mtd: gpmi: decouple the chip select from the DMA channel
[linux/fpc-iii.git] / drivers / scsi / advansys.c
blobc67e401954c542529b617985aa471fef281eb878
1 #define DRV_NAME "advansys"
2 #define ASC_VERSION "3.4" /* AdvanSys Driver Version */
4 /*
5 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
7 * Copyright (c) 1995-2000 Advanced System Products, Inc.
8 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
9 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
10 * All Rights Reserved.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
19 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
20 * changed its name to ConnectCom Solutions, Inc.
21 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/ioport.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <linux/slab.h>
32 #include <linux/mm.h>
33 #include <linux/proc_fs.h>
34 #include <linux/init.h>
35 #include <linux/blkdev.h>
36 #include <linux/isa.h>
37 #include <linux/eisa.h>
38 #include <linux/pci.h>
39 #include <linux/spinlock.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/firmware.h>
43 #include <asm/io.h>
44 #include <asm/dma.h>
46 #include <scsi/scsi_cmnd.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_tcq.h>
49 #include <scsi/scsi.h>
50 #include <scsi/scsi_host.h>
52 /* FIXME:
54 * 1. Although all of the necessary command mapping places have the
55 * appropriate dma_map.. APIs, the driver still processes its internal
56 * queue using bus_to_virt() and virt_to_bus() which are illegal under
57 * the API. The entire queue processing structure will need to be
58 * altered to fix this.
59 * 2. Need to add memory mapping workaround. Test the memory mapping.
60 * If it doesn't work revert to I/O port access. Can a test be done
61 * safely?
62 * 3. Handle an interrupt not working. Keep an interrupt counter in
63 * the interrupt handler. In the timeout function if the interrupt
64 * has not occurred then print a message and run in polled mode.
65 * 4. Need to add support for target mode commands, cf. CAM XPT.
66 * 5. check DMA mapping functions for failure
67 * 6. Use scsi_transport_spi
68 * 7. advansys_info is not safe against multiple simultaneous callers
69 * 8. Add module_param to override ISA/VLB ioport array
71 #warning this driver is still not properly converted to the DMA API
73 /* Enable driver /proc statistics. */
74 #define ADVANSYS_STATS
76 /* Enable driver tracing. */
77 #undef ADVANSYS_DEBUG
80 * Portable Data Types
82 * Any instance where a 32-bit long or pointer type is assumed
83 * for precision or HW defined structures, the following define
84 * types must be used. In Linux the char, short, and int types
85 * are all consistent at 8, 16, and 32 bits respectively. Pointers
86 * and long types are 64 bits on Alpha and UltraSPARC.
88 #define ASC_PADDR __u32 /* Physical/Bus address data type. */
89 #define ASC_VADDR __u32 /* Virtual address data type. */
90 #define ASC_DCNT __u32 /* Unsigned Data count type. */
91 #define ASC_SDCNT __s32 /* Signed Data count type. */
93 typedef unsigned char uchar;
95 #ifndef TRUE
96 #define TRUE (1)
97 #endif
98 #ifndef FALSE
99 #define FALSE (0)
100 #endif
102 #define ERR (-1)
103 #define UW_ERR (uint)(0xFFFF)
104 #define isodd_word(val) ((((uint)val) & (uint)0x0001) != 0)
106 #define PCI_VENDOR_ID_ASP 0x10cd
107 #define PCI_DEVICE_ID_ASP_1200A 0x1100
108 #define PCI_DEVICE_ID_ASP_ABP940 0x1200
109 #define PCI_DEVICE_ID_ASP_ABP940U 0x1300
110 #define PCI_DEVICE_ID_ASP_ABP940UW 0x2300
111 #define PCI_DEVICE_ID_38C0800_REV1 0x2500
112 #define PCI_DEVICE_ID_38C1600_REV1 0x2700
115 * Enable CC_VERY_LONG_SG_LIST to support up to 64K element SG lists.
116 * The SRB structure will have to be changed and the ASC_SRB2SCSIQ()
117 * macro re-defined to be able to obtain a ASC_SCSI_Q pointer from the
118 * SRB structure.
120 #define CC_VERY_LONG_SG_LIST 0
121 #define ASC_SRB2SCSIQ(srb_ptr) (srb_ptr)
123 #define PortAddr unsigned int /* port address size */
124 #define inp(port) inb(port)
125 #define outp(port, byte) outb((byte), (port))
127 #define inpw(port) inw(port)
128 #define outpw(port, word) outw((word), (port))
130 #define ASC_MAX_SG_QUEUE 7
131 #define ASC_MAX_SG_LIST 255
133 #define ASC_CS_TYPE unsigned short
135 #define ASC_IS_ISA (0x0001)
136 #define ASC_IS_ISAPNP (0x0081)
137 #define ASC_IS_EISA (0x0002)
138 #define ASC_IS_PCI (0x0004)
139 #define ASC_IS_PCI_ULTRA (0x0104)
140 #define ASC_IS_PCMCIA (0x0008)
141 #define ASC_IS_MCA (0x0020)
142 #define ASC_IS_VL (0x0040)
143 #define ASC_IS_WIDESCSI_16 (0x0100)
144 #define ASC_IS_WIDESCSI_32 (0x0200)
145 #define ASC_IS_BIG_ENDIAN (0x8000)
147 #define ASC_CHIP_MIN_VER_VL (0x01)
148 #define ASC_CHIP_MAX_VER_VL (0x07)
149 #define ASC_CHIP_MIN_VER_PCI (0x09)
150 #define ASC_CHIP_MAX_VER_PCI (0x0F)
151 #define ASC_CHIP_VER_PCI_BIT (0x08)
152 #define ASC_CHIP_MIN_VER_ISA (0x11)
153 #define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
154 #define ASC_CHIP_MAX_VER_ISA (0x27)
155 #define ASC_CHIP_VER_ISA_BIT (0x30)
156 #define ASC_CHIP_VER_ISAPNP_BIT (0x20)
157 #define ASC_CHIP_VER_ASYN_BUG (0x21)
158 #define ASC_CHIP_VER_PCI 0x08
159 #define ASC_CHIP_VER_PCI_ULTRA_3150 (ASC_CHIP_VER_PCI | 0x02)
160 #define ASC_CHIP_VER_PCI_ULTRA_3050 (ASC_CHIP_VER_PCI | 0x03)
161 #define ASC_CHIP_MIN_VER_EISA (0x41)
162 #define ASC_CHIP_MAX_VER_EISA (0x47)
163 #define ASC_CHIP_VER_EISA_BIT (0x40)
164 #define ASC_CHIP_LATEST_VER_EISA ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
165 #define ASC_MAX_VL_DMA_COUNT (0x07FFFFFFL)
166 #define ASC_MAX_PCI_DMA_COUNT (0xFFFFFFFFL)
167 #define ASC_MAX_ISA_DMA_COUNT (0x00FFFFFFL)
169 #define ASC_SCSI_ID_BITS 3
170 #define ASC_SCSI_TIX_TYPE uchar
171 #define ASC_ALL_DEVICE_BIT_SET 0xFF
172 #define ASC_SCSI_BIT_ID_TYPE uchar
173 #define ASC_MAX_TID 7
174 #define ASC_MAX_LUN 7
175 #define ASC_SCSI_WIDTH_BIT_SET 0xFF
176 #define ASC_MAX_SENSE_LEN 32
177 #define ASC_MIN_SENSE_LEN 14
178 #define ASC_SCSI_RESET_HOLD_TIME_US 60
181 * Narrow boards only support 12-byte commands, while wide boards
182 * extend to 16-byte commands.
184 #define ASC_MAX_CDB_LEN 12
185 #define ADV_MAX_CDB_LEN 16
187 #define MS_SDTR_LEN 0x03
188 #define MS_WDTR_LEN 0x02
190 #define ASC_SG_LIST_PER_Q 7
191 #define QS_FREE 0x00
192 #define QS_READY 0x01
193 #define QS_DISC1 0x02
194 #define QS_DISC2 0x04
195 #define QS_BUSY 0x08
196 #define QS_ABORTED 0x40
197 #define QS_DONE 0x80
198 #define QC_NO_CALLBACK 0x01
199 #define QC_SG_SWAP_QUEUE 0x02
200 #define QC_SG_HEAD 0x04
201 #define QC_DATA_IN 0x08
202 #define QC_DATA_OUT 0x10
203 #define QC_URGENT 0x20
204 #define QC_MSG_OUT 0x40
205 #define QC_REQ_SENSE 0x80
206 #define QCSG_SG_XFER_LIST 0x02
207 #define QCSG_SG_XFER_MORE 0x04
208 #define QCSG_SG_XFER_END 0x08
209 #define QD_IN_PROGRESS 0x00
210 #define QD_NO_ERROR 0x01
211 #define QD_ABORTED_BY_HOST 0x02
212 #define QD_WITH_ERROR 0x04
213 #define QD_INVALID_REQUEST 0x80
214 #define QD_INVALID_HOST_NUM 0x81
215 #define QD_INVALID_DEVICE 0x82
216 #define QD_ERR_INTERNAL 0xFF
217 #define QHSTA_NO_ERROR 0x00
218 #define QHSTA_M_SEL_TIMEOUT 0x11
219 #define QHSTA_M_DATA_OVER_RUN 0x12
220 #define QHSTA_M_DATA_UNDER_RUN 0x12
221 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
222 #define QHSTA_M_BAD_BUS_PHASE_SEQ 0x14
223 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
224 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET 0x22
225 #define QHSTA_D_HOST_ABORT_FAILED 0x23
226 #define QHSTA_D_EXE_SCSI_Q_FAILED 0x24
227 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
228 #define QHSTA_D_ASPI_NO_BUF_POOL 0x26
229 #define QHSTA_M_WTM_TIMEOUT 0x41
230 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
231 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
232 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
233 #define QHSTA_M_TARGET_STATUS_BUSY 0x45
234 #define QHSTA_M_BAD_TAG_CODE 0x46
235 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY 0x47
236 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
237 #define QHSTA_D_LRAM_CMP_ERROR 0x81
238 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
239 #define ASC_FLAG_SCSIQ_REQ 0x01
240 #define ASC_FLAG_BIOS_SCSIQ_REQ 0x02
241 #define ASC_FLAG_BIOS_ASYNC_IO 0x04
242 #define ASC_FLAG_SRB_LINEAR_ADDR 0x08
243 #define ASC_FLAG_WIN16 0x10
244 #define ASC_FLAG_WIN32 0x20
245 #define ASC_FLAG_ISA_OVER_16MB 0x40
246 #define ASC_FLAG_DOS_VM_CALLBACK 0x80
247 #define ASC_TAG_FLAG_EXTRA_BYTES 0x10
248 #define ASC_TAG_FLAG_DISABLE_DISCONNECT 0x04
249 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX 0x08
250 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
251 #define ASC_SCSIQ_CPY_BEG 4
252 #define ASC_SCSIQ_SGHD_CPY_BEG 2
253 #define ASC_SCSIQ_B_FWD 0
254 #define ASC_SCSIQ_B_BWD 1
255 #define ASC_SCSIQ_B_STATUS 2
256 #define ASC_SCSIQ_B_QNO 3
257 #define ASC_SCSIQ_B_CNTL 4
258 #define ASC_SCSIQ_B_SG_QUEUE_CNT 5
259 #define ASC_SCSIQ_D_DATA_ADDR 8
260 #define ASC_SCSIQ_D_DATA_CNT 12
261 #define ASC_SCSIQ_B_SENSE_LEN 20
262 #define ASC_SCSIQ_DONE_INFO_BEG 22
263 #define ASC_SCSIQ_D_SRBPTR 22
264 #define ASC_SCSIQ_B_TARGET_IX 26
265 #define ASC_SCSIQ_B_CDB_LEN 28
266 #define ASC_SCSIQ_B_TAG_CODE 29
267 #define ASC_SCSIQ_W_VM_ID 30
268 #define ASC_SCSIQ_DONE_STATUS 32
269 #define ASC_SCSIQ_HOST_STATUS 33
270 #define ASC_SCSIQ_SCSI_STATUS 34
271 #define ASC_SCSIQ_CDB_BEG 36
272 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
273 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT 60
274 #define ASC_SCSIQ_B_FIRST_SG_WK_QP 48
275 #define ASC_SCSIQ_B_SG_WK_QP 49
276 #define ASC_SCSIQ_B_SG_WK_IX 50
277 #define ASC_SCSIQ_W_ALT_DC1 52
278 #define ASC_SCSIQ_B_LIST_CNT 6
279 #define ASC_SCSIQ_B_CUR_LIST_CNT 7
280 #define ASC_SGQ_B_SG_CNTL 4
281 #define ASC_SGQ_B_SG_HEAD_QP 5
282 #define ASC_SGQ_B_SG_LIST_CNT 6
283 #define ASC_SGQ_B_SG_CUR_LIST_CNT 7
284 #define ASC_SGQ_LIST_BEG 8
285 #define ASC_DEF_SCSI1_QNG 4
286 #define ASC_MAX_SCSI1_QNG 4
287 #define ASC_DEF_SCSI2_QNG 16
288 #define ASC_MAX_SCSI2_QNG 32
289 #define ASC_TAG_CODE_MASK 0x23
290 #define ASC_STOP_REQ_RISC_STOP 0x01
291 #define ASC_STOP_ACK_RISC_STOP 0x03
292 #define ASC_STOP_CLEAN_UP_BUSY_Q 0x10
293 #define ASC_STOP_CLEAN_UP_DISC_Q 0x20
294 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40
295 #define ASC_TIDLUN_TO_IX(tid, lun) (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
296 #define ASC_TID_TO_TARGET_ID(tid) (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
297 #define ASC_TIX_TO_TARGET_ID(tix) (0x01 << ((tix) & ASC_MAX_TID))
298 #define ASC_TIX_TO_TID(tix) ((tix) & ASC_MAX_TID)
299 #define ASC_TID_TO_TIX(tid) ((tid) & ASC_MAX_TID)
300 #define ASC_TIX_TO_LUN(tix) (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
301 #define ASC_QNO_TO_QADDR(q_no) ((ASC_QADR_BEG)+((int)(q_no) << 6))
303 typedef struct asc_scsiq_1 {
304 uchar status;
305 uchar q_no;
306 uchar cntl;
307 uchar sg_queue_cnt;
308 uchar target_id;
309 uchar target_lun;
310 ASC_PADDR data_addr;
311 ASC_DCNT data_cnt;
312 ASC_PADDR sense_addr;
313 uchar sense_len;
314 uchar extra_bytes;
315 } ASC_SCSIQ_1;
317 typedef struct asc_scsiq_2 {
318 ASC_VADDR srb_ptr;
319 uchar target_ix;
320 uchar flag;
321 uchar cdb_len;
322 uchar tag_code;
323 ushort vm_id;
324 } ASC_SCSIQ_2;
326 typedef struct asc_scsiq_3 {
327 uchar done_stat;
328 uchar host_stat;
329 uchar scsi_stat;
330 uchar scsi_msg;
331 } ASC_SCSIQ_3;
333 typedef struct asc_scsiq_4 {
334 uchar cdb[ASC_MAX_CDB_LEN];
335 uchar y_first_sg_list_qp;
336 uchar y_working_sg_qp;
337 uchar y_working_sg_ix;
338 uchar y_res;
339 ushort x_req_count;
340 ushort x_reconnect_rtn;
341 ASC_PADDR x_saved_data_addr;
342 ASC_DCNT x_saved_data_cnt;
343 } ASC_SCSIQ_4;
345 typedef struct asc_q_done_info {
346 ASC_SCSIQ_2 d2;
347 ASC_SCSIQ_3 d3;
348 uchar q_status;
349 uchar q_no;
350 uchar cntl;
351 uchar sense_len;
352 uchar extra_bytes;
353 uchar res;
354 ASC_DCNT remain_bytes;
355 } ASC_QDONE_INFO;
357 typedef struct asc_sg_list {
358 ASC_PADDR addr;
359 ASC_DCNT bytes;
360 } ASC_SG_LIST;
362 typedef struct asc_sg_head {
363 ushort entry_cnt;
364 ushort queue_cnt;
365 ushort entry_to_copy;
366 ushort res;
367 ASC_SG_LIST sg_list[0];
368 } ASC_SG_HEAD;
370 typedef struct asc_scsi_q {
371 ASC_SCSIQ_1 q1;
372 ASC_SCSIQ_2 q2;
373 uchar *cdbptr;
374 ASC_SG_HEAD *sg_head;
375 ushort remain_sg_entry_cnt;
376 ushort next_sg_index;
377 } ASC_SCSI_Q;
379 typedef struct asc_scsi_req_q {
380 ASC_SCSIQ_1 r1;
381 ASC_SCSIQ_2 r2;
382 uchar *cdbptr;
383 ASC_SG_HEAD *sg_head;
384 uchar *sense_ptr;
385 ASC_SCSIQ_3 r3;
386 uchar cdb[ASC_MAX_CDB_LEN];
387 uchar sense[ASC_MIN_SENSE_LEN];
388 } ASC_SCSI_REQ_Q;
390 typedef struct asc_scsi_bios_req_q {
391 ASC_SCSIQ_1 r1;
392 ASC_SCSIQ_2 r2;
393 uchar *cdbptr;
394 ASC_SG_HEAD *sg_head;
395 uchar *sense_ptr;
396 ASC_SCSIQ_3 r3;
397 uchar cdb[ASC_MAX_CDB_LEN];
398 uchar sense[ASC_MIN_SENSE_LEN];
399 } ASC_SCSI_BIOS_REQ_Q;
401 typedef struct asc_risc_q {
402 uchar fwd;
403 uchar bwd;
404 ASC_SCSIQ_1 i1;
405 ASC_SCSIQ_2 i2;
406 ASC_SCSIQ_3 i3;
407 ASC_SCSIQ_4 i4;
408 } ASC_RISC_Q;
410 typedef struct asc_sg_list_q {
411 uchar seq_no;
412 uchar q_no;
413 uchar cntl;
414 uchar sg_head_qp;
415 uchar sg_list_cnt;
416 uchar sg_cur_list_cnt;
417 } ASC_SG_LIST_Q;
419 typedef struct asc_risc_sg_list_q {
420 uchar fwd;
421 uchar bwd;
422 ASC_SG_LIST_Q sg;
423 ASC_SG_LIST sg_list[7];
424 } ASC_RISC_SG_LIST_Q;
426 #define ASCQ_ERR_Q_STATUS 0x0D
427 #define ASCQ_ERR_CUR_QNG 0x17
428 #define ASCQ_ERR_SG_Q_LINKS 0x18
429 #define ASCQ_ERR_ISR_RE_ENTRY 0x1A
430 #define ASCQ_ERR_CRITICAL_RE_ENTRY 0x1B
431 #define ASCQ_ERR_ISR_ON_CRITICAL 0x1C
434 * Warning code values are set in ASC_DVC_VAR 'warn_code'.
436 #define ASC_WARN_NO_ERROR 0x0000
437 #define ASC_WARN_IO_PORT_ROTATE 0x0001
438 #define ASC_WARN_EEPROM_CHKSUM 0x0002
439 #define ASC_WARN_IRQ_MODIFIED 0x0004
440 #define ASC_WARN_AUTO_CONFIG 0x0008
441 #define ASC_WARN_CMD_QNG_CONFLICT 0x0010
442 #define ASC_WARN_EEPROM_RECOVER 0x0020
443 #define ASC_WARN_CFG_MSW_RECOVER 0x0040
446 * Error code values are set in {ASC/ADV}_DVC_VAR 'err_code'.
448 #define ASC_IERR_NO_CARRIER 0x0001 /* No more carrier memory */
449 #define ASC_IERR_MCODE_CHKSUM 0x0002 /* micro code check sum error */
450 #define ASC_IERR_SET_PC_ADDR 0x0004
451 #define ASC_IERR_START_STOP_CHIP 0x0008 /* start/stop chip failed */
452 #define ASC_IERR_ILLEGAL_CONNECTION 0x0010 /* Illegal cable connection */
453 #define ASC_IERR_SINGLE_END_DEVICE 0x0020 /* SE device on DIFF bus */
454 #define ASC_IERR_REVERSED_CABLE 0x0040 /* Narrow flat cable reversed */
455 #define ASC_IERR_SET_SCSI_ID 0x0080 /* set SCSI ID failed */
456 #define ASC_IERR_HVD_DEVICE 0x0100 /* HVD device on LVD port */
457 #define ASC_IERR_BAD_SIGNATURE 0x0200 /* signature not found */
458 #define ASC_IERR_NO_BUS_TYPE 0x0400
459 #define ASC_IERR_BIST_PRE_TEST 0x0800 /* BIST pre-test error */
460 #define ASC_IERR_BIST_RAM_TEST 0x1000 /* BIST RAM test error */
461 #define ASC_IERR_BAD_CHIPTYPE 0x2000 /* Invalid chip_type setting */
463 #define ASC_DEF_MAX_TOTAL_QNG (0xF0)
464 #define ASC_MIN_TAG_Q_PER_DVC (0x04)
465 #define ASC_MIN_FREE_Q (0x02)
466 #define ASC_MIN_TOTAL_QNG ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
467 #define ASC_MAX_TOTAL_QNG 240
468 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
469 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG 8
470 #define ASC_MAX_PCI_INRAM_TOTAL_QNG 20
471 #define ASC_MAX_INRAM_TAG_QNG 16
472 #define ASC_IOADR_GAP 0x10
473 #define ASC_SYN_MAX_OFFSET 0x0F
474 #define ASC_DEF_SDTR_OFFSET 0x0F
475 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX 0x02
476 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
478 /* The narrow chip only supports a limited selection of transfer rates.
479 * These are encoded in the range 0..7 or 0..15 depending whether the chip
480 * is Ultra-capable or not. These tables let us convert from one to the other.
482 static const unsigned char asc_syn_xfer_period[8] = {
483 25, 30, 35, 40, 50, 60, 70, 85
486 static const unsigned char asc_syn_ultra_xfer_period[16] = {
487 12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
490 typedef struct ext_msg {
491 uchar msg_type;
492 uchar msg_len;
493 uchar msg_req;
494 union {
495 struct {
496 uchar sdtr_xfer_period;
497 uchar sdtr_req_ack_offset;
498 } sdtr;
499 struct {
500 uchar wdtr_width;
501 } wdtr;
502 struct {
503 uchar mdp_b3;
504 uchar mdp_b2;
505 uchar mdp_b1;
506 uchar mdp_b0;
507 } mdp;
508 } u_ext_msg;
509 uchar res;
510 } EXT_MSG;
512 #define xfer_period u_ext_msg.sdtr.sdtr_xfer_period
513 #define req_ack_offset u_ext_msg.sdtr.sdtr_req_ack_offset
514 #define wdtr_width u_ext_msg.wdtr.wdtr_width
515 #define mdp_b3 u_ext_msg.mdp_b3
516 #define mdp_b2 u_ext_msg.mdp_b2
517 #define mdp_b1 u_ext_msg.mdp_b1
518 #define mdp_b0 u_ext_msg.mdp_b0
520 typedef struct asc_dvc_cfg {
521 ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
522 ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
523 ASC_SCSI_BIT_ID_TYPE disc_enable;
524 ASC_SCSI_BIT_ID_TYPE sdtr_enable;
525 uchar chip_scsi_id;
526 uchar isa_dma_speed;
527 uchar isa_dma_channel;
528 uchar chip_version;
529 ushort mcode_date;
530 ushort mcode_version;
531 uchar max_tag_qng[ASC_MAX_TID + 1];
532 uchar sdtr_period_offset[ASC_MAX_TID + 1];
533 uchar adapter_info[6];
534 } ASC_DVC_CFG;
536 #define ASC_DEF_DVC_CNTL 0xFFFF
537 #define ASC_DEF_CHIP_SCSI_ID 7
538 #define ASC_DEF_ISA_DMA_SPEED 4
539 #define ASC_INIT_STATE_BEG_GET_CFG 0x0001
540 #define ASC_INIT_STATE_END_GET_CFG 0x0002
541 #define ASC_INIT_STATE_BEG_SET_CFG 0x0004
542 #define ASC_INIT_STATE_END_SET_CFG 0x0008
543 #define ASC_INIT_STATE_BEG_LOAD_MC 0x0010
544 #define ASC_INIT_STATE_END_LOAD_MC 0x0020
545 #define ASC_INIT_STATE_BEG_INQUIRY 0x0040
546 #define ASC_INIT_STATE_END_INQUIRY 0x0080
547 #define ASC_INIT_RESET_SCSI_DONE 0x0100
548 #define ASC_INIT_STATE_WITHOUT_EEP 0x8000
549 #define ASC_BUG_FIX_IF_NOT_DWB 0x0001
550 #define ASC_BUG_FIX_ASYN_USE_SYN 0x0002
551 #define ASC_MIN_TAGGED_CMD 7
552 #define ASC_MAX_SCSI_RESET_WAIT 30
553 #define ASC_OVERRUN_BSIZE 64
555 struct asc_dvc_var; /* Forward Declaration. */
557 typedef struct asc_dvc_var {
558 PortAddr iop_base;
559 ushort err_code;
560 ushort dvc_cntl;
561 ushort bug_fix_cntl;
562 ushort bus_type;
563 ASC_SCSI_BIT_ID_TYPE init_sdtr;
564 ASC_SCSI_BIT_ID_TYPE sdtr_done;
565 ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
566 ASC_SCSI_BIT_ID_TYPE unit_not_ready;
567 ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
568 ASC_SCSI_BIT_ID_TYPE start_motor;
569 uchar *overrun_buf;
570 dma_addr_t overrun_dma;
571 uchar scsi_reset_wait;
572 uchar chip_no;
573 char is_in_int;
574 uchar max_total_qng;
575 uchar cur_total_qng;
576 uchar in_critical_cnt;
577 uchar last_q_shortage;
578 ushort init_state;
579 uchar cur_dvc_qng[ASC_MAX_TID + 1];
580 uchar max_dvc_qng[ASC_MAX_TID + 1];
581 ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
582 ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
583 const uchar *sdtr_period_tbl;
584 ASC_DVC_CFG *cfg;
585 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
586 char redo_scam;
587 ushort res2;
588 uchar dos_int13_table[ASC_MAX_TID + 1];
589 ASC_DCNT max_dma_count;
590 ASC_SCSI_BIT_ID_TYPE no_scam;
591 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
592 uchar min_sdtr_index;
593 uchar max_sdtr_index;
594 struct asc_board *drv_ptr;
595 int ptr_map_count;
596 void **ptr_map;
597 ASC_DCNT uc_break;
598 } ASC_DVC_VAR;
600 typedef struct asc_dvc_inq_info {
601 uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
602 } ASC_DVC_INQ_INFO;
604 typedef struct asc_cap_info {
605 ASC_DCNT lba;
606 ASC_DCNT blk_size;
607 } ASC_CAP_INFO;
609 typedef struct asc_cap_info_array {
610 ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
611 } ASC_CAP_INFO_ARRAY;
613 #define ASC_MCNTL_NO_SEL_TIMEOUT (ushort)0x0001
614 #define ASC_MCNTL_NULL_TARGET (ushort)0x0002
615 #define ASC_CNTL_INITIATOR (ushort)0x0001
616 #define ASC_CNTL_BIOS_GT_1GB (ushort)0x0002
617 #define ASC_CNTL_BIOS_GT_2_DISK (ushort)0x0004
618 #define ASC_CNTL_BIOS_REMOVABLE (ushort)0x0008
619 #define ASC_CNTL_NO_SCAM (ushort)0x0010
620 #define ASC_CNTL_INT_MULTI_Q (ushort)0x0080
621 #define ASC_CNTL_NO_LUN_SUPPORT (ushort)0x0040
622 #define ASC_CNTL_NO_VERIFY_COPY (ushort)0x0100
623 #define ASC_CNTL_RESET_SCSI (ushort)0x0200
624 #define ASC_CNTL_INIT_INQUIRY (ushort)0x0400
625 #define ASC_CNTL_INIT_VERBOSE (ushort)0x0800
626 #define ASC_CNTL_SCSI_PARITY (ushort)0x1000
627 #define ASC_CNTL_BURST_MODE (ushort)0x2000
628 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
629 #define ASC_EEP_DVC_CFG_BEG_VL 2
630 #define ASC_EEP_MAX_DVC_ADDR_VL 15
631 #define ASC_EEP_DVC_CFG_BEG 32
632 #define ASC_EEP_MAX_DVC_ADDR 45
633 #define ASC_EEP_MAX_RETRY 20
636 * These macros keep the chip SCSI id and ISA DMA speed
637 * bitfields in board order. C bitfields aren't portable
638 * between big and little-endian platforms so they are
639 * not used.
