1 #define DRV_NAME "advansys"
2 #define ASC_VERSION "3.4" /* AdvanSys Driver Version */
5 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
7 * Copyright (c) 1995-2000 Advanced System Products, Inc.
8 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
9 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
10 * All Rights Reserved.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
19 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
20 * changed its name to ConnectCom Solutions, Inc.
21 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/ioport.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <linux/slab.h>
33 #include <linux/proc_fs.h>
34 #include <linux/init.h>
35 #include <linux/blkdev.h>
36 #include <linux/isa.h>
37 #include <linux/eisa.h>
38 #include <linux/pci.h>
39 #include <linux/spinlock.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/firmware.h>
46 #include <scsi/scsi_cmnd.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_tcq.h>
49 #include <scsi/scsi.h>
50 #include <scsi/scsi_host.h>
54 * 1. Although all of the necessary command mapping places have the
55 * appropriate dma_map.. APIs, the driver still processes its internal
56 * queue using bus_to_virt() and virt_to_bus() which are illegal under
57 * the API. The entire queue processing structure will need to be
58 * altered to fix this.
59 * 2. Need to add memory mapping workaround. Test the memory mapping.
60 * If it doesn't work revert to I/O port access. Can a test be done
62 * 3. Handle an interrupt not working. Keep an interrupt counter in
63 * the interrupt handler. In the timeout function if the interrupt
64 * has not occurred then print a message and run in polled mode.
65 * 4. Need to add support for target mode commands, cf. CAM XPT.
66 * 5. check DMA mapping functions for failure
67 * 6. Use scsi_transport_spi
68 * 7. advansys_info is not safe against multiple simultaneous callers
69 * 8. Add module_param to override ISA/VLB ioport array
71 #warning this driver is still not properly converted to the DMA API
73 /* Enable driver /proc statistics. */
74 #define ADVANSYS_STATS
76 /* Enable driver tracing. */
82 * Any instance where a 32-bit long or pointer type is assumed
83 * for precision or HW defined structures, the following define
84 * types must be used. In Linux the char, short, and int types
85 * are all consistent at 8, 16, and 32 bits respectively. Pointers
86 * and long types are 64 bits on Alpha and UltraSPARC.
88 #define ASC_PADDR __u32 /* Physical/Bus address data type. */
89 #define ASC_VADDR __u32 /* Virtual address data type. */
90 #define ASC_DCNT __u32 /* Unsigned Data count type. */
91 #define ASC_SDCNT __s32 /* Signed Data count type. */
93 typedef unsigned char uchar
;
103 #define UW_ERR (uint)(0xFFFF)
104 #define isodd_word(val) ((((uint)val) & (uint)0x0001) != 0)
106 #define PCI_VENDOR_ID_ASP 0x10cd
107 #define PCI_DEVICE_ID_ASP_1200A 0x1100
108 #define PCI_DEVICE_ID_ASP_ABP940 0x1200
109 #define PCI_DEVICE_ID_ASP_ABP940U 0x1300
110 #define PCI_DEVICE_ID_ASP_ABP940UW 0x2300
111 #define PCI_DEVICE_ID_38C0800_REV1 0x2500
112 #define PCI_DEVICE_ID_38C1600_REV1 0x2700
115 * Enable CC_VERY_LONG_SG_LIST to support up to 64K element SG lists.
116 * The SRB structure will have to be changed and the ASC_SRB2SCSIQ()
117 * macro re-defined to be able to obtain a ASC_SCSI_Q pointer from the
120 #define CC_VERY_LONG_SG_LIST 0
121 #define ASC_SRB2SCSIQ(srb_ptr) (srb_ptr)
123 #define PortAddr unsigned int /* port address size */
124 #define inp(port) inb(port)
125 #define outp(port, byte) outb((byte), (port))
127 #define inpw(port) inw(port)
128 #define outpw(port, word) outw((word), (port))
130 #define ASC_MAX_SG_QUEUE 7
131 #define ASC_MAX_SG_LIST 255
133 #define ASC_CS_TYPE unsigned short
135 #define ASC_IS_ISA (0x0001)
136 #define ASC_IS_ISAPNP (0x0081)
137 #define ASC_IS_EISA (0x0002)
138 #define ASC_IS_PCI (0x0004)
139 #define ASC_IS_PCI_ULTRA (0x0104)
140 #define ASC_IS_PCMCIA (0x0008)
141 #define ASC_IS_MCA (0x0020)
142 #define ASC_IS_VL (0x0040)
143 #define ASC_IS_WIDESCSI_16 (0x0100)
144 #define ASC_IS_WIDESCSI_32 (0x0200)
145 #define ASC_IS_BIG_ENDIAN (0x8000)
147 #define ASC_CHIP_MIN_VER_VL (0x01)
148 #define ASC_CHIP_MAX_VER_VL (0x07)
149 #define ASC_CHIP_MIN_VER_PCI (0x09)
150 #define ASC_CHIP_MAX_VER_PCI (0x0F)
151 #define ASC_CHIP_VER_PCI_BIT (0x08)
152 #define ASC_CHIP_MIN_VER_ISA (0x11)
153 #define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
154 #define ASC_CHIP_MAX_VER_ISA (0x27)
155 #define ASC_CHIP_VER_ISA_BIT (0x30)
156 #define ASC_CHIP_VER_ISAPNP_BIT (0x20)
157 #define ASC_CHIP_VER_ASYN_BUG (0x21)
158 #define ASC_CHIP_VER_PCI 0x08
159 #define ASC_CHIP_VER_PCI_ULTRA_3150 (ASC_CHIP_VER_PCI | 0x02)
160 #define ASC_CHIP_VER_PCI_ULTRA_3050 (ASC_CHIP_VER_PCI | 0x03)
161 #define ASC_CHIP_MIN_VER_EISA (0x41)
162 #define ASC_CHIP_MAX_VER_EISA (0x47)
163 #define ASC_CHIP_VER_EISA_BIT (0x40)
164 #define ASC_CHIP_LATEST_VER_EISA ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
165 #define ASC_MAX_VL_DMA_COUNT (0x07FFFFFFL)
166 #define ASC_MAX_PCI_DMA_COUNT (0xFFFFFFFFL)
167 #define ASC_MAX_ISA_DMA_COUNT (0x00FFFFFFL)
169 #define ASC_SCSI_ID_BITS 3
170 #define ASC_SCSI_TIX_TYPE uchar
171 #define ASC_ALL_DEVICE_BIT_SET 0xFF
172 #define ASC_SCSI_BIT_ID_TYPE uchar
173 #define ASC_MAX_TID 7
174 #define ASC_MAX_LUN 7
175 #define ASC_SCSI_WIDTH_BIT_SET 0xFF
176 #define ASC_MAX_SENSE_LEN 32
177 #define ASC_MIN_SENSE_LEN 14
178 #define ASC_SCSI_RESET_HOLD_TIME_US 60
181 * Narrow boards only support 12-byte commands, while wide boards
182 * extend to 16-byte commands.
184 #define ASC_MAX_CDB_LEN 12
185 #define ADV_MAX_CDB_LEN 16
187 #define MS_SDTR_LEN 0x03
188 #define MS_WDTR_LEN 0x02
190 #define ASC_SG_LIST_PER_Q 7
192 #define QS_READY 0x01
193 #define QS_DISC1 0x02
194 #define QS_DISC2 0x04
196 #define QS_ABORTED 0x40
198 #define QC_NO_CALLBACK 0x01
199 #define QC_SG_SWAP_QUEUE 0x02
200 #define QC_SG_HEAD 0x04
201 #define QC_DATA_IN 0x08
202 #define QC_DATA_OUT 0x10
203 #define QC_URGENT 0x20
204 #define QC_MSG_OUT 0x40
205 #define QC_REQ_SENSE 0x80
206 #define QCSG_SG_XFER_LIST 0x02
207 #define QCSG_SG_XFER_MORE 0x04
208 #define QCSG_SG_XFER_END 0x08
209 #define QD_IN_PROGRESS 0x00
210 #define QD_NO_ERROR 0x01
211 #define QD_ABORTED_BY_HOST 0x02
212 #define QD_WITH_ERROR 0x04
213 #define QD_INVALID_REQUEST 0x80
214 #define QD_INVALID_HOST_NUM 0x81
215 #define QD_INVALID_DEVICE 0x82
216 #define QD_ERR_INTERNAL 0xFF
217 #define QHSTA_NO_ERROR 0x00
218 #define QHSTA_M_SEL_TIMEOUT 0x11
219 #define QHSTA_M_DATA_OVER_RUN 0x12
220 #define QHSTA_M_DATA_UNDER_RUN 0x12
221 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
222 #define QHSTA_M_BAD_BUS_PHASE_SEQ 0x14
223 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
224 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET 0x22
225 #define QHSTA_D_HOST_ABORT_FAILED 0x23
226 #define QHSTA_D_EXE_SCSI_Q_FAILED 0x24
227 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
228 #define QHSTA_D_ASPI_NO_BUF_POOL 0x26
229 #define QHSTA_M_WTM_TIMEOUT 0x41
230 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
231 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
232 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
233 #define QHSTA_M_TARGET_STATUS_BUSY 0x45
234 #define QHSTA_M_BAD_TAG_CODE 0x46
235 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY 0x47
236 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
237 #define QHSTA_D_LRAM_CMP_ERROR 0x81
238 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
239 #define ASC_FLAG_SCSIQ_REQ 0x01
240 #define ASC_FLAG_BIOS_SCSIQ_REQ 0x02
241 #define ASC_FLAG_BIOS_ASYNC_IO 0x04
242 #define ASC_FLAG_SRB_LINEAR_ADDR 0x08
243 #define ASC_FLAG_WIN16 0x10
244 #define ASC_FLAG_WIN32 0x20
245 #define ASC_FLAG_ISA_OVER_16MB 0x40
246 #define ASC_FLAG_DOS_VM_CALLBACK 0x80
247 #define ASC_TAG_FLAG_EXTRA_BYTES 0x10
248 #define ASC_TAG_FLAG_DISABLE_DISCONNECT 0x04
249 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX 0x08
250 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
251 #define ASC_SCSIQ_CPY_BEG 4
252 #define ASC_SCSIQ_SGHD_CPY_BEG 2
253 #define ASC_SCSIQ_B_FWD 0
254 #define ASC_SCSIQ_B_BWD 1
255 #define ASC_SCSIQ_B_STATUS 2
256 #define ASC_SCSIQ_B_QNO 3
257 #define ASC_SCSIQ_B_CNTL 4
258 #define ASC_SCSIQ_B_SG_QUEUE_CNT 5
259 #define ASC_SCSIQ_D_DATA_ADDR 8
260 #define ASC_SCSIQ_D_DATA_CNT 12
261 #define ASC_SCSIQ_B_SENSE_LEN 20
262 #define ASC_SCSIQ_DONE_INFO_BEG 22
263 #define ASC_SCSIQ_D_SRBPTR 22
264 #define ASC_SCSIQ_B_TARGET_IX 26
265 #define ASC_SCSIQ_B_CDB_LEN 28
266 #define ASC_SCSIQ_B_TAG_CODE 29
267 #define ASC_SCSIQ_W_VM_ID 30
268 #define ASC_SCSIQ_DONE_STATUS 32
269 #define ASC_SCSIQ_HOST_STATUS 33
270 #define ASC_SCSIQ_SCSI_STATUS 34
271 #define ASC_SCSIQ_CDB_BEG 36
272 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
273 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT 60
274 #define ASC_SCSIQ_B_FIRST_SG_WK_QP 48
275 #define ASC_SCSIQ_B_SG_WK_QP 49
276 #define ASC_SCSIQ_B_SG_WK_IX 50
277 #define ASC_SCSIQ_W_ALT_DC1 52
278 #define ASC_SCSIQ_B_LIST_CNT 6
279 #define ASC_SCSIQ_B_CUR_LIST_CNT 7
280 #define ASC_SGQ_B_SG_CNTL 4
281 #define ASC_SGQ_B_SG_HEAD_QP 5
282 #define ASC_SGQ_B_SG_LIST_CNT 6
283 #define ASC_SGQ_B_SG_CUR_LIST_CNT 7
284 #define ASC_SGQ_LIST_BEG 8
285 #define ASC_DEF_SCSI1_QNG 4
286 #define ASC_MAX_SCSI1_QNG 4
287 #define ASC_DEF_SCSI2_QNG 16
288 #define ASC_MAX_SCSI2_QNG 32
289 #define ASC_TAG_CODE_MASK 0x23
290 #define ASC_STOP_REQ_RISC_STOP 0x01
291 #define ASC_STOP_ACK_RISC_STOP 0x03
292 #define ASC_STOP_CLEAN_UP_BUSY_Q 0x10
293 #define ASC_STOP_CLEAN_UP_DISC_Q 0x20
294 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40
295 #define ASC_TIDLUN_TO_IX(tid, lun) (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
296 #define ASC_TID_TO_TARGET_ID(tid) (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
297 #define ASC_TIX_TO_TARGET_ID(tix) (0x01 << ((tix) & ASC_MAX_TID))
298 #define ASC_TIX_TO_TID(tix) ((tix) & ASC_MAX_TID)
299 #define ASC_TID_TO_TIX(tid) ((tid) & ASC_MAX_TID)
300 #define ASC_TIX_TO_LUN(tix) (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
301 #define ASC_QNO_TO_QADDR(q_no) ((ASC_QADR_BEG)+((int)(q_no) << 6))
303 typedef struct asc_scsiq_1
{
312 ASC_PADDR sense_addr
;
317 typedef struct asc_scsiq_2
{
326 typedef struct asc_scsiq_3
{
333 typedef struct asc_scsiq_4
{
334 uchar cdb
[ASC_MAX_CDB_LEN
];
335 uchar y_first_sg_list_qp
;
336 uchar y_working_sg_qp
;
337 uchar y_working_sg_ix
;
340 ushort x_reconnect_rtn
;
341 ASC_PADDR x_saved_data_addr
;
342 ASC_DCNT x_saved_data_cnt
;
345 typedef struct asc_q_done_info
{
354 ASC_DCNT remain_bytes
;
357 typedef struct asc_sg_list
{
362 typedef struct asc_sg_head
{
365 ushort entry_to_copy
;
367 ASC_SG_LIST sg_list
[0];
370 typedef struct asc_scsi_q
{
374 ASC_SG_HEAD
*sg_head
;
375 ushort remain_sg_entry_cnt
;
376 ushort next_sg_index
;
379 typedef struct asc_scsi_req_q
{
383 ASC_SG_HEAD
*sg_head
;
386 uchar cdb
[ASC_MAX_CDB_LEN
];
387 uchar sense
[ASC_MIN_SENSE_LEN
];
390 typedef struct asc_scsi_bios_req_q
{
394 ASC_SG_HEAD
*sg_head
;
397 uchar cdb
[ASC_MAX_CDB_LEN
];
398 uchar sense
[ASC_MIN_SENSE_LEN
];
399 } ASC_SCSI_BIOS_REQ_Q
;
401 typedef struct asc_risc_q
{
410 typedef struct asc_sg_list_q
{
416 uchar sg_cur_list_cnt
;
419 typedef struct asc_risc_sg_list_q
{
423 ASC_SG_LIST sg_list
[7];
424 } ASC_RISC_SG_LIST_Q
;
426 #define ASCQ_ERR_Q_STATUS 0x0D
427 #define ASCQ_ERR_CUR_QNG 0x17
428 #define ASCQ_ERR_SG_Q_LINKS 0x18
429 #define ASCQ_ERR_ISR_RE_ENTRY 0x1A
430 #define ASCQ_ERR_CRITICAL_RE_ENTRY 0x1B
431 #define ASCQ_ERR_ISR_ON_CRITICAL 0x1C
434 * Warning code values are set in ASC_DVC_VAR 'warn_code'.
436 #define ASC_WARN_NO_ERROR 0x0000
437 #define ASC_WARN_IO_PORT_ROTATE 0x0001
438 #define ASC_WARN_EEPROM_CHKSUM 0x0002
439 #define ASC_WARN_IRQ_MODIFIED 0x0004
440 #define ASC_WARN_AUTO_CONFIG 0x0008
441 #define ASC_WARN_CMD_QNG_CONFLICT 0x0010
442 #define ASC_WARN_EEPROM_RECOVER 0x0020
443 #define ASC_WARN_CFG_MSW_RECOVER 0x0040
446 * Error code values are set in {ASC/ADV}_DVC_VAR 'err_code'.
448 #define ASC_IERR_NO_CARRIER 0x0001 /* No more carrier memory */
449 #define ASC_IERR_MCODE_CHKSUM 0x0002 /* micro code check sum error */
450 #define ASC_IERR_SET_PC_ADDR 0x0004
451 #define ASC_IERR_START_STOP_CHIP 0x0008 /* start/stop chip failed */
452 #define ASC_IERR_ILLEGAL_CONNECTION 0x0010 /* Illegal cable connection */
453 #define ASC_IERR_SINGLE_END_DEVICE 0x0020 /* SE device on DIFF bus */
454 #define ASC_IERR_REVERSED_CABLE 0x0040 /* Narrow flat cable reversed */
455 #define ASC_IERR_SET_SCSI_ID 0x0080 /* set SCSI ID failed */
456 #define ASC_IERR_HVD_DEVICE 0x0100 /* HVD device on LVD port */
457 #define ASC_IERR_BAD_SIGNATURE 0x0200 /* signature not found */
458 #define ASC_IERR_NO_BUS_TYPE 0x0400
459 #define ASC_IERR_BIST_PRE_TEST 0x0800 /* BIST pre-test error */
460 #define ASC_IERR_BIST_RAM_TEST 0x1000 /* BIST RAM test error */
461 #define ASC_IERR_BAD_CHIPTYPE 0x2000 /* Invalid chip_type setting */
463 #define ASC_DEF_MAX_TOTAL_QNG (0xF0)
464 #define ASC_MIN_TAG_Q_PER_DVC (0x04)
465 #define ASC_MIN_FREE_Q (0x02)
466 #define ASC_MIN_TOTAL_QNG ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
467 #define ASC_MAX_TOTAL_QNG 240
468 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
469 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG 8
470 #define ASC_MAX_PCI_INRAM_TOTAL_QNG 20
471 #define ASC_MAX_INRAM_TAG_QNG 16
472 #define ASC_IOADR_GAP 0x10
473 #define ASC_SYN_MAX_OFFSET 0x0F
474 #define ASC_DEF_SDTR_OFFSET 0x0F
475 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX 0x02
476 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
478 /* The narrow chip only supports a limited selection of transfer rates.
479 * These are encoded in the range 0..7 or 0..15 depending whether the chip
480 * is Ultra-capable or not. These tables let us convert from one to the other.
482 static const unsigned char asc_syn_xfer_period
[8] = {
483 25, 30, 35, 40, 50, 60, 70, 85
486 static const unsigned char asc_syn_ultra_xfer_period
[16] = {
487 12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
490 typedef struct ext_msg
{
496 uchar sdtr_xfer_period
;
497 uchar sdtr_req_ack_offset
;
512 #define xfer_period u_ext_msg.sdtr.sdtr_xfer_period
513 #define req_ack_offset u_ext_msg.sdtr.sdtr_req_ack_offset
514 #define wdtr_width u_ext_msg.wdtr.wdtr_width
515 #define mdp_b3 u_ext_msg.mdp_b3
516 #define mdp_b2 u_ext_msg.mdp_b2
517 #define mdp_b1 u_ext_msg.mdp_b1
518 #define mdp_b0 u_ext_msg.mdp_b0
520 typedef struct asc_dvc_cfg
{
521 ASC_SCSI_BIT_ID_TYPE can_tagged_qng
;
522 ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled
;
523 ASC_SCSI_BIT_ID_TYPE disc_enable
;
524 ASC_SCSI_BIT_ID_TYPE sdtr_enable
;
527 uchar isa_dma_channel
;
530 ushort mcode_version
;
531 uchar max_tag_qng
[ASC_MAX_TID
+ 1];
532 uchar sdtr_period_offset
[ASC_MAX_TID
+ 1];
533 uchar adapter_info
[6];
536 #define ASC_DEF_DVC_CNTL 0xFFFF
537 #define ASC_DEF_CHIP_SCSI_ID 7
538 #define ASC_DEF_ISA_DMA_SPEED 4
539 #define ASC_INIT_STATE_BEG_GET_CFG 0x0001
540 #define ASC_INIT_STATE_END_GET_CFG 0x0002
541 #define ASC_INIT_STATE_BEG_SET_CFG 0x0004
542 #define ASC_INIT_STATE_END_SET_CFG 0x0008
543 #define ASC_INIT_STATE_BEG_LOAD_MC 0x0010
544 #define ASC_INIT_STATE_END_LOAD_MC 0x0020
545 #define ASC_INIT_STATE_BEG_INQUIRY 0x0040
546 #define ASC_INIT_STATE_END_INQUIRY 0x0080
547 #define ASC_INIT_RESET_SCSI_DONE 0x0100
548 #define ASC_INIT_STATE_WITHOUT_EEP 0x8000
549 #define ASC_BUG_FIX_IF_NOT_DWB 0x0001
550 #define ASC_BUG_FIX_ASYN_USE_SYN 0x0002
551 #define ASC_MIN_TAGGED_CMD 7
552 #define ASC_MAX_SCSI_RESET_WAIT 30
553 #define ASC_OVERRUN_BSIZE 64
555 struct asc_dvc_var
; /* Forward Declaration. */
557 typedef struct asc_dvc_var
{
563 ASC_SCSI_BIT_ID_TYPE init_sdtr
;
564 ASC_SCSI_BIT_ID_TYPE sdtr_done
;
565 ASC_SCSI_BIT_ID_TYPE use_tagged_qng
;
566 ASC_SCSI_BIT_ID_TYPE unit_not_ready
;
567 ASC_SCSI_BIT_ID_TYPE queue_full_or_busy
;
568 ASC_SCSI_BIT_ID_TYPE start_motor
;
570 dma_addr_t overrun_dma
;
571 uchar scsi_reset_wait
;
576 uchar in_critical_cnt
;
577 uchar last_q_shortage
;
579 uchar cur_dvc_qng
[ASC_MAX_TID
+ 1];
580 uchar max_dvc_qng
[ASC_MAX_TID
+ 1];
581 ASC_SCSI_Q
*scsiq_busy_head
[ASC_MAX_TID
+ 1];
582 ASC_SCSI_Q
*scsiq_busy_tail
[ASC_MAX_TID
+ 1];
583 const uchar
*sdtr_period_tbl
;
585 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always
;
588 uchar dos_int13_table
[ASC_MAX_TID
+ 1];
589 ASC_DCNT max_dma_count
;
590 ASC_SCSI_BIT_ID_TYPE no_scam
;
591 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer
;
592 uchar min_sdtr_index
;
593 uchar max_sdtr_index
;
594 struct asc_board
*drv_ptr
;
600 typedef struct asc_dvc_inq_info
{
601 uchar type
[ASC_MAX_TID
+ 1][ASC_MAX_LUN
+ 1];
604 typedef struct asc_cap_info
{
609 typedef struct asc_cap_info_array
{
610 ASC_CAP_INFO cap_info
[ASC_MAX_TID
+ 1][ASC_MAX_LUN
+ 1];
611 } ASC_CAP_INFO_ARRAY
;
613 #define ASC_MCNTL_NO_SEL_TIMEOUT (ushort)0x0001
614 #define ASC_MCNTL_NULL_TARGET (ushort)0x0002
615 #define ASC_CNTL_INITIATOR (ushort)0x0001
616 #define ASC_CNTL_BIOS_GT_1GB (ushort)0x0002
617 #define ASC_CNTL_BIOS_GT_2_DISK (ushort)0x0004
618 #define ASC_CNTL_BIOS_REMOVABLE (ushort)0x0008
619 #define ASC_CNTL_NO_SCAM (ushort)0x0010
620 #define ASC_CNTL_INT_MULTI_Q (ushort)0x0080
621 #define ASC_CNTL_NO_LUN_SUPPORT (ushort)0x0040
622 #define ASC_CNTL_NO_VERIFY_COPY (ushort)0x0100
623 #define ASC_CNTL_RESET_SCSI (ushort)0x0200
624 #define ASC_CNTL_INIT_INQUIRY (ushort)0x0400
625 #define ASC_CNTL_INIT_VERBOSE (ushort)0x0800
626 #define ASC_CNTL_SCSI_PARITY (ushort)0x1000
627 #define ASC_CNTL_BURST_MODE (ushort)0x2000
628 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
629 #define ASC_EEP_DVC_CFG_BEG_VL 2
630 #define ASC_EEP_MAX_DVC_ADDR_VL 15
631 #define ASC_EEP_DVC_CFG_BEG 32
632 #define ASC_EEP_MAX_DVC_ADDR 45
633 #define ASC_EEP_MAX_RETRY 20
636 * These macros keep the chip SCSI id and ISA DMA speed
637 * bitfields in board order. C bitfields aren't portable
638 * between big and little-endian platforms so they are
642 #define ASC_EEP_GET_CHIP_ID(cfg) ((cfg)->id_speed & 0x0f)
643 #define ASC_EEP_GET_DMA_SPD(cfg) (((cfg)->id_speed & 0xf0) >> 4)
644 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \
645 ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
646 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \
647 ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
649 typedef struct asceep_config
{
661 uchar id_speed
; /* low order 4 bits is chip scsi id */
662 /* high order 4 bits is isa dma speed */
663 uchar dos_int13_table
[ASC_MAX_TID
+ 1];
664 uchar adapter_info
[6];
669 #define ASC_EEP_CMD_READ 0x80
670 #define ASC_EEP_CMD_WRITE 0x40
671 #define ASC_EEP_CMD_WRITE_ABLE 0x30
672 #define ASC_EEP_CMD_WRITE_DISABLE 0x00
673 #define ASCV_MSGOUT_BEG 0x0000
674 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
675 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
676 #define ASCV_BREAK_SAVED_CODE (ushort)0x0006
677 #define ASCV_MSGIN_BEG (ASCV_MSGOUT_BEG+8)
678 #define ASCV_MSGIN_SDTR_PERIOD (ASCV_MSGIN_BEG+3)
679 #define ASCV_MSGIN_SDTR_OFFSET (ASCV_MSGIN_BEG+4)
680 #define ASCV_SDTR_DATA_BEG (ASCV_MSGIN_BEG+8)
681 #define ASCV_SDTR_DONE_BEG (ASCV_SDTR_DATA_BEG+8)
682 #define ASCV_MAX_DVC_QNG_BEG (ushort)0x0020
683 #define ASCV_BREAK_ADDR (ushort)0x0028
684 #define ASCV_BREAK_NOTIFY_COUNT (ushort)0x002A
685 #define ASCV_BREAK_CONTROL (ushort)0x002C
686 #define ASCV_BREAK_HIT_COUNT (ushort)0x002E
688 #define ASCV_ASCDVC_ERR_CODE_W (ushort)0x0030
689 #define ASCV_MCODE_CHKSUM_W (ushort)0x0032
690 #define ASCV_MCODE_SIZE_W (ushort)0x0034
691 #define ASCV_STOP_CODE_B (ushort)0x0036
692 #define ASCV_DVC_ERR_CODE_B (ushort)0x0037
693 #define ASCV_OVERRUN_PADDR_D (ushort)0x0038
694 #define ASCV_OVERRUN_BSIZE_D (ushort)0x003C
695 #define ASCV_HALTCODE_W (ushort)0x0040
696 #define ASCV_CHKSUM_W (ushort)0x0042
697 #define ASCV_MC_DATE_W (ushort)0x0044
698 #define ASCV_MC_VER_W (ushort)0x0046
699 #define ASCV_NEXTRDY_B (ushort)0x0048
700 #define ASCV_DONENEXT_B (ushort)0x0049
701 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
702 #define ASCV_SCSIBUSY_B (ushort)0x004B
703 #define ASCV_Q_DONE_IN_PROGRESS_B (ushort)0x004C
704 #define ASCV_CURCDB_B (ushort)0x004D
705 #define ASCV_RCLUN_B (ushort)0x004E
706 #define ASCV_BUSY_QHEAD_B (ushort)0x004F
707 #define ASCV_DISC1_QHEAD_B (ushort)0x0050
708 #define ASCV_DISC_ENABLE_B (ushort)0x0052
709 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
710 #define ASCV_HOSTSCSI_ID_B (ushort)0x0055
711 #define ASCV_MCODE_CNTL_B (ushort)0x0056
712 #define ASCV_NULL_TARGET_B (ushort)0x0057
713 #define ASCV_FREE_Q_HEAD_W (ushort)0x0058
714 #define ASCV_DONE_Q_TAIL_W (ushort)0x005A
715 #define ASCV_FREE_Q_HEAD_B (ushort)(ASCV_FREE_Q_HEAD_W+1)
716 #define ASCV_DONE_Q_TAIL_B (ushort)(ASCV_DONE_Q_TAIL_W+1)
717 #define ASCV_HOST_FLAG_B (ushort)0x005D
718 #define ASCV_TOTAL_READY_Q_B (ushort)0x0064
719 #define ASCV_VER_SERIAL_B (ushort)0x0065
720 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066
721 #define ASCV_WTM_FLAG_B (ushort)0x0068
722 #define ASCV_RISC_FLAG_B (ushort)0x006A
723 #define ASCV_REQ_SG_LIST_QP (ushort)0x006B
724 #define ASC_HOST_FLAG_IN_ISR 0x01
725 #define ASC_HOST_FLAG_ACK_INT 0x02
726 #define ASC_RISC_FLAG_GEN_INT 0x01
727 #define ASC_RISC_FLAG_REQ_SG_LIST 0x02
728 #define IOP_CTRL (0x0F)
729 #define IOP_STATUS (0x0E)
730 #define IOP_INT_ACK IOP_STATUS
731 #define IOP_REG_IFC (0x0D)
732 #define IOP_SYN_OFFSET (0x0B)
733 #define IOP_EXTRA_CONTROL (0x0D)
734 #define IOP_REG_PC (0x0C)
735 #define IOP_RAM_ADDR (0x0A)
736 #define IOP_RAM_DATA (0x08)
737 #define IOP_EEP_DATA (0x06)
738 #define IOP_EEP_CMD (0x07)
739 #define IOP_VERSION (0x03)
740 #define IOP_CONFIG_HIGH (0x04)
741 #define IOP_CONFIG_LOW (0x02)
742 #define IOP_SIG_BYTE (0x01)
743 #define IOP_SIG_WORD (0x00)
744 #define IOP_REG_DC1 (0x0E)
745 #define IOP_REG_DC0 (0x0C)
746 #define IOP_REG_SB (0x0B)
747 #define IOP_REG_DA1 (0x0A)
748 #define IOP_REG_DA0 (0x08)
749 #define IOP_REG_SC (0x09)
750 #define IOP_DMA_SPEED (0x07)
751 #define IOP_REG_FLAG (0x07)
752 #define IOP_FIFO_H (0x06)
753 #define IOP_FIFO_L (0x04)
754 #define IOP_REG_ID (0x05)
755 #define IOP_REG_QP (0x03)
756 #define IOP_REG_IH (0x02)
757 #define IOP_REG_IX (0x01)
758 #define IOP_REG_AX (0x00)
759 #define IFC_REG_LOCK (0x00)
760 #define IFC_REG_UNLOCK (0x09)
761 #define IFC_WR_EN_FILTER (0x10)
762 #define IFC_RD_NO_EEPROM (0x10)
763 #define IFC_SLEW_RATE (0x20)
764 #define IFC_ACT_NEG (0x40)
765 #define IFC_INP_FILTER (0x80)
766 #define IFC_INIT_DEFAULT (IFC_ACT_NEG | IFC_REG_UNLOCK)
767 #define SC_SEL (uchar)(0x80)
768 #define SC_BSY (uchar)(0x40)
769 #define SC_ACK (uchar)(0x20)
770 #define SC_REQ (uchar)(0x10)
771 #define SC_ATN (uchar)(0x08)
772 #define SC_IO (uchar)(0x04)
773 #define SC_CD (uchar)(0x02)
774 #define SC_MSG (uchar)(0x01)
775 #define SEC_SCSI_CTL (uchar)(0x80)
776 #define SEC_ACTIVE_NEGATE (uchar)(0x40)
777 #define SEC_SLEW_RATE (uchar)(0x20)
778 #define SEC_ENABLE_FILTER (uchar)(0x10)
779 #define ASC_HALT_EXTMSG_IN (ushort)0x8000
780 #define ASC_HALT_CHK_CONDITION (ushort)0x8100
781 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
782 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX (ushort)0x8300
783 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX (ushort)0x8400
784 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000
785 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
786 #define ASC_MAX_QNO 0xF8
787 #define ASC_DATA_SEC_BEG (ushort)0x0080
788 #define ASC_DATA_SEC_END (ushort)0x0080
789 #define ASC_CODE_SEC_BEG (ushort)0x0080
790 #define ASC_CODE_SEC_END (ushort)0x0080
791 #define ASC_QADR_BEG (0x4000)
792 #define ASC_QADR_USED (ushort)(ASC_MAX_QNO * 64)
793 #define ASC_QADR_END (ushort)0x7FFF
794 #define ASC_QLAST_ADR (ushort)0x7FC0
795 #define ASC_QBLK_SIZE 0x40
796 #define ASC_BIOS_DATA_QBEG 0xF8
797 #define ASC_MIN_ACTIVE_QNO 0x01
798 #define ASC_QLINK_END 0xFF
799 #define ASC_EEPROM_WORDS 0x10
800 #define ASC_MAX_MGS_LEN 0x10
801 #define ASC_BIOS_ADDR_DEF 0xDC00
802 #define ASC_BIOS_SIZE 0x3800
803 #define ASC_BIOS_RAM_OFF 0x3800
804 #define ASC_BIOS_RAM_SIZE 0x800
805 #define ASC_BIOS_MIN_ADDR 0xC000
806 #define ASC_BIOS_MAX_ADDR 0xEC00
807 #define ASC_BIOS_BANK_SIZE 0x0400
808 #define ASC_MCODE_START_ADDR 0x0080
809 #define ASC_CFG0_HOST_INT_ON 0x0020
810 #define ASC_CFG0_BIOS_ON 0x0040
811 #define ASC_CFG0_VERA_BURST_ON 0x0080
812 #define ASC_CFG0_SCSI_PARITY_ON 0x0800
813 #define ASC_CFG1_SCSI_TARGET_ON 0x0080
814 #define ASC_CFG1_LRAM_8BITS_ON 0x0800
815 #define ASC_CFG_MSW_CLR_MASK 0x3080
816 #define CSW_TEST1 (ASC_CS_TYPE)0x8000
817 #define CSW_AUTO_CONFIG (ASC_CS_TYPE)0x4000
818 #define CSW_RESERVED1 (ASC_CS_TYPE)0x2000
819 #define CSW_IRQ_WRITTEN (ASC_CS_TYPE)0x1000
820 #define CSW_33MHZ_SELECTED (ASC_CS_TYPE)0x0800
821 #define CSW_TEST2 (ASC_CS_TYPE)0x0400
822 #define CSW_TEST3 (ASC_CS_TYPE)0x0200
823 #define CSW_RESERVED2 (ASC_CS_TYPE)0x0100
824 #define CSW_DMA_DONE (ASC_CS_TYPE)0x0080
825 #define CSW_FIFO_RDY (ASC_CS_TYPE)0x0040
826 #define CSW_EEP_READ_DONE (ASC_CS_TYPE)0x0020
827 #define CSW_HALTED (ASC_CS_TYPE)0x0010
828 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
829 #define CSW_PARITY_ERR (ASC_CS_TYPE)0x0004
830 #define CSW_SCSI_RESET_LATCH (ASC_CS_TYPE)0x0002
831 #define CSW_INT_PENDING (ASC_CS_TYPE)0x0001
832 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
833 #define CIW_INT_ACK (ASC_CS_TYPE)0x0100
834 #define CIW_TEST1 (ASC_CS_TYPE)0x0200
835 #define CIW_TEST2 (ASC_CS_TYPE)0x0400
836 #define CIW_SEL_33MHZ (ASC_CS_TYPE)0x0800
837 #define CIW_IRQ_ACT (ASC_CS_TYPE)0x1000
838 #define CC_CHIP_RESET (uchar)0x80
839 #define CC_SCSI_RESET (uchar)0x40
840 #define CC_HALT (uchar)0x20
841 #define CC_SINGLE_STEP (uchar)0x10
842 #define CC_DMA_ABLE (uchar)0x08
843 #define CC_TEST (uchar)0x04
844 #define CC_BANK_ONE (uchar)0x02
845 #define CC_DIAG (uchar)0x01
846 #define ASC_1000_ID0W 0x04C1
847 #define ASC_1000_ID0W_FIX 0x00C1
848 #define ASC_1000_ID1B 0x25
849 #define ASC_EISA_REV_IOP_MASK (0x0C83)
850 #define ASC_EISA_CFG_IOP_MASK (0x0C86)
851 #define ASC_GET_EISA_SLOT(iop) (PortAddr)((iop) & 0xF000)
852 #define INS_HALTINT (ushort)0x6281
853 #define INS_HALT (ushort)0x6280
854 #define INS_SINT (ushort)0x6200
855 #define INS_RFLAG_WTM (ushort)0x7380
856 #define ASC_MC_SAVE_CODE_WSIZE 0x500
857 #define ASC_MC_SAVE_DATA_WSIZE 0x40
859 typedef struct asc_mc_saved
{
860 ushort data
[ASC_MC_SAVE_DATA_WSIZE
];
861 ushort code
[ASC_MC_SAVE_CODE_WSIZE
];
864 #define AscGetQDoneInProgress(port) AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
865 #define AscPutQDoneInProgress(port, val) AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
866 #define AscGetVarFreeQHead(port) AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
867 #define AscGetVarDoneQTail(port) AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
868 #define AscPutVarFreeQHead(port, val) AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
869 #define AscPutVarDoneQTail(port, val) AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
870 #define AscGetRiscVarFreeQHead(port) AscReadLramByte((port), ASCV_NEXTRDY_B)
871 #define AscGetRiscVarDoneQTail(port) AscReadLramByte((port), ASCV_DONENEXT_B)
872 #define AscPutRiscVarFreeQHead(port, val) AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
873 #define AscPutRiscVarDoneQTail(port, val) AscWriteLramByte((port), ASCV_DONENEXT_B, val)
874 #define AscPutMCodeSDTRDoneAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
875 #define AscGetMCodeSDTRDoneAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
876 #define AscPutMCodeInitSDTRAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
877 #define AscGetMCodeInitSDTRAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
878 #define AscGetChipSignatureByte(port) (uchar)inp((port)+IOP_SIG_BYTE)
879 #define AscGetChipSignatureWord(port) (ushort)inpw((port)+IOP_SIG_WORD)
880 #define AscGetChipVerNo(port) (uchar)inp((port)+IOP_VERSION)
881 #define AscGetChipCfgLsw(port) (ushort)inpw((port)+IOP_CONFIG_LOW)
882 #define AscGetChipCfgMsw(port) (ushort)inpw((port)+IOP_CONFIG_HIGH)
883 #define AscSetChipCfgLsw(port, data) outpw((port)+IOP_CONFIG_LOW, data)
884 #define AscSetChipCfgMsw(port, data) outpw((port)+IOP_CONFIG_HIGH, data)
885 #define AscGetChipEEPCmd(port) (uchar)inp((port)+IOP_EEP_CMD)
886 #define AscSetChipEEPCmd(port, data) outp((port)+IOP_EEP_CMD, data)
887 #define AscGetChipEEPData(port) (ushort)inpw((port)+IOP_EEP_DATA)
888 #define AscSetChipEEPData(port, data) outpw((port)+IOP_EEP_DATA, data)
889 #define AscGetChipLramAddr(port) (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
890 #define AscSetChipLramAddr(port, addr) outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
891 #define AscGetChipLramData(port) (ushort)inpw((port)+IOP_RAM_DATA)
892 #define AscSetChipLramData(port, data) outpw((port)+IOP_RAM_DATA, data)
893 #define AscGetChipIFC(port) (uchar)inp((port)+IOP_REG_IFC)
894 #define AscSetChipIFC(port, data) outp((port)+IOP_REG_IFC, data)
895 #define AscGetChipStatus(port) (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
896 #define AscSetChipStatus(port, cs_val) outpw((port)+IOP_STATUS, cs_val)
897 #define AscGetChipControl(port) (uchar)inp((port)+IOP_CTRL)
898 #define AscSetChipControl(port, cc_val) outp((port)+IOP_CTRL, cc_val)
899 #define AscGetChipSyn(port) (uchar)inp((port)+IOP_SYN_OFFSET)
900 #define AscSetChipSyn(port, data) outp((port)+IOP_SYN_OFFSET, data)
901 #define AscSetPCAddr(port, data) outpw((port)+IOP_REG_PC, data)
902 #define AscGetPCAddr(port) (ushort)inpw((port)+IOP_REG_PC)
903 #define AscIsIntPending(port) (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
904 #define AscGetChipScsiID(port) ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
905 #define AscGetExtraControl(port) (uchar)inp((port)+IOP_EXTRA_CONTROL)
906 #define AscSetExtraControl(port, data) outp((port)+IOP_EXTRA_CONTROL, data)
907 #define AscReadChipAX(port) (ushort)inpw((port)+IOP_REG_AX)
908 #define AscWriteChipAX(port, data) outpw((port)+IOP_REG_AX, data)
909 #define AscReadChipIX(port) (uchar)inp((port)+IOP_REG_IX)
910 #define AscWriteChipIX(port, data) outp((port)+IOP_REG_IX, data)
911 #define AscReadChipIH(port) (ushort)inpw((port)+IOP_REG_IH)
912 #define AscWriteChipIH(port, data) outpw((port)+IOP_REG_IH, data)
913 #define AscReadChipQP(port) (uchar)inp((port)+IOP_REG_QP)
914 #define AscWriteChipQP(port, data) outp((port)+IOP_REG_QP, data)
915 #define AscReadChipFIFO_L(port) (ushort)inpw((port)+IOP_REG_FIFO_L)
916 #define AscWriteChipFIFO_L(port, data) outpw((port)+IOP_REG_FIFO_L, data)
917 #define AscReadChipFIFO_H(port) (ushort)inpw((port)+IOP_REG_FIFO_H)
918 #define AscWriteChipFIFO_H(port, data) outpw((port)+IOP_REG_FIFO_H, data)
919 #define AscReadChipDmaSpeed(port) (uchar)inp((port)+IOP_DMA_SPEED)
920 #define AscWriteChipDmaSpeed(port, data) outp((port)+IOP_DMA_SPEED, data)
921 #define AscReadChipDA0(port) (ushort)inpw((port)+IOP_REG_DA0)
922 #define AscWriteChipDA0(port) outpw((port)+IOP_REG_DA0, data)
923 #define AscReadChipDA1(port) (ushort)inpw((port)+IOP_REG_DA1)
924 #define AscWriteChipDA1(port) outpw((port)+IOP_REG_DA1, data)
925 #define AscReadChipDC0(port) (ushort)inpw((port)+IOP_REG_DC0)
926 #define AscWriteChipDC0(port) outpw((port)+IOP_REG_DC0, data)
927 #define AscReadChipDC1(port) (ushort)inpw((port)+IOP_REG_DC1)
928 #define AscWriteChipDC1(port) outpw((port)+IOP_REG_DC1, data)
929 #define AscReadChipDvcID(port) (uchar)inp((port)+IOP_REG_ID)
930 #define AscWriteChipDvcID(port, data) outp((port)+IOP_REG_ID, data)
933 * Portable Data Types
935 * Any instance where a 32-bit long or pointer type is assumed
936 * for precision or HW defined structures, the following define
937 * types must be used. In Linux the char, short, and int types
938 * are all consistent at 8, 16, and 32 bits respectively. Pointers
939 * and long types are 64 bits on Alpha and UltraSPARC.
941 #define ADV_PADDR __u32 /* Physical address data type. */
942 #define ADV_VADDR __u32 /* Virtual address data type. */
943 #define ADV_DCNT __u32 /* Unsigned Data count type. */
944 #define ADV_SDCNT __s32 /* Signed Data count type. */
947 * These macros are used to convert a virtual address to a
948 * 32-bit value. This currently can be used on Linux Alpha
949 * which uses 64-bit virtual address but a 32-bit bus address.
950 * This is likely to break in the future, but doing this now
951 * will give us time to change the HW and FW to handle 64-bit
954 #define ADV_VADDR_TO_U32 virt_to_bus
955 #define ADV_U32_TO_VADDR bus_to_virt
957 #define AdvPortAddr void __iomem * /* Virtual memory address size */
960 * Define Adv Library required memory access macros.
962 #define ADV_MEM_READB(addr) readb(addr)
963 #define ADV_MEM_READW(addr) readw(addr)
964 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
965 #define ADV_MEM_WRITEW(addr, word) writew(word, addr)
966 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
968 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 15)
971 * Define total number of simultaneous maximum element scatter-gather
972 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
973 * maximum number of outstanding commands per wide host adapter. Each
974 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
975 * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
976 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
977 * structures or 255 scatter-gather elements.
979 #define ADV_TOT_SG_BLOCK ASC_DEF_MAX_HOST_QNG
982 * Define maximum number of scatter-gather elements per request.
984 #define ADV_MAX_SG_LIST 255
985 #define NO_OF_SG_PER_BLOCK 15
987 #define ADV_EEP_DVC_CFG_BEGIN (0x00)
988 #define ADV_EEP_DVC_CFG_END (0x15)
989 #define ADV_EEP_DVC_CTL_BEGIN (0x16) /* location of OEM name */
990 #define ADV_EEP_MAX_WORD_ADDR (0x1E)
992 #define ADV_EEP_DELAY_MS 100
994 #define ADV_EEPROM_BIG_ENDIAN 0x8000 /* EEPROM Bit 15 */
995 #define ADV_EEPROM_BIOS_ENABLE 0x4000 /* EEPROM Bit 14 */
997 * For the ASC3550 Bit 13 is Termination Polarity control bit.
998 * For later ICs Bit 13 controls whether the CIS (Card Information
999 * Service Section) is loaded from EEPROM.
1001 #define ADV_EEPROM_TERM_POL 0x2000 /* EEPROM Bit 13 */
1002 #define ADV_EEPROM_CIS_LD 0x2000 /* EEPROM Bit 13 */
1006 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
1007 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
1008 * Function 0 will specify INT B.
1010 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
1011 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
1012 * Function 1 will specify INT A.
1014 #define ADV_EEPROM_INTAB 0x0800 /* EEPROM Bit 11 */
1016 typedef struct adveep_3550_config
{
1017 /* Word Offset, Description */
1019 ushort cfg_lsw
; /* 00 power up initialization */
1020 /* bit 13 set - Term Polarity Control */
1021 /* bit 14 set - BIOS Enable */
1022 /* bit 15 set - Big Endian Mode */
1023 ushort cfg_msw
; /* 01 unused */
1024 ushort disc_enable
; /* 02 disconnect enable */
1025 ushort wdtr_able
; /* 03 Wide DTR able */
1026 ushort sdtr_able
; /* 04 Synchronous DTR able */
1027 ushort start_motor
; /* 05 send start up motor */
1028 ushort tagqng_able
; /* 06 tag queuing able */
1029 ushort bios_scan
; /* 07 BIOS device control */
1030 ushort scam_tolerant
; /* 08 no scam */
1032 uchar adapter_scsi_id
; /* 09 Host Adapter ID */
1033 uchar bios_boot_delay
; /* power up wait */
1035 uchar scsi_reset_delay
; /* 10 reset delay */
1036 uchar bios_id_lun
; /* first boot device scsi id & lun */
1037 /* high nibble is lun */
1038 /* low nibble is scsi id */
1040 uchar termination
; /* 11 0 - automatic */
1041 /* 1 - low off / high off */
1042 /* 2 - low off / high on */
1043 /* 3 - low on / high on */
1044 /* There is no low on / high off */
1046 uchar reserved1
; /* reserved byte (not used) */
1048 ushort bios_ctrl
; /* 12 BIOS control bits */
1049 /* bit 0 BIOS don't act as initiator. */
1050 /* bit 1 BIOS > 1 GB support */
1051 /* bit 2 BIOS > 2 Disk Support */
1052 /* bit 3 BIOS don't support removables */
1053 /* bit 4 BIOS support bootable CD */
1054 /* bit 5 BIOS scan enabled */
1055 /* bit 6 BIOS support multiple LUNs */
1056 /* bit 7 BIOS display of message */
1057 /* bit 8 SCAM disabled */
1058 /* bit 9 Reset SCSI bus during init. */
1060 /* bit 11 No verbose initialization. */
1061 /* bit 12 SCSI parity enabled */
1065 ushort ultra_able
; /* 13 ULTRA speed able */
1066 ushort reserved2
; /* 14 reserved */
1067 uchar max_host_qng
; /* 15 maximum host queuing */
1068 uchar max_dvc_qng
; /* maximum per device queuing */
1069 ushort dvc_cntl
; /* 16 control bit for driver */
1070 ushort bug_fix
; /* 17 control bit for bug fix */
1071 ushort serial_number_word1
; /* 18 Board serial number word 1 */
1072 ushort serial_number_word2
; /* 19 Board serial number word 2 */
1073 ushort serial_number_word3
; /* 20 Board serial number word 3 */
1074 ushort check_sum
; /* 21 EEP check sum */
1075 uchar oem_name
[16]; /* 22 OEM name */
1076 ushort dvc_err_code
; /* 30 last device driver error code */
1077 ushort adv_err_code
; /* 31 last uc and Adv Lib error code */
1078 ushort adv_err_addr
; /* 32 last uc error address */
1079 ushort saved_dvc_err_code
; /* 33 saved last dev. driver error code */
1080 ushort saved_adv_err_code
; /* 34 saved last uc and Adv Lib error code */
1081 ushort saved_adv_err_addr
; /* 35 saved last uc error address */
1082 ushort num_of_err
; /* 36 number of error */
1083 } ADVEEP_3550_CONFIG
;
1085 typedef struct adveep_38C0800_config
{
1086 /* Word Offset, Description */
1088 ushort cfg_lsw
; /* 00 power up initialization */
1089 /* bit 13 set - Load CIS */
1090 /* bit 14 set - BIOS Enable */
1091 /* bit 15 set - Big Endian Mode */
1092 ushort cfg_msw
; /* 01 unused */
1093 ushort disc_enable
; /* 02 disconnect enable */
1094 ushort wdtr_able
; /* 03 Wide DTR able */
1095 ushort sdtr_speed1
; /* 04 SDTR Speed TID 0-3 */
1096 ushort start_motor
; /* 05 send start up motor */
1097 ushort tagqng_able
; /* 06 tag queuing able */
1098 ushort bios_scan
; /* 07 BIOS device control */
1099 ushort scam_tolerant
; /* 08 no scam */
1101 uchar adapter_scsi_id
; /* 09 Host Adapter ID */
1102 uchar bios_boot_delay
; /* power up wait */
1104 uchar scsi_reset_delay
; /* 10 reset delay */
1105 uchar bios_id_lun
; /* first boot device scsi id & lun */
1106 /* high nibble is lun */
1107 /* low nibble is scsi id */
1109 uchar termination_se
; /* 11 0 - automatic */
1110 /* 1 - low off / high off */
1111 /* 2 - low off / high on */
1112 /* 3 - low on / high on */
1113 /* There is no low on / high off */
1115 uchar termination_lvd
; /* 11 0 - automatic */
1116 /* 1 - low off / high off */
1117 /* 2 - low off / high on */
1118 /* 3 - low on / high on */
1119 /* There is no low on / high off */
1121 ushort bios_ctrl
; /* 12 BIOS control bits */
1122 /* bit 0 BIOS don't act as initiator. */
1123 /* bit 1 BIOS > 1 GB support */
1124 /* bit 2 BIOS > 2 Disk Support */
1125 /* bit 3 BIOS don't support removables */
1126 /* bit 4 BIOS support bootable CD */
1127 /* bit 5 BIOS scan enabled */
1128 /* bit 6 BIOS support multiple LUNs */
1129 /* bit 7 BIOS display of message */
1130 /* bit 8 SCAM disabled */
1131 /* bit 9 Reset SCSI bus during init. */
1133 /* bit 11 No verbose initialization. */
1134 /* bit 12 SCSI parity enabled */
1138 ushort sdtr_speed2
; /* 13 SDTR speed TID 4-7 */
1139 ushort sdtr_speed3
; /* 14 SDTR speed TID 8-11 */
1140 uchar max_host_qng
; /* 15 maximum host queueing */
1141 uchar max_dvc_qng
; /* maximum per device queuing */
1142 ushort dvc_cntl
; /* 16 control bit for driver */
1143 ushort sdtr_speed4
; /* 17 SDTR speed 4 TID 12-15 */
1144 ushort serial_number_word1
; /* 18 Board serial number word 1 */
1145 ushort serial_number_word2
; /* 19 Board serial number word 2 */
1146 ushort serial_number_word3
; /* 20 Board serial number word 3 */
1147 ushort check_sum
; /* 21 EEP check sum */
1148 uchar oem_name
[16]; /* 22 OEM name */
1149 ushort dvc_err_code
; /* 30 last device driver error code */
1150 ushort adv_err_code
; /* 31 last uc and Adv Lib error code */
1151 ushort adv_err_addr
; /* 32 last uc error address */
1152 ushort saved_dvc_err_code
; /* 33 saved last dev. driver error code */
1153 ushort saved_adv_err_code
; /* 34 saved last uc and Adv Lib error code */
1154 ushort saved_adv_err_addr
; /* 35 saved last uc error address */
1155 ushort reserved36
; /* 36 reserved */
1156 ushort reserved37
; /* 37 reserved */
1157 ushort reserved38
; /* 38 reserved */
1158 ushort reserved39
; /* 39 reserved */
1159 ushort reserved40
; /* 40 reserved */
1160 ushort reserved41
; /* 41 reserved */
1161 ushort reserved42
; /* 42 reserved */
1162 ushort reserved43
; /* 43 reserved */
1163 ushort reserved44
; /* 44 reserved */
1164 ushort reserved45
; /* 45 reserved */
1165 ushort reserved46
; /* 46 reserved */
1166 ushort reserved47
; /* 47 reserved */
1167 ushort reserved48
; /* 48 reserved */
1168 ushort reserved49
; /* 49 reserved */
1169 ushort reserved50
; /* 50 reserved */
1170 ushort reserved51
; /* 51 reserved */
1171 ushort reserved52
; /* 52 reserved */
1172 ushort reserved53
; /* 53 reserved */
1173 ushort reserved54
; /* 54 reserved */
1174 ushort reserved55
; /* 55 reserved */
1175 ushort cisptr_lsw
; /* 56 CIS PTR LSW */
1176 ushort cisprt_msw
; /* 57 CIS PTR MSW */
1177 ushort subsysvid
; /* 58 SubSystem Vendor ID */
1178 ushort subsysid
; /* 59 SubSystem ID */
1179 ushort reserved60
; /* 60 reserved */
1180 ushort reserved61
; /* 61 reserved */
1181 ushort reserved62
; /* 62 reserved */
1182 ushort reserved63
; /* 63 reserved */
1183 } ADVEEP_38C0800_CONFIG
;
1185 typedef struct adveep_38C1600_config
{
1186 /* Word Offset, Description */
1188 ushort cfg_lsw
; /* 00 power up initialization */
1189 /* bit 11 set - Func. 0 INTB, Func. 1 INTA */
1190 /* clear - Func. 0 INTA, Func. 1 INTB */
1191 /* bit 13 set - Load CIS */
1192 /* bit 14 set - BIOS Enable */
1193 /* bit 15 set - Big Endian Mode */
1194 ushort cfg_msw
; /* 01 unused */
1195 ushort disc_enable
; /* 02 disconnect enable */
1196 ushort wdtr_able
; /* 03 Wide DTR able */
1197 ushort sdtr_speed1
; /* 04 SDTR Speed TID 0-3 */
1198 ushort start_motor
; /* 05 send start up motor */
1199 ushort tagqng_able
; /* 06 tag queuing able */
1200 ushort bios_scan
; /* 07 BIOS device control */
1201 ushort scam_tolerant
; /* 08 no scam */
1203 uchar adapter_scsi_id
; /* 09 Host Adapter ID */
1204 uchar bios_boot_delay
; /* power up wait */
1206 uchar scsi_reset_delay
; /* 10 reset delay */
1207 uchar bios_id_lun
; /* first boot device scsi id & lun */
1208 /* high nibble is lun */
1209 /* low nibble is scsi id */
1211 uchar termination_se
; /* 11 0 - automatic */
1212 /* 1 - low off / high off */
1213 /* 2 - low off / high on */
1214 /* 3 - low on / high on */
1215 /* There is no low on / high off */
1217 uchar termination_lvd
; /* 11 0 - automatic */
1218 /* 1 - low off / high off */
1219 /* 2 - low off / high on */
1220 /* 3 - low on / high on */
1221 /* There is no low on / high off */
1223 ushort bios_ctrl
; /* 12 BIOS control bits */
1224 /* bit 0 BIOS don't act as initiator. */
1225 /* bit 1 BIOS > 1 GB support */
1226 /* bit 2 BIOS > 2 Disk Support */
1227 /* bit 3 BIOS don't support removables */
1228 /* bit 4 BIOS support bootable CD */
1229 /* bit 5 BIOS scan enabled */
1230 /* bit 6 BIOS support multiple LUNs */
1231 /* bit 7 BIOS display of message */
1232 /* bit 8 SCAM disabled */
1233 /* bit 9 Reset SCSI bus during init. */
1234 /* bit 10 Basic Integrity Checking disabled */
1235 /* bit 11 No verbose initialization. */
1236 /* bit 12 SCSI parity enabled */
1237 /* bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1240 ushort sdtr_speed2
; /* 13 SDTR speed TID 4-7 */
1241 ushort sdtr_speed3
; /* 14 SDTR speed TID 8-11 */
1242 uchar max_host_qng
; /* 15 maximum host queueing */
1243 uchar max_dvc_qng
; /* maximum per device queuing */
1244 ushort dvc_cntl
; /* 16 control bit for driver */
1245 ushort sdtr_speed4
; /* 17 SDTR speed 4 TID 12-15 */
1246 ushort serial_number_word1
; /* 18 Board serial number word 1 */
1247 ushort serial_number_word2
; /* 19 Board serial number word 2 */
1248 ushort serial_number_word3
; /* 20 Board serial number word 3 */
1249 ushort check_sum
; /* 21 EEP check sum */
1250 uchar oem_name
[16]; /* 22 OEM name */
1251 ushort dvc_err_code
; /* 30 last device driver error code */
1252 ushort adv_err_code
; /* 31 last uc and Adv Lib error code */
1253 ushort adv_err_addr
; /* 32 last uc error address */
1254 ushort saved_dvc_err_code
; /* 33 saved last dev. driver error code */
1255 ushort saved_adv_err_code
; /* 34 saved last uc and Adv Lib error code */
1256 ushort saved_adv_err_addr
; /* 35 saved last uc error address */
1257 ushort reserved36
; /* 36 reserved */
1258 ushort reserved37
; /* 37 reserved */
1259 ushort reserved38
; /* 38 reserved */
1260 ushort reserved39
; /* 39 reserved */
1261 ushort reserved40
; /* 40 reserved */
1262 ushort reserved41
; /* 41 reserved */
1263 ushort reserved42
; /* 42 reserved */
1264 ushort reserved43
; /* 43 reserved */
1265 ushort reserved44
; /* 44 reserved */
1266 ushort reserved45
; /* 45 reserved */
1267 ushort reserved46
; /* 46 reserved */
1268 ushort reserved47
; /* 47 reserved */
1269 ushort reserved48
; /* 48 reserved */
1270 ushort reserved49
; /* 49 reserved */
1271 ushort reserved50
; /* 50 reserved */
1272 ushort reserved51
; /* 51 reserved */
1273 ushort reserved52
; /* 52 reserved */
1274 ushort reserved53
; /* 53 reserved */
1275 ushort reserved54
; /* 54 reserved */
1276 ushort reserved55
; /* 55 reserved */
1277 ushort cisptr_lsw
; /* 56 CIS PTR LSW */
1278 ushort cisprt_msw
; /* 57 CIS PTR MSW */
1279 ushort subsysvid
; /* 58 SubSystem Vendor ID */
1280 ushort subsysid
; /* 59 SubSystem ID */
1281 ushort reserved60
; /* 60 reserved */
1282 ushort reserved61
; /* 61 reserved */
1283 ushort reserved62
; /* 62 reserved */
1284 ushort reserved63
; /* 63 reserved */
1285 } ADVEEP_38C1600_CONFIG
;
1290 #define ASC_EEP_CMD_DONE 0x0200
1293 #define BIOS_CTRL_BIOS 0x0001
1294 #define BIOS_CTRL_EXTENDED_XLAT 0x0002
1295 #define BIOS_CTRL_GT_2_DISK 0x0004
1296 #define BIOS_CTRL_BIOS_REMOVABLE 0x0008
1297 #define BIOS_CTRL_BOOTABLE_CD 0x0010
1298 #define BIOS_CTRL_MULTIPLE_LUN 0x0040
1299 #define BIOS_CTRL_DISPLAY_MSG 0x0080
1300 #define BIOS_CTRL_NO_SCAM 0x0100
1301 #define BIOS_CTRL_RESET_SCSI_BUS 0x0200
1302 #define BIOS_CTRL_INIT_VERBOSE 0x0800
1303 #define BIOS_CTRL_SCSI_PARITY 0x1000
1304 #define BIOS_CTRL_AIPP_DIS 0x2000
1306 #define ADV_3550_MEMSIZE 0x2000 /* 8 KB Internal Memory */
1308 #define ADV_38C0800_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1311 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1312 * a special 16K Adv Library and Microcode version. After the issue is
1313 * resolved, should restore 32K support.
