unlock_sched();
4163 EXPORT_SYMBOL_GPL(workqueue_congested
);
4166 * work_busy - test whether a work is currently pending or running
4167 * @work: the work to be tested
4169 * Test whether @work is currently pending or running. There is no
4170 * synchronization around this function and the test result is
4171 * unreliable and only useful as advisory hints or for debugging.
4174 * OR'd bitmask of WORK_BUSY_* bits.
4176 unsigned int work_busy(struct work_struct
*work
)
4178 struct worker_pool
*pool
;
4179 unsigned long flags
;
4180 unsigned int ret
= 0;
4182 if (work_pending(work
))
4183 ret
|= WORK_BUSY_PENDING
;
4185 local_irq_save(flags
);
4186 pool
= get_work_pool(work
);
4188 spin_lock(&pool
->lock
);
4189 if (find_worker_executing_work(pool
, work
))
4190 ret
|= WORK_BUSY_RUNNING
;
4191 spin_unlock(&pool
->lock
);
4193 local_irq_restore(flags
);
4197 EXPORT_SYMBOL_GPL(work_busy
);
4200 * set_worker_desc - set description for the current work item
4201 * @fmt: printf-style format string
4202 * @...: arguments for the format string
4204 * This function can be called by a running work function to describe what
4205 * the work item is about. If the worker task gets dumped, this
4206 * information will be printed out together to help debugging. The
4207 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4209 void set_worker_desc(const char *fmt
, ...)
4211 struct worker
*worker
= current_wq_worker();
4215 va_start(args
, fmt
);
4216 vsnprintf(worker
->desc
, sizeof(worker
->desc
), fmt
, args
);
4218 worker
->desc_valid
= true;
4223 * print_worker_info - print out worker information and description
4224 * @log_lvl: the log level to use when printing
4225 * @task: target task
4227 * If @task is a worker and currently executing a work item, print out the
4228 * name of the workqueue being serviced and worker description set with
4229 * set_worker_desc() by the currently executing work item.
4231 * This function can be safely called on any task as long as the
4232 * task_struct itself is accessible. While safe, this function isn't
4233 * synchronized and may print out mixups or garbages of limited length.
4235 void print_worker_info(const char *log_lvl
, struct task_struct
*task
)
4237 work_func_t
*fn
= NULL
;
4238 char name
[WQ_NAME_LEN
] = { };
4239 char desc
[WORKER_DESC_LEN
] = { };
4240 struct pool_workqueue
*pwq
= NULL
;
4241 struct workqueue_struct
*wq
= NULL
;
4242 bool desc_valid
= false;
4243 struct worker
*worker
;
4245 if (!(task
->flags
& PF_WQ_WORKER
))
4249 * This function is called without any synchronization and @task
4250 * could be in any state. Be careful with dereferences.
4252 worker
= probe_kthread_data(task
);
4255 * Carefully copy the associated workqueue's workfn and name. Keep
4256 * the original last '\0' in case the original contains garbage.
4258 probe_kernel_read(&fn
, &worker
->current_func
, sizeof(fn
));
4259 probe_kernel_read(&pwq
, &worker
->current_pwq
, sizeof(pwq
));
4260 probe_kernel_read(&wq
, &pwq
->wq
, sizeof(wq
));
4261 probe_kernel_read(name
, wq
->name
, sizeof(name
) - 1);
4263 /* copy worker description */
4264 probe_kernel_read(&desc_valid
, &worker
->desc_valid
, sizeof(desc_valid
));
4266 probe_kernel_read(desc
, worker
->desc
, sizeof(desc
) - 1);
4268 if (fn
|| name
[0] || desc
[0]) {
4269 printk("%sWorkqueue: %s %pf", log_lvl
, name
, fn
);
4271 pr_cont(" (%s)", desc
);
4276 static void pr_cont_pool_info(struct worker_pool
*pool
)
4278 pr_cont(" cpus=%*pbl", nr_cpumask_bits
, pool
->attrs
->cpumask
);
4279 if (pool
->node
!= NUMA_NO_NODE
)
4280 pr_cont(" node=%d", pool
->node
);
4281 pr_cont(" flags=0x%x nice=%d", pool
->flags
, pool
->attrs
->nice
);
4284 static void pr_cont_work(bool comma
, struct work_struct
*work
)
4286 if (work
->func
== wq_barrier_func
) {
4287 struct wq_barrier
*barr
;
4289 barr
= container_of(work
, struct wq_barrier
, work
);
4291 pr_cont("%s BAR(%d)", comma
? "," : "",
4292 task_pid_nr(barr
->task
));
4294 pr_cont("%s %pf", comma
? "," : "", work
->func
);
4298 static void show_pwq(struct pool_workqueue
*pwq
)
4300 struct worker_pool
*pool
= pwq
->pool
;
4301 struct work_struct
*work
;
4302 struct worker
*worker
;
4303 bool has_in_flight
= false, has_pending
= false;
4306 pr_info(" pwq %d:", pool
->id
);
4307 pr_cont_pool_info(pool
);
4309 pr_cont(" active=%d/%d%s\n", pwq
->nr_active
, pwq
->max_active
,
4310 !list_empty(&pwq
->mayday_node
) ? " MAYDAY" : "");
4312 hash_for_each(pool
->busy_hash
, bkt
, worker
, hentry
) {
4313 if (worker
->current_pwq
== pwq
) {
4314 has_in_flight
= true;
4318 if (has_in_flight
) {
4321 pr_info(" in-flight:");
4322 hash_for_each(pool
->busy_hash
, bkt
, worker
, hentry