642 #define ASC_EEP_GET_CHIP_ID(cfg) ((cfg)->id_speed & 0x0f)
643 #define ASC_EEP_GET_DMA_SPD(cfg) (((cfg)->id_speed & 0xf0) >> 4)
644 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \
645 ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
646 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \
647 ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
649 typedef struct asceep_config {
650 ushort cfg_lsw;
651 ushort cfg_msw;
652 uchar init_sdtr;
653 uchar disc_enable;
654 uchar use_cmd_qng;
655 uchar start_motor;
656 uchar max_total_qng;
657 uchar max_tag_qng;
658 uchar bios_scan;
659 uchar power_up_wait;
660 uchar no_scam;
661 uchar id_speed; /* low order 4 bits is chip scsi id */
662 /* high order 4 bits is isa dma speed */
663 uchar dos_int13_table[ASC_MAX_TID + 1];
664 uchar adapter_info[6];
665 ushort cntl;
666 ushort chksum;
667 } ASCEEP_CONFIG;
669 #define ASC_EEP_CMD_READ 0x80
670 #define ASC_EEP_CMD_WRITE 0x40
671 #define ASC_EEP_CMD_WRITE_ABLE 0x30
672 #define ASC_EEP_CMD_WRITE_DISABLE 0x00
673 #define ASCV_MSGOUT_BEG 0x0000
674 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
675 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
676 #define ASCV_BREAK_SAVED_CODE (ushort)0x0006
677 #define ASCV_MSGIN_BEG (ASCV_MSGOUT_BEG+8)
678 #define ASCV_MSGIN_SDTR_PERIOD (ASCV_MSGIN_BEG+3)
679 #define ASCV_MSGIN_SDTR_OFFSET (ASCV_MSGIN_BEG+4)
680 #define ASCV_SDTR_DATA_BEG (ASCV_MSGIN_BEG+8)
681 #define ASCV_SDTR_DONE_BEG (ASCV_SDTR_DATA_BEG+8)
682 #define ASCV_MAX_DVC_QNG_BEG (ushort)0x0020
683 #define ASCV_BREAK_ADDR (ushort)0x0028
684 #define ASCV_BREAK_NOTIFY_COUNT (ushort)0x002A
685 #define ASCV_BREAK_CONTROL (ushort)0x002C
686 #define ASCV_BREAK_HIT_COUNT (ushort)0x002E
688 #define ASCV_ASCDVC_ERR_CODE_W (ushort)0x0030
689 #define ASCV_MCODE_CHKSUM_W (ushort)0x0032
690 #define ASCV_MCODE_SIZE_W (ushort)0x0034
691 #define ASCV_STOP_CODE_B (ushort)0x0036
692 #define ASCV_DVC_ERR_CODE_B (ushort)0x0037
693 #define ASCV_OVERRUN_PADDR_D (ushort)0x0038
694 #define ASCV_OVERRUN_BSIZE_D (ushort)0x003C
695 #define ASCV_HALTCODE_W (ushort)0x0040
696 #define ASCV_CHKSUM_W (ushort)0x0042
697 #define ASCV_MC_DATE_W (ushort)0x0044
698 #define ASCV_MC_VER_W (ushort)0x0046
699 #define ASCV_NEXTRDY_B (ushort)0x0048
700 #define ASCV_DONENEXT_B (ushort)0x0049
701 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
702 #define ASCV_SCSIBUSY_B (ushort)0x004B
703 #define ASCV_Q_DONE_IN_PROGRESS_B (ushort)0x004C
704 #define ASCV_CURCDB_B (ushort)0x004D
705 #define ASCV_RCLUN_B (ushort)0x004E
706 #define ASCV_BUSY_QHEAD_B (ushort)0x004F
707 #define ASCV_DISC1_QHEAD_B (ushort)0x0050
708 #define ASCV_DISC_ENABLE_B (ushort)0x0052
709 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
710 #define ASCV_HOSTSCSI_ID_B (ushort)0x0055
711 #define ASCV_MCODE_CNTL_B (ushort)0x0056
712 #define ASCV_NULL_TARGET_B (ushort)0x0057
713 #define ASCV_FREE_Q_HEAD_W (ushort)0x0058
714 #define ASCV_DONE_Q_TAIL_W (ushort)0x005A
715 #define ASCV_FREE_Q_HEAD_B (ushort)(ASCV_FREE_Q_HEAD_W+1)
716 #define ASCV_DONE_Q_TAIL_B (ushort)(ASCV_DONE_Q_TAIL_W+1)
717 #define ASCV_HOST_FLAG_B (ushort)0x005D
718 #define ASCV_TOTAL_READY_Q_B (ushort)0x0064
719 #define ASCV_VER_SERIAL_B (ushort)0x0065
720 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066
721 #define ASCV_WTM_FLAG_B (ushort)0x0068
722 #define ASCV_RISC_FLAG_B (ushort)0x006A
723 #define ASCV_REQ_SG_LIST_QP (ushort)0x006B
724 #define ASC_HOST_FLAG_IN_ISR 0x01
725 #define ASC_HOST_FLAG_ACK_INT 0x02
726 #define ASC_RISC_FLAG_GEN_INT 0x01
727 #define ASC_RISC_FLAG_REQ_SG_LIST 0x02
728 #define IOP_CTRL (0x0F)
729 #define IOP_STATUS (0x0E)
730 #define IOP_INT_ACK IOP_STATUS
731 #define IOP_REG_IFC (0x0D)
732 #define IOP_SYN_OFFSET (0x0B)
733 #define IOP_EXTRA_CONTROL (0x0D)
734 #define IOP_REG_PC (0x0C)
735 #define IOP_RAM_ADDR (0x0A)
736 #define IOP_RAM_DATA (0x08)
737 #define IOP_EEP_DATA (0x06)
738 #define IOP_EEP_CMD (0x07)
739 #define IOP_VERSION (0x03)
740 #define IOP_CONFIG_HIGH (0x04)
741 #define IOP_CONFIG_LOW (0x02)
742 #define IOP_SIG_BYTE (0x01)
743 #define IOP_SIG_WORD (0x00)
744 #define IOP_REG_DC1 (0x0E)
745 #define IOP_REG_DC0 (0x0C)
746 #define IOP_REG_SB (0x0B)
747 #define IOP_REG_DA1 (0x0A)
748 #define IOP_REG_DA0 (0x08)
749 #define IOP_REG_SC (0x09)
750 #define IOP_DMA_SPEED (0x07)
751 #define IOP_REG_FLAG (0x07)
752 #define IOP_FIFO_H (0x06)
753 #define IOP_FIFO_L (0x04)
754 #define IOP_REG_ID (0x05)
755 #define IOP_REG_QP (0x03)
756 #define IOP_REG_IH (0x02)
757 #define IOP_REG_IX (0x01)
758 #define IOP_REG_AX (0x00)
759 #define IFC_REG_LOCK (0x00)
760 #define IFC_REG_UNLOCK (0x09)
761 #define IFC_WR_EN_FILTER (0x10)
762 #define IFC_RD_NO_EEPROM (0x10)
763 #define IFC_SLEW_RATE (0x20)
764 #define IFC_ACT_NEG (0x40)
765 #define IFC_INP_FILTER (0x80)
766 #define IFC_INIT_DEFAULT (IFC_ACT_NEG | IFC_REG_UNLOCK)
767 #define SC_SEL (uchar)(0x80)
768 #define SC_BSY (uchar)(0x40)
769 #define SC_ACK (uchar)(0x20)
770 #define SC_REQ (uchar)(0x10)
771 #define SC_ATN (uchar)(0x08)
772 #define SC_IO (uchar)(0x04)
773 #define SC_CD (uchar)(0x02)
774 #define SC_MSG (uchar)(0x01)
775 #define SEC_SCSI_CTL (uchar)(0x80)
776 #define SEC_ACTIVE_NEGATE (uchar)(0x40)
777 #define SEC_SLEW_RATE (uchar)(0x20)
778 #define SEC_ENABLE_FILTER (uchar)(0x10)
779 #define ASC_HALT_EXTMSG_IN (ushort)0x8000
780 #define ASC_HALT_CHK_CONDITION (ushort)0x8100
781 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
782 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX (ushort)0x8300
783 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX (ushort)0x8400
784 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000
785 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
786 #define ASC_MAX_QNO 0xF8
787 #define ASC_DATA_SEC_BEG (ushort)0x0080
788 #define ASC_DATA_SEC_END (ushort)0x0080
789 #define ASC_CODE_SEC_BEG (ushort)0x0080
790 #define ASC_CODE_SEC_END (ushort)0x0080
791 #define ASC_QADR_BEG (0x4000)
792 #define ASC_QADR_USED (ushort)(ASC_MAX_QNO * 64)
793 #define ASC_QADR_END (ushort)0x7FFF
794 #define ASC_QLAST_ADR (ushort)0x7FC0
795 #define ASC_QBLK_SIZE 0x40
796 #define ASC_BIOS_DATA_QBEG 0xF8
797 #define ASC_MIN_ACTIVE_QNO 0x01
798 #define ASC_QLINK_END 0xFF
799 #define ASC_EEPROM_WORDS 0x10
800 #define ASC_MAX_MGS_LEN 0x10
801 #define ASC_BIOS_ADDR_DEF 0xDC00
802 #define ASC_BIOS_SIZE 0x3800
803 #define ASC_BIOS_RAM_OFF 0x3800
804 #define ASC_BIOS_RAM_SIZE 0x800
805 #define ASC_BIOS_MIN_ADDR 0xC000
806 #define ASC_BIOS_MAX_ADDR 0xEC00
807 #define ASC_BIOS_BANK_SIZE 0x0400
808 #define ASC_MCODE_START_ADDR 0x0080
809 #define ASC_CFG0_HOST_INT_ON 0x0020
810 #define ASC_CFG0_BIOS_ON 0x0040
811 #define ASC_CFG0_VERA_BURST_ON 0x0080
812 #define ASC_CFG0_SCSI_PARITY_ON 0x0800
813 #define ASC_CFG1_SCSI_TARGET_ON 0x0080
814 #define ASC_CFG1_LRAM_8BITS_ON 0x0800
815 #define ASC_CFG_MSW_CLR_MASK 0x3080
816 #define CSW_TEST1 (ASC_CS_TYPE)0x8000
817 #define CSW_AUTO_CONFIG (ASC_CS_TYPE)0x4000
818 #define CSW_RESERVED1 (ASC_CS_TYPE)0x2000
819 #define CSW_IRQ_WRITTEN (ASC_CS_TYPE)0x1000
820 #define CSW_33MHZ_SELECTED (ASC_CS_TYPE)0x0800
821 #define CSW_TEST2 (ASC_CS_TYPE)0x0400
822 #define CSW_TEST3 (ASC_CS_TYPE)0x0200
823 #define CSW_RESERVED2 (ASC_CS_TYPE)0x0100
824 #define CSW_DMA_DONE (ASC_CS_TYPE)0x0080
825 #define CSW_FIFO_RDY (ASC_CS_TYPE)0x0040
826 #define CSW_EEP_READ_DONE (ASC_CS_TYPE)0x0020
827 #define CSW_HALTED (ASC_CS_TYPE)0x0010
828 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
829 #define CSW_PARITY_ERR (ASC_CS_TYPE)0x0004
830 #define CSW_SCSI_RESET_LATCH (ASC_CS_TYPE)0x0002
831 #define CSW_INT_PENDING (ASC_CS_TYPE)0x0001
832 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
833 #define CIW_INT_ACK (ASC_CS_TYPE)0x0100
834 #define CIW_TEST1 (ASC_CS_TYPE)0x0200
835 #define CIW_TEST2 (ASC_CS_TYPE)0x0400
836 #define CIW_SEL_33MHZ (ASC_CS_TYPE)0x0800
837 #define CIW_IRQ_ACT (ASC_CS_TYPE)0x1000
838 #define CC_CHIP_RESET (uchar)0x80
839 #define CC_SCSI_RESET (uchar)0x40
840 #define CC_HALT (uchar)0x20
841 #define CC_SINGLE_STEP (uchar)0x10
842 #define CC_DMA_ABLE (uchar)0x08
843 #define CC_TEST (uchar)0x04
844 #define CC_BANK_ONE (uchar)0x02
845 #define CC_DIAG (uchar)0x01
846 #define ASC_1000_ID0W 0x04C1
847 #define ASC_1000_ID0W_FIX 0x00C1
848 #define ASC_1000_ID1B 0x25
849 #define ASC_EISA_REV_IOP_MASK (0x0C83)
850 #define ASC_EISA_CFG_IOP_MASK (0x0C86)
851 #define ASC_GET_EISA_SLOT(iop) (PortAddr)((iop) & 0xF000)
852 #define INS_HALTINT (ushort)0x6281
853 #define INS_HALT (ushort)0x6280
854 #define INS_SINT (ushort)0x6200
855 #define INS_RFLAG_WTM (ushort)0x7380
856 #define ASC_MC_SAVE_CODE_WSIZE 0x500
857 #define ASC_MC_SAVE_DATA_WSIZE 0x40
859 typedef struct asc_mc_saved {
860 ushort data[ASC_MC_SAVE_DATA_WSIZE];
861 ushort code[ASC_MC_SAVE_CODE_WSIZE];
862 } ASC_MC_SAVED;
864 #define AscGetQDoneInProgress(port) AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
865 #define AscPutQDoneInProgress(port, val) AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
866 #define AscGetVarFreeQHead(port) AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
867 #define AscGetVarDoneQTail(port) AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
868 #define AscPutVarFreeQHead(port, val) AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
869 #define AscPutVarDoneQTail(port, val) AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
870 #define AscGetRiscVarFreeQHead(port) AscReadLramByte((port), ASCV_NEXTRDY_B)
871 #define AscGetRiscVarDoneQTail(port) AscReadLramByte((port), ASCV_DONENEXT_B)
872 #define AscPutRiscVarFreeQHead(port, val) AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
873 #define AscPutRiscVarDoneQTail(port, val) AscWriteLramByte((port), ASCV_DONENEXT_B, val)
874 #define AscPutMCodeSDTRDoneAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
875 #define AscGetMCodeSDTRDoneAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
876 #define AscPutMCodeInitSDTRAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
877 #define AscGetMCodeInitSDTRAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
878 #define AscGetChipSignatureByte(port) (uchar)inp((port)+IOP_SIG_BYTE)
879 #define AscGetChipSignatureWord(port) (ushort)inpw((port)+IOP_SIG_WORD)
880 #define AscGetChipVerNo(port) (uchar)inp((port)+IOP_VERSION)
881 #define AscGetChipCfgLsw(port) (ushort)inpw((port)+IOP_CONFIG_LOW)
882 #define AscGetChipCfgMsw(port) (ushort)inpw((port)+IOP_CONFIG_HIGH)
883 #define AscSetChipCfgLsw(port, data) outpw((port)+IOP_CONFIG_LOW, data)
884 #define AscSetChipCfgMsw(port, data) outpw((port)+IOP_CONFIG_HIGH, data)
885 #define AscGetChipEEPCmd(port) (uchar)inp((port)+IOP_EEP_CMD)
886 #define AscSetChipEEPCmd(port, data) outp((port)+IOP_EEP_CMD, data)
887 #define AscGetChipEEPData(port) (ushort)inpw((port)+IOP_EEP_DATA)
888 #define AscSetChipEEPData(port, data) outpw((port)+IOP_EEP_DATA, data)
889 #define AscGetChipLramAddr(port) (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
890 #define AscSetChipLramAddr(port, addr) outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
891 #define AscGetChipLramData(port) (ushort)inpw((port)+IOP_RAM_DATA)
892 #define AscSetChipLramData(port, data) outpw((port)+IOP_RAM_DATA, data)
893 #define AscGetChipIFC(port) (uchar)inp((port)+IOP_REG_IFC)
894 #define AscSetChipIFC(port, data) outp((port)+IOP_REG_IFC, data)
895 #define AscGetChipStatus(port) (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
896 #define AscSetChipStatus(port, cs_val) outpw((port)+IOP_STATUS, cs_val)
897 #define AscGetChipControl(port) (uchar)inp((port)+IOP_CTRL)
898 #define AscSetChipControl(port, cc_val) outp((port)+IOP_CTRL, cc_val)
899 #define AscGetChipSyn(port) (uchar)inp((port)+IOP_SYN_OFFSET)
900 #define AscSetChipSyn(port, data) outp((port)+IOP_SYN_OFFSET, data)
901 #define AscSetPCAddr(port, data) outpw((port)+IOP_REG_PC, data)
902 #define AscGetPCAddr(port) (ushort)inpw((port)+IOP_REG_PC)
903 #define AscIsIntPending(port) (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
904 #define AscGetChipScsiID(port) ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
905 #define AscGetExtraControl(port) (uchar)inp((port)+IOP_EXTRA_CONTROL)
906 #define AscSetExtraControl(port, data) outp((port)+IOP_EXTRA_CONTROL, data)
907 #define AscReadChipAX(port) (ushort)inpw((port)+IOP_REG_AX)
908 #define AscWriteChipAX(port, data) outpw((port)+IOP_REG_AX, data)
909 #define AscReadChipIX(port) (uchar)inp((port)+IOP_REG_IX)
910 #define AscWriteChipIX(port, data) outp((port)+IOP_REG_IX, data)
911 #define AscReadChipIH(port) (ushort)inpw((port)+IOP_REG_IH)
912 #define AscWriteChipIH(port, data) outpw((port)+IOP_REG_IH, data)
913 #define AscReadChipQP(port) (uchar)inp((port)+IOP_REG_QP)
914 #define AscWriteChipQP(port, data) outp((port)+IOP_REG_QP, data)
915 #define AscReadChipFIFO_L(port) (ushort)inpw((port)+IOP_REG_FIFO_L)
916 #define AscWriteChipFIFO_L(port, data) outpw((port)+IOP_REG_FIFO_L, data)
917 #define AscReadChipFIFO_H(port) (ushort)inpw((port)+IOP_REG_FIFO_H)
918 #define AscWriteChipFIFO_H(port, data) outpw((port)+IOP_REG_FIFO_H, data)
919 #define AscReadChipDmaSpeed(port) (uchar)inp((port)+IOP_DMA_SPEED)
920 #define AscWriteChipDmaSpeed(port, data) outp((port)+IOP_DMA_SPEED, data)
921 #define AscReadChipDA0(port) (ushort)inpw((port)+IOP_REG_DA0)
922 #define AscWriteChipDA0(port) outpw((port)+IOP_REG_DA0, data)
923 #define AscReadChipDA1(port) (ushort)inpw((port)+IOP_REG_DA1)
924 #define AscWriteChipDA1(port) outpw((port)+IOP_REG_DA1, data)
925 #define AscReadChipDC0(port) (ushort)inpw((port)+IOP_REG_DC0)
926 #define AscWriteChipDC0(port) outpw((port)+IOP_REG_DC0, data)
927 #define AscReadChipDC1(port) (ushort)inpw((port)+IOP_REG_DC1)
928 #define AscWriteChipDC1(port) outpw((port)+IOP_REG_DC1, data)
929 #define AscReadChipDvcID(port) (uchar)inp((port)+IOP_REG_ID)
930 #define AscWriteChipDvcID(port, data) outp((port)+IOP_REG_ID, data)
933 * Portable Data Types
935 * Any instance where a 32-bit long or pointer type is assumed
936 * for precision or HW defined structures, the following define
937 * types must be used. In Linux the char, short, and int types
938 * are all consistent at 8, 16, and 32 bits respectively. Pointers
939 * and long types are 64 bits on Alpha and UltraSPARC.
941 #define ADV_PADDR __u32 /* Physical address data type. */
942 #define ADV_VADDR __u32 /* Virtual address data type. */
943 #define ADV_DCNT __u32 /* Unsigned Data count type. */
944 #define ADV_SDCNT __s32 /* Signed Data count type. */
947 * These macros are used to convert a virtual address to a
948 * 32-bit value. This currently can be used on Linux Alpha
949 * which uses 64-bit virtual address but a 32-bit bus address.
950 * This is likely to break in the future, but doing this now
951 * will give us time to change the HW and FW to handle 64-bit
952 * addresses.
954 #define ADV_VADDR_TO_U32 virt_to_bus
955 #define ADV_U32_TO_VADDR bus_to_virt
957 #define AdvPortAddr void __iomem * /* Virtual memory address size */
960 * Define Adv Library required memory access macros.
962 #define ADV_MEM_READB(addr) readb(addr)
963 #define ADV_MEM_READW(addr) readw(addr)
964 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
965 #define ADV_MEM_WRITEW(addr, word) writew(word, addr)
966 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
968 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 15)
971 * Define total number of simultaneous maximum element scatter-gather
972 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
973 * maximum number of outstanding commands per wide host adapter. Each
974 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
975 * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
976 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
977 * structures or 255 scatter-gather elements.
979 #define ADV_TOT_SG_BLOCK ASC_DEF_MAX_HOST_QNG
982 * Define maximum number of scatter-gather elements per request.
984 #define ADV_MAX_SG_LIST 255
985 #define NO_OF_SG_PER_BLOCK 15
987 #define ADV_EEP_DVC_CFG_BEGIN (0x00)
988 #define ADV_EEP_DVC_CFG_END (0x15)
989 #define ADV_EEP_DVC_CTL_BEGIN (0x16) /* location of OEM name */
990 #define ADV_EEP_MAX_WORD_ADDR (0x1E)
992 #define ADV_EEP_DELAY_MS 100
994 #define ADV_EEPROM_BIG_ENDIAN 0x8000 /* EEPROM Bit 15 */
995 #define ADV_EEPROM_BIOS_ENABLE 0x4000 /* EEPROM Bit 14 */
997 * For the ASC3550 Bit 13 is Termination Polarity control bit.
998 * For later ICs Bit 13 controls whether the CIS (Card Information
999 * Service Section) is loaded from EEPROM.
1001 #define ADV_EEPROM_TERM_POL 0x2000 /* EEPROM Bit 13 */
1002 #define ADV_EEPROM_CIS_LD 0x2000 /* EEPROM Bit 13 */
1004 * ASC38C1600 Bit 11
1006 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
1007 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
1008 * Function 0 will specify INT B.
1010 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
1011 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
1012 * Function 1 will specify INT A.
1014 #define ADV_EEPROM_INTAB 0x0800 /* EEPROM Bit 11 */
1016 typedef struct adveep_3550_config {
1017 /* Word Offset, Description */
1019 ushort cfg_lsw; /* 00 power up initialization */
1020 /* bit 13 set - Term Polarity Control */
1021 /* bit 14 set - BIOS Enable */
1022 /* bit 15 set - Big Endian Mode */
1023 ushort cfg_msw; /* 01 unused */
1024 ushort disc_enable; /* 02 disconnect enable */
1025 ushort wdtr_able; /* 03 Wide DTR able */
1026 ushort sdtr_able; /* 04 Synchronous DTR able */
1027 ushort start_motor; /* 05 send start up motor */
1028 ushort tagqng_able; /* 06 tag queuing able */
1029 ushort bios_scan; /* 07 BIOS device control */
1030 ushort scam_tolerant; /* 08 no scam */
1032 uchar adapter_scsi_id; /* 09 Host Adapter ID */
1033 uchar bios_boot_delay; /* power up wait */
1035 uchar scsi_reset_delay; /* 10 reset delay */
1036 uchar bios_id_lun; /* first boot device scsi id & lun */
1037 /* high nibble is lun */
1038 /* low nibble is scsi id */
1040 uchar termination; /* 11 0 - automatic */
1041 /* 1 - low off / high off */
1042 /* 2 - low off / high on */
1043 /* 3 - low on / high on */
1044 /* There is no low on / high off */
1046 uchar reserved1; /* reserved byte (not used) */
1048 ushort bios_ctrl; /* 12 BIOS control bits */
1049 /* bit 0 BIOS don't act as initiator. */
1050 /* bit 1 BIOS > 1 GB support */
1051 /* bit 2 BIOS > 2 Disk Support */
1052 /* bit 3 BIOS don't support removables */
1053 /* bit 4 BIOS support bootable CD */
1054 /* bit 5 BIOS scan enabled */
1055 /* bit 6 BIOS support multiple LUNs */
1056 /* bit 7 BIOS display of message */
1057 /* bit 8 SCAM disabled */
1058 /* bit 9 Reset SCSI bus during init. */
1059 /* bit 10 */
1060 /* bit 11 No verbose initialization. */
1061 /* bit 12 SCSI parity enabled */
1062 /* bit 13 */
1063 /* bit 14 */
1064 /* bit 15 */
1065 ushort ultra_able; /* 13 ULTRA speed able */
1066 ushort reserved2; /* 14 reserved */
1067 uchar max_host_qng; /* 15 maximum host queuing */
1068 uchar max_dvc_qng; /* maximum per device queuing */
1069 ushort dvc_cntl; /* 16 control bit for driver */
1070 ushort bug_fix; /* 17 control bit for bug fix */
1071 ushort serial_number_word1; /* 18 Board serial number word 1 */
1072 ushort serial_number_word2; /* 19 Board serial number word 2 */
1073 ushort serial_number_word3; /* 20 Board serial number word 3 */
1074 ushort check_sum; /* 21 EEP check sum */
1075 uchar oem_name[16]; /* 22 OEM name */
1076 ushort dvc_err_code; /* 30 last device driver error code */
1077 ushort adv_err_code; /* 31 last uc and Adv Lib error code */
1078 ushort adv_err_addr; /* 32 last uc error address */
1079 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
1080 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
1081 ushort saved_adv_err_addr; /* 35 saved last uc error address */
1082 ushort num_of_err; /* 36 number of error */
1083 } ADVEEP_3550_CONFIG;
1085 typedef struct adveep_38C0800_config {
1086 /* Word Offset, Description */
1088 ushort cfg_lsw; /* 00 power up initialization */
1089 /* bit 13 set - Load CIS */
1090 /* bit 14 set - BIOS Enable */
1091 /* bit 15 set - Big Endian Mode */
1092 ushort cfg_msw; /* 01 unused */
1093 ushort disc_enable; /* 02 disconnect enable */
1094 ushort wdtr_able; /* 03 Wide DTR able */
1095 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */
1096 ushort start_motor; /* 05 send start up motor */
1097 ushort tagqng_able; /* 06 tag queuing able */
1098 ushort bios_scan; /* 07 BIOS device control */
1099 ushort scam_tolerant; /* 08 no scam */
1101 uchar adapter_scsi_id; /* 09 Host Adapter ID */
1102 uchar bios_boot_delay; /* power up wait */
1104 uchar scsi_reset_delay; /* 10 reset delay */
1105 uchar bios_id_lun; /* first boot device scsi id & lun */
1106 /* high nibble is lun */
1107 /* low nibble is scsi id */
1109 uchar termination_se; /* 11 0 - automatic */
1110 /* 1 - low off / high off */
1111 /* 2 - low off / high on */
1112 /* 3 - low on / high on */
1113 /* There is no low on / high off */
1115 uchar termination_lvd; /* 11 0 - automatic */
1116 /* 1 - low off / high off */
1117 /* 2 - low off / high on */
1118 /* 3 - low on / high on */
1119 /* There is no low on / high off */
1121 ushort bios_ctrl; /* 12 BIOS control bits */
1122 /* bit 0 BIOS don't act as initiator. */
1123 /* bit 1 BIOS > 1 GB support */
1124 /* bit 2 BIOS > 2 Disk Support */
1125 /* bit 3 BIOS don't support removables */
1126 /* bit 4 BIOS support bootable CD */
1127 /* bit 5 BIOS scan enabled */
1128 /* bit 6 BIOS support multiple LUNs */
1129 /* bit 7 BIOS display of message */
1130 /* bit 8 SCAM disabled */
1131 /* bit 9 Reset SCSI bus during init. */
1132 /* bit 10 */
1133 /* bit 11 No verbose initialization. */
1134 /* bit 12 SCSI parity enabled */
1135 /* bit 13 */
1136 /* bit 14 */
1137 /* bit 15 */
1138 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */
1139 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */
1140 uchar max_host_qng; /* 15 maximum host queueing */
1141 uchar max_dvc_qng; /* maximum per device queuing */
1142 ushort dvc_cntl; /* 16 control bit for driver */
1143 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */
1144 ushort serial_number_word1; /* 18 Board serial number word 1 */
1145 ushort serial_number_word2; /* 19 Board serial number word 2 */
1146 ushort serial_number_word3; /* 20 Board serial number word 3 */
1147 ushort check_sum; /* 21 EEP check sum */
1148 uchar oem_name[16]; /* 22 OEM name */
1149 ushort dvc_err_code; /* 30 last device driver error code */
1150 ushort adv_err_code; /* 31 last uc and Adv Lib error code */
1151 ushort adv_err_addr; /* 32 last uc error address */
1152 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
1153 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
1154 ushort saved_adv_err_addr; /* 35 saved last uc error address */
1155 ushort reserved36; /* 36 reserved */
1156 ushort reserved37; /* 37 reserved */
1157 ushort reserved38; /* 38 reserved */
1158 ushort reserved39; /* 39 reserved */
1159 ushort reserved40; /* 40 reserved */
1160 ushort reserved41; /* 41 reserved */
1161 ushort reserved42; /* 42 reserved */
1162 ushort reserved43; /* 43 reserved */
1163 ushort reserved44; /* 44 reserved */
1164 ushort reserved45; /* 45 reserved */
1165 ushort reserved46; /* 46 reserved */
1166 ushort reserved47; /* 47 reserved */
1167 ushort reserved48; /* 48 reserved */
1168 ushort reserved49; /* 49 reserved */
1169 ushort reserved50; /* 50 reserved */
1170 ushort reserved51; /* 51 reserved */
1171 ushort reserved52; /* 52 reserved */
1172 ushort reserved53; /* 53 reserved */
1173 ushort reserved54; /* 54 reserved */
1174 ushort reserved55; /* 55 reserved */
1175 ushort cisptr_lsw; /* 56 CIS PTR LSW */
1176 ushort cisprt_msw; /* 57 CIS PTR MSW */
1177 ushort subsysvid; /* 58 SubSystem Vendor ID */
1178 ushort subsysid; /* 59 SubSystem ID */
1179 ushort reserved60; /* 60 reserved */
1180 ushort reserved61; /* 61 reserved */
1181 ushort reserved62; /* 62 reserved */
1182 ushort reserved63; /* 63 reserved */
1183 } ADVEEP_38C0800_CONFIG;
1185 typedef struct adveep_38C1600_config {
1186 /* Word Offset, Description */
1188 ushort cfg_lsw; /* 00 power up initialization */
1189 /* bit 11 set - Func. 0 INTB, Func. 1 INTA */
1190 /* clear - Func. 0 INTA, Func. 1 INTB */
1191 /* bit 13 set - Load CIS */
1192 /* bit 14 set - BIOS Enable */
1193 /* bit 15 set - Big Endian Mode */
1194 ushort cfg_msw; /* 01 unused */
1195 ushort disc_enable; /* 02 disconnect enable */
1196 ushort wdtr_able; /* 03 Wide DTR able */
1197 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */
1198 ushort start_motor; /* 05 send start up motor */
1199 ushort tagqng_able; /* 06 tag queuing able */
1200 ushort bios_scan; /* 07 BIOS device control */
1201 ushort scam_tolerant; /* 08 no scam */
1203 uchar adapter_scsi_id; /* 09 Host Adapter ID */
1204 uchar bios_boot_delay; /* power up wait */
1206 uchar scsi_reset_delay; /* 10 reset delay */
1207 uchar bios_id_lun; /* first boot device scsi id & lun */
1208 /* high nibble is lun */
1209 /* low nibble is scsi id */
1211 uchar termination_se; /* 11 0 - automatic */
1212 /* 1 - low off / high off */
1213 /* 2 - low off / high on */
1214 /* 3 - low on / high on */
1215 /* There is no low on / high off */
1217 uchar termination_lvd; /* 11 0 - automatic */
1218 /* 1 - low off / high off */
1219 /* 2 - low off / high on */
1220 /* 3 - low on / high on */
1221 /* There is no low on / high off */
1223 ushort bios_ctrl; /* 12 BIOS control bits */
1224 /* bit 0 BIOS don't act as initiator. */
1225 /* bit 1 BIOS > 1 GB support */
1226 /* bit 2 BIOS > 2 Disk Support */
1227 /* bit 3 BIOS don't support removables */
1228 /* bit 4 BIOS support bootable CD */
1229 /* bit 5 BIOS scan enabled */
1230 /* bit 6 BIOS support multiple LUNs */
1231 /* bit 7 BIOS display of message */
1232 /* bit 8 SCAM disabled */
1233 /* bit 9 Reset SCSI bus during init. */
1234 /* bit 10 Basic Integrity Checking disabled */
1235 /* bit 11 No verbose initialization. */
1236 /* bit 12 SCSI parity enabled */
1237 /* bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1238 /* bit 14 */
1239 /* bit 15 */
1240 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */
1241 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */
1242 uchar max_host_qng; /* 15 maximum host queueing */
1243 uchar max_dvc_qng; /* maximum per device queuing */
1244 ushort dvc_cntl; /* 16 control bit for driver */
1245 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */
1246 ushort serial_number_word1; /* 18 Board serial number word 1 */
1247 ushort serial_number_word2; /* 19 Board serial number word 2 */
1248 ushort serial_number_word3; /* 20 Board serial number word 3 */
1249 ushort check_sum; /* 21 EEP check sum */
1250 uchar oem_name[16]; /* 22 OEM name */
1251 ushort dvc_err_code; /* 30 last device driver error code */
1252 ushort adv_err_code; /* 31 last uc and Adv Lib error code */
1253 ushort adv_err_addr; /* 32 last uc error address */
1254 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
1255 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
1256 ushort saved_adv_err_addr; /* 35 saved last uc error address */
1257 ushort reserved36; /* 36 reserved */
1258 ushort reserved37; /* 37 reserved */
1259 ushort reserved38; /* 38 reserved */
1260 ushort reserved39; /* 39 reserved */
1261 ushort reserved40; /* 40 reserved */
1262 ushort reserved41; /* 41 reserved */
1263 ushort reserved42; /* 42 reserved */
1264 ushort reserved43; /* 43 reserved */
1265 ushort reserved44; /* 44 reserved */
1266 ushort reserved45; /* 45 reserved */
1267 ushort reserved46; /* 46 reserved */
1268 ushort reserved47; /* 47 reserved */
1269 ushort reserved48; /* 48 reserved */
1270 ushort reserved49; /* 49 reserved */
1271 ushort reserved50; /* 50 reserved */
1272 ushort reserved51; /* 51 reserved */
1273 ushort reserved52; /* 52 reserved */
1274 ushort reserved53; /* 53 reserved */
1275 ushort reserved54; /* 54 reserved */
1276 ushort reserved55; /* 55 reserved */
1277 ushort cisptr_lsw; /* 56 CIS PTR LSW */
1278 ushort cisprt_msw; /* 57 CIS PTR MSW */
1279 ushort subsysvid; /* 58 SubSystem Vendor ID */
1280 ushort subsysid; /* 59 SubSystem ID */
1281 ushort reserved60; /* 60 reserved */
1282 ushort reserved61; /* 61 reserved */
1283 ushort reserved62; /* 62 reserved */
1284 ushort reserved63; /* 63 reserved */
1285 } ADVEEP_38C1600_CONFIG;
1288 * EEPROM Commands
1290 #define ASC_EEP_CMD_DONE 0x0200
1292 /* bios_ctrl */
1293 #define BIOS_CTRL_BIOS 0x0001
1294 #define BIOS_CTRL_EXTENDED_XLAT 0x0002
1295 #define BIOS_CTRL_GT_2_DISK 0x0004
1296 #define BIOS_CTRL_BIOS_REMOVABLE 0x0008
1297 #define BIOS_CTRL_BOOTABLE_CD 0x0010
1298 #define BIOS_CTRL_MULTIPLE_LUN 0x0040
1299 #define BIOS_CTRL_DISPLAY_MSG 0x0080
1300 #define BIOS_CTRL_NO_SCAM 0x0100
1301 #define BIOS_CTRL_RESET_SCSI_BUS 0x0200
1302 #define BIOS_CTRL_INIT_VERBOSE 0x0800
1303 #define BIOS_CTRL_SCSI_PARITY 0x1000
1304 #define BIOS_CTRL_AIPP_DIS 0x2000
1306 #define ADV_3550_MEMSIZE 0x2000 /* 8 KB Internal Memory */
1308 #define ADV_38C0800_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1311 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1312 * a special 16K Adv Library and Microcode version. After the issue is
1313 * resolved, should restore 32K support.
1315 * #define ADV_38C1600_MEMSIZE 0x8000L * 32 KB Internal Memory *
1317 #define ADV_38C1600_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1320 * Byte I/O register address from base of 'iop_base'.
1322 #define IOPB_INTR_STATUS_REG 0x00
1323 #define IOPB_CHIP_ID_1 0x01
1324 #define IOPB_INTR_ENABLES 0x02
1325 #define IOPB_CHIP_TYPE_REV 0x03
1326 #define IOPB_RES_ADDR_4 0x04
1327 #define IOPB_RES_ADDR_5 0x05
1328 #define IOPB_RAM_DATA 0x06
1329 #define IOPB_RES_ADDR_7 0x07
1330 #define IOPB_FLAG_REG 0x08
1331 #define IOPB_RES_ADDR_9 0x09
1332 #define IOPB_RISC_CSR 0x0A
1333 #define IOPB_RES_ADDR_B 0x0B
1334 #define IOPB_RES_ADDR_C 0x0C
1335 #define IOPB_RES_ADDR_D 0x0D
1336 #define IOPB_SOFT_OVER_WR 0x0E
1337 #define IOPB_RES_ADDR_F 0x0F
1338 #define IOPB_MEM_CFG 0x10
1339 #define IOPB_RES_ADDR_11 0x11
1340 #define IOPB_GPIO_DATA 0x12
1341 #define IOPB_RES_ADDR_13 0x13
1342 #define IOPB_FLASH_PAGE 0x14
1343 #define IOPB_RES_ADDR_15 0x15
1344 #define IOPB_GPIO_CNTL 0x16
1345 #define IOPB_RES_ADDR_17 0x17
1346 #define IOPB_FLASH_DATA 0x18
1347 #define IOPB_RES_ADDR_19 0x19
1348 #define IOPB_RES_ADDR_1A 0x1A
1349 #define IOPB_RES_ADDR_1B 0x1B
1350 #define IOPB_RES_ADDR_1C 0x1C
1351 #define IOPB_RES_ADDR_1D 0x1D
1352 #define IOPB_RES_ADDR_1E 0x1E
1353 #define IOPB_RES_ADDR_1F 0x1F
1354 #define IOPB_DMA_CFG0 0x20
1355 #define IOPB_DMA_CFG1 0x21
1356 #define IOPB_TICKLE 0x22
1357 #define IOPB_DMA_REG_WR 0x23
1358 #define IOPB_SDMA_STATUS 0x24
1359 #define IOPB_SCSI_BYTE_CNT 0x25
1360 #define IOPB_HOST_BYTE_CNT 0x26
1361 #define IOPB_BYTE_LEFT_TO_XFER 0x27
1362 #define IOPB_BYTE_TO_XFER_0 0x28
1363 #define IOPB_BYTE_TO_XFER_1 0x29
1364 #define IOPB_BYTE_TO_XFER_2 0x2A
1365 #define IOPB_BYTE_TO_XFER_3 0x2B
1366 #define IOPB_ACC_GRP 0x2C
1367 #define IOPB_RES_ADDR_2D 0x2D
1368 #define IOPB_DEV_ID 0x2E
1369 #define IOPB_RES_ADDR_2F 0x2F
1370 #define IOPB_SCSI_DATA 0x30
1371 #define IOPB_RES_ADDR_31 0x31
1372 #define IOPB_RES_ADDR_32 0x32
1373 #define IOPB_SCSI_DATA_HSHK 0x33
1374 #define IOPB_SCSI_CTRL 0x34
1375 #define IOPB_RES_ADDR_35 0x35
1376 #define IOPB_RES_ADDR_36 0x36
1377 #define IOPB_RES_ADDR_37 0x37
1378 #define IOPB_RAM_BIST 0x38
1379 #define IOPB_PLL_TEST 0x39
1380 #define IOPB_PCI_INT_CFG 0x3A
1381 #define IOPB_RES_ADDR_3B 0x3B
1382 #define IOPB_RFIFO_CNT 0x3C
1383 #define IOPB_RES_ADDR_3D 0x3D
1384 #define IOPB_RES_ADDR_3E 0x3E
1385 #define IOPB_RES_ADDR_3F 0x3F
1388 * Word I/O register address from base of 'iop_base'.
1390 #define IOPW_CHIP_ID_0 0x00 /* CID0 */
1391 #define IOPW_CTRL_REG 0x02 /* CC */
1392 #define IOPW_RAM_ADDR 0x04 /* LA */
1393 #define IOPW_RAM_DATA 0x06 /* LD */
1394 #define IOPW_RES_ADDR_08 0x08
1395 #define IOPW_RISC_CSR 0x0A /* CSR */
1396 #define IOPW_SCSI_CFG0 0x0C /* CFG0 */
1397 #define IOPW_SCSI_CFG1 0x0E /* CFG1 */
1398 #define IOPW_RES_ADDR_10 0x10
1399 #define IOPW_SEL_MASK 0x12 /* SM */
1400 #define IOPW_RES_ADDR_14 0x14
1401 #define IOPW_FLASH_ADDR 0x16 /* FA */
1402 #define IOPW_RES_ADDR_18 0x18
1403 #define IOPW_EE_CMD 0x1A /* EC */
1404 #define IOPW_EE_DATA 0x1C /* ED */
1405 #define IOPW_SFIFO_CNT 0x1E /* SFC */
1406 #define IOPW_RES_ADDR_20 0x20
1407 #define IOPW_Q_BASE 0x22 /* QB */
1408 #define IOPW_QP 0x24 /* QP */
1409 #define IOPW_IX 0x26 /* IX */
1410 #define IOPW_SP 0x28 /* SP */
1411 #define IOPW_PC 0x2A /* PC */
1412 #define IOPW_RES_ADDR_2C 0x2C
1413 #define IOPW_RES_ADDR_2E 0x2E
1414 #define IOPW_SCSI_DATA 0x30 /* SD */
1415 #define IOPW_SCSI_DATA_HSHK 0x32 /* SDH */
1416 #define IOPW_SCSI_CTRL 0x34 /* SC */
1417 #define IOPW_HSHK_CFG 0x36 /* HCFG */
1418 #define IOPW_SXFR_STATUS 0x36 /* SXS */
1419 #define IOPW_SXFR_CNTL 0x38 /* SXL */
1420 #define IOPW_SXFR_CNTH 0x3A /* SXH */
1421 #define IOPW_RES_ADDR_3C 0x3C
1422 #define IOPW_RFIFO_DATA 0x3E /* RFD */
1425 * Doubleword I/O register address from base of 'iop_base'.