1315 * #define ADV_38C1600_MEMSIZE 0x8000L * 32 KB Internal Memory *
1317 #define ADV_38C1600_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1320 * Byte I/O register address from base of 'iop_base'.
1322 #define IOPB_INTR_STATUS_REG 0x00
1323 #define IOPB_CHIP_ID_1 0x01
1324 #define IOPB_INTR_ENABLES 0x02
1325 #define IOPB_CHIP_TYPE_REV 0x03
1326 #define IOPB_RES_ADDR_4 0x04
1327 #define IOPB_RES_ADDR_5 0x05
1328 #define IOPB_RAM_DATA 0x06
1329 #define IOPB_RES_ADDR_7 0x07
1330 #define IOPB_FLAG_REG 0x08
1331 #define IOPB_RES_ADDR_9 0x09
1332 #define IOPB_RISC_CSR 0x0A
1333 #define IOPB_RES_ADDR_B 0x0B
1334 #define IOPB_RES_ADDR_C 0x0C
1335 #define IOPB_RES_ADDR_D 0x0D
1336 #define IOPB_SOFT_OVER_WR 0x0E
1337 #define IOPB_RES_ADDR_F 0x0F
1338 #define IOPB_MEM_CFG 0x10
1339 #define IOPB_RES_ADDR_11 0x11
1340 #define IOPB_GPIO_DATA 0x12
1341 #define IOPB_RES_ADDR_13 0x13
1342 #define IOPB_FLASH_PAGE 0x14
1343 #define IOPB_RES_ADDR_15 0x15
1344 #define IOPB_GPIO_CNTL 0x16
1345 #define IOPB_RES_ADDR_17 0x17
1346 #define IOPB_FLASH_DATA 0x18
1347 #define IOPB_RES_ADDR_19 0x19
1348 #define IOPB_RES_ADDR_1A 0x1A
1349 #define IOPB_RES_ADDR_1B 0x1B
1350 #define IOPB_RES_ADDR_1C 0x1C
1351 #define IOPB_RES_ADDR_1D 0x1D
1352 #define IOPB_RES_ADDR_1E 0x1E
1353 #define IOPB_RES_ADDR_1F 0x1F
1354 #define IOPB_DMA_CFG0 0x20
1355 #define IOPB_DMA_CFG1 0x21
1356 #define IOPB_TICKLE 0x22
1357 #define IOPB_DMA_REG_WR 0x23
1358 #define IOPB_SDMA_STATUS 0x24
1359 #define IOPB_SCSI_BYTE_CNT 0x25
1360 #define IOPB_HOST_BYTE_CNT 0x26
1361 #define IOPB_BYTE_LEFT_TO_XFER 0x27
1362 #define IOPB_BYTE_TO_XFER_0 0x28
1363 #define IOPB_BYTE_TO_XFER_1 0x29
1364 #define IOPB_BYTE_TO_XFER_2 0x2A
1365 #define IOPB_BYTE_TO_XFER_3 0x2B
1366 #define IOPB_ACC_GRP 0x2C
1367 #define IOPB_RES_ADDR_2D 0x2D
1368 #define IOPB_DEV_ID 0x2E
1369 #define IOPB_RES_ADDR_2F 0x2F
1370 #define IOPB_SCSI_DATA 0x30
1371 #define IOPB_RES_ADDR_31 0x31
1372 #define IOPB_RES_ADDR_32 0x32
1373 #define IOPB_SCSI_DATA_HSHK 0x33
1374 #define IOPB_SCSI_CTRL 0x34
1375 #define IOPB_RES_ADDR_35 0x35
1376 #define IOPB_RES_ADDR_36 0x36
1377 #define IOPB_RES_ADDR_37 0x37
1378 #define IOPB_RAM_BIST 0x38
1379 #define IOPB_PLL_TEST 0x39
1380 #define IOPB_PCI_INT_CFG 0x3A
1381 #define IOPB_RES_ADDR_3B 0x3B
1382 #define IOPB_RFIFO_CNT 0x3C
1383 #define IOPB_RES_ADDR_3D 0x3D
1384 #define IOPB_RES_ADDR_3E 0x3E
1385 #define IOPB_RES_ADDR_3F 0x3F
1388 * Word I/O register address from base of 'iop_base'.
1390 #define IOPW_CHIP_ID_0 0x00 /* CID0 */
1391 #define IOPW_CTRL_REG 0x02 /* CC */
1392 #define IOPW_RAM_ADDR 0x04 /* LA */
1393 #define IOPW_RAM_DATA 0x06 /* LD */
1394 #define IOPW_RES_ADDR_08 0x08
1395 #define IOPW_RISC_CSR 0x0A /* CSR */
1396 #define IOPW_SCSI_CFG0 0x0C /* CFG0 */
1397 #define IOPW_SCSI_CFG1 0x0E /* CFG1 */
1398 #define IOPW_RES_ADDR_10 0x10
1399 #define IOPW_SEL_MASK 0x12 /* SM */
1400 #define IOPW_RES_ADDR_14 0x14
1401 #define IOPW_FLASH_ADDR 0x16 /* FA */
1402 #define IOPW_RES_ADDR_18 0x18
1403 #define IOPW_EE_CMD 0x1A /* EC */
1404 #define IOPW_EE_DATA 0x1C /* ED */
1405 #define IOPW_SFIFO_CNT 0x1E /* SFC */
1406 #define IOPW_RES_ADDR_20 0x20
1407 #define IOPW_Q_BASE 0x22 /* QB */
1408 #define IOPW_QP 0x24 /* QP */
1409 #define IOPW_IX 0x26 /* IX */
1410 #define IOPW_SP 0x28 /* SP */
1411 #define IOPW_PC 0x2A /* PC */
1412 #define IOPW_RES_ADDR_2C 0x2C
1413 #define IOPW_RES_ADDR_2E 0x2E
1414 #define IOPW_SCSI_DATA 0x30 /* SD */
1415 #define IOPW_SCSI_DATA_HSHK 0x32 /* SDH */
1416 #define IOPW_SCSI_CTRL 0x34 /* SC */
1417 #define IOPW_HSHK_CFG 0x36 /* HCFG */
1418 #define IOPW_SXFR_STATUS 0x36 /* SXS */
1419 #define IOPW_SXFR_CNTL 0x38 /* SXL */
1420 #define IOPW_SXFR_CNTH 0x3A /* SXH */
1421 #define IOPW_RES_ADDR_3C 0x3C
1422 #define IOPW_RFIFO_DATA 0x3E /* RFD */
1425 * Doubleword I/O register address from base of 'iop_base'.
1427 #define IOPDW_RES_ADDR_0 0x00
1428 #define IOPDW_RAM_DATA 0x04
1429 #define IOPDW_RES_ADDR_8 0x08
1430 #define IOPDW_RES_ADDR_C 0x0C
1431 #define IOPDW_RES_ADDR_10 0x10
1432 #define IOPDW_COMMA 0x14
1433 #define IOPDW_COMMB 0x18
1434 #define IOPDW_RES_ADDR_1C 0x1C
1435 #define IOPDW_SDMA_ADDR0 0x20
1436 #define IOPDW_SDMA_ADDR1 0x24
1437 #define IOPDW_SDMA_COUNT 0x28
1438 #define IOPDW_SDMA_ERROR 0x2C
1439 #define IOPDW_RDMA_ADDR0 0x30
1440 #define IOPDW_RDMA_ADDR1 0x34
1441 #define IOPDW_RDMA_COUNT 0x38
1442 #define IOPDW_RDMA_ERROR 0x3C
1444 #define ADV_CHIP_ID_BYTE 0x25
1445 #define ADV_CHIP_ID_WORD 0x04C1
1447 #define ADV_INTR_ENABLE_HOST_INTR 0x01
1448 #define ADV_INTR_ENABLE_SEL_INTR 0x02
1449 #define ADV_INTR_ENABLE_DPR_INTR 0x04
1450 #define ADV_INTR_ENABLE_RTA_INTR 0x08
1451 #define ADV_INTR_ENABLE_RMA_INTR 0x10
1452 #define ADV_INTR_ENABLE_RST_INTR 0x20
1453 #define ADV_INTR_ENABLE_DPE_INTR 0x40
1454 #define ADV_INTR_ENABLE_GLOBAL_INTR 0x80
1456 #define ADV_INTR_STATUS_INTRA 0x01
1457 #define ADV_INTR_STATUS_INTRB 0x02
1458 #define ADV_INTR_STATUS_INTRC 0x04
1460 #define ADV_RISC_CSR_STOP (0x0000)
1461 #define ADV_RISC_TEST_COND (0x2000)
1462 #define ADV_RISC_CSR_RUN (0x4000)
1463 #define ADV_RISC_CSR_SINGLE_STEP (0x8000)
1465 #define ADV_CTRL_REG_HOST_INTR 0x0100
1466 #define ADV_CTRL_REG_SEL_INTR 0x0200
1467 #define ADV_CTRL_REG_DPR_INTR 0x0400
1468 #define ADV_CTRL_REG_RTA_INTR 0x0800
1469 #define ADV_CTRL_REG_RMA_INTR 0x1000
1470 #define ADV_CTRL_REG_RES_BIT14 0x2000
1471 #define ADV_CTRL_REG_DPE_INTR 0x4000
1472 #define ADV_CTRL_REG_POWER_DONE 0x8000
1473 #define ADV_CTRL_REG_ANY_INTR 0xFF00
1475 #define ADV_CTRL_REG_CMD_RESET 0x00C6
1476 #define ADV_CTRL_REG_CMD_WR_IO_REG 0x00C5
1477 #define ADV_CTRL_REG_CMD_RD_IO_REG 0x00C4
1478 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE 0x00C3
1479 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE 0x00C2
1481 #define ADV_TICKLE_NOP 0x00
1482 #define ADV_TICKLE_A 0x01
1483 #define ADV_TICKLE_B 0x02
1484 #define ADV_TICKLE_C 0x03
1486 #define AdvIsIntPending(port) \
1487 (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1490 * SCSI_CFG0 Register bit definitions
1492 #define TIMER_MODEAB 0xC000 /* Watchdog, Second, and Select. Timer Ctrl. */
1493 #define PARITY_EN 0x2000 /* Enable SCSI Parity Error detection */
1494 #define EVEN_PARITY 0x1000 /* Select Even Parity */
1495 #define WD_LONG 0x0800 /* Watchdog Interval, 1: 57 min, 0: 13 sec */
1496 #define QUEUE_128 0x0400 /* Queue Size, 1: 128 byte, 0: 64 byte */
1497 #define PRIM_MODE 0x0100 /* Primitive SCSI mode */
1498 #define SCAM_EN 0x0080 /* Enable SCAM selection */
1499 #define SEL_TMO_LONG 0x0040 /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1500 #define CFRM_ID 0x0020 /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1501 #define OUR_ID_EN 0x0010 /* Enable OUR_ID bits */
1502 #define OUR_ID 0x000F /* SCSI ID */
1505 * SCSI_CFG1 Register bit definitions
1507 #define BIG_ENDIAN 0x8000 /* Enable Big Endian Mode MIO:15, EEP:15 */
1508 #define TERM_POL 0x2000 /* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1509 #define SLEW_RATE 0x1000 /* SCSI output buffer slew rate */
1510 #define FILTER_SEL 0x0C00 /* Filter Period Selection */
1511 #define FLTR_DISABLE 0x0000 /* Input Filtering Disabled */
1512 #define FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */
1513 #define FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */
1514 #define ACTIVE_DBL 0x0200 /* Disable Active Negation */
1515 #define DIFF_MODE 0x0100 /* SCSI differential Mode (Read-Only) */
1516 #define DIFF_SENSE 0x0080 /* 1: No SE cables, 0: SE cable (Read-Only) */
1517 #define TERM_CTL_SEL 0x0040 /* Enable TERM_CTL_H and TERM_CTL_L */
1518 #define TERM_CTL 0x0030 /* External SCSI Termination Bits */
1519 #define TERM_CTL_H 0x0020 /* Enable External SCSI Upper Termination */
1520 #define TERM_CTL_L 0x0010 /* Enable External SCSI Lower Termination */
1521 #define CABLE_DETECT 0x000F /* External SCSI Cable Connection Status */
1524 * Addendum for ASC-38C0800 Chip
1526 * The ASC-38C1600 Chip uses the same definitions except that the
1527 * bus mode override bits [12:10] have been moved to byte register
1528 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1529 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1530 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1531 * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1532 * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1534 #define DIS_TERM_DRV 0x4000 /* 1: Read c_det[3:0], 0: cannot read */
1535 #define HVD_LVD_SE 0x1C00 /* Device Detect Bits */
1536 #define HVD 0x1000 /* HVD Device Detect */
1537 #define LVD 0x0800 /* LVD Device Detect */
1538 #define SE 0x0400 /* SE Device Detect */
1539 #define TERM_LVD 0x00C0 /* LVD Termination Bits */
1540 #define TERM_LVD_HI 0x0080 /* Enable LVD Upper Termination */
1541 #define TERM_LVD_LO 0x0040 /* Enable LVD Lower Termination */
1542 #define TERM_SE 0x0030 /* SE Termination Bits */
1543 #define TERM_SE_HI 0x0020 /* Enable SE Upper Termination */
1544 #define TERM_SE_LO 0x0010 /* Enable SE Lower Termination */
1545 #define C_DET_LVD 0x000C /* LVD Cable Detect Bits */
1546 #define C_DET3 0x0008 /* Cable Detect for LVD External Wide */
1547 #define C_DET2 0x0004 /* Cable Detect for LVD Internal Wide */
1548 #define C_DET_SE 0x0003 /* SE Cable Detect Bits */
1549 #define C_DET1 0x0002 /* Cable Detect for SE Internal Wide */
1550 #define C_DET0 0x0001 /* Cable Detect for SE Internal Narrow */
1552 #define CABLE_ILLEGAL_A 0x7
1553 /* x 0 0 0 | on on | Illegal (all 3 connectors are used) */
1555 #define CABLE_ILLEGAL_B 0xB
1556 /* 0 x 0 0 | on on | Illegal (all 3 connectors are used) */
1559 * MEM_CFG Register bit definitions
1561 #define BIOS_EN 0x40 /* BIOS Enable MIO:14,EEP:14 */
1562 #define FAST_EE_CLK 0x20 /* Diagnostic Bit */
1563 #define RAM_SZ 0x1C /* Specify size of RAM to RISC */
1564 #define RAM_SZ_2KB 0x00 /* 2 KB */
1565 #define RAM_SZ_4KB 0x04 /* 4 KB */
1566 #define RAM_SZ_8KB 0x08 /* 8 KB */
1567 #define RAM_SZ_16KB 0x0C /* 16 KB */
1568 #define RAM_SZ_32KB 0x10 /* 32 KB */
1569 #define RAM_SZ_64KB 0x14 /* 64 KB */
1572 * DMA_CFG0 Register bit definitions
1574 * This register is only accessible to the host.
1576 #define BC_THRESH_ENB 0x80 /* PCI DMA Start Conditions */
1577 #define FIFO_THRESH 0x70 /* PCI DMA FIFO Threshold */
1578 #define FIFO_THRESH_16B 0x00 /* 16 bytes */
1579 #define FIFO_THRESH_32B 0x20 /* 32 bytes */
1580 #define FIFO_THRESH_48B 0x30 /* 48 bytes */
1581 #define FIFO_THRESH_64B 0x40 /* 64 bytes */
1582 #define FIFO_THRESH_80B 0x50 /* 80 bytes (default) */
1583 #define FIFO_THRESH_96B 0x60 /* 96 bytes */
1584 #define FIFO_THRESH_112B 0x70 /* 112 bytes */
1585 #define START_CTL 0x0C /* DMA start conditions */
1586 #define START_CTL_TH 0x00 /* Wait threshold level (default) */
1587 #define START_CTL_ID 0x04 /* Wait SDMA/SBUS idle */
1588 #define START_CTL_THID 0x08 /* Wait threshold and SDMA/SBUS idle */
1589 #define START_CTL_EMFU 0x0C /* Wait SDMA FIFO empty/full */
1590 #define READ_CMD 0x03 /* Memory Read Method */
1591 #define READ_CMD_MR 0x00 /* Memory Read */
1592 #define READ_CMD_MRL 0x02 /* Memory Read Long */
1593 #define READ_CMD_MRM 0x03 /* Memory Read Multiple (default) */
1596 * ASC-38C0800 RAM BIST Register bit definitions
1598 #define RAM_TEST_MODE 0x80
1599 #define PRE_TEST_MODE 0x40
1600 #define NORMAL_MODE 0x00
1601 #define RAM_TEST_DONE 0x10
1602 #define RAM_TEST_STATUS 0x0F
1603 #define RAM_TEST_HOST_ERROR 0x08
1604 #define RAM_TEST_INTRAM_ERROR 0x04
1605 #define RAM_TEST_RISC_ERROR 0x02
1606 #define RAM_TEST_SCSI_ERROR 0x01
1607 #define RAM_TEST_SUCCESS 0x00
1608 #define PRE_TEST_VALUE 0x05
1609 #define NORMAL_VALUE 0x00
1612 * ASC38C1600 Definitions
1614 * IOPB_PCI_INT_CFG Bit Field Definitions
1617 #define INTAB_LD 0x80 /* Value loaded from EEPROM Bit 11. */
1620 * Bit 1 can be set to change the interrupt for the Function to operate in
1621 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1622 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1623 * mode, otherwise the operating mode is undefined.
1625 #define TOTEMPOLE 0x02
1628 * Bit 0 can be used to change the Int Pin for the Function. The value is
1629 * 0 by default for both Functions with Function 0 using INT A and Function
1630 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1633 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1634 * value specified in the PCI Configuration Space.
1639 * Adv Library Status Definitions
1643 #define ADV_SUCCESS 1
1645 #define ADV_ERROR (-1)
1648 * ADV_DVC_VAR 'warn_code' values
1650 #define ASC_WARN_BUSRESET_ERROR 0x0001 /* SCSI Bus Reset error */
1651 #define ASC_WARN_EEPROM_CHKSUM 0x0002 /* EEP check sum error */
1652 #define ASC_WARN_EEPROM_TERMINATION 0x0004 /* EEP termination bad field */
1653 #define ASC_WARN_ERROR 0xFFFF /* ADV_ERROR return */
1655 #define ADV_MAX_TID 15 /* max. target identifier */
1656 #define ADV_MAX_LUN 7 /* max. logical unit number */
1659 * Fixed locations of microcode operating variables.
1661 #define ASC_MC_CODE_BEGIN_ADDR 0x0028 /* microcode start address */
1662 #define ASC_MC_CODE_END_ADDR 0x002A /* microcode end address */
1663 #define ASC_MC_CODE_CHK_SUM 0x002C /* microcode code checksum */
1664 #define ASC_MC_VERSION_DATE 0x0038 /* microcode version */
1665 #define ASC_MC_VERSION_NUM 0x003A /* microcode number */
1666 #define ASC_MC_BIOSMEM 0x0040 /* BIOS RISC Memory Start */
1667 #define ASC_MC_BIOSLEN 0x0050 /* BIOS RISC Memory Length */
1668 #define ASC_MC_BIOS_SIGNATURE 0x0058 /* BIOS Signature 0x55AA */
1669 #define ASC_MC_BIOS_VERSION 0x005A /* BIOS Version (2 bytes) */
1670 #define ASC_MC_SDTR_SPEED1 0x0090 /* SDTR Speed for TID 0-3 */
1671 #define ASC_MC_SDTR_SPEED2 0x0092 /* SDTR Speed for TID 4-7 */
1672 #define ASC_MC_SDTR_SPEED3 0x0094 /* SDTR Speed for TID 8-11 */
1673 #define ASC_MC_SDTR_SPEED4 0x0096 /* SDTR Speed for TID 12-15 */
1674 #define ASC_MC_CHIP_TYPE 0x009A
1675 #define ASC_MC_INTRB_CODE 0x009B
1676 #define ASC_MC_WDTR_ABLE 0x009C
1677 #define ASC_MC_SDTR_ABLE 0x009E
1678 #define ASC_MC_TAGQNG_ABLE 0x00A0
1679 #define ASC_MC_DISC_ENABLE 0x00A2
1680 #define ASC_MC_IDLE_CMD_STATUS 0x00A4
1681 #define ASC_MC_IDLE_CMD 0x00A6
1682 #define ASC_MC_IDLE_CMD_PARAMETER 0x00A8
1683 #define ASC_MC_DEFAULT_SCSI_CFG0 0x00AC
1684 #define ASC_MC_DEFAULT_SCSI_CFG1 0x00AE
1685 #define ASC_MC_DEFAULT_MEM_CFG 0x00B0
1686 #define ASC_MC_DEFAULT_SEL_MASK 0x00B2
1687 #define ASC_MC_SDTR_DONE 0x00B6
1688 #define ASC_MC_NUMBER_OF_QUEUED_CMD 0x00C0
1689 #define ASC_MC_NUMBER_OF_MAX_CMD 0x00D0
1690 #define ASC_MC_DEVICE_HSHK_CFG_TABLE 0x0100
1691 #define ASC_MC_CONTROL_FLAG 0x0122 /* Microcode control flag. */
1692 #define ASC_MC_WDTR_DONE 0x0124
1693 #define ASC_MC_CAM_MODE_MASK 0x015E /* CAM mode TID bitmask. */
1694 #define ASC_MC_ICQ 0x0160
1695 #define ASC_MC_IRQ 0x0164
1696 #define ASC_MC_PPR_ABLE 0x017A
1699 * BIOS LRAM variable absolute offsets.
1701 #define BIOS_CODESEG 0x54
1702 #define BIOS_CODELEN 0x56
1703 #define BIOS_SIGNATURE 0x58
1704 #define BIOS_VERSION 0x5A
1707 * Microcode Control Flags
1709 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1710 * and handled by the microcode.
1712 #define CONTROL_FLAG_IGNORE_PERR 0x0001 /* Ignore DMA Parity Errors */
1713 #define CONTROL_FLAG_ENABLE_AIPP 0x0002 /* Enabled AIPP checking. */
1716 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1718 #define HSHK_CFG_WIDE_XFR 0x8000
1719 #define HSHK_CFG_RATE 0x0F00
1720 #define HSHK_CFG_OFFSET 0x001F
1722 #define ASC_DEF_MAX_HOST_QNG 0xFD /* Max. number of host commands (253) */
1723 #define ASC_DEF_MIN_HOST_QNG 0x10 /* Min. number of host commands (16) */
1724 #define ASC_DEF_MAX_DVC_QNG 0x3F /* Max. number commands per device (63) */
1725 #define ASC_DEF_MIN_DVC_QNG 0x04 /* Min. number commands per device (4) */
1727 #define ASC_QC_DATA_CHECK 0x01 /* Require ASC_QC_DATA_OUT set or clear. */
1728 #define ASC_QC_DATA_OUT 0x02 /* Data out DMA transfer. */
1729 #define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */
1730 #define ASC_QC_NO_OVERRUN 0x08 /* Don't report overrun. */
1731 #define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */
1733 #define ASC_QSC_NO_DISC 0x01 /* Don't allow disconnect for request. */
1734 #define ASC_QSC_NO_TAGMSG 0x02 /* Don't allow tag queuing for request. */
1735 #define ASC_QSC_NO_SYNC 0x04 /* Don't use Synch. transfer on request. */
1736 #define ASC_QSC_NO_WIDE 0x08 /* Don't use Wide transfer on request. */
1737 #define ASC_QSC_REDO_DTR 0x10 /* Renegotiate WDTR/SDTR before request. */
1739 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1740 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1742 #define ASC_QSC_HEAD_TAG 0x40 /* Use Head Tag Message (0x21). */
1743 #define ASC_QSC_ORDERED_TAG 0x80 /* Use Ordered Tag Message (0x22). */
1746 * All fields here are accessed by the board microcode and need to be
1749 typedef struct adv_carr_t
{
1750 ADV_VADDR carr_va
; /* Carrier Virtual Address */
1751 ADV_PADDR carr_pa
; /* Carrier Physical Address */
1752 ADV_VADDR areq_vpa
; /* ASC_SCSI_REQ_Q Virtual or Physical Address */
1754 * next_vpa [31:4] Carrier Virtual or Physical Next Pointer
1756 * next_vpa [3:1] Reserved Bits
1757 * next_vpa [0] Done Flag set in Response Queue.
1763 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1765 #define ASC_NEXT_VPA_MASK 0xFFFFFFF0
1767 #define ASC_RQ_DONE 0x00000001
1768 #define ASC_RQ_GOOD 0x00000002
1769 #define ASC_CQ_STOPPER 0x00000000
1771 #define ASC_GET_CARRP(carrp) ((carrp) & ASC_NEXT_VPA_MASK)
1773 #define ADV_CARRIER_NUM_PAGE_CROSSING \
1774 (((ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) + (PAGE_SIZE - 1))/PAGE_SIZE)
1776 #define ADV_CARRIER_BUFSIZE \
1777 ((ADV_CARRIER_COUNT + ADV_CARRIER_NUM_PAGE_CROSSING) * sizeof(ADV_CARR_T))
1780 * ASC_SCSI_REQ_Q 'a_flag' definitions
1782 * The Adv Library should limit use to the lower nibble (4 bits) of
1783 * a_flag. Drivers are free to use the upper nibble (4 bits) of a_flag.
1785 #define ADV_POLL_REQUEST 0x01 /* poll for request completion */
1786 #define ADV_SCSIQ_DONE 0x02 /* request done */
1787 #define ADV_DONT_RETRY 0x08 /* don't do retry */
1789 #define ADV_CHIP_ASC3550 0x01 /* Ultra-Wide IC */
1790 #define ADV_CHIP_ASC38C0800 0x02 /* Ultra2-Wide/LVD IC */
1791 #define ADV_CHIP_ASC38C1600 0x03 /* Ultra3-Wide/LVD2 IC */
1794 * Adapter temporary configuration structure
1796 * This structure can be discarded after initialization. Don't add
1797 * fields here needed after initialization.
1799 * Field naming convention:
1801 * *_enable indicates the field enables or disables a feature. The
1802 * value of the field is never reset.
1804 typedef struct adv_dvc_cfg
{
1805 ushort disc_enable
; /* enable disconnection */
1806 uchar chip_version
; /* chip version */
1807 uchar termination
; /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1808 ushort control_flag
; /* Microcode Control Flag */
1809 ushort mcode_date
; /* Microcode date */
1810 ushort mcode_version
; /* Microcode version */
1811 ushort serial1
; /* EEPROM serial number word 1 */
1812 ushort serial2
; /* EEPROM serial number word 2 */
1813 ushort serial3
; /* EEPROM serial number word 3 */
1817 struct adv_scsi_req_q
;
1819 typedef struct asc_sg_block
{
1823 uchar sg_cnt
; /* Valid entries in block. */
1824 ADV_PADDR sg_ptr
; /* Pointer to next sg block. */
1826 ADV_PADDR sg_addr
; /* SG element address. */
1827 ADV_DCNT sg_count
; /* SG element count. */
1828 } sg_list
[NO_OF_SG_PER_BLOCK
];
1832 * ADV_SCSI_REQ_Q - microcode request structure
1834 * All fields in this structure up to byte 60 are used by the microcode.
1835 * The microcode makes assumptions about the size and ordering of fields
1836 * in this structure. Do not change the structure definition here without
1837 * coordinating the change with the microcode.
1839 * All fields accessed by microcode must be maintained in little_endian
1842 typedef struct adv_scsi_req_q
{
1843 uchar cntl
; /* Ucode flags and state (ASC_MC_QC_*). */
1845 uchar target_id
; /* Device target identifier. */
1846 uchar target_lun
; /* Device target logical unit number. */
1847 ADV_PADDR data_addr
; /* Data buffer physical address. */
1848 ADV_DCNT data_cnt
; /* Data count. Ucode sets to residual. */
1849 ADV_PADDR sense_addr
;
1853 uchar cdb_len
; /* SCSI CDB length. Must <= 16 bytes. */
1855 uchar done_status
; /* Completion status. */
1856 uchar scsi_status
; /* SCSI status byte. */
1857 uchar host_status
; /* Ucode host status. */
1858 uchar sg_working_ix
;
1859 uchar cdb
[12]; /* SCSI CDB bytes 0-11. */
1860 ADV_PADDR sg_real_addr
; /* SG list physical address. */
1861 ADV_PADDR scsiq_rptr
;
1862 uchar cdb16
[4]; /* SCSI CDB bytes 12-15. */
1863 ADV_VADDR scsiq_ptr
;
1866 * End of microcode structure - 60 bytes. The rest of the structure
1867 * is used by the Adv Library and ignored by the microcode.
1870 ADV_SG_BLOCK
*sg_list_ptr
; /* SG list virtual address. */
1871 char *vdata_addr
; /* Data buffer virtual address. */
1873 uchar pad
[2]; /* Pad out to a word boundary. */
1877 * The following two structures are used to process Wide Board requests.
1879 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1880 * and microcode with the ADV_SCSI_REQ_Q field 'srb_ptr' pointing to the
1881 * adv_req_t. The adv_req_t structure 'cmndp' field in turn points to the
1882 * Mid-Level SCSI request structure.
1884 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1885 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1886 * up to 255 scatter-gather elements may be used per request or
1889 * Both structures must be 32 byte aligned.
1891 typedef struct adv_sgblk
{
1892 ADV_SG_BLOCK sg_block
; /* Sgblock structure. */
1893 uchar align
[32]; /* Sgblock structure padding. */
1894 struct adv_sgblk
*next_sgblkp
; /* Next scatter-gather structure. */
1897 typedef struct adv_req
{
1898 ADV_SCSI_REQ_Q scsi_req_q
; /* Adv Library request structure. */
1899 uchar align
[32]; /* Request structure padding. */
1900 struct scsi_cmnd
*cmndp
; /* Mid-Level SCSI command pointer. */
1901 adv_sgblk_t
*sgblkp
; /* Adv Library scatter-gather pointer. */
1902 struct adv_req
*next_reqp
; /* Next Request Structure. */
1906 * Adapter operation variable structure.
1908 * One structure is required per host adapter.
1910 * Field naming convention:
1912 * *_able indicates both whether a feature should be enabled or disabled
1913 * and whether a device isi capable of the feature. At initialization
1914 * this field may be set, but later if a device is found to be incapable
1915 * of the feature, the field is cleared.
1917 typedef struct adv_dvc_var
{
1918 AdvPortAddr iop_base
; /* I/O port address */
1919 ushort err_code
; /* fatal error code */
1920 ushort bios_ctrl
; /* BIOS control word, EEPROM word 12 */
1921 ushort wdtr_able
; /* try WDTR for a device */
1922 ushort sdtr_able
; /* try SDTR for a device */
1923 ushort ultra_able
; /* try SDTR Ultra speed for a device */
1924 ushort sdtr_speed1
; /* EEPROM SDTR Speed for TID 0-3 */
1925 ushort sdtr_speed2
; /* EEPROM SDTR Speed for TID 4-7 */
1926 ushort sdtr_speed3
; /* EEPROM SDTR Speed for TID 8-11 */
1927 ushort sdtr_speed4
; /* EEPROM SDTR Speed for TID 12-15 */
1928 ushort tagqng_able
; /* try tagged queuing with a device */
1929 ushort ppr_able
; /* PPR message capable per TID bitmask. */
1930 uchar max_dvc_qng
; /* maximum number of tagged commands per device */
1931 ushort start_motor
; /* start motor command allowed */
1932 uchar scsi_reset_wait
; /* delay in seconds after scsi bus reset */
1933 uchar chip_no
; /* should be assigned by caller */
1934 uchar max_host_qng
; /* maximum number of Q'ed command allowed */
1935 ushort no_scam
; /* scam_tolerant of EEPROM */
1936 struct asc_board
*drv_ptr
; /* driver pointer to private structure */
1937 uchar chip_scsi_id
; /* chip SCSI target ID */
1939 uchar bist_err_code
;
1940 ADV_CARR_T
*carrier_buf
;
1941 ADV_CARR_T
*carr_freelist
; /* Carrier free list. */
1942 ADV_CARR_T
*icq_sp
; /* Initiator command queue stopper pointer. */
1943 ADV_CARR_T
*irq_sp
; /* Initiator response queue stopper pointer. */
1944 ushort carr_pending_cnt
; /* Count of pending carriers. */
1945 struct adv_req
*orig_reqp
; /* adv_req_t memory block. */
1947 * Note: The following fields will not be used after initialization. The
1948 * driver may discard the buffer after initialization is done.
1950 ADV_DVC_CFG
*cfg
; /* temporary configuration structure */
1954 * Microcode idle loop commands
1956 #define IDLE_CMD_COMPLETED 0
1957 #define IDLE_CMD_STOP_CHIP 0x0001
1958 #define IDLE_CMD_STOP_CHIP_SEND_INT 0x0002
1959 #define IDLE_CMD_SEND_INT 0x0004
1960 #define IDLE_CMD_ABORT 0x0008
1961 #define IDLE_CMD_DEVICE_RESET 0x0010
1962 #define IDLE_CMD_SCSI_RESET_START 0x0020 /* Assert SCSI Bus Reset */
1963 #define IDLE_CMD_SCSI_RESET_END 0x0040 /* Deassert SCSI Bus Reset */
1964 #define IDLE_CMD_SCSIREQ 0x0080
1966 #define IDLE_CMD_STATUS_SUCCESS 0x0001
1967 #define IDLE_CMD_STATUS_FAILURE 0x0002
1970 * AdvSendIdleCmd() flag definitions.
1972 #define ADV_NOWAIT 0x01
1975 * Wait loop time out values.
1977 #define SCSI_WAIT_100_MSEC 100UL /* 100 milliseconds */
1978 #define SCSI_US_PER_MSEC 1000 /* microseconds per millisecond */
1979 #define SCSI_MAX_RETRY 10 /* retry count */
1981 #define ADV_ASYNC_RDMA_FAILURE 0x01 /* Fatal RDMA failure. */
1982 #define ADV_ASYNC_SCSI_BUS_RESET_DET 0x02 /* Detected SCSI Bus Reset. */
1983 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03 /* Carrier Ready failure. */
1984 #define ADV_RDMA_IN_CARR_AND_Q_INVALID 0x04 /* RDMAed-in data invalid. */
1986 #define ADV_HOST_SCSI_BUS_RESET 0x80 /* Host Initiated SCSI Bus Reset. */
1988 /* Read byte from a register. */
1989 #define AdvReadByteRegister(iop_base, reg_off) \
1990 (ADV_MEM_READB((iop_base) + (reg_off)))
1992 /* Write byte to a register. */
1993 #define AdvWriteByteRegister(iop_base, reg_off, byte) \
1994 (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1996 /* Read word (2 bytes) from a register. */
1997 #define AdvReadWordRegister(iop_base, reg_off) \
1998 (ADV_MEM_READW((iop_base) + (reg_off)))
2000 /* Write word (2 bytes) to a register. */
2001 #define AdvWriteWordRegister(iop_base, reg_off, word) \
2002 (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
2004 /* Write dword (4 bytes) to a register. */
2005 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \
2006 (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
2008 /* Read byte from LRAM. */
2009 #define AdvReadByteLram(iop_base, addr, byte) \
2011 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2012 (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
2015 /* Write byte to LRAM. */
2016 #define AdvWriteByteLram(iop_base, addr, byte) \
2017 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2018 ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
2020 /* Read word (2 bytes) from LRAM. */
2021 #define AdvReadWordLram(iop_base, addr, word) \
2023 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2024 (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
2027 /* Write word (2 bytes) to LRAM. */
2028 #define AdvWriteWordLram(iop_base, addr, word) \
2029 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2030 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2032 /* Write little-endian double word (4 bytes) to LRAM */
2033 /* Because of unspecified C language ordering don't use auto-increment. */
2034 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
2035 ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2036 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2037 cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
2038 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
2039 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2040 cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
2042 /* Read word (2 bytes) from LRAM assuming that the address is already set. */
2043 #define AdvReadWordAutoIncLram(iop_base) \
2044 (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
2046 /* Write word (2 bytes) to LRAM assuming that the address is already set. */
2047 #define AdvWriteWordAutoIncLram(iop_base, word) \
2048 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2051 * Define macro to check for Condor signature.
2053 * Evaluate to ADV_TRUE if a Condor chip is found the specified port
2054 * address 'iop_base'. Otherwise evalue to ADV_FALSE.
2056 #define AdvFindSignature(iop_base) \
2057 (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
2058 ADV_CHIP_ID_BYTE) && \
2059 (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
2060 ADV_CHIP_ID_WORD)) ? ADV_TRUE : ADV_FALSE)
2063 * Define macro to Return the version number of the chip at 'iop_base'.
2065 * The second parameter 'bus_type' is currently unused.
2067 #define AdvGetChipVersion(iop_base, bus_type) \
2068 AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
2071 * Abort an SRB in the chip's RISC Memory. The 'srb_ptr' argument must
2072 * match the ASC_SCSI_REQ_Q 'srb_ptr' field.
2074 * If the request has not yet been sent to the device it will simply be
2075 * aborted from RISC memory. If the request is disconnected it will be
2076 * aborted on reselection by sending an Abort Message to the target ID.
2079 * ADV_TRUE(1) - Queue was successfully aborted.
2080 * ADV_FALSE(0) - Queue was not found on the active queue list.
2082 #define AdvAbortQueue(asc_dvc, scsiq) \
2083 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
2087 * Send a Bus Device Reset Message to the specified target ID.
2089 * All outstanding commands will be purged if sending the
2090 * Bus Device Reset Message is successful.
2093 * ADV_TRUE(1) - All requests on the target are purged.
2094 * ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
2097 #define AdvResetDevice(asc_dvc, target_id) \
2098 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \
2099 (ADV_DCNT) (target_id))
2102 * SCSI Wide Type definition.
2104 #define ADV_SCSI_BIT_ID_TYPE ushort
2107 * AdvInitScsiTarget() 'cntl_flag' options.
2109 #define ADV_SCAN_LUN 0x01
2110 #define ADV_CAPINFO_NOLUN 0x02
2113 * Convert target id to target id bit mask.
2115 #define ADV_TID_TO_TIDMASK(tid) (0x01 << ((tid) & ADV_MAX_TID))
2118 * ASC_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2121 #define QD_NO_STATUS 0x00 /* Request not completed yet. */
2122 #define QD_NO_ERROR 0x01
2123 #define QD_ABORTED_BY_HOST 0x02
2124 #define QD_WITH_ERROR 0x04
2126 #define QHSTA_NO_ERROR 0x00
2127 #define QHSTA_M_SEL_TIMEOUT 0x11
2128 #define QHSTA_M_DATA_OVER_RUN 0x12
2129 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2130 #define QHSTA_M_QUEUE_ABORTED 0x15
2131 #define QHSTA_M_SXFR_SDMA_ERR 0x16 /* SXFR_STATUS SCSI DMA Error */
2132 #define QHSTA_M_SXFR_SXFR_PERR 0x17 /* SXFR_STATUS SCSI Bus Parity Error */
2133 #define QHSTA_M_RDMA_PERR 0x18 /* RISC PCI DMA parity error */
2134 #define QHSTA_M_SXFR_OFF_UFLW 0x19 /* SXFR_STATUS Offset Underflow */
2135 #define QHSTA_M_SXFR_OFF_OFLW 0x20 /* SXFR_STATUS Offset Overflow */
2136 #define QHSTA_M_SXFR_WD_TMO 0x21 /* SXFR_STATUS Watchdog Timeout */
2137 #define QHSTA_M_SXFR_DESELECTED 0x22 /* SXFR_STATUS Deselected */
2138 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2139 #define QHSTA_M_SXFR_XFR_OFLW 0x12 /* SXFR_STATUS Transfer Overflow */
2140 #define QHSTA_M_SXFR_XFR_PH_ERR 0x24 /* SXFR_STATUS Transfer Phase Error */
2141 #define QHSTA_M_SXFR_UNKNOWN_ERROR 0x25 /* SXFR_STATUS Unknown Error */
2142 #define QHSTA_M_SCSI_BUS_RESET 0x30 /* Request aborted from SBR */
2143 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31 /* Request aborted from unsol. SBR */
2144 #define QHSTA_M_BUS_DEVICE_RESET 0x32 /* Request aborted from BDR */
2145 #define QHSTA_M_DIRECTION_ERR 0x35 /* Data Phase mismatch */
2146 #define QHSTA_M_DIRECTION_ERR_HUNG 0x36 /* Data Phase mismatch and bus hang */
2147 #define QHSTA_M_WTM_TIMEOUT 0x41
2148 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
2149 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
2150 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2151 #define QHSTA_M_INVALID_DEVICE 0x45 /* Bad target ID */
2152 #define QHSTA_M_FROZEN_TIDQ 0x46 /* TID Queue frozen. */
2153 #define QHSTA_M_SGBACKUP_ERROR 0x47 /* Scatter-Gather backup error */
2155 /* Return the address that is aligned at the next doubleword >= to 'addr'. */
2156 #define ADV_8BALIGN(addr) (((ulong) (addr) + 0x7) & ~0x7)
2157 #define ADV_16BALIGN(addr) (((ulong) (addr) + 0xF) & ~0xF)
2158 #define ADV_32BALIGN(addr) (((ulong) (addr) + 0x1F) & ~0x1F)
2161 * Total contiguous memory needed for driver SG blocks.
2163 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2164 * number of scatter-gather elements the driver supports in a
2168 #define ADV_SG_LIST_MAX_BYTE_SIZE \
2169 (sizeof(ADV_SG_BLOCK) * \
2170 ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2172 /* struct asc_board flags */
2173 #define ASC_IS_WIDE_BOARD 0x04 /* AdvanSys Wide Board */
2175 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2177 #define NO_ISA_DMA 0xff /* No ISA DMA Channel Used */
2179 #define ASC_INFO_SIZE 128 /* advansys_info() line size */
2181 /* Asc Library return codes */
2184 #define ASC_NOERROR 1
2186 #define ASC_ERROR (-1)
2188 /* struct scsi_cmnd function return codes */
2189 #define STATUS_BYTE(byte) (byte)
2190 #define MSG_BYTE(byte) ((byte) << 8)
2191 #define HOST_BYTE(byte) ((byte) << 16)
2192 #define DRIVER_BYTE(byte) ((byte) << 24)
2194 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2195 #ifndef ADVANSYS_STATS
2196 #define ASC_STATS_ADD(shost, counter, count)
2197 #else /* ADVANSYS_STATS */
2198 #define ASC_STATS_ADD(shost, counter, count) \
2199 (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2200 #endif /* ADVANSYS_STATS */
2202 /* If the result wraps when calculating tenths, return 0. */
2203 #define ASC_TENTHS(num, den) \
2204 (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2205 0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2208 * Display a message to the console.
2210 #define ASC_PRINT(s) \
2212 printk("advansys: "); \
2216 #define ASC_PRINT1(s, a1) \
2218 printk("advansys: "); \
2219 printk((s), (a1)); \
2222 #define ASC_PRINT2(s, a1, a2) \
2224 printk("advansys: "); \
2225 printk((s), (a1), (a2)); \
2228 #define ASC_PRINT3(s, a1, a2, a3) \
2230 printk("advansys: "); \
2231 printk((s), (a1), (a2), (a3)); \
2234 #define ASC_PRINT4(s, a1, a2, a3, a4) \
2236 printk("advansys: "); \
2237 printk((s), (a1), (a2), (a3), (a4)); \
2240 #ifndef ADVANSYS_DEBUG
2242 #define ASC_DBG(lvl, s...)
2243 #define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2244 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2245 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2246 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2247 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2248 #define ASC_DBG_PRT_HEX(lvl, name, start, length)
2249 #define ASC_DBG_PRT_CDB(lvl, cdb, len)
2250 #define ASC_DBG_PRT_SENSE(lvl, sense, len)
2251 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2253 #else /* ADVANSYS_DEBUG */
2256 * Debugging Message Levels:
2258 * 1: High-Level Tracing
2259 * 2-N: Verbose Tracing
2262 #define ASC_DBG(lvl, format, arg...) { \
2263 if (asc_dbglvl >= (lvl)) \
2264 printk(KERN_DEBUG "%s: %s: " format, DRV_NAME, \
2265 __func__ , ## arg); \
2268 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2270 if (asc_dbglvl >= (lvl)) { \
2271 asc_prt_scsi_host(s); \
2275 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2277 if (asc_dbglvl >= (lvl)) { \
2278 asc_prt_asc_scsi_q(scsiqp); \
2282 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2284 if (asc_dbglvl >= (lvl)) { \
2285 asc_prt_asc_qdone_info(qdone); \
2289 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2291 if (asc_dbglvl >= (lvl)) { \
2292 asc_prt_adv_scsi_req_q(scsiqp); \
2296 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2298 if (asc_dbglvl >= (lvl)) { \
2299 asc_prt_hex((name), (start), (length)); \
2303 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2304 ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2306 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2307 ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2309 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2310 ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2311 #endif /* ADVANSYS_DEBUG */
2313 #ifdef ADVANSYS_STATS
2315 /* Per board statistics structure */
2317 /* Driver Entrypoint Statistics */
2318 ADV_DCNT queuecommand
; /* # calls to advansys_queuecommand() */
2319 ADV_DCNT reset
; /* # calls to advansys_eh_bus_reset() */
2320 ADV_DCNT biosparam
; /* # calls to advansys_biosparam() */
2321 ADV_DCNT interrupt
; /* # advansys_interrupt() calls */
2322 ADV_DCNT callback
; /* # calls to asc/adv_isr_callback() */
2323 ADV_DCNT done
; /* # calls to request's scsi_done function */
2324 ADV_DCNT build_error
; /* # asc/adv_build_req() ASC_ERROR returns. */
2325 ADV_DCNT adv_build_noreq
; /* # adv_build_req() adv_req_t alloc. fail. */
2326 ADV_DCNT adv_build_nosg
; /* # adv_build_req() adv_sgblk_t alloc. fail. */
2327 /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2328 ADV_DCNT exe_noerror
; /* # ASC_NOERROR returns. */
2329 ADV_DCNT exe_busy
; /* # ASC_BUSY returns. */
2330 ADV_DCNT exe_error
; /* # ASC_ERROR returns. */
2331 ADV_DCNT exe_unknown
; /* # unknown returns. */
2332 /* Data Transfer Statistics */
2333 ADV_DCNT xfer_cnt
; /* # I/O requests received */
2334 ADV_DCNT xfer_elem
; /* # scatter-gather elements */
2335 ADV_DCNT xfer_sect
; /* # 512-byte blocks */
2337 #endif /* ADVANSYS_STATS */
2340 * Structure allocated for each board.
2342 * This structure is allocated by scsi_host_alloc() at the end
2343 * of the 'Scsi_Host' structure starting at the 'hostdata'
2344 * field. It is guaranteed to be allocated from DMA-able memory.
2348 uint flags
; /* Board flags */
2351 ASC_DVC_VAR asc_dvc_var
; /* Narrow board */
2352 ADV_DVC_VAR adv_dvc_var
; /* Wide board */
2355 ASC_DVC_CFG asc_dvc_cfg
; /* Narrow board */
2356 ADV_DVC_CFG adv_dvc_cfg
; /* Wide board */
2358 ushort asc_n_io_port
; /* Number I/O ports. */
2359 ADV_SCSI_BIT_ID_TYPE init_tidmask
; /* Target init./valid mask */
2360 ushort reqcnt
[ADV_MAX_TID
+ 1]; /* Starvation request count */
2361 ADV_SCSI_BIT_ID_TYPE queue_full
; /* Queue full mask */
2362 ushort queue_full_cnt
[ADV_MAX_TID
+ 1]; /* Queue full count */
2364 ASCEEP_CONFIG asc_eep
; /* Narrow EEPROM config. */
2365 ADVEEP_3550_CONFIG adv_3550_eep
; /* 3550 EEPROM config. */
2366 ADVEEP_38C0800_CONFIG adv_38C0800_eep
; /* 38C0800 EEPROM config. */
2367 ADVEEP_38C1600_CONFIG adv_38C1600_eep
; /* 38C1600 EEPROM config. */
2369 ulong last_reset
; /* Saved last reset time */
2370 /* /proc/scsi/advansys/[0...] */
2371 #ifdef ADVANSYS_STATS
2372 struct asc_stats asc_stats
; /* Board statistics */
2373 #endif /* ADVANSYS_STATS */
2375 * The following fields are used only for Narrow Boards.
2377 uchar sdtr_data
[ASC_MAX_TID
+ 1]; /* SDTR information */
2379 * The following fields are used only for Wide Boards.
2381 void __iomem
*ioremap_addr
; /* I/O Memory remap address. */
2382 ushort ioport
; /* I/O Port address. */
2383 adv_req_t
*adv_reqp
; /* Request structures. */
2384 adv_sgblk_t
*adv_sgblkp
; /* Scatter-gather structures. */
2385 ushort bios_signature
; /* BIOS Signature. */
2386 ushort bios_version
; /* BIOS Version. */
2387 ushort bios_codeseg
; /* BIOS Code Segment. */
2388 ushort bios_codelen
; /* BIOS Code Segment Length. */
2391 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2392 dvc_var.asc_dvc_var)
2393 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2394 dvc_var.adv_dvc_var)
2395 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2397 #ifdef ADVANSYS_DEBUG
2398 static int asc_dbglvl
= 3;
2401 * asc_prt_asc_dvc_var()
2403 static void asc_prt_asc_dvc_var(ASC_DVC_VAR
*h
)
2405 printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong
)h
);
2407 printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2408 "%d,\n", h
->iop_base
, h
->err_code
, h
->dvc_cntl
, h
->bug_fix_cntl
);
2410 printk(" bus_type %d, init_sdtr 0x%x,\n", h
->bus_type
,
2411 (unsigned)h
->init_sdtr
);
2413 printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2414 "chip_no 0x%x,\n", (unsigned)h
->sdtr_done
,
2415 (unsigned)h
->use_tagged_qng
, (unsigned)h
->unit_not_ready
,
2416 (unsigned)h
->chip_no
);
2418 printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2419 "%u,\n", (unsigned)h
->queue_full_or_busy
,
2420 (unsigned)h
->start_motor
, (unsigned)h
->scsi_reset_wait
);
2422 printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2423 "in_critical_cnt %u,\n", (unsigned)h
->is_in_int
,
2424 (unsigned)h
->max_total_qng
, (unsigned)h
->cur_total_qng
,
2425 (unsigned)h
->in_critical_cnt
);
2427 printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2428 "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h
->last_q_shortage
,
2429 (unsigned)h
->init_state
, (unsigned)h
->no_scam
,
2430 (unsigned)h
->pci_fix_asyn_xfer
);
2432 printk(" cfg 0x%lx\n", (ulong
)h
->cfg
);
2436 * asc_prt_asc_dvc_cfg()
2438 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG
*h
)
2440 printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong
)h
);
2442 printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2443 h
->can_tagged_qng
, h
->cmd_qng_enabled
);
2444 printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2445 h
->disc_enable
, h
->sdtr_enable
);
2447 printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
2448 "chip_version %d,\n", h
->chip_scsi_id
, h
->isa_dma_speed
,
2449 h
->isa_dma_channel
, h
->chip_version
);
2451 printk(" mcode_date 0x%x, mcode_version %d\n",
2452 h
->mcode_date
, h
->mcode_version
);
2456 * asc_prt_adv_dvc_var()
2458 * Display an ADV_DVC_VAR structure.