) {
4323 if (worker
->current_pwq
!= pwq
)
4326 pr_cont("%s %d%s:%pf", comma
? "," : "",
4327 task_pid_nr(worker
->task
),
4328 worker
== pwq
->wq
->rescuer
? "(RESCUER)" : "",
4329 worker
->current_func
);
4330 list_for_each_entry(work
, &worker
->scheduled
, entry
)
4331 pr_cont_work(false, work
);
4337 list_for_each_entry(work
, &pool
->worklist
, entry
) {
4338 if (get_work_pwq(work
) == pwq
) {
4346 pr_info(" pending:");
4347 list_for_each_entry(work
, &pool
->worklist
, entry
) {
4348 if (get_work_pwq(work
) != pwq
)
4351 pr_cont_work(comma
, work
);
4352 comma
= !(*work_data_bits(work
) & WORK_STRUCT_LINKED
);
4357 if (!list_empty(&pwq
->delayed_works
)) {
4360 pr_info(" delayed:");
4361 list_for_each_entry(work
, &pwq
->delayed_works
, entry
) {
4362 pr_cont_work(comma
, work
);
4363 comma
= !(*work_data_bits(work
) & WORK_STRUCT_LINKED
);
4370 * show_workqueue_state - dump workqueue state
4372 * Called from a sysrq handler and prints out all busy workqueues and
4375 void show_workqueue_state(void)
4377 struct workqueue_struct
*wq
;
4378 struct worker_pool
*pool
;
4379 unsigned long flags
;
4382 rcu_read_lock_sched();
4384 pr_info("Showing busy workqueues and worker pools:\n");
4386 list_for_each_entry_rcu(wq
, &workqueues
, list
) {
4387 struct pool_workqueue
*pwq
;
4390 for_each_pwq(pwq
, wq
) {
4391 if (pwq
->nr_active
|| !list_empty(&pwq
->delayed_works
)) {
4399 pr_info("workqueue %s: flags=0x%x\n", wq
->name
, wq
->flags
);
4401 for_each_pwq(pwq
, wq
) {
4402 spin_lock_irqsave(&pwq
->pool
->lock
, flags
);
4403 if (pwq
->nr_active
|| !list_empty(&pwq
->delayed_works
))
4405 spin_unlock_irqrestore(&pwq
->pool
->lock
, flags
);
4409 for_each_pool(pool
, pi
) {
4410 struct worker
*worker
;
4413 spin_lock_irqsave(&pool
->lock
, flags
);
4414 if (pool
->nr_workers
== pool
->nr_idle
)
4417 pr_info("pool %d:", pool
->id
);
4418 pr_cont_pool_info(pool
);
4419 pr_cont(" hung=%us workers=%d",
4420 jiffies_to_msecs(jiffies
- pool
->watchdog_ts
) / 1000,
4423 pr_cont(" manager: %d",
4424 task_pid_nr(pool
->manager
->task
));
4425 list_for_each_entry(worker
, &pool
->idle_list
, entry
) {
4426 pr_cont(" %s%d", first
? "idle: " : "",
4427 task_pid_nr(worker
->task
));
4432 spin_unlock_irqrestore(&pool
->lock
, flags
);
4435 rcu_read_unlock_sched();
4441 * There are two challenges in supporting CPU hotplug. Firstly, there
4442 * are a lot of assumptions on strong associations among work, pwq and
4443 * pool which make migrating pending and scheduled works very
4444 * difficult to implement without impacting hot paths. Secondly,
4445 * worker pools serve mix of short, long and very long running works making
4446 * blocked draining impractical.
4448 * This is solved by allowing the pools to be disassociated from the CPU
4449 * running as an unbound one and allowing it to be reattached later if the
4450 * cpu comes back online.
4453 static void wq_unbind_fn(struct work_struct
*work
)
4455 int cpu
= smp_processor_id();
4456 struct worker_pool
*pool
;
4457 struct worker
*worker
;
4459 for_each_cpu_worker_pool(pool
, cpu
) {
4460 mutex_lock(&pool
->attach_mutex
);
4461 spin_lock_irq(&pool
->lock
);
4464 * We've blocked all attach/detach operations. Make all workers
4465 * unbound and set DISASSOCIATED. Before this, all workers
4466 * except for the ones which are still executing works from
4467 * before the last CPU down must be on the cpu. After
4468 * this, they may become diasporas.
4470 for_each_pool_worker(worker
, pool
)
4471 worker
->flags
|= WORKER_UNBOUND
;
4473 pool
->flags
|= POOL_DISASSOCIATED
;
4475 spin_unlock_irq(&pool
->lock
);
4476 mutex_unlock(&pool
->attach_mutex
);
4479 * Call schedule() so that we cross rq->lock and thus can
4480 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4481 * This is necessary as scheduler callbacks may be invoked
4487 * Sched callbacks are disabled now. Zap nr_running.
4488 * After this, nr_running stays zero and need_more_worker()
4489 * and keep_working() are always true as long as the
4490 * worklist is not empty. This pool now behaves as an
4491 * unbound (in terms of concurrency management) pool which
4492 * are served by workers tied to the pool.
4494 atomic_set(&pool
->nr_running
, 0);
4497 * With concurrency management just turned off, a busy
4498 * worker blocking could lead to lengthy stalls. Kick off
4499 * unbound chain execution of currently pending work items.
4501 spin_lock_irq(&pool
->lock
);
4502 wake_up_worker(pool
);
4503 spin_unlock_irq(&pool
->lock
);
4508 * rebind_workers - rebind all workers of a pool to the associated CPU
4509 * @pool: pool of interest
4511 * @pool->cpu is coming online. Rebind all workers to the CPU.