1427 #define IOPDW_RES_ADDR_0 0x00
1428 #define IOPDW_RAM_DATA 0x04
1429 #define IOPDW_RES_ADDR_8 0x08
1430 #define IOPDW_RES_ADDR_C 0x0C
1431 #define IOPDW_RES_ADDR_10 0x10
1432 #define IOPDW_COMMA 0x14
1433 #define IOPDW_COMMB 0x18
1434 #define IOPDW_RES_ADDR_1C 0x1C
1435 #define IOPDW_SDMA_ADDR0 0x20
1436 #define IOPDW_SDMA_ADDR1 0x24
1437 #define IOPDW_SDMA_COUNT 0x28
1438 #define IOPDW_SDMA_ERROR 0x2C
1439 #define IOPDW_RDMA_ADDR0 0x30
1440 #define IOPDW_RDMA_ADDR1 0x34
1441 #define IOPDW_RDMA_COUNT 0x38
1442 #define IOPDW_RDMA_ERROR 0x3C
1444 #define ADV_CHIP_ID_BYTE 0x25
1445 #define ADV_CHIP_ID_WORD 0x04C1
1447 #define ADV_INTR_ENABLE_HOST_INTR 0x01
1448 #define ADV_INTR_ENABLE_SEL_INTR 0x02
1449 #define ADV_INTR_ENABLE_DPR_INTR 0x04
1450 #define ADV_INTR_ENABLE_RTA_INTR 0x08
1451 #define ADV_INTR_ENABLE_RMA_INTR 0x10
1452 #define ADV_INTR_ENABLE_RST_INTR 0x20
1453 #define ADV_INTR_ENABLE_DPE_INTR 0x40
1454 #define ADV_INTR_ENABLE_GLOBAL_INTR 0x80
1456 #define ADV_INTR_STATUS_INTRA 0x01
1457 #define ADV_INTR_STATUS_INTRB 0x02
1458 #define ADV_INTR_STATUS_INTRC 0x04
1460 #define ADV_RISC_CSR_STOP (0x0000)
1461 #define ADV_RISC_TEST_COND (0x2000)
1462 #define ADV_RISC_CSR_RUN (0x4000)
1463 #define ADV_RISC_CSR_SINGLE_STEP (0x8000)
1465 #define ADV_CTRL_REG_HOST_INTR 0x0100
1466 #define ADV_CTRL_REG_SEL_INTR 0x0200
1467 #define ADV_CTRL_REG_DPR_INTR 0x0400
1468 #define ADV_CTRL_REG_RTA_INTR 0x0800
1469 #define ADV_CTRL_REG_RMA_INTR 0x1000
1470 #define ADV_CTRL_REG_RES_BIT14 0x2000
1471 #define ADV_CTRL_REG_DPE_INTR 0x4000
1472 #define ADV_CTRL_REG_POWER_DONE 0x8000
1473 #define ADV_CTRL_REG_ANY_INTR 0xFF00
1475 #define ADV_CTRL_REG_CMD_RESET 0x00C6
1476 #define ADV_CTRL_REG_CMD_WR_IO_REG 0x00C5
1477 #define ADV_CTRL_REG_CMD_RD_IO_REG 0x00C4
1478 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE 0x00C3
1479 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE 0x00C2
1481 #define ADV_TICKLE_NOP 0x00
1482 #define ADV_TICKLE_A 0x01
1483 #define ADV_TICKLE_B 0x02
1484 #define ADV_TICKLE_C 0x03
1486 #define AdvIsIntPending(port) \
1487 (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1490 * SCSI_CFG0 Register bit definitions
1492 #define TIMER_MODEAB 0xC000 /* Watchdog, Second, and Select. Timer Ctrl. */
1493 #define PARITY_EN 0x2000 /* Enable SCSI Parity Error detection */
1494 #define EVEN_PARITY 0x1000 /* Select Even Parity */
1495 #define WD_LONG 0x0800 /* Watchdog Interval, 1: 57 min, 0: 13 sec */
1496 #define QUEUE_128 0x0400 /* Queue Size, 1: 128 byte, 0: 64 byte */
1497 #define PRIM_MODE 0x0100 /* Primitive SCSI mode */
1498 #define SCAM_EN 0x0080 /* Enable SCAM selection */
1499 #define SEL_TMO_LONG 0x0040 /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1500 #define CFRM_ID 0x0020 /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1501 #define OUR_ID_EN 0x0010 /* Enable OUR_ID bits */
1502 #define OUR_ID 0x000F /* SCSI ID */
1505 * SCSI_CFG1 Register bit definitions
1507 #define BIG_ENDIAN 0x8000 /* Enable Big Endian Mode MIO:15, EEP:15 */
1508 #define TERM_POL 0x2000 /* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1509 #define SLEW_RATE 0x1000 /* SCSI output buffer slew rate */
1510 #define FILTER_SEL 0x0C00 /* Filter Period Selection */
1511 #define FLTR_DISABLE 0x0000 /* Input Filtering Disabled */
1512 #define FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */
1513 #define FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */
1514 #define ACTIVE_DBL 0x0200 /* Disable Active Negation */
1515 #define DIFF_MODE 0x0100 /* SCSI differential Mode (Read-Only) */
1516 #define DIFF_SENSE 0x0080 /* 1: No SE cables, 0: SE cable (Read-Only) */
1517 #define TERM_CTL_SEL 0x0040 /* Enable TERM_CTL_H and TERM_CTL_L */
1518 #define TERM_CTL 0x0030 /* External SCSI Termination Bits */
1519 #define TERM_CTL_H 0x0020 /* Enable External SCSI Upper Termination */
1520 #define TERM_CTL_L 0x0010 /* Enable External SCSI Lower Termination */
1521 #define CABLE_DETECT 0x000F /* External SCSI Cable Connection Status */
1524 * Addendum for ASC-38C0800 Chip
1526 * The ASC-38C1600 Chip uses the same definitions except that the
1527 * bus mode override bits [12:10] have been moved to byte register
1528 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1529 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1530 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1531 * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1532 * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1534 #define DIS_TERM_DRV 0x4000 /* 1: Read c_det[3:0], 0: cannot read */
1535 #define HVD_LVD_SE 0x1C00 /* Device Detect Bits */
1536 #define HVD 0x1000 /* HVD Device Detect */
1537 #define LVD 0x0800 /* LVD Device Detect */
1538 #define SE 0x0400 /* SE Device Detect */
1539 #define TERM_LVD 0x00C0 /* LVD Termination Bits */
1540 #define TERM_LVD_HI 0x0080 /* Enable LVD Upper Termination */
1541 #define TERM_LVD_LO 0x0040 /* Enable LVD Lower Termination */
1542 #define TERM_SE 0x0030 /* SE Termination Bits */
1543 #define TERM_SE_HI 0x0020 /* Enable SE Upper Termination */
1544 #define TERM_SE_LO 0x0010 /* Enable SE Lower Termination */
1545 #define C_DET_LVD 0x000C /* LVD Cable Detect Bits */
1546 #define C_DET3 0x0008 /* Cable Detect for LVD External Wide */
1547 #define C_DET2 0x0004 /* Cable Detect for LVD Internal Wide */
1548 #define C_DET_SE 0x0003 /* SE Cable Detect Bits */
1549 #define C_DET1 0x0002 /* Cable Detect for SE Internal Wide */
1550 #define C_DET0 0x0001 /* Cable Detect for SE Internal Narrow */
1552 #define CABLE_ILLEGAL_A 0x7
1553 /* x 0 0 0 | on on | Illegal (all 3 connectors are used) */
1555 #define CABLE_ILLEGAL_B 0xB
1556 /* 0 x 0 0 | on on | Illegal (all 3 connectors are used) */
1559 * MEM_CFG Register bit definitions
1561 #define BIOS_EN 0x40 /* BIOS Enable MIO:14,EEP:14 */
1562 #define FAST_EE_CLK 0x20 /* Diagnostic Bit */
1563 #define RAM_SZ 0x1C /* Specify size of RAM to RISC */
1564 #define RAM_SZ_2KB 0x00 /* 2 KB */
1565 #define RAM_SZ_4KB 0x04 /* 4 KB */
1566 #define RAM_SZ_8KB 0x08 /* 8 KB */
1567 #define RAM_SZ_16KB 0x0C /* 16 KB */
1568 #define RAM_SZ_32KB 0x10 /* 32 KB */
1569 #define RAM_SZ_64KB 0x14 /* 64 KB */
1572 * DMA_CFG0 Register bit definitions
1574 * This register is only accessible to the host.
1576 #define BC_THRESH_ENB 0x80 /* PCI DMA Start Conditions */
1577 #define FIFO_THRESH 0x70 /* PCI DMA FIFO Threshold */
1578 #define FIFO_THRESH_16B 0x00 /* 16 bytes */
1579 #define FIFO_THRESH_32B 0x20 /* 32 bytes */
1580 #define FIFO_THRESH_48B 0x30 /* 48 bytes */
1581 #define FIFO_THRESH_64B 0x40 /* 64 bytes */
1582 #define FIFO_THRESH_80B 0x50 /* 80 bytes (default) */
1583 #define FIFO_THRESH_96B 0x60 /* 96 bytes */
1584 #define FIFO_THRESH_112B 0x70 /* 112 bytes */
1585 #define START_CTL 0x0C /* DMA start conditions */
1586 #define START_CTL_TH 0x00 /* Wait threshold level (default) */
1587 #define START_CTL_ID 0x04 /* Wait SDMA/SBUS idle */
1588 #define START_CTL_THID 0x08 /* Wait threshold and SDMA/SBUS idle */
1589 #define START_CTL_EMFU 0x0C /* Wait SDMA FIFO empty/full */
1590 #define READ_CMD 0x03 /* Memory Read Method */
1591 #define READ_CMD_MR 0x00 /* Memory Read */
1592 #define READ_CMD_MRL 0x02 /* Memory Read Long */
1593 #define READ_CMD_MRM 0x03 /* Memory Read Multiple (default) */
1596 * ASC-38C0800 RAM BIST Register bit definitions
1598 #define RAM_TEST_MODE 0x80
1599 #define PRE_TEST_MODE 0x40
1600 #define NORMAL_MODE 0x00
1601 #define RAM_TEST_DONE 0x10
1602 #define RAM_TEST_STATUS 0x0F
1603 #define RAM_TEST_HOST_ERROR 0x08
1604 #define RAM_TEST_INTRAM_ERROR 0x04
1605 #define RAM_TEST_RISC_ERROR 0x02
1606 #define RAM_TEST_SCSI_ERROR 0x01
1607 #define RAM_TEST_SUCCESS 0x00
1608 #define PRE_TEST_VALUE 0x05
1609 #define NORMAL_VALUE 0x00
1612 * ASC38C1600 Definitions
1614 * IOPB_PCI_INT_CFG Bit Field Definitions
1617 #define INTAB_LD 0x80 /* Value loaded from EEPROM Bit 11. */
1620 * Bit 1 can be set to change the interrupt for the Function to operate in
1621 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1622 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1623 * mode, otherwise the operating mode is undefined.
1625 #define TOTEMPOLE 0x02
1628 * Bit 0 can be used to change the Int Pin for the Function. The value is
1629 * 0 by default for both Functions with Function 0 using INT A and Function
1630 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1631 * INT A is used.
1633 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1634 * value specified in the PCI Configuration Space.
1636 #define INTAB 0x01
1639 * Adv Library Status Definitions
1641 #define ADV_TRUE 1
1642 #define ADV_FALSE 0
1643 #define ADV_SUCCESS 1
1644 #define ADV_BUSY 0
1645 #define ADV_ERROR (-1)
1648 * ADV_DVC_VAR 'warn_code' values
1650 #define ASC_WARN_BUSRESET_ERROR 0x0001 /* SCSI Bus Reset error */
1651 #define ASC_WARN_EEPROM_CHKSUM 0x0002 /* EEP check sum error */
1652 #define ASC_WARN_EEPROM_TERMINATION 0x0004 /* EEP termination bad field */
1653 #define ASC_WARN_ERROR 0xFFFF /* ADV_ERROR return */
1655 #define ADV_MAX_TID 15 /* max. target identifier */
1656 #define ADV_MAX_LUN 7 /* max. logical unit number */
1659 * Fixed locations of microcode operating variables.
1661 #define ASC_MC_CODE_BEGIN_ADDR 0x0028 /* microcode start address */
1662 #define ASC_MC_CODE_END_ADDR 0x002A /* microcode end address */
1663 #define ASC_MC_CODE_CHK_SUM 0x002C /* microcode code checksum */
1664 #define ASC_MC_VERSION_DATE 0x0038 /* microcode version */
1665 #define ASC_MC_VERSION_NUM 0x003A /* microcode number */
1666 #define ASC_MC_BIOSMEM 0x0040 /* BIOS RISC Memory Start */
1667 #define ASC_MC_BIOSLEN 0x0050 /* BIOS RISC Memory Length */
1668 #define ASC_MC_BIOS_SIGNATURE 0x0058 /* BIOS Signature 0x55AA */
1669 #define ASC_MC_BIOS_VERSION 0x005A /* BIOS Version (2 bytes) */
1670 #define ASC_MC_SDTR_SPEED1 0x0090 /* SDTR Speed for TID 0-3 */
1671 #define ASC_MC_SDTR_SPEED2 0x0092 /* SDTR Speed for TID 4-7 */
1672 #define ASC_MC_SDTR_SPEED3 0x0094 /* SDTR Speed for TID 8-11 */
1673 #define ASC_MC_SDTR_SPEED4 0x0096 /* SDTR Speed for TID 12-15 */
1674 #define ASC_MC_CHIP_TYPE 0x009A
1675 #define ASC_MC_INTRB_CODE 0x009B
1676 #define ASC_MC_WDTR_ABLE 0x009C
1677 #define ASC_MC_SDTR_ABLE 0x009E
1678 #define ASC_MC_TAGQNG_ABLE 0x00A0
1679 #define ASC_MC_DISC_ENABLE 0x00A2
1680 #define ASC_MC_IDLE_CMD_STATUS 0x00A4
1681 #define ASC_MC_IDLE_CMD 0x00A6
1682 #define ASC_MC_IDLE_CMD_PARAMETER 0x00A8
1683 #define ASC_MC_DEFAULT_SCSI_CFG0 0x00AC
1684 #define ASC_MC_DEFAULT_SCSI_CFG1 0x00AE
1685 #define ASC_MC_DEFAULT_MEM_CFG 0x00B0
1686 #define ASC_MC_DEFAULT_SEL_MASK 0x00B2
1687 #define ASC_MC_SDTR_DONE 0x00B6
1688 #define ASC_MC_NUMBER_OF_QUEUED_CMD 0x00C0
1689 #define ASC_MC_NUMBER_OF_MAX_CMD 0x00D0
1690 #define ASC_MC_DEVICE_HSHK_CFG_TABLE 0x0100
1691 #define ASC_MC_CONTROL_FLAG 0x0122 /* Microcode control flag. */
1692 #define ASC_MC_WDTR_DONE 0x0124
1693 #define ASC_MC_CAM_MODE_MASK 0x015E /* CAM mode TID bitmask. */
1694 #define ASC_MC_ICQ 0x0160
1695 #define ASC_MC_IRQ 0x0164
1696 #define ASC_MC_PPR_ABLE 0x017A
1699 * BIOS LRAM variable absolute offsets.
1701 #define BIOS_CODESEG 0x54
1702 #define BIOS_CODELEN 0x56
1703 #define BIOS_SIGNATURE 0x58
1704 #define BIOS_VERSION 0x5A
1707 * Microcode Control Flags
1709 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1710 * and handled by the microcode.
1712 #define CONTROL_FLAG_IGNORE_PERR 0x0001 /* Ignore DMA Parity Errors */
1713 #define CONTROL_FLAG_ENABLE_AIPP 0x0002 /* Enabled AIPP checking. */
1716 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1718 #define HSHK_CFG_WIDE_XFR 0x8000
1719 #define HSHK_CFG_RATE 0x0F00
1720 #define HSHK_CFG_OFFSET 0x001F
1722 #define ASC_DEF_MAX_HOST_QNG 0xFD /* Max. number of host commands (253) */
1723 #define ASC_DEF_MIN_HOST_QNG 0x10 /* Min. number of host commands (16) */
1724 #define ASC_DEF_MAX_DVC_QNG 0x3F /* Max. number commands per device (63) */
1725 #define ASC_DEF_MIN_DVC_QNG 0x04 /* Min. number commands per device (4) */
1727 #define ASC_QC_DATA_CHECK 0x01 /* Require ASC_QC_DATA_OUT set or clear. */
1728 #define ASC_QC_DATA_OUT 0x02 /* Data out DMA transfer. */
1729 #define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */
1730 #define ASC_QC_NO_OVERRUN 0x08 /* Don't report overrun. */
1731 #define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */
1733 #define ASC_QSC_NO_DISC 0x01 /* Don't allow disconnect for request. */
1734 #define ASC_QSC_NO_TAGMSG 0x02 /* Don't allow tag queuing for request. */
1735 #define ASC_QSC_NO_SYNC 0x04 /* Don't use Synch. transfer on request. */
1736 #define ASC_QSC_NO_WIDE 0x08 /* Don't use Wide transfer on request. */
1737 #define ASC_QSC_REDO_DTR 0x10 /* Renegotiate WDTR/SDTR before request. */
1739 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1740 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1742 #define ASC_QSC_HEAD_TAG 0x40 /* Use Head Tag Message (0x21). */
1743 #define ASC_QSC_ORDERED_TAG 0x80 /* Use Ordered Tag Message (0x22). */
1746 * All fields here are accessed by the board microcode and need to be
1747 * little-endian.
1749 typedef struct adv_carr_t {
1750 ADV_VADDR carr_va; /* Carrier Virtual Address */
1751 ADV_PADDR carr_pa; /* Carrier Physical Address */
1752 ADV_VADDR areq_vpa; /* ASC_SCSI_REQ_Q Virtual or Physical Address */
1754 * next_vpa [31:4] Carrier Virtual or Physical Next Pointer
1756 * next_vpa [3:1] Reserved Bits
1757 * next_vpa [0] Done Flag set in Response Queue.
1759 ADV_VADDR next_vpa;
1760 } ADV_CARR_T;
1763 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1765 #define ASC_NEXT_VPA_MASK 0xFFFFFFF0
1767 #define ASC_RQ_DONE 0x00000001
1768 #define ASC_RQ_GOOD 0x00000002
1769 #define ASC_CQ_STOPPER 0x00000000
1771 #define ASC_GET_CARRP(carrp) ((carrp) & ASC_NEXT_VPA_MASK)
1773 #define ADV_CARRIER_NUM_PAGE_CROSSING \
1774 (((ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) + (PAGE_SIZE - 1))/PAGE_SIZE)
1776 #define ADV_CARRIER_BUFSIZE \
1777 ((ADV_CARRIER_COUNT + ADV_CARRIER_NUM_PAGE_CROSSING) * sizeof(ADV_CARR_T))
1780 * ASC_SCSI_REQ_Q 'a_flag' definitions
1782 * The Adv Library should limit use to the lower nibble (4 bits) of
1783 * a_flag. Drivers are free to use the upper nibble (4 bits) of a_flag.
1785 #define ADV_POLL_REQUEST 0x01 /* poll for request completion */
1786 #define ADV_SCSIQ_DONE 0x02 /* request done */
1787 #define ADV_DONT_RETRY 0x08 /* don't do retry */
1789 #define ADV_CHIP_ASC3550 0x01 /* Ultra-Wide IC */
1790 #define ADV_CHIP_ASC38C0800 0x02 /* Ultra2-Wide/LVD IC */
1791 #define ADV_CHIP_ASC38C1600 0x03 /* Ultra3-Wide/LVD2 IC */
1794 * Adapter temporary configuration structure
1796 * This structure can be discarded after initialization. Don't add
1797 * fields here needed after initialization.
1799 * Field naming convention:
1801 * *_enable indicates the field enables or disables a feature. The
1802 * value of the field is never reset.
1804 typedef struct adv_dvc_cfg {
1805 ushort disc_enable; /* enable disconnection */
1806 uchar chip_version; /* chip version */
1807 uchar termination; /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1808 ushort control_flag; /* Microcode Control Flag */
1809 ushort mcode_date; /* Microcode date */
1810 ushort mcode_version; /* Microcode version */
1811 ushort serial1; /* EEPROM serial number word 1 */
1812 ushort serial2; /* EEPROM serial number word 2 */
1813 ushort serial3; /* EEPROM serial number word 3 */
1814 } ADV_DVC_CFG;
1816 struct adv_dvc_var;
1817 struct adv_scsi_req_q;
1819 typedef struct asc_sg_block {
1820 uchar reserved1;
1821 uchar reserved2;
1822 uchar reserved3;
1823 uchar sg_cnt; /* Valid entries in block. */
1824 ADV_PADDR sg_ptr; /* Pointer to next sg block. */
1825 struct {
1826 ADV_PADDR sg_addr; /* SG element address. */
1827 ADV_DCNT sg_count; /* SG element count. */
1828 } sg_list[NO_OF_SG_PER_BLOCK];
1829 } ADV_SG_BLOCK;
1832 * ADV_SCSI_REQ_Q - microcode request structure
1834 * All fields in this structure up to byte 60 are used by the microcode.
1835 * The microcode makes assumptions about the size and ordering of fields
1836 * in this structure. Do not change the structure definition here without
1837 * coordinating the change with the microcode.
1839 * All fields accessed by microcode must be maintained in little_endian
1840 * order.
1842 typedef struct adv_scsi_req_q {
1843 uchar cntl; /* Ucode flags and state (ASC_MC_QC_*). */
1844 uchar target_cmd;
1845 uchar target_id; /* Device target identifier. */
1846 uchar target_lun; /* Device target logical unit number. */
1847 ADV_PADDR data_addr; /* Data buffer physical address. */
1848 ADV_DCNT data_cnt; /* Data count. Ucode sets to residual. */
1849 ADV_PADDR sense_addr;
1850 ADV_PADDR carr_pa;
1851 uchar mflag;
1852 uchar sense_len;
1853 uchar cdb_len; /* SCSI CDB length. Must <= 16 bytes. */
1854 uchar scsi_cntl;
1855 uchar done_status; /* Completion status. */
1856 uchar scsi_status; /* SCSI status byte. */
1857 uchar host_status; /* Ucode host status. */
1858 uchar sg_working_ix;
1859 uchar cdb[12]; /* SCSI CDB bytes 0-11. */
1860 ADV_PADDR sg_real_addr; /* SG list physical address. */
1861 ADV_PADDR scsiq_rptr;
1862 uchar cdb16[4]; /* SCSI CDB bytes 12-15. */
1863 ADV_VADDR scsiq_ptr;
1864 ADV_VADDR carr_va;
1866 * End of microcode structure - 60 bytes. The rest of the structure
1867 * is used by the Adv Library and ignored by the microcode.
1869 ADV_VADDR srb_ptr;
1870 ADV_SG_BLOCK *sg_list_ptr; /* SG list virtual address. */
1871 char *vdata_addr; /* Data buffer virtual address. */
1872 uchar a_flag;
1873 uchar pad[2]; /* Pad out to a word boundary. */
1874 } ADV_SCSI_REQ_Q;
1877 * The following two structures are used to process Wide Board requests.
1879 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1880 * and microcode with the ADV_SCSI_REQ_Q field 'srb_ptr' pointing to the
1881 * adv_req_t. The adv_req_t structure 'cmndp' field in turn points to the
1882 * Mid-Level SCSI request structure.
1884 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1885 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1886 * up to 255 scatter-gather elements may be used per request or
1887 * ADV_SCSI_REQ_Q.
1889 * Both structures must be 32 byte aligned.
1891 typedef struct adv_sgblk {
1892 ADV_SG_BLOCK sg_block; /* Sgblock structure. */
1893 uchar align[32]; /* Sgblock structure padding. */
1894 struct adv_sgblk *next_sgblkp; /* Next scatter-gather structure. */
1895 } adv_sgblk_t;
1897 typedef struct adv_req {
1898 ADV_SCSI_REQ_Q scsi_req_q; /* Adv Library request structure. */
1899 uchar align[32]; /* Request structure padding. */
1900 struct scsi_cmnd *cmndp; /* Mid-Level SCSI command pointer. */
1901 adv_sgblk_t *sgblkp; /* Adv Library scatter-gather pointer. */
1902 struct adv_req *next_reqp; /* Next Request Structure. */
1903 } adv_req_t;
1906 * Adapter operation variable structure.
1908 * One structure is required per host adapter.
1910 * Field naming convention:
1912 * *_able indicates both whether a feature should be enabled or disabled
1913 * and whether a device isi capable of the feature. At initialization
1914 * this field may be set, but later if a device is found to be incapable
1915 * of the feature, the field is cleared.
1917 typedef struct adv_dvc_var {
1918 AdvPortAddr iop_base; /* I/O port address */
1919 ushort err_code; /* fatal error code */
1920 ushort bios_ctrl; /* BIOS control word, EEPROM word 12 */
1921 ushort wdtr_able; /* try WDTR for a device */
1922 ushort sdtr_able; /* try SDTR for a device */
1923 ushort ultra_able; /* try SDTR Ultra speed for a device */
1924 ushort sdtr_speed1; /* EEPROM SDTR Speed for TID 0-3 */
1925 ushort sdtr_speed2; /* EEPROM SDTR Speed for TID 4-7 */
1926 ushort sdtr_speed3; /* EEPROM SDTR Speed for TID 8-11 */
1927 ushort sdtr_speed4; /* EEPROM SDTR Speed for TID 12-15 */
1928 ushort tagqng_able; /* try tagged queuing with a device */
1929 ushort ppr_able; /* PPR message capable per TID bitmask. */
1930 uchar max_dvc_qng; /* maximum number of tagged commands per device */
1931 ushort start_motor; /* start motor command allowed */
1932 uchar scsi_reset_wait; /* delay in seconds after scsi bus reset */
1933 uchar chip_no; /* should be assigned by caller */
1934 uchar max_host_qng; /* maximum number of Q'ed command allowed */
1935 ushort no_scam; /* scam_tolerant of EEPROM */
1936 struct asc_board *drv_ptr; /* driver pointer to private structure */
1937 uchar chip_scsi_id; /* chip SCSI target ID */
1938 uchar chip_type;
1939 uchar bist_err_code;
1940 ADV_CARR_T *carrier_buf;
1941 ADV_CARR_T *carr_freelist; /* Carrier free list. */
1942 ADV_CARR_T *icq_sp; /* Initiator command queue stopper pointer. */
1943 ADV_CARR_T *irq_sp; /* Initiator response queue stopper pointer. */
1944 ushort carr_pending_cnt; /* Count of pending carriers. */
1945 struct adv_req *orig_reqp; /* adv_req_t memory block. */
1947 * Note: The following fields will not be used after initialization. The
1948 * driver may discard the buffer after initialization is done.
1950 ADV_DVC_CFG *cfg; /* temporary configuration structure */
1951 } ADV_DVC_VAR;
1954 * Microcode idle loop commands
1956 #define IDLE_CMD_COMPLETED 0
1957 #define IDLE_CMD_STOP_CHIP 0x0001
1958 #define IDLE_CMD_STOP_CHIP_SEND_INT 0x0002
1959 #define IDLE_CMD_SEND_INT 0x0004
1960 #define IDLE_CMD_ABORT 0x0008
1961 #define IDLE_CMD_DEVICE_RESET 0x0010
1962 #define IDLE_CMD_SCSI_RESET_START 0x0020 /* Assert SCSI Bus Reset */
1963 #define IDLE_CMD_SCSI_RESET_END 0x0040 /* Deassert SCSI Bus Reset */
1964 #define IDLE_CMD_SCSIREQ 0x0080
1966 #define IDLE_CMD_STATUS_SUCCESS 0x0001
1967 #define IDLE_CMD_STATUS_FAILURE 0x0002
1970 * AdvSendIdleCmd() flag definitions.
1972 #define ADV_NOWAIT 0x01
1975 * Wait loop time out values.
1977 #define SCSI_WAIT_100_MSEC 100UL /* 100 milliseconds */
1978 #define SCSI_US_PER_MSEC 1000 /* microseconds per millisecond */
1979 #define SCSI_MAX_RETRY 10 /* retry count */
1981 #define ADV_ASYNC_RDMA_FAILURE 0x01 /* Fatal RDMA failure. */
1982 #define ADV_ASYNC_SCSI_BUS_RESET_DET 0x02 /* Detected SCSI Bus Reset. */
1983 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03 /* Carrier Ready failure. */
1984 #define ADV_RDMA_IN_CARR_AND_Q_INVALID 0x04 /* RDMAed-in data invalid. */
1986 #define ADV_HOST_SCSI_BUS_RESET 0x80 /* Host Initiated SCSI Bus Reset. */
1988 /* Read byte from a register. */
1989 #define AdvReadByteRegister(iop_base, reg_off) \
1990 (ADV_MEM_READB((iop_base) + (reg_off)))
1992 /* Write byte to a register. */
1993 #define AdvWriteByteRegister(iop_base, reg_off, byte) \
1994 (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1996 /* Read word (2 bytes) from a register. */
1997 #define AdvReadWordRegister(iop_base, reg_off) \
1998 (ADV_MEM_READW((iop_base) + (reg_off)))
2000 /* Write word (2 bytes) to a register. */
2001 #define AdvWriteWordRegister(iop_base, reg_off, word) \
2002 (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
2004 /* Write dword (4 bytes) to a register. */
2005 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \
2006 (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
2008 /* Read byte from LRAM. */
2009 #define AdvReadByteLram(iop_base, addr, byte) \
2010 do { \
2011 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2012 (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
2013 } while (0)
2015 /* Write byte to LRAM. */
2016 #define AdvWriteByteLram(iop_base, addr, byte) \
2017 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2018 ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
2020 /* Read word (2 bytes) from LRAM. */
2021 #define AdvReadWordLram(iop_base, addr, word) \
2022 do { \
2023 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2024 (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
2025 } while (0)
2027 /* Write word (2 bytes) to LRAM. */
2028 #define AdvWriteWordLram(iop_base, addr, word) \
2029 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2030 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2032 /* Write little-endian double word (4 bytes) to LRAM */
2033 /* Because of unspecified C language ordering don't use auto-increment. */
2034 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
2035 ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2036 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2037 cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
2038 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
2039 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2040 cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
2042 /* Read word (2 bytes) from LRAM assuming that the address is already set. */
2043 #define AdvReadWordAutoIncLram(iop_base) \
2044 (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
2046 /* Write word (2 bytes) to LRAM assuming that the address is already set. */
2047 #define AdvWriteWordAutoIncLram(iop_base, word) \
2048 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2051 * Define macro to check for Condor signature.
2053 * Evaluate to ADV_TRUE if a Condor chip is found the specified port
2054 * address 'iop_base'. Otherwise evalue to ADV_FALSE.
2056 #define AdvFindSignature(iop_base) \
2057 (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
2058 ADV_CHIP_ID_BYTE) && \
2059 (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
2060 ADV_CHIP_ID_WORD)) ? ADV_TRUE : ADV_FALSE)
2063 * Define macro to Return the version number of the chip at 'iop_base'.
2065 * The second parameter 'bus_type' is currently unused.
2067 #define AdvGetChipVersion(iop_base, bus_type) \
2068 AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
2071 * Abort an SRB in the chip's RISC Memory. The 'srb_ptr' argument must
2072 * match the ASC_SCSI_REQ_Q 'srb_ptr' field.
2074 * If the request has not yet been sent to the device it will simply be
2075 * aborted from RISC memory. If the request is disconnected it will be
2076 * aborted on reselection by sending an Abort Message to the target ID.
2078 * Return value:
2079 * ADV_TRUE(1) - Queue was successfully aborted.
2080 * ADV_FALSE(0) - Queue was not found on the active queue list.
2082 #define AdvAbortQueue(asc_dvc, scsiq) \
2083 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
2084 (ADV_DCNT) (scsiq))
2087 * Send a Bus Device Reset Message to the specified target ID.
2089 * All outstanding commands will be purged if sending the
2090 * Bus Device Reset Message is successful.
2092 * Return Value:
2093 * ADV_TRUE(1) - All requests on the target are purged.
2094 * ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
2095 * are not purged.
2097 #define AdvResetDevice(asc_dvc, target_id) \
2098 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \
2099 (ADV_DCNT) (target_id))
2102 * SCSI Wide Type definition.
2104 #define ADV_SCSI_BIT_ID_TYPE ushort
2107 * AdvInitScsiTarget() 'cntl_flag' options.
2109 #define ADV_SCAN_LUN 0x01
2110 #define ADV_CAPINFO_NOLUN 0x02
2113 * Convert target id to target id bit mask.
2115 #define ADV_TID_TO_TIDMASK(tid) (0x01 << ((tid) & ADV_MAX_TID))
2118 * ASC_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2121 #define QD_NO_STATUS 0x00 /* Request not completed yet. */
2122 #define QD_NO_ERROR 0x01
2123 #define QD_ABORTED_BY_HOST 0x02
2124 #define QD_WITH_ERROR 0x04
2126 #define QHSTA_NO_ERROR 0x00
2127 #define QHSTA_M_SEL_TIMEOUT 0x11
2128 #define QHSTA_M_DATA_OVER_RUN 0x12
2129 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2130 #define QHSTA_M_QUEUE_ABORTED 0x15
2131 #define QHSTA_M_SXFR_SDMA_ERR 0x16 /* SXFR_STATUS SCSI DMA Error */
2132 #define QHSTA_M_SXFR_SXFR_PERR 0x17 /* SXFR_STATUS SCSI Bus Parity Error */
2133 #define QHSTA_M_RDMA_PERR 0x18 /* RISC PCI DMA parity error */
2134 #define QHSTA_M_SXFR_OFF_UFLW 0x19 /* SXFR_STATUS Offset Underflow */
2135 #define QHSTA_M_SXFR_OFF_OFLW 0x20 /* SXFR_STATUS Offset Overflow */
2136 #define QHSTA_M_SXFR_WD_TMO 0x21 /* SXFR_STATUS Watchdog Timeout */
2137 #define QHSTA_M_SXFR_DESELECTED 0x22 /* SXFR_STATUS Deselected */
2138 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2139 #define QHSTA_M_SXFR_XFR_OFLW 0x12 /* SXFR_STATUS Transfer Overflow */
2140 #define QHSTA_M_SXFR_XFR_PH_ERR 0x24 /* SXFR_STATUS Transfer Phase Error */
2141 #define QHSTA_M_SXFR_UNKNOWN_ERROR 0x25 /* SXFR_STATUS Unknown Error */
2142 #define QHSTA_M_SCSI_BUS_RESET 0x30 /* Request aborted from SBR */
2143 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31 /* Request aborted from unsol. SBR */
2144 #define QHSTA_M_BUS_DEVICE_RESET 0x32 /* Request aborted from BDR */
2145 #define QHSTA_M_DIRECTION_ERR 0x35 /* Data Phase mismatch */
2146 #define QHSTA_M_DIRECTION_ERR_HUNG 0x36 /* Data Phase mismatch and bus hang */
2147 #define QHSTA_M_WTM_TIMEOUT 0x41
2148 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
2149 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
2150 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2151 #define QHSTA_M_INVALID_DEVICE 0x45 /* Bad target ID */
2152 #define QHSTA_M_FROZEN_TIDQ 0x46 /* TID Queue frozen. */
2153 #define QHSTA_M_SGBACKUP_ERROR 0x47 /* Scatter-Gather backup error */
2155 /* Return the address that is aligned at the next doubleword >= to 'addr'. */
2156 #define ADV_8BALIGN(addr) (((ulong) (addr) + 0x7) & ~0x7)
2157 #define ADV_16BALIGN(addr) (((ulong) (addr) + 0xF) & ~0xF)
2158 #define ADV_32BALIGN(addr) (((ulong) (addr) + 0x1F) & ~0x1F)
2161 * Total contiguous memory needed for driver SG blocks.
2163 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2164 * number of scatter-gather elements the driver supports in a
2165 * single request.