2460 static void asc_prt_adv_dvc_var(ADV_DVC_VAR
*h
)
2462 printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong
)h
);
2464 printk(" iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2465 (ulong
)h
->iop_base
, h
->err_code
, (unsigned)h
->ultra_able
);
2467 printk(" sdtr_able 0x%x, wdtr_able 0x%x\n",
2468 (unsigned)h
->sdtr_able
, (unsigned)h
->wdtr_able
);
2470 printk(" start_motor 0x%x, scsi_reset_wait 0x%x\n",
2471 (unsigned)h
->start_motor
, (unsigned)h
->scsi_reset_wait
);
2473 printk(" max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%lxn\n",
2474 (unsigned)h
->max_host_qng
, (unsigned)h
->max_dvc_qng
,
2475 (ulong
)h
->carr_freelist
);
2477 printk(" icq_sp 0x%lx, irq_sp 0x%lx\n",
2478 (ulong
)h
->icq_sp
, (ulong
)h
->irq_sp
);
2480 printk(" no_scam 0x%x, tagqng_able 0x%x\n",
2481 (unsigned)h
->no_scam
, (unsigned)h
->tagqng_able
);
2483 printk(" chip_scsi_id 0x%x, cfg 0x%lx\n",
2484 (unsigned)h
->chip_scsi_id
, (ulong
)h
->cfg
);
2488 * asc_prt_adv_dvc_cfg()
2490 * Display an ADV_DVC_CFG structure.
2492 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG
*h
)
2494 printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong
)h
);
2496 printk(" disc_enable 0x%x, termination 0x%x\n",
2497 h
->disc_enable
, h
->termination
);
2499 printk(" chip_version 0x%x, mcode_date 0x%x\n",
2500 h
->chip_version
, h
->mcode_date
);
2502 printk(" mcode_version 0x%x, control_flag 0x%x\n",
2503 h
->mcode_version
, h
->control_flag
);
2507 * asc_prt_scsi_host()
2509 static void asc_prt_scsi_host(struct Scsi_Host
*s
)
2511 struct asc_board
*boardp
= shost_priv(s
);
2513 printk("Scsi_Host at addr 0x%p, device %s\n", s
, dev_name(boardp
->dev
));
2514 printk(" host_busy %u, host_no %d, last_reset %d,\n",
2515 s
->host_busy
, s
->host_no
, (unsigned)s
->last_reset
);
2517 printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2518 (ulong
)s
->base
, (ulong
)s
->io_port
, boardp
->irq
);
2520 printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2521 s
->dma_channel
, s
->this_id
, s
->can_queue
);
2523 printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
2524 s
->cmd_per_lun
, s
->sg_tablesize
, s
->unchecked_isa_dma
);
2526 if (ASC_NARROW_BOARD(boardp
)) {
2527 asc_prt_asc_dvc_var(&boardp
->dvc_var
.asc_dvc_var
);
2528 asc_prt_asc_dvc_cfg(&boardp
->dvc_cfg
.asc_dvc_cfg
);
2530 asc_prt_adv_dvc_var(&boardp
->dvc_var
.adv_dvc_var
);
2531 asc_prt_adv_dvc_cfg(&boardp
->dvc_cfg
.adv_dvc_cfg
);
2538 * Print hexadecimal output in 4 byte groupings 32 bytes
2539 * or 8 double-words per line.
2541 static void asc_prt_hex(char *f
, uchar
*s
, int l
)
2548 printk("%s: (%d bytes)\n", f
, l
);
2550 for (i
= 0; i
< l
; i
+= 32) {
2552 /* Display a maximum of 8 double-words per line. */
2553 if ((k
= (l
- i
) / 4) >= 8) {
2560 for (j
= 0; j
< k
; j
++) {
2561 printk(" %2.2X%2.2X%2.2X%2.2X",
2562 (unsigned)s
[i
+ (j
* 4)],
2563 (unsigned)s
[i
+ (j
* 4) + 1],
2564 (unsigned)s
[i
+ (j
* 4) + 2],
2565 (unsigned)s
[i
+ (j
* 4) + 3]);
2573 printk(" %2.2X", (unsigned)s
[i
+ (j
* 4)]);
2576 printk(" %2.2X%2.2X",
2577 (unsigned)s
[i
+ (j
* 4)],
2578 (unsigned)s
[i
+ (j
* 4) + 1]);
2581 printk(" %2.2X%2.2X%2.2X",
2582 (unsigned)s
[i
+ (j
* 4) + 1],
2583 (unsigned)s
[i
+ (j
* 4) + 2],
2584 (unsigned)s
[i
+ (j
* 4) + 3]);
2593 * asc_prt_asc_scsi_q()
2595 static void asc_prt_asc_scsi_q(ASC_SCSI_Q
*q
)
2600 printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong
)q
);
2603 (" target_ix 0x%x, target_lun %u, srb_ptr 0x%lx, tag_code 0x%x,\n",
2604 q
->q2
.target_ix
, q
->q1
.target_lun
, (ulong
)q
->q2
.srb_ptr
,
2608 (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2609 (ulong
)le32_to_cpu(q
->q1
.data_addr
),
2610 (ulong
)le32_to_cpu(q
->q1
.data_cnt
),
2611 (ulong
)le32_to_cpu(q
->q1
.sense_addr
), q
->q1
.sense_len
);
2613 printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2614 (ulong
)q
->cdbptr
, q
->q2
.cdb_len
,
2615 (ulong
)q
->sg_head
, q
->q1
.sg_queue_cnt
);
2619 printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong
)sgp
);
2620 printk(" entry_cnt %u, queue_cnt %u\n", sgp
->entry_cnt
,
2622 for (i
= 0; i
< sgp
->entry_cnt
; i
++) {
2623 printk(" [%u]: addr 0x%lx, bytes %lu\n",
2624 i
, (ulong
)le32_to_cpu(sgp
->sg_list
[i
].addr
),
2625 (ulong
)le32_to_cpu(sgp
->sg_list
[i
].bytes
));
2632 * asc_prt_asc_qdone_info()
2634 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO
*q
)
2636 printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong
)q
);
2637 printk(" srb_ptr 0x%lx, target_ix %u, cdb_len %u, tag_code %u,\n",
2638 (ulong
)q
->d2
.srb_ptr
, q
->d2
.target_ix
, q
->d2
.cdb_len
,
2641 (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2642 q
->d3
.done_stat
, q
->d3
.host_stat
, q
->d3
.scsi_stat
, q
->d3
.scsi_msg
);
2646 * asc_prt_adv_sgblock()
2648 * Display an ADV_SG_BLOCK structure.
2650 static void asc_prt_adv_sgblock(int sgblockno
, ADV_SG_BLOCK
*b
)
2654 printk(" ASC_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2655 (ulong
)b
, sgblockno
);
2656 printk(" sg_cnt %u, sg_ptr 0x%lx\n",
2657 b
->sg_cnt
, (ulong
)le32_to_cpu(b
->sg_ptr
));
2658 BUG_ON(b
->sg_cnt
> NO_OF_SG_PER_BLOCK
);
2660 BUG_ON(b
->sg_cnt
!= NO_OF_SG_PER_BLOCK
);
2661 for (i
= 0; i
< b
->sg_cnt
; i
++) {
2662 printk(" [%u]: sg_addr 0x%lx, sg_count 0x%lx\n",
2663 i
, (ulong
)b
->sg_list
[i
].sg_addr
,
2664 (ulong
)b
->sg_list
[i
].sg_count
);
2669 * asc_prt_adv_scsi_req_q()
2671 * Display an ADV_SCSI_REQ_Q structure.
2673 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q
*q
)
2676 struct asc_sg_block
*sg_ptr
;
2678 printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong
)q
);
2680 printk(" target_id %u, target_lun %u, srb_ptr 0x%lx, a_flag 0x%x\n",
2681 q
->target_id
, q
->target_lun
, (ulong
)q
->srb_ptr
, q
->a_flag
);
2683 printk(" cntl 0x%x, data_addr 0x%lx, vdata_addr 0x%lx\n",
2684 q
->cntl
, (ulong
)le32_to_cpu(q
->data_addr
), (ulong
)q
->vdata_addr
);
2686 printk(" data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2687 (ulong
)le32_to_cpu(q
->data_cnt
),
2688 (ulong
)le32_to_cpu(q
->sense_addr
), q
->sense_len
);
2691 (" cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2692 q
->cdb_len
, q
->done_status
, q
->host_status
, q
->scsi_status
);
2694 printk(" sg_working_ix 0x%x, target_cmd %u\n",
2695 q
->sg_working_ix
, q
->target_cmd
);
2697 printk(" scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2698 (ulong
)le32_to_cpu(q
->scsiq_rptr
),
2699 (ulong
)le32_to_cpu(q
->sg_real_addr
), (ulong
)q
->sg_list_ptr
);
2701 /* Display the request's ADV_SG_BLOCK structures. */
2702 if (q
->sg_list_ptr
!= NULL
) {
2706 * 'sg_ptr' is a physical address. Convert it to a virtual
2707 * address by indexing 'sg_blk_cnt' into the virtual address
2708 * array 'sg_list_ptr'.
2710 * XXX - Assumes all SG physical blocks are virtually contiguous.
2713 &(((ADV_SG_BLOCK
*)(q
->sg_list_ptr
))[sg_blk_cnt
]);
2714 asc_prt_adv_sgblock(sg_blk_cnt
, sg_ptr
);
2715 if (sg_ptr
->sg_ptr
== 0) {
2722 #endif /* ADVANSYS_DEBUG */
2725 * The advansys chip/microcode contains a 32-bit identifier for each command
2726 * known as the 'srb'. I don't know what it stands for. The driver used
2727 * to encode the scsi_cmnd pointer by calling virt_to_bus and retrieve it
2728 * with bus_to_virt. Now the driver keeps a per-host map of integers to
2729 * pointers. It auto-expands when full, unless it can't allocate memory.
2730 * Note that an srb of 0 is treated specially by the chip/firmware, hence
2731 * the return of i+1 in this routine, and the corresponding subtraction in
2732 * the inverse routine.
2735 static u32
advansys_ptr_to_srb(struct asc_dvc_var
*asc_dvc
, void *ptr
)
2740 for (i
= 0; i
< asc_dvc
->ptr_map_count
; i
++) {
2741 if (!asc_dvc
->ptr_map
[i
])
2745 if (asc_dvc
->ptr_map_count
== 0)
2746 asc_dvc
->ptr_map_count
= 1;
2748 asc_dvc
->ptr_map_count
*= 2;
2750 new_ptr
= krealloc(asc_dvc
->ptr_map
,
2751 asc_dvc
->ptr_map_count
* sizeof(void *), GFP_ATOMIC
);
2754 asc_dvc
->ptr_map
= new_ptr
;
2756 ASC_DBG(3, "Putting ptr %p into array offset %d\n", ptr
, i
);
2757 asc_dvc
->ptr_map
[i
] = ptr
;
2761 static void * advansys_srb_to_ptr(struct asc_dvc_var
*asc_dvc
, u32 srb
)
2766 if (srb
>= asc_dvc
->ptr_map_count
) {
2767 printk("advansys: bad SRB %u, max %u\n", srb
,
2768 asc_dvc
->ptr_map_count
);
2771 ptr
= asc_dvc
->ptr_map
[srb
];
2772 asc_dvc
->ptr_map
[srb
] = NULL
;
2773 ASC_DBG(3, "Returning ptr %p from array offset %d\n", ptr
, srb
);
2780 * Return suitable for printing on the console with the argument
2781 * adapter's configuration information.
2783 * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2784 * otherwise the static 'info' array will be overrun.
2786 static const char *advansys_info(struct Scsi_Host
*shost
)
2788 static char info
[ASC_INFO_SIZE
];
2789 struct asc_board
*boardp
= shost_priv(shost
);
2790 ASC_DVC_VAR
*asc_dvc_varp
;
2791 ADV_DVC_VAR
*adv_dvc_varp
;
2793 char *widename
= NULL
;
2795 if (ASC_NARROW_BOARD(boardp
)) {
2796 asc_dvc_varp
= &boardp
->dvc_var
.asc_dvc_var
;
2797 ASC_DBG(1, "begin\n");
2798 if (asc_dvc_varp
->bus_type
& ASC_IS_ISA
) {
2799 if ((asc_dvc_varp
->bus_type
& ASC_IS_ISAPNP
) ==
2801 busname
= "ISA PnP";
2806 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
2807 ASC_VERSION
, busname
,
2808 (ulong
)shost
->io_port
,
2809 (ulong
)shost
->io_port
+ ASC_IOADR_GAP
- 1,
2810 boardp
->irq
, shost
->dma_channel
);
2812 if (asc_dvc_varp
->bus_type
& ASC_IS_VL
) {
2814 } else if (asc_dvc_varp
->bus_type
& ASC_IS_EISA
) {
2816 } else if (asc_dvc_varp
->bus_type
& ASC_IS_PCI
) {
2817 if ((asc_dvc_varp
->bus_type
& ASC_IS_PCI_ULTRA
)
2818 == ASC_IS_PCI_ULTRA
) {
2819 busname
= "PCI Ultra";
2825 shost_printk(KERN_ERR
, shost
, "unknown bus "
2826 "type %d\n", asc_dvc_varp
->bus_type
);
2829 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2830 ASC_VERSION
, busname
, (ulong
)shost
->io_port
,
2831 (ulong
)shost
->io_port
+ ASC_IOADR_GAP
- 1,
2836 * Wide Adapter Information
2838 * Memory-mapped I/O is used instead of I/O space to access
2839 * the adapter, but display the I/O Port range. The Memory
2840 * I/O address is displayed through the driver /proc file.
2842 adv_dvc_varp
= &boardp
->dvc_var
.adv_dvc_var
;
2843 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
2844 widename
= "Ultra-Wide";
2845 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
2846 widename
= "Ultra2-Wide";
2848 widename
= "Ultra3-Wide";
2851 "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2852 ASC_VERSION
, widename
, (ulong
)adv_dvc_varp
->iop_base
,
2853 (ulong
)adv_dvc_varp
->iop_base
+ boardp
->asc_n_io_port
- 1, boardp
->irq
);
2855 BUG_ON(strlen(info
) >= ASC_INFO_SIZE
);
2856 ASC_DBG(1, "end\n");
2860 #ifdef CONFIG_PROC_FS
2863 * asc_prt_board_devices()
2865 * Print driver information for devices attached to the board.
2867 static void asc_prt_board_devices(struct seq_file
*m
, struct Scsi_Host
*shost
)
2869 struct asc_board
*boardp
= shost_priv(shost
);
2874 "\nDevice Information for AdvanSys SCSI Host %d:\n",
2877 if (ASC_NARROW_BOARD(boardp
)) {
2878 chip_scsi_id
= boardp
->dvc_cfg
.asc_dvc_cfg
.chip_scsi_id
;
2880 chip_scsi_id
= boardp
->dvc_var
.adv_dvc_var
.chip_scsi_id
;
2883 seq_printf(m
, "Target IDs Detected:");
2884 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
2885 if (boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
))
2886 seq_printf(m
, " %X,", i
);
2888 seq_printf(m
, " (%X=Host Adapter)\n", chip_scsi_id
);
2892 * Display Wide Board BIOS Information.
2894 static void asc_prt_adv_bios(struct seq_file
*m
, struct Scsi_Host
*shost
)
2896 struct asc_board
*boardp
= shost_priv(shost
);
2897 ushort major
, minor
, letter
;
2899 seq_printf(m
, "\nROM BIOS Version: ");
2902 * If the BIOS saved a valid signature, then fill in
2903 * the BIOS code segment base address.
2905 if (boardp
->bios_signature
!= 0x55AA) {
2906 seq_printf(m
, "Disabled or Pre-3.1\n");
2908 "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n");
2910 "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2912 major
= (boardp
->bios_version
>> 12) & 0xF;
2913 minor
= (boardp
->bios_version
>> 8) & 0xF;
2914 letter
= (boardp
->bios_version
& 0xFF);
2916 seq_printf(m
, "%d.%d%c\n",
2918 letter
>= 26 ? '?' : letter
+ 'A');
2920 * Current available ROM BIOS release is 3.1I for UW
2921 * and 3.2I for U2W. This code doesn't differentiate
2922 * UW and U2W boards.
2924 if (major
< 3 || (major
<= 3 && minor
< 1) ||
2925 (major
<= 3 && minor
<= 1 && letter
< ('I' - 'A'))) {
2927 "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n");
2929 "ftp://ftp.connectcom.net/pub\n");
2935 * Add serial number to information bar if signature AAh
2936 * is found in at bit 15-9 (7 bits) of word 1.
2938 * Serial Number consists fo 12 alpha-numeric digits.
2940 * 1 - Product type (A,B,C,D..) Word0: 15-13 (3 bits)
2941 * 2 - MFG Location (A,B,C,D..) Word0: 12-10 (3 bits)
2942 * 3-4 - Product ID (0-99) Word0: 9-0 (10 bits)
2943 * 5 - Product revision (A-J) Word0: " "
2945 * Signature Word1: 15-9 (7 bits)
2946 * 6 - Year (0-9) Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
2947 * 7-8 - Week of the year (1-52) Word1: 5-0 (6 bits)
2949 * 9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
2951 * Note 1: Only production cards will have a serial number.
2953 * Note 2: Signature is most significant 7 bits (0xFE).
2955 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
2957 static int asc_get_eeprom_string(ushort
*serialnum
, uchar
*cp
)
2961 if ((serialnum
[1] & 0xFE00) != ((ushort
)0xAA << 8)) {
2965 * First word - 6 digits.
2969 /* Product type - 1st digit. */
2970 if ((*cp
= 'A' + ((w
& 0xE000) >> 13)) == 'H') {
2971 /* Product type is P=Prototype */
2976 /* Manufacturing location - 2nd digit. */
2977 *cp
++ = 'A' + ((w
& 0x1C00) >> 10);
2979 /* Product ID - 3rd, 4th digits. */
2981 *cp
++ = '0' + (num
/ 100);
2983 *cp
++ = '0' + (num
/ 10);
2985 /* Product revision - 5th digit. */
2986 *cp
++ = 'A' + (num
% 10);
2996 * If bit 15 of third word is set, then the
2997 * last digit of the year is greater than 7.
2999 if (serialnum
[2] & 0x8000) {
3000 *cp
++ = '8' + ((w
& 0x1C0) >> 6);
3002 *cp
++ = '0' + ((w
& 0x1C0) >> 6);
3005 /* Week of year - 7th, 8th digits. */
3007 *cp
++ = '0' + num
/ 10;
3014 w
= serialnum
[2] & 0x7FFF;
3016 /* Serial number - 9th digit. */
3017 *cp
++ = 'A' + (w
/ 1000);
3019 /* 10th, 11th, 12th digits. */
3021 *cp
++ = '0' + num
/ 100;
3023 *cp
++ = '0' + num
/ 10;
3027 *cp
= '\0'; /* Null Terminate the string. */
3033 * asc_prt_asc_board_eeprom()
3035 * Print board EEPROM configuration.
3037 static void asc_prt_asc_board_eeprom(struct seq_file
*m
, struct Scsi_Host
*shost
)
3039 struct asc_board
*boardp
= shost_priv(shost
);
3040 ASC_DVC_VAR
*asc_dvc_varp
;
3044 int isa_dma_speed
[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
3045 #endif /* CONFIG_ISA */
3046 uchar serialstr
[13];
3048 asc_dvc_varp
= &boardp
->dvc_var
.asc_dvc_var
;
3049 ep
= &boardp
->eep_config
.asc_eep
;
3052 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3055 if (asc_get_eeprom_string((ushort
*)&ep
->adapter_info
[0], serialstr
)
3057 seq_printf(m
, " Serial Number: %s\n", serialstr
);
3058 else if (ep
->adapter_info
[5] == 0xBB)
3060 " Default Settings Used for EEPROM-less Adapter.\n");
3063 " Serial Number Signature Not Present.\n");
3066 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3067 ASC_EEP_GET_CHIP_ID(ep
), ep
->max_total_qng
,
3071 " cntl 0x%x, no_scam 0x%x\n", ep
->cntl
, ep
->no_scam
);
3073 seq_printf(m
, " Target ID: ");
3074 for (i
= 0; i
<= ASC_MAX_TID
; i
++)
3075 seq_printf(m
, " %d", i
);
3076 seq_printf(m
, "\n");
3078 seq_printf(m
, " Disconnects: ");
3079 for (i
= 0; i
<= ASC_MAX_TID
; i
++)
3080 seq_printf(m
, " %c",
3081 (ep
->disc_enable
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3082 seq_printf(m
, "\n");
3084 seq_printf(m
, " Command Queuing: ");
3085 for (i
= 0; i
<= ASC_MAX_TID
; i
++)
3086 seq_printf(m
, " %c",
3087 (ep
->use_cmd_qng
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3088 seq_printf(m
, "\n");
3090 seq_printf(m
, " Start Motor: ");
3091 for (i
= 0; i
<= ASC_MAX_TID
; i
++)
3092 seq_printf(m
, " %c",
3093 (ep
->start_motor
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3094 seq_printf(m
, "\n");
3096 seq_printf(m
, " Synchronous Transfer:");
3097 for (i
= 0; i
<= ASC_MAX_TID
; i
++)
3098 seq_printf(m
, " %c",
3099 (ep
->init_sdtr
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3100 seq_printf(m
, "\n");
3103 if (asc_dvc_varp
->bus_type
& ASC_IS_ISA
) {
3105 " Host ISA DMA speed: %d MB/S\n",
3106 isa_dma_speed
[ASC_EEP_GET_DMA_SPD(ep
)]);
3108 #endif /* CONFIG_ISA */
3112 * asc_prt_adv_board_eeprom()
3114 * Print board EEPROM configuration.
3116 static void asc_prt_adv_board_eeprom(struct seq_file
*m
, struct Scsi_Host
*shost
)
3118 struct asc_board
*boardp
= shost_priv(shost
);
3119 ADV_DVC_VAR
*adv_dvc_varp
;
3122 uchar serialstr
[13];
3123 ADVEEP_3550_CONFIG
*ep_3550
= NULL
;
3124 ADVEEP_38C0800_CONFIG
*ep_38C0800
= NULL
;
3125 ADVEEP_38C1600_CONFIG
*ep_38C1600
= NULL
;
3128 ushort sdtr_speed
= 0;
3130 adv_dvc_varp
= &boardp
->dvc_var
.adv_dvc_var
;
3131 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3132 ep_3550
= &boardp
->eep_config
.adv_3550_eep
;
3133 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3134 ep_38C0800
= &boardp
->eep_config
.adv_38C0800_eep
;
3136 ep_38C1600
= &boardp
->eep_config
.adv_38C1600_eep
;
3140 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3143 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3144 wordp
= &ep_3550
->serial_number_word1
;
3145 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3146 wordp
= &ep_38C0800
->serial_number_word1
;
3148 wordp
= &ep_38C1600
->serial_number_word1
;
3151 if (asc_get_eeprom_string(wordp
, serialstr
) == ASC_TRUE
)
3152 seq_printf(m
, " Serial Number: %s\n", serialstr
);
3154 seq_printf(m
, " Serial Number Signature Not Present.\n");
3156 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
)
3158 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3159 ep_3550
->adapter_scsi_id
,
3160 ep_3550
->max_host_qng
, ep_3550
->max_dvc_qng
);
3161 else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
)
3163 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3164 ep_38C0800
->adapter_scsi_id
,
3165 ep_38C0800
->max_host_qng
,
3166 ep_38C0800
->max_dvc_qng
);
3169 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3170 ep_38C1600
->adapter_scsi_id
,
3171 ep_38C1600
->max_host_qng
,
3172 ep_38C1600
->max_dvc_qng
);
3173 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3174 word
= ep_3550
->termination
;
3175 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3176 word
= ep_38C0800
->termination_lvd
;
3178 word
= ep_38C1600
->termination_lvd
;
3182 termstr
= "Low Off/High Off";
3185 termstr
= "Low Off/High On";
3188 termstr
= "Low On/High On";
3192 termstr
= "Automatic";
3196 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
)
3198 " termination: %u (%s), bios_ctrl: 0x%x\n",
3199 ep_3550
->termination
, termstr
,
3200 ep_3550
->bios_ctrl
);
3201 else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
)
3203 " termination: %u (%s), bios_ctrl: 0x%x\n",
3204 ep_38C0800
->termination_lvd
, termstr
,
3205 ep_38C0800
->bios_ctrl
);
3208 " termination: %u (%s), bios_ctrl: 0x%x\n",
3209 ep_38C1600
->termination_lvd
, termstr
,
3210 ep_38C1600
->bios_ctrl
);
3212 seq_printf(m
, " Target ID: ");
3213 for (i
= 0; i
<= ADV_MAX_TID
; i
++)
3214 seq_printf(m
, " %X", i
);
3215 seq_printf(m
, "\n");
3217 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3218 word
= ep_3550
->disc_enable
;
3219 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3220 word
= ep_38C0800
->disc_enable
;
3222 word
= ep_38C1600
->disc_enable
;
3224 seq_printf(m
, " Disconnects: ");
3225 for (i
= 0; i
<= ADV_MAX_TID
; i
++)
3226 seq_printf(m
, " %c",
3227 (word
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3228 seq_printf(m
, "\n");
3230 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3231 word
= ep_3550
->tagqng_able
;
3232 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3233 word
= ep_38C0800
->tagqng_able
;
3235 word
= ep_38C1600
->tagqng_able
;
3237 seq_printf(m
, " Command Queuing: ");
3238 for (i
= 0; i
<= ADV_MAX_TID
; i
++)
3239 seq_printf(m
, " %c",
3240 (word
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3241 seq_printf(m
, "\n");
3243 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3244 word
= ep_3550
->start_motor
;
3245 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3246 word
= ep_38C0800
->start_motor
;
3248 word
= ep_38C1600
->start_motor
;
3250 seq_printf(m
, " Start Motor: ");
3251 for (i
= 0; i
<= ADV_MAX_TID
; i
++)
3252 seq_printf(m
, " %c",
3253 (word
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3254 seq_printf(m
, "\n");
3256 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3257 seq_printf(m
, " Synchronous Transfer:");
3258 for (i
= 0; i
<= ADV_MAX_TID
; i
++)
3259 seq_printf(m
, " %c",
3260 (ep_3550
->sdtr_able
& ADV_TID_TO_TIDMASK(i
)) ?
3262 seq_printf(m
, "\n");
3265 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3266 seq_printf(m
, " Ultra Transfer: ");
3267 for (i
= 0; i
<= ADV_MAX_TID
; i
++)
3268 seq_printf(m
, " %c",
3269 (ep_3550
->ultra_able
& ADV_TID_TO_TIDMASK(i
))
3271 seq_printf(m
, "\n");
3274 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3275 word
= ep_3550
->wdtr_able
;
3276 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3277 word
= ep_38C0800
->wdtr_able
;
3279 word
= ep_38C1600
->wdtr_able
;
3281 seq_printf(m
, " Wide Transfer: ");
3282 for (i
= 0; i
<= ADV_MAX_TID
; i
++)
3283 seq_printf(m
, " %c",
3284 (word
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3285 seq_printf(m
, "\n");
3287 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
||
3288 adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C1600
) {
3290 " Synchronous Transfer Speed (Mhz):\n ");
3291 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3295 sdtr_speed
= adv_dvc_varp
->sdtr_speed1
;
3296 } else if (i
== 4) {
3297 sdtr_speed
= adv_dvc_varp
->sdtr_speed2
;
3298 } else if (i
== 8) {
3299 sdtr_speed
= adv_dvc_varp
->sdtr_speed3
;
3300 } else if (i
== 12) {
3301 sdtr_speed
= adv_dvc_varp
->sdtr_speed4
;
3303 switch (sdtr_speed
& ADV_MAX_TID
) {
3326 seq_printf(m
, "%X:%s ", i
, speed_str
);
3328 seq_printf(m
, "\n ");
3331 seq_printf(m
, "\n");
3336 * asc_prt_driver_conf()
3338 static void asc_prt_driver_conf(struct seq_file
*m
, struct Scsi_Host
*shost
)
3340 struct asc_board
*boardp
= shost_priv(shost
);
3344 "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3348 " host_busy %u, last_reset %lu, max_id %u, max_lun %u, max_channel %u\n",
3349 shost
->host_busy
, shost
->last_reset
, shost
->max_id
,
3350 shost
->max_lun
, shost
->max_channel
);
3353 " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3354 shost
->unique_id
, shost
->can_queue
, shost
->this_id
,
3355 shost
->sg_tablesize
, shost
->cmd_per_lun
);
3358 " unchecked_isa_dma %d, use_clustering %d\n",
3359 shost
->unchecked_isa_dma
, shost
->use_clustering
);
3362 " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n",
3363 boardp
->flags
, boardp
->last_reset
, jiffies
,
3364 boardp
->asc_n_io_port
);
3366 seq_printf(m
, " io_port 0x%lx\n", shost
->io_port
);
3368 if (ASC_NARROW_BOARD(boardp
)) {
3369 chip_scsi_id
= boardp
->dvc_cfg
.asc_dvc_cfg
.chip_scsi_id
;
3371 chip_scsi_id
= boardp
->dvc_var
.adv_dvc_var
.chip_scsi_id
;
3376 * asc_prt_asc_board_info()
3378 * Print dynamic board configuration information.
3380 static void asc_prt_asc_board_info(struct seq_file
*m
, struct Scsi_Host
*shost
)
3382 struct asc_board
*boardp
= shost_priv(shost
);
3387 int renegotiate
= 0;
3389 v
= &boardp
->dvc_var
.asc_dvc_var
;
3390 c
= &boardp
->dvc_cfg
.asc_dvc_cfg
;
3391 chip_scsi_id
= c
->chip_scsi_id
;
3394 "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3397 seq_printf(m
, " chip_version %u, mcode_date 0x%x, "
3398 "mcode_version 0x%x, err_code %u\n",
3399 c
->chip_version
, c
->mcode_date
, c
->mcode_version
,
3402 /* Current number of commands waiting for the host. */
3404 " Total Command Pending: %d\n", v
->cur_total_qng
);
3406 seq_printf(m
, " Command Queuing:");
3407 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3408 if ((chip_scsi_id
== i
) ||
3409 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3412 seq_printf(m
, " %X:%c",
3414 (v
->use_tagged_qng
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3416 seq_printf(m
, "\n");
3418 /* Current number of commands waiting for a device. */
3419 seq_printf(m
, " Command Queue Pending:");
3420 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3421 if ((chip_scsi_id
== i
) ||
3422 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3425 seq_printf(m
, " %X:%u", i
, v
->cur_dvc_qng
[i
]);
3427 seq_printf(m
, "\n");
3429 /* Current limit on number of commands that can be sent to a device. */
3430 seq_printf(m
, " Command Queue Limit:");
3431 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3432 if ((chip_scsi_id
== i
) ||
3433 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3436 seq_printf(m
, " %X:%u", i
, v
->max_dvc_qng
[i
]);
3438 seq_printf(m
, "\n");
3440 /* Indicate whether the device has returned queue full status. */
3441 seq_printf(m
, " Command Queue Full:");
3442 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3443 if ((chip_scsi_id
== i
) ||
3444 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3447 if (boardp
->queue_full
& ADV_TID_TO_TIDMASK(i
))
3448 seq_printf(m
, " %X:Y-%d",
3449 i
, boardp
->queue_full_cnt
[i
]);
3451 seq_printf(m
, " %X:N", i
);
3453 seq_printf(m
, "\n");
3455 seq_printf(m
, " Synchronous Transfer:");
3456 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3457 if ((chip_scsi_id
== i
) ||
3458 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3461 seq_printf(m
, " %X:%c",
3463 (v
->sdtr_done
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3465 seq_printf(m
, "\n");
3467 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3468 uchar syn_period_ix
;
3470 if ((chip_scsi_id
== i
) ||
3471 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0) ||
3472 ((v
->init_sdtr
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3476 seq_printf(m
, " %X:", i
);
3478 if ((boardp
->sdtr_data
[i
] & ASC_SYN_MAX_OFFSET
) == 0) {
3479 seq_printf(m
, " Asynchronous");
3482 (boardp
->sdtr_data
[i
] >> 4) & (v
->max_sdtr_index
-
3486 " Transfer Period Factor: %d (%d.%d Mhz),",
3487 v
->sdtr_period_tbl
[syn_period_ix
],
3488 250 / v
->sdtr_period_tbl
[syn_period_ix
],
3490 v
->sdtr_period_tbl
[syn_period_ix
]));
3492 seq_printf(m
, " REQ/ACK Offset: %d",
3493 boardp
->sdtr_data
[i
] & ASC_SYN_MAX_OFFSET
);
3496 if ((v
->sdtr_done
& ADV_TID_TO_TIDMASK(i
)) == 0) {
3497 seq_printf(m
, "*\n");
3500 seq_printf(m
, "\n");
3506 " * = Re-negotiation pending before next command.\n");
3511 * asc_prt_adv_board_info()
3513 * Print dynamic board configuration information.
3515 static void asc_prt_adv_board_info(struct seq_file
*m
, struct Scsi_Host
*shost
)
3517 struct asc_board
*boardp
= shost_priv(shost
);
3521 AdvPortAddr iop_base
;
3522 ushort chip_scsi_id
;
3526 ushort sdtr_able
, wdtr_able
;
3527 ushort wdtr_done
, sdtr_done
;
3529 int renegotiate
= 0;
3531 v
= &boardp
->dvc_var
.adv_dvc_var
;
3532 c
= &boardp
->dvc_cfg
.adv_dvc_cfg
;
3533 iop_base
= v
->iop_base
;
3534 chip_scsi_id
= v
->chip_scsi_id
;
3537 "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3541 " iop_base 0x%lx, cable_detect: %X, err_code %u\n",
3542 (unsigned long)v
->iop_base
,
3543 AdvReadWordRegister(iop_base
,IOPW_SCSI_CFG1
) & CABLE_DETECT
,
3546 seq_printf(m
, " chip_version %u, mcode_date 0x%x, "
3547 "mcode_version 0x%x\n", c
->chip_version
,
3548 c
->mcode_date
, c
->mcode_version
);
3550 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
3551 seq_printf(m
, " Queuing Enabled:");
3552 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3553 if ((chip_scsi_id
== i
) ||
3554 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3558 seq_printf(m
, " %X:%c",
3560 (tagqng_able
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3562 seq_printf(m
, "\n");
3564 seq_printf(m
, " Queue Limit:");
3565 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3566 if ((chip_scsi_id
== i
) ||
3567 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3571 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ i
,
3574 seq_printf(m
, " %X:%d", i
, lrambyte
);
3576 seq_printf(m
, "\n");
3578 seq_printf(m
, " Command Pending:");
3579 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3580 if ((chip_scsi_id
== i
) ||
3581 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3585 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_QUEUED_CMD
+ i
,
3588 seq_printf(m
, " %X:%d", i
, lrambyte
);
3590 seq_printf(m
, "\n");
3592 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
3593 seq_printf(m
, " Wide Enabled:");
3594 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3595 if ((chip_scsi_id
== i
) ||
3596 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3600 seq_printf(m
, " %X:%c",
3602 (wdtr_able
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3604 seq_printf(m
, "\n");
3606 AdvReadWordLram(iop_base
, ASC_MC_WDTR_DONE
, wdtr_done
);
3607 seq_printf(m
, " Transfer Bit Width:");
3608 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3609 if ((chip_scsi_id
== i
) ||
3610 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3614 AdvReadWordLram(iop_base
,
3615 ASC_MC_DEVICE_HSHK_CFG_TABLE
+ (2 * i
),
3618 seq_printf(m
, " %X:%d",
3619 i
, (lramword
& 0x8000) ? 16 : 8);
3621 if ((wdtr_able
& ADV_TID_TO_TIDMASK(i
)) &&
3622 (wdtr_done
& ADV_TID_TO_TIDMASK(i
)) == 0) {
3627 seq_printf(m
, "\n");
3629 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
3630 seq_printf(m
, " Synchronous Enabled:");
3631 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3632 if ((chip_scsi_id
== i
) ||
3633 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3637 seq_printf(m
, " %X:%c",
3639 (sdtr_able
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3641 seq_printf(m
, "\n");
3643 AdvReadWordLram(iop_base
, ASC_MC_SDTR_DONE
, sdtr_done
);
3644 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3646 AdvReadWordLram(iop_base
,
3647 ASC_MC_DEVICE_HSHK_CFG_TABLE
+ (2 * i
),
3649 lramword
&= ~0x8000;
3651 if ((chip_scsi_id
== i
) ||
3652 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0) ||
3653 ((sdtr_able
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3657 seq_printf(m
, " %X:", i
);
3659 if ((lramword
& 0x1F) == 0) { /* Check for REQ/ACK Offset 0. */
3660 seq_printf(m
, " Asynchronous");
3662 seq_printf(m
, " Transfer Period Factor: ");
3664 if ((lramword
& 0x1F00) == 0x1100) { /* 80 Mhz */
3665 seq_printf(m
, "9 (80.0 Mhz),");
3666 } else if ((lramword
& 0x1F00) == 0x1000) { /* 40 Mhz */
3667 seq_printf(m
, "10 (40.0 Mhz),");
3668 } else { /* 20 Mhz or below. */
3670 period
= (((lramword
>> 8) * 25) + 50) / 4;
3672 if (period
== 0) { /* Should never happen. */
3673 seq_printf(m
, "%d (? Mhz), ", period
);
3677 period
, 250 / period
,
3678 ASC_TENTHS(250, period
));
3682 seq_printf(m
, " REQ/ACK Offset: %d",
3686 if ((sdtr_done
& ADV_TID_TO_TIDMASK(i
)) == 0) {
3687 seq_printf(m
, "*\n");
3690 seq_printf(m
, "\n");
3696 " * = Re-negotiation pending before next command.\n");
3700 #ifdef ADVANSYS_STATS
3702 * asc_prt_board_stats()
3704 static void asc_prt_board_stats(struct seq_file
*m
, struct Scsi_Host
*shost
)
3706 struct asc_board
*boardp
= shost_priv(shost
);
3707 struct asc_stats
*s
= &boardp
->asc_stats
;
3710 "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
3714 " queuecommand %u, reset %u, biosparam %u, interrupt %u\n",
3715 s
->queuecommand
, s
->reset
, s
->biosparam
,
3719 " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n",
3720 s
->callback
, s
->done
, s
->build_error
,
3721 s
->adv_build_noreq
, s
->adv_build_nosg
);
3724 " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n",
3725 s
->exe_noerror
, s
->exe_busy
, s
->exe_error
,
3729 * Display data transfer statistics.
3731 if (s
->xfer_cnt
> 0) {
3732 seq_printf(m
, " xfer_cnt %u, xfer_elem %u, ",
3733 s
->xfer_cnt
, s
->xfer_elem
);
3735 seq_printf(m
, "xfer_bytes %u.%01u kb\n",
3736 s
->xfer_sect
/ 2, ASC_TENTHS(s
->xfer_sect
, 2));
3738 /* Scatter gather transfer statistics */
3739 seq_printf(m
, " avg_num_elem %u.%01u, ",
3740 s
->xfer_elem
/ s
->xfer_cnt
,
3741 ASC_TENTHS(s
->xfer_elem
, s
->xfer_cnt
));
3743 seq_printf(m
, "avg_elem_size %u.%01u kb, ",
3744 (s
->xfer_sect
/ 2) / s
->xfer_elem
,
3745 ASC_TENTHS((s
->xfer_sect
/ 2), s
->xfer_elem
));
3747 seq_printf(m
, "avg_xfer_size %u.%01u kb\n",
3748 (s
->xfer_sect
/ 2) / s
->xfer_cnt
,
3749 ASC_TENTHS((s
->xfer_sect
/ 2), s
->xfer_cnt
));
3752 #endif /* ADVANSYS_STATS */
3755 * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...}
3757 * m: seq_file to print into
3760 * Return the number of bytes read from or written to a
3761 * /proc/scsi/advansys/[0...] file.
3764 advansys_show_info(struct seq_file
*m
, struct Scsi_Host
*shost
)
3766 struct asc_board
*boardp
= shost_priv(shost
);
3768 ASC_DBG(1, "begin\n");
3771 * User read of /proc/scsi/advansys/[0...] file.
3775 * Get board configuration information.
3777 * advansys_info() returns the board string from its own static buffer.
3779 /* Copy board information. */
3780 seq_printf(m
, "%s\n", (char *)advansys_info(shost
));
3782 * Display Wide Board BIOS Information.
3784 if (!ASC_NARROW_BOARD(boardp
))
3785 asc_prt_adv_bios(m
, shost
);
3788 * Display driver information for each device attached to the board.
3790 asc_prt_board_devices(m
, shost
);
3793 * Display EEPROM configuration for the board.
3795 if (ASC_NARROW_BOARD(boardp
))
3796 asc_prt_asc_board_eeprom(m
, shost
);
3798 asc_prt_adv_board_eeprom(m
, shost
);
3801 * Display driver configuration and information for the board.
3803 asc_prt_driver_conf(m
, shost
);
3805 #ifdef ADVANSYS_STATS
3807 * Display driver statistics for the board.
3809 asc_prt_board_stats(m
, shost
);
3810 #endif /* ADVANSYS_STATS */
3813 * Display Asc Library dynamic configuration information
3816 if (ASC_NARROW_BOARD(boardp
))
3817 asc_prt_asc_board_info(m
, shost
);
3819 asc_prt_adv_board_info(m
, shost
);
3822 #endif /* CONFIG_PROC_FS */
3824 static void asc_scsi_done(struct scsi_cmnd
*scp
)
3826 scsi_dma_unmap(scp
);
3827 ASC_STATS(scp
->device
->host
, done
);
3828 scp
->scsi_done(scp
);
3831 static void AscSetBank(PortAddr iop_base
, uchar bank
)
3835 val
= AscGetChipControl(iop_base
) &
3837 (CC_SINGLE_STEP
| CC_TEST
| CC_DIAG
| CC_SCSI_RESET
|
3841 } else if (bank
== 2) {
3842 val
|= CC_DIAG
| CC_BANK_ONE
;
3844 val
&= ~CC_BANK_ONE
;
3846 AscSetChipControl(iop_base
, val
);
3849 static void AscSetChipIH(PortAddr iop_base
, ushort ins_code
)
3851 AscSetBank(iop_base
, 1);
3852 AscWriteChipIH(iop_base
, ins_code
);
3853 AscSetBank(iop_base
, 0);
3856 static int AscStartChip(PortAddr iop_base
)
3858 AscSetChipControl(iop_base
, 0);
3859 if ((AscGetChipStatus(iop_base
) & CSW_HALTED
) != 0) {
3865 static int AscStopChip(PortAddr iop_base
)
3870 AscGetChipControl(iop_base
) &
3871 (~(CC_SINGLE_STEP
| CC_TEST
| CC_DIAG
));
3872 AscSetChipControl(iop_base
, (uchar
)(cc_val
| CC_HALT
));
3873 AscSetChipIH(iop_base
, INS_HALT
);
3874 AscSetChipIH(iop_base
, INS_RFLAG_WTM
);
3875 if ((AscGetChipStatus(iop_base
) & CSW_HALTED
) == 0) {
3881 static int AscIsChipHalted(PortAddr iop_base
)
3883 if ((AscGetChipStatus(iop_base
) & CSW_HALTED
) != 0) {
3884 if ((AscGetChipControl(iop_base
) & CC_HALT
) != 0) {
3891 static int AscResetChipAndScsiBus(ASC_DVC_VAR
*asc_dvc
)
3896 iop_base
= asc_dvc
->iop_base
;
3897 while ((AscGetChipStatus(iop_base
) & CSW_SCSI_RESET_ACTIVE
)
3901 AscStopChip(iop_base
);
3902 AscSetChipControl(iop_base
, CC_CHIP_RESET
| CC_SCSI_RESET
| CC_HALT
);
3904 AscSetChipIH(iop_base
, INS_RFLAG_WTM
);
3905 AscSetChipIH(iop_base
, INS_HALT
);
3906 AscSetChipControl(iop_base
, CC_CHIP_RESET
| CC_HALT
);
3907 AscSetChipControl(iop_base
, CC_HALT
);
3909 AscSetChipStatus(iop_base
, CIW_CLR_SCSI_RESET_INT
);
3910 AscSetChipStatus(iop_base
, 0);
3911 return (AscIsChipHalted(iop_base
));
3914 static int AscFindSignature(PortAddr iop_base
)
3918 ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
3919 iop_base
, AscGetChipSignatureByte(iop_base
));
3920 if (AscGetChipSignatureByte(iop_base
) == (uchar
)ASC_1000_ID1B
) {
3921 ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
3922 iop_base
, AscGetChipSignatureWord(iop_base
));
3923 sig_word
= AscGetChipSignatureWord(iop_base
);
3924 if ((sig_word
== (ushort
)ASC_1000_ID0W
) ||
3925 (sig_word
== (ushort
)ASC_1000_ID0W_FIX
)) {
3932 static void AscEnableInterrupt(PortAddr iop_base
)
3936 cfg
= AscGetChipCfgLsw(iop_base
);
3937 AscSetChipCfgLsw(iop_base
, cfg
| ASC_CFG0_HOST_INT_ON
);
3940 static void AscDisableInterrupt(PortAddr iop_base
)
3944 cfg
= AscGetChipCfgLsw(iop_base
);
3945 AscSetChipCfgLsw(iop_base
, cfg
& (~ASC_CFG0_HOST_INT_ON
));
3948 static uchar
AscReadLramByte(PortAddr iop_base
, ushort addr
)
3950 unsigned char byte_data
;
3951 unsigned short word_data
;
3953 if (isodd_word(addr
)) {
3954 AscSetChipLramAddr(iop_base
, addr
- 1);
3955 word_data
= AscGetChipLramData(iop_base
);
3956 byte_data
= (word_data
>> 8) & 0xFF;
3958 AscSetChipLramAddr(iop_base
, addr
);
3959 word_data
= AscGetChipLramData(iop_base
);
3960 byte_data
= word_data
& 0xFF;
3965 static ushort
AscReadLramWord(PortAddr iop_base
, ushort addr
)
3969 AscSetChipLramAddr(iop_base
, addr
);
3970 word_data
= AscGetChipLramData(iop_base
);
3974 #if CC_VERY_LONG_SG_LIST
3975 static ASC_DCNT
AscReadLramDWord(PortAddr iop_base
, ushort addr
)
3977 ushort val_low
, val_high
;
3978 ASC_DCNT dword_data
;
3980 AscSetChipLramAddr(iop_base
, addr
);
3981 val_low
= AscGetChipLramData(iop_base
);
3982 val_high
= AscGetChipLramData(iop_base
);
3983 dword_data
= ((ASC_DCNT
) val_high
<< 16) | (ASC_DCNT
) val_low
;
3984 return (dword_data
);
3986 #endif /* CC_VERY_LONG_SG_LIST */
3989 AscMemWordSetLram(PortAddr iop_base
, ushort s_addr
, ushort set_wval
, int words
)
3993 AscSetChipLramAddr(iop_base
, s_addr
);
3994 for (i
= 0; i
< words
; i
++) {
3995 AscSetChipLramData(iop_base
, set_wval
);
3999 static void AscWriteLramWord(PortAddr iop_base
, ushort addr
, ushort word_val
)
4001 AscSetChipLramAddr(iop_base
, addr
);
4002 AscSetChipLramData(iop_base
, word_val
);
4005 static void AscWriteLramByte(PortAddr iop_base
, ushort addr
, uchar byte_val
)
4009 if (isodd_word(addr
)) {
4011 word_data
= AscReadLramWord(iop_base
, addr
);
4012 word_data
&= 0x00FF;
4013 word_data
|= (((ushort
)byte_val
<< 8) & 0xFF00);
4015 word_data
= AscReadLramWord(iop_base
, addr
);
4016 word_data
&= 0xFF00;
4017 word_data
|= ((ushort
)byte_val
& 0x00FF);
4019 AscWriteLramWord(iop_base
, addr
, word_data
);
4023 * Copy 2 bytes to LRAM.
4025 * The source data is assumed to be in little-endian order in memory
4026 * and is maintained in little-endian order when written to LRAM.
4029 AscMemWordCopyPtrToLram(PortAddr iop_base
, ushort s_addr
,
4030 const uchar
*s_buffer
, int words
)
4034 AscSetChipLramAddr(iop_base
, s_addr
);
4035 for (i
= 0; i
< 2 * words
; i
+= 2) {
4037 * On a little-endian system the second argument below
4038 * produces a little-endian ushort which is written to
4039 * LRAM in little-endian order. On a big-endian system
4040 * the second argument produces a big-endian ushort which
4041 * is "transparently" byte-swapped by outpw() and written
4042 * in little-endian order to LRAM.
4044 outpw(iop_base
+ IOP_RAM_DATA
,
4045 ((ushort
)s_buffer
[i
+ 1] << 8) | s_buffer
[i
]);
4050 * Copy 4 bytes to LRAM.
4052 * The source data is assumed to be in little-endian order in memory
4053 * and is maintained in little-endian order when written to LRAM.
4056 AscMemDWordCopyPtrToLram(PortAddr iop_base
,
4057 ushort s_addr
, uchar
*s_buffer
, int dwords
)
4061 AscSetChipLramAddr(iop_base
, s_addr
);
4062 for (i
= 0; i
< 4 * dwords
; i
+= 4) {
4063 outpw(iop_base
+ IOP_RAM_DATA
, ((ushort
)s_buffer
[i
+ 1] << 8) | s_buffer
[i
]); /* LSW */
4064 outpw(iop_base
+ IOP_RAM_DATA
, ((ushort
)s_buffer
[i
+ 3] << 8) | s_buffer
[i
+ 2]); /* MSW */
4069 * Copy 2 bytes from LRAM.
4071 * The source data is assumed to be in little-endian order in LRAM
4072 * and is maintained in little-endian order when written to memory.
4075 AscMemWordCopyPtrFromLram(PortAddr iop_base
,
4076 ushort s_addr
, uchar
*d_buffer
, int words
)
4081 AscSetChipLramAddr(iop_base
, s_addr
);
4082 for (i
= 0; i
< 2 * words
; i
+= 2) {
4083 word
= inpw(iop_base
+ IOP_RAM_DATA
);
4084 d_buffer
[i
] = word
& 0xff;
4085 d_buffer
[i
+ 1] = (word
>> 8) & 0xff;
4089 static ASC_DCNT
AscMemSumLramWord(PortAddr iop_base
, ushort s_addr
, int words
)
4095 for (i
= 0; i
< words
; i
++, s_addr
+= 2) {
4096 sum
+= AscReadLramWord(iop_base
, s_addr
);
4101 static ushort
AscInitLram(ASC_DVC_VAR
*asc_dvc
)
4108 iop_base
= asc_dvc
->iop_base
;
4110 AscMemWordSetLram(iop_base
, ASC_QADR_BEG
, 0,
4111 (ushort
)(((int)(asc_dvc
->max_total_qng
+ 2 + 1) *
4113 i
= ASC_MIN_ACTIVE_QNO
;
4114 s_addr
= ASC_QADR_BEG
+ ASC_QBLK_SIZE
;
4115 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_FWD
),
4117 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_BWD
),
4118 (uchar
)(asc_dvc
->max_total_qng
));
4119 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_QNO
),
4122 s_addr
+= ASC_QBLK_SIZE
;
4123 for (; i
< asc_dvc
->max_total_qng
; i
++, s_addr
+= ASC_QBLK_SIZE
) {
4124 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_FWD
),
4126 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_BWD
),
4128 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_QNO
),
4131 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_FWD
),
4132 (uchar
)ASC_QLINK_END
);
4133 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_BWD
),
4134 (uchar
)(asc_dvc
->max_total_qng
- 1));
4135 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_QNO
),
4136 (uchar
)asc_dvc
->max_total_qng
);
4138 s_addr
+= ASC_QBLK_SIZE
;
4139 for (; i
<= (uchar
)(asc_dvc
->max_total_qng
+ 3);
4140 i
++, s_addr
+= ASC_QBLK_SIZE
) {
4141 AscWriteLramByte(iop_base
,
4142 (ushort
)(s_addr
+ (ushort
)ASC_SCSIQ_B_FWD
), i
);
4143 AscWriteLramByte(iop_base
,
4144 (ushort
)(s_addr
+ (ushort
)ASC_SCSIQ_B_BWD
), i
);
4145 AscWriteLramByte(iop_base
,
4146 (ushort
)(s_addr
+ (ushort
)ASC_SCSIQ_B_QNO
), i
);
4152 AscLoadMicroCode(PortAddr iop_base
, ushort s_addr
,
4153 const uchar
*mcode_buf
, ushort mcode_size
)
4156 ushort mcode_word_size
;
4157 ushort mcode_chksum
;
4159 /* Write the microcode buffer starting at LRAM address 0. */
4160 mcode_word_size
= (ushort
)(mcode_size
>> 1);
4161 AscMemWordSetLram(iop_base
, s_addr
, 0, mcode_word_size
);
4162 AscMemWordCopyPtrToLram(iop_base
, s_addr
, mcode_buf
, mcode_word_size
);
4164 chksum
= AscMemSumLramWord(iop_base
, s_addr
, mcode_word_size
);
4165 ASC_DBG(1, "chksum 0x%lx\n", (ulong
)chksum
);
4166 mcode_chksum
= (ushort
)AscMemSumLramWord(iop_base
,
4167 (ushort
)ASC_CODE_SEC_BEG
,
4168 (ushort
)((mcode_size
-
4172 ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong
)mcode_chksum
);
4173 AscWriteLramWord(iop_base
, ASCV_MCODE_CHKSUM_W
, mcode_chksum
);
4174 AscWriteLramWord(iop_base
, ASCV_MCODE_SIZE_W
, mcode_size
);
4178 static void AscInitQLinkVar(ASC_DVC_VAR
*asc_dvc
)
4184 iop_base
= asc_dvc
->iop_base
;
4185 AscPutRiscVarFreeQHead(iop_base
, 1);
4186 AscPutRiscVarDoneQTail(iop_base
, asc_dvc
->max_total_qng
);
4187 AscPutVarFreeQHead(iop_base
, 1);
4188 AscPutVarDoneQTail(iop_base
, asc_dvc
->max_total_qng
);
4189 AscWriteLramByte(iop_base
, ASCV_BUSY_QHEAD_B
,
4190 (uchar
)((int)asc_dvc
->max_total_qng
+ 1));
4191 AscWriteLramByte(iop_base
, ASCV_DISC1_QHEAD_B
,
4192 (uchar
)((int)asc_dvc
->max_total_qng
+ 2));
4193 AscWriteLramByte(iop_base
, (ushort
)ASCV_TOTAL_READY_Q_B
,
4194 asc_dvc
->max_total_qng
);
4195 AscWriteLramWord(iop_base
, ASCV_ASCDVC_ERR_CODE_W
, 0);
4196 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
4197 AscWriteLramByte(iop_base
, ASCV_STOP_CODE_B
, 0);
4198 AscWriteLramByte(iop_base
, ASCV_SCSIBUSY_B
, 0);
4199 AscWriteLramByte(iop_base
, ASCV_WTM_FLAG_B
, 0);
4200 AscPutQDoneInProgress(iop_base
, 0);
4201 lram_addr
= ASC_QADR_BEG
;
4202 for (i
= 0; i
< 32; i
++, lram_addr
+= 2) {
4203 AscWriteLramWord(iop_base
, lram_addr
, 0);
4207 static ushort
AscInitMicroCodeVar(ASC_DVC_VAR
*asc_dvc
)
4214 struct asc_board
*board
= asc_dvc_to_board(asc_dvc
);
4216 iop_base
= asc_dvc
->iop_base
;
4218 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
4219 AscPutMCodeInitSDTRAtID(iop_base
, i
,
4220 asc_dvc
->cfg
->sdtr_period_offset
[i
]);
4223 AscInitQLinkVar(asc_dvc
);
4224 AscWriteLramByte(iop_base
, ASCV_DISC_ENABLE_B
,
4225 asc_dvc
->cfg
->disc_enable
);
4226 AscWriteLramByte(iop_base
, ASCV_HOSTSCSI_ID_B
,
4227 ASC_TID_TO_TARGET_ID(asc_dvc
->cfg
->chip_scsi_id
));
4229 /* Ensure overrun buffer is aligned on an 8 byte boundary. */
4230 BUG_ON((unsigned long)asc_dvc
->overrun_buf
& 7);
4231 asc_dvc
->overrun_dma
= dma_map_single(board
->dev
, asc_dvc
->overrun_buf
,
4232 ASC_OVERRUN_BSIZE
, DMA_FROM_DEVICE
);
4233 if (dma_mapping_error(board
->dev
, asc_dvc
->overrun_dma
)) {
4234 warn_code
= -ENOMEM
;
4237 phy_addr
= cpu_to_le32(asc_dvc
->overrun_dma
);
4238 AscMemDWordCopyPtrToLram(iop_base
, ASCV_OVERRUN_PADDR_D
,
4239 (uchar
*)&phy_addr
, 1);
4240 phy_size
= cpu_to_le32(ASC_OVERRUN_BSIZE
);
4241 AscMemDWordCopyPtrToLram(iop_base
, ASCV_OVERRUN_BSIZE_D
,
4242 (uchar
*)&phy_size
, 1);
4244 asc_dvc
->cfg
->mcode_date
=
4245 AscReadLramWord(iop_base
, (ushort
)ASCV_MC_DATE_W
);
4246 asc_dvc
->cfg
->mcode_version
=
4247 AscReadLramWord(iop_base
, (ushort
)ASCV_MC_VER_W
);
4249 AscSetPCAddr(iop_base
, ASC_MCODE_START_ADDR
);
4250 if (AscGetPCAddr(iop_base
) != ASC_MCODE_START_ADDR
) {
4251 asc_dvc
->err_code
|= ASC_IERR_SET_PC_ADDR
;
4253 goto err_mcode_start
;
4255 if (AscStartChip(iop_base
) != 1) {
4256 asc_dvc
->err_code
|= ASC_IERR_START_STOP_CHIP
;
4258 goto err_mcode_start
;
4264 dma_unmap_single(board
->dev
, asc_dvc
->overrun_dma
,
4265 ASC_OVERRUN_BSIZE
, DMA_FROM_DEVICE
);
4267 asc_dvc
->overrun_dma
= 0;
4271 static ushort
AscInitAsc1000Driver(ASC_DVC_VAR
*asc_dvc
)
4273 const struct firmware
*fw
;
4274 const char fwname
[] = "advansys/mcode.bin";
4276 unsigned long chksum
;
4280 iop_base
= asc_dvc
->iop_base
;
4282 if ((asc_dvc
->dvc_cntl
& ASC_CNTL_RESET_SCSI
) &&
4283 !(asc_dvc
->init_state
& ASC_INIT_RESET_SCSI_DONE
)) {
4284 AscResetChipAndScsiBus(asc_dvc
);
4285 mdelay(asc_dvc
->scsi_reset_wait
* 1000); /* XXX: msleep? */
4287 asc_dvc
->init_state
|= ASC_INIT_STATE_BEG_LOAD_MC
;
4288 if (asc_dvc
->err_code
!= 0)
4290 if (!AscFindSignature(asc_dvc
->iop_base
)) {
4291 asc_dvc
->err_code
= ASC_IERR_BAD_SIGNATURE
;
4294 AscDisableInterrupt(iop_base
);
4295 warn_code
|= AscInitLram(asc_dvc
);
4296 if (asc_dvc
->err_code
!= 0)
4299 err
= request_firmware(&fw
, fwname
, asc_dvc
->drv_ptr
->dev
);
4301 printk(KERN_ERR
"Failed to load image \"%s\" err %d\n",
4303 asc_dvc
->err_code
|= ASC_IERR_MCODE_CHKSUM
;
4307 printk(KERN_ERR
"Bogus length %zu in image \"%s\"\n",
4309 release_firmware(fw
);
4310 asc_dvc
->err_code
|= ASC_IERR_MCODE_CHKSUM
;
4313 chksum
= (fw
->data
[3] << 24) | (fw
->data
[2] << 16) |
4314 (fw
->data
[1] << 8) | fw
->data
[0];
4315 ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong
)chksum
);
4316 if (AscLoadMicroCode(iop_base
, 0, &fw
->data
[4],
4317 fw
->size
- 4) != chksum
) {
4318 asc_dvc
->err_code
|= ASC_IERR_MCODE_CHKSUM
;
4319 release_firmware(fw
);
4322 release_firmware(fw
);
4323 warn_code
|= AscInitMicroCodeVar(asc_dvc
);
4324 if (!asc_dvc
->overrun_dma
)
4326 asc_dvc
->init_state
|= ASC_INIT_STATE_END_LOAD_MC
;
4327 AscEnableInterrupt(iop_base
);
4332 * Load the Microcode
4334 * Write the microcode image to RISC memory starting at address 0.