4513 static void rebind_workers(struct worker_pool
*pool
)
4515 struct worker
*worker
;
4517 lockdep_assert_held(&pool
->attach_mutex
);
4520 * Restore CPU affinity of all workers. As all idle workers should
4521 * be on the run-queue of the associated CPU before any local
4522 * wake-ups for concurrency management happen, restore CPU affinity
4523 * of all workers first and then clear UNBOUND. As we're called
4524 * from CPU_ONLINE, the following shouldn't fail.
4526 for_each_pool_worker(worker
, pool
)
4527 WARN_ON_ONCE(set_cpus_allowed_ptr(worker
->task
,
4528 pool
->attrs
->cpumask
) < 0);
4530 spin_lock_irq(&pool
->lock
);
4533 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4534 * w/o preceding DOWN_PREPARE. Work around it. CPU hotplug is
4535 * being reworked and this can go away in time.
4537 if (!(pool
->flags
& POOL_DISASSOCIATED
)) {
4538 spin_unlock_irq(&pool
->lock
);
4542 pool
->flags
&= ~POOL_DISASSOCIATED
;
4544 for_each_pool_worker(worker
, pool
) {
4545 unsigned int worker_flags
= worker
->flags
;
4548 * A bound idle worker should actually be on the runqueue
4549 * of the associated CPU for local wake-ups targeting it to
4550 * work. Kick all idle workers so that they migrate to the
4551 * associated CPU. Doing this in the same loop as
4552 * replacing UNBOUND with REBOUND is safe as no worker will
4553 * be bound before @pool->lock is released.
4555 if (worker_flags
& WORKER_IDLE
)
4556 wake_up_process(worker
->task
);
4559 * We want to clear UNBOUND but can't directly call
4560 * worker_clr_flags() or adjust nr_running. Atomically
4561 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4562 * @worker will clear REBOUND using worker_clr_flags() when
4563 * it initiates the next execution cycle thus restoring
4564 * concurrency management. Note that when or whether
4565 * @worker clears REBOUND doesn't affect correctness.
4567 * ACCESS_ONCE() is necessary because @worker->flags may be
4568 * tested without holding any lock in
4569 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4570 * fail incorrectly leading to premature concurrency
4571 * management operations.
4573 WARN_ON_ONCE(!(worker_flags
& WORKER_UNBOUND
));
4574 worker_flags
|= WORKER_REBOUND
;
4575 worker_flags
&= ~WORKER_UNBOUND
;
4576 ACCESS_ONCE(worker
->flags
) = worker_flags
;
4579 spin_unlock_irq(&pool
->lock
);
4583 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4584 * @pool: unbound pool of interest
4585 * @cpu: the CPU which is coming up
4587 * An unbound pool may end up with a cpumask which doesn't have any online
4588 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4589 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4590 * online CPU before, cpus_allowed of all its workers should be restored.
4592 static void restore_unbound_workers_cpumask(struct worker_pool
*pool
, int cpu
)
4594 static cpumask_t cpumask
;
4595 struct worker
*worker
;
4597 lockdep_assert_held(&pool
->attach_mutex
);
4599 /* is @cpu allowed for @pool? */
4600 if (!cpumask_test_cpu(cpu
, pool
->attrs
->cpumask
))
4603 /* is @cpu the only online CPU? */
4604 cpumask_and(&cpumask
, pool
->attrs
->cpumask
, cpu_online_mask
);
4605 if (cpumask_weight(&cpumask
) != 1)
4608 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4609 for_each_pool_worker(worker
, pool
)
4610 WARN_ON_ONCE(set_cpus_allowed_ptr(worker
->task
,
4611 pool
->attrs
->cpumask
) < 0);
4615 * Workqueues should be brought up before normal priority CPU notifiers.
4616 * This will be registered high priority CPU notifier.
4618 static int workqueue_cpu_up_callback(struct notifier_block
*nfb
,
4619 unsigned long action
,
4622 int cpu
= (unsigned long)hcpu
;
4623 struct worker_pool
*pool
;
4624 struct workqueue_struct
*wq
;
4627 switch (action
& ~CPU_TASKS_FROZEN
) {
4628 case CPU_UP_PREPARE
:
4629 for_each_cpu_worker_pool(pool
, cpu
) {
4630 if (pool
->nr_workers
)
4632 if (!create_worker(pool
))
4637 case CPU_DOWN_FAILED
:
4639 mutex_lock(&wq_pool_mutex
);
4641 for_each_pool(pool
, pi
) {
4642 mutex_lock(&pool
->attach_mutex
);
4644 if (pool
->cpu
== cpu
)
4645 rebind_workers(pool
);
4646 else if (pool
->cpu
< 0)
4647 restore_unbound_workers_cpumask(pool
, cpu
);
4649 mutex_unlock(&pool
->attach_mutex
);
4652 /* update NUMA affinity of unbound workqueues */
4653 list_for_each_entry(wq
, &workqueues
, list
)
4654 wq_update_unbound_numa(wq
, cpu
, true);
4656 mutex_unlock(&wq_pool_mutex
);
4663 * Workqueues should be brought down after normal priority CPU notifiers.
4664 * This will be registered as low priority CPU notifier.