2168 #define ADV_SG_LIST_MAX_BYTE_SIZE \
2169 (sizeof(ADV_SG_BLOCK) * \
2170 ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2172 /* struct asc_board flags */
2173 #define ASC_IS_WIDE_BOARD 0x04 /* AdvanSys Wide Board */
2175 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2177 #define NO_ISA_DMA 0xff /* No ISA DMA Channel Used */
2179 #define ASC_INFO_SIZE 128 /* advansys_info() line size */
2181 /* Asc Library return codes */
2182 #define ASC_TRUE 1
2183 #define ASC_FALSE 0
2184 #define ASC_NOERROR 1
2185 #define ASC_BUSY 0
2186 #define ASC_ERROR (-1)
2188 /* struct scsi_cmnd function return codes */
2189 #define STATUS_BYTE(byte) (byte)
2190 #define MSG_BYTE(byte) ((byte) << 8)
2191 #define HOST_BYTE(byte) ((byte) << 16)
2192 #define DRIVER_BYTE(byte) ((byte) << 24)
2194 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2195 #ifndef ADVANSYS_STATS
2196 #define ASC_STATS_ADD(shost, counter, count)
2197 #else /* ADVANSYS_STATS */
2198 #define ASC_STATS_ADD(shost, counter, count) \
2199 (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2200 #endif /* ADVANSYS_STATS */
2202 /* If the result wraps when calculating tenths, return 0. */
2203 #define ASC_TENTHS(num, den) \
2204 (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2205 0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2208 * Display a message to the console.
2210 #define ASC_PRINT(s) \
2212 printk("advansys: "); \
2213 printk(s); \
2216 #define ASC_PRINT1(s, a1) \
2218 printk("advansys: "); \
2219 printk((s), (a1)); \
2222 #define ASC_PRINT2(s, a1, a2) \
2224 printk("advansys: "); \
2225 printk((s), (a1), (a2)); \
2228 #define ASC_PRINT3(s, a1, a2, a3) \
2230 printk("advansys: "); \
2231 printk((s), (a1), (a2), (a3)); \
2234 #define ASC_PRINT4(s, a1, a2, a3, a4) \
2236 printk("advansys: "); \
2237 printk((s), (a1), (a2), (a3), (a4)); \
2240 #ifndef ADVANSYS_DEBUG
2242 #define ASC_DBG(lvl, s...)
2243 #define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2244 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2245 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2246 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2247 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2248 #define ASC_DBG_PRT_HEX(lvl, name, start, length)
2249 #define ASC_DBG_PRT_CDB(lvl, cdb, len)
2250 #define ASC_DBG_PRT_SENSE(lvl, sense, len)
2251 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2253 #else /* ADVANSYS_DEBUG */
2256 * Debugging Message Levels:
2257 * 0: Errors Only
2258 * 1: High-Level Tracing
2259 * 2-N: Verbose Tracing
2262 #define ASC_DBG(lvl, format, arg...) { \
2263 if (asc_dbglvl >= (lvl)) \
2264 printk(KERN_DEBUG "%s: %s: " format, DRV_NAME, \
2265 __func__ , ## arg); \
2268 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2270 if (asc_dbglvl >= (lvl)) { \
2271 asc_prt_scsi_host(s); \
2275 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2277 if (asc_dbglvl >= (lvl)) { \
2278 asc_prt_asc_scsi_q(scsiqp); \
2282 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2284 if (asc_dbglvl >= (lvl)) { \
2285 asc_prt_asc_qdone_info(qdone); \
2289 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2291 if (asc_dbglvl >= (lvl)) { \
2292 asc_prt_adv_scsi_req_q(scsiqp); \
2296 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2298 if (asc_dbglvl >= (lvl)) { \
2299 asc_prt_hex((name), (start), (length)); \
2303 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2304 ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2306 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2307 ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2309 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2310 ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2311 #endif /* ADVANSYS_DEBUG */
2313 #ifdef ADVANSYS_STATS
2315 /* Per board statistics structure */
2316 struct asc_stats {
2317 /* Driver Entrypoint Statistics */
2318 ADV_DCNT queuecommand; /* # calls to advansys_queuecommand() */
2319 ADV_DCNT reset; /* # calls to advansys_eh_bus_reset() */
2320 ADV_DCNT biosparam; /* # calls to advansys_biosparam() */
2321 ADV_DCNT interrupt; /* # advansys_interrupt() calls */
2322 ADV_DCNT callback; /* # calls to asc/adv_isr_callback() */
2323 ADV_DCNT done; /* # calls to request's scsi_done function */
2324 ADV_DCNT build_error; /* # asc/adv_build_req() ASC_ERROR returns. */
2325 ADV_DCNT adv_build_noreq; /* # adv_build_req() adv_req_t alloc. fail. */
2326 ADV_DCNT adv_build_nosg; /* # adv_build_req() adv_sgblk_t alloc. fail. */
2327 /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2328 ADV_DCNT exe_noerror; /* # ASC_NOERROR returns. */
2329 ADV_DCNT exe_busy; /* # ASC_BUSY returns. */
2330 ADV_DCNT exe_error; /* # ASC_ERROR returns. */
2331 ADV_DCNT exe_unknown; /* # unknown returns. */
2332 /* Data Transfer Statistics */
2333 ADV_DCNT xfer_cnt; /* # I/O requests received */
2334 ADV_DCNT xfer_elem; /* # scatter-gather elements */
2335 ADV_DCNT xfer_sect; /* # 512-byte blocks */
2337 #endif /* ADVANSYS_STATS */
2340 * Structure allocated for each board.
2342 * This structure is allocated by scsi_host_alloc() at the end
2343 * of the 'Scsi_Host' structure starting at the 'hostdata'
2344 * field. It is guaranteed to be allocated from DMA-able memory.
2346 struct asc_board {
2347 struct device *dev;
2348 uint flags; /* Board flags */
2349 unsigned int irq;
2350 union {
2351 ASC_DVC_VAR asc_dvc_var; /* Narrow board */
2352 ADV_DVC_VAR adv_dvc_var; /* Wide board */
2353 } dvc_var;
2354 union {
2355 ASC_DVC_CFG asc_dvc_cfg; /* Narrow board */
2356 ADV_DVC_CFG adv_dvc_cfg; /* Wide board */
2357 } dvc_cfg;
2358 ushort asc_n_io_port; /* Number I/O ports. */
2359 ADV_SCSI_BIT_ID_TYPE init_tidmask; /* Target init./valid mask */
2360 ushort reqcnt[ADV_MAX_TID + 1]; /* Starvation request count */
2361 ADV_SCSI_BIT_ID_TYPE queue_full; /* Queue full mask */
2362 ushort queue_full_cnt[ADV_MAX_TID + 1]; /* Queue full count */
2363 union {
2364 ASCEEP_CONFIG asc_eep; /* Narrow EEPROM config. */
2365 ADVEEP_3550_CONFIG adv_3550_eep; /* 3550 EEPROM config. */
2366 ADVEEP_38C0800_CONFIG adv_38C0800_eep; /* 38C0800 EEPROM config. */
2367 ADVEEP_38C1600_CONFIG adv_38C1600_eep; /* 38C1600 EEPROM config. */
2368 } eep_config;
2369 ulong last_reset; /* Saved last reset time */
2370 /* /proc/scsi/advansys/[0...] */
2371 #ifdef ADVANSYS_STATS
2372 struct asc_stats asc_stats; /* Board statistics */
2373 #endif /* ADVANSYS_STATS */
2375 * The following fields are used only for Narrow Boards.
2377 uchar sdtr_data[ASC_MAX_TID + 1]; /* SDTR information */
2379 * The following fields are used only for Wide Boards.
2381 void __iomem *ioremap_addr; /* I/O Memory remap address. */
2382 ushort ioport; /* I/O Port address. */
2383 adv_req_t *adv_reqp; /* Request structures. */
2384 adv_sgblk_t *adv_sgblkp; /* Scatter-gather structures. */
2385 ushort bios_signature; /* BIOS Signature. */
2386 ushort bios_version; /* BIOS Version. */
2387 ushort bios_codeseg; /* BIOS Code Segment. */
2388 ushort bios_codelen; /* BIOS Code Segment Length. */
2391 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2392 dvc_var.asc_dvc_var)
2393 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2394 dvc_var.adv_dvc_var)
2395 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2397 #ifdef ADVANSYS_DEBUG
2398 static int asc_dbglvl = 3;
2401 * asc_prt_asc_dvc_var()
2403 static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
2405 printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
2407 printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2408 "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
2410 printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
2411 (unsigned)h->init_sdtr);
2413 printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2414 "chip_no 0x%x,\n", (unsigned)h->sdtr_done,
2415 (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
2416 (unsigned)h->chip_no);
2418 printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2419 "%u,\n", (unsigned)h->queue_full_or_busy,
2420 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2422 printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2423 "in_critical_cnt %u,\n", (unsigned)h->is_in_int,
2424 (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
2425 (unsigned)h->in_critical_cnt);
2427 printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2428 "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
2429 (unsigned)h->init_state, (unsigned)h->no_scam,
2430 (unsigned)h->pci_fix_asyn_xfer);
2432 printk(" cfg 0x%lx\n", (ulong)h->cfg);
2436 * asc_prt_asc_dvc_cfg()
2438 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
2440 printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
2442 printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2443 h->can_tagged_qng, h->cmd_qng_enabled);
2444 printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2445 h->disc_enable, h->sdtr_enable);
2447 printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
2448 "chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed,
2449 h->isa_dma_channel, h->chip_version);
2451 printk(" mcode_date 0x%x, mcode_version %d\n",
2452 h->mcode_date, h->mcode_version);
2456 * asc_prt_adv_dvc_var()
2458 * Display an ADV_DVC_VAR structure.
2460 static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
2462 printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
2464 printk(" iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2465 (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
2467 printk(" sdtr_able 0x%x, wdtr_able 0x%x\n",
2468 (unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
2470 printk(" start_motor 0x%x, scsi_reset_wait 0x%x\n",
2471 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2473 printk(" max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%lxn\n",
2474 (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
2475 (ulong)h->carr_freelist);
2477 printk(" icq_sp 0x%lx, irq_sp 0x%lx\n",
2478 (ulong)h->icq_sp, (ulong)h->irq_sp);
2480 printk(" no_scam 0x%x, tagqng_able 0x%x\n",
2481 (unsigned)h->no_scam, (unsigned)h->tagqng_able);
2483 printk(" chip_scsi_id 0x%x, cfg 0x%lx\n",
2484 (unsigned)h->chip_scsi_id, (ulong)h->cfg);
2488 * asc_prt_adv_dvc_cfg()
2490 * Display an ADV_DVC_CFG structure.
2492 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
2494 printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
2496 printk(" disc_enable 0x%x, termination 0x%x\n",
2497 h->disc_enable, h->termination);
2499 printk(" chip_version 0x%x, mcode_date 0x%x\n",
2500 h->chip_version, h->mcode_date);
2502 printk(" mcode_version 0x%x, control_flag 0x%x\n",
2503 h->mcode_version, h->control_flag);
2507 * asc_prt_scsi_host()
2509 static void asc_prt_scsi_host(struct Scsi_Host *s)
2511 struct asc_board *boardp = shost_priv(s);
2513 printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
2514 printk(" host_busy %u, host_no %d, last_reset %d,\n",
2515 s->host_busy, s->host_no, (unsigned)s->last_reset);
2517 printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2518 (ulong)s->base, (ulong)s->io_port, boardp->irq);
2520 printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2521 s->dma_channel, s->this_id, s->can_queue);
2523 printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
2524 s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma);
2526 if (ASC_NARROW_BOARD(boardp)) {
2527 asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
2528 asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
2529 } else {
2530 asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
2531 asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
2536 * asc_prt_hex()
2538 * Print hexadecimal output in 4 byte groupings 32 bytes
2539 * or 8 double-words per line.
2541 static void asc_prt_hex(char *f, uchar *s, int l)
2543 int i;
2544 int j;
2545 int k;
2546 int m;
2548 printk("%s: (%d bytes)\n", f, l);
2550 for (i = 0; i < l; i += 32) {
2552 /* Display a maximum of 8 double-words per line. */
2553 if ((k = (l - i) / 4) >= 8) {
2554 k = 8;
2555 m = 0;
2556 } else {
2557 m = (l - i) % 4;
2560 for (j = 0; j < k; j++) {
2561 printk(" %2.2X%2.2X%2.2X%2.2X",
2562 (unsigned)s[i + (j * 4)],
2563 (unsigned)s[i + (j * 4) + 1],
2564 (unsigned)s[i + (j * 4) + 2],
2565 (unsigned)s[i + (j * 4) + 3]);
2568 switch (m) {
2569 case 0:
2570 default:
2571 break;
2572 case 1:
2573 printk(" %2.2X", (unsigned)s[i + (j * 4)]);
2574 break;
2575 case 2:
2576 printk(" %2.2X%2.2X",
2577 (unsigned)s[i + (j * 4)],
2578 (unsigned)s[i + (j * 4) + 1]);
2579 break;
2580 case 3:
2581 printk(" %2.2X%2.2X%2.2X",
2582 (unsigned)s[i + (j * 4) + 1],
2583 (unsigned)s[i + (j * 4) + 2],
2584 (unsigned)s[i + (j * 4) + 3]);
2585 break;
2588 printk("\n");
2593 * asc_prt_asc_scsi_q()
2595 static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
2597 ASC_SG_HEAD *sgp;
2598 int i;
2600 printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
2602 printk
2603 (" target_ix 0x%x, target_lun %u, srb_ptr 0x%lx, tag_code 0x%x,\n",
2604 q->q2.target_ix, q->q1.target_lun, (ulong)q->q2.srb_ptr,
2605 q->q2.tag_code);
2607 printk
2608 (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2609 (ulong)le32_to_cpu(q->q1.data_addr),
2610 (ulong)le32_to_cpu(q->q1.data_cnt),
2611 (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
2613 printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2614 (ulong)q->cdbptr, q->q2.cdb_len,
2615 (ulong)q->sg_head, q->q1.sg_queue_cnt);
2617 if (q->sg_head) {
2618 sgp = q->sg_head;
2619 printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
2620 printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
2621 sgp->queue_cnt);
2622 for (i = 0; i < sgp->entry_cnt; i++) {
2623 printk(" [%u]: addr 0x%lx, bytes %lu\n",
2624 i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
2625 (ulong)le32_to_cpu(sgp->sg_list[i].bytes));
2632 * asc_prt_asc_qdone_info()
2634 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
2636 printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
2637 printk(" srb_ptr 0x%lx, target_ix %u, cdb_len %u, tag_code %u,\n",
2638 (ulong)q->d2.srb_ptr, q->d2.target_ix, q->d2.cdb_len,
2639 q->d2.tag_code);
2640 printk
2641 (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2642 q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
2646 * asc_prt_adv_sgblock()
2648 * Display an ADV_SG_BLOCK structure.
2650 static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
2652 int i;
2654 printk(" ASC_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2655 (ulong)b, sgblockno);
2656 printk(" sg_cnt %u, sg_ptr 0x%lx\n",
2657 b->sg_cnt, (ulong)le32_to_cpu(b->sg_ptr));
2658 BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
2659 if (b->sg_ptr != 0)
2660 BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
2661 for (i = 0; i < b->sg_cnt; i++) {
2662 printk(" [%u]: sg_addr 0x%lx, sg_count 0x%lx\n",
2663 i, (ulong)b->sg_list[i].sg_addr,
2664 (ulong)b->sg_list[i].sg_count);
2669 * asc_prt_adv_scsi_req_q()
2671 * Display an ADV_SCSI_REQ_Q structure.
2673 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
2675 int sg_blk_cnt;
2676 struct asc_sg_block *sg_ptr;
2678 printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
2680 printk(" target_id %u, target_lun %u, srb_ptr 0x%lx, a_flag 0x%x\n",
2681 q->target_id, q->target_lun, (ulong)q->srb_ptr, q->a_flag);
2683 printk(" cntl 0x%x, data_addr 0x%lx, vdata_addr 0x%lx\n",
2684 q->cntl, (ulong)le32_to_cpu(q->data_addr), (ulong)q->vdata_addr);
2686 printk(" data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2687 (ulong)le32_to_cpu(q->data_cnt),
2688 (ulong)le32_to_cpu(q->sense_addr), q->sense_len);
2690 printk
2691 (" cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2692 q->cdb_len, q->done_status, q->host_status, q->scsi_status);
2694 printk(" sg_working_ix 0x%x, target_cmd %u\n",
2695 q->sg_working_ix, q->target_cmd);
2697 printk(" scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2698 (ulong)le32_to_cpu(q->scsiq_rptr),
2699 (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
2701 /* Display the request's ADV_SG_BLOCK structures. */
2702 if (q->sg_list_ptr != NULL) {
2703 sg_blk_cnt = 0;
2704 while (1) {
2706 * 'sg_ptr' is a physical address. Convert it to a virtual
2707 * address by indexing 'sg_blk_cnt' into the virtual address
2708 * array 'sg_list_ptr'.
2710 * XXX - Assumes all SG physical blocks are virtually contiguous.
2712 sg_ptr =
2713 &(((ADV_SG_BLOCK *)(q->sg_list_ptr))[sg_blk_cnt]);
2714 asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
2715 if (sg_ptr->sg_ptr == 0) {
2716 break;
2718 sg_blk_cnt++;
2722 #endif /* ADVANSYS_DEBUG */
2725 * The advansys chip/microcode contains a 32-bit identifier for each command
2726 * known as the 'srb'. I don't know what it stands for. The driver used
2727 * to encode the scsi_cmnd pointer by calling virt_to_bus and retrieve it
2728 * with bus_to_virt. Now the driver keeps a per-host map of integers to
2729 * pointers. It auto-expands when full, unless it can't allocate memory.
2730 * Note that an srb of 0 is treated specially by the chip/firmware, hence
2731 * the return of i+1 in this routine, and the corresponding subtraction in
2732 * the inverse routine.
2734 #define BAD_SRB 0
2735 static u32 advansys_ptr_to_srb(struct asc_dvc_var *asc_dvc, void *ptr)
2737 int i;
2738 void **new_ptr;
2740 for (i = 0; i < asc_dvc->ptr_map_count; i++) {
2741 if (!asc_dvc->ptr_map[i])
2742 goto out;
2745 if (asc_dvc->ptr_map_count == 0)
2746 asc_dvc->ptr_map_count = 1;
2747 else
2748 asc_dvc->ptr_map_count *= 2;
2750 new_ptr = krealloc(asc_dvc->ptr_map,
2751 asc_dvc->ptr_map_count * sizeof(void *), GFP_ATOMIC);
2752 if (!new_ptr)
2753 return BAD_SRB;
2754 asc_dvc->ptr_map = new_ptr;
2755 out:
2756 ASC_DBG(3, "Putting ptr %p into array offset %d\n", ptr, i);
2757 asc_dvc->ptr_map[i] = ptr;
2758 return i + 1;
2761 static void * advansys_srb_to_ptr(struct asc_dvc_var *asc_dvc, u32 srb)
2763 void *ptr;
2765 srb--;
2766 if (srb >= asc_dvc->ptr_map_count) {
2767 printk("advansys: bad SRB %u, max %u\n", srb,
2768 asc_dvc->ptr_map_count);
2769 return NULL;
2771 ptr = asc_dvc->ptr_map[srb];
2772 asc_dvc->ptr_map[srb] = NULL;
2773 ASC_DBG(3, "Returning ptr %p from array offset %d\n", ptr, srb);
2774 return ptr;
2778 * advansys_info()
2780 * Return suitable for printing on the console with the argument
2781 * adapter's configuration information.
2783 * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2784 * otherwise the static 'info' array will be overrun.
2786 static const char *advansys_info(struct Scsi_Host *shost)
2788 static char info[ASC_INFO_SIZE];
2789 struct asc_board *boardp = shost_priv(shost);
2790 ASC_DVC_VAR *asc_dvc_varp;
2791 ADV_DVC_VAR *adv_dvc_varp;
2792 char *busname;
2793 char *widename = NULL;
2795 if (ASC_NARROW_BOARD(boardp)) {
2796 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2797 ASC_DBG(1, "begin\n");
2798 if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2799 if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) ==
2800 ASC_IS_ISAPNP) {
2801 busname = "ISA PnP";
2802 } else {
2803 busname = "ISA";
2805 sprintf(info,
2806 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
2807 ASC_VERSION, busname,
2808 (ulong)shost->io_port,
2809 (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2810 boardp->irq, shost->dma_channel);
2811 } else {
2812 if (asc_dvc_varp->bus_type & ASC_IS_VL) {
2813 busname = "VL";
2814 } else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
2815 busname = "EISA";
2816 } else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
2817 if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
2818 == ASC_IS_PCI_ULTRA) {
2819 busname = "PCI Ultra";
2820 } else {
2821 busname = "PCI";
2823 } else {
2824 busname = "?";
2825 shost_printk(KERN_ERR, shost, "unknown bus "
2826 "type %d\n", asc_dvc_varp->bus_type);
2828 sprintf(info,
2829 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2830 ASC_VERSION, busname, (ulong)shost->io_port,
2831 (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2832 boardp->irq);
2834 } else {
2836 * Wide Adapter Information
2838 * Memory-mapped I/O is used instead of I/O space to access
2839 * the adapter, but display the I/O Port range. The Memory
2840 * I/O address is displayed through the driver /proc file.
2842 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2843 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2844 widename = "Ultra-Wide";
2845 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2846 widename = "Ultra2-Wide";
2847 } else {
2848 widename = "Ultra3-Wide";
2850 sprintf(info,
2851 "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2852 ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
2853 (ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
2855 BUG_ON(strlen(info) >= ASC_INFO_SIZE);
2856 ASC_DBG(1, "end\n");
2857 return info;
2860 #ifdef CONFIG_PROC_FS
2863 * asc_prt_board_devices()
2865 * Print driver information for devices attached to the board.
2867 static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost)
2869 struct asc_board *boardp = shost_priv(shost);
2870 int chip_scsi_id;
2871 int i;
2873 seq_printf(m,
2874 "\nDevice Information for AdvanSys SCSI Host %d:\n",
2875 shost->host_no);
2877 if (ASC_NARROW_BOARD(boardp)) {
2878 chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
2879 } else {
2880 chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
2883 seq_printf(m, "Target IDs Detected:");
2884 for (i = 0; i <= ADV_MAX_TID; i++) {
2885 if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i))
2886 seq_printf(m, " %X,", i);
2888 seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id);
2892 * Display Wide Board BIOS Information.
2894 static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost)
2896 struct asc_board *boardp = shost_priv(shost);
2897 ushort major, minor, letter;
2899 seq_printf(m, "\nROM BIOS Version: ");
2902 * If the BIOS saved a valid signature, then fill in
2903 * the BIOS code segment base address.
2905 if (boardp->bios_signature != 0x55AA) {
2906 seq_printf(m, "Disabled or Pre-3.1\n");
2907 seq_printf(m,
2908 "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n");
2909 seq_printf(m,
2910 "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2911 } else {
2912 major = (boardp->bios_version >> 12) & 0xF;
2913 minor = (boardp->bios_version >> 8) & 0xF;
2914 letter = (boardp->bios_version & 0xFF);
2916 seq_printf(m, "%d.%d%c\n",
2917 major, minor,
2918 letter >= 26 ? '?' : letter + 'A');
2920 * Current available ROM BIOS release is 3.1I for UW
2921 * and 3.2I for U2W. This code doesn't differentiate
2922 * UW and U2W boards.
2924 if (major < 3 || (major <= 3 && minor < 1) ||
2925 (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
2926 seq_printf(m,
2927 "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n");
2928 seq_printf(m,
2929 "ftp://ftp.connectcom.net/pub\n");
2935 * Add serial number to information bar if signature AAh
2936 * is found in at bit 15-9 (7 bits) of word 1.
2938 * Serial Number consists fo 12 alpha-numeric digits.
2940 * 1 - Product type (A,B,C,D..) Word0: 15-13 (3 bits)
2941 * 2 - MFG Location (A,B,C,D..) Word0: 12-10 (3 bits)
2942 * 3-4 - Product ID (0-99) Word0: 9-0 (10 bits)
2943 * 5 - Product revision (A-J) Word0: " "
2945 * Signature Word1: 15-9 (7 bits)
2946 * 6 - Year (0-9) Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
2947 * 7-8 - Week of the year (1-52) Word1: 5-0 (6 bits)
2949 * 9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
2951 * Note 1: Only production cards will have a serial number.
2953 * Note 2: Signature is most significant 7 bits (0xFE).
2955 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
2957 static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
2959 ushort w, num;
2961 if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
2962 return ASC_FALSE;
2963 } else {
2965 * First word - 6 digits.
2967 w = serialnum[0];
2969 /* Product type - 1st digit. */
2970 if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
2971 /* Product type is P=Prototype */
2972 *cp += 0x8;
2974 cp++;
2976 /* Manufacturing location - 2nd digit. */
2977 *cp++ = 'A' + ((w & 0x1C00) >> 10);
2979 /* Product ID - 3rd, 4th digits. */
2980 num = w & 0x3FF;
2981 *cp++ = '0' + (num / 100);
2982 num %= 100;
2983 *cp++ = '0' + (num / 10);
2985 /* Product revision - 5th digit. */
2986 *cp++ = 'A' + (num % 10);
2989 * Second word
2991 w = serialnum[1];
2994 * Year - 6th digit.
2996 * If bit 15 of third word is set, then the
2997 * last digit of the year is greater than 7.
2999 if (serialnum[2] & 0x8000) {
3000 *cp++ = '8' + ((w & 0x1C0) >> 6);
3001 } else {
3002 *cp++ = '0' + ((w & 0x1C0) >> 6);
3005 /* Week of year - 7th, 8th digits. */
3006 num = w & 0x003F;
3007 *cp++ = '0' + num / 10;
3008 num %= 10;
3009 *cp++ = '0' + num;
3012 * Third word
3014 w = serialnum[2] & 0x7FFF;
3016 /* Serial number - 9th digit. */
3017 *cp++ = 'A' + (w / 1000);
3019 /* 10th, 11th, 12th digits. */
3020 num = w % 1000;
3021 *cp++ = '0' + num / 100;
3022 num %= 100;
3023 *cp++ = '0' + num / 10;
3024 num %= 10;
3025 *cp++ = '0' + num;
3027 *cp = '\0'; /* Null Terminate the string. */
3028 return ASC_TRUE;
3033 * asc_prt_asc_board_eeprom()
3035 * Print board EEPROM configuration.
3037 static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
3039 struct asc_board *boardp = shost_priv(shost);
3040 ASC_DVC_VAR *asc_dvc_varp;
3041 ASCEEP_CONFIG *ep;
3042 int i;
3043 #ifdef CONFIG_ISA
3044 int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
3045 #endif /* CONFIG_ISA */
3046 uchar serialstr[13];
3048 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
3049 ep = &boardp->eep_config.asc_eep;
3051 seq_printf(m,
3052 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3053 shost->host_no);
3055 if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
3056 == ASC_TRUE)
3057 seq_printf(m, " Serial Number: %s\n", serialstr);
3058 else if (ep->adapter_info[5] == 0xBB)
3059 seq_printf(m,
3060 " Default Settings Used for EEPROM-less Adapter.\n");
3061 else
3062 seq_printf(m,
3063 " Serial Number Signature Not Present.\n");
3065 seq_printf(m,
3066 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3067 ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
3068 ep->max_tag_qng);
3070 seq_printf(m,
3071 " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
3073 seq_printf(m, " Target ID: ");
3074 for (i = 0; i <= ASC_MAX_TID; i++)
3075 seq_printf(m, " %d", i);
3076 seq_printf(m, "\n");
3078 seq_printf(m, " Disconnects: ");
3079 for (i = 0; i <= ASC_MAX_TID; i++)
3080 seq_printf(m, " %c",
3081 (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3082 seq_printf(m, "\n");
3084 seq_printf(m, " Command Queuing: ");
3085 for (i = 0; i <= ASC_MAX_TID; i++)
3086 seq_printf(m, " %c",
3087 (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3088 seq_printf(m, "\n");
3090 seq_printf(m, " Start Motor: ");
3091 for (i = 0; i <= ASC_MAX_TID; i++)
3092 seq_printf(m, " %c",
3093 (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3094 seq_printf(m, "\n");
3096 seq_printf(m, " Synchronous Transfer:");
3097 for (i = 0; i <= ASC_MAX_TID; i++)
3098 seq_printf(m, " %c",
3099 (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3100 seq_printf(m, "\n");
3102 #ifdef CONFIG_ISA
3103 if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
3104 seq_printf(m,
3105 " Host ISA DMA speed: %d MB/S\n",
3106 isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]);
3108 #endif /* CONFIG_ISA */
3112 * asc_prt_adv_board_eeprom()
3114 * Print board EEPROM configuration.
3116 static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
3118 struct asc_board *boardp = shost_priv(shost);
3119 ADV_DVC_VAR *adv_dvc_varp;
3120 int i;
3121 char *termstr;
3122 uchar serialstr[13];
3123 ADVEEP_3550_CONFIG *ep_3550 = NULL;
3124 ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
3125 ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
3126 ushort word;
3127 ushort *wordp;
3128 ushort sdtr_speed = 0;
3130 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
3131 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3132 ep_3550 = &boardp->eep_config.adv_3550_eep;
3133 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3134 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
3135 } else {
3136 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
3139 seq_printf(m,
3140 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3141 shost->host_no);
3143 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3144 wordp = &ep_3550->serial_number_word1;
3145 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3146 wordp = &ep_38C0800->serial_number_word1;
3147 } else {
3148 wordp = &ep_38C1600->serial_number_word1;
3151 if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE)
3152 seq_printf(m, " Serial Number: %s\n", serialstr);
3153 else
3154 seq_printf(m, " Serial Number Signature Not Present.\n");
3156 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
3157 seq_printf(m,
3158 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3159 ep_3550->adapter_scsi_id,
3160 ep_3550->max_host_qng, ep_3550->max_dvc_qng);
3161 else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
3162 seq_printf(m,
3163 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3164 ep_38C0800->adapter_scsi_id,
3165 ep_38C0800->max_host_qng,
3166 ep_38C0800->max_dvc_qng);
3167 else
3168 seq_printf(m,
3169 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3170 ep_38C1600->adapter_scsi_id,
3171 ep_38C1600->max_host_qng,
3172 ep_38C1600->max_dvc_qng);
3173 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3174 word = ep_3550->termination;
3175 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3176 word = ep_38C0800->termination_lvd;
3177 } else {
3178 word = ep_38C1600->termination_lvd;
3180 switch (word) {
3181 case 1:
3182 termstr = "Low Off/High Off";
3183 break;
3184 case 2:
3185 termstr = "Low Off/High On";
3186 break;
3187 case 3:
3188 termstr = "Low On/High On";
3189 break;
3190 default:
3191 case 0:
3192 termstr = "Automatic";
3193 break;
3196 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
3197 seq_printf(m,
3198 " termination: %u (%s), bios_ctrl: 0x%x\n",
3199 ep_3550->termination, termstr,
3200 ep_3550->bios_ctrl);
3201 else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
3202 seq_printf(m,
3203 " termination: %u (%s), bios_ctrl: 0x%x\n",
3204 ep_38C0800->termination_lvd, termstr,
3205 ep_38C0800->bios_ctrl);
3206 else
3207 seq_printf(m,
3208 " termination: %u (%s), bios_ctrl: 0x%x\n",
3209 ep_38C1600->termination_lvd, termstr,
3210 ep_38C1600->bios_ctrl);
3212 seq_printf(m, " Target ID: ");
3213 for (i = 0; i <= ADV_MAX_TID; i++)
3214 seq_printf(m, " %X", i);
3215 seq_printf(m, "\n");
3217 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3218 word = ep_3550->disc_enable;
3219 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3220 word = ep_38C0800->disc_enable;
3221 } else {
3222 word = ep_38C1600->disc_enable;
3224 seq_printf(m, " Disconnects: ");
3225 for (i = 0; i <= ADV_MAX_TID; i++)
3226 seq_printf(m, " %c",
3227 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3228 seq_printf(m, "\n");
3230 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3231 word = ep_3550->tagqng_able;
3232 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3233 word = ep_38C0800->tagqng_able;
3234 } else {
3235 word = ep_38C1600->tagqng_able;
3237 seq_printf(m, " Command Queuing: ");
3238 for (i = 0; i <= ADV_MAX_TID; i++)
3239 seq_printf(m, " %c",
3240 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3241 seq_printf(m, "\n");
3243 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3244 word = ep_3550->start_motor;
3245 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3246 word = ep_38C0800->start_motor;
3247 } else {
3248 word = ep_38C1600->start_motor;
3250 seq_printf(m, " Start Motor: ");
3251 for (i = 0; i <= ADV_MAX_TID; i++)
3252 seq_printf(m, " %c",
3253 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3254 seq_printf(m, "\n");
3256 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3257 seq_printf(m, " Synchronous Transfer:");
3258 for (i = 0; i <= ADV_MAX_TID; i++)
3259 seq_printf(m, " %c",
3260 (ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
3261 'Y' : 'N');
3262 seq_printf(m, "\n");
3265 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3266 seq_printf(m, " Ultra Transfer: ");
3267 for (i = 0; i <= ADV_MAX_TID; i++)
3268 seq_printf(m, " %c",
3269 (ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i))
3270 ? 'Y' : 'N');
3271 seq_printf(m, "\n");
3274 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3275 word = ep_3550->wdtr_able;
3276 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3277 word = ep_38C0800->wdtr_able;
3278 } else {
3279 word = ep_38C1600->wdtr_able;
3281 seq_printf(m, " Wide Transfer: ");
3282 for (i = 0; i <= ADV_MAX_TID; i++)
3283 seq_printf(m, " %c",
3284 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3285 seq_printf(m, "\n");
3287 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
3288 adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
3289 seq_printf(m,
3290 " Synchronous Transfer Speed (Mhz):\n ");
3291 for (i = 0; i <= ADV_MAX_TID; i++) {
3292 char *speed_str;
3294 if (i == 0) {
3295 sdtr_speed = adv_dvc_varp->sdtr_speed1;
3296 } else if (i == 4) {
3297 sdtr_speed = adv_dvc_varp->sdtr_speed2;
3298 } else if (i == 8) {
3299 sdtr_speed = adv_dvc_varp->sdtr_speed3;
3300 } else if (i == 12) {
3301 sdtr_speed = adv_dvc_varp->sdtr_speed4;
3303 switch (sdtr_speed & ADV_MAX_TID) {
3304 case 0:
3305 speed_str = "Off";
3306 break;
3307 case 1:
3308 speed_str = " 5";
3309 break;
3310 case 2:
3311 speed_str = " 10";
3312 break;
3313 case 3:
3314 speed_str = " 20";
3315 break;
3316 case 4:
3317 speed_str = " 40";
3318 break;
3319 case 5:
3320 speed_str = " 80";
3321 break;
3322 default:
3323 speed_str = "Unk";
3324 break;
3326 seq_printf(m, "%X:%s ", i, speed_str);
3327 if (i == 7)
3328 seq_printf(m, "\n ");
3329 sdtr_speed >>= 4;
3331 seq_printf(m, "\n");
3336 * asc_prt_driver_conf()
3338 static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost)
3340 struct asc_board *boardp = shost_priv(shost);
3341 int chip_scsi_id;
3343 seq_printf(m,
3344 "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3345 shost->host_no);
3347 seq_printf(m,
3348 " host_busy %u, last_reset %lu, max_id %u, max_lun %u, max_channel %u\n",
3349 shost->host_busy, shost->last_reset, shost->max_id,
3350 shost->max_lun, shost->max_channel);
3352 seq_printf(m,
3353 " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3354 shost->unique_id, shost->can_queue, shost->this_id,
3355 shost->sg_tablesize, shost->cmd_per_lun);
3357 seq_printf(m,
3358 " unchecked_isa_dma %d, use_clustering %d\n",
3359 shost->unchecked_isa_dma, shost->use_clustering);
3361 seq_printf(m,
3362 " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n",
3363 boardp->flags, boardp->last_reset, jiffies,
3364 boardp->asc_n_io_port);
3366 seq_printf(m, " io_port 0x%lx\n", shost->io_port);
3368 if (ASC_NARROW_BOARD(boardp)) {
3369 chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
3370 } else {
3371 chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
3376 * asc_prt_asc_board_info()
3378 * Print dynamic board configuration information.