4336 * The microcode is stored compressed in the following format:
4338 * 254 word (508 byte) table indexed by byte code followed
4339 * by the following byte codes:
4342 * 00: Emit word 0 in table.
4343 * 01: Emit word 1 in table.
4345 * FD: Emit word 253 in table.
4348 * FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4349 * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4351 * Returns 0 or an error if the checksum doesn't match
4353 static int AdvLoadMicrocode(AdvPortAddr iop_base
, const unsigned char *buf
,
4354 int size
, int memsize
, int chksum
)
4356 int i
, j
, end
, len
= 0;
4359 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, 0);
4361 for (i
= 253 * 2; i
< size
; i
++) {
4362 if (buf
[i
] == 0xff) {
4363 unsigned short word
= (buf
[i
+ 3] << 8) | buf
[i
+ 2];
4364 for (j
= 0; j
< buf
[i
+ 1]; j
++) {
4365 AdvWriteWordAutoIncLram(iop_base
, word
);
4369 } else if (buf
[i
] == 0xfe) {
4370 unsigned short word
= (buf
[i
+ 2] << 8) | buf
[i
+ 1];
4371 AdvWriteWordAutoIncLram(iop_base
, word
);
4375 unsigned int off
= buf
[i
] * 2;
4376 unsigned short word
= (buf
[off
+ 1] << 8) | buf
[off
];
4377 AdvWriteWordAutoIncLram(iop_base
, word
);
4384 while (len
< memsize
) {
4385 AdvWriteWordAutoIncLram(iop_base
, 0);
4389 /* Verify the microcode checksum. */
4391 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, 0);
4393 for (len
= 0; len
< end
; len
+= 2) {
4394 sum
+= AdvReadWordAutoIncLram(iop_base
);
4398 return ASC_IERR_MCODE_CHKSUM
;
4403 static void AdvBuildCarrierFreelist(struct adv_dvc_var
*asc_dvc
)
4407 ADV_PADDR carr_paddr
;
4409 carrp
= (ADV_CARR_T
*) ADV_16BALIGN(asc_dvc
->carrier_buf
);
4410 asc_dvc
->carr_freelist
= NULL
;
4411 if (carrp
== asc_dvc
->carrier_buf
) {
4412 buf_size
= ADV_CARRIER_BUFSIZE
;
4414 buf_size
= ADV_CARRIER_BUFSIZE
- sizeof(ADV_CARR_T
);
4418 /* Get physical address of the carrier 'carrp'. */
4419 carr_paddr
= cpu_to_le32(virt_to_bus(carrp
));
4421 buf_size
-= sizeof(ADV_CARR_T
);
4423 carrp
->carr_pa
= carr_paddr
;
4424 carrp
->carr_va
= cpu_to_le32(ADV_VADDR_TO_U32(carrp
));
4427 * Insert the carrier at the beginning of the freelist.
4430 cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc
->carr_freelist
));
4431 asc_dvc
->carr_freelist
= carrp
;
4434 } while (buf_size
> 0);
4438 * Send an idle command to the chip and wait for completion.
4440 * Command completion is polled for once per microsecond.
4442 * The function can be called from anywhere including an interrupt handler.
4443 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4444 * functions to prevent reentrancy.
4447 * ADV_TRUE - command completed successfully
4448 * ADV_FALSE - command failed
4449 * ADV_ERROR - command timed out
4452 AdvSendIdleCmd(ADV_DVC_VAR
*asc_dvc
,
4453 ushort idle_cmd
, ADV_DCNT idle_cmd_parameter
)
4457 AdvPortAddr iop_base
;
4459 iop_base
= asc_dvc
->iop_base
;
4462 * Clear the idle command status which is set by the microcode
4463 * to a non-zero value to indicate when the command is completed.
4464 * The non-zero result is one of the IDLE_CMD_STATUS_* values
4466 AdvWriteWordLram(iop_base
, ASC_MC_IDLE_CMD_STATUS
, (ushort
)0);
4469 * Write the idle command value after the idle command parameter
4470 * has been written to avoid a race condition. If the order is not
4471 * followed, the microcode may process the idle command before the
4472 * parameters have been written to LRAM.
4474 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_IDLE_CMD_PARAMETER
,
4475 cpu_to_le32(idle_cmd_parameter
));
4476 AdvWriteWordLram(iop_base
, ASC_MC_IDLE_CMD
, idle_cmd
);
4479 * Tickle the RISC to tell it to process the idle command.
4481 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
, ADV_TICKLE_B
);
4482 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
) {
4484 * Clear the tickle value. In the ASC-3550 the RISC flag
4485 * command 'clr_tickle_b' does not work unless the host
4488 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
, ADV_TICKLE_NOP
);
4491 /* Wait for up to 100 millisecond for the idle command to timeout. */
4492 for (i
= 0; i
< SCSI_WAIT_100_MSEC
; i
++) {
4493 /* Poll once each microsecond for command completion. */
4494 for (j
= 0; j
< SCSI_US_PER_MSEC
; j
++) {
4495 AdvReadWordLram(iop_base
, ASC_MC_IDLE_CMD_STATUS
,
4503 BUG(); /* The idle command should never timeout. */
4508 * Reset SCSI Bus and purge all outstanding requests.
4511 * ADV_TRUE(1) - All requests are purged and SCSI Bus is reset.
4512 * ADV_FALSE(0) - Microcode command failed.
4513 * ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
4514 * may be hung which requires driver recovery.
4516 static int AdvResetSB(ADV_DVC_VAR
*asc_dvc
)
4521 * Send the SCSI Bus Reset idle start idle command which asserts
4522 * the SCSI Bus Reset signal.
4524 status
= AdvSendIdleCmd(asc_dvc
, (ushort
)IDLE_CMD_SCSI_RESET_START
, 0L);
4525 if (status
!= ADV_TRUE
) {
4530 * Delay for the specified SCSI Bus Reset hold time.
4532 * The hold time delay is done on the host because the RISC has no
4533 * microsecond accurate timer.
4535 udelay(ASC_SCSI_RESET_HOLD_TIME_US
);
4538 * Send the SCSI Bus Reset end idle command which de-asserts
4539 * the SCSI Bus Reset signal and purges any pending requests.
4541 status
= AdvSendIdleCmd(asc_dvc
, (ushort
)IDLE_CMD_SCSI_RESET_END
, 0L);
4542 if (status
!= ADV_TRUE
) {
4546 mdelay(asc_dvc
->scsi_reset_wait
* 1000); /* XXX: msleep? */
4552 * Initialize the ASC-3550.
4554 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4556 * For a non-fatal error return a warning code. If there are no warnings
4557 * then 0 is returned.
4559 * Needed after initialization for error recovery.
4561 static int AdvInitAsc3550Driver(ADV_DVC_VAR
*asc_dvc
)
4563 const struct firmware
*fw
;
4564 const char fwname
[] = "advansys/3550.bin";
4565 AdvPortAddr iop_base
;
4573 unsigned long chksum
;
4576 ushort bios_mem
[ASC_MC_BIOSLEN
/ 2]; /* BIOS RISC Memory 0x40-0x8F. */
4577 ushort wdtr_able
= 0, sdtr_able
, tagqng_able
;
4578 uchar max_cmd
[ADV_MAX_TID
+ 1];
4580 /* If there is already an error, don't continue. */
4581 if (asc_dvc
->err_code
!= 0)
4585 * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
4587 if (asc_dvc
->chip_type
!= ADV_CHIP_ASC3550
) {
4588 asc_dvc
->err_code
= ASC_IERR_BAD_CHIPTYPE
;
4593 iop_base
= asc_dvc
->iop_base
;
4596 * Save the RISC memory BIOS region before writing the microcode.
4597 * The BIOS may already be loaded and using its RISC LRAM region
4598 * so its region must be saved and restored.
4600 * Note: This code makes the assumption, which is currently true,
4601 * that a chip reset does not clear RISC LRAM.
4603 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
4604 AdvReadWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
4609 * Save current per TID negotiated values.
4611 if (bios_mem
[(ASC_MC_BIOS_SIGNATURE
- ASC_MC_BIOSMEM
) / 2] == 0x55AA) {
4612 ushort bios_version
, major
, minor
;
4615 bios_mem
[(ASC_MC_BIOS_VERSION
- ASC_MC_BIOSMEM
) / 2];
4616 major
= (bios_version
>> 12) & 0xF;
4617 minor
= (bios_version
>> 8) & 0xF;
4618 if (major
< 3 || (major
== 3 && minor
== 1)) {
4619 /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
4620 AdvReadWordLram(iop_base
, 0x120, wdtr_able
);
4622 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
4625 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
4626 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
4627 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
4628 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
4632 err
= request_firmware(&fw
, fwname
, asc_dvc
->drv_ptr
->dev
);
4634 printk(KERN_ERR
"Failed to load image \"%s\" err %d\n",
4636 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
4640 printk(KERN_ERR
"Bogus length %zu in image \"%s\"\n",
4642 release_firmware(fw
);
4643 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
4646 chksum
= (fw
->data
[3] << 24) | (fw
->data
[2] << 16) |
4647 (fw
->data
[1] << 8) | fw
->data
[0];
4648 asc_dvc
->err_code
= AdvLoadMicrocode(iop_base
, &fw
->data
[4],
4649 fw
->size
- 4, ADV_3550_MEMSIZE
,
4651 release_firmware(fw
);
4652 if (asc_dvc
->err_code
)
4656 * Restore the RISC memory BIOS region.
4658 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
4659 AdvWriteWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
4664 * Calculate and write the microcode code checksum to the microcode
4665 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4667 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, begin_addr
);
4668 AdvReadWordLram(iop_base
, ASC_MC_CODE_END_ADDR
, end_addr
);
4670 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, begin_addr
);
4671 for (word
= begin_addr
; word
< end_addr
; word
+= 2) {
4672 code_sum
+= AdvReadWordAutoIncLram(iop_base
);
4674 AdvWriteWordLram(iop_base
, ASC_MC_CODE_CHK_SUM
, code_sum
);
4677 * Read and save microcode version and date.
4679 AdvReadWordLram(iop_base
, ASC_MC_VERSION_DATE
,
4680 asc_dvc
->cfg
->mcode_date
);
4681 AdvReadWordLram(iop_base
, ASC_MC_VERSION_NUM
,
4682 asc_dvc
->cfg
->mcode_version
);
4685 * Set the chip type to indicate the ASC3550.
4687 AdvWriteWordLram(iop_base
, ASC_MC_CHIP_TYPE
, ADV_CHIP_ASC3550
);
4690 * If the PCI Configuration Command Register "Parity Error Response
4691 * Control" Bit was clear (0), then set the microcode variable
4692 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4693 * to ignore DMA parity errors.
4695 if (asc_dvc
->cfg
->control_flag
& CONTROL_FLAG_IGNORE_PERR
) {
4696 AdvReadWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
4697 word
|= CONTROL_FLAG_IGNORE_PERR
;
4698 AdvWriteWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
4702 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
4703 * threshold of 128 bytes. This register is only accessible to the host.
4705 AdvWriteByteRegister(iop_base
, IOPB_DMA_CFG0
,
4706 START_CTL_EMFU
| READ_CMD_MRM
);
4709 * Microcode operating variables for WDTR, SDTR, and command tag
4710 * queuing will be set in slave_configure() based on what a
4711 * device reports it is capable of in Inquiry byte 7.
4713 * If SCSI Bus Resets have been disabled, then directly set
4714 * SDTR and WDTR from the EEPROM configuration. This will allow
4715 * the BIOS and warm boot to work without a SCSI bus hang on
4716 * the Inquiry caused by host and target mismatched DTR values.
4717 * Without the SCSI Bus Reset, before an Inquiry a device can't
4718 * be assumed to be in Asynchronous, Narrow mode.
4720 if ((asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) == 0) {
4721 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
,
4722 asc_dvc
->wdtr_able
);
4723 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
,
4724 asc_dvc
->sdtr_able
);
4728 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
4729 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
4730 * bitmask. These values determine the maximum SDTR speed negotiated
4733 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
4734 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
4735 * without determining here whether the device supports SDTR.
4737 * 4-bit speed SDTR speed name
4738 * =========== ===============
4739 * 0000b (0x0) SDTR disabled
4741 * 0010b (0x2) 10 Mhz
4742 * 0011b (0x3) 20 Mhz (Ultra)
4743 * 0100b (0x4) 40 Mhz (LVD/Ultra2)
4744 * 0101b (0x5) 80 Mhz (LVD2/Ultra3)
4745 * 0110b (0x6) Undefined
4747 * 1111b (0xF) Undefined
4750 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
4751 if (ADV_TID_TO_TIDMASK(tid
) & asc_dvc
->ultra_able
) {
4752 /* Set Ultra speed for TID 'tid'. */
4753 word
|= (0x3 << (4 * (tid
% 4)));
4755 /* Set Fast speed for TID 'tid'. */
4756 word
|= (0x2 << (4 * (tid
% 4)));
4758 if (tid
== 3) { /* Check if done with sdtr_speed1. */
4759 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED1
, word
);
4761 } else if (tid
== 7) { /* Check if done with sdtr_speed2. */
4762 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED2
, word
);
4764 } else if (tid
== 11) { /* Check if done with sdtr_speed3. */
4765 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED3
, word
);
4767 } else if (tid
== 15) { /* Check if done with sdtr_speed4. */
4768 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED4
, word
);
4774 * Set microcode operating variable for the disconnect per TID bitmask.
4776 AdvWriteWordLram(iop_base
, ASC_MC_DISC_ENABLE
,
4777 asc_dvc
->cfg
->disc_enable
);
4780 * Set SCSI_CFG0 Microcode Default Value.
4782 * The microcode will set the SCSI_CFG0 register using this value
4783 * after it is started below.
4785 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG0
,
4786 PARITY_EN
| QUEUE_128
| SEL_TMO_LONG
| OUR_ID_EN
|
4787 asc_dvc
->chip_scsi_id
);
4790 * Determine SCSI_CFG1 Microcode Default Value.
4792 * The microcode will set the SCSI_CFG1 register using this value
4793 * after it is started below.
4796 /* Read current SCSI_CFG1 Register value. */
4797 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
4800 * If all three connectors are in use, return an error.
4802 if ((scsi_cfg1
& CABLE_ILLEGAL_A
) == 0 ||
4803 (scsi_cfg1
& CABLE_ILLEGAL_B
) == 0) {
4804 asc_dvc
->err_code
|= ASC_IERR_ILLEGAL_CONNECTION
;
4809 * If the internal narrow cable is reversed all of the SCSI_CTRL
4810 * register signals will be set. Check for and return an error if
4811 * this condition is found.
4813 if ((AdvReadWordRegister(iop_base
, IOPW_SCSI_CTRL
) & 0x3F07) == 0x3F07) {
4814 asc_dvc
->err_code
|= ASC_IERR_REVERSED_CABLE
;
4819 * If this is a differential board and a single-ended device
4820 * is attached to one of the connectors, return an error.
4822 if ((scsi_cfg1
& DIFF_MODE
) && (scsi_cfg1
& DIFF_SENSE
) == 0) {
4823 asc_dvc
->err_code
|= ASC_IERR_SINGLE_END_DEVICE
;
4828 * If automatic termination control is enabled, then set the
4829 * termination value based on a table listed in a_condor.h.
4831 * If manual termination was specified with an EEPROM setting
4832 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
4833 * is ready to be 'ored' into SCSI_CFG1.
4835 if (asc_dvc
->cfg
->termination
== 0) {
4837 * The software always controls termination by setting TERM_CTL_SEL.
4838 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
4840 asc_dvc
->cfg
->termination
|= TERM_CTL_SEL
;
4842 switch (scsi_cfg1
& CABLE_DETECT
) {
4843 /* TERM_CTL_H: on, TERM_CTL_L: on */
4850 asc_dvc
->cfg
->termination
|= (TERM_CTL_H
| TERM_CTL_L
);
4853 /* TERM_CTL_H: on, TERM_CTL_L: off */
4859 asc_dvc
->cfg
->termination
|= TERM_CTL_H
;
4862 /* TERM_CTL_H: off, TERM_CTL_L: off */
4870 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
4872 scsi_cfg1
&= ~TERM_CTL
;
4875 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
4876 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
4877 * referenced, because the hardware internally inverts
4878 * the Termination High and Low bits if TERM_POL is set.
4880 scsi_cfg1
|= (TERM_CTL_SEL
| (~asc_dvc
->cfg
->termination
& TERM_CTL
));
4883 * Set SCSI_CFG1 Microcode Default Value
4885 * Set filter value and possibly modified termination control
4886 * bits in the Microcode SCSI_CFG1 Register Value.
4888 * The microcode will set the SCSI_CFG1 register using this value
4889 * after it is started below.
4891 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG1
,
4892 FLTR_DISABLE
| scsi_cfg1
);
4895 * Set MEM_CFG Microcode Default Value
4897 * The microcode will set the MEM_CFG register using this value
4898 * after it is started below.
4900 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
4903 * ASC-3550 has 8KB internal memory.
4905 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_MEM_CFG
,
4906 BIOS_EN
| RAM_SZ_8KB
);
4909 * Set SEL_MASK Microcode Default Value
4911 * The microcode will set the SEL_MASK register using this value
4912 * after it is started below.
4914 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SEL_MASK
,
4915 ADV_TID_TO_TIDMASK(asc_dvc
->chip_scsi_id
));
4917 AdvBuildCarrierFreelist(asc_dvc
);
4920 * Set-up the Host->RISC Initiator Command Queue (ICQ).
4923 if ((asc_dvc
->icq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
4924 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
4927 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
4928 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->icq_sp
->next_vpa
));
4931 * The first command issued will be placed in the stopper carrier.
4933 asc_dvc
->icq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
4936 * Set RISC ICQ physical address start value.
4938 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_ICQ
, asc_dvc
->icq_sp
->carr_pa
);
4941 * Set-up the RISC->Host Initiator Response Queue (IRQ).
4943 if ((asc_dvc
->irq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
4944 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
4947 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
4948 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->irq_sp
->next_vpa
));
4951 * The first command completed by the RISC will be placed in
4954 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
4955 * completed the RISC will set the ASC_RQ_STOPPER bit.
4957 asc_dvc
->irq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
4960 * Set RISC IRQ physical address start value.
4962 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_IRQ
, asc_dvc
->irq_sp
->carr_pa
);
4963 asc_dvc
->carr_pending_cnt
= 0;
4965 AdvWriteByteRegister(iop_base
, IOPB_INTR_ENABLES
,
4966 (ADV_INTR_ENABLE_HOST_INTR
|
4967 ADV_INTR_ENABLE_GLOBAL_INTR
));
4969 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, word
);
4970 AdvWriteWordRegister(iop_base
, IOPW_PC
, word
);
4972 /* finally, finally, gentlemen, start your engine */
4973 AdvWriteWordRegister(iop_base
, IOPW_RISC_CSR
, ADV_RISC_CSR_RUN
);
4976 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
4977 * Resets should be performed. The RISC has to be running
4978 * to issue a SCSI Bus Reset.
4980 if (asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) {
4982 * If the BIOS Signature is present in memory, restore the
4983 * BIOS Handshake Configuration Table and do not perform
4986 if (bios_mem
[(ASC_MC_BIOS_SIGNATURE
- ASC_MC_BIOSMEM
) / 2] ==
4989 * Restore per TID negotiated values.
4991 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
4992 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
4993 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
,
4995 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
4996 AdvWriteByteLram(iop_base
,
4997 ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5001 if (AdvResetSB(asc_dvc
) != ADV_TRUE
) {
5002 warn_code
= ASC_WARN_BUSRESET_ERROR
;
5011 * Initialize the ASC-38C0800.
5013 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
5015 * For a non-fatal error return a warning code. If there are no warnings
5016 * then 0 is returned.
5018 * Needed after initialization for error recovery.
5020 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR
*asc_dvc
)
5022 const struct firmware
*fw
;
5023 const char fwname
[] = "advansys/38C0800.bin";
5024 AdvPortAddr iop_base
;
5032 unsigned long chksum
;
5036 ushort bios_mem
[ASC_MC_BIOSLEN
/ 2]; /* BIOS RISC Memory 0x40-0x8F. */
5037 ushort wdtr_able
, sdtr_able
, tagqng_able
;
5038 uchar max_cmd
[ADV_MAX_TID
+ 1];
5040 /* If there is already an error, don't continue. */
5041 if (asc_dvc
->err_code
!= 0)
5045 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
5047 if (asc_dvc
->chip_type
!= ADV_CHIP_ASC38C0800
) {
5048 asc_dvc
->err_code
= ASC_IERR_BAD_CHIPTYPE
;
5053 iop_base
= asc_dvc
->iop_base
;
5056 * Save the RISC memory BIOS region before writing the microcode.
5057 * The BIOS may already be loaded and using its RISC LRAM region
5058 * so its region must be saved and restored.
5060 * Note: This code makes the assumption, which is currently true,
5061 * that a chip reset does not clear RISC LRAM.
5063 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
5064 AdvReadWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
5069 * Save current per TID negotiated values.
5071 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
5072 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
5073 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
5074 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
5075 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5080 * RAM BIST (RAM Built-In Self Test)
5082 * Address : I/O base + offset 0x38h register (byte).
5083 * Function: Bit 7-6(RW) : RAM mode
5084 * Normal Mode : 0x00
5085 * Pre-test Mode : 0x40
5086 * RAM Test Mode : 0x80
5088 * Bit 4(RO) : Done bit
5089 * Bit 3-0(RO) : Status
5091 * Int_RAM Error : 0x04
5096 * Note: RAM BIST code should be put right here, before loading the
5097 * microcode and after saving the RISC memory BIOS region.
5103 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5104 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5105 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5106 * to NORMAL_MODE, return an error too.
5108 for (i
= 0; i
< 2; i
++) {
5109 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, PRE_TEST_MODE
);
5110 mdelay(10); /* Wait for 10ms before reading back. */
5111 byte
= AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
);
5112 if ((byte
& RAM_TEST_DONE
) == 0
5113 || (byte
& 0x0F) != PRE_TEST_VALUE
) {
5114 asc_dvc
->err_code
= ASC_IERR_BIST_PRE_TEST
;
5118 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, NORMAL_MODE
);
5119 mdelay(10); /* Wait for 10ms before reading back. */
5120 if (AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
)
5122 asc_dvc
->err_code
= ASC_IERR_BIST_PRE_TEST
;
5128 * LRAM Test - It takes about 1.5 ms to run through the test.
5130 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5131 * If Done bit not set or Status not 0, save register byte, set the
5132 * err_code, and return an error.
5134 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, RAM_TEST_MODE
);
5135 mdelay(10); /* Wait for 10ms before checking status. */
5137 byte
= AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
);
5138 if ((byte
& RAM_TEST_DONE
) == 0 || (byte
& RAM_TEST_STATUS
) != 0) {
5139 /* Get here if Done bit not set or Status not 0. */
5140 asc_dvc
->bist_err_code
= byte
; /* for BIOS display message */
5141 asc_dvc
->err_code
= ASC_IERR_BIST_RAM_TEST
;
5145 /* We need to reset back to normal mode after LRAM test passes. */
5146 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, NORMAL_MODE
);
5148 err
= request_firmware(&fw
, fwname
, asc_dvc
->drv_ptr
->dev
);
5150 printk(KERN_ERR
"Failed to load image \"%s\" err %d\n",
5152 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
5156 printk(KERN_ERR
"Bogus length %zu in image \"%s\"\n",
5158 release_firmware(fw
);
5159 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
5162 chksum
= (fw
->data
[3] << 24) | (fw
->data
[2] << 16) |
5163 (fw
->data
[1] << 8) | fw
->data
[0];
5164 asc_dvc
->err_code
= AdvLoadMicrocode(iop_base
, &fw
->data
[4],
5165 fw
->size
- 4, ADV_38C0800_MEMSIZE
,
5167 release_firmware(fw
);
5168 if (asc_dvc
->err_code
)
5172 * Restore the RISC memory BIOS region.
5174 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
5175 AdvWriteWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
5180 * Calculate and write the microcode code checksum to the microcode
5181 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5183 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, begin_addr
);
5184 AdvReadWordLram(iop_base
, ASC_MC_CODE_END_ADDR
, end_addr
);
5186 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, begin_addr
);
5187 for (word
= begin_addr
; word
< end_addr
; word
+= 2) {
5188 code_sum
+= AdvReadWordAutoIncLram(iop_base
);
5190 AdvWriteWordLram(iop_base
, ASC_MC_CODE_CHK_SUM
, code_sum
);
5193 * Read microcode version and date.
5195 AdvReadWordLram(iop_base
, ASC_MC_VERSION_DATE
,
5196 asc_dvc
->cfg
->mcode_date
);
5197 AdvReadWordLram(iop_base
, ASC_MC_VERSION_NUM
,
5198 asc_dvc
->cfg
->mcode_version
);
5201 * Set the chip type to indicate the ASC38C0800.
5203 AdvWriteWordLram(iop_base
, ASC_MC_CHIP_TYPE
, ADV_CHIP_ASC38C0800
);
5206 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5207 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5208 * cable detection and then we are able to read C_DET[3:0].
5210 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5211 * Microcode Default Value' section below.
5213 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
5214 AdvWriteWordRegister(iop_base
, IOPW_SCSI_CFG1
,
5215 scsi_cfg1
| DIS_TERM_DRV
);
5218 * If the PCI Configuration Command Register "Parity Error Response
5219 * Control" Bit was clear (0), then set the microcode variable
5220 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5221 * to ignore DMA parity errors.
5223 if (asc_dvc
->cfg
->control_flag
& CONTROL_FLAG_IGNORE_PERR
) {
5224 AdvReadWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5225 word
|= CONTROL_FLAG_IGNORE_PERR
;
5226 AdvWriteWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5230 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5231 * bits for the default FIFO threshold.
5233 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5235 * For DMA Errata #4 set the BC_THRESH_ENB bit.
5237 AdvWriteByteRegister(iop_base
, IOPB_DMA_CFG0
,
5238 BC_THRESH_ENB
| FIFO_THRESH_80B
| START_CTL_TH
|
5242 * Microcode operating variables for WDTR, SDTR, and command tag
5243 * queuing will be set in slave_configure() based on what a
5244 * device reports it is capable of in Inquiry byte 7.
5246 * If SCSI Bus Resets have been disabled, then directly set
5247 * SDTR and WDTR from the EEPROM configuration. This will allow
5248 * the BIOS and warm boot to work without a SCSI bus hang on
5249 * the Inquiry caused by host and target mismatched DTR values.
5250 * Without the SCSI Bus Reset, before an Inquiry a device can't
5251 * be assumed to be in Asynchronous, Narrow mode.
5253 if ((asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) == 0) {
5254 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
,
5255 asc_dvc
->wdtr_able
);
5256 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
,
5257 asc_dvc
->sdtr_able
);
5261 * Set microcode operating variables for DISC and SDTR_SPEED1,
5262 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5263 * configuration values.
5265 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5266 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5267 * without determining here whether the device supports SDTR.
5269 AdvWriteWordLram(iop_base
, ASC_MC_DISC_ENABLE
,
5270 asc_dvc
->cfg
->disc_enable
);
5271 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED1
, asc_dvc
->sdtr_speed1
);
5272 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED2
, asc_dvc
->sdtr_speed2
);
5273 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED3
, asc_dvc
->sdtr_speed3
);
5274 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED4
, asc_dvc
->sdtr_speed4
);
5277 * Set SCSI_CFG0 Microcode Default Value.
5279 * The microcode will set the SCSI_CFG0 register using this value
5280 * after it is started below.
5282 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG0
,
5283 PARITY_EN
| QUEUE_128
| SEL_TMO_LONG
| OUR_ID_EN
|
5284 asc_dvc
->chip_scsi_id
);
5287 * Determine SCSI_CFG1 Microcode Default Value.
5289 * The microcode will set the SCSI_CFG1 register using this value
5290 * after it is started below.
5293 /* Read current SCSI_CFG1 Register value. */
5294 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
5297 * If the internal narrow cable is reversed all of the SCSI_CTRL
5298 * register signals will be set. Check for and return an error if
5299 * this condition is found.
5301 if ((AdvReadWordRegister(iop_base
, IOPW_SCSI_CTRL
) & 0x3F07) == 0x3F07) {
5302 asc_dvc
->err_code
|= ASC_IERR_REVERSED_CABLE
;
5307 * All kind of combinations of devices attached to one of four
5308 * connectors are acceptable except HVD device attached. For example,
5309 * LVD device can be attached to SE connector while SE device attached
5310 * to LVD connector. If LVD device attached to SE connector, it only
5311 * runs up to Ultra speed.
5313 * If an HVD device is attached to one of LVD connectors, return an
5314 * error. However, there is no way to detect HVD device attached to
5317 if (scsi_cfg1
& HVD
) {
5318 asc_dvc
->err_code
= ASC_IERR_HVD_DEVICE
;
5323 * If either SE or LVD automatic termination control is enabled, then
5324 * set the termination value based on a table listed in a_condor.h.
5326 * If manual termination was specified with an EEPROM setting then
5327 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5328 * to be 'ored' into SCSI_CFG1.
5330 if ((asc_dvc
->cfg
->termination
& TERM_SE
) == 0) {
5331 /* SE automatic termination control is enabled. */
5332 switch (scsi_cfg1
& C_DET_SE
) {
5333 /* TERM_SE_HI: on, TERM_SE_LO: on */
5337 asc_dvc
->cfg
->termination
|= TERM_SE
;
5340 /* TERM_SE_HI: on, TERM_SE_LO: off */
5342 asc_dvc
->cfg
->termination
|= TERM_SE_HI
;
5347 if ((asc_dvc
->cfg
->termination
& TERM_LVD
) == 0) {
5348 /* LVD automatic termination control is enabled. */
5349 switch (scsi_cfg1
& C_DET_LVD
) {
5350 /* TERM_LVD_HI: on, TERM_LVD_LO: on */
5354 asc_dvc
->cfg
->termination
|= TERM_LVD
;
5357 /* TERM_LVD_HI: off, TERM_LVD_LO: off */
5364 * Clear any set TERM_SE and TERM_LVD bits.
5366 scsi_cfg1
&= (~TERM_SE
& ~TERM_LVD
);
5369 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5371 scsi_cfg1
|= (~asc_dvc
->cfg
->termination
& 0xF0);
5374 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5375 * bits and set possibly modified termination control bits in the
5376 * Microcode SCSI_CFG1 Register Value.
5378 scsi_cfg1
&= (~BIG_ENDIAN
& ~DIS_TERM_DRV
& ~TERM_POL
& ~HVD_LVD_SE
);
5381 * Set SCSI_CFG1 Microcode Default Value
5383 * Set possibly modified termination control and reset DIS_TERM_DRV
5384 * bits in the Microcode SCSI_CFG1 Register Value.
5386 * The microcode will set the SCSI_CFG1 register using this value
5387 * after it is started below.
5389 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG1
, scsi_cfg1
);
5392 * Set MEM_CFG Microcode Default Value
5394 * The microcode will set the MEM_CFG register using this value
5395 * after it is started below.
5397 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5400 * ASC-38C0800 has 16KB internal memory.
5402 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_MEM_CFG
,
5403 BIOS_EN
| RAM_SZ_16KB
);
5406 * Set SEL_MASK Microcode Default Value
5408 * The microcode will set the SEL_MASK register using this value
5409 * after it is started below.
5411 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SEL_MASK
,
5412 ADV_TID_TO_TIDMASK(asc_dvc
->chip_scsi_id
));
5414 AdvBuildCarrierFreelist(asc_dvc
);
5417 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5420 if ((asc_dvc
->icq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
5421 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
5424 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
5425 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->icq_sp
->next_vpa
));
5428 * The first command issued will be placed in the stopper carrier.
5430 asc_dvc
->icq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
5433 * Set RISC ICQ physical address start value.
5434 * carr_pa is LE, must be native before write
5436 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_ICQ
, asc_dvc
->icq_sp
->carr_pa
);
5439 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5441 if ((asc_dvc
->irq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
5442 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
5445 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
5446 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->irq_sp
->next_vpa
));
5449 * The first command completed by the RISC will be placed in
5452 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5453 * completed the RISC will set the ASC_RQ_STOPPER bit.
5455 asc_dvc
->irq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
5458 * Set RISC IRQ physical address start value.
5460 * carr_pa is LE, must be native before write *
5462 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_IRQ
, asc_dvc
->irq_sp
->carr_pa
);
5463 asc_dvc
->carr_pending_cnt
= 0;
5465 AdvWriteByteRegister(iop_base
, IOPB_INTR_ENABLES
,
5466 (ADV_INTR_ENABLE_HOST_INTR
|
5467 ADV_INTR_ENABLE_GLOBAL_INTR
));
5469 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, word
);
5470 AdvWriteWordRegister(iop_base
, IOPW_PC
, word
);
5472 /* finally, finally, gentlemen, start your engine */
5473 AdvWriteWordRegister(iop_base
, IOPW_RISC_CSR
, ADV_RISC_CSR_RUN
);
5476 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5477 * Resets should be performed. The RISC has to be running
5478 * to issue a SCSI Bus Reset.
5480 if (asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) {
5482 * If the BIOS Signature is present in memory, restore the
5483 * BIOS Handshake Configuration Table and do not perform
5486 if (bios_mem
[(ASC_MC_BIOS_SIGNATURE
- ASC_MC_BIOSMEM
) / 2] ==
5489 * Restore per TID negotiated values.
5491 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
5492 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
5493 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
,
5495 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
5496 AdvWriteByteLram(iop_base
,
5497 ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5501 if (AdvResetSB(asc_dvc
) != ADV_TRUE
) {
5502 warn_code
= ASC_WARN_BUSRESET_ERROR
;
5511 * Initialize the ASC-38C1600.
5513 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
5515 * For a non-fatal error return a warning code. If there are no warnings
5516 * then 0 is returned.
5518 * Needed after initialization for error recovery.
5520 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR
*asc_dvc
)
5522 const struct firmware
*fw
;
5523 const char fwname
[] = "advansys/38C1600.bin";
5524 AdvPortAddr iop_base
;
5532 unsigned long chksum
;
5536 ushort bios_mem
[ASC_MC_BIOSLEN
/ 2]; /* BIOS RISC Memory 0x40-0x8F. */
5537 ushort wdtr_able
, sdtr_able
, ppr_able
, tagqng_able
;
5538 uchar max_cmd
[ASC_MAX_TID
+ 1];
5540 /* If there is already an error, don't continue. */
5541 if (asc_dvc
->err_code
!= 0) {
5546 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
5548 if (asc_dvc
->chip_type
!= ADV_CHIP_ASC38C1600
) {
5549 asc_dvc
->err_code
= ASC_IERR_BAD_CHIPTYPE
;
5554 iop_base
= asc_dvc
->iop_base
;
5557 * Save the RISC memory BIOS region before writing the microcode.
5558 * The BIOS may already be loaded and using its RISC LRAM region
5559 * so its region must be saved and restored.
5561 * Note: This code makes the assumption, which is currently true,
5562 * that a chip reset does not clear RISC LRAM.
5564 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
5565 AdvReadWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
5570 * Save current per TID negotiated values.
5572 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
5573 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
5574 AdvReadWordLram(iop_base
, ASC_MC_PPR_ABLE
, ppr_able
);
5575 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
5576 for (tid
= 0; tid
<= ASC_MAX_TID
; tid
++) {
5577 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5582 * RAM BIST (Built-In Self Test)
5584 * Address : I/O base + offset 0x38h register (byte).
5585 * Function: Bit 7-6(RW) : RAM mode
5586 * Normal Mode : 0x00
5587 * Pre-test Mode : 0x40
5588 * RAM Test Mode : 0x80
5590 * Bit 4(RO) : Done bit
5591 * Bit 3-0(RO) : Status
5593 * Int_RAM Error : 0x04
5598 * Note: RAM BIST code should be put right here, before loading the
5599 * microcode and after saving the RISC memory BIOS region.
5605 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5606 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5607 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5608 * to NORMAL_MODE, return an error too.
5610 for (i
= 0; i
< 2; i
++) {
5611 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, PRE_TEST_MODE
);
5612 mdelay(10); /* Wait for 10ms before reading back. */
5613 byte
= AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
);
5614 if ((byte
& RAM_TEST_DONE
) == 0
5615 || (byte
& 0x0F) != PRE_TEST_VALUE
) {
5616 asc_dvc
->err_code
= ASC_IERR_BIST_PRE_TEST
;
5620 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, NORMAL_MODE
);
5621 mdelay(10); /* Wait for 10ms before reading back. */
5622 if (AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
)
5624 asc_dvc
->err_code
= ASC_IERR_BIST_PRE_TEST
;
5630 * LRAM Test - It takes about 1.5 ms to run through the test.
5632 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5633 * If Done bit not set or Status not 0, save register byte, set the
5634 * err_code, and return an error.
5636 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, RAM_TEST_MODE
);
5637 mdelay(10); /* Wait for 10ms before checking status. */
5639 byte
= AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
);
5640 if ((byte
& RAM_TEST_DONE
) == 0 || (byte
& RAM_TEST_STATUS
) != 0) {
5641 /* Get here if Done bit not set or Status not 0. */
5642 asc_dvc
->bist_err_code
= byte
; /* for BIOS display message */
5643 asc_dvc
->err_code
= ASC_IERR_BIST_RAM_TEST
;
5647 /* We need to reset back to normal mode after LRAM test passes. */
5648 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, NORMAL_MODE
);
5650 err
= request_firmware(&fw
, fwname
, asc_dvc
->drv_ptr
->dev
);
5652 printk(KERN_ERR
"Failed to load image \"%s\" err %d\n",
5654 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
5658 printk(KERN_ERR
"Bogus length %zu in image \"%s\"\n",
5660 release_firmware(fw
);
5661 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
5664 chksum
= (fw
->data
[3] << 24) | (fw
->data
[2] << 16) |
5665 (fw
->data
[1] << 8) | fw
->data
[0];
5666 asc_dvc
->err_code
= AdvLoadMicrocode(iop_base
, &fw
->data
[4],
5667 fw
->size
- 4, ADV_38C1600_MEMSIZE
,
5669 release_firmware(fw
);
5670 if (asc_dvc
->err_code
)
5674 * Restore the RISC memory BIOS region.
5676 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
5677 AdvWriteWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
5682 * Calculate and write the microcode code checksum to the microcode
5683 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5685 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, begin_addr
);
5686 AdvReadWordLram(iop_base
, ASC_MC_CODE_END_ADDR
, end_addr
);
5688 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, begin_addr
);
5689 for (word
= begin_addr
; word
< end_addr
; word
+= 2) {
5690 code_sum
+= AdvReadWordAutoIncLram(iop_base
);
5692 AdvWriteWordLram(iop_base
, ASC_MC_CODE_CHK_SUM
, code_sum
);
5695 * Read microcode version and date.
5697 AdvReadWordLram(iop_base
, ASC_MC_VERSION_DATE
,
5698 asc_dvc
->cfg
->mcode_date
);
5699 AdvReadWordLram(iop_base
, ASC_MC_VERSION_NUM
,
5700 asc_dvc
->cfg
->mcode_version
);
5703 * Set the chip type to indicate the ASC38C1600.
5705 AdvWriteWordLram(iop_base
, ASC_MC_CHIP_TYPE
, ADV_CHIP_ASC38C1600
);
5708 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5709 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5710 * cable detection and then we are able to read C_DET[3:0].
5712 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5713 * Microcode Default Value' section below.
5715 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
5716 AdvWriteWordRegister(iop_base
, IOPW_SCSI_CFG1
,
5717 scsi_cfg1
| DIS_TERM_DRV
);
5720 * If the PCI Configuration Command Register "Parity Error Response
5721 * Control" Bit was clear (0), then set the microcode variable
5722 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5723 * to ignore DMA parity errors.
5725 if (asc_dvc
->cfg
->control_flag
& CONTROL_FLAG_IGNORE_PERR
) {
5726 AdvReadWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5727 word
|= CONTROL_FLAG_IGNORE_PERR
;
5728 AdvWriteWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5732 * If the BIOS control flag AIPP (Asynchronous Information
5733 * Phase Protection) disable bit is not set, then set the firmware
5734 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
5735 * AIPP checking and encoding.
5737 if ((asc_dvc
->bios_ctrl
& BIOS_CTRL_AIPP_DIS
) == 0) {
5738 AdvReadWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5739 word
|= CONTROL_FLAG_ENABLE_AIPP
;
5740 AdvWriteWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5744 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
5745 * and START_CTL_TH [3:2].
5747 AdvWriteByteRegister(iop_base
, IOPB_DMA_CFG0
,
5748 FIFO_THRESH_80B
| START_CTL_TH
| READ_CMD_MRM
);
5751 * Microcode operating variables for WDTR, SDTR, and command tag
5752 * queuing will be set in slave_configure() based on what a
5753 * device reports it is capable of in Inquiry byte 7.
5755 * If SCSI Bus Resets have been disabled, then directly set
5756 * SDTR and WDTR from the EEPROM configuration. This will allow
5757 * the BIOS and warm boot to work without a SCSI bus hang on
5758 * the Inquiry caused by host and target mismatched DTR values.
5759 * Without the SCSI Bus Reset, before an Inquiry a device can't
5760 * be assumed to be in Asynchronous, Narrow mode.
5762 if ((asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) == 0) {
5763 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
,
5764 asc_dvc
->wdtr_able
);
5765 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
,
5766 asc_dvc
->sdtr_able
);
5770 * Set microcode operating variables for DISC and SDTR_SPEED1,
5771 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5772 * configuration values.
5774 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5775 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5776 * without determining here whether the device supports SDTR.
5778 AdvWriteWordLram(iop_base
, ASC_MC_DISC_ENABLE
,
5779 asc_dvc
->cfg
->disc_enable
);
5780 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED1
, asc_dvc
->sdtr_speed1
);
5781 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED2
, asc_dvc
->sdtr_speed2
);
5782 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED3
, asc_dvc
->sdtr_speed3
);
5783 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED4
, asc_dvc
->sdtr_speed4
);
5786 * Set SCSI_CFG0 Microcode Default Value.
5788 * The microcode will set the SCSI_CFG0 register using this value
5789 * after it is started below.
5791 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG0
,
5792 PARITY_EN
| QUEUE_128
| SEL_TMO_LONG
| OUR_ID_EN
|
5793 asc_dvc
->chip_scsi_id
);
5796 * Calculate SCSI_CFG1 Microcode Default Value.
5798 * The microcode will set the SCSI_CFG1 register using this value
5799 * after it is started below.
5801 * Each ASC-38C1600 function has only two cable detect bits.
5802 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
5804 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
5807 * If the cable is reversed all of the SCSI_CTRL register signals
5808 * will be set. Check for and return an error if this condition is
5811 if ((AdvReadWordRegister(iop_base
, IOPW_SCSI_CTRL
) & 0x3F07) == 0x3F07) {
5812 asc_dvc
->err_code
|= ASC_IERR_REVERSED_CABLE
;
5817 * Each ASC-38C1600 function has two connectors. Only an HVD device
5818 * can not be connected to either connector. An LVD device or SE device
5819 * may be connected to either connecor. If an SE device is connected,
5820 * then at most Ultra speed (20 Mhz) can be used on both connectors.
5822 * If an HVD device is attached, return an error.
5824 if (scsi_cfg1
& HVD
) {
5825 asc_dvc
->err_code
|= ASC_IERR_HVD_DEVICE
;
5830 * Each function in the ASC-38C1600 uses only the SE cable detect and
5831 * termination because there are two connectors for each function. Each
5832 * function may use either LVD or SE mode. Corresponding the SE automatic
5833 * termination control EEPROM bits are used for each function. Each
5834 * function has its own EEPROM. If SE automatic control is enabled for
5835 * the function, then set the termination value based on a table listed
5838 * If manual termination is specified in the EEPROM for the function,
5839 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
5840 * ready to be 'ored' into SCSI_CFG1.
5842 if ((asc_dvc
->cfg
->termination
& TERM_SE
) == 0) {
5843 struct pci_dev
*pdev
= adv_dvc_to_pdev(asc_dvc
);
5844 /* SE automatic termination control is enabled. */
5845 switch (scsi_cfg1
& C_DET_SE
) {
5846 /* TERM_SE_HI: on, TERM_SE_LO: on */
5850 asc_dvc
->cfg
->termination
|= TERM_SE
;
5854 if (PCI_FUNC(pdev
->devfn
) == 0) {
5855 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
5857 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
5858 asc_dvc
->cfg
->termination
|= TERM_SE_HI
;
5865 * Clear any set TERM_SE bits.
5867 scsi_cfg1
&= ~TERM_SE
;
5870 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
5872 scsi_cfg1
|= (~asc_dvc
->cfg
->termination
& TERM_SE
);
5875 * Clear Big Endian and Terminator Polarity bits and set possibly
5876 * modified termination control bits in the Microcode SCSI_CFG1
5879 * Big Endian bit is not used even on big endian machines.
5881 scsi_cfg1
&= (~BIG_ENDIAN
& ~DIS_TERM_DRV
& ~TERM_POL
);
5884 * Set SCSI_CFG1 Microcode Default Value
5886 * Set possibly modified termination control bits in the Microcode
5887 * SCSI_CFG1 Register Value.
5889 * The microcode will set the SCSI_CFG1 register using this value
5890 * after it is started below.
5892 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG1
, scsi_cfg1
);
5895 * Set MEM_CFG Microcode Default Value
5897 * The microcode will set the MEM_CFG register using this value
5898 * after it is started below.
5900 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5903 * ASC-38C1600 has 32KB internal memory.
5905 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
5906 * out a special 16K Adv Library and Microcode version. After the issue
5907 * resolved, we should turn back to the 32K support. Both a_condor.h and
5908 * mcode.sas files also need to be updated.
5910 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5911 * BIOS_EN | RAM_SZ_32KB);
5913 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_MEM_CFG
,
5914 BIOS_EN
| RAM_SZ_16KB
);
5917 * Set SEL_MASK Microcode Default Value
5919 * The microcode will set the SEL_MASK register using this value
5920 * after it is started below.
5922 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SEL_MASK
,
5923 ADV_TID_TO_TIDMASK(asc_dvc
->chip_scsi_id
));
5925 AdvBuildCarrierFreelist(asc_dvc
);
5928 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5930 if ((asc_dvc
->icq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
5931 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
5934 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
5935 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->icq_sp
->next_vpa
));
5938 * The first command issued will be placed in the stopper carrier.
5940 asc_dvc
->icq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
5943 * Set RISC ICQ physical address start value. Initialize the
5944 * COMMA register to the same value otherwise the RISC will
5945 * prematurely detect a command is available.
5947 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_ICQ
, asc_dvc
->icq_sp
->carr_pa
);
5948 AdvWriteDWordRegister(iop_base
, IOPDW_COMMA
,
5949 le32_to_cpu(asc_dvc
->icq_sp
->carr_pa
));
5952 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5954 if ((asc_dvc
->irq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
5955 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
5958 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
5959 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->irq_sp
->next_vpa
));
5962 * The first command completed by the RISC will be placed in
5965 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5966 * completed the RISC will set the ASC_RQ_STOPPER bit.
5968 asc_dvc
->irq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
5971 * Set RISC IRQ physical address start value.
5973 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_IRQ
, asc_dvc
->irq_sp
->carr_pa
);
5974 asc_dvc
->carr_pending_cnt
= 0;
5976 AdvWriteByteRegister(iop_base
, IOPB_INTR_ENABLES
,
5977 (ADV_INTR_ENABLE_HOST_INTR
|
5978 ADV_INTR_ENABLE_GLOBAL_INTR
));
5979 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, word
);
5980 AdvWriteWordRegister(iop_base
, IOPW_PC
, word
);
5982 /* finally, finally, gentlemen, start your engine */
5983 AdvWriteWordRegister(iop_base
, IOPW_RISC_CSR
, ADV_RISC_CSR_RUN
);
5986 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5987 * Resets should be performed. The RISC has to be running
5988 * to issue a SCSI Bus Reset.
5990 if (asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) {
5992 * If the BIOS Signature is present in memory, restore the
5993 * per TID microcode operating variables.
5995 if (bios_mem
[(ASC_MC_BIOS_SIGNATURE
- ASC_MC_BIOSMEM
) / 2] ==
5998 * Restore per TID negotiated values.
6000 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
6001 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
6002 AdvWriteWordLram(iop_base
, ASC_MC_PPR_ABLE
, ppr_able
);
6003 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
,
6005 for (tid
= 0; tid
<= ASC_MAX_TID
; tid
++) {
6006 AdvWriteByteLram(iop_base
,
6007 ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
6011 if (AdvResetSB(asc_dvc
) != ADV_TRUE
) {
6012 warn_code
= ASC_WARN_BUSRESET_ERROR
;
6021 * Reset chip and SCSI Bus.
6024 * ADV_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
6025 * ADV_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
6027 static int AdvResetChipAndSB(ADV_DVC_VAR
*asc_dvc
)
6030 ushort wdtr_able
, sdtr_able
, tagqng_able
;
6031 ushort ppr_able
= 0;
6032 uchar tid
, max_cmd
[ADV_MAX_TID
+ 1];
6033 AdvPortAddr iop_base
;
6036 iop_base
= asc_dvc
->iop_base
;
6039 * Save current per TID negotiated values.
6041 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
6042 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
6043 if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
6044 AdvReadWordLram(iop_base
, ASC_MC_PPR_ABLE
, ppr_able
);
6046 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
6047 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
6048 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
6053 * Force the AdvInitAsc3550/38C0800Driver() function to
6054 * perform a SCSI Bus Reset by clearing the BIOS signature word.
6055 * The initialization functions assumes a SCSI Bus Reset is not
6056 * needed if the BIOS signature word is present.
6058 AdvReadWordLram(iop_base
, ASC_MC_BIOS_SIGNATURE
, bios_sig
);
6059 AdvWriteWordLram(iop_base
, ASC_MC_BIOS_SIGNATURE
, 0);
6062 * Stop chip and reset it.
6064 AdvWriteWordRegister(iop_base
, IOPW_RISC_CSR
, ADV_RISC_CSR_STOP
);
6065 AdvWriteWordRegister(iop_base
, IOPW_CTRL_REG
, ADV_CTRL_REG_CMD_RESET
);
6067 AdvWriteWordRegister(iop_base
, IOPW_CTRL_REG
,
6068 ADV_CTRL_REG_CMD_WR_IO_REG
);
6071 * Reset Adv Library error code, if any, and try
6072 * re-initializing the chip.
6074 asc_dvc
->err_code
= 0;
6075 if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
6076 status
= AdvInitAsc38C1600Driver(asc_dvc
);
6077 } else if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
6078 status
= AdvInitAsc38C0800Driver(asc_dvc
);
6080 status
= AdvInitAsc3550Driver(asc_dvc
);
6083 /* Translate initialization return value to status value. */
6091 * Restore the BIOS signature word.
6093 AdvWriteWordLram(iop_base
, ASC_MC_BIOS_SIGNATURE
, bios_sig
);
6096 * Restore per TID negotiated values.
6098 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
6099 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
6100 if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
6101 AdvWriteWordLram(iop_base
, ASC_MC_PPR_ABLE
, ppr_able
);
6103 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
6104 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
6105 AdvWriteByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
6113 * adv_async_callback() - Adv Library asynchronous event callback function.
6115 static void adv_async_callback(ADV_DVC_VAR
*adv_dvc_varp
, uchar code
)
6118 case ADV_ASYNC_SCSI_BUS_RESET_DET
:
6120 * The firmware detected a SCSI Bus reset.
6122 ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
6125 case ADV_ASYNC_RDMA_FAILURE
:
6127 * Handle RDMA failure by resetting the SCSI Bus and
6128 * possibly the chip if it is unresponsive. Log the error
6129 * with a unique code.
6131 ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
6132 AdvResetChipAndSB(adv_dvc_varp
);
6135 case ADV_HOST_SCSI_BUS_RESET
:
6137 * Host generated SCSI bus reset occurred.
6139 ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
6143 ASC_DBG(0, "unknown code 0x%x\n", code
);
6149 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
6151 * Callback function for the Wide SCSI Adv Library.