4666 static int workqueue_cpu_down_callback(struct notifier_block
*nfb
,
4667 unsigned long action
,
4670 int cpu
= (unsigned long)hcpu
;
4671 struct work_struct unbind_work
;
4672 struct workqueue_struct
*wq
;
4674 switch (action
& ~CPU_TASKS_FROZEN
) {
4675 case CPU_DOWN_PREPARE
:
4676 /* unbinding per-cpu workers should happen on the local CPU */
4677 INIT_WORK_ONSTACK(&unbind_work
, wq_unbind_fn
);
4678 queue_work_on(cpu
, system_highpri_wq
, &unbind_work
);
4680 /* update NUMA affinity of unbound workqueues */
4681 mutex_lock(&wq_pool_mutex
);
4682 list_for_each_entry(wq
, &workqueues
, list
)
4683 wq_update_unbound_numa(wq
, cpu
, false);
4684 mutex_unlock(&wq_pool_mutex
);
4686 /* wait for per-cpu unbinding to finish */
4687 flush_work(&unbind_work
);
4688 destroy_work_on_stack(&unbind_work
);
4696 struct work_for_cpu
{
4697 struct work_struct work
;
4703 static void work_for_cpu_fn(struct work_struct
*work
)
4705 struct work_for_cpu
*wfc
= container_of(work
, struct work_for_cpu
, work
);
4707 wfc
->ret
= wfc
->fn(wfc
->arg
);
4711 * work_on_cpu - run a function in thread context on a particular cpu
4712 * @cpu: the cpu to run on
4713 * @fn: the function to run
4714 * @arg: the function arg
4716 * It is up to the caller to ensure that the cpu doesn't go offline.
4717 * The caller must not hold any locks which would prevent @fn from completing.
4719 * Return: The value @fn returns.
4721 long work_on_cpu(int cpu
, long (*fn
)(void *), void *arg
)
4723 struct work_for_cpu wfc
= { .fn
= fn
, .arg
= arg
};
4725 INIT_WORK_ONSTACK(&wfc
.work
, work_for_cpu_fn
);
4726 schedule_work_on(cpu
, &wfc
.work
);
4727 flush_work(&wfc
.work
);
4728 destroy_work_on_stack(&wfc
.work
);
4731 EXPORT_SYMBOL_GPL(work_on_cpu
);
4732 #endif /* CONFIG_SMP */
4734 #ifdef CONFIG_FREEZER
4737 * freeze_workqueues_begin - begin freezing workqueues
4739 * Start freezing workqueues. After this function returns, all freezable
4740 * workqueues will queue new works to their delayed_works list instead of
4744 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4746 void freeze_workqueues_begin(void)
4748 struct workqueue_struct
*wq
;
4749 struct pool_workqueue
*pwq
;
4751 mutex_lock(&wq_pool_mutex
);
4753 WARN_ON_ONCE(workqueue_freezing
);
4754 workqueue_freezing
= true;
4756 list_for_each_entry(wq
, &workqueues
, list
) {
4757 mutex_lock(&wq
->mutex
);
4758 for_each_pwq(pwq
, wq
)
4759 pwq_adjust_max_active(pwq
);
4760 mutex_unlock(&wq
->mutex
);
4763 mutex_unlock(&wq_pool_mutex
);
4767 * freeze_workqueues_busy - are freezable workqueues still busy?
4769 * Check whether freezing is complete. This function must be called
4770 * between freeze_workqueues_begin() and thaw_workqueues().
4773 * Grabs and releases wq_pool_mutex.
4776 * %true if some freezable workqueues are still busy. %false if freezing
4779 bool freeze_workqueues_busy(void)
4782 struct workqueue_struct
*wq
;
4783 struct pool_workqueue
*pwq
;
4785 mutex_lock(&wq_pool_mutex
);
4787 WARN_ON_ONCE(!workqueue_freezing
);
4789 list_for_each_entry(wq
, &workqueues
, list
) {
4790 if (!(wq
->flags
& WQ_FREEZABLE
))
4793 * nr_active is monotonically decreasing. It's safe
4794 * to peek without lock.
4796 rcu_read_lock_sched();
4797 for_each_pwq(pwq
, wq
) {
4798 WARN_ON_ONCE(pwq
->nr_active
< 0);
4799 if (pwq
->nr_active
) {
4801 rcu_read_unlock_sched();
4805 rcu_read_unlock_sched();
4808 mutex_unlock(&wq_pool_mutex
);
4813 * thaw_workqueues - thaw workqueues
4815 * Thaw workqueues. Normal queueing is restored and all collected
4816 * frozen works are transferred to their respective pool worklists.
4819 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4821 void thaw_workqueues(void)
4823 struct workqueue_struct
*wq
;
4824 struct pool_workqueue
*pwq
;
4826 mutex_lock(&wq_pool_mutex
);
4828 if (!workqueue_freezing
)
4831 workqueue_freezing
= false;
4833 /* restore max_active and repopulate worklist */
4834 list_for_each_entry(wq
, &workqueues
, list
) {
4835 mutex_lock(&wq
->mutex
);
4836 for_each_pwq(pwq
, wq
)
4837 pwq_adjust_max_active(pwq
);
4838 mutex_unlock(&wq
->mutex
);
4842 mutex_unlock(&wq_pool_mutex
);
4844 #endif /* CONFIG_FREEZER */
4846 static int workqueue_apply_unbound_cpumask(void)
4850 struct workqueue_struct
*wq
;
4851 struct apply_wqattrs_ctx
*ctx
, *n
;
4853 lockdep_assert_held(&wq_pool_mutex
);
4855 list_for_each_entry(wq
, &workqueues
, list
) {
4856 if (!(wq
->flags
& WQ_UNBOUND
))
4858 /* creating multiple pwqs breaks ordering guarantee */
4859 if (wq
->flags
& __WQ_ORDERED
)
4862 ctx
= apply_wqattrs_prepare(wq
, wq
->unbound_attrs
);
4868 list_add_tail(&ctx
->list
, &ctxs
);
4871 list_for_each_entry_safe(ctx
, n
, &ctxs
, list
) {
4873 apply_wqattrs_commit(ctx
);
4874 apply_wqattrs_cleanup(ctx
);
4881 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4882 * @cpumask: the cpumask to set
4884 * The low-level workqueues cpumask is a global cpumask that limits
4885 * the affinity of all unbound workqueues. This function check the @cpumask
4886 * and apply it to all unbound workqueues and updates all pwqs of them.