3380 static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost)
3382 struct asc_board *boardp = shost_priv(shost);
3383 int chip_scsi_id;
3384 ASC_DVC_VAR *v;
3385 ASC_DVC_CFG *c;
3386 int i;
3387 int renegotiate = 0;
3389 v = &boardp->dvc_var.asc_dvc_var;
3390 c = &boardp->dvc_cfg.asc_dvc_cfg;
3391 chip_scsi_id = c->chip_scsi_id;
3393 seq_printf(m,
3394 "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3395 shost->host_no);
3397 seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3398 "mcode_version 0x%x, err_code %u\n",
3399 c->chip_version, c->mcode_date, c->mcode_version,
3400 v->err_code);
3402 /* Current number of commands waiting for the host. */
3403 seq_printf(m,
3404 " Total Command Pending: %d\n", v->cur_total_qng);
3406 seq_printf(m, " Command Queuing:");
3407 for (i = 0; i <= ASC_MAX_TID; i++) {
3408 if ((chip_scsi_id == i) ||
3409 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3410 continue;
3412 seq_printf(m, " %X:%c",
3414 (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3416 seq_printf(m, "\n");
3418 /* Current number of commands waiting for a device. */
3419 seq_printf(m, " Command Queue Pending:");
3420 for (i = 0; i <= ASC_MAX_TID; i++) {
3421 if ((chip_scsi_id == i) ||
3422 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3423 continue;
3425 seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]);
3427 seq_printf(m, "\n");
3429 /* Current limit on number of commands that can be sent to a device. */
3430 seq_printf(m, " Command Queue Limit:");
3431 for (i = 0; i <= ASC_MAX_TID; i++) {
3432 if ((chip_scsi_id == i) ||
3433 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3434 continue;
3436 seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]);
3438 seq_printf(m, "\n");
3440 /* Indicate whether the device has returned queue full status. */
3441 seq_printf(m, " Command Queue Full:");
3442 for (i = 0; i <= ASC_MAX_TID; i++) {
3443 if ((chip_scsi_id == i) ||
3444 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3445 continue;
3447 if (boardp->queue_full & ADV_TID_TO_TIDMASK(i))
3448 seq_printf(m, " %X:Y-%d",
3449 i, boardp->queue_full_cnt[i]);
3450 else
3451 seq_printf(m, " %X:N", i);
3453 seq_printf(m, "\n");
3455 seq_printf(m, " Synchronous Transfer:");
3456 for (i = 0; i <= ASC_MAX_TID; i++) {
3457 if ((chip_scsi_id == i) ||
3458 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3459 continue;
3461 seq_printf(m, " %X:%c",
3463 (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3465 seq_printf(m, "\n");
3467 for (i = 0; i <= ASC_MAX_TID; i++) {
3468 uchar syn_period_ix;
3470 if ((chip_scsi_id == i) ||
3471 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3472 ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
3473 continue;
3476 seq_printf(m, " %X:", i);
3478 if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
3479 seq_printf(m, " Asynchronous");
3480 } else {
3481 syn_period_ix =
3482 (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
3485 seq_printf(m,
3486 " Transfer Period Factor: %d (%d.%d Mhz),",
3487 v->sdtr_period_tbl[syn_period_ix],
3488 250 / v->sdtr_period_tbl[syn_period_ix],
3489 ASC_TENTHS(250,
3490 v->sdtr_period_tbl[syn_period_ix]));
3492 seq_printf(m, " REQ/ACK Offset: %d",
3493 boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET);
3496 if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3497 seq_printf(m, "*\n");
3498 renegotiate = 1;
3499 } else {
3500 seq_printf(m, "\n");
3504 if (renegotiate) {
3505 seq_printf(m,
3506 " * = Re-negotiation pending before next command.\n");
3511 * asc_prt_adv_board_info()
3513 * Print dynamic board configuration information.
3515 static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost)
3517 struct asc_board *boardp = shost_priv(shost);
3518 int i;
3519 ADV_DVC_VAR *v;
3520 ADV_DVC_CFG *c;
3521 AdvPortAddr iop_base;
3522 ushort chip_scsi_id;
3523 ushort lramword;
3524 uchar lrambyte;
3525 ushort tagqng_able;
3526 ushort sdtr_able, wdtr_able;
3527 ushort wdtr_done, sdtr_done;
3528 ushort period = 0;
3529 int renegotiate = 0;
3531 v = &boardp->dvc_var.adv_dvc_var;
3532 c = &boardp->dvc_cfg.adv_dvc_cfg;
3533 iop_base = v->iop_base;
3534 chip_scsi_id = v->chip_scsi_id;
3536 seq_printf(m,
3537 "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3538 shost->host_no);
3540 seq_printf(m,
3541 " iop_base 0x%lx, cable_detect: %X, err_code %u\n",
3542 (unsigned long)v->iop_base,
3543 AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT,
3544 v->err_code);
3546 seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3547 "mcode_version 0x%x\n", c->chip_version,
3548 c->mcode_date, c->mcode_version);
3550 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
3551 seq_printf(m, " Queuing Enabled:");
3552 for (i = 0; i <= ADV_MAX_TID; i++) {
3553 if ((chip_scsi_id == i) ||
3554 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3555 continue;
3558 seq_printf(m, " %X:%c",
3560 (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3562 seq_printf(m, "\n");
3564 seq_printf(m, " Queue Limit:");
3565 for (i = 0; i <= ADV_MAX_TID; i++) {
3566 if ((chip_scsi_id == i) ||
3567 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3568 continue;
3571 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
3572 lrambyte);
3574 seq_printf(m, " %X:%d", i, lrambyte);
3576 seq_printf(m, "\n");
3578 seq_printf(m, " Command Pending:");
3579 for (i = 0; i <= ADV_MAX_TID; i++) {
3580 if ((chip_scsi_id == i) ||
3581 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3582 continue;
3585 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
3586 lrambyte);
3588 seq_printf(m, " %X:%d", i, lrambyte);
3590 seq_printf(m, "\n");
3592 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
3593 seq_printf(m, " Wide Enabled:");
3594 for (i = 0; i <= ADV_MAX_TID; i++) {
3595 if ((chip_scsi_id == i) ||
3596 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3597 continue;
3600 seq_printf(m, " %X:%c",
3602 (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3604 seq_printf(m, "\n");
3606 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
3607 seq_printf(m, " Transfer Bit Width:");
3608 for (i = 0; i <= ADV_MAX_TID; i++) {
3609 if ((chip_scsi_id == i) ||
3610 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3611 continue;
3614 AdvReadWordLram(iop_base,
3615 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3616 lramword);
3618 seq_printf(m, " %X:%d",
3619 i, (lramword & 0x8000) ? 16 : 8);
3621 if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
3622 (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3623 seq_printf(m, "*");
3624 renegotiate = 1;
3627 seq_printf(m, "\n");
3629 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
3630 seq_printf(m, " Synchronous Enabled:");
3631 for (i = 0; i <= ADV_MAX_TID; i++) {
3632 if ((chip_scsi_id == i) ||
3633 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3634 continue;
3637 seq_printf(m, " %X:%c",
3639 (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3641 seq_printf(m, "\n");
3643 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
3644 for (i = 0; i <= ADV_MAX_TID; i++) {
3646 AdvReadWordLram(iop_base,
3647 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3648 lramword);
3649 lramword &= ~0x8000;
3651 if ((chip_scsi_id == i) ||
3652 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3653 ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
3654 continue;
3657 seq_printf(m, " %X:", i);
3659 if ((lramword & 0x1F) == 0) { /* Check for REQ/ACK Offset 0. */
3660 seq_printf(m, " Asynchronous");
3661 } else {
3662 seq_printf(m, " Transfer Period Factor: ");
3664 if ((lramword & 0x1F00) == 0x1100) { /* 80 Mhz */
3665 seq_printf(m, "9 (80.0 Mhz),");
3666 } else if ((lramword & 0x1F00) == 0x1000) { /* 40 Mhz */
3667 seq_printf(m, "10 (40.0 Mhz),");
3668 } else { /* 20 Mhz or below. */
3670 period = (((lramword >> 8) * 25) + 50) / 4;
3672 if (period == 0) { /* Should never happen. */
3673 seq_printf(m, "%d (? Mhz), ", period);
3674 } else {
3675 seq_printf(m,
3676 "%d (%d.%d Mhz),",
3677 period, 250 / period,
3678 ASC_TENTHS(250, period));
3682 seq_printf(m, " REQ/ACK Offset: %d",
3683 lramword & 0x1F);
3686 if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3687 seq_printf(m, "*\n");
3688 renegotiate = 1;
3689 } else {
3690 seq_printf(m, "\n");
3694 if (renegotiate) {
3695 seq_printf(m,
3696 " * = Re-negotiation pending before next command.\n");
3700 #ifdef ADVANSYS_STATS
3702 * asc_prt_board_stats()
3704 static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost)
3706 struct asc_board *boardp = shost_priv(shost);
3707 struct asc_stats *s = &boardp->asc_stats;
3709 seq_printf(m,
3710 "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
3711 shost->host_no);
3713 seq_printf(m,
3714 " queuecommand %u, reset %u, biosparam %u, interrupt %u\n",
3715 s->queuecommand, s->reset, s->biosparam,
3716 s->interrupt);
3718 seq_printf(m,
3719 " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n",
3720 s->callback, s->done, s->build_error,
3721 s->adv_build_noreq, s->adv_build_nosg);
3723 seq_printf(m,
3724 " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n",
3725 s->exe_noerror, s->exe_busy, s->exe_error,
3726 s->exe_unknown);
3729 * Display data transfer statistics.
3731 if (s->xfer_cnt > 0) {
3732 seq_printf(m, " xfer_cnt %u, xfer_elem %u, ",
3733 s->xfer_cnt, s->xfer_elem);
3735 seq_printf(m, "xfer_bytes %u.%01u kb\n",
3736 s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
3738 /* Scatter gather transfer statistics */
3739 seq_printf(m, " avg_num_elem %u.%01u, ",
3740 s->xfer_elem / s->xfer_cnt,
3741 ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
3743 seq_printf(m, "avg_elem_size %u.%01u kb, ",
3744 (s->xfer_sect / 2) / s->xfer_elem,
3745 ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
3747 seq_printf(m, "avg_xfer_size %u.%01u kb\n",
3748 (s->xfer_sect / 2) / s->xfer_cnt,
3749 ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
3752 #endif /* ADVANSYS_STATS */
3755 * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...}
3757 * m: seq_file to print into
3758 * shost: Scsi_Host
3760 * Return the number of bytes read from or written to a
3761 * /proc/scsi/advansys/[0...] file.
3763 static int
3764 advansys_show_info(struct seq_file *m, struct Scsi_Host *shost)
3766 struct asc_board *boardp = shost_priv(shost);
3768 ASC_DBG(1, "begin\n");
3771 * User read of /proc/scsi/advansys/[0...] file.
3775 * Get board configuration information.
3777 * advansys_info() returns the board string from its own static buffer.
3779 /* Copy board information. */
3780 seq_printf(m, "%s\n", (char *)advansys_info(shost));
3782 * Display Wide Board BIOS Information.
3784 if (!ASC_NARROW_BOARD(boardp))
3785 asc_prt_adv_bios(m, shost);
3788 * Display driver information for each device attached to the board.
3790 asc_prt_board_devices(m, shost);
3793 * Display EEPROM configuration for the board.
3795 if (ASC_NARROW_BOARD(boardp))
3796 asc_prt_asc_board_eeprom(m, shost);
3797 else
3798 asc_prt_adv_board_eeprom(m, shost);
3801 * Display driver configuration and information for the board.
3803 asc_prt_driver_conf(m, shost);
3805 #ifdef ADVANSYS_STATS
3807 * Display driver statistics for the board.
3809 asc_prt_board_stats(m, shost);
3810 #endif /* ADVANSYS_STATS */
3813 * Display Asc Library dynamic configuration information
3814 * for the board.
3816 if (ASC_NARROW_BOARD(boardp))
3817 asc_prt_asc_board_info(m, shost);
3818 else
3819 asc_prt_adv_board_info(m, shost);
3820 return 0;
3822 #endif /* CONFIG_PROC_FS */
3824 static void asc_scsi_done(struct scsi_cmnd *scp)
3826 scsi_dma_unmap(scp);
3827 ASC_STATS(scp->device->host, done);
3828 scp->scsi_done(scp);
3831 static void AscSetBank(PortAddr iop_base, uchar bank)
3833 uchar val;
3835 val = AscGetChipControl(iop_base) &
3837 (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
3838 CC_CHIP_RESET));
3839 if (bank == 1) {
3840 val |= CC_BANK_ONE;
3841 } else if (bank == 2) {
3842 val |= CC_DIAG | CC_BANK_ONE;
3843 } else {
3844 val &= ~CC_BANK_ONE;
3846 AscSetChipControl(iop_base, val);
3849 static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
3851 AscSetBank(iop_base, 1);
3852 AscWriteChipIH(iop_base, ins_code);
3853 AscSetBank(iop_base, 0);
3856 static int AscStartChip(PortAddr iop_base)
3858 AscSetChipControl(iop_base, 0);
3859 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3860 return (0);
3862 return (1);
3865 static int AscStopChip(PortAddr iop_base)
3867 uchar cc_val;
3869 cc_val =
3870 AscGetChipControl(iop_base) &
3871 (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
3872 AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
3873 AscSetChipIH(iop_base, INS_HALT);
3874 AscSetChipIH(iop_base, INS_RFLAG_WTM);
3875 if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
3876 return (0);
3878 return (1);
3881 static int AscIsChipHalted(PortAddr iop_base)
3883 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3884 if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
3885 return (1);
3888 return (0);
3891 static int AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
3893 PortAddr iop_base;
3894 int i = 10;
3896 iop_base = asc_dvc->iop_base;
3897 while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
3898 && (i-- > 0)) {
3899 mdelay(100);
3901 AscStopChip(iop_base);
3902 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
3903 udelay(60);
3904 AscSetChipIH(iop_base, INS_RFLAG_WTM);
3905 AscSetChipIH(iop_base, INS_HALT);
3906 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
3907 AscSetChipControl(iop_base, CC_HALT);
3908 mdelay(200);
3909 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
3910 AscSetChipStatus(iop_base, 0);
3911 return (AscIsChipHalted(iop_base));
3914 static int AscFindSignature(PortAddr iop_base)
3916 ushort sig_word;
3918 ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
3919 iop_base, AscGetChipSignatureByte(iop_base));
3920 if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
3921 ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
3922 iop_base, AscGetChipSignatureWord(iop_base));
3923 sig_word = AscGetChipSignatureWord(iop_base);
3924 if ((sig_word == (ushort)ASC_1000_ID0W) ||
3925 (sig_word == (ushort)ASC_1000_ID0W_FIX)) {
3926 return (1);
3929 return (0);
3932 static void AscEnableInterrupt(PortAddr iop_base)
3934 ushort cfg;
3936 cfg = AscGetChipCfgLsw(iop_base);
3937 AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
3940 static void AscDisableInterrupt(PortAddr iop_base)
3942 ushort cfg;
3944 cfg = AscGetChipCfgLsw(iop_base);
3945 AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
3948 static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
3950 unsigned char byte_data;
3951 unsigned short word_data;
3953 if (isodd_word(addr)) {
3954 AscSetChipLramAddr(iop_base, addr - 1);
3955 word_data = AscGetChipLramData(iop_base);
3956 byte_data = (word_data >> 8) & 0xFF;
3957 } else {
3958 AscSetChipLramAddr(iop_base, addr);
3959 word_data = AscGetChipLramData(iop_base);
3960 byte_data = word_data & 0xFF;
3962 return byte_data;
3965 static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
3967 ushort word_data;
3969 AscSetChipLramAddr(iop_base, addr);
3970 word_data = AscGetChipLramData(iop_base);
3971 return (word_data);
3974 #if CC_VERY_LONG_SG_LIST
3975 static ASC_DCNT AscReadLramDWord(PortAddr iop_base, ushort addr)
3977 ushort val_low, val_high;
3978 ASC_DCNT dword_data;
3980 AscSetChipLramAddr(iop_base, addr);
3981 val_low = AscGetChipLramData(iop_base);
3982 val_high = AscGetChipLramData(iop_base);
3983 dword_data = ((ASC_DCNT) val_high << 16) | (ASC_DCNT) val_low;
3984 return (dword_data);
3986 #endif /* CC_VERY_LONG_SG_LIST */
3988 static void
3989 AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
3991 int i;
3993 AscSetChipLramAddr(iop_base, s_addr);
3994 for (i = 0; i < words; i++) {
3995 AscSetChipLramData(iop_base, set_wval);
3999 static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
4001 AscSetChipLramAddr(iop_base, addr);
4002 AscSetChipLramData(iop_base, word_val);
4005 static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
4007 ushort word_data;
4009 if (isodd_word(addr)) {
4010 addr--;
4011 word_data = AscReadLramWord(iop_base, addr);
4012 word_data &= 0x00FF;
4013 word_data |= (((ushort)byte_val << 8) & 0xFF00);
4014 } else {
4015 word_data = AscReadLramWord(iop_base, addr);
4016 word_data &= 0xFF00;
4017 word_data |= ((ushort)byte_val & 0x00FF);
4019 AscWriteLramWord(iop_base, addr, word_data);
4023 * Copy 2 bytes to LRAM.
4025 * The source data is assumed to be in little-endian order in memory
4026 * and is maintained in little-endian order when written to LRAM.
4028 static void
4029 AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
4030 const uchar *s_buffer, int words)
4032 int i;
4034 AscSetChipLramAddr(iop_base, s_addr);
4035 for (i = 0; i < 2 * words; i += 2) {
4037 * On a little-endian system the second argument below
4038 * produces a little-endian ushort which is written to
4039 * LRAM in little-endian order. On a big-endian system
4040 * the second argument produces a big-endian ushort which
4041 * is "transparently" byte-swapped by outpw() and written
4042 * in little-endian order to LRAM.
4044 outpw(iop_base + IOP_RAM_DATA,
4045 ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
4050 * Copy 4 bytes to LRAM.
4052 * The source data is assumed to be in little-endian order in memory
4053 * and is maintained in little-endian order when written to LRAM.
4055 static void
4056 AscMemDWordCopyPtrToLram(PortAddr iop_base,
4057 ushort s_addr, uchar *s_buffer, int dwords)
4059 int i;
4061 AscSetChipLramAddr(iop_base, s_addr);
4062 for (i = 0; i < 4 * dwords; i += 4) {
4063 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); /* LSW */
4064 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]); /* MSW */
4069 * Copy 2 bytes from LRAM.
4071 * The source data is assumed to be in little-endian order in LRAM
4072 * and is maintained in little-endian order when written to memory.
4074 static void
4075 AscMemWordCopyPtrFromLram(PortAddr iop_base,
4076 ushort s_addr, uchar *d_buffer, int words)
4078 int i;
4079 ushort word;
4081 AscSetChipLramAddr(iop_base, s_addr);
4082 for (i = 0; i < 2 * words; i += 2) {
4083 word = inpw(iop_base + IOP_RAM_DATA);
4084 d_buffer[i] = word & 0xff;
4085 d_buffer[i + 1] = (word >> 8) & 0xff;
4089 static ASC_DCNT AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
4091 ASC_DCNT sum;
4092 int i;
4094 sum = 0L;
4095 for (i = 0; i < words; i++, s_addr += 2) {
4096 sum += AscReadLramWord(iop_base, s_addr);
4098 return (sum);
4101 static ushort AscInitLram(ASC_DVC_VAR *asc_dvc)
4103 uchar i;
4104 ushort s_addr;
4105 PortAddr iop_base;
4106 ushort warn_code;
4108 iop_base = asc_dvc->iop_base;
4109 warn_code = 0;
4110 AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
4111 (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
4112 64) >> 1));
4113 i = ASC_MIN_ACTIVE_QNO;
4114 s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
4115 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4116 (uchar)(i + 1));
4117 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4118 (uchar)(asc_dvc->max_total_qng));
4119 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4120 (uchar)i);
4121 i++;
4122 s_addr += ASC_QBLK_SIZE;
4123 for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
4124 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4125 (uchar)(i + 1));
4126 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4127 (uchar)(i - 1));
4128 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4129 (uchar)i);
4131 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4132 (uchar)ASC_QLINK_END);
4133 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4134 (uchar)(asc_dvc->max_total_qng - 1));
4135 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4136 (uchar)asc_dvc->max_total_qng);
4137 i++;
4138 s_addr += ASC_QBLK_SIZE;
4139 for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
4140 i++, s_addr += ASC_QBLK_SIZE) {
4141 AscWriteLramByte(iop_base,
4142 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
4143 AscWriteLramByte(iop_base,
4144 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
4145 AscWriteLramByte(iop_base,
4146 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
4148 return warn_code;
4151 static ASC_DCNT
4152 AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
4153 const uchar *mcode_buf, ushort mcode_size)
4155 ASC_DCNT chksum;
4156 ushort mcode_word_size;
4157 ushort mcode_chksum;
4159 /* Write the microcode buffer starting at LRAM address 0. */
4160 mcode_word_size = (ushort)(mcode_size >> 1);
4161 AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
4162 AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
4164 chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
4165 ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
4166 mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
4167 (ushort)ASC_CODE_SEC_BEG,
4168 (ushort)((mcode_size -
4169 s_addr - (ushort)
4170 ASC_CODE_SEC_BEG) /
4171 2));
4172 ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
4173 AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
4174 AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
4175 return chksum;
4178 static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
4180 PortAddr iop_base;
4181 int i;
4182 ushort lram_addr;
4184 iop_base = asc_dvc->iop_base;
4185 AscPutRiscVarFreeQHead(iop_base, 1);
4186 AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4187 AscPutVarFreeQHead(iop_base, 1);
4188 AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4189 AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
4190 (uchar)((int)asc_dvc->max_total_qng + 1));
4191 AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
4192 (uchar)((int)asc_dvc->max_total_qng + 2));
4193 AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
4194 asc_dvc->max_total_qng);
4195 AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
4196 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
4197 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
4198 AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
4199 AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
4200 AscPutQDoneInProgress(iop_base, 0);
4201 lram_addr = ASC_QADR_BEG;
4202 for (i = 0; i < 32; i++, lram_addr += 2) {
4203 AscWriteLramWord(iop_base, lram_addr, 0);
4207 static ushort AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
4209 int i;
4210 ushort warn_code;
4211 PortAddr iop_base;
4212 ASC_PADDR phy_addr;
4213 ASC_DCNT phy_size;
4214 struct asc_board *board = asc_dvc_to_board(asc_dvc);
4216 iop_base = asc_dvc->iop_base;
4217 warn_code = 0;
4218 for (i = 0; i <= ASC_MAX_TID; i++) {
4219 AscPutMCodeInitSDTRAtID(iop_base, i,
4220 asc_dvc->cfg->sdtr_period_offset[i]);
4223 AscInitQLinkVar(asc_dvc);
4224 AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
4225 asc_dvc->cfg->disc_enable);
4226 AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
4227 ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
4229 /* Ensure overrun buffer is aligned on an 8 byte boundary. */
4230 BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
4231 asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
4232 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4233 if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) {
4234 warn_code = -ENOMEM;
4235 goto err_dma_map;
4237 phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
4238 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
4239 (uchar *)&phy_addr, 1);
4240 phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
4241 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
4242 (uchar *)&phy_size, 1);
4244 asc_dvc->cfg->mcode_date =
4245 AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
4246 asc_dvc->cfg->mcode_version =
4247 AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
4249 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
4250 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
4251 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
4252 warn_code = UW_ERR;
4253 goto err_mcode_start;
4255 if (AscStartChip(iop_base) != 1) {
4256 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
4257 warn_code = UW_ERR;
4258 goto err_mcode_start;
4261 return warn_code;
4263 err_mcode_start:
4264 dma_unmap_single(board->dev, asc_dvc->overrun_dma,
4265 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4266 err_dma_map:
4267 asc_dvc->overrun_dma = 0;
4268 return warn_code;
4271 static ushort AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
4273 const struct firmware *fw;
4274 const char fwname[] = "advansys/mcode.bin";
4275 int err;
4276 unsigned long chksum;
4277 ushort warn_code;
4278 PortAddr iop_base;
4280 iop_base = asc_dvc->iop_base;
4281 warn_code = 0;
4282 if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
4283 !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
4284 AscResetChipAndScsiBus(asc_dvc);
4285 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4287 asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
4288 if (asc_dvc->err_code != 0)
4289 return UW_ERR;
4290 if (!AscFindSignature(asc_dvc->iop_base)) {
4291 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
4292 return warn_code;
4294 AscDisableInterrupt(iop_base);
4295 warn_code |= AscInitLram(asc_dvc);
4296 if (asc_dvc->err_code != 0)
4297 return UW_ERR;
4299 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4300 if (err) {
4301 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4302 fwname, err);
4303 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4304 return err;
4306 if (fw->size < 4) {
4307 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4308 fw->size, fwname);
4309 release_firmware(fw);
4310 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4311 return -EINVAL;
4313 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4314 (fw->data[1] << 8) | fw->data[0];
4315 ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
4316 if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
4317 fw->size - 4) != chksum) {
4318 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4319 release_firmware(fw);
4320 return warn_code;
4322 release_firmware(fw);
4323 warn_code |= AscInitMicroCodeVar(asc_dvc);
4324 if (!asc_dvc->overrun_dma)
4325 return warn_code;
4326 asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
4327 AscEnableInterrupt(iop_base);
4328 return warn_code;
4332 * Load the Microcode
4334 * Write the microcode image to RISC memory starting at address 0.
4336 * The microcode is stored compressed in the following format:
4338 * 254 word (508 byte) table indexed by byte code followed
4339 * by the following byte codes:
4341 * 1-Byte Code:
4342 * 00: Emit word 0 in table.
4343 * 01: Emit word 1 in table.
4345 * FD: Emit word 253 in table.
4347 * Multi-Byte Code:
4348 * FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4349 * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4351 * Returns 0 or an error if the checksum doesn't match
4353 static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
4354 int size, int memsize, int chksum)
4356 int i, j, end, len = 0;
4357 ADV_DCNT sum;
4359 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4361 for (i = 253 * 2; i < size; i++) {
4362 if (buf[i] == 0xff) {
4363 unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
4364 for (j = 0; j < buf[i + 1]; j++) {
4365 AdvWriteWordAutoIncLram(iop_base, word);
4366 len += 2;
4368 i += 3;
4369 } else if (buf[i] == 0xfe) {
4370 unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
4371 AdvWriteWordAutoIncLram(iop_base, word);
4372 i += 2;
4373 len += 2;
4374 } else {
4375 unsigned int off = buf[i] * 2;
4376 unsigned short word = (buf[off + 1] << 8) | buf[off];
4377 AdvWriteWordAutoIncLram(iop_base, word);
4378 len += 2;
4382 end = len;
4384 while (len < memsize) {
4385 AdvWriteWordAutoIncLram(iop_base, 0);
4386 len += 2;
4389 /* Verify the microcode checksum. */
4390 sum = 0;
4391 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4393 for (len = 0; len < end; len += 2) {
4394 sum += AdvReadWordAutoIncLram(iop_base);
4397 if (sum != chksum)
4398 return ASC_IERR_MCODE_CHKSUM;
4400 return 0;
4403 static void AdvBuildCarrierFreelist(struct adv_dvc_var *asc_dvc)
4405 ADV_CARR_T *carrp;
4406 ADV_SDCNT buf_size;
4407 ADV_PADDR carr_paddr;
4409 carrp = (ADV_CARR_T *) ADV_16BALIGN(asc_dvc->carrier_buf);
4410 asc_dvc->carr_freelist = NULL;
4411 if (carrp == asc_dvc->carrier_buf) {
4412 buf_size = ADV_CARRIER_BUFSIZE;
4413 } else {
4414 buf_size = ADV_CARRIER_BUFSIZE - sizeof(ADV_CARR_T);
4417 do {
4418 /* Get physical address of the carrier 'carrp'. */
4419 carr_paddr = cpu_to_le32(virt_to_bus(carrp));
4421 buf_size -= sizeof(ADV_CARR_T);
4423 carrp->carr_pa = carr_paddr;
4424 carrp->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(carrp));
4427 * Insert the carrier at the beginning of the freelist.
4429 carrp->next_vpa =
4430 cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist));
4431 asc_dvc->carr_freelist = carrp;
4433 carrp++;
4434 } while (buf_size > 0);
4438 * Send an idle command to the chip and wait for completion.
4440 * Command completion is polled for once per microsecond.
4442 * The function can be called from anywhere including an interrupt handler.
4443 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4444 * functions to prevent reentrancy.
4446 * Return Values:
4447 * ADV_TRUE - command completed successfully
4448 * ADV_FALSE - command failed
4449 * ADV_ERROR - command timed out
4451 static int
4452 AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
4453 ushort idle_cmd, ADV_DCNT idle_cmd_parameter)
4455 int result;
4456 ADV_DCNT i, j;
4457 AdvPortAddr iop_base;
4459 iop_base = asc_dvc->iop_base;
4462 * Clear the idle command status which is set by the microcode
4463 * to a non-zero value to indicate when the command is completed.
4464 * The non-zero result is one of the IDLE_CMD_STATUS_* values
4466 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
4469 * Write the idle command value after the idle command parameter
4470 * has been written to avoid a race condition. If the order is not
4471 * followed, the microcode may process the idle command before the
4472 * parameters have been written to LRAM.
4474 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
4475 cpu_to_le32(idle_cmd_parameter));
4476 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
4479 * Tickle the RISC to tell it to process the idle command.
4481 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
4482 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
4484 * Clear the tickle value. In the ASC-3550 the RISC flag
4485 * command 'clr_tickle_b' does not work unless the host
4486 * value is cleared.
4488 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
4491 /* Wait for up to 100 millisecond for the idle command to timeout. */
4492 for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
4493 /* Poll once each microsecond for command completion. */
4494 for (j = 0; j < SCSI_US_PER_MSEC; j++) {
4495 AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
4496 result);
4497 if (result != 0)
4498 return result;
4499 udelay(1);
4503 BUG(); /* The idle command should never timeout. */
4504 return ADV_ERROR;
4508 * Reset SCSI Bus and purge all outstanding requests.
4510 * Return Value:
4511 * ADV_TRUE(1) - All requests are purged and SCSI Bus is reset.
4512 * ADV_FALSE(0) - Microcode command failed.
4513 * ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
4514 * may be hung which requires driver recovery.
4516 static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
4518 int status;
4521 * Send the SCSI Bus Reset idle start idle command which asserts
4522 * the SCSI Bus Reset signal.
4524 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
4525 if (status != ADV_TRUE) {
4526 return status;
4530 * Delay for the specified SCSI Bus Reset hold time.
4532 * The hold time delay is done on the host because the RISC has no
4533 * microsecond accurate timer.
4535 udelay(ASC_SCSI_RESET_HOLD_TIME_US);
4538 * Send the SCSI Bus Reset end idle command which de-asserts
4539 * the SCSI Bus Reset signal and purges any pending requests.
4541 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
4542 if (status != ADV_TRUE) {
4543 return status;
4546 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4548 return status;
4552 * Initialize the ASC-3550.
4554 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4556 * For a non-fatal error return a warning code. If there are no warnings
4557 * then 0 is returned.
4559 * Needed after initialization for error recovery.
4561 static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
4563 const struct firmware *fw;
4564 const char fwname[] = "advansys/3550.bin";
4565 AdvPortAddr iop_base;
4566 ushort warn_code;
4567 int begin_addr;
4568 int end_addr;
4569 ushort code_sum;
4570 int word;
4571 int i;
4572 int err;
4573 unsigned long chksum;
4574 ushort scsi_cfg1;
4575 uchar tid;
4576 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
4577 ushort wdtr_able = 0, sdtr_able, tagqng_able;
4578 uchar max_cmd[ADV_MAX_TID + 1];
4580 /* If there is already an error, don't continue. */
4581 if (asc_dvc->err_code != 0)
4582 return ADV_ERROR;
4585 * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
4587 if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
4588 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4589 return ADV_ERROR;
4592 warn_code = 0;
4593 iop_base = asc_dvc->iop_base;
4596 * Save the RISC memory BIOS region before writing the microcode.
4597 * The BIOS may already be loaded and using its RISC LRAM region
4598 * so its region must be saved and restored.
4600 * Note: This code makes the assumption, which is currently true,
4601 * that a chip reset does not clear RISC LRAM.
4603 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4604 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4605 bios_mem[i]);
4609 * Save current per TID negotiated values.
4611 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
4612 ushort bios_version, major, minor;
4614 bios_version =
4615 bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
4616 major = (bios_version >> 12) & 0xF;
4617 minor = (bios_version >> 8) & 0xF;
4618 if (major < 3 || (major == 3 && minor == 1)) {
4619 /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
4620 AdvReadWordLram(iop_base, 0x120, wdtr_able);
4621 } else {
4622 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4625 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4626 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4627 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4628 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4629 max_cmd[tid]);
4632 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4633 if (err) {
4634 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4635 fwname, err);
4636 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4637 return err;
4639 if (fw->size < 4) {
4640 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4641 fw->size, fwname);
4642 release_firmware(fw);
4643 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4644 return -EINVAL;
4646 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4647 (fw->data[1] << 8) | fw->data[0];
4648 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4649 fw->size - 4, ADV_3550_MEMSIZE,
4650 chksum);
4651 release_firmware(fw);
4652 if (asc_dvc->err_code)
4653 return ADV_ERROR;
4656 * Restore the RISC memory BIOS region.
4658 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4659 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4660 bios_mem[i]);
4664 * Calculate and write the microcode code checksum to the microcode
4665 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4667 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
4668 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
4669 code_sum = 0;
4670 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
4671 for (word = begin_addr; word < end_addr; word += 2) {
4672 code_sum += AdvReadWordAutoIncLram(iop_base);
4674 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
4677 * Read and save microcode version and date.
4679 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
4680 asc_dvc->cfg->mcode_date);
4681 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
4682 asc_dvc->cfg->mcode_version);
4685 * Set the chip type to indicate the ASC3550.
4687 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
4690 * If the PCI Configuration Command Register "Parity Error Response
4691 * Control" Bit was clear (0), then set the microcode variable
4692 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4693 * to ignore DMA parity errors.
4695 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
4696 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4697 word |= CONTROL_FLAG_IGNORE_PERR;
4698 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4702 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
4703 * threshold of 128 bytes. This register is only accessible to the host.
4705 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
4706 START_CTL_EMFU | READ_CMD_MRM);
4709 * Microcode operating variables for WDTR, SDTR, and command tag
4710 * queuing will be set in slave_configure() based on what a
4711 * device reports it is capable of in Inquiry byte 7.
4713 * If SCSI Bus Resets have been disabled, then directly set
4714 * SDTR and WDTR from the EEPROM configuration. This will allow
4715 * the BIOS and warm boot to work without a SCSI bus hang on
4716 * the Inquiry caused by host and target mismatched DTR values.
4717 * Without the SCSI Bus Reset, before an Inquiry a device can't
4718 * be assumed to be in Asynchronous, Narrow mode.
4720 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
4721 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
4722 asc_dvc->wdtr_able);
4723 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
4724 asc_dvc->sdtr_able);
4728 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
4729 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
4730 * bitmask. These values determine the maximum SDTR speed negotiated
4731 * with a device.
4733 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
4734 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
4735 * without determining here whether the device supports SDTR.
4737 * 4-bit speed SDTR speed name
4738 * =========== ===============
4739 * 0000b (0x0) SDTR disabled
4740 * 0001b (0x1) 5 Mhz
4741 * 0010b (0x2) 10 Mhz
4742 * 0011b (0x3) 20 Mhz (Ultra)
4743 * 0100b (0x4) 40 Mhz (LVD/Ultra2)
4744 * 0101b (0x5) 80 Mhz (LVD2/Ultra3)
4745 * 0110b (0x6) Undefined
4747 * 1111b (0xF) Undefined
4749 word = 0;
4750 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4751 if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
4752 /* Set Ultra speed for TID 'tid'. */
4753 word |= (0x3 << (4 * (tid % 4)));
4754 } else {
4755 /* Set Fast speed for TID 'tid'. */
4756 word |= (0x2 << (4 * (tid % 4)));
4758 if (tid == 3) { /* Check if done with sdtr_speed1. */
4759 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
4760 word = 0;
4761 } else if (tid == 7) { /* Check if done with sdtr_speed2. */
4762 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
4763 word = 0;
4764 } else if (tid == 11) { /* Check if done with sdtr_speed3. */
4765 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
4766 word = 0;
4767 } else if (tid == 15) { /* Check if done with sdtr_speed4. */
4768 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
4769 /* End of loop. */
4774 * Set microcode operating variable for the disconnect per TID bitmask.