6153 static void adv_isr_callback(ADV_DVC_VAR
*adv_dvc_varp
, ADV_SCSI_REQ_Q
*scsiqp
)
6155 struct asc_board
*boardp
;
6157 adv_sgblk_t
*sgblkp
;
6158 struct scsi_cmnd
*scp
;
6159 struct Scsi_Host
*shost
;
6162 ASC_DBG(1, "adv_dvc_varp 0x%lx, scsiqp 0x%lx\n",
6163 (ulong
)adv_dvc_varp
, (ulong
)scsiqp
);
6164 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp
);
6167 * Get the adv_req_t structure for the command that has been
6168 * completed. The adv_req_t structure actually contains the
6169 * completed ADV_SCSI_REQ_Q structure.
6171 reqp
= (adv_req_t
*)ADV_U32_TO_VADDR(scsiqp
->srb_ptr
);
6172 ASC_DBG(1, "reqp 0x%lx\n", (ulong
)reqp
);
6174 ASC_PRINT("adv_isr_callback: reqp is NULL\n");
6179 * Get the struct scsi_cmnd structure and Scsi_Host structure for the
6180 * command that has been completed.
6182 * Note: The adv_req_t request structure and adv_sgblk_t structure,
6183 * if any, are dropped, because a board structure pointer can not be
6187 ASC_DBG(1, "scp 0x%p\n", scp
);
6190 ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
6193 ASC_DBG_PRT_CDB(2, scp
->cmnd
, scp
->cmd_len
);
6195 shost
= scp
->device
->host
;
6196 ASC_STATS(shost
, callback
);
6197 ASC_DBG(1, "shost 0x%p\n", shost
);
6199 boardp
= shost_priv(shost
);
6200 BUG_ON(adv_dvc_varp
!= &boardp
->dvc_var
.adv_dvc_var
);
6203 * 'done_status' contains the command's ending status.
6205 switch (scsiqp
->done_status
) {
6207 ASC_DBG(2, "QD_NO_ERROR\n");
6211 * Check for an underrun condition.
6213 * If there was no error and an underrun condition, then
6214 * then return the number of underrun bytes.
6216 resid_cnt
= le32_to_cpu(scsiqp
->data_cnt
);
6217 if (scsi_bufflen(scp
) != 0 && resid_cnt
!= 0 &&
6218 resid_cnt
<= scsi_bufflen(scp
)) {
6219 ASC_DBG(1, "underrun condition %lu bytes\n",
6221 scsi_set_resid(scp
, resid_cnt
);
6226 ASC_DBG(2, "QD_WITH_ERROR\n");
6227 switch (scsiqp
->host_status
) {
6228 case QHSTA_NO_ERROR
:
6229 if (scsiqp
->scsi_status
== SAM_STAT_CHECK_CONDITION
) {
6230 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6231 ASC_DBG_PRT_SENSE(2, scp
->sense_buffer
,
6232 SCSI_SENSE_BUFFERSIZE
);
6234 * Note: The 'status_byte()' macro used by
6235 * target drivers defined in scsi.h shifts the
6236 * status byte returned by host drivers right
6237 * by 1 bit. This is why target drivers also
6238 * use right shifted status byte definitions.
6239 * For instance target drivers use
6240 * CHECK_CONDITION, defined to 0x1, instead of
6241 * the SCSI defined check condition value of
6242 * 0x2. Host drivers are supposed to return
6243 * the status byte as it is defined by SCSI.
6245 scp
->result
= DRIVER_BYTE(DRIVER_SENSE
) |
6246 STATUS_BYTE(scsiqp
->scsi_status
);
6248 scp
->result
= STATUS_BYTE(scsiqp
->scsi_status
);
6253 /* Some other QHSTA error occurred. */
6254 ASC_DBG(1, "host_status 0x%x\n", scsiqp
->host_status
);
6255 scp
->result
= HOST_BYTE(DID_BAD_TARGET
);
6260 case QD_ABORTED_BY_HOST
:
6261 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6263 HOST_BYTE(DID_ABORT
) | STATUS_BYTE(scsiqp
->scsi_status
);
6267 ASC_DBG(1, "done_status 0x%x\n", scsiqp
->done_status
);
6269 HOST_BYTE(DID_ERROR
) | STATUS_BYTE(scsiqp
->scsi_status
);
6274 * If the 'init_tidmask' bit isn't already set for the target and the
6275 * current request finished normally, then set the bit for the target
6276 * to indicate that a device is present.
6278 if ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(scp
->device
->id
)) == 0 &&
6279 scsiqp
->done_status
== QD_NO_ERROR
&&
6280 scsiqp
->host_status
== QHSTA_NO_ERROR
) {
6281 boardp
->init_tidmask
|= ADV_TID_TO_TIDMASK(scp
->device
->id
);
6287 * Free all 'adv_sgblk_t' structures allocated for the request.
6289 while ((sgblkp
= reqp
->sgblkp
) != NULL
) {
6290 /* Remove 'sgblkp' from the request list. */
6291 reqp
->sgblkp
= sgblkp
->next_sgblkp
;
6293 /* Add 'sgblkp' to the board free list. */
6294 sgblkp
->next_sgblkp
= boardp
->adv_sgblkp
;
6295 boardp
->adv_sgblkp
= sgblkp
;
6299 * Free the adv_req_t structure used with the command by adding
6300 * it back to the board free list.
6302 reqp
->next_reqp
= boardp
->adv_reqp
;
6303 boardp
->adv_reqp
= reqp
;
6305 ASC_DBG(1, "done\n");
6309 * Adv Library Interrupt Service Routine
6311 * This function is called by a driver's interrupt service routine.
6312 * The function disables and re-enables interrupts.
6314 * When a microcode idle command is completed, the ADV_DVC_VAR
6315 * 'idle_cmd_done' field is set to ADV_TRUE.
6317 * Note: AdvISR() can be called when interrupts are disabled or even
6318 * when there is no hardware interrupt condition present. It will
6319 * always check for completed idle commands and microcode requests.
6320 * This is an important feature that shouldn't be changed because it
6321 * allows commands to be completed from polling mode loops.
6324 * ADV_TRUE(1) - interrupt was pending
6325 * ADV_FALSE(0) - no interrupt was pending
6327 static int AdvISR(ADV_DVC_VAR
*asc_dvc
)
6329 AdvPortAddr iop_base
;
6332 ADV_CARR_T
*free_carrp
;
6333 ADV_VADDR irq_next_vpa
;
6334 ADV_SCSI_REQ_Q
*scsiq
;
6336 iop_base
= asc_dvc
->iop_base
;
6338 /* Reading the register clears the interrupt. */
6339 int_stat
= AdvReadByteRegister(iop_base
, IOPB_INTR_STATUS_REG
);
6341 if ((int_stat
& (ADV_INTR_STATUS_INTRA
| ADV_INTR_STATUS_INTRB
|
6342 ADV_INTR_STATUS_INTRC
)) == 0) {
6347 * Notify the driver of an asynchronous microcode condition by
6348 * calling the adv_async_callback function. The function
6349 * is passed the microcode ASC_MC_INTRB_CODE byte value.
6351 if (int_stat
& ADV_INTR_STATUS_INTRB
) {
6354 AdvReadByteLram(iop_base
, ASC_MC_INTRB_CODE
, intrb_code
);
6356 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
||
6357 asc_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
6358 if (intrb_code
== ADV_ASYNC_CARRIER_READY_FAILURE
&&
6359 asc_dvc
->carr_pending_cnt
!= 0) {
6360 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
,
6362 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
) {
6363 AdvWriteByteRegister(iop_base
,
6370 adv_async_callback(asc_dvc
, intrb_code
);
6374 * Check if the IRQ stopper carrier contains a completed request.
6376 while (((irq_next_vpa
=
6377 le32_to_cpu(asc_dvc
->irq_sp
->next_vpa
)) & ASC_RQ_DONE
) != 0) {
6379 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6380 * The RISC will have set 'areq_vpa' to a virtual address.
6382 * The firmware will have copied the ASC_SCSI_REQ_Q.scsiq_ptr
6383 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6384 * below complements the conversion of ASC_SCSI_REQ_Q.scsiq_ptr'
6385 * in AdvExeScsiQueue().
6387 scsiq
= (ADV_SCSI_REQ_Q
*)
6388 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->irq_sp
->areq_vpa
));
6391 * Request finished with good status and the queue was not
6392 * DMAed to host memory by the firmware. Set all status fields
6393 * to indicate good status.
6395 if ((irq_next_vpa
& ASC_RQ_GOOD
) != 0) {
6396 scsiq
->done_status
= QD_NO_ERROR
;
6397 scsiq
->host_status
= scsiq
->scsi_status
= 0;
6398 scsiq
->data_cnt
= 0L;
6402 * Advance the stopper pointer to the next carrier
6403 * ignoring the lower four bits. Free the previous
6406 free_carrp
= asc_dvc
->irq_sp
;
6407 asc_dvc
->irq_sp
= (ADV_CARR_T
*)
6408 ADV_U32_TO_VADDR(ASC_GET_CARRP(irq_next_vpa
));
6410 free_carrp
->next_vpa
=
6411 cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc
->carr_freelist
));
6412 asc_dvc
->carr_freelist
= free_carrp
;
6413 asc_dvc
->carr_pending_cnt
--;
6415 target_bit
= ADV_TID_TO_TIDMASK(scsiq
->target_id
);
6418 * Clear request microcode control flag.
6423 * Notify the driver of the completed request by passing
6424 * the ADV_SCSI_REQ_Q pointer to its callback function.
6426 scsiq
->a_flag
|= ADV_SCSIQ_DONE
;
6427 adv_isr_callback(asc_dvc
, scsiq
);
6429 * Note: After the driver callback function is called, 'scsiq'
6430 * can no longer be referenced.
6432 * Fall through and continue processing other completed
6439 static int AscSetLibErrorCode(ASC_DVC_VAR
*asc_dvc
, ushort err_code
)
6441 if (asc_dvc
->err_code
== 0) {
6442 asc_dvc
->err_code
= err_code
;
6443 AscWriteLramWord(asc_dvc
->iop_base
, ASCV_ASCDVC_ERR_CODE_W
,
6449 static void AscAckInterrupt(PortAddr iop_base
)
6457 risc_flag
= AscReadLramByte(iop_base
, ASCV_RISC_FLAG_B
);
6458 if (loop
++ > 0x7FFF) {
6461 } while ((risc_flag
& ASC_RISC_FLAG_GEN_INT
) != 0);
6463 AscReadLramByte(iop_base
,
6464 ASCV_HOST_FLAG_B
) & (~ASC_HOST_FLAG_ACK_INT
);
6465 AscWriteLramByte(iop_base
, ASCV_HOST_FLAG_B
,
6466 (uchar
)(host_flag
| ASC_HOST_FLAG_ACK_INT
));
6467 AscSetChipStatus(iop_base
, CIW_INT_ACK
);
6469 while (AscGetChipStatus(iop_base
) & CSW_INT_PENDING
) {
6470 AscSetChipStatus(iop_base
, CIW_INT_ACK
);
6475 AscWriteLramByte(iop_base
, ASCV_HOST_FLAG_B
, host_flag
);
6478 static uchar
AscGetSynPeriodIndex(ASC_DVC_VAR
*asc_dvc
, uchar syn_time
)
6480 const uchar
*period_table
;
6485 period_table
= asc_dvc
->sdtr_period_tbl
;
6486 max_index
= (int)asc_dvc
->max_sdtr_index
;
6487 min_index
= (int)asc_dvc
->min_sdtr_index
;
6488 if ((syn_time
<= period_table
[max_index
])) {
6489 for (i
= min_index
; i
< (max_index
- 1); i
++) {
6490 if (syn_time
<= period_table
[i
]) {
6494 return (uchar
)max_index
;
6496 return (uchar
)(max_index
+ 1);
6501 AscMsgOutSDTR(ASC_DVC_VAR
*asc_dvc
, uchar sdtr_period
, uchar sdtr_offset
)
6504 uchar sdtr_period_index
;
6507 iop_base
= asc_dvc
->iop_base
;
6508 sdtr_buf
.msg_type
= EXTENDED_MESSAGE
;
6509 sdtr_buf
.msg_len
= MS_SDTR_LEN
;
6510 sdtr_buf
.msg_req
= EXTENDED_SDTR
;
6511 sdtr_buf
.xfer_period
= sdtr_period
;
6512 sdtr_offset
&= ASC_SYN_MAX_OFFSET
;
6513 sdtr_buf
.req_ack_offset
= sdtr_offset
;
6514 sdtr_period_index
= AscGetSynPeriodIndex(asc_dvc
, sdtr_period
);
6515 if (sdtr_period_index
<= asc_dvc
->max_sdtr_index
) {
6516 AscMemWordCopyPtrToLram(iop_base
, ASCV_MSGOUT_BEG
,
6518 sizeof(EXT_MSG
) >> 1);
6519 return ((sdtr_period_index
<< 4) | sdtr_offset
);
6521 sdtr_buf
.req_ack_offset
= 0;
6522 AscMemWordCopyPtrToLram(iop_base
, ASCV_MSGOUT_BEG
,
6524 sizeof(EXT_MSG
) >> 1);
6530 AscCalSDTRData(ASC_DVC_VAR
*asc_dvc
, uchar sdtr_period
, uchar syn_offset
)
6533 uchar sdtr_period_ix
;
6535 sdtr_period_ix
= AscGetSynPeriodIndex(asc_dvc
, sdtr_period
);
6536 if (sdtr_period_ix
> asc_dvc
->max_sdtr_index
)
6538 byte
= (sdtr_period_ix
<< 4) | (syn_offset
& ASC_SYN_MAX_OFFSET
);
6542 static int AscSetChipSynRegAtID(PortAddr iop_base
, uchar id
, uchar sdtr_data
)
6544 ASC_SCSI_BIT_ID_TYPE org_id
;
6548 AscSetBank(iop_base
, 1);
6549 org_id
= AscReadChipDvcID(iop_base
);
6550 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
6551 if (org_id
== (0x01 << i
))
6554 org_id
= (ASC_SCSI_BIT_ID_TYPE
) i
;
6555 AscWriteChipDvcID(iop_base
, id
);
6556 if (AscReadChipDvcID(iop_base
) == (0x01 << id
)) {
6557 AscSetBank(iop_base
, 0);
6558 AscSetChipSyn(iop_base
, sdtr_data
);
6559 if (AscGetChipSyn(iop_base
) != sdtr_data
) {
6565 AscSetBank(iop_base
, 1);
6566 AscWriteChipDvcID(iop_base
, org_id
);
6567 AscSetBank(iop_base
, 0);
6571 static void AscSetChipSDTR(PortAddr iop_base
, uchar sdtr_data
, uchar tid_no
)
6573 AscSetChipSynRegAtID(iop_base
, tid_no
, sdtr_data
);
6574 AscPutMCodeSDTRDoneAtID(iop_base
, tid_no
, sdtr_data
);
6577 static int AscIsrChipHalted(ASC_DVC_VAR
*asc_dvc
)
6583 ushort int_halt_code
;
6584 ASC_SCSI_BIT_ID_TYPE scsi_busy
;
6585 ASC_SCSI_BIT_ID_TYPE target_id
;
6592 uchar q_cntl
, tid_no
;
6596 struct asc_board
*boardp
;
6598 BUG_ON(!asc_dvc
->drv_ptr
);
6599 boardp
= asc_dvc
->drv_ptr
;
6601 iop_base
= asc_dvc
->iop_base
;
6602 int_halt_code
= AscReadLramWord(iop_base
, ASCV_HALTCODE_W
);
6604 halt_qp
= AscReadLramByte(iop_base
, ASCV_CURCDB_B
);
6605 halt_q_addr
= ASC_QNO_TO_QADDR(halt_qp
);
6606 target_ix
= AscReadLramByte(iop_base
,
6607 (ushort
)(halt_q_addr
+
6608 (ushort
)ASC_SCSIQ_B_TARGET_IX
));
6609 q_cntl
= AscReadLramByte(iop_base
,
6610 (ushort
)(halt_q_addr
+ (ushort
)ASC_SCSIQ_B_CNTL
));
6611 tid_no
= ASC_TIX_TO_TID(target_ix
);
6612 target_id
= (uchar
)ASC_TID_TO_TARGET_ID(tid_no
);
6613 if (asc_dvc
->pci_fix_asyn_xfer
& target_id
) {
6614 asyn_sdtr
= ASYN_SDTR_DATA_FIX_PCI_REV_AB
;
6618 if (int_halt_code
== ASC_HALT_DISABLE_ASYN_USE_SYN_FIX
) {
6619 if (asc_dvc
->pci_fix_asyn_xfer
& target_id
) {
6620 AscSetChipSDTR(iop_base
, 0, tid_no
);
6621 boardp
->sdtr_data
[tid_no
] = 0;
6623 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6625 } else if (int_halt_code
== ASC_HALT_ENABLE_ASYN_USE_SYN_FIX
) {
6626 if (asc_dvc
->pci_fix_asyn_xfer
& target_id
) {
6627 AscSetChipSDTR(iop_base
, asyn_sdtr
, tid_no
);
6628 boardp
->sdtr_data
[tid_no
] = asyn_sdtr
;
6630 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6632 } else if (int_halt_code
== ASC_HALT_EXTMSG_IN
) {
6633 AscMemWordCopyPtrFromLram(iop_base
,
6636 sizeof(EXT_MSG
) >> 1);
6638 if (ext_msg
.msg_type
== EXTENDED_MESSAGE
&&
6639 ext_msg
.msg_req
== EXTENDED_SDTR
&&
6640 ext_msg
.msg_len
== MS_SDTR_LEN
) {
6642 if ((ext_msg
.req_ack_offset
> ASC_SYN_MAX_OFFSET
)) {
6644 sdtr_accept
= FALSE
;
6645 ext_msg
.req_ack_offset
= ASC_SYN_MAX_OFFSET
;
6647 if ((ext_msg
.xfer_period
<
6648 asc_dvc
->sdtr_period_tbl
[asc_dvc
->min_sdtr_index
])
6649 || (ext_msg
.xfer_period
>
6650 asc_dvc
->sdtr_period_tbl
[asc_dvc
->
6652 sdtr_accept
= FALSE
;
6653 ext_msg
.xfer_period
=
6654 asc_dvc
->sdtr_period_tbl
[asc_dvc
->
6659 AscCalSDTRData(asc_dvc
, ext_msg
.xfer_period
,
6660 ext_msg
.req_ack_offset
);
6661 if ((sdtr_data
== 0xFF)) {
6663 q_cntl
|= QC_MSG_OUT
;
6664 asc_dvc
->init_sdtr
&= ~target_id
;
6665 asc_dvc
->sdtr_done
&= ~target_id
;
6666 AscSetChipSDTR(iop_base
, asyn_sdtr
,
6668 boardp
->sdtr_data
[tid_no
] = asyn_sdtr
;
6671 if (ext_msg
.req_ack_offset
== 0) {
6673 q_cntl
&= ~QC_MSG_OUT
;
6674 asc_dvc
->init_sdtr
&= ~target_id
;
6675 asc_dvc
->sdtr_done
&= ~target_id
;
6676 AscSetChipSDTR(iop_base
, asyn_sdtr
, tid_no
);
6678 if (sdtr_accept
&& (q_cntl
& QC_MSG_OUT
)) {
6679 q_cntl
&= ~QC_MSG_OUT
;
6680 asc_dvc
->sdtr_done
|= target_id
;
6681 asc_dvc
->init_sdtr
|= target_id
;
6682 asc_dvc
->pci_fix_asyn_xfer
&=
6685 AscCalSDTRData(asc_dvc
,
6686 ext_msg
.xfer_period
,
6689 AscSetChipSDTR(iop_base
, sdtr_data
,
6691 boardp
->sdtr_data
[tid_no
] = sdtr_data
;
6693 q_cntl
|= QC_MSG_OUT
;
6694 AscMsgOutSDTR(asc_dvc
,
6695 ext_msg
.xfer_period
,
6696 ext_msg
.req_ack_offset
);
6697 asc_dvc
->pci_fix_asyn_xfer
&=
6700 AscCalSDTRData(asc_dvc
,
6701 ext_msg
.xfer_period
,
6704 AscSetChipSDTR(iop_base
, sdtr_data
,
6706 boardp
->sdtr_data
[tid_no
] = sdtr_data
;
6707 asc_dvc
->sdtr_done
|= target_id
;
6708 asc_dvc
->init_sdtr
|= target_id
;
6712 AscWriteLramByte(iop_base
,
6713 (ushort
)(halt_q_addr
+
6714 (ushort
)ASC_SCSIQ_B_CNTL
),
6716 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6718 } else if (ext_msg
.msg_type
== EXTENDED_MESSAGE
&&
6719 ext_msg
.msg_req
== EXTENDED_WDTR
&&
6720 ext_msg
.msg_len
== MS_WDTR_LEN
) {
6722 ext_msg
.wdtr_width
= 0;
6723 AscMemWordCopyPtrToLram(iop_base
,
6726 sizeof(EXT_MSG
) >> 1);
6727 q_cntl
|= QC_MSG_OUT
;
6728 AscWriteLramByte(iop_base
,
6729 (ushort
)(halt_q_addr
+
6730 (ushort
)ASC_SCSIQ_B_CNTL
),
6732 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6736 ext_msg
.msg_type
= MESSAGE_REJECT
;
6737 AscMemWordCopyPtrToLram(iop_base
,
6740 sizeof(EXT_MSG
) >> 1);
6741 q_cntl
|= QC_MSG_OUT
;
6742 AscWriteLramByte(iop_base
,
6743 (ushort
)(halt_q_addr
+
6744 (ushort
)ASC_SCSIQ_B_CNTL
),
6746 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6749 } else if (int_halt_code
== ASC_HALT_CHK_CONDITION
) {
6751 q_cntl
|= QC_REQ_SENSE
;
6753 if ((asc_dvc
->init_sdtr
& target_id
) != 0) {
6755 asc_dvc
->sdtr_done
&= ~target_id
;
6757 sdtr_data
= AscGetMCodeInitSDTRAtID(iop_base
, tid_no
);
6758 q_cntl
|= QC_MSG_OUT
;
6759 AscMsgOutSDTR(asc_dvc
,
6761 sdtr_period_tbl
[(sdtr_data
>> 4) &
6765 (uchar
)(sdtr_data
& (uchar
)
6766 ASC_SYN_MAX_OFFSET
));
6769 AscWriteLramByte(iop_base
,
6770 (ushort
)(halt_q_addr
+
6771 (ushort
)ASC_SCSIQ_B_CNTL
), q_cntl
);
6773 tag_code
= AscReadLramByte(iop_base
,
6774 (ushort
)(halt_q_addr
+ (ushort
)
6775 ASC_SCSIQ_B_TAG_CODE
));
6777 if ((asc_dvc
->pci_fix_asyn_xfer
& target_id
)
6778 && !(asc_dvc
->pci_fix_asyn_xfer_always
& target_id
)
6781 tag_code
|= (ASC_TAG_FLAG_DISABLE_DISCONNECT
6782 | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX
);
6785 AscWriteLramByte(iop_base
,
6786 (ushort
)(halt_q_addr
+
6787 (ushort
)ASC_SCSIQ_B_TAG_CODE
),
6790 q_status
= AscReadLramByte(iop_base
,
6791 (ushort
)(halt_q_addr
+ (ushort
)
6792 ASC_SCSIQ_B_STATUS
));
6793 q_status
|= (QS_READY
| QS_BUSY
);
6794 AscWriteLramByte(iop_base
,
6795 (ushort
)(halt_q_addr
+
6796 (ushort
)ASC_SCSIQ_B_STATUS
),
6799 scsi_busy
= AscReadLramByte(iop_base
, (ushort
)ASCV_SCSIBUSY_B
);
6800 scsi_busy
&= ~target_id
;
6801 AscWriteLramByte(iop_base
, (ushort
)ASCV_SCSIBUSY_B
, scsi_busy
);
6803 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6805 } else if (int_halt_code
== ASC_HALT_SDTR_REJECTED
) {
6807 AscMemWordCopyPtrFromLram(iop_base
,
6810 sizeof(EXT_MSG
) >> 1);
6812 if ((out_msg
.msg_type
== EXTENDED_MESSAGE
) &&
6813 (out_msg
.msg_len
== MS_SDTR_LEN
) &&
6814 (out_msg
.msg_req
== EXTENDED_SDTR
)) {
6816 asc_dvc
->init_sdtr
&= ~target_id
;
6817 asc_dvc
->sdtr_done
&= ~target_id
;
6818 AscSetChipSDTR(iop_base
, asyn_sdtr
, tid_no
);
6819 boardp
->sdtr_data
[tid_no
] = asyn_sdtr
;
6821 q_cntl
&= ~QC_MSG_OUT
;
6822 AscWriteLramByte(iop_base
,
6823 (ushort
)(halt_q_addr
+
6824 (ushort
)ASC_SCSIQ_B_CNTL
), q_cntl
);
6825 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6827 } else if (int_halt_code
== ASC_HALT_SS_QUEUE_FULL
) {
6829 scsi_status
= AscReadLramByte(iop_base
,
6830 (ushort
)((ushort
)halt_q_addr
+
6832 ASC_SCSIQ_SCSI_STATUS
));
6834 AscReadLramByte(iop_base
,
6835 (ushort
)((ushort
)ASC_QADR_BEG
+
6836 (ushort
)target_ix
));
6837 if ((cur_dvc_qng
> 0) && (asc_dvc
->cur_dvc_qng
[tid_no
] > 0)) {
6839 scsi_busy
= AscReadLramByte(iop_base
,
6840 (ushort
)ASCV_SCSIBUSY_B
);
6841 scsi_busy
|= target_id
;
6842 AscWriteLramByte(iop_base
,
6843 (ushort
)ASCV_SCSIBUSY_B
, scsi_busy
);
6844 asc_dvc
->queue_full_or_busy
|= target_id
;
6846 if (scsi_status
== SAM_STAT_TASK_SET_FULL
) {
6847 if (cur_dvc_qng
> ASC_MIN_TAGGED_CMD
) {
6849 asc_dvc
->max_dvc_qng
[tid_no
] =
6852 AscWriteLramByte(iop_base
,
6854 ASCV_MAX_DVC_QNG_BEG
6860 * Set the device queue depth to the
6861 * number of active requests when the
6862 * QUEUE FULL condition was encountered.
6864 boardp
->queue_full
|= target_id
;
6865 boardp
->queue_full_cnt
[tid_no
] =
6870 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6873 #if CC_VERY_LONG_SG_LIST
6874 else if (int_halt_code
== ASC_HALT_HOST_COPY_SG_LIST_TO_RISC
) {
6878 uchar first_sg_wk_q_no
;
6879 ASC_SCSI_Q
*scsiq
; /* Ptr to driver request. */
6880 ASC_SG_HEAD
*sg_head
; /* Ptr to driver SG request. */
6881 ASC_SG_LIST_Q scsi_sg_q
; /* Structure written to queue. */
6882 ushort sg_list_dwords
;
6883 ushort sg_entry_cnt
;
6887 q_no
= AscReadLramByte(iop_base
, (ushort
)ASCV_REQ_SG_LIST_QP
);
6888 if (q_no
== ASC_QLINK_END
)
6891 q_addr
= ASC_QNO_TO_QADDR(q_no
);
6894 * Convert the request's SRB pointer to a host ASC_SCSI_REQ
6895 * structure pointer using a macro provided by the driver.
6896 * The ASC_SCSI_REQ pointer provides a pointer to the
6897 * host ASC_SG_HEAD structure.
6899 /* Read request's SRB pointer. */
6900 scsiq
= (ASC_SCSI_Q
*)
6901 ASC_SRB2SCSIQ(ASC_U32_TO_VADDR(AscReadLramDWord(iop_base
,
6904 ASC_SCSIQ_D_SRBPTR
))));
6907 * Get request's first and working SG queue.
6909 sg_wk_q_no
= AscReadLramByte(iop_base
,
6911 ASC_SCSIQ_B_SG_WK_QP
));
6913 first_sg_wk_q_no
= AscReadLramByte(iop_base
,
6915 ASC_SCSIQ_B_FIRST_SG_WK_QP
));
6918 * Reset request's working SG queue back to the
6921 AscWriteLramByte(iop_base
,
6923 (ushort
)ASC_SCSIQ_B_SG_WK_QP
),
6926 sg_head
= scsiq
->sg_head
;
6929 * Set sg_entry_cnt to the number of SG elements
6930 * that will be completed on this interrupt.
6932 * Note: The allocated SG queues contain ASC_MAX_SG_LIST - 1
6933 * SG elements. The data_cnt and data_addr fields which
6934 * add 1 to the SG element capacity are not used when
6935 * restarting SG handling after a halt.
6937 if (scsiq
->remain_sg_entry_cnt
> (ASC_MAX_SG_LIST
- 1)) {
6938 sg_entry_cnt
= ASC_MAX_SG_LIST
- 1;
6941 * Keep track of remaining number of SG elements that
6942 * will need to be handled on the next interrupt.
6944 scsiq
->remain_sg_entry_cnt
-= (ASC_MAX_SG_LIST
- 1);
6946 sg_entry_cnt
= scsiq
->remain_sg_entry_cnt
;
6947 scsiq
->remain_sg_entry_cnt
= 0;
6951 * Copy SG elements into the list of allocated SG queues.
6953 * Last index completed is saved in scsiq->next_sg_index.
6955 next_qp
= first_sg_wk_q_no
;
6956 q_addr
= ASC_QNO_TO_QADDR(next_qp
);
6957 scsi_sg_q
.sg_head_qp
= q_no
;
6958 scsi_sg_q
.cntl
= QCSG_SG_XFER_LIST
;
6959 for (i
= 0; i
< sg_head
->queue_cnt
; i
++) {
6960 scsi_sg_q
.seq_no
= i
+ 1;
6961 if (sg_entry_cnt
> ASC_SG_LIST_PER_Q
) {
6962 sg_list_dwords
= (uchar
)(ASC_SG_LIST_PER_Q
* 2);
6963 sg_entry_cnt
-= ASC_SG_LIST_PER_Q
;
6965 * After very first SG queue RISC FW uses next
6966 * SG queue first element then checks sg_list_cnt
6967 * against zero and then decrements, so set
6968 * sg_list_cnt 1 less than number of SG elements
6971 scsi_sg_q
.sg_list_cnt
= ASC_SG_LIST_PER_Q
- 1;
6972 scsi_sg_q
.sg_cur_list_cnt
=
6973 ASC_SG_LIST_PER_Q
- 1;
6976 * This is the last SG queue in the list of
6977 * allocated SG queues. If there are more
6978 * SG elements than will fit in the allocated
6979 * queues, then set the QCSG_SG_XFER_MORE flag.
6981 if (scsiq
->remain_sg_entry_cnt
!= 0) {
6982 scsi_sg_q
.cntl
|= QCSG_SG_XFER_MORE
;
6984 scsi_sg_q
.cntl
|= QCSG_SG_XFER_END
;
6986 /* equals sg_entry_cnt * 2 */
6987 sg_list_dwords
= sg_entry_cnt
<< 1;
6988 scsi_sg_q
.sg_list_cnt
= sg_entry_cnt
- 1;
6989 scsi_sg_q
.sg_cur_list_cnt
= sg_entry_cnt
- 1;
6993 scsi_sg_q
.q_no
= next_qp
;
6994 AscMemWordCopyPtrToLram(iop_base
,
6995 q_addr
+ ASC_SCSIQ_SGHD_CPY_BEG
,
6996 (uchar
*)&scsi_sg_q
,
6997 sizeof(ASC_SG_LIST_Q
) >> 1);
6999 AscMemDWordCopyPtrToLram(iop_base
,
7000 q_addr
+ ASC_SGQ_LIST_BEG
,
7002 sg_list
[scsiq
->next_sg_index
],
7005 scsiq
->next_sg_index
+= ASC_SG_LIST_PER_Q
;
7008 * If the just completed SG queue contained the
7009 * last SG element, then no more SG queues need
7012 if (scsi_sg_q
.cntl
& QCSG_SG_XFER_END
) {
7016 next_qp
= AscReadLramByte(iop_base
,
7019 q_addr
= ASC_QNO_TO_QADDR(next_qp
);
7023 * Clear the halt condition so the RISC will be restarted
7026 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
7029 #endif /* CC_VERY_LONG_SG_LIST */
7035 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7037 * Calling/Exit State:
7041 * Input an ASC_QDONE_INFO structure from the chip
7044 DvcGetQinfo(PortAddr iop_base
, ushort s_addr
, uchar
*inbuf
, int words
)
7049 AscSetChipLramAddr(iop_base
, s_addr
);
7050 for (i
= 0; i
< 2 * words
; i
+= 2) {
7054 word
= inpw(iop_base
+ IOP_RAM_DATA
);
7055 inbuf
[i
] = word
& 0xff;
7056 inbuf
[i
+ 1] = (word
>> 8) & 0xff;
7058 ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf
, 2 * words
);
7062 _AscCopyLramScsiDoneQ(PortAddr iop_base
,
7064 ASC_QDONE_INFO
*scsiq
, ASC_DCNT max_dma_count
)
7069 DvcGetQinfo(iop_base
,
7070 q_addr
+ ASC_SCSIQ_DONE_INFO_BEG
,
7072 (sizeof(ASC_SCSIQ_2
) + sizeof(ASC_SCSIQ_3
)) / 2);
7074 _val
= AscReadLramWord(iop_base
,
7075 (ushort
)(q_addr
+ (ushort
)ASC_SCSIQ_B_STATUS
));
7076 scsiq
->q_status
= (uchar
)_val
;
7077 scsiq
->q_no
= (uchar
)(_val
>> 8);
7078 _val
= AscReadLramWord(iop_base
,
7079 (ushort
)(q_addr
+ (ushort
)ASC_SCSIQ_B_CNTL
));
7080 scsiq
->cntl
= (uchar
)_val
;
7081 sg_queue_cnt
= (uchar
)(_val
>> 8);
7082 _val
= AscReadLramWord(iop_base
,
7084 (ushort
)ASC_SCSIQ_B_SENSE_LEN
));
7085 scsiq
->sense_len
= (uchar
)_val
;
7086 scsiq
->extra_bytes
= (uchar
)(_val
>> 8);
7089 * Read high word of remain bytes from alternate location.
7091 scsiq
->remain_bytes
= (((ADV_DCNT
)AscReadLramWord(iop_base
,
7094 ASC_SCSIQ_W_ALT_DC1
)))
7097 * Read low word of remain bytes from original location.
7099 scsiq
->remain_bytes
+= AscReadLramWord(iop_base
,
7100 (ushort
)(q_addr
+ (ushort
)
7101 ASC_SCSIQ_DW_REMAIN_XFER_CNT
));
7103 scsiq
->remain_bytes
&= max_dma_count
;
7104 return sg_queue_cnt
;
7108 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
7110 * Interrupt callback function for the Narrow SCSI Asc Library.
7112 static void asc_isr_callback(ASC_DVC_VAR
*asc_dvc_varp
, ASC_QDONE_INFO
*qdonep
)
7114 struct asc_board
*boardp
;
7115 struct scsi_cmnd
*scp
;
7116 struct Scsi_Host
*shost
;
7118 ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp
, qdonep
);
7119 ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep
);
7121 scp
= advansys_srb_to_ptr(asc_dvc_varp
, qdonep
->d2
.srb_ptr
);
7125 ASC_DBG_PRT_CDB(2, scp
->cmnd
, scp
->cmd_len
);
7127 shost
= scp
->device
->host
;
7128 ASC_STATS(shost
, callback
);
7129 ASC_DBG(1, "shost 0x%p\n", shost
);
7131 boardp
= shost_priv(shost
);
7132 BUG_ON(asc_dvc_varp
!= &boardp
->dvc_var
.asc_dvc_var
);
7134 dma_unmap_single(boardp
->dev
, scp
->SCp
.dma_handle
,
7135 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
7137 * 'qdonep' contains the command's ending status.
7139 switch (qdonep
->d3
.done_stat
) {
7141 ASC_DBG(2, "QD_NO_ERROR\n");
7145 * Check for an underrun condition.
7147 * If there was no error and an underrun condition, then
7148 * return the number of underrun bytes.
7150 if (scsi_bufflen(scp
) != 0 && qdonep
->remain_bytes
!= 0 &&
7151 qdonep
->remain_bytes
<= scsi_bufflen(scp
)) {
7152 ASC_DBG(1, "underrun condition %u bytes\n",
7153 (unsigned)qdonep
->remain_bytes
);
7154 scsi_set_resid(scp
, qdonep
->remain_bytes
);
7159 ASC_DBG(2, "QD_WITH_ERROR\n");
7160 switch (qdonep
->d3
.host_stat
) {
7161 case QHSTA_NO_ERROR
:
7162 if (qdonep
->d3
.scsi_stat
== SAM_STAT_CHECK_CONDITION
) {
7163 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
7164 ASC_DBG_PRT_SENSE(2, scp
->sense_buffer
,
7165 SCSI_SENSE_BUFFERSIZE
);
7167 * Note: The 'status_byte()' macro used by
7168 * target drivers defined in scsi.h shifts the
7169 * status byte returned by host drivers right
7170 * by 1 bit. This is why target drivers also
7171 * use right shifted status byte definitions.
7172 * For instance target drivers use
7173 * CHECK_CONDITION, defined to 0x1, instead of
7174 * the SCSI defined check condition value of
7175 * 0x2. Host drivers are supposed to return
7176 * the status byte as it is defined by SCSI.
7178 scp
->result
= DRIVER_BYTE(DRIVER_SENSE
) |
7179 STATUS_BYTE(qdonep
->d3
.scsi_stat
);
7181 scp
->result
= STATUS_BYTE(qdonep
->d3
.scsi_stat
);
7186 /* QHSTA error occurred */
7187 ASC_DBG(1, "host_stat 0x%x\n", qdonep
->d3
.host_stat
);
7188 scp
->result
= HOST_BYTE(DID_BAD_TARGET
);
7193 case QD_ABORTED_BY_HOST
:
7194 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
7196 HOST_BYTE(DID_ABORT
) | MSG_BYTE(qdonep
->d3
.
7198 STATUS_BYTE(qdonep
->d3
.scsi_stat
);
7202 ASC_DBG(1, "done_stat 0x%x\n", qdonep
->d3
.done_stat
);
7204 HOST_BYTE(DID_ERROR
) | MSG_BYTE(qdonep
->d3
.
7206 STATUS_BYTE(qdonep
->d3
.scsi_stat
);
7211 * If the 'init_tidmask' bit isn't already set for the target and the
7212 * current request finished normally, then set the bit for the target
7213 * to indicate that a device is present.
7215 if ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(scp
->device
->id
)) == 0 &&
7216 qdonep
->d3
.done_stat
== QD_NO_ERROR
&&
7217 qdonep
->d3
.host_stat
== QHSTA_NO_ERROR
) {
7218 boardp
->init_tidmask
|= ADV_TID_TO_TIDMASK(scp
->device
->id
);
7224 static int AscIsrQDone(ASC_DVC_VAR
*asc_dvc
)
7233 ASC_SCSI_BIT_ID_TYPE scsi_busy
;
7234 ASC_SCSI_BIT_ID_TYPE target_id
;
7238 uchar cur_target_qng
;
7239 ASC_QDONE_INFO scsiq_buf
;
7240 ASC_QDONE_INFO
*scsiq
;
7243 iop_base
= asc_dvc
->iop_base
;
7245 scsiq
= (ASC_QDONE_INFO
*)&scsiq_buf
;
7246 done_q_tail
= (uchar
)AscGetVarDoneQTail(iop_base
);
7247 q_addr
= ASC_QNO_TO_QADDR(done_q_tail
);
7248 next_qp
= AscReadLramByte(iop_base
,
7249 (ushort
)(q_addr
+ (ushort
)ASC_SCSIQ_B_FWD
));
7250 if (next_qp
!= ASC_QLINK_END
) {
7251 AscPutVarDoneQTail(iop_base
, next_qp
);
7252 q_addr
= ASC_QNO_TO_QADDR(next_qp
);
7253 sg_queue_cnt
= _AscCopyLramScsiDoneQ(iop_base
, q_addr
, scsiq
,
7254 asc_dvc
->max_dma_count
);
7255 AscWriteLramByte(iop_base
,
7257 (ushort
)ASC_SCSIQ_B_STATUS
),
7259 q_status
& (uchar
)~(QS_READY
|
7261 tid_no
= ASC_TIX_TO_TID(scsiq
->d2
.target_ix
);
7262 target_id
= ASC_TIX_TO_TARGET_ID(scsiq
->d2
.target_ix
);
7263 if ((scsiq
->cntl
& QC_SG_HEAD
) != 0) {
7265 sg_list_qp
= next_qp
;
7266 for (q_cnt
= 0; q_cnt
< sg_queue_cnt
; q_cnt
++) {
7267 sg_list_qp
= AscReadLramByte(iop_base
,
7271 sg_q_addr
= ASC_QNO_TO_QADDR(sg_list_qp
);
7272 if (sg_list_qp
== ASC_QLINK_END
) {
7273 AscSetLibErrorCode(asc_dvc
,
7274 ASCQ_ERR_SG_Q_LINKS
);
7275 scsiq
->d3
.done_stat
= QD_WITH_ERROR
;
7276 scsiq
->d3
.host_stat
=
7277 QHSTA_D_QDONE_SG_LIST_CORRUPTED
;
7278 goto FATAL_ERR_QDONE
;
7280 AscWriteLramByte(iop_base
,
7281 (ushort
)(sg_q_addr
+ (ushort
)
7282 ASC_SCSIQ_B_STATUS
),
7285 n_q_used
= sg_queue_cnt
+ 1;
7286 AscPutVarDoneQTail(iop_base
, sg_list_qp
);
7288 if (asc_dvc
->queue_full_or_busy
& target_id
) {
7289 cur_target_qng
= AscReadLramByte(iop_base
,
7295 if (cur_target_qng
< asc_dvc
->max_dvc_qng
[tid_no
]) {
7296 scsi_busy
= AscReadLramByte(iop_base
, (ushort
)
7298 scsi_busy
&= ~target_id
;
7299 AscWriteLramByte(iop_base
,
7300 (ushort
)ASCV_SCSIBUSY_B
,
7302 asc_dvc
->queue_full_or_busy
&= ~target_id
;
7305 if (asc_dvc
->cur_total_qng
>= n_q_used
) {
7306 asc_dvc
->cur_total_qng
-= n_q_used
;
7307 if (asc_dvc
->cur_dvc_qng
[tid_no
] != 0) {
7308 asc_dvc
->cur_dvc_qng
[tid_no
]--;
7311 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_CUR_QNG
);
7312 scsiq
->d3
.done_stat
= QD_WITH_ERROR
;
7313 goto FATAL_ERR_QDONE
;
7315 if ((scsiq
->d2
.srb_ptr
== 0UL) ||
7316 ((scsiq
->q_status
& QS_ABORTED
) != 0)) {
7318 } else if (scsiq
->q_status
== QS_DONE
) {
7319 false_overrun
= FALSE
;
7320 if (scsiq
->extra_bytes
!= 0) {
7321 scsiq
->remain_bytes
+=
7322 (ADV_DCNT
)scsiq
->extra_bytes
;
7324 if (scsiq
->d3
.done_stat
== QD_WITH_ERROR
) {
7325 if (scsiq
->d3
.host_stat
==
7326 QHSTA_M_DATA_OVER_RUN
) {
7328 cntl
& (QC_DATA_IN
| QC_DATA_OUT
))
7330 scsiq
->d3
.done_stat
=
7332 scsiq
->d3
.host_stat
=
7334 } else if (false_overrun
) {
7335 scsiq
->d3
.done_stat
=
7337 scsiq
->d3
.host_stat
=
7340 } else if (scsiq
->d3
.host_stat
==
7341 QHSTA_M_HUNG_REQ_SCSI_BUS_RESET
) {
7342 AscStopChip(iop_base
);
7343 AscSetChipControl(iop_base
,
7344 (uchar
)(CC_SCSI_RESET
7347 AscSetChipControl(iop_base
, CC_HALT
);
7348 AscSetChipStatus(iop_base
,
7349 CIW_CLR_SCSI_RESET_INT
);
7350 AscSetChipStatus(iop_base
, 0);
7351 AscSetChipControl(iop_base
, 0);
7354 if ((scsiq
->cntl
& QC_NO_CALLBACK
) == 0) {
7355 asc_isr_callback(asc_dvc
, scsiq
);
7357 if ((AscReadLramByte(iop_base
,
7358 (ushort
)(q_addr
+ (ushort
)
7361 asc_dvc
->unit_not_ready
&= ~target_id
;
7362 if (scsiq
->d3
.done_stat
!= QD_NO_ERROR
) {
7363 asc_dvc
->start_motor
&=
7370 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_Q_STATUS
);
7372 if ((scsiq
->cntl
& QC_NO_CALLBACK
) == 0) {
7373 asc_isr_callback(asc_dvc
, scsiq
);
7381 static int AscISR(ASC_DVC_VAR
*asc_dvc
)
7383 ASC_CS_TYPE chipstat
;
7385 ushort saved_ram_addr
;
7387 uchar saved_ctrl_reg
;
7392 iop_base
= asc_dvc
->iop_base
;
7393 int_pending
= FALSE
;
7395 if (AscIsIntPending(iop_base
) == 0)
7398 if ((asc_dvc
->init_state
& ASC_INIT_STATE_END_LOAD_MC
) == 0) {
7401 if (asc_dvc
->in_critical_cnt
!= 0) {
7402 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_ISR_ON_CRITICAL
);
7405 if (asc_dvc
->is_in_int
) {
7406 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_ISR_RE_ENTRY
);
7409 asc_dvc
->is_in_int
= TRUE
;
7410 ctrl_reg
= AscGetChipControl(iop_base
);
7411 saved_ctrl_reg
= ctrl_reg
& (~(CC_SCSI_RESET
| CC_CHIP_RESET
|
7412 CC_SINGLE_STEP
| CC_DIAG
| CC_TEST
));
7413 chipstat
= AscGetChipStatus(iop_base
);
7414 if (chipstat
& CSW_SCSI_RESET_LATCH
) {
7415 if (!(asc_dvc
->bus_type
& (ASC_IS_VL
| ASC_IS_EISA
))) {
7418 asc_dvc
->sdtr_done
= 0;
7419 saved_ctrl_reg
&= (uchar
)(~CC_HALT
);
7420 while ((AscGetChipStatus(iop_base
) &
7421 CSW_SCSI_RESET_ACTIVE
) && (i
-- > 0)) {
7424 AscSetChipControl(iop_base
, (CC_CHIP_RESET
| CC_HALT
));
7425 AscSetChipControl(iop_base
, CC_HALT
);
7426 AscSetChipStatus(iop_base
, CIW_CLR_SCSI_RESET_INT
);
7427 AscSetChipStatus(iop_base
, 0);
7428 chipstat
= AscGetChipStatus(iop_base
);
7431 saved_ram_addr
= AscGetChipLramAddr(iop_base
);
7432 host_flag
= AscReadLramByte(iop_base
,
7434 (uchar
)(~ASC_HOST_FLAG_IN_ISR
);
7435 AscWriteLramByte(iop_base
, ASCV_HOST_FLAG_B
,
7436 (uchar
)(host_flag
| (uchar
)ASC_HOST_FLAG_IN_ISR
));
7437 if ((chipstat
& CSW_INT_PENDING
) || (int_pending
)) {
7438 AscAckInterrupt(iop_base
);
7440 if ((chipstat
& CSW_HALTED
) && (ctrl_reg
& CC_SINGLE_STEP
)) {
7441 if (AscIsrChipHalted(asc_dvc
) == ERR
) {
7442 goto ISR_REPORT_QDONE_FATAL_ERROR
;
7444 saved_ctrl_reg
&= (uchar
)(~CC_HALT
);
7447 ISR_REPORT_QDONE_FATAL_ERROR
:
7448 if ((asc_dvc
->dvc_cntl
& ASC_CNTL_INT_MULTI_Q
) != 0) {
7450 AscIsrQDone(asc_dvc
)) & 0x01) != 0) {
7455 AscIsrQDone(asc_dvc
)) == 1) {
7458 } while (status
== 0x11);
7460 if ((status
& 0x80) != 0)
7464 AscWriteLramByte(iop_base
, ASCV_HOST_FLAG_B
, host_flag
);
7465 AscSetChipLramAddr(iop_base
, saved_ram_addr
);
7466 AscSetChipControl(iop_base
, saved_ctrl_reg
);
7467 asc_dvc
->is_in_int
= FALSE
;
7474 * Reset the bus associated with the command 'scp'.
7476 * This function runs its own thread. Interrupts must be blocked but
7477 * sleeping is allowed and no locking other than for host structures is
7478 * required. Returns SUCCESS or FAILED.
7480 static int advansys_reset(struct scsi_cmnd
*scp
)
7482 struct Scsi_Host
*shost
= scp
->device
->host
;
7483 struct asc_board
*boardp
= shost_priv(shost
);
7484 unsigned long flags
;
7488 ASC_DBG(1, "0x%p\n", scp
);
7490 ASC_STATS(shost
, reset
);
7492 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset started...\n");
7494 if (ASC_NARROW_BOARD(boardp
)) {
7495 ASC_DVC_VAR
*asc_dvc
= &boardp
->dvc_var
.asc_dvc_var
;
7497 /* Reset the chip and SCSI bus. */
7498 ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7499 status
= AscInitAsc1000Driver(asc_dvc
);
7501 /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7502 if (asc_dvc
->err_code
|| !asc_dvc
->overrun_dma
) {
7503 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset error: "
7504 "0x%x, status: 0x%x\n", asc_dvc
->err_code
,
7507 } else if (status
) {
7508 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset warning: "
7511 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset "
7515 ASC_DBG(1, "after AscInitAsc1000Driver()\n");
7516 spin_lock_irqsave(shost
->host_lock
, flags
);
7519 * If the suggest reset bus flags are set, then reset the bus.
7520 * Otherwise only reset the device.
7522 ADV_DVC_VAR
*adv_dvc
= &boardp
->dvc_var
.adv_dvc_var
;
7525 * Reset the target's SCSI bus.
7527 ASC_DBG(1, "before AdvResetChipAndSB()\n");
7528 switch (AdvResetChipAndSB(adv_dvc
)) {
7530 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset "
7535 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset error\n");
7539 spin_lock_irqsave(shost
->host_lock
, flags
);
7543 /* Save the time of the most recently completed reset. */
7544 boardp
->last_reset
= jiffies
;
7545 spin_unlock_irqrestore(shost
->host_lock
, flags
);
7547 ASC_DBG(1, "ret %d\n", ret
);
7553 * advansys_biosparam()
7555 * Translate disk drive geometry if the "BIOS greater than 1 GB"
7556 * support is enabled for a drive.
7558 * ip (information pointer) is an int array with the following definition:
7564 advansys_biosparam(struct scsi_device
*sdev
, struct block_device
*bdev
,
7565 sector_t capacity
, int ip
[])
7567 struct asc_board
*boardp
= shost_priv(sdev
->host
);
7569 ASC_DBG(1, "begin\n");
7570 ASC_STATS(sdev
->host
, biosparam
);
7571 if (ASC_NARROW_BOARD(boardp
)) {
7572 if ((boardp
->dvc_var
.asc_dvc_var
.dvc_cntl
&
7573 ASC_CNTL_BIOS_GT_1GB
) && capacity
> 0x200000) {
7581 if ((boardp
->dvc_var
.adv_dvc_var
.bios_ctrl
&
7582 BIOS_CTRL_EXTENDED_XLAT
) && capacity
> 0x200000) {
7590 ip
[2] = (unsigned long)capacity
/ (ip
[0] * ip
[1]);
7591 ASC_DBG(1, "end\n");
7596 * First-level interrupt handler.
7598 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
7600 static irqreturn_t
advansys_interrupt(int irq
, void *dev_id
)
7602 struct Scsi_Host
*shost
= dev_id
;
7603 struct asc_board
*boardp
= shost_priv(shost
);
7604 irqreturn_t result
= IRQ_NONE
;
7606 ASC_DBG(2, "boardp 0x%p\n", boardp
);
7607 spin_lock(shost
->host_lock
);
7608 if (ASC_NARROW_BOARD(boardp
)) {
7609 if (AscIsIntPending(shost
->io_port
)) {
7610 result
= IRQ_HANDLED
;
7611 ASC_STATS(shost
, interrupt
);
7612 ASC_DBG(1, "before AscISR()\n");
7613 AscISR(&boardp
->dvc_var
.asc_dvc_var
);
7616 ASC_DBG(1, "before AdvISR()\n");
7617 if (AdvISR(&boardp
->dvc_var
.adv_dvc_var
)) {
7618 result
= IRQ_HANDLED
;
7619 ASC_STATS(shost
, interrupt
);
7622 spin_unlock(shost
->host_lock
);
7624 ASC_DBG(1, "end\n");
7628 static int AscHostReqRiscHalt(PortAddr iop_base
)
7632 uchar saved_stop_code
;
7634 if (AscIsChipHalted(iop_base
))
7636 saved_stop_code
= AscReadLramByte(iop_base
, ASCV_STOP_CODE_B
);
7637 AscWriteLramByte(iop_base
, ASCV_STOP_CODE_B
,
7638 ASC_STOP_HOST_REQ_RISC_HALT
| ASC_STOP_REQ_RISC_STOP
);
7640 if (AscIsChipHalted(iop_base
)) {
7645 } while (count
++ < 20);
7646 AscWriteLramByte(iop_base
, ASCV_STOP_CODE_B
, saved_stop_code
);
7651 AscSetRunChipSynRegAtID(PortAddr iop_base
, uchar tid_no
, uchar sdtr_data
)
7655 if (AscHostReqRiscHalt(iop_base
)) {
7656 sta
= AscSetChipSynRegAtID(iop_base
, tid_no
, sdtr_data
);
7657 AscStartChip(iop_base
);
7662 static void AscAsyncFix(ASC_DVC_VAR
*asc_dvc
, struct scsi_device
*sdev
)
7664 char type
= sdev
->type
;
7665 ASC_SCSI_BIT_ID_TYPE tid_bits
= 1 << sdev
->id
;
7667 if (!(asc_dvc
->bug_fix_cntl
& ASC_BUG_FIX_ASYN_USE_SYN
))
7669 if (asc_dvc
->init_sdtr
& tid_bits
)
7672 if ((type
== TYPE_ROM
) && (strncmp(sdev
->vendor
, "HP ", 3) == 0))
7673 asc_dvc
->pci_fix_asyn_xfer_always
|= tid_bits
;
7675 asc_dvc
->pci_fix_asyn_xfer
|= tid_bits
;
7676 if ((type
== TYPE_PROCESSOR
) || (type
== TYPE_SCANNER
) ||
7677 (type
== TYPE_ROM
) || (type
== TYPE_TAPE
))
7678 asc_dvc
->pci_fix_asyn_xfer
&= ~tid_bits
;
7680 if (asc_dvc
->pci_fix_asyn_xfer
& tid_bits
)
7681 AscSetRunChipSynRegAtID(asc_dvc
->iop_base
, sdev
->id
,
7682 ASYN_SDTR_DATA_FIX_PCI_REV_AB
);
7686 advansys_narrow_slave_configure(struct scsi_device
*sdev
, ASC_DVC_VAR
*asc_dvc
)
7688 ASC_SCSI_BIT_ID_TYPE tid_bit
= 1 << sdev
->id
;
7689 ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng
= asc_dvc
->use_tagged_qng
;
7691 if (sdev
->lun
== 0) {
7692 ASC_SCSI_BIT_ID_TYPE orig_init_sdtr
= asc_dvc
->init_sdtr
;
7693 if ((asc_dvc
->cfg
->sdtr_enable
& tid_bit
) && sdev
->sdtr
) {
7694 asc_dvc
->init_sdtr
|= tid_bit
;
7696 asc_dvc
->init_sdtr
&= ~tid_bit
;
7699 if (orig_init_sdtr
!= asc_dvc
->init_sdtr
)
7700 AscAsyncFix(asc_dvc
, sdev
);
7703 if (sdev
->tagged_supported
) {
7704 if (asc_dvc
->cfg
->cmd_qng_enabled
& tid_bit
) {
7705 if (sdev
->lun
== 0) {
7706 asc_dvc
->cfg
->can_tagged_qng
|= tid_bit
;
7707 asc_dvc
->use_tagged_qng
|= tid_bit
;
7709 scsi_adjust_queue_depth(sdev
, MSG_ORDERED_TAG
,
7710 asc_dvc
->max_dvc_qng
[sdev
->id
]);
7713 if (sdev
->lun
== 0) {
7714 asc_dvc
->cfg
->can_tagged_qng
&= ~tid_bit
;
7715 asc_dvc
->use_tagged_qng
&= ~tid_bit
;
7717 scsi_adjust_queue_depth(sdev
, 0, sdev
->host
->cmd_per_lun
);
7720 if ((sdev
->lun
== 0) &&
7721 (orig_use_tagged_qng
!= asc_dvc
->use_tagged_qng
)) {
7722 AscWriteLramByte(asc_dvc
->iop_base
, ASCV_DISC_ENABLE_B
,
7723 asc_dvc
->cfg
->disc_enable
);
7724 AscWriteLramByte(asc_dvc
->iop_base
, ASCV_USE_TAGGED_QNG_B
,
7725 asc_dvc
->use_tagged_qng
);
7726 AscWriteLramByte(asc_dvc
->iop_base
, ASCV_CAN_TAGGED_QNG_B
,
7727 asc_dvc
->cfg
->can_tagged_qng
);
7729 asc_dvc
->max_dvc_qng
[sdev
->id
] =
7730 asc_dvc
->cfg
->max_tag_qng
[sdev
->id
];
7731 AscWriteLramByte(asc_dvc
->iop_base
,
7732 (ushort
)(ASCV_MAX_DVC_QNG_BEG
+ sdev
->id
),
7733 asc_dvc
->max_dvc_qng
[sdev
->id
]);
7740 * If the EEPROM enabled WDTR for the device and the device supports wide
7741 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
7742 * write the new value to the microcode.