4888 * Retun: 0 - Success
4889 * -EINVAL - Invalid @cpumask
4890 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4892 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask
)
4895 cpumask_var_t saved_cpumask
;
4897 if (!zalloc_cpumask_var(&saved_cpumask
, GFP_KERNEL
))
4900 cpumask_and(cpumask
, cpumask
, cpu_possible_mask
);
4901 if (!cpumask_empty(cpumask
)) {
4902 apply_wqattrs_lock();
4904 /* save the old wq_unbound_cpumask. */
4905 cpumask_copy(saved_cpumask
, wq_unbound_cpumask
);
4907 /* update wq_unbound_cpumask at first and apply it to wqs. */
4908 cpumask_copy(wq_unbound_cpumask
, cpumask
);
4909 ret
= workqueue_apply_unbound_cpumask();
4911 /* restore the wq_unbound_cpumask when failed. */
4913 cpumask_copy(wq_unbound_cpumask
, saved_cpumask
);
4915 apply_wqattrs_unlock();
4918 free_cpumask_var(saved_cpumask
);
4924 * Workqueues with WQ_SYSFS flag set is visible to userland via
4925 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
4926 * following attributes.
4928 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
4929 * max_active RW int : maximum number of in-flight work items
4931 * Unbound workqueues have the following extra attributes.
4933 * id RO int : the associated pool ID
4934 * nice RW int : nice value of the workers
4935 * cpumask RW mask : bitmask of allowed CPUs for the workers
4938 struct workqueue_struct
*wq
;
4942 static struct workqueue_struct
*dev_to_wq(struct device
*dev
)
4944 struct wq_device
*wq_dev
= container_of(dev
, struct wq_device
, dev
);
4949 static ssize_t
per_cpu_show(struct device
*dev
, struct device_attribute
*attr
,
4952 struct workqueue_struct
*wq
= dev_to_wq(dev
);
4954 return scnprintf(buf
, PAGE_SIZE
, "%d\n", (bool)!(wq
->flags
& WQ_UNBOUND
));
4956 static DEVICE_ATTR_RO(per_cpu
);
4958 static ssize_t
max_active_show(struct device
*dev
,
4959 struct device_attribute
*attr
, char *buf
)
4961 struct workqueue_struct
*wq
= dev_to_wq(dev
);
4963 return scnprintf(buf
, PAGE_SIZE
, "%d\n", wq
->saved_max_active
);
4966 static ssize_t
max_active_store(struct device
*dev
,
4967 struct device_attribute
*attr
, const char *buf
,
4970 struct workqueue_struct
*wq
= dev_to_wq(dev
);
4973 if (sscanf(buf
, "%d", &val
) != 1 || val
<= 0)
4976 workqueue_set_max_active(wq
, val
);
4979 static DEVICE_ATTR_RW(max_active
);
4981 static struct attribute
*wq_sysfs_attrs
[] = {
4982 &dev_attr_per_cpu
.attr
,
4983 &dev_attr_max_active
.attr
,
4986 ATTRIBUTE_GROUPS(wq_sysfs
);
4988 static ssize_t
wq_pool_ids_show(struct device
*dev
,
4989 struct device_attribute
*attr
, char *buf
)
4991 struct workqueue_struct
*wq
= dev_to_wq(dev
);
4992 const char *delim
= "";
4993 int node
, written
= 0;
4995 rcu_read_lock_sched();
4996 for_each_node(node
) {
4997 written
+= scnprintf(buf
+ written
, PAGE_SIZE
- written
,
4998 "%s%d:%d", delim
, node
,
4999 unbound_pwq_by_node(wq
, node
)->pool
->id
);
5002 written
+= scnprintf(buf
+ written
, PAGE_SIZE
- written
, "\n");
5003 rcu_read_unlock_sched();
5008 static ssize_t
wq_nice_show(struct device
*dev
, struct device_attribute
*attr
,
5011 struct workqueue_struct
*wq
= dev_to_wq(dev
);
5014 mutex_lock(&wq
->mutex
);
5015 written
= scnprintf(buf
, PAGE_SIZE
, "%d\n", wq
->unbound_attrs
->nice
);
5016 mutex_unlock(&wq
->mutex
);
5021 /* prepare workqueue_attrs for sysfs store operations */
5022 static struct workqueue_attrs
*wq_sysfs_prep_attrs(struct workqueue_struct
*wq
)
5024 struct workqueue_attrs
*attrs
;
5026 lockdep_assert_held(&wq_pool_mutex
);
5028 attrs
= alloc_workqueue_attrs(GFP_KERNEL
);
5032 copy_workqueue_attrs(attrs
, wq
->unbound_attrs
);
5036 static ssize_t
wq_nice_store(struct device
*dev
, struct device_attribute
*attr
,
5037 const char *buf
, size_t count
)
5039 struct workqueue_struct
*wq
= dev_to_wq(dev
);
5040 struct workqueue_attrs
*attrs
;
5043 apply_wqattrs_lock();
5045 attrs
= wq_sysfs_prep_attrs(wq
);
5049 if (sscanf(buf
, "%d", &attrs
->nice