4776 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
4777 asc_dvc->cfg->disc_enable);
4780 * Set SCSI_CFG0 Microcode Default Value.
4782 * The microcode will set the SCSI_CFG0 register using this value
4783 * after it is started below.
4785 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
4786 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
4787 asc_dvc->chip_scsi_id);
4790 * Determine SCSI_CFG1 Microcode Default Value.
4792 * The microcode will set the SCSI_CFG1 register using this value
4793 * after it is started below.
4796 /* Read current SCSI_CFG1 Register value. */
4797 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
4800 * If all three connectors are in use, return an error.
4802 if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
4803 (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
4804 asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
4805 return ADV_ERROR;
4809 * If the internal narrow cable is reversed all of the SCSI_CTRL
4810 * register signals will be set. Check for and return an error if
4811 * this condition is found.
4813 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
4814 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
4815 return ADV_ERROR;
4819 * If this is a differential board and a single-ended device
4820 * is attached to one of the connectors, return an error.
4822 if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
4823 asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
4824 return ADV_ERROR;
4828 * If automatic termination control is enabled, then set the
4829 * termination value based on a table listed in a_condor.h.
4831 * If manual termination was specified with an EEPROM setting
4832 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
4833 * is ready to be 'ored' into SCSI_CFG1.
4835 if (asc_dvc->cfg->termination == 0) {
4837 * The software always controls termination by setting TERM_CTL_SEL.
4838 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
4840 asc_dvc->cfg->termination |= TERM_CTL_SEL;
4842 switch (scsi_cfg1 & CABLE_DETECT) {
4843 /* TERM_CTL_H: on, TERM_CTL_L: on */
4844 case 0x3:
4845 case 0x7:
4846 case 0xB:
4847 case 0xD:
4848 case 0xE:
4849 case 0xF:
4850 asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
4851 break;
4853 /* TERM_CTL_H: on, TERM_CTL_L: off */
4854 case 0x1:
4855 case 0x5:
4856 case 0x9:
4857 case 0xA:
4858 case 0xC:
4859 asc_dvc->cfg->termination |= TERM_CTL_H;
4860 break;
4862 /* TERM_CTL_H: off, TERM_CTL_L: off */
4863 case 0x2:
4864 case 0x6:
4865 break;
4870 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
4872 scsi_cfg1 &= ~TERM_CTL;
4875 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
4876 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
4877 * referenced, because the hardware internally inverts
4878 * the Termination High and Low bits if TERM_POL is set.
4880 scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
4883 * Set SCSI_CFG1 Microcode Default Value
4885 * Set filter value and possibly modified termination control
4886 * bits in the Microcode SCSI_CFG1 Register Value.
4888 * The microcode will set the SCSI_CFG1 register using this value
4889 * after it is started below.
4891 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
4892 FLTR_DISABLE | scsi_cfg1);
4895 * Set MEM_CFG Microcode Default Value
4897 * The microcode will set the MEM_CFG register using this value
4898 * after it is started below.
4900 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
4901 * are defined.
4903 * ASC-3550 has 8KB internal memory.
4905 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
4906 BIOS_EN | RAM_SZ_8KB);
4909 * Set SEL_MASK Microcode Default Value
4911 * The microcode will set the SEL_MASK register using this value
4912 * after it is started below.
4914 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
4915 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
4917 AdvBuildCarrierFreelist(asc_dvc);
4920 * Set-up the Host->RISC Initiator Command Queue (ICQ).
4923 if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
4924 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4925 return ADV_ERROR;
4927 asc_dvc->carr_freelist = (ADV_CARR_T *)
4928 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
4931 * The first command issued will be placed in the stopper carrier.
4933 asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
4936 * Set RISC ICQ physical address start value.
4938 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
4941 * Set-up the RISC->Host Initiator Response Queue (IRQ).
4943 if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
4944 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4945 return ADV_ERROR;
4947 asc_dvc->carr_freelist = (ADV_CARR_T *)
4948 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
4951 * The first command completed by the RISC will be placed in
4952 * the stopper.
4954 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
4955 * completed the RISC will set the ASC_RQ_STOPPER bit.
4957 asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
4960 * Set RISC IRQ physical address start value.
4962 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
4963 asc_dvc->carr_pending_cnt = 0;
4965 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
4966 (ADV_INTR_ENABLE_HOST_INTR |
4967 ADV_INTR_ENABLE_GLOBAL_INTR));
4969 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
4970 AdvWriteWordRegister(iop_base, IOPW_PC, word);
4972 /* finally, finally, gentlemen, start your engine */
4973 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
4976 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
4977 * Resets should be performed. The RISC has to be running
4978 * to issue a SCSI Bus Reset.
4980 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
4982 * If the BIOS Signature is present in memory, restore the
4983 * BIOS Handshake Configuration Table and do not perform
4984 * a SCSI Bus Reset.
4986 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
4987 0x55AA) {
4989 * Restore per TID negotiated values.
4991 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4992 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4993 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
4994 tagqng_able);
4995 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4996 AdvWriteByteLram(iop_base,
4997 ASC_MC_NUMBER_OF_MAX_CMD + tid,
4998 max_cmd[tid]);
5000 } else {
5001 if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5002 warn_code = ASC_WARN_BUSRESET_ERROR;
5007 return warn_code;
5011 * Initialize the ASC-38C0800.
5013 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
5015 * For a non-fatal error return a warning code. If there are no warnings
5016 * then 0 is returned.
5018 * Needed after initialization for error recovery.
5020 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
5022 const struct firmware *fw;
5023 const char fwname[] = "advansys/38C0800.bin";
5024 AdvPortAddr iop_base;
5025 ushort warn_code;
5026 int begin_addr;
5027 int end_addr;
5028 ushort code_sum;
5029 int word;
5030 int i;
5031 int err;
5032 unsigned long chksum;
5033 ushort scsi_cfg1;
5034 uchar byte;
5035 uchar tid;
5036 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
5037 ushort wdtr_able, sdtr_able, tagqng_able;
5038 uchar max_cmd[ADV_MAX_TID + 1];
5040 /* If there is already an error, don't continue. */
5041 if (asc_dvc->err_code != 0)
5042 return ADV_ERROR;
5045 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
5047 if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
5048 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5049 return ADV_ERROR;
5052 warn_code = 0;
5053 iop_base = asc_dvc->iop_base;
5056 * Save the RISC memory BIOS region before writing the microcode.
5057 * The BIOS may already be loaded and using its RISC LRAM region
5058 * so its region must be saved and restored.
5060 * Note: This code makes the assumption, which is currently true,
5061 * that a chip reset does not clear RISC LRAM.
5063 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5064 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5065 bios_mem[i]);
5069 * Save current per TID negotiated values.
5071 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5072 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5073 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5074 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5075 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5076 max_cmd[tid]);
5080 * RAM BIST (RAM Built-In Self Test)
5082 * Address : I/O base + offset 0x38h register (byte).
5083 * Function: Bit 7-6(RW) : RAM mode
5084 * Normal Mode : 0x00
5085 * Pre-test Mode : 0x40
5086 * RAM Test Mode : 0x80
5087 * Bit 5 : unused
5088 * Bit 4(RO) : Done bit
5089 * Bit 3-0(RO) : Status
5090 * Host Error : 0x08
5091 * Int_RAM Error : 0x04
5092 * RISC Error : 0x02
5093 * SCSI Error : 0x01
5094 * No Error : 0x00
5096 * Note: RAM BIST code should be put right here, before loading the
5097 * microcode and after saving the RISC memory BIOS region.
5101 * LRAM Pre-test
5103 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5104 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5105 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5106 * to NORMAL_MODE, return an error too.
5108 for (i = 0; i < 2; i++) {
5109 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5110 mdelay(10); /* Wait for 10ms before reading back. */
5111 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5112 if ((byte & RAM_TEST_DONE) == 0
5113 || (byte & 0x0F) != PRE_TEST_VALUE) {
5114 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5115 return ADV_ERROR;
5118 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5119 mdelay(10); /* Wait for 10ms before reading back. */
5120 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5121 != NORMAL_VALUE) {
5122 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5123 return ADV_ERROR;
5128 * LRAM Test - It takes about 1.5 ms to run through the test.
5130 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5131 * If Done bit not set or Status not 0, save register byte, set the
5132 * err_code, and return an error.
5134 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5135 mdelay(10); /* Wait for 10ms before checking status. */
5137 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5138 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5139 /* Get here if Done bit not set or Status not 0. */
5140 asc_dvc->bist_err_code = byte; /* for BIOS display message */
5141 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5142 return ADV_ERROR;
5145 /* We need to reset back to normal mode after LRAM test passes. */
5146 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5148 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5149 if (err) {
5150 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5151 fwname, err);
5152 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5153 return err;
5155 if (fw->size < 4) {
5156 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5157 fw->size, fwname);
5158 release_firmware(fw);
5159 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5160 return -EINVAL;
5162 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5163 (fw->data[1] << 8) | fw->data[0];
5164 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5165 fw->size - 4, ADV_38C0800_MEMSIZE,
5166 chksum);
5167 release_firmware(fw);
5168 if (asc_dvc->err_code)
5169 return ADV_ERROR;
5172 * Restore the RISC memory BIOS region.
5174 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5175 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5176 bios_mem[i]);
5180 * Calculate and write the microcode code checksum to the microcode
5181 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5183 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5184 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5185 code_sum = 0;
5186 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5187 for (word = begin_addr; word < end_addr; word += 2) {
5188 code_sum += AdvReadWordAutoIncLram(iop_base);
5190 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5193 * Read microcode version and date.
5195 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5196 asc_dvc->cfg->mcode_date);
5197 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5198 asc_dvc->cfg->mcode_version);
5201 * Set the chip type to indicate the ASC38C0800.
5203 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
5206 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5207 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5208 * cable detection and then we are able to read C_DET[3:0].
5210 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5211 * Microcode Default Value' section below.
5213 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5214 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5215 scsi_cfg1 | DIS_TERM_DRV);
5218 * If the PCI Configuration Command Register "Parity Error Response
5219 * Control" Bit was clear (0), then set the microcode variable
5220 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5221 * to ignore DMA parity errors.
5223 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5224 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5225 word |= CONTROL_FLAG_IGNORE_PERR;
5226 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5230 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5231 * bits for the default FIFO threshold.
5233 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5235 * For DMA Errata #4 set the BC_THRESH_ENB bit.
5237 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5238 BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
5239 READ_CMD_MRM);
5242 * Microcode operating variables for WDTR, SDTR, and command tag
5243 * queuing will be set in slave_configure() based on what a
5244 * device reports it is capable of in Inquiry byte 7.
5246 * If SCSI Bus Resets have been disabled, then directly set
5247 * SDTR and WDTR from the EEPROM configuration. This will allow
5248 * the BIOS and warm boot to work without a SCSI bus hang on
5249 * the Inquiry caused by host and target mismatched DTR values.
5250 * Without the SCSI Bus Reset, before an Inquiry a device can't
5251 * be assumed to be in Asynchronous, Narrow mode.
5253 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5254 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5255 asc_dvc->wdtr_able);
5256 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5257 asc_dvc->sdtr_able);
5261 * Set microcode operating variables for DISC and SDTR_SPEED1,
5262 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5263 * configuration values.
5265 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5266 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5267 * without determining here whether the device supports SDTR.
5269 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5270 asc_dvc->cfg->disc_enable);
5271 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5272 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5273 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5274 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5277 * Set SCSI_CFG0 Microcode Default Value.
5279 * The microcode will set the SCSI_CFG0 register using this value
5280 * after it is started below.
5282 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5283 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5284 asc_dvc->chip_scsi_id);
5287 * Determine SCSI_CFG1 Microcode Default Value.
5289 * The microcode will set the SCSI_CFG1 register using this value
5290 * after it is started below.
5293 /* Read current SCSI_CFG1 Register value. */
5294 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5297 * If the internal narrow cable is reversed all of the SCSI_CTRL
5298 * register signals will be set. Check for and return an error if
5299 * this condition is found.
5301 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5302 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5303 return ADV_ERROR;
5307 * All kind of combinations of devices attached to one of four
5308 * connectors are acceptable except HVD device attached. For example,
5309 * LVD device can be attached to SE connector while SE device attached
5310 * to LVD connector. If LVD device attached to SE connector, it only
5311 * runs up to Ultra speed.
5313 * If an HVD device is attached to one of LVD connectors, return an
5314 * error. However, there is no way to detect HVD device attached to
5315 * SE connectors.
5317 if (scsi_cfg1 & HVD) {
5318 asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
5319 return ADV_ERROR;
5323 * If either SE or LVD automatic termination control is enabled, then
5324 * set the termination value based on a table listed in a_condor.h.
5326 * If manual termination was specified with an EEPROM setting then
5327 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5328 * to be 'ored' into SCSI_CFG1.
5330 if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5331 /* SE automatic termination control is enabled. */
5332 switch (scsi_cfg1 & C_DET_SE) {
5333 /* TERM_SE_HI: on, TERM_SE_LO: on */
5334 case 0x1:
5335 case 0x2:
5336 case 0x3:
5337 asc_dvc->cfg->termination |= TERM_SE;
5338 break;
5340 /* TERM_SE_HI: on, TERM_SE_LO: off */
5341 case 0x0:
5342 asc_dvc->cfg->termination |= TERM_SE_HI;
5343 break;
5347 if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
5348 /* LVD automatic termination control is enabled. */
5349 switch (scsi_cfg1 & C_DET_LVD) {
5350 /* TERM_LVD_HI: on, TERM_LVD_LO: on */
5351 case 0x4:
5352 case 0x8:
5353 case 0xC:
5354 asc_dvc->cfg->termination |= TERM_LVD;
5355 break;
5357 /* TERM_LVD_HI: off, TERM_LVD_LO: off */
5358 case 0x0:
5359 break;
5364 * Clear any set TERM_SE and TERM_LVD bits.
5366 scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
5369 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5371 scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
5374 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5375 * bits and set possibly modified termination control bits in the
5376 * Microcode SCSI_CFG1 Register Value.
5378 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
5381 * Set SCSI_CFG1 Microcode Default Value
5383 * Set possibly modified termination control and reset DIS_TERM_DRV
5384 * bits in the Microcode SCSI_CFG1 Register Value.
5386 * The microcode will set the SCSI_CFG1 register using this value
5387 * after it is started below.
5389 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5392 * Set MEM_CFG Microcode Default Value
5394 * The microcode will set the MEM_CFG register using this value
5395 * after it is started below.
5397 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5398 * are defined.
5400 * ASC-38C0800 has 16KB internal memory.
5402 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5403 BIOS_EN | RAM_SZ_16KB);
5406 * Set SEL_MASK Microcode Default Value
5408 * The microcode will set the SEL_MASK register using this value
5409 * after it is started below.
5411 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5412 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5414 AdvBuildCarrierFreelist(asc_dvc);
5417 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5420 if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
5421 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5422 return ADV_ERROR;
5424 asc_dvc->carr_freelist = (ADV_CARR_T *)
5425 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
5428 * The first command issued will be placed in the stopper carrier.
5430 asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5433 * Set RISC ICQ physical address start value.
5434 * carr_pa is LE, must be native before write
5436 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5439 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5441 if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
5442 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5443 return ADV_ERROR;
5445 asc_dvc->carr_freelist = (ADV_CARR_T *)
5446 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
5449 * The first command completed by the RISC will be placed in
5450 * the stopper.
5452 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5453 * completed the RISC will set the ASC_RQ_STOPPER bit.
5455 asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5458 * Set RISC IRQ physical address start value.
5460 * carr_pa is LE, must be native before write *
5462 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5463 asc_dvc->carr_pending_cnt = 0;
5465 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5466 (ADV_INTR_ENABLE_HOST_INTR |
5467 ADV_INTR_ENABLE_GLOBAL_INTR));
5469 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5470 AdvWriteWordRegister(iop_base, IOPW_PC, word);
5472 /* finally, finally, gentlemen, start your engine */
5473 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5476 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5477 * Resets should be performed. The RISC has to be running
5478 * to issue a SCSI Bus Reset.
5480 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5482 * If the BIOS Signature is present in memory, restore the
5483 * BIOS Handshake Configuration Table and do not perform
5484 * a SCSI Bus Reset.
5486 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5487 0x55AA) {
5489 * Restore per TID negotiated values.
5491 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5492 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5493 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5494 tagqng_able);
5495 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5496 AdvWriteByteLram(iop_base,
5497 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5498 max_cmd[tid]);
5500 } else {
5501 if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5502 warn_code = ASC_WARN_BUSRESET_ERROR;
5507 return warn_code;
5511 * Initialize the ASC-38C1600.
5513 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
5515 * For a non-fatal error return a warning code. If there are no warnings
5516 * then 0 is returned.
5518 * Needed after initialization for error recovery.
5520 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
5522 const struct firmware *fw;
5523 const char fwname[] = "advansys/38C1600.bin";
5524 AdvPortAddr iop_base;
5525 ushort warn_code;
5526 int begin_addr;
5527 int end_addr;
5528 ushort code_sum;
5529 long word;
5530 int i;
5531 int err;
5532 unsigned long chksum;
5533 ushort scsi_cfg1;
5534 uchar byte;
5535 uchar tid;
5536 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
5537 ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
5538 uchar max_cmd[ASC_MAX_TID + 1];
5540 /* If there is already an error, don't continue. */
5541 if (asc_dvc->err_code != 0) {
5542 return ADV_ERROR;
5546 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
5548 if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
5549 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5550 return ADV_ERROR;
5553 warn_code = 0;
5554 iop_base = asc_dvc->iop_base;
5557 * Save the RISC memory BIOS region before writing the microcode.
5558 * The BIOS may already be loaded and using its RISC LRAM region
5559 * so its region must be saved and restored.
5561 * Note: This code makes the assumption, which is currently true,
5562 * that a chip reset does not clear RISC LRAM.
5564 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5565 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5566 bios_mem[i]);
5570 * Save current per TID negotiated values.
5572 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5573 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5574 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5575 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5576 for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5577 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5578 max_cmd[tid]);
5582 * RAM BIST (Built-In Self Test)
5584 * Address : I/O base + offset 0x38h register (byte).
5585 * Function: Bit 7-6(RW) : RAM mode
5586 * Normal Mode : 0x00
5587 * Pre-test Mode : 0x40
5588 * RAM Test Mode : 0x80
5589 * Bit 5 : unused
5590 * Bit 4(RO) : Done bit
5591 * Bit 3-0(RO) : Status
5592 * Host Error : 0x08
5593 * Int_RAM Error : 0x04
5594 * RISC Error : 0x02
5595 * SCSI Error : 0x01
5596 * No Error : 0x00
5598 * Note: RAM BIST code should be put right here, before loading the
5599 * microcode and after saving the RISC memory BIOS region.
5603 * LRAM Pre-test
5605 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5606 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5607 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5608 * to NORMAL_MODE, return an error too.
5610 for (i = 0; i < 2; i++) {
5611 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5612 mdelay(10); /* Wait for 10ms before reading back. */
5613 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5614 if ((byte & RAM_TEST_DONE) == 0
5615 || (byte & 0x0F) != PRE_TEST_VALUE) {
5616 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5617 return ADV_ERROR;
5620 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5621 mdelay(10); /* Wait for 10ms before reading back. */
5622 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5623 != NORMAL_VALUE) {
5624 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5625 return ADV_ERROR;
5630 * LRAM Test - It takes about 1.5 ms to run through the test.
5632 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5633 * If Done bit not set or Status not 0, save register byte, set the
5634 * err_code, and return an error.
5636 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5637 mdelay(10); /* Wait for 10ms before checking status. */
5639 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5640 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5641 /* Get here if Done bit not set or Status not 0. */
5642 asc_dvc->bist_err_code = byte; /* for BIOS display message */
5643 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5644 return ADV_ERROR;
5647 /* We need to reset back to normal mode after LRAM test passes. */
5648 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5650 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5651 if (err) {
5652 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5653 fwname, err);
5654 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5655 return err;
5657 if (fw->size < 4) {
5658 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5659 fw->size, fwname);
5660 release_firmware(fw);
5661 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5662 return -EINVAL;
5664 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5665 (fw->data[1] << 8) | fw->data[0];
5666 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5667 fw->size - 4, ADV_38C1600_MEMSIZE,
5668 chksum);
5669 release_firmware(fw);
5670 if (asc_dvc->err_code)
5671 return ADV_ERROR;
5674 * Restore the RISC memory BIOS region.
5676 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5677 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5678 bios_mem[i]);
5682 * Calculate and write the microcode code checksum to the microcode
5683 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5685 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5686 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5687 code_sum = 0;
5688 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5689 for (word = begin_addr; word < end_addr; word += 2) {
5690 code_sum += AdvReadWordAutoIncLram(iop_base);
5692 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5695 * Read microcode version and date.
5697 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5698 asc_dvc->cfg->mcode_date);
5699 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5700 asc_dvc->cfg->mcode_version);
5703 * Set the chip type to indicate the ASC38C1600.
5705 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
5708 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5709 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5710 * cable detection and then we are able to read C_DET[3:0].
5712 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5713 * Microcode Default Value' section below.
5715 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5716 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5717 scsi_cfg1 | DIS_TERM_DRV);
5720 * If the PCI Configuration Command Register "Parity Error Response
5721 * Control" Bit was clear (0), then set the microcode variable
5722 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5723 * to ignore DMA parity errors.
5725 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5726 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5727 word |= CONTROL_FLAG_IGNORE_PERR;
5728 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5732 * If the BIOS control flag AIPP (Asynchronous Information
5733 * Phase Protection) disable bit is not set, then set the firmware
5734 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
5735 * AIPP checking and encoding.
5737 if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
5738 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5739 word |= CONTROL_FLAG_ENABLE_AIPP;
5740 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5744 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
5745 * and START_CTL_TH [3:2].
5747 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5748 FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
5751 * Microcode operating variables for WDTR, SDTR, and command tag
5752 * queuing will be set in slave_configure() based on what a
5753 * device reports it is capable of in Inquiry byte 7.
5755 * If SCSI Bus Resets have been disabled, then directly set
5756 * SDTR and WDTR from the EEPROM configuration. This will allow
5757 * the BIOS and warm boot to work without a SCSI bus hang on
5758 * the Inquiry caused by host and target mismatched DTR values.
5759 * Without the SCSI Bus Reset, before an Inquiry a device can't
5760 * be assumed to be in Asynchronous, Narrow mode.
5762 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5763 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5764 asc_dvc->wdtr_able);
5765 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5766 asc_dvc->sdtr_able);
5770 * Set microcode operating variables for DISC and SDTR_SPEED1,
5771 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5772 * configuration values.
5774 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5775 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5776 * without determining here whether the device supports SDTR.
5778 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5779 asc_dvc->cfg->disc_enable);
5780 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5781 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5782 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5783 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5786 * Set SCSI_CFG0 Microcode Default Value.
5788 * The microcode will set the SCSI_CFG0 register using this value
5789 * after it is started below.
5791 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5792 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5793 asc_dvc->chip_scsi_id);
5796 * Calculate SCSI_CFG1 Microcode Default Value.
5798 * The microcode will set the SCSI_CFG1 register using this value
5799 * after it is started below.
5801 * Each ASC-38C1600 function has only two cable detect bits.
5802 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
5804 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5807 * If the cable is reversed all of the SCSI_CTRL register signals
5808 * will be set. Check for and return an error if this condition is
5809 * found.
5811 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5812 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5813 return ADV_ERROR;
5817 * Each ASC-38C1600 function has two connectors. Only an HVD device
5818 * can not be connected to either connector. An LVD device or SE device
5819 * may be connected to either connecor. If an SE device is connected,
5820 * then at most Ultra speed (20 Mhz) can be used on both connectors.
5822 * If an HVD device is attached, return an error.
5824 if (scsi_cfg1 & HVD) {
5825 asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
5826 return ADV_ERROR;
5830 * Each function in the ASC-38C1600 uses only the SE cable detect and
5831 * termination because there are two connectors for each function. Each
5832 * function may use either LVD or SE mode. Corresponding the SE automatic
5833 * termination control EEPROM bits are used for each function. Each
5834 * function has its own EEPROM. If SE automatic control is enabled for
5835 * the function, then set the termination value based on a table listed
5836 * in a_condor.h.
5838 * If manual termination is specified in the EEPROM for the function,
5839 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
5840 * ready to be 'ored' into SCSI_CFG1.
5842 if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5843 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
5844 /* SE automatic termination control is enabled. */
5845 switch (scsi_cfg1 & C_DET_SE) {
5846 /* TERM_SE_HI: on, TERM_SE_LO: on */
5847 case 0x1:
5848 case 0x2:
5849 case 0x3:
5850 asc_dvc->cfg->termination |= TERM_SE;
5851 break;
5853 case 0x0:
5854 if (PCI_FUNC(pdev->devfn) == 0) {
5855 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
5856 } else {
5857 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
5858 asc_dvc->cfg->termination |= TERM_SE_HI;
5860 break;
5865 * Clear any set TERM_SE bits.
5867 scsi_cfg1 &= ~TERM_SE;
5870 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
5872 scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
5875 * Clear Big Endian and Terminator Polarity bits and set possibly
5876 * modified termination control bits in the Microcode SCSI_CFG1
5877 * Register Value.
5879 * Big Endian bit is not used even on big endian machines.
5881 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
5884 * Set SCSI_CFG1 Microcode Default Value
5886 * Set possibly modified termination control bits in the Microcode
5887 * SCSI_CFG1 Register Value.
5889 * The microcode will set the SCSI_CFG1 register using this value
5890 * after it is started below.
5892 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5895 * Set MEM_CFG Microcode Default Value
5897 * The microcode will set the MEM_CFG register using this value
5898 * after it is started below.
5900 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5901 * are defined.
5903 * ASC-38C1600 has 32KB internal memory.
5905 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
5906 * out a special 16K Adv Library and Microcode version. After the issue
5907 * resolved, we should turn back to the 32K support. Both a_condor.h and
5908 * mcode.sas files also need to be updated.
5910 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5911 * BIOS_EN | RAM_SZ_32KB);
5913 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5914 BIOS_EN | RAM_SZ_16KB);
5917 * Set SEL_MASK Microcode Default Value
5919 * The microcode will set the SEL_MASK register using this value
5920 * after it is started below.
5922 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5923 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5925 AdvBuildCarrierFreelist(asc_dvc);
5928 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5930 if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
5931 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5932 return ADV_ERROR;
5934 asc_dvc->carr_freelist = (ADV_CARR_T *)
5935 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
5938 * The first command issued will be placed in the stopper carrier.
5940 asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5943 * Set RISC ICQ physical address start value. Initialize the
5944 * COMMA register to the same value otherwise the RISC will
5945 * prematurely detect a command is available.
5947 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5948 AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
5949 le32_to_cpu(asc_dvc->icq_sp->carr_pa));
5952 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5954 if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
5955 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5956 return ADV_ERROR;
5958 asc_dvc->carr_freelist = (ADV_CARR_T *)
5959 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
5962 * The first command completed by the RISC will be placed in
5963 * the stopper.
5965 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5966 * completed the RISC will set the ASC_RQ_STOPPER bit.
5968 asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5971 * Set RISC IRQ physical address start value.
5973 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5974 asc_dvc->carr_pending_cnt = 0;
5976 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5977 (ADV_INTR_ENABLE_HOST_INTR |
5978 ADV_INTR_ENABLE_GLOBAL_INTR));
5979 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5980 AdvWriteWordRegister(iop_base, IOPW_PC, word);
5982 /* finally, finally, gentlemen, start your engine */
5983 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5986 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5987 * Resets should be performed. The RISC has to be running
5988 * to issue a SCSI Bus Reset.
5990 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5992 * If the BIOS Signature is present in memory, restore the
5993 * per TID microcode operating variables.
5995 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5996 0x55AA) {
5998 * Restore per TID negotiated values.
6000 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6001 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6002 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6003 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
6004 tagqng_able);
6005 for (tid = 0; tid <= ASC_MAX_TID; tid++) {
6006 AdvWriteByteLram(iop_base,
6007 ASC_MC_NUMBER_OF_MAX_CMD + tid,
6008 max_cmd[tid]);
6010 } else {
6011 if (AdvResetSB(asc_dvc) != ADV_TRUE) {
6012 warn_code = ASC_WARN_BUSRESET_ERROR;
6017 return warn_code;
6021 * Reset chip and SCSI Bus.
6023 * Return Value:
6024 * ADV_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
6025 * ADV_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
6027 static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
6029 int status;
6030 ushort wdtr_able, sdtr_able, tagqng_able;
6031 ushort ppr_able = 0;
6032 uchar tid, max_cmd[ADV_MAX_TID + 1];
6033 AdvPortAddr iop_base;
6034 ushort bios_sig;
6036 iop_base = asc_dvc->iop_base;
6039 * Save current per TID negotiated values.
6041 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6042 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6043 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6044 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6046 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6047 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
6048 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6049 max_cmd[tid]);
6053 * Force the AdvInitAsc3550/38C0800Driver() function to
6054 * perform a SCSI Bus Reset by clearing the BIOS signature word.
6055 * The initialization functions assumes a SCSI Bus Reset is not
6056 * needed if the BIOS signature word is present.
6058 AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
6059 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
6062 * Stop chip and reset it.
6064 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
6065 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
6066 mdelay(100);
6067 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
6068 ADV_CTRL_REG_CMD_WR_IO_REG);
6071 * Reset Adv Library error code, if any, and try
6072 * re-initializing the chip.
6074 asc_dvc->err_code = 0;
6075 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6076 status = AdvInitAsc38C1600Driver(asc_dvc);
6077 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6078 status = AdvInitAsc38C0800Driver(asc_dvc);
6079 } else {
6080 status = AdvInitAsc3550Driver(asc_dvc);
6083 /* Translate initialization return value to status value. */
6084 if (status == 0) {
6085 status = ADV_TRUE;
6086 } else {
6087 status = ADV_FALSE;
6091 * Restore the BIOS signature word.
6093 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
6096 * Restore per TID negotiated values.
6098 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6099 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6100 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6101 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6103 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6104 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
6105 AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6106 max_cmd[tid]);
6109 return status;
6113 * adv_async_callback() - Adv Library asynchronous event callback function.
6115 static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
6117 switch (code) {
6118 case ADV_ASYNC_SCSI_BUS_RESET_DET:
6120 * The firmware detected a SCSI Bus reset.
6122 ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
6123 break;
6125 case ADV_ASYNC_RDMA_FAILURE:
6127 * Handle RDMA failure by resetting the SCSI Bus and
6128 * possibly the chip if it is unresponsive. Log the error
6129 * with a unique code.
6131 ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
6132 AdvResetChipAndSB(adv_dvc_varp);
6133 break;
6135 case ADV_HOST_SCSI_BUS_RESET:
6137 * Host generated SCSI bus reset occurred.
6139 ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
6140 break;
6142 default:
6143 ASC_DBG(0, "unknown code 0x%x\n", code);
6144 break;
6149 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
6151 * Callback function for the Wide SCSI Adv Library.
6153 static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
6155 struct asc_board *boardp;
6156 adv_req_t *reqp;
6157 adv_sgblk_t *sgblkp;
6158 struct scsi_cmnd *scp;
6159 struct Scsi_Host *shost;
6160 ADV_DCNT resid_cnt;
6162 ASC_DBG(1, "adv_dvc_varp 0x%lx, scsiqp 0x%lx\n",
6163 (ulong)adv_dvc_varp, (ulong)scsiqp);
6164 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
6167 * Get the adv_req_t structure for the command that has been
6168 * completed. The adv_req_t structure actually contains the
6169 * completed ADV_SCSI_REQ_Q structure.
6171 reqp = (adv_req_t *)ADV_U32_TO_VADDR(scsiqp->srb_ptr);
6172 ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
6173 if (reqp == NULL) {
6174 ASC_PRINT("adv_isr_callback: reqp is NULL\n");
6175 return;
6179 * Get the struct scsi_cmnd structure and Scsi_Host structure for the
6180 * command that has been completed.
6182 * Note: The adv_req_t request structure and adv_sgblk_t structure,
6183 * if any, are dropped, because a board structure pointer can not be
6184 * determined.
6186 scp = reqp->cmndp;
6187 ASC_DBG(1, "scp 0x%p\n", scp);
6188 if (scp == NULL) {
6189 ASC_PRINT
6190 ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
6191 return;
6193 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
6195 shost = scp->device->host;
6196 ASC_STATS(shost, callback);
6197 ASC_DBG(1, "shost 0x%p\n", shost);
6199 boardp = shost_priv(shost);
6200 BUG_ON(adv_dvc_varp != &boardp->dvc_var.adv_dvc_var);
6203 * 'done_status' contains the command's ending status.
6205 switch (scsiqp->done_status) {
6206 case QD_NO_ERROR:
6207 ASC_DBG(2, "QD_NO_ERROR\n");
6208 scp->result = 0;
6211 * Check for an underrun condition.
6213 * If there was no error and an underrun condition, then
6214 * then return the number of underrun bytes.
6216 resid_cnt = le32_to_cpu(scsiqp->data_cnt);
6217 if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
6218 resid_cnt <= scsi_bufflen(scp)) {
6219 ASC_DBG(1, "underrun condition %lu bytes\n",
6220 (ulong)resid_cnt);
6221 scsi_set_resid(scp, resid_cnt);
6223 break;
6225 case QD_WITH_ERROR:
6226 ASC_DBG(2, "QD_WITH_ERROR\n");
6227 switch (scsiqp->host_status) {
6228 case QHSTA_NO_ERROR:
6229 if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
6230 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6231 ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6232 SCSI_SENSE_BUFFERSIZE);
6234 * Note: The 'status_byte()' macro used by
6235 * target drivers defined in scsi.h shifts the
6236 * status byte returned by host drivers right
6237 * by 1 bit. This is why target drivers also
6238 * use right shifted status byte definitions.
6239 * For instance target drivers use
6240 * CHECK_CONDITION, defined to 0x1, instead of
6241 * the SCSI defined check condition value of
6242 * 0x2. Host drivers are supposed to return
6243 * the status byte as it is defined by SCSI.
6245 scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6246 STATUS_BYTE(scsiqp->scsi_status);
6247 } else {
6248 scp->result = STATUS_BYTE(scsiqp->scsi_status);
6250 break;
6252 default:
6253 /* Some other QHSTA error occurred. */
6254 ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
6255 scp->result = HOST_BYTE(DID_BAD_TARGET);
6256 break;
6258 break;
6260 case QD_ABORTED_BY_HOST:
6261 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6262 scp->result =
6263 HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status);
6264 break;
6266 default:
6267 ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
6268 scp->result =
6269 HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status);
6270 break;
6274 * If the 'init_tidmask' bit isn't already set for the target and the
6275 * current request finished normally, then set the bit for the target
6276 * to indicate that a device is present.
6278 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6279 scsiqp->done_status == QD_NO_ERROR &&
6280 scsiqp->host_status == QHSTA_NO_ERROR) {
6281 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6284 asc_scsi_done(scp);
6287 * Free all 'adv_sgblk_t' structures allocated for the request.
6289 while ((sgblkp = reqp->sgblkp) != NULL) {
6290 /* Remove 'sgblkp' from the request list. */
6291 reqp->sgblkp = sgblkp->next_sgblkp;
6293 /* Add 'sgblkp' to the board free list. */
6294 sgblkp->next_sgblkp = boardp->adv_sgblkp;
6295 boardp->adv_sgblkp = sgblkp;
6299 * Free the adv_req_t structure used with the command by adding
6300 * it back to the board free list.
6302 reqp->next_reqp = boardp->adv_reqp;
6303 boardp->adv_reqp = reqp;
6305 ASC_DBG(1, "done\n");
6309 * Adv Library Interrupt Service Routine
6311 * This function is called by a driver's interrupt service routine.