7745 advansys_wide_enable_wdtr(AdvPortAddr iop_base
, unsigned short tidmask
)
7747 unsigned short cfg_word
;
7748 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, cfg_word
);
7749 if ((cfg_word
& tidmask
) != 0)
7752 cfg_word
|= tidmask
;
7753 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, cfg_word
);
7756 * Clear the microcode SDTR and WDTR negotiation done indicators for
7757 * the target to cause it to negotiate with the new setting set above.
7758 * WDTR when accepted causes the target to enter asynchronous mode, so
7759 * SDTR must be negotiated.
7761 AdvReadWordLram(iop_base
, ASC_MC_SDTR_DONE
, cfg_word
);
7762 cfg_word
&= ~tidmask
;
7763 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_DONE
, cfg_word
);
7764 AdvReadWordLram(iop_base
, ASC_MC_WDTR_DONE
, cfg_word
);
7765 cfg_word
&= ~tidmask
;
7766 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_DONE
, cfg_word
);
7770 * Synchronous Transfers
7772 * If the EEPROM enabled SDTR for the device and the device
7773 * supports synchronous transfers, then turn on the device's
7774 * 'sdtr_able' bit. Write the new value to the microcode.
7777 advansys_wide_enable_sdtr(AdvPortAddr iop_base
, unsigned short tidmask
)
7779 unsigned short cfg_word
;
7780 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, cfg_word
);
7781 if ((cfg_word
& tidmask
) != 0)
7784 cfg_word
|= tidmask
;
7785 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, cfg_word
);
7788 * Clear the microcode "SDTR negotiation" done indicator for the
7789 * target to cause it to negotiate with the new setting set above.
7791 AdvReadWordLram(iop_base
, ASC_MC_SDTR_DONE
, cfg_word
);
7792 cfg_word
&= ~tidmask
;
7793 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_DONE
, cfg_word
);
7797 * PPR (Parallel Protocol Request) Capable
7799 * If the device supports DT mode, then it must be PPR capable.
7800 * The PPR message will be used in place of the SDTR and WDTR
7801 * messages to negotiate synchronous speed and offset, transfer
7802 * width, and protocol options.
7804 static void advansys_wide_enable_ppr(ADV_DVC_VAR
*adv_dvc
,
7805 AdvPortAddr iop_base
, unsigned short tidmask
)
7807 AdvReadWordLram(iop_base
, ASC_MC_PPR_ABLE
, adv_dvc
->ppr_able
);
7808 adv_dvc
->ppr_able
|= tidmask
;
7809 AdvWriteWordLram(iop_base
, ASC_MC_PPR_ABLE
, adv_dvc
->ppr_able
);
7813 advansys_wide_slave_configure(struct scsi_device
*sdev
, ADV_DVC_VAR
*adv_dvc
)
7815 AdvPortAddr iop_base
= adv_dvc
->iop_base
;
7816 unsigned short tidmask
= 1 << sdev
->id
;
7818 if (sdev
->lun
== 0) {
7820 * Handle WDTR, SDTR, and Tag Queuing. If the feature
7821 * is enabled in the EEPROM and the device supports the
7822 * feature, then enable it in the microcode.
7825 if ((adv_dvc
->wdtr_able
& tidmask
) && sdev
->wdtr
)
7826 advansys_wide_enable_wdtr(iop_base
, tidmask
);
7827 if ((adv_dvc
->sdtr_able
& tidmask
) && sdev
->sdtr
)
7828 advansys_wide_enable_sdtr(iop_base
, tidmask
);
7829 if (adv_dvc
->chip_type
== ADV_CHIP_ASC38C1600
&& sdev
->ppr
)
7830 advansys_wide_enable_ppr(adv_dvc
, iop_base
, tidmask
);
7833 * Tag Queuing is disabled for the BIOS which runs in polled
7834 * mode and would see no benefit from Tag Queuing. Also by
7835 * disabling Tag Queuing in the BIOS devices with Tag Queuing
7836 * bugs will at least work with the BIOS.
7838 if ((adv_dvc
->tagqng_able
& tidmask
) &&
7839 sdev
->tagged_supported
) {
7840 unsigned short cfg_word
;
7841 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, cfg_word
);
7842 cfg_word
|= tidmask
;
7843 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
,
7845 AdvWriteByteLram(iop_base
,
7846 ASC_MC_NUMBER_OF_MAX_CMD
+ sdev
->id
,
7847 adv_dvc
->max_dvc_qng
);
7851 if ((adv_dvc
->tagqng_able
& tidmask
) && sdev
->tagged_supported
) {
7852 scsi_adjust_queue_depth(sdev
, MSG_ORDERED_TAG
,
7853 adv_dvc
->max_dvc_qng
);
7855 scsi_adjust_queue_depth(sdev
, 0, sdev
->host
->cmd_per_lun
);
7860 * Set the number of commands to queue per device for the
7861 * specified host adapter.
7863 static int advansys_slave_configure(struct scsi_device
*sdev
)
7865 struct asc_board
*boardp
= shost_priv(sdev
->host
);
7867 if (ASC_NARROW_BOARD(boardp
))
7868 advansys_narrow_slave_configure(sdev
,
7869 &boardp
->dvc_var
.asc_dvc_var
);
7871 advansys_wide_slave_configure(sdev
,
7872 &boardp
->dvc_var
.adv_dvc_var
);
7877 static __le32
advansys_get_sense_buffer_dma(struct scsi_cmnd
*scp
)
7879 struct asc_board
*board
= shost_priv(scp
->device
->host
);
7880 scp
->SCp
.dma_handle
= dma_map_single(board
->dev
, scp
->sense_buffer
,
7881 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
7882 dma_cache_sync(board
->dev
, scp
->sense_buffer
,
7883 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
7884 return cpu_to_le32(scp
->SCp
.dma_handle
);
7887 static int asc_build_req(struct asc_board
*boardp
, struct scsi_cmnd
*scp
,
7888 struct asc_scsi_q
*asc_scsi_q
)
7890 struct asc_dvc_var
*asc_dvc
= &boardp
->dvc_var
.asc_dvc_var
;
7893 memset(asc_scsi_q
, 0, sizeof(*asc_scsi_q
));
7896 * Point the ASC_SCSI_Q to the 'struct scsi_cmnd'.
7898 asc_scsi_q
->q2
.srb_ptr
= advansys_ptr_to_srb(asc_dvc
, scp
);
7899 if (asc_scsi_q
->q2
.srb_ptr
== BAD_SRB
) {
7900 scp
->result
= HOST_BYTE(DID_SOFT_ERROR
);
7905 * Build the ASC_SCSI_Q request.
7907 asc_scsi_q
->cdbptr
= &scp
->cmnd
[0];
7908 asc_scsi_q
->q2
.cdb_len
= scp
->cmd_len
;
7909 asc_scsi_q
->q1
.target_id
= ASC_TID_TO_TARGET_ID(scp
->device
->id
);
7910 asc_scsi_q
->q1
.target_lun
= scp
->device
->lun
;
7911 asc_scsi_q
->q2
.target_ix
=
7912 ASC_TIDLUN_TO_IX(scp
->device
->id
, scp
->device
->lun
);
7913 asc_scsi_q
->q1
.sense_addr
= advansys_get_sense_buffer_dma(scp
);
7914 asc_scsi_q
->q1
.sense_len
= SCSI_SENSE_BUFFERSIZE
;
7917 * If there are any outstanding requests for the current target,
7918 * then every 255th request send an ORDERED request. This heuristic
7919 * tries to retain the benefit of request sorting while preventing
7920 * request starvation. 255 is the max number of tags or pending commands
7921 * a device may have outstanding.
7923 * The request count is incremented below for every successfully
7927 if ((asc_dvc
->cur_dvc_qng
[scp
->device
->id
] > 0) &&
7928 (boardp
->reqcnt
[scp
->device
->id
] % 255) == 0) {
7929 asc_scsi_q
->q2
.tag_code
= MSG_ORDERED_TAG
;
7931 asc_scsi_q
->q2
.tag_code
= MSG_SIMPLE_TAG
;
7934 /* Build ASC_SCSI_Q */
7935 use_sg
= scsi_dma_map(scp
);
7938 struct scatterlist
*slp
;
7939 struct asc_sg_head
*asc_sg_head
;
7941 if (use_sg
> scp
->device
->host
->sg_tablesize
) {
7942 scmd_printk(KERN_ERR
, scp
, "use_sg %d > "
7943 "sg_tablesize %d\n", use_sg
,
7944 scp
->device
->host
->sg_tablesize
);
7945 scsi_dma_unmap(scp
);
7946 scp
->result
= HOST_BYTE(DID_ERROR
);
7950 asc_sg_head
= kzalloc(sizeof(asc_scsi_q
->sg_head
) +
7951 use_sg
* sizeof(struct asc_sg_list
), GFP_ATOMIC
);
7953 scsi_dma_unmap(scp
);
7954 scp
->result
= HOST_BYTE(DID_SOFT_ERROR
);
7958 asc_scsi_q
->q1
.cntl
|= QC_SG_HEAD
;
7959 asc_scsi_q
->sg_head
= asc_sg_head
;
7960 asc_scsi_q
->q1
.data_cnt
= 0;
7961 asc_scsi_q
->q1
.data_addr
= 0;
7962 /* This is a byte value, otherwise it would need to be swapped. */
7963 asc_sg_head
->entry_cnt
= asc_scsi_q
->q1
.sg_queue_cnt
= use_sg
;
7964 ASC_STATS_ADD(scp
->device
->host
, xfer_elem
,
7965 asc_sg_head
->entry_cnt
);
7968 * Convert scatter-gather list into ASC_SG_HEAD list.
7970 scsi_for_each_sg(scp
, slp
, use_sg
, sgcnt
) {
7971 asc_sg_head
->sg_list
[sgcnt
].addr
=
7972 cpu_to_le32(sg_dma_address(slp
));
7973 asc_sg_head
->sg_list
[sgcnt
].bytes
=
7974 cpu_to_le32(sg_dma_len(slp
));
7975 ASC_STATS_ADD(scp
->device
->host
, xfer_sect
,
7976 DIV_ROUND_UP(sg_dma_len(slp
), 512));
7980 ASC_STATS(scp
->device
->host
, xfer_cnt
);
7982 ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q
);
7983 ASC_DBG_PRT_CDB(1, scp
->cmnd
, scp
->cmd_len
);
7989 * Build scatter-gather list for Adv Library (Wide Board).
7991 * Additional ADV_SG_BLOCK structures will need to be allocated
7992 * if the total number of scatter-gather elements exceeds
7993 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
7994 * assumed to be physically contiguous.
7997 * ADV_SUCCESS(1) - SG List successfully created
7998 * ADV_ERROR(-1) - SG List creation failed
8001 adv_get_sglist(struct asc_board
*boardp
, adv_req_t
*reqp
, struct scsi_cmnd
*scp
,
8004 adv_sgblk_t
*sgblkp
;
8005 ADV_SCSI_REQ_Q
*scsiqp
;
8006 struct scatterlist
*slp
;
8008 ADV_SG_BLOCK
*sg_block
, *prev_sg_block
;
8009 ADV_PADDR sg_block_paddr
;
8012 scsiqp
= (ADV_SCSI_REQ_Q
*)ADV_32BALIGN(&reqp
->scsi_req_q
);
8013 slp
= scsi_sglist(scp
);
8014 sg_elem_cnt
= use_sg
;
8015 prev_sg_block
= NULL
;
8016 reqp
->sgblkp
= NULL
;
8020 * Allocate a 'adv_sgblk_t' structure from the board free
8021 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
8022 * (15) scatter-gather elements.
8024 if ((sgblkp
= boardp
->adv_sgblkp
) == NULL
) {
8025 ASC_DBG(1, "no free adv_sgblk_t\n");
8026 ASC_STATS(scp
->device
->host
, adv_build_nosg
);
8029 * Allocation failed. Free 'adv_sgblk_t' structures
8030 * already allocated for the request.
8032 while ((sgblkp
= reqp
->sgblkp
) != NULL
) {
8033 /* Remove 'sgblkp' from the request list. */
8034 reqp
->sgblkp
= sgblkp
->next_sgblkp
;
8036 /* Add 'sgblkp' to the board free list. */
8037 sgblkp
->next_sgblkp
= boardp
->adv_sgblkp
;
8038 boardp
->adv_sgblkp
= sgblkp
;
8043 /* Complete 'adv_sgblk_t' board allocation. */
8044 boardp
->adv_sgblkp
= sgblkp
->next_sgblkp
;
8045 sgblkp
->next_sgblkp
= NULL
;
8048 * Get 8 byte aligned virtual and physical addresses
8049 * for the allocated ADV_SG_BLOCK structure.
8051 sg_block
= (ADV_SG_BLOCK
*)ADV_8BALIGN(&sgblkp
->sg_block
);
8052 sg_block_paddr
= virt_to_bus(sg_block
);
8055 * Check if this is the first 'adv_sgblk_t' for the
8058 if (reqp
->sgblkp
== NULL
) {
8059 /* Request's first scatter-gather block. */
8060 reqp
->sgblkp
= sgblkp
;
8063 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
8066 scsiqp
->sg_list_ptr
= sg_block
;
8067 scsiqp
->sg_real_addr
= cpu_to_le32(sg_block_paddr
);
8069 /* Request's second or later scatter-gather block. */
8070 sgblkp
->next_sgblkp
= reqp
->sgblkp
;
8071 reqp
->sgblkp
= sgblkp
;
8074 * Point the previous ADV_SG_BLOCK structure to
8075 * the newly allocated ADV_SG_BLOCK structure.
8077 prev_sg_block
->sg_ptr
= cpu_to_le32(sg_block_paddr
);
8080 for (i
= 0; i
< NO_OF_SG_PER_BLOCK
; i
++) {
8081 sg_block
->sg_list
[i
].sg_addr
=
8082 cpu_to_le32(sg_dma_address(slp
));
8083 sg_block
->sg_list
[i
].sg_count
=
8084 cpu_to_le32(sg_dma_len(slp
));
8085 ASC_STATS_ADD(scp
->device
->host
, xfer_sect
,
8086 DIV_ROUND_UP(sg_dma_len(slp
), 512));
8088 if (--sg_elem_cnt
== 0) { /* Last ADV_SG_BLOCK and scatter-gather entry. */
8089 sg_block
->sg_cnt
= i
+ 1;
8090 sg_block
->sg_ptr
= 0L; /* Last ADV_SG_BLOCK in list. */
8095 sg_block
->sg_cnt
= NO_OF_SG_PER_BLOCK
;
8096 prev_sg_block
= sg_block
;
8101 * Build a request structure for the Adv Library (Wide Board).
8103 * If an adv_req_t can not be allocated to issue the request,
8104 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
8106 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the
8107 * microcode for DMA addresses or math operations are byte swapped
8108 * to little-endian order.
8111 adv_build_req(struct asc_board
*boardp
, struct scsi_cmnd
*scp
,
8112 ADV_SCSI_REQ_Q
**adv_scsiqpp
)
8115 ADV_SCSI_REQ_Q
*scsiqp
;
8121 * Allocate an adv_req_t structure from the board to execute
8124 if (boardp
->adv_reqp
== NULL
) {
8125 ASC_DBG(1, "no free adv_req_t\n");
8126 ASC_STATS(scp
->device
->host
, adv_build_noreq
);
8129 reqp
= boardp
->adv_reqp
;
8130 boardp
->adv_reqp
= reqp
->next_reqp
;
8131 reqp
->next_reqp
= NULL
;
8135 * Get 32-byte aligned ADV_SCSI_REQ_Q and ADV_SG_BLOCK pointers.
8137 scsiqp
= (ADV_SCSI_REQ_Q
*)ADV_32BALIGN(&reqp
->scsi_req_q
);
8140 * Initialize the structure.
8142 scsiqp
->cntl
= scsiqp
->scsi_cntl
= scsiqp
->done_status
= 0;
8145 * Set the ADV_SCSI_REQ_Q 'srb_ptr' to point to the adv_req_t structure.
8147 scsiqp
->srb_ptr
= ADV_VADDR_TO_U32(reqp
);
8150 * Set the adv_req_t 'cmndp' to point to the struct scsi_cmnd structure.
8155 * Build the ADV_SCSI_REQ_Q request.
8158 /* Set CDB length and copy it to the request structure. */
8159 scsiqp
->cdb_len
= scp
->cmd_len
;
8160 /* Copy first 12 CDB bytes to cdb[]. */
8161 for (i
= 0; i
< scp
->cmd_len
&& i
< 12; i
++) {
8162 scsiqp
->cdb
[i
] = scp
->cmnd
[i
];
8164 /* Copy last 4 CDB bytes, if present, to cdb16[]. */
8165 for (; i
< scp
->cmd_len
; i
++) {
8166 scsiqp
->cdb16
[i
- 12] = scp
->cmnd
[i
];
8169 scsiqp
->target_id
= scp
->device
->id
;
8170 scsiqp
->target_lun
= scp
->device
->lun
;
8172 scsiqp
->sense_addr
= cpu_to_le32(virt_to_bus(&scp
->sense_buffer
[0]));
8173 scsiqp
->sense_len
= SCSI_SENSE_BUFFERSIZE
;
8175 /* Build ADV_SCSI_REQ_Q */
8177 use_sg
= scsi_dma_map(scp
);
8179 /* Zero-length transfer */
8180 reqp
->sgblkp
= NULL
;
8181 scsiqp
->data_cnt
= 0;
8182 scsiqp
->vdata_addr
= NULL
;
8184 scsiqp
->data_addr
= 0;
8185 scsiqp
->sg_list_ptr
= NULL
;
8186 scsiqp
->sg_real_addr
= 0;
8188 if (use_sg
> ADV_MAX_SG_LIST
) {
8189 scmd_printk(KERN_ERR
, scp
, "use_sg %d > "
8190 "ADV_MAX_SG_LIST %d\n", use_sg
,
8191 scp
->device
->host
->sg_tablesize
);
8192 scsi_dma_unmap(scp
);
8193 scp
->result
= HOST_BYTE(DID_ERROR
);
8196 * Free the 'adv_req_t' structure by adding it back
8197 * to the board free list.
8199 reqp
->next_reqp
= boardp
->adv_reqp
;
8200 boardp
->adv_reqp
= reqp
;
8205 scsiqp
->data_cnt
= cpu_to_le32(scsi_bufflen(scp
));
8207 ret
= adv_get_sglist(boardp
, reqp
, scp
, use_sg
);
8208 if (ret
!= ADV_SUCCESS
) {
8210 * Free the adv_req_t structure by adding it back to
8211 * the board free list.
8213 reqp
->next_reqp
= boardp
->adv_reqp
;
8214 boardp
->adv_reqp
= reqp
;
8219 ASC_STATS_ADD(scp
->device
->host
, xfer_elem
, use_sg
);
8222 ASC_STATS(scp
->device
->host
, xfer_cnt
);
8224 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp
);
8225 ASC_DBG_PRT_CDB(1, scp
->cmnd
, scp
->cmd_len
);
8227 *adv_scsiqpp
= scsiqp
;
8232 static int AscSgListToQueue(int sg_list
)
8236 n_sg_list_qs
= ((sg_list
- 1) / ASC_SG_LIST_PER_Q
);
8237 if (((sg_list
- 1) % ASC_SG_LIST_PER_Q
) != 0)
8239 return n_sg_list_qs
+ 1;
8243 AscGetNumOfFreeQueue(ASC_DVC_VAR
*asc_dvc
, uchar target_ix
, uchar n_qs
)
8247 ASC_SCSI_BIT_ID_TYPE target_id
;
8250 target_id
= ASC_TIX_TO_TARGET_ID(target_ix
);
8251 tid_no
= ASC_TIX_TO_TID(target_ix
);
8252 if ((asc_dvc
->unit_not_ready
& target_id
) ||
8253 (asc_dvc
->queue_full_or_busy
& target_id
)) {
8257 cur_used_qs
= (uint
) asc_dvc
->cur_total_qng
+
8258 (uint
) asc_dvc
->last_q_shortage
+ (uint
) ASC_MIN_FREE_Q
;
8260 cur_used_qs
= (uint
) asc_dvc
->cur_total_qng
+
8261 (uint
) ASC_MIN_FREE_Q
;
8263 if ((uint
) (cur_used_qs
+ n_qs
) <= (uint
) asc_dvc
->max_total_qng
) {
8264 cur_free_qs
= (uint
) asc_dvc
->max_total_qng
- cur_used_qs
;
8265 if (asc_dvc
->cur_dvc_qng
[tid_no
] >=
8266 asc_dvc
->max_dvc_qng
[tid_no
]) {
8272 if ((n_qs
> asc_dvc
->last_q_shortage
)
8273 && (n_qs
<= (asc_dvc
->max_total_qng
- ASC_MIN_FREE_Q
))) {
8274 asc_dvc
->last_q_shortage
= n_qs
;
8280 static uchar
AscAllocFreeQueue(PortAddr iop_base
, uchar free_q_head
)
8286 q_addr
= ASC_QNO_TO_QADDR(free_q_head
);
8287 q_status
= (uchar
)AscReadLramByte(iop_base
,
8289 ASC_SCSIQ_B_STATUS
));
8290 next_qp
= AscReadLramByte(iop_base
, (ushort
)(q_addr
+ ASC_SCSIQ_B_FWD
));
8291 if (((q_status
& QS_READY
) == 0) && (next_qp
!= ASC_QLINK_END
))
8293 return ASC_QLINK_END
;
8297 AscAllocMultipleFreeQueue(PortAddr iop_base
, uchar free_q_head
, uchar n_free_q
)
8301 for (i
= 0; i
< n_free_q
; i
++) {
8302 free_q_head
= AscAllocFreeQueue(iop_base
, free_q_head
);
8303 if (free_q_head
== ASC_QLINK_END
)
8311 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8313 * Calling/Exit State:
8317 * Output an ASC_SCSI_Q structure to the chip
8320 DvcPutScsiQ(PortAddr iop_base
, ushort s_addr
, uchar
*outbuf
, int words
)
8324 ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf
, 2 * words
);
8325 AscSetChipLramAddr(iop_base
, s_addr
);
8326 for (i
= 0; i
< 2 * words
; i
+= 2) {
8327 if (i
== 4 || i
== 20) {
8330 outpw(iop_base
+ IOP_RAM_DATA
,
8331 ((ushort
)outbuf
[i
+ 1] << 8) | outbuf
[i
]);
8335 static int AscPutReadyQueue(ASC_DVC_VAR
*asc_dvc
, ASC_SCSI_Q
*scsiq
, uchar q_no
)
8340 uchar syn_period_ix
;
8344 iop_base
= asc_dvc
->iop_base
;
8345 if (((asc_dvc
->init_sdtr
& scsiq
->q1
.target_id
) != 0) &&
8346 ((asc_dvc
->sdtr_done
& scsiq
->q1
.target_id
) == 0)) {
8347 tid_no
= ASC_TIX_TO_TID(scsiq
->q2
.target_ix
);
8348 sdtr_data
= AscGetMCodeInitSDTRAtID(iop_base
, tid_no
);
8350 (sdtr_data
>> 4) & (asc_dvc
->max_sdtr_index
- 1);
8351 syn_offset
= sdtr_data
& ASC_SYN_MAX_OFFSET
;
8352 AscMsgOutSDTR(asc_dvc
,
8353 asc_dvc
->sdtr_period_tbl
[syn_period_ix
],
8355 scsiq
->q1
.cntl
|= QC_MSG_OUT
;
8357 q_addr
= ASC_QNO_TO_QADDR(q_no
);
8358 if ((scsiq
->q1
.target_id
& asc_dvc
->use_tagged_qng
) == 0) {
8359 scsiq
->q2
.tag_code
&= ~MSG_SIMPLE_TAG
;
8361 scsiq
->q1
.status
= QS_FREE
;
8362 AscMemWordCopyPtrToLram(iop_base
,
8363 q_addr
+ ASC_SCSIQ_CDB_BEG
,
8364 (uchar
*)scsiq
->cdbptr
, scsiq
->q2
.cdb_len
>> 1);
8366 DvcPutScsiQ(iop_base
,
8367 q_addr
+ ASC_SCSIQ_CPY_BEG
,
8368 (uchar
*)&scsiq
->q1
.cntl
,
8369 ((sizeof(ASC_SCSIQ_1
) + sizeof(ASC_SCSIQ_2
)) / 2) - 1);
8370 AscWriteLramWord(iop_base
,
8371 (ushort
)(q_addr
+ (ushort
)ASC_SCSIQ_B_STATUS
),
8372 (ushort
)(((ushort
)scsiq
->q1
.
8373 q_no
<< 8) | (ushort
)QS_READY
));
8378 AscPutReadySgListQueue(ASC_DVC_VAR
*asc_dvc
, ASC_SCSI_Q
*scsiq
, uchar q_no
)
8382 ASC_SG_HEAD
*sg_head
;
8383 ASC_SG_LIST_Q scsi_sg_q
;
8384 ASC_DCNT saved_data_addr
;
8385 ASC_DCNT saved_data_cnt
;
8387 ushort sg_list_dwords
;
8389 ushort sg_entry_cnt
;
8393 iop_base
= asc_dvc
->iop_base
;
8394 sg_head
= scsiq
->sg_head
;
8395 saved_data_addr
= scsiq
->q1
.data_addr
;
8396 saved_data_cnt
= scsiq
->q1
.data_cnt
;
8397 scsiq
->q1
.data_addr
= (ASC_PADDR
) sg_head
->sg_list
[0].addr
;
8398 scsiq
->q1
.data_cnt
= (ASC_DCNT
) sg_head
->sg_list
[0].bytes
;
8399 #if CC_VERY_LONG_SG_LIST
8401 * If sg_head->entry_cnt is greater than ASC_MAX_SG_LIST
8402 * then not all SG elements will fit in the allocated queues.
8403 * The rest of the SG elements will be copied when the RISC
8404 * completes the SG elements that fit and halts.
8406 if (sg_head
->entry_cnt
> ASC_MAX_SG_LIST
) {
8408 * Set sg_entry_cnt to be the number of SG elements that
8409 * will fit in the allocated SG queues. It is minus 1, because
8410 * the first SG element is handled above. ASC_MAX_SG_LIST is
8411 * already inflated by 1 to account for this. For example it
8412 * may be 50 which is 1 + 7 queues * 7 SG elements.
8414 sg_entry_cnt
= ASC_MAX_SG_LIST
- 1;
8417 * Keep track of remaining number of SG elements that will
8418 * need to be handled from a_isr.c.
8420 scsiq
->remain_sg_entry_cnt
=
8421 sg_head
->entry_cnt
- ASC_MAX_SG_LIST
;
8423 #endif /* CC_VERY_LONG_SG_LIST */
8425 * Set sg_entry_cnt to be the number of SG elements that
8426 * will fit in the allocated SG queues. It is minus 1, because
8427 * the first SG element is handled above.
8429 sg_entry_cnt
= sg_head
->entry_cnt
- 1;
8430 #if CC_VERY_LONG_SG_LIST
8432 #endif /* CC_VERY_LONG_SG_LIST */
8433 if (sg_entry_cnt
!= 0) {
8434 scsiq
->q1
.cntl
|= QC_SG_HEAD
;
8435 q_addr
= ASC_QNO_TO_QADDR(q_no
);
8437 scsiq
->q1
.sg_queue_cnt
= sg_head
->queue_cnt
;
8438 scsi_sg_q
.sg_head_qp
= q_no
;
8439 scsi_sg_q
.cntl
= QCSG_SG_XFER_LIST
;
8440 for (i
= 0; i
< sg_head
->queue_cnt
; i
++) {
8441 scsi_sg_q
.seq_no
= i
+ 1;
8442 if (sg_entry_cnt
> ASC_SG_LIST_PER_Q
) {
8443 sg_list_dwords
= (uchar
)(ASC_SG_LIST_PER_Q
* 2);
8444 sg_entry_cnt
-= ASC_SG_LIST_PER_Q
;
8446 scsi_sg_q
.sg_list_cnt
=
8448 scsi_sg_q
.sg_cur_list_cnt
=
8451 scsi_sg_q
.sg_list_cnt
=
8452 ASC_SG_LIST_PER_Q
- 1;
8453 scsi_sg_q
.sg_cur_list_cnt
=
8454 ASC_SG_LIST_PER_Q
- 1;
8457 #if CC_VERY_LONG_SG_LIST
8459 * This is the last SG queue in the list of
8460 * allocated SG queues. If there are more
8461 * SG elements than will fit in the allocated
8462 * queues, then set the QCSG_SG_XFER_MORE flag.
8464 if (sg_head
->entry_cnt
> ASC_MAX_SG_LIST
) {
8465 scsi_sg_q
.cntl
|= QCSG_SG_XFER_MORE
;
8467 #endif /* CC_VERY_LONG_SG_LIST */
8468 scsi_sg_q
.cntl
|= QCSG_SG_XFER_END
;
8469 #if CC_VERY_LONG_SG_LIST
8471 #endif /* CC_VERY_LONG_SG_LIST */
8472 sg_list_dwords
= sg_entry_cnt
<< 1;
8474 scsi_sg_q
.sg_list_cnt
= sg_entry_cnt
;
8475 scsi_sg_q
.sg_cur_list_cnt
=
8478 scsi_sg_q
.sg_list_cnt
=
8480 scsi_sg_q
.sg_cur_list_cnt
=
8485 next_qp
= AscReadLramByte(iop_base
,
8488 scsi_sg_q
.q_no
= next_qp
;
8489 q_addr
= ASC_QNO_TO_QADDR(next_qp
);
8490 AscMemWordCopyPtrToLram(iop_base
,
8491 q_addr
+ ASC_SCSIQ_SGHD_CPY_BEG
,
8492 (uchar
*)&scsi_sg_q
,
8493 sizeof(ASC_SG_LIST_Q
) >> 1);
8494 AscMemDWordCopyPtrToLram(iop_base
,
8495 q_addr
+ ASC_SGQ_LIST_BEG
,
8499 sg_index
+= ASC_SG_LIST_PER_Q
;
8500 scsiq
->next_sg_index
= sg_index
;
8503 scsiq
->q1
.cntl
&= ~QC_SG_HEAD
;
8505 sta
= AscPutReadyQueue(asc_dvc
, scsiq
, q_no
);
8506 scsiq
->q1
.data_addr
= saved_data_addr
;
8507 scsiq
->q1
.data_cnt
= saved_data_cnt
;
8512 AscSendScsiQueue(ASC_DVC_VAR
*asc_dvc
, ASC_SCSI_Q
*scsiq
, uchar n_q_required
)
8521 iop_base
= asc_dvc
->iop_base
;
8522 target_ix
= scsiq
->q2
.target_ix
;
8523 tid_no
= ASC_TIX_TO_TID(target_ix
);
8525 free_q_head
= (uchar
)AscGetVarFreeQHead(iop_base
);
8526 if (n_q_required
> 1) {
8527 next_qp
= AscAllocMultipleFreeQueue(iop_base
, free_q_head
,
8528 (uchar
)n_q_required
);
8529 if (next_qp
!= ASC_QLINK_END
) {
8530 asc_dvc
->last_q_shortage
= 0;
8531 scsiq
->sg_head
->queue_cnt
= n_q_required
- 1;
8532 scsiq
->q1
.q_no
= free_q_head
;
8533 sta
= AscPutReadySgListQueue(asc_dvc
, scsiq
,
8536 } else if (n_q_required
== 1) {
8537 next_qp
= AscAllocFreeQueue(iop_base
, free_q_head
);
8538 if (next_qp
!= ASC_QLINK_END
) {
8539 scsiq
->q1
.q_no
= free_q_head
;
8540 sta
= AscPutReadyQueue(asc_dvc
, scsiq
, free_q_head
);
8544 AscPutVarFreeQHead(iop_base
, next_qp
);
8545 asc_dvc
->cur_total_qng
+= n_q_required
;
8546 asc_dvc
->cur_dvc_qng
[tid_no
]++;
8551 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST 16
8552 static uchar _syn_offset_one_disable_cmd
[ASC_SYN_OFFSET_ONE_DISABLE_LIST
] = {
8571 static int AscExeScsiQueue(ASC_DVC_VAR
*asc_dvc
, ASC_SCSI_Q
*scsiq
)
8576 int disable_syn_offset_one_fix
;
8579 ushort sg_entry_cnt
= 0;
8580 ushort sg_entry_cnt_minus_one
= 0;
8587 ASC_SG_HEAD
*sg_head
;
8590 iop_base
= asc_dvc
->iop_base
;
8591 sg_head
= scsiq
->sg_head
;
8592 if (asc_dvc
->err_code
!= 0)
8595 if ((scsiq
->q2
.tag_code
& ASC_TAG_FLAG_EXTRA_BYTES
) == 0) {
8596 scsiq
->q1
.extra_bytes
= 0;
8599 target_ix
= scsiq
->q2
.target_ix
;
8600 tid_no
= ASC_TIX_TO_TID(target_ix
);
8602 if (scsiq
->cdbptr
[0] == REQUEST_SENSE
) {
8603 if ((asc_dvc
->init_sdtr
& scsiq
->q1
.target_id
) != 0) {
8604 asc_dvc
->sdtr_done
&= ~scsiq
->q1
.target_id
;
8605 sdtr_data
= AscGetMCodeInitSDTRAtID(iop_base
, tid_no
);
8606 AscMsgOutSDTR(asc_dvc
,
8608 sdtr_period_tbl
[(sdtr_data
>> 4) &
8612 (uchar
)(sdtr_data
& (uchar
)
8613 ASC_SYN_MAX_OFFSET
));
8614 scsiq
->q1
.cntl
|= (QC_MSG_OUT
| QC_URGENT
);
8617 if (asc_dvc
->in_critical_cnt
!= 0) {
8618 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_CRITICAL_RE_ENTRY
);
8621 asc_dvc
->in_critical_cnt
++;
8622 if ((scsiq
->q1
.cntl
& QC_SG_HEAD
) != 0) {
8623 if ((sg_entry_cnt
= sg_head
->entry_cnt
) == 0) {
8624 asc_dvc
->in_critical_cnt
--;
8627 #if !CC_VERY_LONG_SG_LIST
8628 if (sg_entry_cnt
> ASC_MAX_SG_LIST
) {
8629 asc_dvc
->in_critical_cnt
--;
8632 #endif /* !CC_VERY_LONG_SG_LIST */
8633 if (sg_entry_cnt
== 1) {
8634 scsiq
->q1
.data_addr
=
8635 (ADV_PADDR
)sg_head
->sg_list
[0].addr
;
8636 scsiq
->q1
.data_cnt
=
8637 (ADV_DCNT
)sg_head
->sg_list
[0].bytes
;
8638 scsiq
->q1
.cntl
&= ~(QC_SG_HEAD
| QC_SG_SWAP_QUEUE
);
8640 sg_entry_cnt_minus_one
= sg_entry_cnt
- 1;
8642 scsi_cmd
= scsiq
->cdbptr
[0];
8643 disable_syn_offset_one_fix
= FALSE
;
8644 if ((asc_dvc
->pci_fix_asyn_xfer
& scsiq
->q1
.target_id
) &&
8645 !(asc_dvc
->pci_fix_asyn_xfer_always
& scsiq
->q1
.target_id
)) {
8646 if (scsiq
->q1
.cntl
& QC_SG_HEAD
) {
8648 for (i
= 0; i
< sg_entry_cnt
; i
++) {
8650 (ADV_DCNT
)le32_to_cpu(sg_head
->sg_list
[i
].
8654 data_cnt
= le32_to_cpu(scsiq
->q1
.data_cnt
);
8656 if (data_cnt
!= 0UL) {
8657 if (data_cnt
< 512UL) {
8658 disable_syn_offset_one_fix
= TRUE
;
8660 for (i
= 0; i
< ASC_SYN_OFFSET_ONE_DISABLE_LIST
;
8663 _syn_offset_one_disable_cmd
[i
];
8664 if (disable_cmd
== 0xFF) {
8667 if (scsi_cmd
== disable_cmd
) {
8668 disable_syn_offset_one_fix
=
8676 if (disable_syn_offset_one_fix
) {
8677 scsiq
->q2
.tag_code
&= ~MSG_SIMPLE_TAG
;
8678 scsiq
->q2
.tag_code
|= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX
|
8679 ASC_TAG_FLAG_DISABLE_DISCONNECT
);
8681 scsiq
->q2
.tag_code
&= 0x27;
8683 if ((scsiq
->q1
.cntl
& QC_SG_HEAD
) != 0) {
8684 if (asc_dvc
->bug_fix_cntl
) {
8685 if (asc_dvc
->bug_fix_cntl
& ASC_BUG_FIX_IF_NOT_DWB
) {
8686 if ((scsi_cmd
== READ_6
) ||
8687 (scsi_cmd
== READ_10
)) {
8689 (ADV_PADDR
)le32_to_cpu(sg_head
->
8691 [sg_entry_cnt_minus_one
].
8693 (ADV_DCNT
)le32_to_cpu(sg_head
->
8695 [sg_entry_cnt_minus_one
].
8698 (uchar
)((ushort
)addr
& 0x0003);
8699 if ((extra_bytes
!= 0)
8703 ASC_TAG_FLAG_EXTRA_BYTES
)
8705 scsiq
->q2
.tag_code
|=
8706 ASC_TAG_FLAG_EXTRA_BYTES
;
8707 scsiq
->q1
.extra_bytes
=
8710 le32_to_cpu(sg_head
->
8712 [sg_entry_cnt_minus_one
].
8715 (ASC_DCNT
) extra_bytes
;
8718 [sg_entry_cnt_minus_one
].
8720 cpu_to_le32(data_cnt
);
8725 sg_head
->entry_to_copy
= sg_head
->entry_cnt
;
8726 #if CC_VERY_LONG_SG_LIST
8728 * Set the sg_entry_cnt to the maximum possible. The rest of
8729 * the SG elements will be copied when the RISC completes the
8730 * SG elements that fit and halts.
8732 if (sg_entry_cnt
> ASC_MAX_SG_LIST
) {
8733 sg_entry_cnt
= ASC_MAX_SG_LIST
;
8735 #endif /* CC_VERY_LONG_SG_LIST */
8736 n_q_required
= AscSgListToQueue(sg_entry_cnt
);
8737 if ((AscGetNumOfFreeQueue(asc_dvc
, target_ix
, n_q_required
) >=
8738 (uint
) n_q_required
)
8739 || ((scsiq
->q1
.cntl
& QC_URGENT
) != 0)) {
8741 AscSendScsiQueue(asc_dvc
, scsiq
,
8742 n_q_required
)) == 1) {
8743 asc_dvc
->in_critical_cnt
--;
8748 if (asc_dvc
->bug_fix_cntl
) {
8749 if (asc_dvc
->bug_fix_cntl
& ASC_BUG_FIX_IF_NOT_DWB
) {
8750 if ((scsi_cmd
== READ_6
) ||
8751 (scsi_cmd
== READ_10
)) {
8753 le32_to_cpu(scsiq
->q1
.data_addr
) +
8754 le32_to_cpu(scsiq
->q1
.data_cnt
);
8756 (uchar
)((ushort
)addr
& 0x0003);
8757 if ((extra_bytes
!= 0)
8761 ASC_TAG_FLAG_EXTRA_BYTES
)
8764 le32_to_cpu(scsiq
->q1
.
8766 if (((ushort
)data_cnt
& 0x01FF)
8768 scsiq
->q2
.tag_code
|=
8769 ASC_TAG_FLAG_EXTRA_BYTES
;
8770 data_cnt
-= (ASC_DCNT
)
8772 scsiq
->q1
.data_cnt
=
8775 scsiq
->q1
.extra_bytes
=
8783 if ((AscGetNumOfFreeQueue(asc_dvc
, target_ix
, 1) >= 1) ||
8784 ((scsiq
->q1
.cntl
& QC_URGENT
) != 0)) {
8785 if ((sta
= AscSendScsiQueue(asc_dvc
, scsiq
,
8786 n_q_required
)) == 1) {
8787 asc_dvc
->in_critical_cnt
--;
8792 asc_dvc
->in_critical_cnt
--;
8797 * AdvExeScsiQueue() - Send a request to the RISC microcode program.
8799 * Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
8800 * add the carrier to the ICQ (Initiator Command Queue), and tickle the
8801 * RISC to notify it a new command is ready to be executed.
8803 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
8804 * set to SCSI_MAX_RETRY.
8806 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the microcode
8807 * for DMA addresses or math operations are byte swapped to little-endian
8811 * ADV_SUCCESS(1) - The request was successfully queued.
8812 * ADV_BUSY(0) - Resource unavailable; Retry again after pending
8813 * request completes.
8814 * ADV_ERROR(-1) - Invalid ADV_SCSI_REQ_Q request structure
8817 static int AdvExeScsiQueue(ADV_DVC_VAR
*asc_dvc
, ADV_SCSI_REQ_Q
*scsiq
)
8819 AdvPortAddr iop_base
;
8820 ADV_PADDR req_paddr
;
8821 ADV_CARR_T
*new_carrp
;
8824 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
8826 if (scsiq
->target_id
> ADV_MAX_TID
) {
8827 scsiq
->host_status
= QHSTA_M_INVALID_DEVICE
;
8828 scsiq
->done_status
= QD_WITH_ERROR
;
8832 iop_base
= asc_dvc
->iop_base
;
8835 * Allocate a carrier ensuring at least one carrier always
8836 * remains on the freelist and initialize fields.
8838 if ((new_carrp
= asc_dvc
->carr_freelist
) == NULL
) {
8841 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
8842 ADV_U32_TO_VADDR(le32_to_cpu(new_carrp
->next_vpa
));
8843 asc_dvc
->carr_pending_cnt
++;
8846 * Set the carrier to be a stopper by setting 'next_vpa'
8847 * to the stopper value. The current stopper will be changed
8848 * below to point to the new stopper.
8850 new_carrp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
8853 * Clear the ADV_SCSI_REQ_Q done flag.
8855 scsiq
->a_flag
&= ~ADV_SCSIQ_DONE
;
8857 req_paddr
= virt_to_bus(scsiq
);
8858 BUG_ON(req_paddr
& 31);
8859 /* Wait for assertion before making little-endian */
8860 req_paddr
= cpu_to_le32(req_paddr
);
8862 /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
8863 scsiq
->scsiq_ptr
= cpu_to_le32(ADV_VADDR_TO_U32(scsiq
));
8864 scsiq
->scsiq_rptr
= req_paddr
;
8866 scsiq
->carr_va
= cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc
->icq_sp
));
8868 * Every ADV_CARR_T.carr_pa is byte swapped to little-endian
8869 * order during initialization.
8871 scsiq
->carr_pa
= asc_dvc
->icq_sp
->carr_pa
;
8874 * Use the current stopper to send the ADV_SCSI_REQ_Q command to
8875 * the microcode. The newly allocated stopper will become the new
8878 asc_dvc
->icq_sp
->areq_vpa
= req_paddr
;
8881 * Set the 'next_vpa' pointer for the old stopper to be the
8882 * physical address of the new stopper. The RISC can only
8883 * follow physical addresses.
8885 asc_dvc
->icq_sp
->next_vpa
= new_carrp
->carr_pa
;
8888 * Set the host adapter stopper pointer to point to the new carrier.
8890 asc_dvc
->icq_sp
= new_carrp
;
8892 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
||
8893 asc_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
8895 * Tickle the RISC to tell it to read its Command Queue Head pointer.
8897 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
, ADV_TICKLE_A
);
8898 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
) {
8900 * Clear the tickle value. In the ASC-3550 the RISC flag
8901 * command 'clr_tickle_a' does not work unless the host
8904 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
,
8907 } else if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
8909 * Notify the RISC a carrier is ready by writing the physical
8910 * address of the new carrier stopper to the COMMA register.
8912 AdvWriteDWordRegister(iop_base
, IOPDW_COMMA
,
8913 le32_to_cpu(new_carrp
->carr_pa
));
8920 * Execute a single 'Scsi_Cmnd'.
8922 static int asc_execute_scsi_cmnd(struct scsi_cmnd
*scp
)
8925 struct asc_board
*boardp
= shost_priv(scp
->device
->host
);
8927 ASC_DBG(1, "scp 0x%p\n", scp
);
8929 if (ASC_NARROW_BOARD(boardp
)) {
8930 ASC_DVC_VAR
*asc_dvc
= &boardp
->dvc_var
.asc_dvc_var
;
8931 struct asc_scsi_q asc_scsi_q
;
8933 /* asc_build_req() can not return ASC_BUSY. */
8934 ret
= asc_build_req(boardp
, scp
, &asc_scsi_q
);
8935 if (ret
== ASC_ERROR
) {
8936 ASC_STATS(scp
->device
->host
, build_error
);
8940 ret
= AscExeScsiQueue(asc_dvc
, &asc_scsi_q
);
8941 kfree(asc_scsi_q
.sg_head
);
8942 err_code
= asc_dvc
->err_code
;
8944 ADV_DVC_VAR
*adv_dvc
= &boardp
->dvc_var
.adv_dvc_var
;
8945 ADV_SCSI_REQ_Q
*adv_scsiqp
;
8947 switch (adv_build_req(boardp
, scp
, &adv_scsiqp
)) {
8949 ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
8952 ASC_DBG(1, "adv_build_req ASC_BUSY\n");
8954 * The asc_stats fields 'adv_build_noreq' and
8955 * 'adv_build_nosg' count wide board busy conditions.
8956 * They are updated in adv_build_req and
8957 * adv_get_sglist, respectively.
8962 ASC_DBG(1, "adv_build_req ASC_ERROR\n");
8963 ASC_STATS(scp
->device
->host
, build_error
);
8967 ret
= AdvExeScsiQueue(adv_dvc
, adv_scsiqp
);
8968 err_code
= adv_dvc
->err_code
;
8973 ASC_STATS(scp
->device
->host
, exe_noerror
);
8975 * Increment monotonically increasing per device
8976 * successful request counter. Wrapping doesn't matter.
8978 boardp
->reqcnt
[scp
->device
->id
]++;
8979 ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
8982 ASC_STATS(scp
->device
->host
, exe_busy
);
8985 scmd_printk(KERN_ERR
, scp
, "ExeScsiQueue() ASC_ERROR, "
8986 "err_code 0x%x\n", err_code
);
8987 ASC_STATS(scp
->device
->host
, exe_error
);
8988 scp
->result
= HOST_BYTE(DID_ERROR
);
8991 scmd_printk(KERN_ERR
, scp
, "ExeScsiQueue() unknown, "
8992 "err_code 0x%x\n", err_code
);
8993 ASC_STATS(scp
->device
->host
, exe_unknown
);
8994 scp
->result
= HOST_BYTE(DID_ERROR
);
8998 ASC_DBG(1, "end\n");
9003 * advansys_queuecommand() - interrupt-driven I/O entrypoint.
9005 * This function always returns 0. Command return status is saved
9006 * in the 'scp' result field.
9009 advansys_queuecommand_lck(struct scsi_cmnd
*scp
, void (*done
)(struct scsi_cmnd
*))
9011 struct Scsi_Host
*shost
= scp
->device
->host
;
9012 int asc_res
, result
= 0;
9014 ASC_STATS(shost
, queuecommand
);
9015 scp
->scsi_done
= done
;
9017 asc_res
= asc_execute_scsi_cmnd(scp
);
9023 result
= SCSI_MLQUEUE_HOST_BUSY
;
9034 static DEF_SCSI_QCMD(advansys_queuecommand
)
9036 static ushort
AscGetEisaChipCfg(PortAddr iop_base
)
9038 PortAddr eisa_cfg_iop
= (PortAddr
) ASC_GET_EISA_SLOT(iop_base
) |
9039 (PortAddr
) (ASC_EISA_CFG_IOP_MASK
);
9040 return inpw(eisa_cfg_iop
);
9044 * Return the BIOS address of the adapter at the specified
9045 * I/O port and with the specified bus type.
9047 static unsigned short AscGetChipBiosAddress(PortAddr iop_base
,
9048 unsigned short bus_type
)
9050 unsigned short cfg_lsw
;
9051 unsigned short bios_addr
;
9054 * The PCI BIOS is re-located by the motherboard BIOS. Because
9055 * of this the driver can not determine where a PCI BIOS is
9056 * loaded and executes.
9058 if (bus_type
& ASC_IS_PCI
)
9061 if ((bus_type
& ASC_IS_EISA
) != 0) {
9062 cfg_lsw
= AscGetEisaChipCfg(iop_base
);
9064 bios_addr
= ASC_BIOS_MIN_ADDR
+ cfg_lsw
* ASC_BIOS_BANK_SIZE
;
9068 cfg_lsw
= AscGetChipCfgLsw(iop_base
);
9071 * ISA PnP uses the top bit as the 32K BIOS flag
9073 if (bus_type
== ASC_IS_ISAPNP
)
9075 bios_addr
= ASC_BIOS_MIN_ADDR
+ (cfg_lsw
>> 12) * ASC_BIOS_BANK_SIZE
;
9079 static uchar
AscSetChipScsiID(PortAddr iop_base
, uchar new_host_id
)
9083 if (AscGetChipScsiID(iop_base
) == new_host_id
) {
9084 return (new_host_id
);
9086 cfg_lsw
= AscGetChipCfgLsw(iop_base
);
9088 cfg_lsw
|= (ushort
)((new_host_id
& ASC_MAX_TID
) << 8);
9089 AscSetChipCfgLsw(iop_base
, cfg_lsw
);
9090 return (AscGetChipScsiID(iop_base
));
9093 static unsigned char AscGetChipScsiCtrl(PortAddr iop_base
)
9097 AscSetBank(iop_base
, 1);
9098 sc
= inp(iop_base
+ IOP_REG_SC
);
9099 AscSetBank(iop_base
, 0);
9103 static unsigned char AscGetChipVersion(PortAddr iop_base
,
9104 unsigned short bus_type
)
9106 if (bus_type
& ASC_IS_EISA
) {
9108 unsigned char revision
;
9109 eisa_iop
= (PortAddr
) ASC_GET_EISA_SLOT(iop_base
) |
9110 (PortAddr
) ASC_EISA_REV_IOP_MASK
;
9111 revision
= inp(eisa_iop
);
9112 return ASC_CHIP_MIN_VER_EISA
- 1 + revision
;
9114 return AscGetChipVerNo(iop_base
);
9118 static void AscEnableIsaDma(uchar dma_channel
)
9120 if (dma_channel
< 4) {
9121 outp(0x000B, (ushort
)(0xC0 | dma_channel
));
9122 outp(0x000A, dma_channel
);
9123 } else if (dma_channel
< 8) {
9124 outp(0x00D6, (ushort
)(0xC0 | (dma_channel
- 4)));
9125 outp(0x00D4, (ushort
)(dma_channel
- 4));
9128 #endif /* CONFIG_ISA */
9130 static int AscStopQueueExe(PortAddr iop_base
)
9134 if (AscReadLramByte(iop_base
, ASCV_STOP_CODE_B
) == 0) {
9135 AscWriteLramByte(iop_base
, ASCV_STOP_CODE_B
,
9136 ASC_STOP_REQ_RISC_STOP
);
9138 if (AscReadLramByte(iop_base
, ASCV_STOP_CODE_B
) &
9139 ASC_STOP_ACK_RISC_STOP
) {
9143 } while (count
++ < 20);
9148 static ASC_DCNT
AscGetMaxDmaCount(ushort bus_type
)
9150 if (bus_type
& ASC_IS_ISA
)
9151 return ASC_MAX_ISA_DMA_COUNT
;
9152 else if (bus_type
& (ASC_IS_EISA
| ASC_IS_VL
))
9153 return ASC_MAX_VL_DMA_COUNT
;
9154 return ASC_MAX_PCI_DMA_COUNT
;
9158 static ushort
AscGetIsaDmaChannel(PortAddr iop_base
)
9162 channel
= AscGetChipCfgLsw(iop_base
) & 0x0003;
9163 if (channel
== 0x03)
9165 else if (channel
== 0x00)
9167 return (channel
+ 4);
9170 static ushort
AscSetIsaDmaChannel(PortAddr iop_base
, ushort dma_channel
)
9175 if ((dma_channel
>= 5) && (dma_channel
<= 7)) {
9176 if (dma_channel
== 7)
9179 value
= dma_channel
- 4;
9180 cfg_lsw
= AscGetChipCfgLsw(iop_base
) & 0xFFFC;
9182 AscSetChipCfgLsw(iop_base
, cfg_lsw
);
9183 return (AscGetIsaDmaChannel(iop_base
));
9188 static uchar
AscGetIsaDmaSpeed(PortAddr iop_base
)
9192 AscSetBank(iop_base
, 1);
9193 speed_value
= AscReadChipDmaSpeed(iop_base
);
9194 speed_value
&= 0x07;
9195 AscSetBank(iop_base
, 0);
9199 static uchar
AscSetIsaDmaSpeed(PortAddr iop_base
, uchar speed_value
)
9201 speed_value
&= 0x07;
9202 AscSetBank(iop_base
, 1);
9203 AscWriteChipDmaSpeed(iop_base
, speed_value
);
9204 AscSetBank(iop_base
, 0);
9205 return AscGetIsaDmaSpeed(iop_base
);
9207 #endif /* CONFIG_ISA */
9209 static ushort
AscInitAscDvcVar(ASC_DVC_VAR
*asc_dvc
)
9216 iop_base
= asc_dvc
->iop_base
;
9218 asc_dvc
->err_code
= 0;
9219 if ((asc_dvc
->bus_type
&
9220 (ASC_IS_ISA
| ASC_IS_PCI
| ASC_IS_EISA
| ASC_IS_VL
)) == 0) {
9221 asc_dvc
->err_code
|= ASC_IERR_NO_BUS_TYPE
;
9223 AscSetChipControl(iop_base
, CC_HALT
);
9224 AscSetChipStatus(iop_base
, 0);
9225 asc_dvc
->bug_fix_cntl
= 0;
9226 asc_dvc
->pci_fix_asyn_xfer
= 0;
9227 asc_dvc
->pci_fix_asyn_xfer_always
= 0;
9228 /* asc_dvc->init_state initialized in AscInitGetConfig(). */
9229 asc_dvc
->sdtr_done
= 0;
9230 asc_dvc
->cur_total_qng
= 0;
9231 asc_dvc
->is_in_int
= 0;
9232 asc_dvc
->in_critical_cnt
= 0;
9233 asc_dvc
->last_q_shortage
= 0;
9234 asc_dvc
->use_tagged_qng
= 0;
9235 asc_dvc
->no_scam
= 0;
9236 asc_dvc
->unit_not_ready
= 0;
9237 asc_dvc
->queue_full_or_busy
= 0;
9238 asc_dvc
->redo_scam
= 0;
9240 asc_dvc
->min_sdtr_index
= 0;
9241 asc_dvc
->cfg
->can_tagged_qng
= 0;
9242 asc_dvc
->cfg
->cmd_qng_enabled
= 0;
9243 asc_dvc
->dvc_cntl
= ASC_DEF_DVC_CNTL
;
9244 asc_dvc
->init_sdtr
= 0;
9245 asc_dvc
->max_total_qng
= ASC_DEF_MAX_TOTAL_QNG
;
9246 asc_dvc
->scsi_reset_wait
= 3;
9247 asc_dvc
->start_motor
= ASC_SCSI_WIDTH_BIT_SET
;
9248 asc_dvc
->max_dma_count
= AscGetMaxDmaCount(asc_dvc
->bus_type
);
9249 asc_dvc
->cfg
->sdtr_enable
= ASC_SCSI_WIDTH_BIT_SET
;
9250 asc_dvc
->cfg
->disc_enable
= ASC_SCSI_WIDTH_BIT_SET
;
9251 asc_dvc
->cfg
->chip_scsi_id
= ASC_DEF_CHIP_SCSI_ID
;
9252 chip_version
= AscGetChipVersion(iop_base
, asc_dvc
->bus_type
);
9253 asc_dvc
->cfg
->chip_version
= chip_version
;
9254 asc_dvc
->sdtr_period_tbl
= asc_syn_xfer_period
;
9255 asc_dvc
->max_sdtr_index
= 7;
9256 if ((asc_dvc
->bus_type
& ASC_IS_PCI
) &&
9257 (chip_version
>= ASC_CHIP_VER_PCI_ULTRA_3150
)) {
9258 asc_dvc
->bus_type
= ASC_IS_PCI_ULTRA
;
9259 asc_dvc
->sdtr_period_tbl
= asc_syn_ultra_xfer_period
;
9260 asc_dvc
->max_sdtr_index
= 15;
9261 if (chip_version
== ASC_CHIP_VER_PCI_ULTRA_3150
) {
9262 AscSetExtraControl(iop_base
,
9263 (SEC_ACTIVE_NEGATE
| SEC_SLEW_RATE
));
9264 } else if (chip_version
>= ASC_CHIP_VER_PCI_ULTRA_3050
) {
9265 AscSetExtraControl(iop_base
,
9266 (SEC_ACTIVE_NEGATE
|
9267 SEC_ENABLE_FILTER
));
9270 if (asc_dvc
->bus_type
== ASC_IS_PCI
) {
9271 AscSetExtraControl(iop_base
,
9272 (SEC_ACTIVE_NEGATE
| SEC_SLEW_RATE
));
9275 asc_dvc
->cfg
->isa_dma_speed
= ASC_DEF_ISA_DMA_SPEED
;
9277 if ((asc_dvc
->bus_type
& ASC_IS_ISA
) != 0) {
9278 if (chip_version
>= ASC_CHIP_MIN_VER_ISA_PNP
) {
9279 AscSetChipIFC(iop_base
, IFC_INIT_DEFAULT
);
9280 asc_dvc
->bus_type
= ASC_IS_ISAPNP
;
9282 asc_dvc
->cfg
->isa_dma_channel
=
9283 (uchar
)AscGetIsaDmaChannel(iop_base
);
9285 #endif /* CONFIG_ISA */
9286 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
9287 asc_dvc
->cur_dvc_qng
[i
] = 0;
9288 asc_dvc
->max_dvc_qng
[i
] = ASC_MAX_SCSI1_QNG
;
9289 asc_dvc
->scsiq_busy_head
[i
] = (ASC_SCSI_Q
*)0L;
9290 asc_dvc
->scsiq_busy_tail
[i
] = (ASC_SCSI_Q
*)0L;
9291 asc_dvc
->cfg
->max_tag_qng
[i
] = ASC_MAX_INRAM_TAG_QNG
;
9296 static int AscWriteEEPCmdReg(PortAddr iop_base
, uchar cmd_reg
)
9300 for (retry
= 0; retry
< ASC_EEP_MAX_RETRY
; retry
++) {
9301 unsigned char read_back
;
9302 AscSetChipEEPCmd(iop_base
, cmd_reg
);
9304 read_back
= AscGetChipEEPCmd(iop_base
);
9305 if (read_back
== cmd_reg
)
9311 static void AscWaitEEPRead(void)
9316 static ushort
AscReadEEPWord(PortAddr iop_base
, uchar addr
)
9321 AscWriteEEPCmdReg(iop_base
, ASC_EEP_CMD_WRITE_DISABLE
);
9323 cmd_reg
= addr
| ASC_EEP_CMD_READ
;
9324 AscWriteEEPCmdReg(iop_base
, cmd_reg
);
9326 read_wval
= AscGetChipEEPData(iop_base
);
9331 static ushort
AscGetEEPConfig(PortAddr iop_base
, ASCEEP_CONFIG
*cfg_buf
,
9339 int uchar_end_in_config
= ASC_EEP_MAX_DVC_ADDR
- 2;
9342 wbuf
= (ushort
*)cfg_buf
;
9344 /* Read two config words; Byte-swapping done by AscReadEEPWord(). */
9345 for (s_addr
= 0; s_addr
< 2; s_addr
++, wbuf
++) {
9346 *wbuf
= AscReadEEPWord(iop_base
, (uchar
)s_addr
);
9349 if (bus_type
& ASC_IS_VL
) {
9350 cfg_beg
= ASC_EEP_DVC_CFG_BEG_VL
;
9351 cfg_end
= ASC_EEP_MAX_DVC_ADDR_VL
;
9353 cfg_beg
= ASC_EEP_DVC_CFG_BEG
;
9354 cfg_end
= ASC_EEP_MAX_DVC_ADDR
;
9356 for (s_addr
= cfg_beg
; s_addr
<= (cfg_end
- 1); s_addr
++, wbuf
++) {
9357 wval
= AscReadEEPWord(iop_base
, (uchar
)s_addr
);
9358 if (s_addr
<= uchar_end_in_config
) {
9360 * Swap all char fields - must unswap bytes already swapped
9361 * by AscReadEEPWord().