) == 1 &&
5050 attrs
->nice
>= MIN_NICE
&& attrs
->nice
<= MAX_NICE
)
5051 ret
= apply_workqueue_attrs_locked(wq
, attrs
);
5056 apply_wqattrs_unlock();
5057 free_workqueue_attrs(attrs
);
5058 return ret
?: count
;
5061 static ssize_t
wq_cpumask_show(struct device
*dev
,
5062 struct device_attribute
*attr
, char *buf
)
5064 struct workqueue_struct
*wq
= dev_to_wq(dev
);
5067 mutex_lock(&wq
->mutex
);
5068 written
= scnprintf(buf
, PAGE_SIZE
, "%*pb\n",
5069 cpumask_pr_args(wq
->unbound_attrs
->cpumask
));
5070 mutex_unlock(&wq
->mutex
);
5074 static ssize_t
wq_cpumask_store(struct device
*dev
,
5075 struct device_attribute
*attr
,
5076 const char *buf
, size_t count
)
5078 struct workqueue_struct
*wq
= dev_to_wq(dev
);
5079 struct workqueue_attrs
*attrs
;
5082 apply_wqattrs_lock();
5084 attrs
= wq_sysfs_prep_attrs(wq
);
5088 ret
= cpumask_parse(buf
, attrs
->cpumask
);
5090 ret
= apply_workqueue_attrs_locked(wq
, attrs
);
5093 apply_wqattrs_unlock();
5094 free_workqueue_attrs(attrs
);
5095 return ret
?: count
;
5098 static ssize_t
wq_numa_show(struct device
*dev
, struct device_attribute
*attr
,
5101 struct workqueue_struct
*wq
= dev_to_wq(dev
);
5104 mutex_lock(&wq
->mutex
);
5105 written
= scnprintf(buf
, PAGE_SIZE
, "%d\n",
5106 !wq
->unbound_attrs
->no_numa
);
5107 mutex_unlock(&wq
->mutex
);
5112 static ssize_t
wq_numa_store(struct device
*dev
, struct device_attribute
*attr
,
5113 const char *buf
, size_t count
)
5115 struct workqueue_struct
*wq
= dev_to_wq(dev
);
5116 struct workqueue_attrs
*attrs
;
5117 int v
, ret
= -ENOMEM
;
5119 apply_wqattrs_lock();
5121 attrs
= wq_sysfs_prep_attrs(wq
);
5126 if (sscanf(buf
, "%d", &v
) == 1) {
5127 attrs
->no_numa
= !v
;
5128 ret
= apply_workqueue_attrs_locked(wq
, attrs
);
5132 apply_wqattrs_unlock();
5133 free_workqueue_attrs(attrs
);
5134 return ret
?: count
;
5137 static struct device_attribute wq_sysfs_unbound_attrs
[] = {
5138 __ATTR(pool_ids
, 0444, wq_pool_ids_show
, NULL
),
5139 __ATTR(nice
, 0644, wq_nice_show
, wq_nice_store
),
5140 __ATTR(cpumask
, 0644, wq_cpumask_show
, wq_cpumask_store
),
5141 __ATTR(numa
, 0644, wq_numa_show
, wq_numa_store
),
5145 static struct bus_type wq_subsys
= {
5146 .name
= "workqueue",
5147 .dev_groups
= wq_sysfs_groups
,
5150 static ssize_t
wq_unbound_cpumask_show(struct device
*dev
,
5151 struct device_attribute
*attr
, char *buf
)
5155 mutex_lock(&wq_pool_mutex
);
5156 written
= scnprintf(buf
, PAGE_SIZE
, "%*pb\n",
5157 cpumask_pr_args(wq_unbound_cpumask
));
5158 mutex_unlock(&wq_pool_mutex
);
5163 static ssize_t
wq_unbound_cpumask_store(struct device
*dev
,
5164 struct device_attribute
*attr
, const char *buf
, size_t count
)
5166 cpumask_var_t cpumask
;
5169 if (!zalloc_cpumask_var(&cpumask
, GFP_KERNEL
))
5172 ret
= cpumask_parse(buf
, cpumask
);
5174 ret
= workqueue_set_unbound_cpumask(cpumask
);
5176 free_cpumask_var(cpumask
);
5177 return ret
? ret
: count
;
5180 static struct device_attribute wq_sysfs_cpumask_attr
=
5181 __ATTR(cpumask
, 0644, wq_unbound_cpumask_show
,
5182 wq_unbound_cpumask_store
);
5184 static int __init
wq_sysfs_init(void)
5188 err
= subsys_virtual_register(&wq_subsys
, NULL
);
5192 return device_create_file(wq_subsys
.dev_root
, &wq_sysfs_cpumask_attr
);
5194 core_initcall(wq_sysfs_init
);
5196 static void wq_device_release(struct device
*dev
)
5198 struct wq_device
*wq_dev
= container_of(dev
, struct wq_device
, dev
);
5204 * workqueue_sysfs_register - make a workqueue visible in sysfs
5205 * @wq: the workqueue to register
5207 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5208 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5209 * which is the preferred method.
5211 * Workqueue user should use this function directly iff it wants to apply
5212 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5213 * apply_workqueue_attrs() may race against userland updating the
5216 * Return: 0 on success, -errno on failure.