6312 * The function disables and re-enables interrupts.
6314 * When a microcode idle command is completed, the ADV_DVC_VAR
6315 * 'idle_cmd_done' field is set to ADV_TRUE.
6317 * Note: AdvISR() can be called when interrupts are disabled or even
6318 * when there is no hardware interrupt condition present. It will
6319 * always check for completed idle commands and microcode requests.
6320 * This is an important feature that shouldn't be changed because it
6321 * allows commands to be completed from polling mode loops.
6323 * Return:
6324 * ADV_TRUE(1) - interrupt was pending
6325 * ADV_FALSE(0) - no interrupt was pending
6327 static int AdvISR(ADV_DVC_VAR *asc_dvc)
6329 AdvPortAddr iop_base;
6330 uchar int_stat;
6331 ushort target_bit;
6332 ADV_CARR_T *free_carrp;
6333 ADV_VADDR irq_next_vpa;
6334 ADV_SCSI_REQ_Q *scsiq;
6336 iop_base = asc_dvc->iop_base;
6338 /* Reading the register clears the interrupt. */
6339 int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
6341 if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
6342 ADV_INTR_STATUS_INTRC)) == 0) {
6343 return ADV_FALSE;
6347 * Notify the driver of an asynchronous microcode condition by
6348 * calling the adv_async_callback function. The function
6349 * is passed the microcode ASC_MC_INTRB_CODE byte value.
6351 if (int_stat & ADV_INTR_STATUS_INTRB) {
6352 uchar intrb_code;
6354 AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
6356 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
6357 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6358 if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
6359 asc_dvc->carr_pending_cnt != 0) {
6360 AdvWriteByteRegister(iop_base, IOPB_TICKLE,
6361 ADV_TICKLE_A);
6362 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
6363 AdvWriteByteRegister(iop_base,
6364 IOPB_TICKLE,
6365 ADV_TICKLE_NOP);
6370 adv_async_callback(asc_dvc, intrb_code);
6374 * Check if the IRQ stopper carrier contains a completed request.
6376 while (((irq_next_vpa =
6377 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ASC_RQ_DONE) != 0) {
6379 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6380 * The RISC will have set 'areq_vpa' to a virtual address.
6382 * The firmware will have copied the ASC_SCSI_REQ_Q.scsiq_ptr
6383 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6384 * below complements the conversion of ASC_SCSI_REQ_Q.scsiq_ptr'
6385 * in AdvExeScsiQueue().
6387 scsiq = (ADV_SCSI_REQ_Q *)
6388 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->areq_vpa));
6391 * Request finished with good status and the queue was not
6392 * DMAed to host memory by the firmware. Set all status fields
6393 * to indicate good status.
6395 if ((irq_next_vpa & ASC_RQ_GOOD) != 0) {
6396 scsiq->done_status = QD_NO_ERROR;
6397 scsiq->host_status = scsiq->scsi_status = 0;
6398 scsiq->data_cnt = 0L;
6402 * Advance the stopper pointer to the next carrier
6403 * ignoring the lower four bits. Free the previous
6404 * stopper carrier.
6406 free_carrp = asc_dvc->irq_sp;
6407 asc_dvc->irq_sp = (ADV_CARR_T *)
6408 ADV_U32_TO_VADDR(ASC_GET_CARRP(irq_next_vpa));
6410 free_carrp->next_vpa =
6411 cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist));
6412 asc_dvc->carr_freelist = free_carrp;
6413 asc_dvc->carr_pending_cnt--;
6415 target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id);
6418 * Clear request microcode control flag.
6420 scsiq->cntl = 0;
6423 * Notify the driver of the completed request by passing
6424 * the ADV_SCSI_REQ_Q pointer to its callback function.
6426 scsiq->a_flag |= ADV_SCSIQ_DONE;
6427 adv_isr_callback(asc_dvc, scsiq);
6429 * Note: After the driver callback function is called, 'scsiq'
6430 * can no longer be referenced.
6432 * Fall through and continue processing other completed
6433 * requests...
6436 return ADV_TRUE;
6439 static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
6441 if (asc_dvc->err_code == 0) {
6442 asc_dvc->err_code = err_code;
6443 AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
6444 err_code);
6446 return err_code;
6449 static void AscAckInterrupt(PortAddr iop_base)
6451 uchar host_flag;
6452 uchar risc_flag;
6453 ushort loop;
6455 loop = 0;
6456 do {
6457 risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
6458 if (loop++ > 0x7FFF) {
6459 break;
6461 } while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
6462 host_flag =
6463 AscReadLramByte(iop_base,
6464 ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
6465 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6466 (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
6467 AscSetChipStatus(iop_base, CIW_INT_ACK);
6468 loop = 0;
6469 while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
6470 AscSetChipStatus(iop_base, CIW_INT_ACK);
6471 if (loop++ > 3) {
6472 break;
6475 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
6478 static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
6480 const uchar *period_table;
6481 int max_index;
6482 int min_index;
6483 int i;
6485 period_table = asc_dvc->sdtr_period_tbl;
6486 max_index = (int)asc_dvc->max_sdtr_index;
6487 min_index = (int)asc_dvc->min_sdtr_index;
6488 if ((syn_time <= period_table[max_index])) {
6489 for (i = min_index; i < (max_index - 1); i++) {
6490 if (syn_time <= period_table[i]) {
6491 return (uchar)i;
6494 return (uchar)max_index;
6495 } else {
6496 return (uchar)(max_index + 1);
6500 static uchar
6501 AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
6503 EXT_MSG sdtr_buf;
6504 uchar sdtr_period_index;
6505 PortAddr iop_base;
6507 iop_base = asc_dvc->iop_base;
6508 sdtr_buf.msg_type = EXTENDED_MESSAGE;
6509 sdtr_buf.msg_len = MS_SDTR_LEN;
6510 sdtr_buf.msg_req = EXTENDED_SDTR;
6511 sdtr_buf.xfer_period = sdtr_period;
6512 sdtr_offset &= ASC_SYN_MAX_OFFSET;
6513 sdtr_buf.req_ack_offset = sdtr_offset;
6514 sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6515 if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
6516 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6517 (uchar *)&sdtr_buf,
6518 sizeof(EXT_MSG) >> 1);
6519 return ((sdtr_period_index << 4) | sdtr_offset);
6520 } else {
6521 sdtr_buf.req_ack_offset = 0;
6522 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6523 (uchar *)&sdtr_buf,
6524 sizeof(EXT_MSG) >> 1);
6525 return 0;
6529 static uchar
6530 AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
6532 uchar byte;
6533 uchar sdtr_period_ix;
6535 sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6536 if (sdtr_period_ix > asc_dvc->max_sdtr_index)
6537 return 0xFF;
6538 byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
6539 return byte;
6542 static int AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
6544 ASC_SCSI_BIT_ID_TYPE org_id;
6545 int i;
6546 int sta = TRUE;
6548 AscSetBank(iop_base, 1);
6549 org_id = AscReadChipDvcID(iop_base);
6550 for (i = 0; i <= ASC_MAX_TID; i++) {
6551 if (org_id == (0x01 << i))
6552 break;
6554 org_id = (ASC_SCSI_BIT_ID_TYPE) i;
6555 AscWriteChipDvcID(iop_base, id);
6556 if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
6557 AscSetBank(iop_base, 0);
6558 AscSetChipSyn(iop_base, sdtr_data);
6559 if (AscGetChipSyn(iop_base) != sdtr_data) {
6560 sta = FALSE;
6562 } else {
6563 sta = FALSE;
6565 AscSetBank(iop_base, 1);
6566 AscWriteChipDvcID(iop_base, org_id);
6567 AscSetBank(iop_base, 0);
6568 return (sta);
6571 static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
6573 AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
6574 AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
6577 static int AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
6579 EXT_MSG ext_msg;
6580 EXT_MSG out_msg;
6581 ushort halt_q_addr;
6582 int sdtr_accept;
6583 ushort int_halt_code;
6584 ASC_SCSI_BIT_ID_TYPE scsi_busy;
6585 ASC_SCSI_BIT_ID_TYPE target_id;
6586 PortAddr iop_base;
6587 uchar tag_code;
6588 uchar q_status;
6589 uchar halt_qp;
6590 uchar sdtr_data;
6591 uchar target_ix;
6592 uchar q_cntl, tid_no;
6593 uchar cur_dvc_qng;
6594 uchar asyn_sdtr;
6595 uchar scsi_status;
6596 struct asc_board *boardp;
6598 BUG_ON(!asc_dvc->drv_ptr);
6599 boardp = asc_dvc->drv_ptr;
6601 iop_base = asc_dvc->iop_base;
6602 int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
6604 halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
6605 halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
6606 target_ix = AscReadLramByte(iop_base,
6607 (ushort)(halt_q_addr +
6608 (ushort)ASC_SCSIQ_B_TARGET_IX));
6609 q_cntl = AscReadLramByte(iop_base,
6610 (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6611 tid_no = ASC_TIX_TO_TID(target_ix);
6612 target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
6613 if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6614 asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
6615 } else {
6616 asyn_sdtr = 0;
6618 if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
6619 if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6620 AscSetChipSDTR(iop_base, 0, tid_no);
6621 boardp->sdtr_data[tid_no] = 0;
6623 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6624 return (0);
6625 } else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
6626 if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6627 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6628 boardp->sdtr_data[tid_no] = asyn_sdtr;
6630 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6631 return (0);
6632 } else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
6633 AscMemWordCopyPtrFromLram(iop_base,
6634 ASCV_MSGIN_BEG,
6635 (uchar *)&ext_msg,
6636 sizeof(EXT_MSG) >> 1);
6638 if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6639 ext_msg.msg_req == EXTENDED_SDTR &&
6640 ext_msg.msg_len == MS_SDTR_LEN) {
6641 sdtr_accept = TRUE;
6642 if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
6644 sdtr_accept = FALSE;
6645 ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
6647 if ((ext_msg.xfer_period <
6648 asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
6649 || (ext_msg.xfer_period >
6650 asc_dvc->sdtr_period_tbl[asc_dvc->
6651 max_sdtr_index])) {
6652 sdtr_accept = FALSE;
6653 ext_msg.xfer_period =
6654 asc_dvc->sdtr_period_tbl[asc_dvc->
6655 min_sdtr_index];
6657 if (sdtr_accept) {
6658 sdtr_data =
6659 AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
6660 ext_msg.req_ack_offset);
6661 if ((sdtr_data == 0xFF)) {
6663 q_cntl |= QC_MSG_OUT;
6664 asc_dvc->init_sdtr &= ~target_id;
6665 asc_dvc->sdtr_done &= ~target_id;
6666 AscSetChipSDTR(iop_base, asyn_sdtr,
6667 tid_no);
6668 boardp->sdtr_data[tid_no] = asyn_sdtr;
6671 if (ext_msg.req_ack_offset == 0) {
6673 q_cntl &= ~QC_MSG_OUT;
6674 asc_dvc->init_sdtr &= ~target_id;
6675 asc_dvc->sdtr_done &= ~target_id;
6676 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6677 } else {
6678 if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
6679 q_cntl &= ~QC_MSG_OUT;
6680 asc_dvc->sdtr_done |= target_id;
6681 asc_dvc->init_sdtr |= target_id;
6682 asc_dvc->pci_fix_asyn_xfer &=
6683 ~target_id;
6684 sdtr_data =
6685 AscCalSDTRData(asc_dvc,
6686 ext_msg.xfer_period,
6687 ext_msg.
6688 req_ack_offset);
6689 AscSetChipSDTR(iop_base, sdtr_data,
6690 tid_no);
6691 boardp->sdtr_data[tid_no] = sdtr_data;
6692 } else {
6693 q_cntl |= QC_MSG_OUT;
6694 AscMsgOutSDTR(asc_dvc,
6695 ext_msg.xfer_period,
6696 ext_msg.req_ack_offset);
6697 asc_dvc->pci_fix_asyn_xfer &=
6698 ~target_id;
6699 sdtr_data =
6700 AscCalSDTRData(asc_dvc,
6701 ext_msg.xfer_period,
6702 ext_msg.
6703 req_ack_offset);
6704 AscSetChipSDTR(iop_base, sdtr_data,
6705 tid_no);
6706 boardp->sdtr_data[tid_no] = sdtr_data;
6707 asc_dvc->sdtr_done |= target_id;
6708 asc_dvc->init_sdtr |= target_id;
6712 AscWriteLramByte(iop_base,
6713 (ushort)(halt_q_addr +
6714 (ushort)ASC_SCSIQ_B_CNTL),
6715 q_cntl);
6716 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6717 return (0);
6718 } else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6719 ext_msg.msg_req == EXTENDED_WDTR &&
6720 ext_msg.msg_len == MS_WDTR_LEN) {
6722 ext_msg.wdtr_width = 0;
6723 AscMemWordCopyPtrToLram(iop_base,
6724 ASCV_MSGOUT_BEG,
6725 (uchar *)&ext_msg,
6726 sizeof(EXT_MSG) >> 1);
6727 q_cntl |= QC_MSG_OUT;
6728 AscWriteLramByte(iop_base,
6729 (ushort)(halt_q_addr +
6730 (ushort)ASC_SCSIQ_B_CNTL),
6731 q_cntl);
6732 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6733 return (0);
6734 } else {
6736 ext_msg.msg_type = MESSAGE_REJECT;
6737 AscMemWordCopyPtrToLram(iop_base,
6738 ASCV_MSGOUT_BEG,
6739 (uchar *)&ext_msg,
6740 sizeof(EXT_MSG) >> 1);
6741 q_cntl |= QC_MSG_OUT;
6742 AscWriteLramByte(iop_base,
6743 (ushort)(halt_q_addr +
6744 (ushort)ASC_SCSIQ_B_CNTL),
6745 q_cntl);
6746 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6747 return (0);
6749 } else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
6751 q_cntl |= QC_REQ_SENSE;
6753 if ((asc_dvc->init_sdtr & target_id) != 0) {
6755 asc_dvc->sdtr_done &= ~target_id;
6757 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
6758 q_cntl |= QC_MSG_OUT;
6759 AscMsgOutSDTR(asc_dvc,
6760 asc_dvc->
6761 sdtr_period_tbl[(sdtr_data >> 4) &
6762 (uchar)(asc_dvc->
6763 max_sdtr_index -
6764 1)],
6765 (uchar)(sdtr_data & (uchar)
6766 ASC_SYN_MAX_OFFSET));
6769 AscWriteLramByte(iop_base,
6770 (ushort)(halt_q_addr +
6771 (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6773 tag_code = AscReadLramByte(iop_base,
6774 (ushort)(halt_q_addr + (ushort)
6775 ASC_SCSIQ_B_TAG_CODE));
6776 tag_code &= 0xDC;
6777 if ((asc_dvc->pci_fix_asyn_xfer & target_id)
6778 && !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
6781 tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
6782 | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
6785 AscWriteLramByte(iop_base,
6786 (ushort)(halt_q_addr +
6787 (ushort)ASC_SCSIQ_B_TAG_CODE),
6788 tag_code);
6790 q_status = AscReadLramByte(iop_base,
6791 (ushort)(halt_q_addr + (ushort)
6792 ASC_SCSIQ_B_STATUS));
6793 q_status |= (QS_READY | QS_BUSY);
6794 AscWriteLramByte(iop_base,
6795 (ushort)(halt_q_addr +
6796 (ushort)ASC_SCSIQ_B_STATUS),
6797 q_status);
6799 scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
6800 scsi_busy &= ~target_id;
6801 AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6803 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6804 return (0);
6805 } else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
6807 AscMemWordCopyPtrFromLram(iop_base,
6808 ASCV_MSGOUT_BEG,
6809 (uchar *)&out_msg,
6810 sizeof(EXT_MSG) >> 1);
6812 if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
6813 (out_msg.msg_len == MS_SDTR_LEN) &&
6814 (out_msg.msg_req == EXTENDED_SDTR)) {
6816 asc_dvc->init_sdtr &= ~target_id;
6817 asc_dvc->sdtr_done &= ~target_id;
6818 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6819 boardp->sdtr_data[tid_no] = asyn_sdtr;
6821 q_cntl &= ~QC_MSG_OUT;
6822 AscWriteLramByte(iop_base,
6823 (ushort)(halt_q_addr +
6824 (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6825 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6826 return (0);
6827 } else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
6829 scsi_status = AscReadLramByte(iop_base,
6830 (ushort)((ushort)halt_q_addr +
6831 (ushort)
6832 ASC_SCSIQ_SCSI_STATUS));
6833 cur_dvc_qng =
6834 AscReadLramByte(iop_base,
6835 (ushort)((ushort)ASC_QADR_BEG +
6836 (ushort)target_ix));
6837 if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
6839 scsi_busy = AscReadLramByte(iop_base,
6840 (ushort)ASCV_SCSIBUSY_B);
6841 scsi_busy |= target_id;
6842 AscWriteLramByte(iop_base,
6843 (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6844 asc_dvc->queue_full_or_busy |= target_id;
6846 if (scsi_status == SAM_STAT_TASK_SET_FULL) {
6847 if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
6848 cur_dvc_qng -= 1;
6849 asc_dvc->max_dvc_qng[tid_no] =
6850 cur_dvc_qng;
6852 AscWriteLramByte(iop_base,
6853 (ushort)((ushort)
6854 ASCV_MAX_DVC_QNG_BEG
6855 + (ushort)
6856 tid_no),
6857 cur_dvc_qng);
6860 * Set the device queue depth to the
6861 * number of active requests when the
6862 * QUEUE FULL condition was encountered.
6864 boardp->queue_full |= target_id;
6865 boardp->queue_full_cnt[tid_no] =
6866 cur_dvc_qng;
6870 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6871 return (0);
6873 #if CC_VERY_LONG_SG_LIST
6874 else if (int_halt_code == ASC_HALT_HOST_COPY_SG_LIST_TO_RISC) {
6875 uchar q_no;
6876 ushort q_addr;
6877 uchar sg_wk_q_no;
6878 uchar first_sg_wk_q_no;
6879 ASC_SCSI_Q *scsiq; /* Ptr to driver request. */
6880 ASC_SG_HEAD *sg_head; /* Ptr to driver SG request. */
6881 ASC_SG_LIST_Q scsi_sg_q; /* Structure written to queue. */
6882 ushort sg_list_dwords;
6883 ushort sg_entry_cnt;
6884 uchar next_qp;
6885 int i;
6887 q_no = AscReadLramByte(iop_base, (ushort)ASCV_REQ_SG_LIST_QP);
6888 if (q_no == ASC_QLINK_END)
6889 return 0;
6891 q_addr = ASC_QNO_TO_QADDR(q_no);
6894 * Convert the request's SRB pointer to a host ASC_SCSI_REQ
6895 * structure pointer using a macro provided by the driver.
6896 * The ASC_SCSI_REQ pointer provides a pointer to the
6897 * host ASC_SG_HEAD structure.
6899 /* Read request's SRB pointer. */
6900 scsiq = (ASC_SCSI_Q *)
6901 ASC_SRB2SCSIQ(ASC_U32_TO_VADDR(AscReadLramDWord(iop_base,
6902 (ushort)
6903 (q_addr +
6904 ASC_SCSIQ_D_SRBPTR))));
6907 * Get request's first and working SG queue.
6909 sg_wk_q_no = AscReadLramByte(iop_base,
6910 (ushort)(q_addr +
6911 ASC_SCSIQ_B_SG_WK_QP));
6913 first_sg_wk_q_no = AscReadLramByte(iop_base,
6914 (ushort)(q_addr +
6915 ASC_SCSIQ_B_FIRST_SG_WK_QP));
6918 * Reset request's working SG queue back to the
6919 * first SG queue.
6921 AscWriteLramByte(iop_base,
6922 (ushort)(q_addr +
6923 (ushort)ASC_SCSIQ_B_SG_WK_QP),
6924 first_sg_wk_q_no);
6926 sg_head = scsiq->sg_head;
6929 * Set sg_entry_cnt to the number of SG elements
6930 * that will be completed on this interrupt.
6932 * Note: The allocated SG queues contain ASC_MAX_SG_LIST - 1
6933 * SG elements. The data_cnt and data_addr fields which
6934 * add 1 to the SG element capacity are not used when
6935 * restarting SG handling after a halt.
6937 if (scsiq->remain_sg_entry_cnt > (ASC_MAX_SG_LIST - 1)) {
6938 sg_entry_cnt = ASC_MAX_SG_LIST - 1;
6941 * Keep track of remaining number of SG elements that
6942 * will need to be handled on the next interrupt.
6944 scsiq->remain_sg_entry_cnt -= (ASC_MAX_SG_LIST - 1);
6945 } else {
6946 sg_entry_cnt = scsiq->remain_sg_entry_cnt;
6947 scsiq->remain_sg_entry_cnt = 0;
6951 * Copy SG elements into the list of allocated SG queues.
6953 * Last index completed is saved in scsiq->next_sg_index.
6955 next_qp = first_sg_wk_q_no;
6956 q_addr = ASC_QNO_TO_QADDR(next_qp);
6957 scsi_sg_q.sg_head_qp = q_no;
6958 scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
6959 for (i = 0; i < sg_head->queue_cnt; i++) {
6960 scsi_sg_q.seq_no = i + 1;
6961 if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
6962 sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
6963 sg_entry_cnt -= ASC_SG_LIST_PER_Q;
6965 * After very first SG queue RISC FW uses next
6966 * SG queue first element then checks sg_list_cnt
6967 * against zero and then decrements, so set
6968 * sg_list_cnt 1 less than number of SG elements
6969 * in each SG queue.
6971 scsi_sg_q.sg_list_cnt = ASC_SG_LIST_PER_Q - 1;
6972 scsi_sg_q.sg_cur_list_cnt =
6973 ASC_SG_LIST_PER_Q - 1;
6974 } else {
6976 * This is the last SG queue in the list of
6977 * allocated SG queues. If there are more
6978 * SG elements than will fit in the allocated
6979 * queues, then set the QCSG_SG_XFER_MORE flag.
6981 if (scsiq->remain_sg_entry_cnt != 0) {
6982 scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
6983 } else {
6984 scsi_sg_q.cntl |= QCSG_SG_XFER_END;
6986 /* equals sg_entry_cnt * 2 */
6987 sg_list_dwords = sg_entry_cnt << 1;
6988 scsi_sg_q.sg_list_cnt = sg_entry_cnt - 1;
6989 scsi_sg_q.sg_cur_list_cnt = sg_entry_cnt - 1;
6990 sg_entry_cnt = 0;
6993 scsi_sg_q.q_no = next_qp;
6994 AscMemWordCopyPtrToLram(iop_base,
6995 q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
6996 (uchar *)&scsi_sg_q,
6997 sizeof(ASC_SG_LIST_Q) >> 1);
6999 AscMemDWordCopyPtrToLram(iop_base,
7000 q_addr + ASC_SGQ_LIST_BEG,
7001 (uchar *)&sg_head->
7002 sg_list[scsiq->next_sg_index],
7003 sg_list_dwords);
7005 scsiq->next_sg_index += ASC_SG_LIST_PER_Q;
7008 * If the just completed SG queue contained the
7009 * last SG element, then no more SG queues need
7010 * to be written.
7012 if (scsi_sg_q.cntl & QCSG_SG_XFER_END) {
7013 break;
7016 next_qp = AscReadLramByte(iop_base,
7017 (ushort)(q_addr +
7018 ASC_SCSIQ_B_FWD));
7019 q_addr = ASC_QNO_TO_QADDR(next_qp);
7023 * Clear the halt condition so the RISC will be restarted
7024 * after the return.
7026 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7027 return (0);
7029 #endif /* CC_VERY_LONG_SG_LIST */
7030 return (0);
7034 * void
7035 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7037 * Calling/Exit State:
7038 * none
7040 * Description:
7041 * Input an ASC_QDONE_INFO structure from the chip
7043 static void
7044 DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7046 int i;
7047 ushort word;
7049 AscSetChipLramAddr(iop_base, s_addr);
7050 for (i = 0; i < 2 * words; i += 2) {
7051 if (i == 10) {
7052 continue;
7054 word = inpw(iop_base + IOP_RAM_DATA);
7055 inbuf[i] = word & 0xff;
7056 inbuf[i + 1] = (word >> 8) & 0xff;
7058 ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
7061 static uchar
7062 _AscCopyLramScsiDoneQ(PortAddr iop_base,
7063 ushort q_addr,
7064 ASC_QDONE_INFO *scsiq, ASC_DCNT max_dma_count)
7066 ushort _val;
7067 uchar sg_queue_cnt;
7069 DvcGetQinfo(iop_base,
7070 q_addr + ASC_SCSIQ_DONE_INFO_BEG,
7071 (uchar *)scsiq,
7072 (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
7074 _val = AscReadLramWord(iop_base,
7075 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
7076 scsiq->q_status = (uchar)_val;
7077 scsiq->q_no = (uchar)(_val >> 8);
7078 _val = AscReadLramWord(iop_base,
7079 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
7080 scsiq->cntl = (uchar)_val;
7081 sg_queue_cnt = (uchar)(_val >> 8);
7082 _val = AscReadLramWord(iop_base,
7083 (ushort)(q_addr +
7084 (ushort)ASC_SCSIQ_B_SENSE_LEN));
7085 scsiq->sense_len = (uchar)_val;
7086 scsiq->extra_bytes = (uchar)(_val >> 8);
7089 * Read high word of remain bytes from alternate location.
7091 scsiq->remain_bytes = (((ADV_DCNT)AscReadLramWord(iop_base,
7092 (ushort)(q_addr +
7093 (ushort)
7094 ASC_SCSIQ_W_ALT_DC1)))
7095 << 16);
7097 * Read low word of remain bytes from original location.
7099 scsiq->remain_bytes += AscReadLramWord(iop_base,
7100 (ushort)(q_addr + (ushort)
7101 ASC_SCSIQ_DW_REMAIN_XFER_CNT));
7103 scsiq->remain_bytes &= max_dma_count;
7104 return sg_queue_cnt;
7108 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
7110 * Interrupt callback function for the Narrow SCSI Asc Library.
7112 static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
7114 struct asc_board *boardp;
7115 struct scsi_cmnd *scp;
7116 struct Scsi_Host *shost;
7118 ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
7119 ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
7121 scp = advansys_srb_to_ptr(asc_dvc_varp, qdonep->d2.srb_ptr);
7122 if (!scp)
7123 return;
7125 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
7127 shost = scp->device->host;
7128 ASC_STATS(shost, callback);
7129 ASC_DBG(1, "shost 0x%p\n", shost);
7131 boardp = shost_priv(shost);
7132 BUG_ON(asc_dvc_varp != &boardp->dvc_var.asc_dvc_var);
7134 dma_unmap_single(boardp->dev, scp->SCp.dma_handle,
7135 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7137 * 'qdonep' contains the command's ending status.
7139 switch (qdonep->d3.done_stat) {
7140 case QD_NO_ERROR:
7141 ASC_DBG(2, "QD_NO_ERROR\n");
7142 scp->result = 0;
7145 * Check for an underrun condition.
7147 * If there was no error and an underrun condition, then
7148 * return the number of underrun bytes.
7150 if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
7151 qdonep->remain_bytes <= scsi_bufflen(scp)) {
7152 ASC_DBG(1, "underrun condition %u bytes\n",
7153 (unsigned)qdonep->remain_bytes);
7154 scsi_set_resid(scp, qdonep->remain_bytes);
7156 break;
7158 case QD_WITH_ERROR:
7159 ASC_DBG(2, "QD_WITH_ERROR\n");
7160 switch (qdonep->d3.host_stat) {
7161 case QHSTA_NO_ERROR:
7162 if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
7163 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
7164 ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
7165 SCSI_SENSE_BUFFERSIZE);
7167 * Note: The 'status_byte()' macro used by
7168 * target drivers defined in scsi.h shifts the
7169 * status byte returned by host drivers right
7170 * by 1 bit. This is why target drivers also
7171 * use right shifted status byte definitions.
7172 * For instance target drivers use
7173 * CHECK_CONDITION, defined to 0x1, instead of
7174 * the SCSI defined check condition value of
7175 * 0x2. Host drivers are supposed to return
7176 * the status byte as it is defined by SCSI.
7178 scp->result = DRIVER_BYTE(DRIVER_SENSE) |
7179 STATUS_BYTE(qdonep->d3.scsi_stat);
7180 } else {
7181 scp->result = STATUS_BYTE(qdonep->d3.scsi_stat);
7183 break;
7185 default:
7186 /* QHSTA error occurred */
7187 ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
7188 scp->result = HOST_BYTE(DID_BAD_TARGET);
7189 break;
7191 break;
7193 case QD_ABORTED_BY_HOST:
7194 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
7195 scp->result =
7196 HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3.
7197 scsi_msg) |
7198 STATUS_BYTE(qdonep->d3.scsi_stat);
7199 break;
7201 default:
7202 ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
7203 scp->result =
7204 HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3.
7205 scsi_msg) |
7206 STATUS_BYTE(qdonep->d3.scsi_stat);
7207 break;
7211 * If the 'init_tidmask' bit isn't already set for the target and the
7212 * current request finished normally, then set the bit for the target
7213 * to indicate that a device is present.
7215 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
7216 qdonep->d3.done_stat == QD_NO_ERROR &&
7217 qdonep->d3.host_stat == QHSTA_NO_ERROR) {
7218 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
7221 asc_scsi_done(scp);
7224 static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
7226 uchar next_qp;
7227 uchar n_q_used;
7228 uchar sg_list_qp;
7229 uchar sg_queue_cnt;
7230 uchar q_cnt;
7231 uchar done_q_tail;
7232 uchar tid_no;
7233 ASC_SCSI_BIT_ID_TYPE scsi_busy;
7234 ASC_SCSI_BIT_ID_TYPE target_id;
7235 PortAddr iop_base;
7236 ushort q_addr;
7237 ushort sg_q_addr;
7238 uchar cur_target_qng;
7239 ASC_QDONE_INFO scsiq_buf;
7240 ASC_QDONE_INFO *scsiq;
7241 int false_overrun;
7243 iop_base = asc_dvc->iop_base;
7244 n_q_used = 1;
7245 scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
7246 done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
7247 q_addr = ASC_QNO_TO_QADDR(done_q_tail);
7248 next_qp = AscReadLramByte(iop_base,
7249 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
7250 if (next_qp != ASC_QLINK_END) {
7251 AscPutVarDoneQTail(iop_base, next_qp);
7252 q_addr = ASC_QNO_TO_QADDR(next_qp);
7253 sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
7254 asc_dvc->max_dma_count);
7255 AscWriteLramByte(iop_base,
7256 (ushort)(q_addr +
7257 (ushort)ASC_SCSIQ_B_STATUS),
7258 (uchar)(scsiq->
7259 q_status & (uchar)~(QS_READY |
7260 QS_ABORTED)));
7261 tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
7262 target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
7263 if ((scsiq->cntl & QC_SG_HEAD) != 0) {
7264 sg_q_addr = q_addr;
7265 sg_list_qp = next_qp;
7266 for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
7267 sg_list_qp = AscReadLramByte(iop_base,
7268 (ushort)(sg_q_addr
7269 + (ushort)
7270 ASC_SCSIQ_B_FWD));
7271 sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
7272 if (sg_list_qp == ASC_QLINK_END) {
7273 AscSetLibErrorCode(asc_dvc,
7274 ASCQ_ERR_SG_Q_LINKS);
7275 scsiq->d3.done_stat = QD_WITH_ERROR;
7276 scsiq->d3.host_stat =
7277 QHSTA_D_QDONE_SG_LIST_CORRUPTED;
7278 goto FATAL_ERR_QDONE;
7280 AscWriteLramByte(iop_base,
7281 (ushort)(sg_q_addr + (ushort)
7282 ASC_SCSIQ_B_STATUS),
7283 QS_FREE);
7285 n_q_used = sg_queue_cnt + 1;
7286 AscPutVarDoneQTail(iop_base, sg_list_qp);
7288 if (asc_dvc->queue_full_or_busy & target_id) {
7289 cur_target_qng = AscReadLramByte(iop_base,
7290 (ushort)((ushort)
7291 ASC_QADR_BEG
7292 + (ushort)
7293 scsiq->d2.
7294 target_ix));
7295 if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
7296 scsi_busy = AscReadLramByte(iop_base, (ushort)
7297 ASCV_SCSIBUSY_B);
7298 scsi_busy &= ~target_id;
7299 AscWriteLramByte(iop_base,
7300 (ushort)ASCV_SCSIBUSY_B,
7301 scsi_busy);
7302 asc_dvc->queue_full_or_busy &= ~target_id;
7305 if (asc_dvc->cur_total_qng >= n_q_used) {
7306 asc_dvc->cur_total_qng -= n_q_used;
7307 if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
7308 asc_dvc->cur_dvc_qng[tid_no]--;
7310 } else {
7311 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
7312 scsiq->d3.done_stat = QD_WITH_ERROR;
7313 goto FATAL_ERR_QDONE;
7315 if ((scsiq->d2.srb_ptr == 0UL) ||
7316 ((scsiq->q_status & QS_ABORTED) != 0)) {
7317 return (0x11);
7318 } else if (scsiq->q_status == QS_DONE) {
7319 false_overrun = FALSE;
7320 if (scsiq->extra_bytes != 0) {
7321 scsiq->remain_bytes +=
7322 (ADV_DCNT)scsiq->extra_bytes;
7324 if (scsiq->d3.done_stat == QD_WITH_ERROR) {
7325 if (scsiq->d3.host_stat ==
7326 QHSTA_M_DATA_OVER_RUN) {
7327 if ((scsiq->
7328 cntl & (QC_DATA_IN | QC_DATA_OUT))
7329 == 0) {
7330 scsiq->d3.done_stat =
7331 QD_NO_ERROR;
7332 scsiq->d3.host_stat =
7333 QHSTA_NO_ERROR;
7334 } else if (false_overrun) {
7335 scsiq->d3.done_stat =
7336 QD_NO_ERROR;
7337 scsiq->d3.host_stat =
7338 QHSTA_NO_ERROR;
7340 } else if (scsiq->d3.host_stat ==
7341 QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
7342 AscStopChip(iop_base);
7343 AscSetChipControl(iop_base,
7344 (uchar)(CC_SCSI_RESET
7345 | CC_HALT));
7346 udelay(60);
7347 AscSetChipControl(iop_base, CC_HALT);
7348 AscSetChipStatus(iop_base,
7349 CIW_CLR_SCSI_RESET_INT);
7350 AscSetChipStatus(iop_base, 0);
7351 AscSetChipControl(iop_base, 0);
7354 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7355 asc_isr_callback(asc_dvc, scsiq);
7356 } else {
7357 if ((AscReadLramByte(iop_base,
7358 (ushort)(q_addr + (ushort)
7359 ASC_SCSIQ_CDB_BEG))
7360 == START_STOP)) {
7361 asc_dvc->unit_not_ready &= ~target_id;
7362 if (scsiq->d3.done_stat != QD_NO_ERROR) {
7363 asc_dvc->start_motor &=
7364 ~target_id;
7368 return (1);
7369 } else {
7370 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
7371 FATAL_ERR_QDONE:
7372 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7373 asc_isr_callback(asc_dvc, scsiq);
7375 return (0x80);
7378 return (0);
7381 static int AscISR(ASC_DVC_VAR *asc_dvc)
7383 ASC_CS_TYPE chipstat;
7384 PortAddr iop_base;
7385 ushort saved_ram_addr;
7386 uchar ctrl_reg;
7387 uchar saved_ctrl_reg;
7388 int int_pending;
7389 int status;
7390 uchar host_flag;
7392 iop_base = asc_dvc->iop_base;
7393 int_pending = FALSE;
7395 if (AscIsIntPending(iop_base) == 0)
7396 return int_pending;
7398 if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
7399 return ERR;
7401 if (asc_dvc->in_critical_cnt != 0) {
7402 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
7403 return ERR;
7405 if (asc_dvc->is_in_int) {
7406 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
7407 return ERR;
7409 asc_dvc->is_in_int = TRUE;
7410 ctrl_reg = AscGetChipControl(iop_base);
7411 saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
7412 CC_SINGLE_STEP | CC_DIAG | CC_TEST));
7413 chipstat = AscGetChipStatus(iop_base);
7414 if (chipstat & CSW_SCSI_RESET_LATCH) {
7415 if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
7416 int i = 10;
7417 int_pending = TRUE;
7418 asc_dvc->sdtr_done = 0;
7419 saved_ctrl_reg &= (uchar)(~CC_HALT);
7420 while ((AscGetChipStatus(iop_base) &
7421 CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
7422 mdelay(100);
7424 AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
7425 AscSetChipControl(iop_base, CC_HALT);
7426 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
7427 AscSetChipStatus(iop_base, 0);
7428 chipstat = AscGetChipStatus(iop_base);
7431 saved_ram_addr = AscGetChipLramAddr(iop_base);
7432 host_flag = AscReadLramByte(iop_base,
7433 ASCV_HOST_FLAG_B) &
7434 (uchar)(~ASC_HOST_FLAG_IN_ISR);
7435 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
7436 (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
7437 if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
7438 AscAckInterrupt(iop_base);
7439 int_pending = TRUE;
7440 if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
7441 if (AscIsrChipHalted(asc_dvc) == ERR) {
7442 goto ISR_REPORT_QDONE_FATAL_ERROR;
7443 } else {
7444 saved_ctrl_reg &= (uchar)(~CC_HALT);
7446 } else {
7447 ISR_REPORT_QDONE_FATAL_ERROR:
7448 if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
7449 while (((status =
7450 AscIsrQDone(asc_dvc)) & 0x01) != 0) {
7452 } else {
7453 do {
7454 if ((status =
7455 AscIsrQDone(asc_dvc)) == 1) {
7456 break;
7458 } while (status == 0x11);
7460 if ((status & 0x80) != 0)
7461 int_pending = ERR;
7464 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
7465 AscSetChipLramAddr(iop_base, saved_ram_addr);
7466 AscSetChipControl(iop_base, saved_ctrl_reg);
7467 asc_dvc->is_in_int = FALSE;
7468 return int_pending;
7472 * advansys_reset()
7474 * Reset the bus associated with the command 'scp'.