9363 *wbuf
= le16_to_cpu(wval
);
9365 /* Don't swap word field at the end - cntl field. */
9368 sum
+= wval
; /* Checksum treats all EEPROM data as words. */
9371 * Read the checksum word which will be compared against 'sum'
9372 * by the caller. Word field already swapped.
9374 *wbuf
= AscReadEEPWord(iop_base
, (uchar
)s_addr
);
9378 static int AscTestExternalLram(ASC_DVC_VAR
*asc_dvc
)
9385 iop_base
= asc_dvc
->iop_base
;
9387 q_addr
= ASC_QNO_TO_QADDR(241);
9388 saved_word
= AscReadLramWord(iop_base
, q_addr
);
9389 AscSetChipLramAddr(iop_base
, q_addr
);
9390 AscSetChipLramData(iop_base
, 0x55AA);
9392 AscSetChipLramAddr(iop_base
, q_addr
);
9393 if (AscGetChipLramData(iop_base
) == 0x55AA) {
9395 AscWriteLramWord(iop_base
, q_addr
, saved_word
);
9400 static void AscWaitEEPWrite(void)
9405 static int AscWriteEEPDataReg(PortAddr iop_base
, ushort data_reg
)
9412 AscSetChipEEPData(iop_base
, data_reg
);
9414 read_back
= AscGetChipEEPData(iop_base
);
9415 if (read_back
== data_reg
) {
9418 if (retry
++ > ASC_EEP_MAX_RETRY
) {
9424 static ushort
AscWriteEEPWord(PortAddr iop_base
, uchar addr
, ushort word_val
)
9428 read_wval
= AscReadEEPWord(iop_base
, addr
);
9429 if (read_wval
!= word_val
) {
9430 AscWriteEEPCmdReg(iop_base
, ASC_EEP_CMD_WRITE_ABLE
);
9432 AscWriteEEPDataReg(iop_base
, word_val
);
9434 AscWriteEEPCmdReg(iop_base
,
9435 (uchar
)((uchar
)ASC_EEP_CMD_WRITE
| addr
));
9437 AscWriteEEPCmdReg(iop_base
, ASC_EEP_CMD_WRITE_DISABLE
);
9439 return (AscReadEEPWord(iop_base
, addr
));
9444 static int AscSetEEPConfigOnce(PortAddr iop_base
, ASCEEP_CONFIG
*cfg_buf
,
9454 int uchar_end_in_config
= ASC_EEP_MAX_DVC_ADDR
- 2;
9456 wbuf
= (ushort
*)cfg_buf
;
9459 /* Write two config words; AscWriteEEPWord() will swap bytes. */
9460 for (s_addr
= 0; s_addr
< 2; s_addr
++, wbuf
++) {
9462 if (*wbuf
!= AscWriteEEPWord(iop_base
, (uchar
)s_addr
, *wbuf
)) {
9466 if (bus_type
& ASC_IS_VL
) {
9467 cfg_beg
= ASC_EEP_DVC_CFG_BEG_VL
;
9468 cfg_end
= ASC_EEP_MAX_DVC_ADDR_VL
;
9470 cfg_beg
= ASC_EEP_DVC_CFG_BEG
;
9471 cfg_end
= ASC_EEP_MAX_DVC_ADDR
;
9473 for (s_addr
= cfg_beg
; s_addr
<= (cfg_end
- 1); s_addr
++, wbuf
++) {
9474 if (s_addr
<= uchar_end_in_config
) {
9476 * This is a char field. Swap char fields before they are
9477 * swapped again by AscWriteEEPWord().
9479 word
= cpu_to_le16(*wbuf
);
9481 AscWriteEEPWord(iop_base
, (uchar
)s_addr
, word
)) {
9485 /* Don't swap word field at the end - cntl field. */
9487 AscWriteEEPWord(iop_base
, (uchar
)s_addr
, *wbuf
)) {
9491 sum
+= *wbuf
; /* Checksum calculated from word values. */
9493 /* Write checksum word. It will be swapped by AscWriteEEPWord(). */
9495 if (sum
!= AscWriteEEPWord(iop_base
, (uchar
)s_addr
, sum
)) {
9499 /* Read EEPROM back again. */
9500 wbuf
= (ushort
*)cfg_buf
;
9502 * Read two config words; Byte-swapping done by AscReadEEPWord().
9504 for (s_addr
= 0; s_addr
< 2; s_addr
++, wbuf
++) {
9505 if (*wbuf
!= AscReadEEPWord(iop_base
, (uchar
)s_addr
)) {
9509 if (bus_type
& ASC_IS_VL
) {
9510 cfg_beg
= ASC_EEP_DVC_CFG_BEG_VL
;
9511 cfg_end
= ASC_EEP_MAX_DVC_ADDR_VL
;
9513 cfg_beg
= ASC_EEP_DVC_CFG_BEG
;
9514 cfg_end
= ASC_EEP_MAX_DVC_ADDR
;
9516 for (s_addr
= cfg_beg
; s_addr
<= (cfg_end
- 1); s_addr
++, wbuf
++) {
9517 if (s_addr
<= uchar_end_in_config
) {
9519 * Swap all char fields. Must unswap bytes already swapped
9520 * by AscReadEEPWord().
9523 le16_to_cpu(AscReadEEPWord
9524 (iop_base
, (uchar
)s_addr
));
9526 /* Don't swap word field at the end - cntl field. */
9527 word
= AscReadEEPWord(iop_base
, (uchar
)s_addr
);
9529 if (*wbuf
!= word
) {
9533 /* Read checksum; Byte swapping not needed. */
9534 if (AscReadEEPWord(iop_base
, (uchar
)s_addr
) != sum
) {
9540 static int AscSetEEPConfig(PortAddr iop_base
, ASCEEP_CONFIG
*cfg_buf
,
9548 if ((n_error
= AscSetEEPConfigOnce(iop_base
, cfg_buf
,
9552 if (++retry
> ASC_EEP_MAX_RETRY
) {
9559 static ushort
AscInitFromEEP(ASC_DVC_VAR
*asc_dvc
)
9561 ASCEEP_CONFIG eep_config_buf
;
9562 ASCEEP_CONFIG
*eep_config
;
9566 ushort cfg_msw
, cfg_lsw
;
9570 iop_base
= asc_dvc
->iop_base
;
9572 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0x00FE);
9573 AscStopQueueExe(iop_base
);
9574 if ((AscStopChip(iop_base
) == FALSE
) ||
9575 (AscGetChipScsiCtrl(iop_base
) != 0)) {
9576 asc_dvc
->init_state
|= ASC_INIT_RESET_SCSI_DONE
;
9577 AscResetChipAndScsiBus(asc_dvc
);
9578 mdelay(asc_dvc
->scsi_reset_wait
* 1000); /* XXX: msleep? */
9580 if (AscIsChipHalted(iop_base
) == FALSE
) {
9581 asc_dvc
->err_code
|= ASC_IERR_START_STOP_CHIP
;
9584 AscSetPCAddr(iop_base
, ASC_MCODE_START_ADDR
);
9585 if (AscGetPCAddr(iop_base
) != ASC_MCODE_START_ADDR
) {
9586 asc_dvc
->err_code
|= ASC_IERR_SET_PC_ADDR
;
9589 eep_config
= (ASCEEP_CONFIG
*)&eep_config_buf
;
9590 cfg_msw
= AscGetChipCfgMsw(iop_base
);
9591 cfg_lsw
= AscGetChipCfgLsw(iop_base
);
9592 if ((cfg_msw
& ASC_CFG_MSW_CLR_MASK
) != 0) {
9593 cfg_msw
&= ~ASC_CFG_MSW_CLR_MASK
;
9594 warn_code
|= ASC_WARN_CFG_MSW_RECOVER
;
9595 AscSetChipCfgMsw(iop_base
, cfg_msw
);
9597 chksum
= AscGetEEPConfig(iop_base
, eep_config
, asc_dvc
->bus_type
);
9598 ASC_DBG(1, "chksum 0x%x\n", chksum
);
9602 if (AscGetChipStatus(iop_base
) & CSW_AUTO_CONFIG
) {
9603 warn_code
|= ASC_WARN_AUTO_CONFIG
;
9604 if (asc_dvc
->cfg
->chip_version
== 3) {
9605 if (eep_config
->cfg_lsw
!= cfg_lsw
) {
9606 warn_code
|= ASC_WARN_EEPROM_RECOVER
;
9607 eep_config
->cfg_lsw
=
9608 AscGetChipCfgLsw(iop_base
);
9610 if (eep_config
->cfg_msw
!= cfg_msw
) {
9611 warn_code
|= ASC_WARN_EEPROM_RECOVER
;
9612 eep_config
->cfg_msw
=
9613 AscGetChipCfgMsw(iop_base
);
9617 eep_config
->cfg_msw
&= ~ASC_CFG_MSW_CLR_MASK
;
9618 eep_config
->cfg_lsw
|= ASC_CFG0_HOST_INT_ON
;
9619 ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config
->chksum
);
9620 if (chksum
!= eep_config
->chksum
) {
9621 if (AscGetChipVersion(iop_base
, asc_dvc
->bus_type
) ==
9622 ASC_CHIP_VER_PCI_ULTRA_3050
) {
9623 ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
9624 eep_config
->init_sdtr
= 0xFF;
9625 eep_config
->disc_enable
= 0xFF;
9626 eep_config
->start_motor
= 0xFF;
9627 eep_config
->use_cmd_qng
= 0;
9628 eep_config
->max_total_qng
= 0xF0;
9629 eep_config
->max_tag_qng
= 0x20;
9630 eep_config
->cntl
= 0xBFFF;
9631 ASC_EEP_SET_CHIP_ID(eep_config
, 7);
9632 eep_config
->no_scam
= 0;
9633 eep_config
->adapter_info
[0] = 0;
9634 eep_config
->adapter_info
[1] = 0;
9635 eep_config
->adapter_info
[2] = 0;
9636 eep_config
->adapter_info
[3] = 0;
9637 eep_config
->adapter_info
[4] = 0;
9638 /* Indicate EEPROM-less board. */
9639 eep_config
->adapter_info
[5] = 0xBB;
9642 ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
9644 warn_code
|= ASC_WARN_EEPROM_CHKSUM
;
9647 asc_dvc
->cfg
->sdtr_enable
= eep_config
->init_sdtr
;
9648 asc_dvc
->cfg
->disc_enable
= eep_config
->disc_enable
;
9649 asc_dvc
->cfg
->cmd_qng_enabled
= eep_config
->use_cmd_qng
;
9650 asc_dvc
->cfg
->isa_dma_speed
= ASC_EEP_GET_DMA_SPD(eep_config
);
9651 asc_dvc
->start_motor
= eep_config
->start_motor
;
9652 asc_dvc
->dvc_cntl
= eep_config
->cntl
;
9653 asc_dvc
->no_scam
= eep_config
->no_scam
;
9654 asc_dvc
->cfg
->adapter_info
[0] = eep_config
->adapter_info
[0];
9655 asc_dvc
->cfg
->adapter_info
[1] = eep_config
->adapter_info
[1];
9656 asc_dvc
->cfg
->adapter_info
[2] = eep_config
->adapter_info
[2];
9657 asc_dvc
->cfg
->adapter_info
[3] = eep_config
->adapter_info
[3];
9658 asc_dvc
->cfg
->adapter_info
[4] = eep_config
->adapter_info
[4];
9659 asc_dvc
->cfg
->adapter_info
[5] = eep_config
->adapter_info
[5];
9660 if (!AscTestExternalLram(asc_dvc
)) {
9661 if (((asc_dvc
->bus_type
& ASC_IS_PCI_ULTRA
) ==
9662 ASC_IS_PCI_ULTRA
)) {
9663 eep_config
->max_total_qng
=
9664 ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG
;
9665 eep_config
->max_tag_qng
=
9666 ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG
;
9668 eep_config
->cfg_msw
|= 0x0800;
9670 AscSetChipCfgMsw(iop_base
, cfg_msw
);
9671 eep_config
->max_total_qng
= ASC_MAX_PCI_INRAM_TOTAL_QNG
;
9672 eep_config
->max_tag_qng
= ASC_MAX_INRAM_TAG_QNG
;
9676 if (eep_config
->max_total_qng
< ASC_MIN_TOTAL_QNG
) {
9677 eep_config
->max_total_qng
= ASC_MIN_TOTAL_QNG
;
9679 if (eep_config
->max_total_qng
> ASC_MAX_TOTAL_QNG
) {
9680 eep_config
->max_total_qng
= ASC_MAX_TOTAL_QNG
;
9682 if (eep_config
->max_tag_qng
> eep_config
->max_total_qng
) {
9683 eep_config
->max_tag_qng
= eep_config
->max_total_qng
;
9685 if (eep_config
->max_tag_qng
< ASC_MIN_TAG_Q_PER_DVC
) {
9686 eep_config
->max_tag_qng
= ASC_MIN_TAG_Q_PER_DVC
;
9688 asc_dvc
->max_total_qng
= eep_config
->max_total_qng
;
9689 if ((eep_config
->use_cmd_qng
& eep_config
->disc_enable
) !=
9690 eep_config
->use_cmd_qng
) {
9691 eep_config
->disc_enable
= eep_config
->use_cmd_qng
;
9692 warn_code
|= ASC_WARN_CMD_QNG_CONFLICT
;
9694 ASC_EEP_SET_CHIP_ID(eep_config
,
9695 ASC_EEP_GET_CHIP_ID(eep_config
) & ASC_MAX_TID
);
9696 asc_dvc
->cfg
->chip_scsi_id
= ASC_EEP_GET_CHIP_ID(eep_config
);
9697 if (((asc_dvc
->bus_type
& ASC_IS_PCI_ULTRA
) == ASC_IS_PCI_ULTRA
) &&
9698 !(asc_dvc
->dvc_cntl
& ASC_CNTL_SDTR_ENABLE_ULTRA
)) {
9699 asc_dvc
->min_sdtr_index
= ASC_SDTR_ULTRA_PCI_10MB_INDEX
;
9702 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
9703 asc_dvc
->dos_int13_table
[i
] = eep_config
->dos_int13_table
[i
];
9704 asc_dvc
->cfg
->max_tag_qng
[i
] = eep_config
->max_tag_qng
;
9705 asc_dvc
->cfg
->sdtr_period_offset
[i
] =
9706 (uchar
)(ASC_DEF_SDTR_OFFSET
|
9707 (asc_dvc
->min_sdtr_index
<< 4));
9709 eep_config
->cfg_msw
= AscGetChipCfgMsw(iop_base
);
9711 if ((i
= AscSetEEPConfig(iop_base
, eep_config
,
9712 asc_dvc
->bus_type
)) != 0) {
9714 ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
9718 ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
9724 static int AscInitGetConfig(struct Scsi_Host
*shost
)
9726 struct asc_board
*board
= shost_priv(shost
);
9727 ASC_DVC_VAR
*asc_dvc
= &board
->dvc_var
.asc_dvc_var
;
9728 unsigned short warn_code
= 0;
9730 asc_dvc
->init_state
= ASC_INIT_STATE_BEG_GET_CFG
;
9731 if (asc_dvc
->err_code
!= 0)
9732 return asc_dvc
->err_code
;
9734 if (AscFindSignature(asc_dvc
->iop_base
)) {
9735 warn_code
|= AscInitAscDvcVar(asc_dvc
);
9736 warn_code
|= AscInitFromEEP(asc_dvc
);
9737 asc_dvc
->init_state
|= ASC_INIT_STATE_END_GET_CFG
;
9738 if (asc_dvc
->scsi_reset_wait
> ASC_MAX_SCSI_RESET_WAIT
)
9739 asc_dvc
->scsi_reset_wait
= ASC_MAX_SCSI_RESET_WAIT
;
9741 asc_dvc
->err_code
= ASC_IERR_BAD_SIGNATURE
;
9744 switch (warn_code
) {
9745 case 0: /* No error */
9747 case ASC_WARN_IO_PORT_ROTATE
:
9748 shost_printk(KERN_WARNING
, shost
, "I/O port address "
9751 case ASC_WARN_AUTO_CONFIG
:
9752 shost_printk(KERN_WARNING
, shost
, "I/O port increment switch "
9755 case ASC_WARN_EEPROM_CHKSUM
:
9756 shost_printk(KERN_WARNING
, shost
, "EEPROM checksum error\n");
9758 case ASC_WARN_IRQ_MODIFIED
:
9759 shost_printk(KERN_WARNING
, shost
, "IRQ modified\n");
9761 case ASC_WARN_CMD_QNG_CONFLICT
:
9762 shost_printk(KERN_WARNING
, shost
, "tag queuing enabled w/o "
9766 shost_printk(KERN_WARNING
, shost
, "unknown warning: 0x%x\n",
9771 if (asc_dvc
->err_code
!= 0)
9772 shost_printk(KERN_ERR
, shost
, "error 0x%x at init_state "
9773 "0x%x\n", asc_dvc
->err_code
, asc_dvc
->init_state
);
9775 return asc_dvc
->err_code
;
9778 static int AscInitSetConfig(struct pci_dev
*pdev
, struct Scsi_Host
*shost
)
9780 struct asc_board
*board
= shost_priv(shost
);
9781 ASC_DVC_VAR
*asc_dvc
= &board
->dvc_var
.asc_dvc_var
;
9782 PortAddr iop_base
= asc_dvc
->iop_base
;
9783 unsigned short cfg_msw
;
9784 unsigned short warn_code
= 0;
9786 asc_dvc
->init_state
|= ASC_INIT_STATE_BEG_SET_CFG
;
9787 if (asc_dvc
->err_code
!= 0)
9788 return asc_dvc
->err_code
;
9789 if (!AscFindSignature(asc_dvc
->iop_base
)) {
9790 asc_dvc
->err_code
= ASC_IERR_BAD_SIGNATURE
;
9791 return asc_dvc
->err_code
;
9794 cfg_msw
= AscGetChipCfgMsw(iop_base
);
9795 if ((cfg_msw
& ASC_CFG_MSW_CLR_MASK
) != 0) {
9796 cfg_msw
&= ~ASC_CFG_MSW_CLR_MASK
;
9797 warn_code
|= ASC_WARN_CFG_MSW_RECOVER
;
9798 AscSetChipCfgMsw(iop_base
, cfg_msw
);
9800 if ((asc_dvc
->cfg
->cmd_qng_enabled
& asc_dvc
->cfg
->disc_enable
) !=
9801 asc_dvc
->cfg
->cmd_qng_enabled
) {
9802 asc_dvc
->cfg
->disc_enable
= asc_dvc
->cfg
->cmd_qng_enabled
;
9803 warn_code
|= ASC_WARN_CMD_QNG_CONFLICT
;
9805 if (AscGetChipStatus(iop_base
) & CSW_AUTO_CONFIG
) {
9806 warn_code
|= ASC_WARN_AUTO_CONFIG
;
9809 if (asc_dvc
->bus_type
& ASC_IS_PCI
) {
9811 AscSetChipCfgMsw(iop_base
, cfg_msw
);
9812 if ((asc_dvc
->bus_type
& ASC_IS_PCI_ULTRA
) == ASC_IS_PCI_ULTRA
) {
9814 if ((pdev
->device
== PCI_DEVICE_ID_ASP_1200A
) ||
9815 (pdev
->device
== PCI_DEVICE_ID_ASP_ABP940
)) {
9816 asc_dvc
->bug_fix_cntl
|= ASC_BUG_FIX_IF_NOT_DWB
;
9817 asc_dvc
->bug_fix_cntl
|=
9818 ASC_BUG_FIX_ASYN_USE_SYN
;
9822 #endif /* CONFIG_PCI */
9823 if (asc_dvc
->bus_type
== ASC_IS_ISAPNP
) {
9824 if (AscGetChipVersion(iop_base
, asc_dvc
->bus_type
)
9825 == ASC_CHIP_VER_ASYN_BUG
) {
9826 asc_dvc
->bug_fix_cntl
|= ASC_BUG_FIX_ASYN_USE_SYN
;
9829 if (AscSetChipScsiID(iop_base
, asc_dvc
->cfg
->chip_scsi_id
) !=
9830 asc_dvc
->cfg
->chip_scsi_id
) {
9831 asc_dvc
->err_code
|= ASC_IERR_SET_SCSI_ID
;
9834 if (asc_dvc
->bus_type
& ASC_IS_ISA
) {
9835 AscSetIsaDmaChannel(iop_base
, asc_dvc
->cfg
->isa_dma_channel
);
9836 AscSetIsaDmaSpeed(iop_base
, asc_dvc
->cfg
->isa_dma_speed
);
9838 #endif /* CONFIG_ISA */
9840 asc_dvc
->init_state
|= ASC_INIT_STATE_END_SET_CFG
;
9842 switch (warn_code
) {
9843 case 0: /* No error. */
9845 case ASC_WARN_IO_PORT_ROTATE
:
9846 shost_printk(KERN_WARNING
, shost
, "I/O port address "
9849 case ASC_WARN_AUTO_CONFIG
:
9850 shost_printk(KERN_WARNING
, shost
, "I/O port increment switch "
9853 case ASC_WARN_EEPROM_CHKSUM
:
9854 shost_printk(KERN_WARNING
, shost
, "EEPROM checksum error\n");
9856 case ASC_WARN_IRQ_MODIFIED
:
9857 shost_printk(KERN_WARNING
, shost
, "IRQ modified\n");
9859 case ASC_WARN_CMD_QNG_CONFLICT
:
9860 shost_printk(KERN_WARNING
, shost
, "tag queuing w/o "
9864 shost_printk(KERN_WARNING
, shost
, "unknown warning: 0x%x\n",
9869 if (asc_dvc
->err_code
!= 0)
9870 shost_printk(KERN_ERR
, shost
, "error 0x%x at init_state "
9871 "0x%x\n", asc_dvc
->err_code
, asc_dvc
->init_state
);
9873 return asc_dvc
->err_code
;
9877 * EEPROM Configuration.
9879 * All drivers should use this structure to set the default EEPROM
9880 * configuration. The BIOS now uses this structure when it is built.
9881 * Additional structure information can be found in a_condor.h where
9882 * the structure is defined.
9884 * The *_Field_IsChar structs are needed to correct for endianness.
9885 * These values are read from the board 16 bits at a time directly
9886 * into the structs. Because some fields are char, the values will be
9887 * in the wrong order. The *_Field_IsChar tells when to flip the
9888 * bytes. Data read and written to PCI memory is automatically swapped
9889 * on big-endian platforms so char fields read as words are actually being
9890 * unswapped on big-endian platforms.
9892 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config
= {
9893 ADV_EEPROM_BIOS_ENABLE
, /* cfg_lsw */
9894 0x0000, /* cfg_msw */
9895 0xFFFF, /* disc_enable */
9896 0xFFFF, /* wdtr_able */
9897 0xFFFF, /* sdtr_able */
9898 0xFFFF, /* start_motor */
9899 0xFFFF, /* tagqng_able */
9900 0xFFFF, /* bios_scan */
9901 0, /* scam_tolerant */
9902 7, /* adapter_scsi_id */
9903 0, /* bios_boot_delay */
9904 3, /* scsi_reset_delay */
9905 0, /* bios_id_lun */
9906 0, /* termination */
9908 0xFFE7, /* bios_ctrl */
9909 0xFFFF, /* ultra_able */
9911 ASC_DEF_MAX_HOST_QNG
, /* max_host_qng */
9912 ASC_DEF_MAX_DVC_QNG
, /* max_dvc_qng */
9915 0, /* serial_number_word1 */
9916 0, /* serial_number_word2 */
9917 0, /* serial_number_word3 */
9919 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9920 , /* oem_name[16] */
9921 0, /* dvc_err_code */
9922 0, /* adv_err_code */
9923 0, /* adv_err_addr */
9924 0, /* saved_dvc_err_code */
9925 0, /* saved_adv_err_code */
9926 0, /* saved_adv_err_addr */
9930 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar
= {
9933 0, /* -disc_enable */
9936 0, /* start_motor */
9937 0, /* tagqng_able */
9939 0, /* scam_tolerant */
9940 1, /* adapter_scsi_id */
9941 1, /* bios_boot_delay */
9942 1, /* scsi_reset_delay */
9943 1, /* bios_id_lun */
9944 1, /* termination */
9949 1, /* max_host_qng */
9950 1, /* max_dvc_qng */
9953 0, /* serial_number_word1 */
9954 0, /* serial_number_word2 */
9955 0, /* serial_number_word3 */
9957 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9958 , /* oem_name[16] */
9959 0, /* dvc_err_code */
9960 0, /* adv_err_code */
9961 0, /* adv_err_addr */
9962 0, /* saved_dvc_err_code */
9963 0, /* saved_adv_err_code */
9964 0, /* saved_adv_err_addr */
9968 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config
= {
9969 ADV_EEPROM_BIOS_ENABLE
, /* 00 cfg_lsw */
9970 0x0000, /* 01 cfg_msw */
9971 0xFFFF, /* 02 disc_enable */
9972 0xFFFF, /* 03 wdtr_able */
9973 0x4444, /* 04 sdtr_speed1 */
9974 0xFFFF, /* 05 start_motor */
9975 0xFFFF, /* 06 tagqng_able */
9976 0xFFFF, /* 07 bios_scan */
9977 0, /* 08 scam_tolerant */
9978 7, /* 09 adapter_scsi_id */
9979 0, /* bios_boot_delay */
9980 3, /* 10 scsi_reset_delay */
9981 0, /* bios_id_lun */
9982 0, /* 11 termination_se */
9983 0, /* termination_lvd */
9984 0xFFE7, /* 12 bios_ctrl */
9985 0x4444, /* 13 sdtr_speed2 */
9986 0x4444, /* 14 sdtr_speed3 */
9987 ASC_DEF_MAX_HOST_QNG
, /* 15 max_host_qng */
9988 ASC_DEF_MAX_DVC_QNG
, /* max_dvc_qng */
9989 0, /* 16 dvc_cntl */
9990 0x4444, /* 17 sdtr_speed4 */
9991 0, /* 18 serial_number_word1 */
9992 0, /* 19 serial_number_word2 */
9993 0, /* 20 serial_number_word3 */
9994 0, /* 21 check_sum */
9995 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9996 , /* 22-29 oem_name[16] */
9997 0, /* 30 dvc_err_code */
9998 0, /* 31 adv_err_code */
9999 0, /* 32 adv_err_addr */
10000 0, /* 33 saved_dvc_err_code */
10001 0, /* 34 saved_adv_err_code */
10002 0, /* 35 saved_adv_err_addr */
10003 0, /* 36 reserved */
10004 0, /* 37 reserved */
10005 0, /* 38 reserved */
10006 0, /* 39 reserved */
10007 0, /* 40 reserved */
10008 0, /* 41 reserved */
10009 0, /* 42 reserved */
10010 0, /* 43 reserved */
10011 0, /* 44 reserved */
10012 0, /* 45 reserved */
10013 0, /* 46 reserved */
10014 0, /* 47 reserved */
10015 0, /* 48 reserved */
10016 0, /* 49 reserved */
10017 0, /* 50 reserved */
10018 0, /* 51 reserved */
10019 0, /* 52 reserved */
10020 0, /* 53 reserved */
10021 0, /* 54 reserved */
10022 0, /* 55 reserved */
10023 0, /* 56 cisptr_lsw */
10024 0, /* 57 cisprt_msw */
10025 PCI_VENDOR_ID_ASP
, /* 58 subsysvid */
10026 PCI_DEVICE_ID_38C0800_REV1
, /* 59 subsysid */
10027 0, /* 60 reserved */
10028 0, /* 61 reserved */
10029 0, /* 62 reserved */
10030 0 /* 63 reserved */
10033 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar
= {
10034 0, /* 00 cfg_lsw */
10035 0, /* 01 cfg_msw */
10036 0, /* 02 disc_enable */
10037 0, /* 03 wdtr_able */
10038 0, /* 04 sdtr_speed1 */
10039 0, /* 05 start_motor */
10040 0, /* 06 tagqng_able */
10041 0, /* 07 bios_scan */
10042 0, /* 08 scam_tolerant */
10043 1, /* 09 adapter_scsi_id */
10044 1, /* bios_boot_delay */
10045 1, /* 10 scsi_reset_delay */
10046 1, /* bios_id_lun */
10047 1, /* 11 termination_se */
10048 1, /* termination_lvd */
10049 0, /* 12 bios_ctrl */
10050 0, /* 13 sdtr_speed2 */
10051 0, /* 14 sdtr_speed3 */
10052 1, /* 15 max_host_qng */
10053 1, /* max_dvc_qng */
10054 0, /* 16 dvc_cntl */
10055 0, /* 17 sdtr_speed4 */
10056 0, /* 18 serial_number_word1 */
10057 0, /* 19 serial_number_word2 */
10058 0, /* 20 serial_number_word3 */
10059 0, /* 21 check_sum */
10060 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10061 , /* 22-29 oem_name[16] */
10062 0, /* 30 dvc_err_code */
10063 0, /* 31 adv_err_code */
10064 0, /* 32 adv_err_addr */
10065 0, /* 33 saved_dvc_err_code */
10066 0, /* 34 saved_adv_err_code */
10067 0, /* 35 saved_adv_err_addr */
10068 0, /* 36 reserved */
10069 0, /* 37 reserved */
10070 0, /* 38 reserved */
10071 0, /* 39 reserved */
10072 0, /* 40 reserved */
10073 0, /* 41 reserved */
10074 0, /* 42 reserved */
10075 0, /* 43 reserved */
10076 0, /* 44 reserved */
10077 0, /* 45 reserved */
10078 0, /* 46 reserved */
10079 0, /* 47 reserved */
10080 0, /* 48 reserved */
10081 0, /* 49 reserved */
10082 0, /* 50 reserved */
10083 0, /* 51 reserved */
10084 0, /* 52 reserved */
10085 0, /* 53 reserved */
10086 0, /* 54 reserved */
10087 0, /* 55 reserved */
10088 0, /* 56 cisptr_lsw */
10089 0, /* 57 cisprt_msw */
10090 0, /* 58 subsysvid */
10091 0, /* 59 subsysid */
10092 0, /* 60 reserved */
10093 0, /* 61 reserved */
10094 0, /* 62 reserved */
10095 0 /* 63 reserved */
10098 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config
= {
10099 ADV_EEPROM_BIOS_ENABLE
, /* 00 cfg_lsw */
10100 0x0000, /* 01 cfg_msw */
10101 0xFFFF, /* 02 disc_enable */
10102 0xFFFF, /* 03 wdtr_able */
10103 0x5555, /* 04 sdtr_speed1 */
10104 0xFFFF, /* 05 start_motor */
10105 0xFFFF, /* 06 tagqng_able */
10106 0xFFFF, /* 07 bios_scan */
10107 0, /* 08 scam_tolerant */
10108 7, /* 09 adapter_scsi_id */
10109 0, /* bios_boot_delay */
10110 3, /* 10 scsi_reset_delay */
10111 0, /* bios_id_lun */
10112 0, /* 11 termination_se */
10113 0, /* termination_lvd */
10114 0xFFE7, /* 12 bios_ctrl */
10115 0x5555, /* 13 sdtr_speed2 */
10116 0x5555, /* 14 sdtr_speed3 */
10117 ASC_DEF_MAX_HOST_QNG
, /* 15 max_host_qng */
10118 ASC_DEF_MAX_DVC_QNG
, /* max_dvc_qng */
10119 0, /* 16 dvc_cntl */
10120 0x5555, /* 17 sdtr_speed4 */
10121 0, /* 18 serial_number_word1 */
10122 0, /* 19 serial_number_word2 */
10123 0, /* 20 serial_number_word3 */
10124 0, /* 21 check_sum */
10125 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10126 , /* 22-29 oem_name[16] */
10127 0, /* 30 dvc_err_code */
10128 0, /* 31 adv_err_code */
10129 0, /* 32 adv_err_addr */
10130 0, /* 33 saved_dvc_err_code */
10131 0, /* 34 saved_adv_err_code */
10132 0, /* 35 saved_adv_err_addr */
10133 0, /* 36 reserved */
10134 0, /* 37 reserved */
10135 0, /* 38 reserved */
10136 0, /* 39 reserved */
10137 0, /* 40 reserved */
10138 0, /* 41 reserved */
10139 0, /* 42 reserved */
10140 0, /* 43 reserved */
10141 0, /* 44 reserved */
10142 0, /* 45 reserved */
10143 0, /* 46 reserved */
10144 0, /* 47 reserved */
10145 0, /* 48 reserved */
10146 0, /* 49 reserved */
10147 0, /* 50 reserved */
10148 0, /* 51 reserved */
10149 0, /* 52 reserved */
10150 0, /* 53 reserved */
10151 0, /* 54 reserved */
10152 0, /* 55 reserved */
10153 0, /* 56 cisptr_lsw */
10154 0, /* 57 cisprt_msw */
10155 PCI_VENDOR_ID_ASP
, /* 58 subsysvid */
10156 PCI_DEVICE_ID_38C1600_REV1
, /* 59 subsysid */
10157 0, /* 60 reserved */
10158 0, /* 61 reserved */
10159 0, /* 62 reserved */
10160 0 /* 63 reserved */
10163 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar
= {
10164 0, /* 00 cfg_lsw */
10165 0, /* 01 cfg_msw */
10166 0, /* 02 disc_enable */
10167 0, /* 03 wdtr_able */
10168 0, /* 04 sdtr_speed1 */
10169 0, /* 05 start_motor */
10170 0, /* 06 tagqng_able */
10171 0, /* 07 bios_scan */
10172 0, /* 08 scam_tolerant */
10173 1, /* 09 adapter_scsi_id */
10174 1, /* bios_boot_delay */
10175 1, /* 10 scsi_reset_delay */
10176 1, /* bios_id_lun */
10177 1, /* 11 termination_se */
10178 1, /* termination_lvd */
10179 0, /* 12 bios_ctrl */
10180 0, /* 13 sdtr_speed2 */
10181 0, /* 14 sdtr_speed3 */
10182 1, /* 15 max_host_qng */
10183 1, /* max_dvc_qng */
10184 0, /* 16 dvc_cntl */
10185 0, /* 17 sdtr_speed4 */
10186 0, /* 18 serial_number_word1 */
10187 0, /* 19 serial_number_word2 */
10188 0, /* 20 serial_number_word3 */
10189 0, /* 21 check_sum */
10190 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10191 , /* 22-29 oem_name[16] */
10192 0, /* 30 dvc_err_code */
10193 0, /* 31 adv_err_code */
10194 0, /* 32 adv_err_addr */
10195 0, /* 33 saved_dvc_err_code */
10196 0, /* 34 saved_adv_err_code */
10197 0, /* 35 saved_adv_err_addr */
10198 0, /* 36 reserved */
10199 0, /* 37 reserved */
10200 0, /* 38 reserved */
10201 0, /* 39 reserved */
10202 0, /* 40 reserved */
10203 0, /* 41 reserved */
10204 0, /* 42 reserved */
10205 0, /* 43 reserved */
10206 0, /* 44 reserved */
10207 0, /* 45 reserved */
10208 0, /* 46 reserved */
10209 0, /* 47 reserved */
10210 0, /* 48 reserved */
10211 0, /* 49 reserved */
10212 0, /* 50 reserved */
10213 0, /* 51 reserved */
10214 0, /* 52 reserved */
10215 0, /* 53 reserved */
10216 0, /* 54 reserved */
10217 0, /* 55 reserved */
10218 0, /* 56 cisptr_lsw */
10219 0, /* 57 cisprt_msw */
10220 0, /* 58 subsysvid */
10221 0, /* 59 subsysid */
10222 0, /* 60 reserved */
10223 0, /* 61 reserved */
10224 0, /* 62 reserved */
10225 0 /* 63 reserved */
10230 * Wait for EEPROM command to complete
10232 static void AdvWaitEEPCmd(AdvPortAddr iop_base
)
10236 for (eep_delay_ms
= 0; eep_delay_ms
< ADV_EEP_DELAY_MS
; eep_delay_ms
++) {
10237 if (AdvReadWordRegister(iop_base
, IOPW_EE_CMD
) &
10238 ASC_EEP_CMD_DONE
) {
10243 if ((AdvReadWordRegister(iop_base
, IOPW_EE_CMD
) & ASC_EEP_CMD_DONE
) ==
10249 * Read the EEPROM from specified location
10251 static ushort
AdvReadEEPWord(AdvPortAddr iop_base
, int eep_word_addr
)
10253 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10254 ASC_EEP_CMD_READ
| eep_word_addr
);
10255 AdvWaitEEPCmd(iop_base
);
10256 return AdvReadWordRegister(iop_base
, IOPW_EE_DATA
);
10260 * Write the EEPROM from 'cfg_buf'.
10262 static void AdvSet3550EEPConfig(AdvPortAddr iop_base
,
10263 ADVEEP_3550_CONFIG
*cfg_buf
)
10266 ushort addr
, chksum
;
10267 ushort
*charfields
;
10269 wbuf
= (ushort
*)cfg_buf
;
10270 charfields
= (ushort
*)&ADVEEP_3550_Config_Field_IsChar
;
10273 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_ABLE
);
10274 AdvWaitEEPCmd(iop_base
);
10277 * Write EEPROM from word 0 to word 20.
10279 for (addr
= ADV_EEP_DVC_CFG_BEGIN
;
10280 addr
< ADV_EEP_DVC_CFG_END
; addr
++, wbuf
++) {
10283 if (*charfields
++) {
10284 word
= cpu_to_le16(*wbuf
);
10288 chksum
+= *wbuf
; /* Checksum is calculated from word values. */
10289 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10290 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10291 ASC_EEP_CMD_WRITE
| addr
);
10292 AdvWaitEEPCmd(iop_base
);
10293 mdelay(ADV_EEP_DELAY_MS
);
10297 * Write EEPROM checksum at word 21.
10299 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, chksum
);
10300 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE
| addr
);
10301 AdvWaitEEPCmd(iop_base
);
10306 * Write EEPROM OEM name at words 22 to 29.
10308 for (addr
= ADV_EEP_DVC_CTL_BEGIN
;
10309 addr
< ADV_EEP_MAX_WORD_ADDR
; addr
++, wbuf
++) {
10312 if (*charfields
++) {
10313 word
= cpu_to_le16(*wbuf
);
10317 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10318 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10319 ASC_EEP_CMD_WRITE
| addr
);
10320 AdvWaitEEPCmd(iop_base
);
10322 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_DISABLE
);
10323 AdvWaitEEPCmd(iop_base
);
10327 * Write the EEPROM from 'cfg_buf'.
10329 static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base
,
10330 ADVEEP_38C0800_CONFIG
*cfg_buf
)
10333 ushort
*charfields
;
10334 ushort addr
, chksum
;
10336 wbuf
= (ushort
*)cfg_buf
;
10337 charfields
= (ushort
*)&ADVEEP_38C0800_Config_Field_IsChar
;
10340 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_ABLE
);
10341 AdvWaitEEPCmd(iop_base
);
10344 * Write EEPROM from word 0 to word 20.
10346 for (addr
= ADV_EEP_DVC_CFG_BEGIN
;
10347 addr
< ADV_EEP_DVC_CFG_END
; addr
++, wbuf
++) {
10350 if (*charfields
++) {
10351 word
= cpu_to_le16(*wbuf
);
10355 chksum
+= *wbuf
; /* Checksum is calculated from word values. */
10356 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10357 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10358 ASC_EEP_CMD_WRITE
| addr
);
10359 AdvWaitEEPCmd(iop_base
);
10360 mdelay(ADV_EEP_DELAY_MS
);
10364 * Write EEPROM checksum at word 21.
10366 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, chksum
);
10367 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE
| addr
);
10368 AdvWaitEEPCmd(iop_base
);
10373 * Write EEPROM OEM name at words 22 to 29.
10375 for (addr
= ADV_EEP_DVC_CTL_BEGIN
;
10376 addr
< ADV_EEP_MAX_WORD_ADDR
; addr
++, wbuf
++) {
10379 if (*charfields
++) {
10380 word
= cpu_to_le16(*wbuf
);
10384 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10385 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10386 ASC_EEP_CMD_WRITE
| addr
);
10387 AdvWaitEEPCmd(iop_base
);
10389 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_DISABLE
);
10390 AdvWaitEEPCmd(iop_base
);
10394 * Write the EEPROM from 'cfg_buf'.
10396 static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base
,
10397 ADVEEP_38C1600_CONFIG
*cfg_buf
)
10400 ushort
*charfields
;
10401 ushort addr
, chksum
;
10403 wbuf
= (ushort
*)cfg_buf
;
10404 charfields
= (ushort
*)&ADVEEP_38C1600_Config_Field_IsChar
;
10407 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_ABLE
);
10408 AdvWaitEEPCmd(iop_base
);
10411 * Write EEPROM from word 0 to word 20.
10413 for (addr
= ADV_EEP_DVC_CFG_BEGIN
;
10414 addr
< ADV_EEP_DVC_CFG_END
; addr
++, wbuf
++) {
10417 if (*charfields
++) {
10418 word
= cpu_to_le16(*wbuf
);
10422 chksum
+= *wbuf
; /* Checksum is calculated from word values. */
10423 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10424 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10425 ASC_EEP_CMD_WRITE
| addr
);
10426 AdvWaitEEPCmd(iop_base
);
10427 mdelay(ADV_EEP_DELAY_MS
);
10431 * Write EEPROM checksum at word 21.
10433 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, chksum
);
10434 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE
| addr
);
10435 AdvWaitEEPCmd(iop_base
);
10440 * Write EEPROM OEM name at words 22 to 29.
10442 for (addr
= ADV_EEP_DVC_CTL_BEGIN
;
10443 addr
< ADV_EEP_MAX_WORD_ADDR
; addr
++, wbuf
++) {
10446 if (*charfields
++) {
10447 word
= cpu_to_le16(*wbuf
);
10451 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10452 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10453 ASC_EEP_CMD_WRITE
| addr
);
10454 AdvWaitEEPCmd(iop_base
);
10456 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_DISABLE
);
10457 AdvWaitEEPCmd(iop_base
);
10461 * Read EEPROM configuration into the specified buffer.
10463 * Return a checksum based on the EEPROM configuration read.
10465 static ushort
AdvGet3550EEPConfig(AdvPortAddr iop_base
,
10466 ADVEEP_3550_CONFIG
*cfg_buf
)
10468 ushort wval
, chksum
;
10471 ushort
*charfields
;
10473 charfields
= (ushort
*)&ADVEEP_3550_Config_Field_IsChar
;
10474 wbuf
= (ushort
*)cfg_buf
;
10477 for (eep_addr
= ADV_EEP_DVC_CFG_BEGIN
;
10478 eep_addr
< ADV_EEP_DVC_CFG_END
; eep_addr
++, wbuf
++) {
10479 wval
= AdvReadEEPWord(iop_base
, eep_addr
);
10480 chksum
+= wval
; /* Checksum is calculated from word values. */
10481 if (*charfields
++) {
10482 *wbuf
= le16_to_cpu(wval
);
10487 /* Read checksum word. */
10488 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
10492 /* Read rest of EEPROM not covered by the checksum. */
10493 for (eep_addr
= ADV_EEP_DVC_CTL_BEGIN
;
10494 eep_addr
< ADV_EEP_MAX_WORD_ADDR
; eep_addr
++, wbuf
++) {
10495 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
10496 if (*charfields
++) {
10497 *wbuf
= le16_to_cpu(*wbuf
);
10504 * Read EEPROM configuration into the specified buffer.
10506 * Return a checksum based on the EEPROM configuration read.
10508 static ushort
AdvGet38C0800EEPConfig(AdvPortAddr iop_base
,
10509 ADVEEP_38C0800_CONFIG
*cfg_buf
)
10511 ushort wval
, chksum
;
10514 ushort
*charfields
;
10516 charfields
= (ushort
*)&ADVEEP_38C0800_Config_Field_IsChar
;
10517 wbuf
= (ushort
*)cfg_buf
;
10520 for (eep_addr
= ADV_EEP_DVC_CFG_BEGIN
;
10521 eep_addr
< ADV_EEP_DVC_CFG_END
; eep_addr
++, wbuf
++) {
10522 wval
= AdvReadEEPWord(iop_base
, eep_addr
);
10523 chksum
+= wval
; /* Checksum is calculated from word values. */
10524 if (*charfields
++) {
10525 *wbuf
= le16_to_cpu(wval
);
10530 /* Read checksum word. */
10531 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
10535 /* Read rest of EEPROM not covered by the checksum. */
10536 for (eep_addr
= ADV_EEP_DVC_CTL_BEGIN
;
10537 eep_addr
< ADV_EEP_MAX_WORD_ADDR
; eep_addr
++, wbuf
++) {
10538 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
10539 if (*charfields
++) {
10540 *wbuf
= le16_to_cpu(*wbuf
);
10547 * Read EEPROM configuration into the specified buffer.
10549 * Return a checksum based on the EEPROM configuration read.
10551 static ushort
AdvGet38C1600EEPConfig(AdvPortAddr iop_base
,
10552 ADVEEP_38C1600_CONFIG
*cfg_buf
)
10554 ushort wval
, chksum
;
10557 ushort
*charfields
;
10559 charfields
= (ushort
*)&ADVEEP_38C1600_Config_Field_IsChar
;
10560 wbuf
= (ushort
*)cfg_buf
;
10563 for (eep_addr
= ADV_EEP_DVC_CFG_BEGIN
;
10564 eep_addr
< ADV_EEP_DVC_CFG_END
; eep_addr
++, wbuf
++) {
10565 wval
= AdvReadEEPWord(iop_base
, eep_addr
);
10566 chksum
+= wval
; /* Checksum is calculated from word values. */
10567 if (*charfields
++) {
10568 *wbuf
= le16_to_cpu(wval
);
10573 /* Read checksum word. */
10574 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
10578 /* Read rest of EEPROM not covered by the checksum. */
10579 for (eep_addr
= ADV_EEP_DVC_CTL_BEGIN
;
10580 eep_addr
< ADV_EEP_MAX_WORD_ADDR
; eep_addr
++, wbuf
++) {
10581 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
10582 if (*charfields
++) {
10583 *wbuf
= le16_to_cpu(*wbuf
);
10590 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10591 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10592 * all of this is done.
10594 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10596 * For a non-fatal error return a warning code. If there are no warnings
10597 * then 0 is returned.
10599 * Note: Chip is stopped on entry.
10601 static int AdvInitFrom3550EEP(ADV_DVC_VAR
*asc_dvc
)
10603 AdvPortAddr iop_base
;
10605 ADVEEP_3550_CONFIG eep_config
;
10607 iop_base
= asc_dvc
->iop_base
;
10612 * Read the board's EEPROM configuration.
10614 * Set default values if a bad checksum is found.
10616 if (AdvGet3550EEPConfig(iop_base
, &eep_config
) != eep_config
.check_sum
) {
10617 warn_code
|= ASC_WARN_EEPROM_CHKSUM
;
10620 * Set EEPROM default values.
10622 memcpy(&eep_config
, &Default_3550_EEPROM_Config
,
10623 sizeof(ADVEEP_3550_CONFIG
));
10626 * Assume the 6 byte board serial number that was read from
10627 * EEPROM is correct even if the EEPROM checksum failed.
10629 eep_config
.serial_number_word3
=
10630 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 1);
10632 eep_config
.serial_number_word2
=
10633 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 2);
10635 eep_config
.serial_number_word1
=
10636 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 3);
10638 AdvSet3550EEPConfig(iop_base
, &eep_config
);
10641 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10642 * EEPROM configuration that was read.
10644 * This is the mapping of EEPROM fields to Adv Library fields.
10646 asc_dvc
->wdtr_able
= eep_config
.wdtr_able
;
10647 asc_dvc
->sdtr_able
= eep_config
.sdtr_able
;
10648 asc_dvc
->ultra_able
= eep_config
.ultra_able
;
10649 asc_dvc
->tagqng_able
= eep_config
.tagqng_able
;
10650 asc_dvc
->cfg
->disc_enable
= eep_config
.disc_enable
;
10651 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
10652 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
10653 asc_dvc
->chip_scsi_id
= (eep_config
.adapter_scsi_id
& ADV_MAX_TID
);
10654 asc_dvc
->start_motor
= eep_config
.start_motor
;
10655 asc_dvc
->scsi_reset_wait
= eep_config
.scsi_reset_delay
;
10656 asc_dvc
->bios_ctrl
= eep_config
.bios_ctrl
;
10657 asc_dvc
->no_scam
= eep_config
.scam_tolerant
;
10658 asc_dvc
->cfg
->serial1
= eep_config
.serial_number_word1
;
10659 asc_dvc
->cfg
->serial2
= eep_config
.serial_number_word2
;
10660 asc_dvc
->cfg
->serial3
= eep_config
.serial_number_word3
;
10663 * Set the host maximum queuing (max. 253, min. 16) and the per device
10664 * maximum queuing (max. 63, min. 4).
10666 if (eep_config
.max_host_qng
> ASC_DEF_MAX_HOST_QNG
) {
10667 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
10668 } else if (eep_config
.max_host_qng
< ASC_DEF_MIN_HOST_QNG
) {
10669 /* If the value is zero, assume it is uninitialized. */
10670 if (eep_config
.max_host_qng
== 0) {
10671 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
10673 eep_config
.max_host_qng
= ASC_DEF_MIN_HOST_QNG
;
10677 if (eep_config
.max_dvc_qng
> ASC_DEF_MAX_DVC_QNG
) {
10678 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
10679 } else if (eep_config
.max_dvc_qng
< ASC_DEF_MIN_DVC_QNG
) {
10680 /* If the value is zero, assume it is uninitialized. */
10681 if (eep_config
.max_dvc_qng
== 0) {
10682 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
10684 eep_config
.max_dvc_qng
= ASC_DEF_MIN_DVC_QNG
;
10689 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10690 * set 'max_dvc_qng' to 'max_host_qng'.
10692 if (eep_config
.max_dvc_qng
> eep_config
.max_host_qng
) {
10693 eep_config
.max_dvc_qng
= eep_config
.max_host_qng
;
10697 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10698 * values based on possibly adjusted EEPROM values.
10700 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
10701 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
10704 * If the EEPROM 'termination' field is set to automatic (0), then set
10705 * the ADV_DVC_CFG 'termination' field to automatic also.
10707 * If the termination is specified with a non-zero 'termination'
10708 * value check that a legal value is set and set the ADV_DVC_CFG
10709 * 'termination' field appropriately.
10711 if (eep_config
.termination
== 0) {
10712 asc_dvc
->cfg
->termination
= 0; /* auto termination */
10714 /* Enable manual control with low off / high off. */
10715 if (eep_config
.termination
== 1) {
10716 asc_dvc
->cfg
->termination
= TERM_CTL_SEL
;
10718 /* Enable manual control with low off / high on. */
10719 } else if (eep_config
.termination
== 2) {
10720 asc_dvc
->cfg
->termination
= TERM_CTL_SEL
| TERM_CTL_H
;
10722 /* Enable manual control with low on / high on. */
10723 } else if (eep_config
.termination
== 3) {
10724 asc_dvc
->cfg
->termination
=
10725 TERM_CTL_SEL
| TERM_CTL_H
| TERM_CTL_L
;
10728 * The EEPROM 'termination' field contains a bad value. Use
10729 * automatic termination instead.