5218 int workqueue_sysfs_register(struct workqueue_struct
*wq
)
5220 struct wq_device
*wq_dev
;
5224 * Adjusting max_active or creating new pwqs by applying
5225 * attributes breaks ordering guarantee. Disallow exposing ordered
5228 if (WARN_ON(wq
->flags
& __WQ_ORDERED
))
5231 wq
->wq_dev
= wq_dev
= kzalloc(sizeof(*wq_dev
), GFP_KERNEL
);
5236 wq_dev
->dev
.bus
= &wq_subsys
;
5237 wq_dev
->dev
.release
= wq_device_release
;
5238 dev_set_name(&wq_dev
->dev
, "%s", wq
->name
);
5241 * unbound_attrs are created separately. Suppress uevent until
5242 * everything is ready.
5244 dev_set_uevent_suppress(&wq_dev
->dev
, true);
5246 ret
= device_register(&wq_dev
->dev
);
5253 if (wq
->flags
& WQ_UNBOUND
) {
5254 struct device_attribute
*attr
;
5256 for (attr
= wq_sysfs_unbound_attrs
; attr
->attr
.name
; attr
++) {
5257 ret
= device_create_file(&wq_dev
->dev
, attr
);
5259 device_unregister(&wq_dev
->dev
);
5266 dev_set_uevent_suppress(&wq_dev
->dev
, false);
5267 kobject_uevent(&wq_dev
->dev
.kobj
, KOBJ_ADD
);
5272 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5273 * @wq: the workqueue to unregister
5275 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5277 static void workqueue_sysfs_unregister(struct workqueue_struct
*wq
)
5279 struct wq_device
*wq_dev
= wq
->wq_dev
;
5285 device_unregister(&wq_dev
->dev
);
5287 #else /* CONFIG_SYSFS */
5288 static void workqueue_sysfs_unregister(struct workqueue_struct
*wq
) { }
5289 #endif /* CONFIG_SYSFS */
5292 * Workqueue watchdog.
5294 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5295 * flush dependency, a concurrency managed work item which stays RUNNING
5296 * indefinitely. Workqueue stalls can be very difficult to debug as the
5297 * usual warning mechanisms don't trigger and internal workqueue state is
5300 * Workqueue watchdog monitors all worker pools periodically and dumps
5301 * state if some pools failed to make forward progress for a while where
5302 * forward progress is defined as the first item on ->worklist changing.
5304 * This mechanism is controlled through the kernel parameter
5305 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5306 * corresponding sysfs parameter file.
5308 #ifdef CONFIG_WQ_WATCHDOG
5310 static void wq_watchdog_timer_fn(unsigned long data
);
5312 static unsigned long wq_watchdog_thresh
= 30;
5313 static struct timer_list wq_watchdog_timer
=
5314 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn
, 0, 0);
5316 static unsigned long wq_watchdog_touched
= INITIAL_JIFFIES
;
5317 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu
) = INITIAL_JIFFIES
;
5319 static void wq_watchdog_reset_touched(void)
5323 wq_watchdog_touched
= jiffies
;
5324 for_each_possible_cpu(cpu
)
5325 per_cpu(wq_watchdog_touched_cpu
, cpu
) = jiffies
;
5328 static void wq_watchdog_timer_fn(unsigned long data
)
5330 unsigned long thresh
= READ_ONCE(wq_watchdog_thresh
) * HZ
;
5331 bool lockup_detected
= false;
5332 struct worker_pool
*pool
;
5340 for_each_pool(pool
, pi
) {
5341 unsigned long pool_ts
, touched
, ts
;
5343 if (list_empty(&pool
->worklist
))
5346 /* get the latest of pool and touched timestamps */
5347 pool_ts
= READ_ONCE(pool
->watchdog_ts
);
5348 touched
= READ_ONCE(wq_watchdog_touched
);
5350 if (time_after(pool_ts
, touched
))
5355 if (pool
->cpu
>= 0) {
5356 unsigned long cpu_touched
=
5357 READ_ONCE(per_cpu(wq_watchdog_touched_cpu
,
5359 if (time_after(cpu_touched
, ts
))
5364 if (time_after(jiffies
, ts
+ thresh
)) {
5365 lockup_detected
= true;
5366 pr_emerg("BUG: workqueue lockup - pool");
5367 pr_cont_pool_info(pool
);
5368 pr_cont(" stuck for %us!\n",
5369 jiffies_to_msecs(jiffies
- pool_ts
) / 1000);
5375 if (lockup_detected
)
5376 show_workqueue_state();
5378 wq_watchdog_reset_touched();
5379 mod_timer(&wq_watchdog_timer
, jiffies
+ thresh
);
5382 void wq_watchdog_touch(int cpu
)
5385 per_cpu(wq_watchdog_touched_cpu
, cpu
) = jiffies
;
5387 wq_watchdog_touched
= jiffies
;
5390 static void wq_watchdog_set_thresh(unsigned long thresh
)
5392 wq_watchdog_thresh
= 0;
5393 del_timer_sync(&wq_watchdog_timer
);
5396 wq_watchdog_thresh
= thresh
;
5397 wq_watchdog_reset_touched();
5398 mod_timer(&wq_watchdog_timer
, jiffies
+ thresh
* HZ
);
5402 static int wq_watchdog_param_set_thresh(const char *val
,
5403 const struct kernel_param
*kp
)
5405 unsigned long thresh
;
5408 ret
= kstrtoul(val
, 0, &thresh
);
5413 wq_watchdog_set_thresh(thresh
);
5415 wq_watchdog_thresh
= thresh
;
5420 static const struct kernel_param_ops wq_watchdog_thresh_ops
= {
5421 .set
= wq_watchdog_param_set_thresh
,
5422 .get
= param_get_ulong
,
5425 module_param_cb(watchdog_thresh
, &wq_watchdog_thresh_ops
, &wq_watchdog_thresh
,
5428 static void wq_watchdog_init(void)
5430 wq_watchdog_set_thresh(wq_watchdog_thresh
);
5433 #else /* CONFIG_WQ_WATCHDOG */
5435 static inline void wq_watchdog_init(void) { }
5437 #endif /* CONFIG_WQ_WATCHDOG */
5439 static void __init
wq_numa_init(void)
5444 if (num_possible_nodes() <= 1)
5447 if (wq_disable_numa
) {
5448 pr_info("workqueue: NUMA affinity support disabled\n");
5452 wq_update_unbound_numa_attrs_buf
= alloc_workqueue_attrs(GFP_KERNEL
);
5453 BUG_ON(!wq_update_unbound_numa_attrs_buf
);
5456 * We want masks of possible CPUs of each node which isn't readily
5457 * available. Build one from cpu_to_node() which should have been
5458 * fully initialized by now.
5460 tbl
= kzalloc(nr_node_ids
* sizeof(tbl
[0]), GFP_KERNEL
);
5464 BUG_ON(!zalloc_cpumask_var_node(&tbl
[node
], GFP_KERNEL
,
5465 node_online(node
) ? node
: NUMA_NO_NODE
));
5467 for_each_possible_cpu(cpu
) {
5468 node
= cpu_to_node(cpu
);
5469 if (WARN_ON(node
== NUMA_NO_NODE
)) {
5470 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu
);
5471 /* happens iff arch is bonkers, let's just proceed */
5474 cpumask_set_cpu(cpu
, tbl
[node
]);
5477 wq_numa_possible_cpumask
= tbl
;
5478 wq_numa_enabled
= true;
5481 static int __init
init_workqueues(void)
5483 int std_nice
[NR_STD_WORKER_POOLS
] = { 0, HIGHPRI_NICE_LEVEL
};
5486 WARN_ON(__alignof__(struct pool_workqueue
) < __alignof__(long long));
5488 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask
, GFP_KERNEL
));
5489 cpumask_copy(wq_unbound_cpumask
, cpu_possible_mask
);
5491 pwq_cache
= KMEM_CACHE(pool_workqueue
, SLAB_PANIC
);
5493 cpu_notifier(workqueue_cpu_up_callback
, CPU_PRI_WORKQUEUE_UP
);
5494 hotcpu_notifier(workqueue_cpu_down_callback
, CPU_PRI_WORKQUEUE_DOWN
);
5498 /* initialize CPU pools */
5499 for_each_possible_cpu(cpu
) {
5500 struct worker_pool
*pool
;
5503 for_each_cpu_worker_pool(pool
, cpu
) {
5504 BUG_ON(init_worker_pool(pool
));
5506 cpumask_copy(pool
->attrs
->cpumask
, cpumask_of(cpu
));
5507 pool
->attrs
->nice
= std_nice
[i
++];
5508 pool
->node
= cpu_to_node(cpu
);
5511 mutex_lock(&wq_pool_mutex
);
5512 BUG_ON(worker_pool_assign_id(pool
));
5513 mutex_unlock(&wq_pool_mutex
);
5517 /* create the initial worker */
5518 for_each_online_cpu(cpu
) {
5519 struct worker_pool
*pool
;
5521 for_each_cpu_worker_pool(pool
, cpu
) {
5522 pool
->flags
&= ~POOL_DISASSOCIATED
;
5523 BUG_ON(!create_worker(pool
));
5527 /* create default unbound and ordered wq attrs */
5528 for (i
= 0; i
< NR_STD_WORKER_POOLS
; i
++) {
5529 struct workqueue_attrs
*attrs
;
5531 BUG_ON(!(attrs
= alloc_workqueue_attrs(GFP_KERNEL
)));
5532 attrs
->nice
= std_nice
[i
];
5533 unbound_std_wq_attrs
[i
] = attrs
;
5536 * An ordered wq should have only one pwq as ordering is
5537 * guaranteed by max_active which is enforced by pwqs.
5538 * Turn off NUMA so that dfl_pwq is used for all nodes.
5540 BUG_ON(!(attrs
= alloc_workqueue_attrs(GFP_KERNEL
)));
5541 attrs
->nice
= std_nice
[i
];
5542 attrs
->no_numa
= true;
5543 ordered_wq_attrs
[i
] = attrs
;
5546 system_wq
= alloc_workqueue("events", 0, 0);
5547 system_highpri_wq
= alloc_workqueue("events_highpri", WQ_HIGHPRI
, 0);
5548 system_long_wq
= alloc_workqueue("events_long", 0, 0);
5549 system_unbound_wq
= alloc_workqueue("events_unbound", WQ_UNBOUND
,
5550 WQ_UNBOUND_MAX_ACTIVE
);
5551 system_freezable_wq
= alloc_workqueue("events_freezable",
5553 system_power_efficient_wq
= alloc_workqueue("events_power_efficient",
5554 WQ_POWER_EFFICIENT
, 0);
5555 system_freezable_power_efficient_wq
= alloc_workqueue("events_freezable_power_efficient",
5556 WQ_FREEZABLE
| WQ_POWER_EFFICIENT
,
5558 BUG_ON(!system_wq
|| !system_highpri_wq
|| !system_long_wq
||
5559 !system_unbound_wq
|| !system_freezable_wq
||
5560 !system_power_efficient_wq
||
5561 !system_freezable_power_efficient_wq
);
5567 early_initcall(init_workqueues
);