10731 asc_dvc
->cfg
->termination
= 0;
10732 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
10740 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10741 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10742 * all of this is done.
10744 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10746 * For a non-fatal error return a warning code. If there are no warnings
10747 * then 0 is returned.
10749 * Note: Chip is stopped on entry.
10751 static int AdvInitFrom38C0800EEP(ADV_DVC_VAR
*asc_dvc
)
10753 AdvPortAddr iop_base
;
10755 ADVEEP_38C0800_CONFIG eep_config
;
10756 uchar tid
, termination
;
10757 ushort sdtr_speed
= 0;
10759 iop_base
= asc_dvc
->iop_base
;
10764 * Read the board's EEPROM configuration.
10766 * Set default values if a bad checksum is found.
10768 if (AdvGet38C0800EEPConfig(iop_base
, &eep_config
) !=
10769 eep_config
.check_sum
) {
10770 warn_code
|= ASC_WARN_EEPROM_CHKSUM
;
10773 * Set EEPROM default values.
10775 memcpy(&eep_config
, &Default_38C0800_EEPROM_Config
,
10776 sizeof(ADVEEP_38C0800_CONFIG
));
10779 * Assume the 6 byte board serial number that was read from
10780 * EEPROM is correct even if the EEPROM checksum failed.
10782 eep_config
.serial_number_word3
=
10783 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 1);
10785 eep_config
.serial_number_word2
=
10786 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 2);
10788 eep_config
.serial_number_word1
=
10789 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 3);
10791 AdvSet38C0800EEPConfig(iop_base
, &eep_config
);
10794 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
10795 * EEPROM configuration that was read.
10797 * This is the mapping of EEPROM fields to Adv Library fields.
10799 asc_dvc
->wdtr_able
= eep_config
.wdtr_able
;
10800 asc_dvc
->sdtr_speed1
= eep_config
.sdtr_speed1
;
10801 asc_dvc
->sdtr_speed2
= eep_config
.sdtr_speed2
;
10802 asc_dvc
->sdtr_speed3
= eep_config
.sdtr_speed3
;
10803 asc_dvc
->sdtr_speed4
= eep_config
.sdtr_speed4
;
10804 asc_dvc
->tagqng_able
= eep_config
.tagqng_able
;
10805 asc_dvc
->cfg
->disc_enable
= eep_config
.disc_enable
;
10806 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
10807 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
10808 asc_dvc
->chip_scsi_id
= (eep_config
.adapter_scsi_id
& ADV_MAX_TID
);
10809 asc_dvc
->start_motor
= eep_config
.start_motor
;
10810 asc_dvc
->scsi_reset_wait
= eep_config
.scsi_reset_delay
;
10811 asc_dvc
->bios_ctrl
= eep_config
.bios_ctrl
;
10812 asc_dvc
->no_scam
= eep_config
.scam_tolerant
;
10813 asc_dvc
->cfg
->serial1
= eep_config
.serial_number_word1
;
10814 asc_dvc
->cfg
->serial2
= eep_config
.serial_number_word2
;
10815 asc_dvc
->cfg
->serial3
= eep_config
.serial_number_word3
;
10818 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10819 * are set, then set an 'sdtr_able' bit for it.
10821 asc_dvc
->sdtr_able
= 0;
10822 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
10824 sdtr_speed
= asc_dvc
->sdtr_speed1
;
10825 } else if (tid
== 4) {
10826 sdtr_speed
= asc_dvc
->sdtr_speed2
;
10827 } else if (tid
== 8) {
10828 sdtr_speed
= asc_dvc
->sdtr_speed3
;
10829 } else if (tid
== 12) {
10830 sdtr_speed
= asc_dvc
->sdtr_speed4
;
10832 if (sdtr_speed
& ADV_MAX_TID
) {
10833 asc_dvc
->sdtr_able
|= (1 << tid
);
10839 * Set the host maximum queuing (max. 253, min. 16) and the per device
10840 * maximum queuing (max. 63, min. 4).
10842 if (eep_config
.max_host_qng
> ASC_DEF_MAX_HOST_QNG
) {
10843 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
10844 } else if (eep_config
.max_host_qng
< ASC_DEF_MIN_HOST_QNG
) {
10845 /* If the value is zero, assume it is uninitialized. */
10846 if (eep_config
.max_host_qng
== 0) {
10847 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
10849 eep_config
.max_host_qng
= ASC_DEF_MIN_HOST_QNG
;
10853 if (eep_config
.max_dvc_qng
> ASC_DEF_MAX_DVC_QNG
) {
10854 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
10855 } else if (eep_config
.max_dvc_qng
< ASC_DEF_MIN_DVC_QNG
) {
10856 /* If the value is zero, assume it is uninitialized. */
10857 if (eep_config
.max_dvc_qng
== 0) {
10858 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
10860 eep_config
.max_dvc_qng
= ASC_DEF_MIN_DVC_QNG
;
10865 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10866 * set 'max_dvc_qng' to 'max_host_qng'.
10868 if (eep_config
.max_dvc_qng
> eep_config
.max_host_qng
) {
10869 eep_config
.max_dvc_qng
= eep_config
.max_host_qng
;
10873 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10874 * values based on possibly adjusted EEPROM values.
10876 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
10877 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
10880 * If the EEPROM 'termination' field is set to automatic (0), then set
10881 * the ADV_DVC_CFG 'termination' field to automatic also.
10883 * If the termination is specified with a non-zero 'termination'
10884 * value check that a legal value is set and set the ADV_DVC_CFG
10885 * 'termination' field appropriately.
10887 if (eep_config
.termination_se
== 0) {
10888 termination
= 0; /* auto termination for SE */
10890 /* Enable manual control with low off / high off. */
10891 if (eep_config
.termination_se
== 1) {
10894 /* Enable manual control with low off / high on. */
10895 } else if (eep_config
.termination_se
== 2) {
10896 termination
= TERM_SE_HI
;
10898 /* Enable manual control with low on / high on. */
10899 } else if (eep_config
.termination_se
== 3) {
10900 termination
= TERM_SE
;
10903 * The EEPROM 'termination_se' field contains a bad value.
10904 * Use automatic termination instead.
10907 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
10911 if (eep_config
.termination_lvd
== 0) {
10912 asc_dvc
->cfg
->termination
= termination
; /* auto termination for LVD */
10914 /* Enable manual control with low off / high off. */
10915 if (eep_config
.termination_lvd
== 1) {
10916 asc_dvc
->cfg
->termination
= termination
;
10918 /* Enable manual control with low off / high on. */
10919 } else if (eep_config
.termination_lvd
== 2) {
10920 asc_dvc
->cfg
->termination
= termination
| TERM_LVD_HI
;
10922 /* Enable manual control with low on / high on. */
10923 } else if (eep_config
.termination_lvd
== 3) {
10924 asc_dvc
->cfg
->termination
= termination
| TERM_LVD
;
10927 * The EEPROM 'termination_lvd' field contains a bad value.
10928 * Use automatic termination instead.
10930 asc_dvc
->cfg
->termination
= termination
;
10931 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
10939 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
10940 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
10941 * all of this is done.
10943 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
10945 * For a non-fatal error return a warning code. If there are no warnings
10946 * then 0 is returned.
10948 * Note: Chip is stopped on entry.
10950 static int AdvInitFrom38C1600EEP(ADV_DVC_VAR
*asc_dvc
)
10952 AdvPortAddr iop_base
;
10954 ADVEEP_38C1600_CONFIG eep_config
;
10955 uchar tid
, termination
;
10956 ushort sdtr_speed
= 0;
10958 iop_base
= asc_dvc
->iop_base
;
10963 * Read the board's EEPROM configuration.
10965 * Set default values if a bad checksum is found.
10967 if (AdvGet38C1600EEPConfig(iop_base
, &eep_config
) !=
10968 eep_config
.check_sum
) {
10969 struct pci_dev
*pdev
= adv_dvc_to_pdev(asc_dvc
);
10970 warn_code
|= ASC_WARN_EEPROM_CHKSUM
;
10973 * Set EEPROM default values.
10975 memcpy(&eep_config
, &Default_38C1600_EEPROM_Config
,
10976 sizeof(ADVEEP_38C1600_CONFIG
));
10978 if (PCI_FUNC(pdev
->devfn
) != 0) {
10981 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
10982 * and old Mac system booting problem. The Expansion
10983 * ROM must be disabled in Function 1 for these systems
10985 eep_config
.cfg_lsw
&= ~ADV_EEPROM_BIOS_ENABLE
;
10987 * Clear the INTAB (bit 11) if the GPIO 0 input
10988 * indicates the Function 1 interrupt line is wired
10991 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
10992 * 1 - Function 1 interrupt line wired to INT A.
10993 * 0 - Function 1 interrupt line wired to INT B.
10995 * Note: Function 0 is always wired to INTA.
10996 * Put all 5 GPIO bits in input mode and then read
10997 * their input values.
10999 AdvWriteByteRegister(iop_base
, IOPB_GPIO_CNTL
, 0);
11000 ints
= AdvReadByteRegister(iop_base
, IOPB_GPIO_DATA
);
11001 if ((ints
& 0x01) == 0)
11002 eep_config
.cfg_lsw
&= ~ADV_EEPROM_INTAB
;
11006 * Assume the 6 byte board serial number that was read from
11007 * EEPROM is correct even if the EEPROM checksum failed.
11009 eep_config
.serial_number_word3
=
11010 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 1);
11011 eep_config
.serial_number_word2
=
11012 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 2);
11013 eep_config
.serial_number_word1
=
11014 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 3);
11016 AdvSet38C1600EEPConfig(iop_base
, &eep_config
);
11020 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
11021 * EEPROM configuration that was read.
11023 * This is the mapping of EEPROM fields to Adv Library fields.
11025 asc_dvc
->wdtr_able
= eep_config
.wdtr_able
;
11026 asc_dvc
->sdtr_speed1
= eep_config
.sdtr_speed1
;
11027 asc_dvc
->sdtr_speed2
= eep_config
.sdtr_speed2
;
11028 asc_dvc
->sdtr_speed3
= eep_config
.sdtr_speed3
;
11029 asc_dvc
->sdtr_speed4
= eep_config
.sdtr_speed4
;
11030 asc_dvc
->ppr_able
= 0;
11031 asc_dvc
->tagqng_able
= eep_config
.tagqng_able
;
11032 asc_dvc
->cfg
->disc_enable
= eep_config
.disc_enable
;
11033 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
11034 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
11035 asc_dvc
->chip_scsi_id
= (eep_config
.adapter_scsi_id
& ASC_MAX_TID
);
11036 asc_dvc
->start_motor
= eep_config
.start_motor
;
11037 asc_dvc
->scsi_reset_wait
= eep_config
.scsi_reset_delay
;
11038 asc_dvc
->bios_ctrl
= eep_config
.bios_ctrl
;
11039 asc_dvc
->no_scam
= eep_config
.scam_tolerant
;
11042 * For every Target ID if any of its 'sdtr_speed[1234]' bits
11043 * are set, then set an 'sdtr_able' bit for it.
11045 asc_dvc
->sdtr_able
= 0;
11046 for (tid
= 0; tid
<= ASC_MAX_TID
; tid
++) {
11048 sdtr_speed
= asc_dvc
->sdtr_speed1
;
11049 } else if (tid
== 4) {
11050 sdtr_speed
= asc_dvc
->sdtr_speed2
;
11051 } else if (tid
== 8) {
11052 sdtr_speed
= asc_dvc
->sdtr_speed3
;
11053 } else if (tid
== 12) {
11054 sdtr_speed
= asc_dvc
->sdtr_speed4
;
11056 if (sdtr_speed
& ASC_MAX_TID
) {
11057 asc_dvc
->sdtr_able
|= (1 << tid
);
11063 * Set the host maximum queuing (max. 253, min. 16) and the per device
11064 * maximum queuing (max. 63, min. 4).
11066 if (eep_config
.max_host_qng
> ASC_DEF_MAX_HOST_QNG
) {
11067 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
11068 } else if (eep_config
.max_host_qng
< ASC_DEF_MIN_HOST_QNG
) {
11069 /* If the value is zero, assume it is uninitialized. */
11070 if (eep_config
.max_host_qng
== 0) {
11071 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
11073 eep_config
.max_host_qng
= ASC_DEF_MIN_HOST_QNG
;
11077 if (eep_config
.max_dvc_qng
> ASC_DEF_MAX_DVC_QNG
) {
11078 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
11079 } else if (eep_config
.max_dvc_qng
< ASC_DEF_MIN_DVC_QNG
) {
11080 /* If the value is zero, assume it is uninitialized. */
11081 if (eep_config
.max_dvc_qng
== 0) {
11082 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
11084 eep_config
.max_dvc_qng
= ASC_DEF_MIN_DVC_QNG
;
11089 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11090 * set 'max_dvc_qng' to 'max_host_qng'.
11092 if (eep_config
.max_dvc_qng
> eep_config
.max_host_qng
) {
11093 eep_config
.max_dvc_qng
= eep_config
.max_host_qng
;
11097 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
11098 * values based on possibly adjusted EEPROM values.
11100 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
11101 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
11104 * If the EEPROM 'termination' field is set to automatic (0), then set
11105 * the ASC_DVC_CFG 'termination' field to automatic also.
11107 * If the termination is specified with a non-zero 'termination'
11108 * value check that a legal value is set and set the ASC_DVC_CFG
11109 * 'termination' field appropriately.
11111 if (eep_config
.termination_se
== 0) {
11112 termination
= 0; /* auto termination for SE */
11114 /* Enable manual control with low off / high off. */
11115 if (eep_config
.termination_se
== 1) {
11118 /* Enable manual control with low off / high on. */
11119 } else if (eep_config
.termination_se
== 2) {
11120 termination
= TERM_SE_HI
;
11122 /* Enable manual control with low on / high on. */
11123 } else if (eep_config
.termination_se
== 3) {
11124 termination
= TERM_SE
;
11127 * The EEPROM 'termination_se' field contains a bad value.
11128 * Use automatic termination instead.
11131 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
11135 if (eep_config
.termination_lvd
== 0) {
11136 asc_dvc
->cfg
->termination
= termination
; /* auto termination for LVD */
11138 /* Enable manual control with low off / high off. */
11139 if (eep_config
.termination_lvd
== 1) {
11140 asc_dvc
->cfg
->termination
= termination
;
11142 /* Enable manual control with low off / high on. */
11143 } else if (eep_config
.termination_lvd
== 2) {
11144 asc_dvc
->cfg
->termination
= termination
| TERM_LVD_HI
;
11146 /* Enable manual control with low on / high on. */
11147 } else if (eep_config
.termination_lvd
== 3) {
11148 asc_dvc
->cfg
->termination
= termination
| TERM_LVD
;
11151 * The EEPROM 'termination_lvd' field contains a bad value.
11152 * Use automatic termination instead.
11154 asc_dvc
->cfg
->termination
= termination
;
11155 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
11163 * Initialize the ADV_DVC_VAR structure.
11165 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11167 * For a non-fatal error return a warning code. If there are no warnings
11168 * then 0 is returned.
11170 static int AdvInitGetConfig(struct pci_dev
*pdev
, struct Scsi_Host
*shost
)
11172 struct asc_board
*board
= shost_priv(shost
);
11173 ADV_DVC_VAR
*asc_dvc
= &board
->dvc_var
.adv_dvc_var
;
11174 unsigned short warn_code
= 0;
11175 AdvPortAddr iop_base
= asc_dvc
->iop_base
;
11179 asc_dvc
->err_code
= 0;
11182 * Save the state of the PCI Configuration Command Register
11183 * "Parity Error Response Control" Bit. If the bit is clear (0),
11184 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
11185 * DMA parity errors.
11187 asc_dvc
->cfg
->control_flag
= 0;
11188 pci_read_config_word(pdev
, PCI_COMMAND
, &cmd
);
11189 if ((cmd
& PCI_COMMAND_PARITY
) == 0)
11190 asc_dvc
->cfg
->control_flag
|= CONTROL_FLAG_IGNORE_PERR
;
11192 asc_dvc
->cfg
->chip_version
=
11193 AdvGetChipVersion(iop_base
, asc_dvc
->bus_type
);
11195 ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
11196 (ushort
)AdvReadByteRegister(iop_base
, IOPB_CHIP_ID_1
),
11197 (ushort
)ADV_CHIP_ID_BYTE
);
11199 ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
11200 (ushort
)AdvReadWordRegister(iop_base
, IOPW_CHIP_ID_0
),
11201 (ushort
)ADV_CHIP_ID_WORD
);
11204 * Reset the chip to start and allow register writes.
11206 if (AdvFindSignature(iop_base
) == 0) {
11207 asc_dvc
->err_code
= ASC_IERR_BAD_SIGNATURE
;
11211 * The caller must set 'chip_type' to a valid setting.
11213 if (asc_dvc
->chip_type
!= ADV_CHIP_ASC3550
&&
11214 asc_dvc
->chip_type
!= ADV_CHIP_ASC38C0800
&&
11215 asc_dvc
->chip_type
!= ADV_CHIP_ASC38C1600
) {
11216 asc_dvc
->err_code
|= ASC_IERR_BAD_CHIPTYPE
;
11223 AdvWriteWordRegister(iop_base
, IOPW_CTRL_REG
,
11224 ADV_CTRL_REG_CMD_RESET
);
11226 AdvWriteWordRegister(iop_base
, IOPW_CTRL_REG
,
11227 ADV_CTRL_REG_CMD_WR_IO_REG
);
11229 if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
11230 status
= AdvInitFrom38C1600EEP(asc_dvc
);
11231 } else if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
11232 status
= AdvInitFrom38C0800EEP(asc_dvc
);
11234 status
= AdvInitFrom3550EEP(asc_dvc
);
11236 warn_code
|= status
;
11239 if (warn_code
!= 0)
11240 shost_printk(KERN_WARNING
, shost
, "warning: 0x%x\n", warn_code
);
11242 if (asc_dvc
->err_code
)
11243 shost_printk(KERN_ERR
, shost
, "error code 0x%x\n",
11244 asc_dvc
->err_code
);
11246 return asc_dvc
->err_code
;
11250 static struct scsi_host_template advansys_template
= {
11251 .proc_name
= DRV_NAME
,
11252 #ifdef CONFIG_PROC_FS
11253 .show_info
= advansys_show_info
,
11256 .info
= advansys_info
,
11257 .queuecommand
= advansys_queuecommand
,
11258 .eh_bus_reset_handler
= advansys_reset
,
11259 .bios_param
= advansys_biosparam
,
11260 .slave_configure
= advansys_slave_configure
,
11262 * Because the driver may control an ISA adapter 'unchecked_isa_dma'
11263 * must be set. The flag will be cleared in advansys_board_found
11264 * for non-ISA adapters.
11266 .unchecked_isa_dma
= 1,
11268 * All adapters controlled by this driver are capable of large
11269 * scatter-gather lists. According to the mid-level SCSI documentation
11270 * this obviates any performance gain provided by setting
11271 * 'use_clustering'. But empirically while CPU utilization is increased
11272 * by enabling clustering, I/O throughput increases as well.
11274 .use_clustering
= ENABLE_CLUSTERING
,
11277 static int advansys_wide_init_chip(struct Scsi_Host
*shost
)
11279 struct asc_board
*board
= shost_priv(shost
);
11280 struct adv_dvc_var
*adv_dvc
= &board
->dvc_var
.adv_dvc_var
;
11282 adv_req_t
*reqp
= NULL
;
11285 int warn_code
, err_code
;
11288 * Allocate buffer carrier structures. The total size
11289 * is about 4 KB, so allocate all at once.
11291 adv_dvc
->carrier_buf
= kmalloc(ADV_CARRIER_BUFSIZE
, GFP_KERNEL
);
11292 ASC_DBG(1, "carrier_buf 0x%p\n", adv_dvc
->carrier_buf
);
11294 if (!adv_dvc
->carrier_buf
)
11295 goto kmalloc_failed
;
11298 * Allocate up to 'max_host_qng' request structures for the Wide
11299 * board. The total size is about 16 KB, so allocate all at once.
11300 * If the allocation fails decrement and try again.
11302 for (req_cnt
= adv_dvc
->max_host_qng
; req_cnt
> 0; req_cnt
--) {
11303 reqp
= kmalloc(sizeof(adv_req_t
) * req_cnt
, GFP_KERNEL
);
11305 ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", reqp
, req_cnt
,
11306 (ulong
)sizeof(adv_req_t
) * req_cnt
);
11313 goto kmalloc_failed
;
11315 adv_dvc
->orig_reqp
= reqp
;
11318 * Allocate up to ADV_TOT_SG_BLOCK request structures for
11319 * the Wide board. Each structure is about 136 bytes.
11321 board
->adv_sgblkp
= NULL
;
11322 for (sg_cnt
= 0; sg_cnt
< ADV_TOT_SG_BLOCK
; sg_cnt
++) {
11323 sgp
= kmalloc(sizeof(adv_sgblk_t
), GFP_KERNEL
);
11328 sgp
->next_sgblkp
= board
->adv_sgblkp
;
11329 board
->adv_sgblkp
= sgp
;
11333 ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", sg_cnt
, sizeof(adv_sgblk_t
),
11334 sizeof(adv_sgblk_t
) * sg_cnt
);
11336 if (!board
->adv_sgblkp
)
11337 goto kmalloc_failed
;
11340 * Point 'adv_reqp' to the request structures and
11341 * link them together.
11344 reqp
[req_cnt
].next_reqp
= NULL
;
11345 for (; req_cnt
> 0; req_cnt
--) {
11346 reqp
[req_cnt
- 1].next_reqp
= &reqp
[req_cnt
];
11348 board
->adv_reqp
= &reqp
[0];
11350 if (adv_dvc
->chip_type
== ADV_CHIP_ASC3550
) {
11351 ASC_DBG(2, "AdvInitAsc3550Driver()\n");
11352 warn_code
= AdvInitAsc3550Driver(adv_dvc
);
11353 } else if (adv_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
11354 ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
11355 warn_code
= AdvInitAsc38C0800Driver(adv_dvc
);
11357 ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
11358 warn_code
= AdvInitAsc38C1600Driver(adv_dvc
);
11360 err_code
= adv_dvc
->err_code
;
11362 if (warn_code
|| err_code
) {
11363 shost_printk(KERN_WARNING
, shost
, "error: warn 0x%x, error "
11364 "0x%x\n", warn_code
, err_code
);
11370 shost_printk(KERN_ERR
, shost
, "error: kmalloc() failed\n");
11371 err_code
= ADV_ERROR
;
11376 static void advansys_wide_free_mem(struct asc_board
*board
)
11378 struct adv_dvc_var
*adv_dvc
= &board
->dvc_var
.adv_dvc_var
;
11379 kfree(adv_dvc
->carrier_buf
);
11380 adv_dvc
->carrier_buf
= NULL
;
11381 kfree(adv_dvc
->orig_reqp
);
11382 adv_dvc
->orig_reqp
= board
->adv_reqp
= NULL
;
11383 while (board
->adv_sgblkp
) {
11384 adv_sgblk_t
*sgp
= board
->adv_sgblkp
;
11385 board
->adv_sgblkp
= sgp
->next_sgblkp
;
11390 static int advansys_board_found(struct Scsi_Host
*shost
, unsigned int iop
,
11393 struct pci_dev
*pdev
;
11394 struct asc_board
*boardp
= shost_priv(shost
);
11395 ASC_DVC_VAR
*asc_dvc_varp
= NULL
;
11396 ADV_DVC_VAR
*adv_dvc_varp
= NULL
;
11397 int share_irq
, warn_code
, ret
;
11399 pdev
= (bus_type
== ASC_IS_PCI
) ? to_pci_dev(boardp
->dev
) : NULL
;
11401 if (ASC_NARROW_BOARD(boardp
)) {
11402 ASC_DBG(1, "narrow board\n");
11403 asc_dvc_varp
= &boardp
->dvc_var
.asc_dvc_var
;
11404 asc_dvc_varp
->bus_type
= bus_type
;
11405 asc_dvc_varp
->drv_ptr
= boardp
;
11406 asc_dvc_varp
->cfg
= &boardp
->dvc_cfg
.asc_dvc_cfg
;
11407 asc_dvc_varp
->iop_base
= iop
;
11410 adv_dvc_varp
= &boardp
->dvc_var
.adv_dvc_var
;
11411 adv_dvc_varp
->drv_ptr
= boardp
;
11412 adv_dvc_varp
->cfg
= &boardp
->dvc_cfg
.adv_dvc_cfg
;
11413 if (pdev
->device
== PCI_DEVICE_ID_ASP_ABP940UW
) {
11414 ASC_DBG(1, "wide board ASC-3550\n");
11415 adv_dvc_varp
->chip_type
= ADV_CHIP_ASC3550
;
11416 } else if (pdev
->device
== PCI_DEVICE_ID_38C0800_REV1
) {
11417 ASC_DBG(1, "wide board ASC-38C0800\n");
11418 adv_dvc_varp
->chip_type
= ADV_CHIP_ASC38C0800
;
11420 ASC_DBG(1, "wide board ASC-38C1600\n");
11421 adv_dvc_varp
->chip_type
= ADV_CHIP_ASC38C1600
;
11424 boardp
->asc_n_io_port
= pci_resource_len(pdev
, 1);
11425 boardp
->ioremap_addr
= pci_ioremap_bar(pdev
, 1);
11426 if (!boardp
->ioremap_addr
) {
11427 shost_printk(KERN_ERR
, shost
, "ioremap(%lx, %d) "
11429 (long)pci_resource_start(pdev
, 1),
11430 boardp
->asc_n_io_port
);
11434 adv_dvc_varp
->iop_base
= (AdvPortAddr
)boardp
->ioremap_addr
;
11435 ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp
->iop_base
);
11438 * Even though it isn't used to access wide boards, other
11439 * than for the debug line below, save I/O Port address so
11440 * that it can be reported.
11442 boardp
->ioport
= iop
;
11444 ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
11445 (ushort
)inp(iop
+ 1), (ushort
)inpw(iop
));
11446 #endif /* CONFIG_PCI */
11449 if (ASC_NARROW_BOARD(boardp
)) {
11451 * Set the board bus type and PCI IRQ before
11452 * calling AscInitGetConfig().
11454 switch (asc_dvc_varp
->bus_type
) {
11457 shost
->unchecked_isa_dma
= TRUE
;
11461 shost
->unchecked_isa_dma
= FALSE
;
11465 shost
->unchecked_isa_dma
= FALSE
;
11466 share_irq
= IRQF_SHARED
;
11468 #endif /* CONFIG_ISA */
11471 shost
->unchecked_isa_dma
= FALSE
;
11472 share_irq
= IRQF_SHARED
;
11474 #endif /* CONFIG_PCI */
11476 shost_printk(KERN_ERR
, shost
, "unknown adapter type: "
11477 "%d\n", asc_dvc_varp
->bus_type
);
11478 shost
->unchecked_isa_dma
= TRUE
;
11484 * NOTE: AscInitGetConfig() may change the board's
11485 * bus_type value. The bus_type value should no
11486 * longer be used. If the bus_type field must be
11487 * referenced only use the bit-wise AND operator "&".
11489 ASC_DBG(2, "AscInitGetConfig()\n");
11490 ret
= AscInitGetConfig(shost
) ? -ENODEV
: 0;
11494 * For Wide boards set PCI information before calling
11495 * AdvInitGetConfig().
11497 shost
->unchecked_isa_dma
= FALSE
;
11498 share_irq
= IRQF_SHARED
;
11499 ASC_DBG(2, "AdvInitGetConfig()\n");
11501 ret
= AdvInitGetConfig(pdev
, shost
) ? -ENODEV
: 0;
11502 #endif /* CONFIG_PCI */
11509 * Save the EEPROM configuration so that it can be displayed
11510 * from /proc/scsi/advansys/[0...].
11512 if (ASC_NARROW_BOARD(boardp
)) {
11517 * Set the adapter's target id bit in the 'init_tidmask' field.
11519 boardp
->init_tidmask
|=
11520 ADV_TID_TO_TIDMASK(asc_dvc_varp
->cfg
->chip_scsi_id
);
11523 * Save EEPROM settings for the board.
11525 ep
= &boardp
->eep_config
.asc_eep
;
11527 ep
->init_sdtr
= asc_dvc_varp
->cfg
->sdtr_enable
;
11528 ep
->disc_enable
= asc_dvc_varp
->cfg
->disc_enable
;
11529 ep
->use_cmd_qng
= asc_dvc_varp
->cfg
->cmd_qng_enabled
;
11530 ASC_EEP_SET_DMA_SPD(ep
, asc_dvc_varp
->cfg
->isa_dma_speed
);
11531 ep
->start_motor
= asc_dvc_varp
->start_motor
;
11532 ep
->cntl
= asc_dvc_varp
->dvc_cntl
;
11533 ep
->no_scam
= asc_dvc_varp
->no_scam
;
11534 ep
->max_total_qng
= asc_dvc_varp
->max_total_qng
;
11535 ASC_EEP_SET_CHIP_ID(ep
, asc_dvc_varp
->cfg
->chip_scsi_id
);
11536 /* 'max_tag_qng' is set to the same value for every device. */
11537 ep
->max_tag_qng
= asc_dvc_varp
->cfg
->max_tag_qng
[0];
11538 ep
->adapter_info
[0] = asc_dvc_varp
->cfg
->adapter_info
[0];
11539 ep
->adapter_info
[1] = asc_dvc_varp
->cfg
->adapter_info
[1];
11540 ep
->adapter_info
[2] = asc_dvc_varp
->cfg
->adapter_info
[2];
11541 ep
->adapter_info
[3] = asc_dvc_varp
->cfg
->adapter_info
[3];
11542 ep
->adapter_info
[4] = asc_dvc_varp
->cfg
->adapter_info
[4];
11543 ep
->adapter_info
[5] = asc_dvc_varp
->cfg
->adapter_info
[5];
11546 * Modify board configuration.
11548 ASC_DBG(2, "AscInitSetConfig()\n");
11549 ret
= AscInitSetConfig(pdev
, shost
) ? -ENODEV
: 0;
11553 ADVEEP_3550_CONFIG
*ep_3550
;
11554 ADVEEP_38C0800_CONFIG
*ep_38C0800
;
11555 ADVEEP_38C1600_CONFIG
*ep_38C1600
;
11558 * Save Wide EEP Configuration Information.
11560 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
11561 ep_3550
= &boardp
->eep_config
.adv_3550_eep
;
11563 ep_3550
->adapter_scsi_id
= adv_dvc_varp
->chip_scsi_id
;
11564 ep_3550
->max_host_qng
= adv_dvc_varp
->max_host_qng
;
11565 ep_3550
->max_dvc_qng
= adv_dvc_varp
->max_dvc_qng
;
11566 ep_3550
->termination
= adv_dvc_varp
->cfg
->termination
;
11567 ep_3550
->disc_enable
= adv_dvc_varp
->cfg
->disc_enable
;
11568 ep_3550
->bios_ctrl
= adv_dvc_varp
->bios_ctrl
;
11569 ep_3550
->wdtr_able
= adv_dvc_varp
->wdtr_able
;
11570 ep_3550
->sdtr_able
= adv_dvc_varp
->sdtr_able
;
11571 ep_3550
->ultra_able
= adv_dvc_varp
->ultra_able
;
11572 ep_3550
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
11573 ep_3550
->start_motor
= adv_dvc_varp
->start_motor
;
11574 ep_3550
->scsi_reset_delay
=
11575 adv_dvc_varp
->scsi_reset_wait
;
11576 ep_3550
->serial_number_word1
=
11577 adv_dvc_varp
->cfg
->serial1
;
11578 ep_3550
->serial_number_word2
=
11579 adv_dvc_varp
->cfg
->serial2
;
11580 ep_3550
->serial_number_word3
=
11581 adv_dvc_varp
->cfg
->serial3
;
11582 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
11583 ep_38C0800
= &boardp
->eep_config
.adv_38C0800_eep
;
11585 ep_38C0800
->adapter_scsi_id
=
11586 adv_dvc_varp
->chip_scsi_id
;
11587 ep_38C0800
->max_host_qng
= adv_dvc_varp
->max_host_qng
;
11588 ep_38C0800
->max_dvc_qng
= adv_dvc_varp
->max_dvc_qng
;
11589 ep_38C0800
->termination_lvd
=
11590 adv_dvc_varp
->cfg
->termination
;
11591 ep_38C0800
->disc_enable
=
11592 adv_dvc_varp
->cfg
->disc_enable
;
11593 ep_38C0800
->bios_ctrl
= adv_dvc_varp
->bios_ctrl
;
11594 ep_38C0800
->wdtr_able
= adv_dvc_varp
->wdtr_able
;
11595 ep_38C0800
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
11596 ep_38C0800
->sdtr_speed1
= adv_dvc_varp
->sdtr_speed1
;
11597 ep_38C0800
->sdtr_speed2
= adv_dvc_varp
->sdtr_speed2
;
11598 ep_38C0800
->sdtr_speed3
= adv_dvc_varp
->sdtr_speed3
;
11599 ep_38C0800
->sdtr_speed4
= adv_dvc_varp
->sdtr_speed4
;
11600 ep_38C0800
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
11601 ep_38C0800
->start_motor
= adv_dvc_varp
->start_motor
;
11602 ep_38C0800
->scsi_reset_delay
=
11603 adv_dvc_varp
->scsi_reset_wait
;
11604 ep_38C0800
->serial_number_word1
=
11605 adv_dvc_varp
->cfg
->serial1
;
11606 ep_38C0800
->serial_number_word2
=
11607 adv_dvc_varp
->cfg
->serial2
;
11608 ep_38C0800
->serial_number_word3
=
11609 adv_dvc_varp
->cfg
->serial3
;
11611 ep_38C1600
= &boardp
->eep_config
.adv_38C1600_eep
;
11613 ep_38C1600
->adapter_scsi_id
=
11614 adv_dvc_varp
->chip_scsi_id
;
11615 ep_38C1600
->max_host_qng
= adv_dvc_varp
->max_host_qng
;
11616 ep_38C1600
->max_dvc_qng
= adv_dvc_varp
->max_dvc_qng
;
11617 ep_38C1600
->termination_lvd
=
11618 adv_dvc_varp
->cfg
->termination
;
11619 ep_38C1600
->disc_enable
=
11620 adv_dvc_varp
->cfg
->disc_enable
;
11621 ep_38C1600
->bios_ctrl
= adv_dvc_varp
->bios_ctrl
;
11622 ep_38C1600
->wdtr_able
= adv_dvc_varp
->wdtr_able
;
11623 ep_38C1600
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
11624 ep_38C1600
->sdtr_speed1
= adv_dvc_varp
->sdtr_speed1
;
11625 ep_38C1600
->sdtr_speed2
= adv_dvc_varp
->sdtr_speed2
;
11626 ep_38C1600
->sdtr_speed3
= adv_dvc_varp
->sdtr_speed3
;
11627 ep_38C1600
->sdtr_speed4
= adv_dvc_varp
->sdtr_speed4
;
11628 ep_38C1600
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
11629 ep_38C1600
->start_motor
= adv_dvc_varp
->start_motor
;
11630 ep_38C1600
->scsi_reset_delay
=
11631 adv_dvc_varp
->scsi_reset_wait
;
11632 ep_38C1600
->serial_number_word1
=
11633 adv_dvc_varp
->cfg
->serial1
;
11634 ep_38C1600
->serial_number_word2
=
11635 adv_dvc_varp
->cfg
->serial2
;
11636 ep_38C1600
->serial_number_word3
=
11637 adv_dvc_varp
->cfg
->serial3
;
11641 * Set the adapter's target id bit in the 'init_tidmask' field.
11643 boardp
->init_tidmask
|=
11644 ADV_TID_TO_TIDMASK(adv_dvc_varp
->chip_scsi_id
);
11648 * Channels are numbered beginning with 0. For AdvanSys one host
11649 * structure supports one channel. Multi-channel boards have a
11650 * separate host structure for each channel.
11652 shost
->max_channel
= 0;
11653 if (ASC_NARROW_BOARD(boardp
)) {
11654 shost
->max_id
= ASC_MAX_TID
+ 1;
11655 shost
->max_lun
= ASC_MAX_LUN
+ 1;
11656 shost
->max_cmd_len
= ASC_MAX_CDB_LEN
;
11658 shost
->io_port
= asc_dvc_varp
->iop_base
;
11659 boardp
->asc_n_io_port
= ASC_IOADR_GAP
;
11660 shost
->this_id
= asc_dvc_varp
->cfg
->chip_scsi_id
;
11662 /* Set maximum number of queues the adapter can handle. */
11663 shost
->can_queue
= asc_dvc_varp
->max_total_qng
;
11665 shost
->max_id
= ADV_MAX_TID
+ 1;
11666 shost
->max_lun
= ADV_MAX_LUN
+ 1;
11667 shost
->max_cmd_len
= ADV_MAX_CDB_LEN
;
11670 * Save the I/O Port address and length even though
11671 * I/O ports are not used to access Wide boards.
11672 * Instead the Wide boards are accessed with
11673 * PCI Memory Mapped I/O.
11675 shost
->io_port
= iop
;
11677 shost
->this_id
= adv_dvc_varp
->chip_scsi_id
;
11679 /* Set maximum number of queues the adapter can handle. */
11680 shost
->can_queue
= adv_dvc_varp
->max_host_qng
;
11684 * Following v1.3.89, 'cmd_per_lun' is no longer needed
11685 * and should be set to zero.
11687 * But because of a bug introduced in v1.3.89 if the driver is
11688 * compiled as a module and 'cmd_per_lun' is zero, the Mid-Level
11689 * SCSI function 'allocate_device' will panic. To allow the driver
11690 * to work as a module in these kernels set 'cmd_per_lun' to 1.
11692 * Note: This is wrong. cmd_per_lun should be set to the depth
11693 * you want on untagged devices always.
11696 shost
->cmd_per_lun
= 1;
11698 shost->cmd_per_lun = 0;
11702 * Set the maximum number of scatter-gather elements the
11703 * adapter can handle.
11705 if (ASC_NARROW_BOARD(boardp
)) {
11707 * Allow two commands with 'sg_tablesize' scatter-gather
11708 * elements to be executed simultaneously. This value is
11709 * the theoretical hardware limit. It may be decreased
11712 shost
->sg_tablesize
=
11713 (((asc_dvc_varp
->max_total_qng
- 2) / 2) *
11714 ASC_SG_LIST_PER_Q
) + 1;
11716 shost
->sg_tablesize
= ADV_MAX_SG_LIST
;
11720 * The value of 'sg_tablesize' can not exceed the SCSI
11721 * mid-level driver definition of SG_ALL. SG_ALL also
11722 * must not be exceeded, because it is used to define the
11723 * size of the scatter-gather table in 'struct asc_sg_head'.
11725 if (shost
->sg_tablesize
> SG_ALL
) {
11726 shost
->sg_tablesize
= SG_ALL
;
11729 ASC_DBG(1, "sg_tablesize: %d\n", shost
->sg_tablesize
);
11731 /* BIOS start address. */
11732 if (ASC_NARROW_BOARD(boardp
)) {
11733 shost
->base
= AscGetChipBiosAddress(asc_dvc_varp
->iop_base
,
11734 asc_dvc_varp
->bus_type
);
11737 * Fill-in BIOS board variables. The Wide BIOS saves
11738 * information in LRAM that is used by the driver.
11740 AdvReadWordLram(adv_dvc_varp
->iop_base
,
11741 BIOS_SIGNATURE
, boardp
->bios_signature
);
11742 AdvReadWordLram(adv_dvc_varp
->iop_base
,
11743 BIOS_VERSION
, boardp
->bios_version
);
11744 AdvReadWordLram(adv_dvc_varp
->iop_base
,
11745 BIOS_CODESEG
, boardp
->bios_codeseg
);
11746 AdvReadWordLram(adv_dvc_varp
->iop_base
,
11747 BIOS_CODELEN
, boardp
->bios_codelen
);
11749 ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
11750 boardp
->bios_signature
, boardp
->bios_version
);
11752 ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
11753 boardp
->bios_codeseg
, boardp
->bios_codelen
);
11756 * If the BIOS saved a valid signature, then fill in
11757 * the BIOS code segment base address.
11759 if (boardp
->bios_signature
== 0x55AA) {
11761 * Convert x86 realmode code segment to a linear
11762 * address by shifting left 4.
11764 shost
->base
= ((ulong
)boardp
->bios_codeseg
<< 4);
11771 * Register Board Resources - I/O Port, DMA, IRQ
11774 /* Register DMA Channel for Narrow boards. */
11775 shost
->dma_channel
= NO_ISA_DMA
; /* Default to no ISA DMA. */
11777 if (ASC_NARROW_BOARD(boardp
)) {
11778 /* Register DMA channel for ISA bus. */
11779 if (asc_dvc_varp
->bus_type
& ASC_IS_ISA
) {
11780 shost
->dma_channel
= asc_dvc_varp
->cfg
->isa_dma_channel
;
11781 ret
= request_dma(shost
->dma_channel
, DRV_NAME
);
11783 shost_printk(KERN_ERR
, shost
, "request_dma() "
11785 shost
->dma_channel
, ret
);
11788 AscEnableIsaDma(shost
->dma_channel
);
11791 #endif /* CONFIG_ISA */
11793 /* Register IRQ Number. */
11794 ASC_DBG(2, "request_irq(%d, %p)\n", boardp
->irq
, shost
);
11796 ret
= request_irq(boardp
->irq
, advansys_interrupt
, share_irq
,
11800 if (ret
== -EBUSY
) {
11801 shost_printk(KERN_ERR
, shost
, "request_irq(): IRQ 0x%x "
11802 "already in use\n", boardp
->irq
);
11803 } else if (ret
== -EINVAL
) {
11804 shost_printk(KERN_ERR
, shost
, "request_irq(): IRQ 0x%x "
11805 "not valid\n", boardp
->irq
);
11807 shost_printk(KERN_ERR
, shost
, "request_irq(): IRQ 0x%x "
11808 "failed with %d\n", boardp
->irq
, ret
);
11814 * Initialize board RISC chip and enable interrupts.
11816 if (ASC_NARROW_BOARD(boardp
)) {
11817 ASC_DBG(2, "AscInitAsc1000Driver()\n");
11819 asc_dvc_varp
->overrun_buf
= kzalloc(ASC_OVERRUN_BSIZE
, GFP_KERNEL
);
11820 if (!asc_dvc_varp
->overrun_buf
) {
11824 warn_code
= AscInitAsc1000Driver(asc_dvc_varp
);
11826 if (warn_code
|| asc_dvc_varp
->err_code
) {
11827 shost_printk(KERN_ERR
, shost
, "error: init_state 0x%x, "
11828 "warn 0x%x, error 0x%x\n",
11829 asc_dvc_varp
->init_state
, warn_code
,
11830 asc_dvc_varp
->err_code
);
11831 if (!asc_dvc_varp
->overrun_dma
) {
11837 if (advansys_wide_init_chip(shost
)) {
11843 ASC_DBG_PRT_SCSI_HOST(2, shost
);
11845 ret
= scsi_add_host(shost
, boardp
->dev
);
11849 scsi_scan_host(shost
);
11853 if (ASC_NARROW_BOARD(boardp
)) {
11854 if (asc_dvc_varp
->overrun_dma
)
11855 dma_unmap_single(boardp
->dev
, asc_dvc_varp
->overrun_dma
,
11856 ASC_OVERRUN_BSIZE
, DMA_FROM_DEVICE
);
11857 kfree(asc_dvc_varp
->overrun_buf
);
11859 advansys_wide_free_mem(boardp
);
11861 free_irq(boardp
->irq
, shost
);
11864 if (shost
->dma_channel
!= NO_ISA_DMA
)
11865 free_dma(shost
->dma_channel
);
11868 if (boardp
->ioremap_addr
)
11869 iounmap(boardp
->ioremap_addr
);
11875 * advansys_release()
11877 * Release resources allocated for a single AdvanSys adapter.
11879 static int advansys_release(struct Scsi_Host
*shost
)
11881 struct asc_board
*board
= shost_priv(shost
);
11882 ASC_DBG(1, "begin\n");
11883 scsi_remove_host(shost
);
11884 free_irq(board
->irq
, shost
);
11886 if (shost
->dma_channel
!= NO_ISA_DMA
) {
11887 ASC_DBG(1, "free_dma()\n");
11888 free_dma(shost
->dma_channel
);
11891 if (ASC_NARROW_BOARD(board
)) {
11892 dma_unmap_single(board
->dev
,
11893 board
->dvc_var
.asc_dvc_var
.overrun_dma
,
11894 ASC_OVERRUN_BSIZE
, DMA_FROM_DEVICE
);
11895 kfree(board
->dvc_var
.asc_dvc_var
.overrun_buf
);
11897 iounmap(board
->ioremap_addr
);
11898 advansys_wide_free_mem(board
);
11900 scsi_host_put(shost
);
11901 ASC_DBG(1, "end\n");
11905 #define ASC_IOADR_TABLE_MAX_IX 11
11907 static PortAddr _asc_def_iop_base
[ASC_IOADR_TABLE_MAX_IX
] = {
11908 0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
11909 0x0210, 0x0230, 0x0250, 0x0330
11913 * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw. It decodes as:
11919 static unsigned int advansys_isa_irq_no(PortAddr iop_base
)
11921 unsigned short cfg_lsw
= AscGetChipCfgLsw(iop_base
);
11922 unsigned int chip_irq
= ((cfg_lsw
>> 2) & 0x03) + 10;
11923 if (chip_irq
== 13)
11928 static int advansys_isa_probe(struct device
*dev
, unsigned int id
)
11931 PortAddr iop_base
= _asc_def_iop_base
[id
];
11932 struct Scsi_Host
*shost
;
11933 struct asc_board
*board
;
11935 if (!request_region(iop_base
, ASC_IOADR_GAP
, DRV_NAME
)) {
11936 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base
);
11939 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base
);
11940 if (!AscFindSignature(iop_base
))
11941 goto release_region
;
11942 if (!(AscGetChipVersion(iop_base
, ASC_IS_ISA
) & ASC_CHIP_VER_ISA_BIT
))
11943 goto release_region
;
11946 shost
= scsi_host_alloc(&advansys_template
, sizeof(*board
));
11948 goto release_region
;
11950 board
= shost_priv(shost
);
11951 board
->irq
= advansys_isa_irq_no(iop_base
);
11954 err
= advansys_board_found(shost
, iop_base
, ASC_IS_ISA
);
11958 dev_set_drvdata(dev
, shost
);
11962 scsi_host_put(shost
);
11964 release_region(iop_base
, ASC_IOADR_GAP
);
11968 static int advansys_isa_remove(struct device
*dev
, unsigned int id
)
11970 int ioport
= _asc_def_iop_base
[id
];
11971 advansys_release(dev_get_drvdata(dev
));
11972 release_region(ioport
, ASC_IOADR_GAP
);
11976 static struct isa_driver advansys_isa_driver
= {
11977 .probe
= advansys_isa_probe
,
11978 .remove
= advansys_isa_remove
,
11980 .owner
= THIS_MODULE
,
11986 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw. It decodes as:
11996 static unsigned int advansys_vlb_irq_no(PortAddr iop_base
)
11998 unsigned short cfg_lsw
= AscGetChipCfgLsw(iop_base
);
11999 unsigned int chip_irq
= ((cfg_lsw
>> 2) & 0x07) + 9;
12000 if ((chip_irq
< 10) || (chip_irq
== 13) || (chip_irq
> 15))
12005 static int advansys_vlb_probe(struct device
*dev
, unsigned int id
)
12008 PortAddr iop_base
= _asc_def_iop_base
[id
];
12009 struct Scsi_Host
*shost
;
12010 struct asc_board
*board
;
12012 if (!request_region(iop_base
, ASC_IOADR_GAP
, DRV_NAME
)) {
12013 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base
);
12016 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base
);
12017 if (!AscFindSignature(iop_base
))
12018 goto release_region
;
12020 * I don't think this condition can actually happen, but the old
12021 * driver did it, and the chances of finding a VLB setup in 2007
12022 * to do testing with is slight to none.
12024 if (AscGetChipVersion(iop_base
, ASC_IS_VL
) > ASC_CHIP_MAX_VER_VL
)
12025 goto release_region
;
12028 shost
= scsi_host_alloc(&advansys_template
, sizeof(*board
));
12030 goto release_region
;
12032 board
= shost_priv(shost
);
12033 board
->irq
= advansys_vlb_irq_no(iop_base
);
12036 err
= advansys_board_found(shost
, iop_base
, ASC_IS_VL
);
12040 dev_set_drvdata(dev
, shost
);
12044 scsi_host_put(shost
);
12046 release_region(iop_base
, ASC_IOADR_GAP
);
12050 static struct isa_driver advansys_vlb_driver
= {
12051 .probe
= advansys_vlb_probe
,
12052 .remove
= advansys_isa_remove
,
12054 .owner
= THIS_MODULE
,
12055 .name
= "advansys_vlb",
12059 static struct eisa_device_id advansys_eisa_table
[] = {
12065 MODULE_DEVICE_TABLE(eisa
, advansys_eisa_table
);
12068 * EISA is a little more tricky than PCI; each EISA device may have two
12069 * channels, and this driver is written to make each channel its own Scsi_Host
12071 struct eisa_scsi_data
{
12072 struct Scsi_Host
*host
[2];
12076 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw. It decodes as:
12086 static unsigned int advansys_eisa_irq_no(struct eisa_device
*edev
)
12088 unsigned short cfg_lsw
= inw(edev
->base_addr
+ 0xc86);
12089 unsigned int chip_irq
= ((cfg_lsw
>> 8) & 0x07) + 10;
12090 if ((chip_irq
== 13) || (chip_irq
> 15))
12095 static int advansys_eisa_probe(struct device
*dev
)
12097 int i
, ioport
, irq
= 0;
12099 struct eisa_device
*edev
= to_eisa_device(dev
);
12100 struct eisa_scsi_data
*data
;
12103 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
12106 ioport
= edev
->base_addr
+ 0xc30;
12109 for (i
= 0; i
< 2; i
++, ioport
+= 0x20) {
12110 struct asc_board
*board
;
12111 struct Scsi_Host
*shost
;
12112 if (!request_region(ioport
, ASC_IOADR_GAP
, DRV_NAME
)) {
12113 printk(KERN_WARNING
"Region %x-%x busy\n", ioport
,
12114 ioport
+ ASC_IOADR_GAP
- 1);
12117 if (!AscFindSignature(ioport
)) {
12118 release_region(ioport
, ASC_IOADR_GAP
);
12123 * I don't know why we need to do this for EISA chips, but
12124 * not for any others. It looks to be equivalent to
12125 * AscGetChipCfgMsw, but I may have overlooked something,
12126 * so I'm not converting it until I get an EISA board to
12132 irq
= advansys_eisa_irq_no(edev
);
12135 shost
= scsi_host_alloc(&advansys_template
, sizeof(*board
));
12137 goto release_region
;
12139 board
= shost_priv(shost
);
12143 err
= advansys_board_found(shost
, ioport
, ASC_IS_EISA
);
12145 data
->host
[i
] = shost
;
12149 scsi_host_put(shost
);
12151 release_region(ioport
, ASC_IOADR_GAP
);
12157 dev_set_drvdata(dev
, data
);
12161 kfree(data
->host
[0]);
12162 kfree(data
->host
[1]);
12168 static int advansys_eisa_remove(struct device
*dev
)
12171 struct eisa_scsi_data
*data
= dev_get_drvdata(dev
);
12173 for (i
= 0; i
< 2; i
++) {
12175 struct Scsi_Host
*shost
= data
->host
[i
];
12178 ioport
= shost
->io_port
;
12179 advansys_release(shost
);
12180 release_region(ioport
, ASC_IOADR_GAP
);
12187 static struct eisa_driver advansys_eisa_driver
= {
12188 .id_table
= advansys_eisa_table
,
12191 .probe
= advansys_eisa_probe
,
12192 .remove
= advansys_eisa_remove
,
12196 /* PCI Devices supported by this driver */
12197 static struct pci_device_id advansys_pci_tbl
[] = {
12198 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_ASP_1200A
,
12199 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12200 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_ASP_ABP940
,
12201 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12202 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_ASP_ABP940U
,
12203 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12204 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_ASP_ABP940UW
,
12205 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12206 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_38C0800_REV1
,
12207 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12208 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_38C1600_REV1
,
12209 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12213 MODULE_DEVICE_TABLE(pci
, advansys_pci_tbl
);
12215 static void advansys_set_latency(struct pci_dev
*pdev
)
12217 if ((pdev
->device
== PCI_DEVICE_ID_ASP_1200A
) ||
12218 (pdev
->device
== PCI_DEVICE_ID_ASP_ABP940
)) {
12219 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0);
12222 pci_read_config_byte(pdev
, PCI_LATENCY_TIMER
, &latency
);
12223 if (latency
< 0x20)
12224 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0x20);
12228 static int advansys_pci_probe(struct pci_dev
*pdev
,
12229 const struct pci_device_id
*ent
)
12232 struct Scsi_Host
*shost
;
12233 struct asc_board
*board
;
12235 err
= pci_enable_device(pdev
);
12238 err
= pci_request_regions(pdev
, DRV_NAME
);
12240 goto disable_device
;
12241 pci_set_master(pdev
);
12242 advansys_set_latency(pdev
);
12245 if (pci_resource_len(pdev
, 0) == 0)
12246 goto release_region
;
12248 ioport
= pci_resource_start(pdev
, 0);
12251 shost
= scsi_host_alloc(&advansys_template
, sizeof(*board
));
12253 goto release_region
;
12255 board
= shost_priv(shost
);
12256 board
->irq
= pdev
->irq
;
12257 board
->dev
= &pdev
->dev
;
12259 if (pdev
->device
== PCI_DEVICE_ID_ASP_ABP940UW
||
12260 pdev
->device
== PCI_DEVICE_ID_38C0800_REV1
||
12261 pdev
->device
== PCI_DEVICE_ID_38C1600_REV1
) {
12262 board
->flags
|= ASC_IS_WIDE_BOARD
;
12265 err
= advansys_board_found(shost
, ioport
, ASC_IS_PCI
);
12269 pci_set_drvdata(pdev
, shost
);
12273 scsi_host_put(shost
);
12275 pci_release_regions(pdev
);
12277 pci_disable_device(pdev
);
12282 static void advansys_pci_remove(struct pci_dev
*pdev
)
12284 advansys_release(pci_get_drvdata(pdev
));
12285 pci_release_regions(pdev
);
12286 pci_disable_device(pdev
);
12289 static struct pci_driver advansys_pci_driver
= {
12291 .id_table
= advansys_pci_tbl
,
12292 .probe
= advansys_pci_probe
,
12293 .remove
= advansys_pci_remove
,
12296 static int __init
advansys_init(void)
12300 error
= isa_register_driver(&advansys_isa_driver
,
12301 ASC_IOADR_TABLE_MAX_IX
);
12305 error
= isa_register_driver(&advansys_vlb_driver
,
12306 ASC_IOADR_TABLE_MAX_IX
);
12308 goto unregister_isa
;
12310 error
= eisa_driver_register(&advansys_eisa_driver
);
12312 goto unregister_vlb
;
12314 error
= pci_register_driver(&advansys_pci_driver
);
12316 goto unregister_eisa
;
12321 eisa_driver_unregister(&advansys_eisa_driver
);
12323 isa_unregister_driver(&advansys_vlb_driver
);
12325 isa_unregister_driver(&advansys_isa_driver
);
12330 static void __exit
advansys_exit(void)
12332 pci_unregister_driver(&advansys_pci_driver
);
12333 eisa_driver_unregister(&advansys_eisa_driver
);
12334 isa_unregister_driver(&advansys_vlb_driver
);
12335 isa_unregister_driver(&advansys_isa_driver
);
12338 module_init(advansys_init
);
12339 module_exit(advansys_exit
);
12341 MODULE_LICENSE("GPL");
12342 MODULE_FIRMWARE("advansys/mcode.bin");
12343 MODULE_FIRMWARE("advansys/3550.bin");
12344 MODULE_FIRMWARE("advansys/38C0800.bin");
12345 MODULE_FIRMWARE("advansys/38C1600.bin");