7476 * This function runs its own thread. Interrupts must be blocked but
7477 * sleeping is allowed and no locking other than for host structures is
7478 * required. Returns SUCCESS or FAILED.
7480 static int advansys_reset(struct scsi_cmnd *scp)
7482 struct Scsi_Host *shost = scp->device->host;
7483 struct asc_board *boardp = shost_priv(shost);
7484 unsigned long flags;
7485 int status;
7486 int ret = SUCCESS;
7488 ASC_DBG(1, "0x%p\n", scp);
7490 ASC_STATS(shost, reset);
7492 scmd_printk(KERN_INFO, scp, "SCSI bus reset started...\n");
7494 if (ASC_NARROW_BOARD(boardp)) {
7495 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7497 /* Reset the chip and SCSI bus. */
7498 ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7499 status = AscInitAsc1000Driver(asc_dvc);
7501 /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7502 if (asc_dvc->err_code || !asc_dvc->overrun_dma) {
7503 scmd_printk(KERN_INFO, scp, "SCSI bus reset error: "
7504 "0x%x, status: 0x%x\n", asc_dvc->err_code,
7505 status);
7506 ret = FAILED;
7507 } else if (status) {
7508 scmd_printk(KERN_INFO, scp, "SCSI bus reset warning: "
7509 "0x%x\n", status);
7510 } else {
7511 scmd_printk(KERN_INFO, scp, "SCSI bus reset "
7512 "successful\n");
7515 ASC_DBG(1, "after AscInitAsc1000Driver()\n");
7516 spin_lock_irqsave(shost->host_lock, flags);
7517 } else {
7519 * If the suggest reset bus flags are set, then reset the bus.
7520 * Otherwise only reset the device.
7522 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
7525 * Reset the target's SCSI bus.
7527 ASC_DBG(1, "before AdvResetChipAndSB()\n");
7528 switch (AdvResetChipAndSB(adv_dvc)) {
7529 case ASC_TRUE:
7530 scmd_printk(KERN_INFO, scp, "SCSI bus reset "
7531 "successful\n");
7532 break;
7533 case ASC_FALSE:
7534 default:
7535 scmd_printk(KERN_INFO, scp, "SCSI bus reset error\n");
7536 ret = FAILED;
7537 break;
7539 spin_lock_irqsave(shost->host_lock, flags);
7540 AdvISR(adv_dvc);
7543 /* Save the time of the most recently completed reset. */
7544 boardp->last_reset = jiffies;
7545 spin_unlock_irqrestore(shost->host_lock, flags);
7547 ASC_DBG(1, "ret %d\n", ret);
7549 return ret;
7553 * advansys_biosparam()
7555 * Translate disk drive geometry if the "BIOS greater than 1 GB"
7556 * support is enabled for a drive.
7558 * ip (information pointer) is an int array with the following definition:
7559 * ip[0]: heads
7560 * ip[1]: sectors
7561 * ip[2]: cylinders
7563 static int
7564 advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
7565 sector_t capacity, int ip[])
7567 struct asc_board *boardp = shost_priv(sdev->host);
7569 ASC_DBG(1, "begin\n");
7570 ASC_STATS(sdev->host, biosparam);
7571 if (ASC_NARROW_BOARD(boardp)) {
7572 if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
7573 ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
7574 ip[0] = 255;
7575 ip[1] = 63;
7576 } else {
7577 ip[0] = 64;
7578 ip[1] = 32;
7580 } else {
7581 if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
7582 BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
7583 ip[0] = 255;
7584 ip[1] = 63;
7585 } else {
7586 ip[0] = 64;
7587 ip[1] = 32;
7590 ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
7591 ASC_DBG(1, "end\n");
7592 return 0;
7596 * First-level interrupt handler.
7598 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
7600 static irqreturn_t advansys_interrupt(int irq, void *dev_id)
7602 struct Scsi_Host *shost = dev_id;
7603 struct asc_board *boardp = shost_priv(shost);
7604 irqreturn_t result = IRQ_NONE;
7606 ASC_DBG(2, "boardp 0x%p\n", boardp);
7607 spin_lock(shost->host_lock);
7608 if (ASC_NARROW_BOARD(boardp)) {
7609 if (AscIsIntPending(shost->io_port)) {
7610 result = IRQ_HANDLED;
7611 ASC_STATS(shost, interrupt);
7612 ASC_DBG(1, "before AscISR()\n");
7613 AscISR(&boardp->dvc_var.asc_dvc_var);
7615 } else {
7616 ASC_DBG(1, "before AdvISR()\n");
7617 if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
7618 result = IRQ_HANDLED;
7619 ASC_STATS(shost, interrupt);
7622 spin_unlock(shost->host_lock);
7624 ASC_DBG(1, "end\n");
7625 return result;
7628 static int AscHostReqRiscHalt(PortAddr iop_base)
7630 int count = 0;
7631 int sta = 0;
7632 uchar saved_stop_code;
7634 if (AscIsChipHalted(iop_base))
7635 return (1);
7636 saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
7637 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
7638 ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
7639 do {
7640 if (AscIsChipHalted(iop_base)) {
7641 sta = 1;
7642 break;
7644 mdelay(100);
7645 } while (count++ < 20);
7646 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
7647 return (sta);
7650 static int
7651 AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
7653 int sta = FALSE;
7655 if (AscHostReqRiscHalt(iop_base)) {
7656 sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
7657 AscStartChip(iop_base);
7659 return sta;
7662 static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
7664 char type = sdev->type;
7665 ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
7667 if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
7668 return;
7669 if (asc_dvc->init_sdtr & tid_bits)
7670 return;
7672 if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
7673 asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
7675 asc_dvc->pci_fix_asyn_xfer |= tid_bits;
7676 if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
7677 (type == TYPE_ROM) || (type == TYPE_TAPE))
7678 asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
7680 if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
7681 AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
7682 ASYN_SDTR_DATA_FIX_PCI_REV_AB);
7685 static void
7686 advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
7688 ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
7689 ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
7691 if (sdev->lun == 0) {
7692 ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
7693 if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
7694 asc_dvc->init_sdtr |= tid_bit;
7695 } else {
7696 asc_dvc->init_sdtr &= ~tid_bit;
7699 if (orig_init_sdtr != asc_dvc->init_sdtr)
7700 AscAsyncFix(asc_dvc, sdev);
7703 if (sdev->tagged_supported) {
7704 if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
7705 if (sdev->lun == 0) {
7706 asc_dvc->cfg->can_tagged_qng |= tid_bit;
7707 asc_dvc->use_tagged_qng |= tid_bit;
7709 scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG,
7710 asc_dvc->max_dvc_qng[sdev->id]);
7712 } else {
7713 if (sdev->lun == 0) {
7714 asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
7715 asc_dvc->use_tagged_qng &= ~tid_bit;
7717 scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun);
7720 if ((sdev->lun == 0) &&
7721 (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
7722 AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
7723 asc_dvc->cfg->disc_enable);
7724 AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
7725 asc_dvc->use_tagged_qng);
7726 AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
7727 asc_dvc->cfg->can_tagged_qng);
7729 asc_dvc->max_dvc_qng[sdev->id] =
7730 asc_dvc->cfg->max_tag_qng[sdev->id];
7731 AscWriteLramByte(asc_dvc->iop_base,
7732 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
7733 asc_dvc->max_dvc_qng[sdev->id]);
7738 * Wide Transfers
7740 * If the EEPROM enabled WDTR for the device and the device supports wide
7741 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
7742 * write the new value to the microcode.
7744 static void
7745 advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
7747 unsigned short cfg_word;
7748 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7749 if ((cfg_word & tidmask) != 0)
7750 return;
7752 cfg_word |= tidmask;
7753 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7756 * Clear the microcode SDTR and WDTR negotiation done indicators for
7757 * the target to cause it to negotiate with the new setting set above.
7758 * WDTR when accepted causes the target to enter asynchronous mode, so
7759 * SDTR must be negotiated.
7761 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7762 cfg_word &= ~tidmask;
7763 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7764 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7765 cfg_word &= ~tidmask;
7766 AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7770 * Synchronous Transfers
7772 * If the EEPROM enabled SDTR for the device and the device
7773 * supports synchronous transfers, then turn on the device's
7774 * 'sdtr_able' bit. Write the new value to the microcode.
7776 static void
7777 advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
7779 unsigned short cfg_word;
7780 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7781 if ((cfg_word & tidmask) != 0)
7782 return;
7784 cfg_word |= tidmask;
7785 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7788 * Clear the microcode "SDTR negotiation" done indicator for the
7789 * target to cause it to negotiate with the new setting set above.
7791 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7792 cfg_word &= ~tidmask;
7793 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7797 * PPR (Parallel Protocol Request) Capable
7799 * If the device supports DT mode, then it must be PPR capable.
7800 * The PPR message will be used in place of the SDTR and WDTR
7801 * messages to negotiate synchronous speed and offset, transfer
7802 * width, and protocol options.
7804 static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
7805 AdvPortAddr iop_base, unsigned short tidmask)
7807 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7808 adv_dvc->ppr_able |= tidmask;
7809 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7812 static void
7813 advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
7815 AdvPortAddr iop_base = adv_dvc->iop_base;
7816 unsigned short tidmask = 1 << sdev->id;
7818 if (sdev->lun == 0) {
7820 * Handle WDTR, SDTR, and Tag Queuing. If the feature
7821 * is enabled in the EEPROM and the device supports the
7822 * feature, then enable it in the microcode.
7825 if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
7826 advansys_wide_enable_wdtr(iop_base, tidmask);
7827 if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
7828 advansys_wide_enable_sdtr(iop_base, tidmask);
7829 if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
7830 advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
7833 * Tag Queuing is disabled for the BIOS which runs in polled
7834 * mode and would see no benefit from Tag Queuing. Also by
7835 * disabling Tag Queuing in the BIOS devices with Tag Queuing
7836 * bugs will at least work with the BIOS.
7838 if ((adv_dvc->tagqng_able & tidmask) &&
7839 sdev->tagged_supported) {
7840 unsigned short cfg_word;
7841 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
7842 cfg_word |= tidmask;
7843 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
7844 cfg_word);
7845 AdvWriteByteLram(iop_base,
7846 ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
7847 adv_dvc->max_dvc_qng);
7851 if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported) {
7852 scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG,
7853 adv_dvc->max_dvc_qng);
7854 } else {
7855 scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun);
7860 * Set the number of commands to queue per device for the
7861 * specified host adapter.
7863 static int advansys_slave_configure(struct scsi_device *sdev)
7865 struct asc_board *boardp = shost_priv(sdev->host);
7867 if (ASC_NARROW_BOARD(boardp))
7868 advansys_narrow_slave_configure(sdev,
7869 &boardp->dvc_var.asc_dvc_var);
7870 else
7871 advansys_wide_slave_configure(sdev,
7872 &boardp->dvc_var.adv_dvc_var);
7874 return 0;
7877 static __le32 advansys_get_sense_buffer_dma(struct scsi_cmnd *scp)
7879 struct asc_board *board = shost_priv(scp->device->host);
7880 scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer,
7881 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7882 dma_cache_sync(board->dev, scp->sense_buffer,
7883 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7884 return cpu_to_le32(scp->SCp.dma_handle);
7887 static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7888 struct asc_scsi_q *asc_scsi_q)
7890 struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7891 int use_sg;
7893 memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
7896 * Point the ASC_SCSI_Q to the 'struct scsi_cmnd'.
7898 asc_scsi_q->q2.srb_ptr = advansys_ptr_to_srb(asc_dvc, scp);
7899 if (asc_scsi_q->q2.srb_ptr == BAD_SRB) {
7900 scp->result = HOST_BYTE(DID_SOFT_ERROR);
7901 return ASC_ERROR;
7905 * Build the ASC_SCSI_Q request.
7907 asc_scsi_q->cdbptr = &scp->cmnd[0];
7908 asc_scsi_q->q2.cdb_len = scp->cmd_len;
7909 asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
7910 asc_scsi_q->q1.target_lun = scp->device->lun;
7911 asc_scsi_q->q2.target_ix =
7912 ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
7913 asc_scsi_q->q1.sense_addr = advansys_get_sense_buffer_dma(scp);
7914 asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
7917 * If there are any outstanding requests for the current target,
7918 * then every 255th request send an ORDERED request. This heuristic
7919 * tries to retain the benefit of request sorting while preventing
7920 * request starvation. 255 is the max number of tags or pending commands
7921 * a device may have outstanding.
7923 * The request count is incremented below for every successfully
7924 * started request.
7927 if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
7928 (boardp->reqcnt[scp->device->id] % 255) == 0) {
7929 asc_scsi_q->q2.tag_code = MSG_ORDERED_TAG;
7930 } else {
7931 asc_scsi_q->q2.tag_code = MSG_SIMPLE_TAG;
7934 /* Build ASC_SCSI_Q */
7935 use_sg = scsi_dma_map(scp);
7936 if (use_sg != 0) {
7937 int sgcnt;
7938 struct scatterlist *slp;
7939 struct asc_sg_head *asc_sg_head;
7941 if (use_sg > scp->device->host->sg_tablesize) {
7942 scmd_printk(KERN_ERR, scp, "use_sg %d > "
7943 "sg_tablesize %d\n", use_sg,
7944 scp->device->host->sg_tablesize);
7945 scsi_dma_unmap(scp);
7946 scp->result = HOST_BYTE(DID_ERROR);
7947 return ASC_ERROR;
7950 asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) +
7951 use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC);
7952 if (!asc_sg_head) {
7953 scsi_dma_unmap(scp);
7954 scp->result = HOST_BYTE(DID_SOFT_ERROR);
7955 return ASC_ERROR;
7958 asc_scsi_q->q1.cntl |= QC_SG_HEAD;
7959 asc_scsi_q->sg_head = asc_sg_head;
7960 asc_scsi_q->q1.data_cnt = 0;
7961 asc_scsi_q->q1.data_addr = 0;
7962 /* This is a byte value, otherwise it would need to be swapped. */
7963 asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
7964 ASC_STATS_ADD(scp->device->host, xfer_elem,
7965 asc_sg_head->entry_cnt);
7968 * Convert scatter-gather list into ASC_SG_HEAD list.
7970 scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
7971 asc_sg_head->sg_list[sgcnt].addr =
7972 cpu_to_le32(sg_dma_address(slp));
7973 asc_sg_head->sg_list[sgcnt].bytes =
7974 cpu_to_le32(sg_dma_len(slp));
7975 ASC_STATS_ADD(scp->device->host, xfer_sect,
7976 DIV_ROUND_UP(sg_dma_len(slp), 512));
7980 ASC_STATS(scp->device->host, xfer_cnt);
7982 ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
7983 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7985 return ASC_NOERROR;
7989 * Build scatter-gather list for Adv Library (Wide Board).
7991 * Additional ADV_SG_BLOCK structures will need to be allocated
7992 * if the total number of scatter-gather elements exceeds
7993 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
7994 * assumed to be physically contiguous.
7996 * Return:
7997 * ADV_SUCCESS(1) - SG List successfully created
7998 * ADV_ERROR(-1) - SG List creation failed
8000 static int
8001 adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp, struct scsi_cmnd *scp,
8002 int use_sg)
8004 adv_sgblk_t *sgblkp;
8005 ADV_SCSI_REQ_Q *scsiqp;
8006 struct scatterlist *slp;
8007 int sg_elem_cnt;
8008 ADV_SG_BLOCK *sg_block, *prev_sg_block;
8009 ADV_PADDR sg_block_paddr;
8010 int i;
8012 scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
8013 slp = scsi_sglist(scp);
8014 sg_elem_cnt = use_sg;
8015 prev_sg_block = NULL;
8016 reqp->sgblkp = NULL;
8018 for (;;) {
8020 * Allocate a 'adv_sgblk_t' structure from the board free
8021 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
8022 * (15) scatter-gather elements.
8024 if ((sgblkp = boardp->adv_sgblkp) == NULL) {
8025 ASC_DBG(1, "no free adv_sgblk_t\n");
8026 ASC_STATS(scp->device->host, adv_build_nosg);
8029 * Allocation failed. Free 'adv_sgblk_t' structures
8030 * already allocated for the request.
8032 while ((sgblkp = reqp->sgblkp) != NULL) {
8033 /* Remove 'sgblkp' from the request list. */
8034 reqp->sgblkp = sgblkp->next_sgblkp;
8036 /* Add 'sgblkp' to the board free list. */
8037 sgblkp->next_sgblkp = boardp->adv_sgblkp;
8038 boardp->adv_sgblkp = sgblkp;
8040 return ASC_BUSY;
8043 /* Complete 'adv_sgblk_t' board allocation. */
8044 boardp->adv_sgblkp = sgblkp->next_sgblkp;
8045 sgblkp->next_sgblkp = NULL;
8048 * Get 8 byte aligned virtual and physical addresses
8049 * for the allocated ADV_SG_BLOCK structure.
8051 sg_block = (ADV_SG_BLOCK *)ADV_8BALIGN(&sgblkp->sg_block);
8052 sg_block_paddr = virt_to_bus(sg_block);
8055 * Check if this is the first 'adv_sgblk_t' for the
8056 * request.
8058 if (reqp->sgblkp == NULL) {
8059 /* Request's first scatter-gather block. */
8060 reqp->sgblkp = sgblkp;
8063 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
8064 * address pointers.
8066 scsiqp->sg_list_ptr = sg_block;
8067 scsiqp->sg_real_addr = cpu_to_le32(sg_block_paddr);
8068 } else {
8069 /* Request's second or later scatter-gather block. */
8070 sgblkp->next_sgblkp = reqp->sgblkp;
8071 reqp->sgblkp = sgblkp;
8074 * Point the previous ADV_SG_BLOCK structure to
8075 * the newly allocated ADV_SG_BLOCK structure.
8077 prev_sg_block->sg_ptr = cpu_to_le32(sg_block_paddr);
8080 for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
8081 sg_block->sg_list[i].sg_addr =
8082 cpu_to_le32(sg_dma_address(slp));
8083 sg_block->sg_list[i].sg_count =
8084 cpu_to_le32(sg_dma_len(slp));
8085 ASC_STATS_ADD(scp->device->host, xfer_sect,
8086 DIV_ROUND_UP(sg_dma_len(slp), 512));
8088 if (--sg_elem_cnt == 0) { /* Last ADV_SG_BLOCK and scatter-gather entry. */
8089 sg_block->sg_cnt = i + 1;
8090 sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */
8091 return ADV_SUCCESS;
8093 slp++;
8095 sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
8096 prev_sg_block = sg_block;
8101 * Build a request structure for the Adv Library (Wide Board).
8103 * If an adv_req_t can not be allocated to issue the request,
8104 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
8106 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the
8107 * microcode for DMA addresses or math operations are byte swapped
8108 * to little-endian order.
8110 static int
8111 adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
8112 ADV_SCSI_REQ_Q **adv_scsiqpp)
8114 adv_req_t *reqp;
8115 ADV_SCSI_REQ_Q *scsiqp;
8116 int i;
8117 int ret;
8118 int use_sg;
8121 * Allocate an adv_req_t structure from the board to execute
8122 * the command.
8124 if (boardp->adv_reqp == NULL) {
8125 ASC_DBG(1, "no free adv_req_t\n");
8126 ASC_STATS(scp->device->host, adv_build_noreq);
8127 return ASC_BUSY;
8128 } else {
8129 reqp = boardp->adv_reqp;
8130 boardp->adv_reqp = reqp->next_reqp;
8131 reqp->next_reqp = NULL;
8135 * Get 32-byte aligned ADV_SCSI_REQ_Q and ADV_SG_BLOCK pointers.
8137 scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
8140 * Initialize the structure.
8142 scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
8145 * Set the ADV_SCSI_REQ_Q 'srb_ptr' to point to the adv_req_t structure.
8147 scsiqp->srb_ptr = ADV_VADDR_TO_U32(reqp);
8150 * Set the adv_req_t 'cmndp' to point to the struct scsi_cmnd structure.
8152 reqp->cmndp = scp;
8155 * Build the ADV_SCSI_REQ_Q request.
8158 /* Set CDB length and copy it to the request structure. */
8159 scsiqp->cdb_len = scp->cmd_len;
8160 /* Copy first 12 CDB bytes to cdb[]. */
8161 for (i = 0; i < scp->cmd_len && i < 12; i++) {
8162 scsiqp->cdb[i] = scp->cmnd[i];
8164 /* Copy last 4 CDB bytes, if present, to cdb16[]. */
8165 for (; i < scp->cmd_len; i++) {
8166 scsiqp->cdb16[i - 12] = scp->cmnd[i];
8169 scsiqp->target_id = scp->device->id;
8170 scsiqp->target_lun = scp->device->lun;
8172 scsiqp->sense_addr = cpu_to_le32(virt_to_bus(&scp->sense_buffer[0]));
8173 scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
8175 /* Build ADV_SCSI_REQ_Q */
8177 use_sg = scsi_dma_map(scp);
8178 if (use_sg == 0) {
8179 /* Zero-length transfer */
8180 reqp->sgblkp = NULL;
8181 scsiqp->data_cnt = 0;
8182 scsiqp->vdata_addr = NULL;
8184 scsiqp->data_addr = 0;
8185 scsiqp->sg_list_ptr = NULL;
8186 scsiqp->sg_real_addr = 0;
8187 } else {
8188 if (use_sg > ADV_MAX_SG_LIST) {
8189 scmd_printk(KERN_ERR, scp, "use_sg %d > "
8190 "ADV_MAX_SG_LIST %d\n", use_sg,
8191 scp->device->host->sg_tablesize);
8192 scsi_dma_unmap(scp);
8193 scp->result = HOST_BYTE(DID_ERROR);
8196 * Free the 'adv_req_t' structure by adding it back
8197 * to the board free list.
8199 reqp->next_reqp = boardp->adv_reqp;
8200 boardp->adv_reqp = reqp;
8202 return ASC_ERROR;
8205 scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
8207 ret = adv_get_sglist(boardp, reqp, scp, use_sg);
8208 if (ret != ADV_SUCCESS) {
8210 * Free the adv_req_t structure by adding it back to
8211 * the board free list.
8213 reqp->next_reqp = boardp->adv_reqp;
8214 boardp->adv_reqp = reqp;
8216 return ret;
8219 ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
8222 ASC_STATS(scp->device->host, xfer_cnt);
8224 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
8225 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
8227 *adv_scsiqpp = scsiqp;
8229 return ASC_NOERROR;
8232 static int AscSgListToQueue(int sg_list)
8234 int n_sg_list_qs;
8236 n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
8237 if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
8238 n_sg_list_qs++;
8239 return n_sg_list_qs + 1;
8242 static uint
8243 AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
8245 uint cur_used_qs;
8246 uint cur_free_qs;
8247 ASC_SCSI_BIT_ID_TYPE target_id;
8248 uchar tid_no;
8250 target_id = ASC_TIX_TO_TARGET_ID(target_ix);
8251 tid_no = ASC_TIX_TO_TID(target_ix);
8252 if ((asc_dvc->unit_not_ready & target_id) ||
8253 (asc_dvc->queue_full_or_busy & target_id)) {
8254 return 0;
8256 if (n_qs == 1) {
8257 cur_used_qs = (uint) asc_dvc->cur_total_qng +
8258 (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
8259 } else {
8260 cur_used_qs = (uint) asc_dvc->cur_total_qng +
8261 (uint) ASC_MIN_FREE_Q;
8263 if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
8264 cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
8265 if (asc_dvc->cur_dvc_qng[tid_no] >=
8266 asc_dvc->max_dvc_qng[tid_no]) {
8267 return 0;
8269 return cur_free_qs;
8271 if (n_qs > 1) {
8272 if ((n_qs > asc_dvc->last_q_shortage)
8273 && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
8274 asc_dvc->last_q_shortage = n_qs;
8277 return 0;
8280 static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
8282 ushort q_addr;
8283 uchar next_qp;
8284 uchar q_status;
8286 q_addr = ASC_QNO_TO_QADDR(free_q_head);
8287 q_status = (uchar)AscReadLramByte(iop_base,
8288 (ushort)(q_addr +
8289 ASC_SCSIQ_B_STATUS));
8290 next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
8291 if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
8292 return next_qp;
8293 return ASC_QLINK_END;
8296 static uchar
8297 AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
8299 uchar i;
8301 for (i = 0; i < n_free_q; i++) {
8302 free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
8303 if (free_q_head == ASC_QLINK_END)
8304 break;
8306 return free_q_head;
8310 * void
8311 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8313 * Calling/Exit State:
8314 * none
8316 * Description:
8317 * Output an ASC_SCSI_Q structure to the chip
8319 static void
8320 DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8322 int i;
8324 ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
8325 AscSetChipLramAddr(iop_base, s_addr);
8326 for (i = 0; i < 2 * words; i += 2) {
8327 if (i == 4 || i == 20) {
8328 continue;
8330 outpw(iop_base + IOP_RAM_DATA,
8331 ((ushort)outbuf[i + 1] << 8) | outbuf[i]);
8335 static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8337 ushort q_addr;
8338 uchar tid_no;
8339 uchar sdtr_data;
8340 uchar syn_period_ix;
8341 uchar syn_offset;
8342 PortAddr iop_base;
8344 iop_base = asc_dvc->iop_base;
8345 if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
8346 ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
8347 tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
8348 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8349 syn_period_ix =
8350 (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
8351 syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
8352 AscMsgOutSDTR(asc_dvc,
8353 asc_dvc->sdtr_period_tbl[syn_period_ix],
8354 syn_offset);
8355 scsiq->q1.cntl |= QC_MSG_OUT;
8357 q_addr = ASC_QNO_TO_QADDR(q_no);
8358 if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
8359 scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG;
8361 scsiq->q1.status = QS_FREE;
8362 AscMemWordCopyPtrToLram(iop_base,
8363 q_addr + ASC_SCSIQ_CDB_BEG,
8364 (uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
8366 DvcPutScsiQ(iop_base,
8367 q_addr + ASC_SCSIQ_CPY_BEG,
8368 (uchar *)&scsiq->q1.cntl,
8369 ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
8370 AscWriteLramWord(iop_base,
8371 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
8372 (ushort)(((ushort)scsiq->q1.
8373 q_no << 8) | (ushort)QS_READY));
8374 return 1;
8377 static int
8378 AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8380 int sta;
8381 int i;
8382 ASC_SG_HEAD *sg_head;
8383 ASC_SG_LIST_Q scsi_sg_q;
8384 ASC_DCNT saved_data_addr;
8385 ASC_DCNT saved_data_cnt;
8386 PortAddr iop_base;
8387 ushort sg_list_dwords;
8388 ushort sg_index;
8389 ushort sg_entry_cnt;
8390 ushort q_addr;
8391 uchar next_qp;
8393 iop_base = asc_dvc->iop_base;
8394 sg_head = scsiq->sg_head;
8395 saved_data_addr = scsiq->q1.data_addr;
8396 saved_data_cnt = scsiq->q1.data_cnt;
8397 scsiq->q1.data_addr = (ASC_PADDR) sg_head->sg_list[0].addr;
8398 scsiq->q1.data_cnt = (ASC_DCNT) sg_head->sg_list[0].bytes;
8399 #if CC_VERY_LONG_SG_LIST
8401 * If sg_head->entry_cnt is greater than ASC_MAX_SG_LIST
8402 * then not all SG elements will fit in the allocated queues.
8403 * The rest of the SG elements will be copied when the RISC
8404 * completes the SG elements that fit and halts.
8406 if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
8408 * Set sg_entry_cnt to be the number of SG elements that
8409 * will fit in the allocated SG queues. It is minus 1, because
8410 * the first SG element is handled above. ASC_MAX_SG_LIST is
8411 * already inflated by 1 to account for this. For example it
8412 * may be 50 which is 1 + 7 queues * 7 SG elements.
8414 sg_entry_cnt = ASC_MAX_SG_LIST - 1;
8417 * Keep track of remaining number of SG elements that will
8418 * need to be handled from a_isr.c.
8420 scsiq->remain_sg_entry_cnt =
8421 sg_head->entry_cnt - ASC_MAX_SG_LIST;
8422 } else {
8423 #endif /* CC_VERY_LONG_SG_LIST */
8425 * Set sg_entry_cnt to be the number of SG elements that
8426 * will fit in the allocated SG queues. It is minus 1, because
8427 * the first SG element is handled above.
8429 sg_entry_cnt = sg_head->entry_cnt - 1;
8430 #if CC_VERY_LONG_SG_LIST
8432 #endif /* CC_VERY_LONG_SG_LIST */
8433 if (sg_entry_cnt != 0) {
8434 scsiq->q1.cntl |= QC_SG_HEAD;
8435 q_addr = ASC_QNO_TO_QADDR(q_no);
8436 sg_index = 1;
8437 scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
8438 scsi_sg_q.sg_head_qp = q_no;
8439 scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
8440 for (i = 0; i < sg_head->queue_cnt; i++) {
8441 scsi_sg_q.seq_no = i + 1;
8442 if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
8443 sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
8444 sg_entry_cnt -= ASC_SG_LIST_PER_Q;
8445 if (i == 0) {
8446 scsi_sg_q.sg_list_cnt =
8447 ASC_SG_LIST_PER_Q;
8448 scsi_sg_q.sg_cur_list_cnt =
8449 ASC_SG_LIST_PER_Q;
8450 } else {
8451 scsi_sg_q.sg_list_cnt =
8452 ASC_SG_LIST_PER_Q - 1;
8453 scsi_sg_q.sg_cur_list_cnt =
8454 ASC_SG_LIST_PER_Q - 1;
8456 } else {
8457 #if CC_VERY_LONG_SG_LIST
8459 * This is the last SG queue in the list of
8460 * allocated SG queues. If there are more
8461 * SG elements than will fit in the allocated
8462 * queues, then set the QCSG_SG_XFER_MORE flag.
8464 if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
8465 scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
8466 } else {
8467 #endif /* CC_VERY_LONG_SG_LIST */
8468 scsi_sg_q.cntl |= QCSG_SG_XFER_END;
8469 #if CC_VERY_LONG_SG_LIST
8471 #endif /* CC_VERY_LONG_SG_LIST */
8472 sg_list_dwords = sg_entry_cnt << 1;
8473 if (i == 0) {
8474 scsi_sg_q.sg_list_cnt = sg_entry_cnt;
8475 scsi_sg_q.sg_cur_list_cnt =
8476 sg_entry_cnt;
8477 } else {
8478 scsi_sg_q.sg_list_cnt =
8479 sg_entry_cnt - 1;
8480 scsi_sg_q.sg_cur_list_cnt =
8481 sg_entry_cnt - 1;
8483 sg_entry_cnt = 0;
8485 next_qp = AscReadLramByte(iop_base,
8486 (ushort)(q_addr +
8487 ASC_SCSIQ_B_FWD));
8488 scsi_sg_q.q_no = next_qp;
8489 q_addr = ASC_QNO_TO_QADDR(next_qp);
8490 AscMemWordCopyPtrToLram(iop_base,
8491 q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
8492 (uchar *)&scsi_sg_q,
8493 sizeof(ASC_SG_LIST_Q) >> 1);
8494 AscMemDWordCopyPtrToLram(iop_base,
8495 q_addr + ASC_SGQ_LIST_BEG,
8496 (uchar *)&sg_head->
8497 sg_list[sg_index],
8498 sg_list_dwords);
8499 sg_index += ASC_SG_LIST_PER_Q;
8500 scsiq->next_sg_index = sg_index;
8502 } else {
8503 scsiq->q1.cntl &= ~QC_SG_HEAD;
8505 sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
8506 scsiq->q1.data_addr = saved_data_addr;
8507 scsiq->q1.data_cnt = saved_data_cnt;
8508 return (sta);
8511 static int
8512 AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
8514 PortAddr iop_base;
8515 uchar free_q_head;
8516 uchar next_qp;
8517 uchar tid_no;
8518 uchar target_ix;
8519 int sta;
8521 iop_base = asc_dvc->iop_base;
8522 target_ix = scsiq->q2.target_ix;
8523 tid_no = ASC_TIX_TO_TID(target_ix);
8524 sta = 0;
8525 free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
8526 if (n_q_required > 1) {
8527 next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
8528 (uchar)n_q_required);
8529 if (next_qp != ASC_QLINK_END) {
8530 asc_dvc->last_q_shortage = 0;
8531 scsiq->sg_head->queue_cnt = n_q_required - 1;
8532 scsiq->q1.q_no = free_q_head;
8533 sta = AscPutReadySgListQueue(asc_dvc, scsiq,
8534 free_q_head);
8536 } else if (n_q_required == 1) {
8537 next_qp = AscAllocFreeQueue(iop_base, free_q_head);
8538 if (next_qp != ASC_QLINK_END) {
8539 scsiq->q1.q_no = free_q_head;
8540 sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
8543 if (sta == 1) {
8544 AscPutVarFreeQHead(iop_base, next_qp);
8545 asc_dvc->cur_total_qng += n_q_required;
8546 asc_dvc->cur_dvc_qng[tid_no]++;
8548 return sta;
8551 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST 16
8552 static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
8553 INQUIRY,
8554 REQUEST_SENSE,
8555 READ_CAPACITY,
8556 READ_TOC,
8557 MODE_SELECT,
8558 MODE_SENSE,
8559 MODE_SELECT_10,
8560 MODE_SENSE_10,
8561 0xFF,
8562 0xFF,
8563 0xFF,
8564 0xFF,
8565 0xFF,
8566 0xFF,
8567 0xFF,
8568 0xFF
8571 static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
8573 PortAddr iop_base;
8574 int sta;
8575 int n_q_required;
8576 int disable_syn_offset_one_fix;
8577 int i;
8578 ASC_PADDR addr;
8579 ushort sg_entry_cnt = 0;
8580 ushort sg_entry_cnt_minus_one = 0;
8581 uchar target_ix;
8582 uchar tid_no;
8583 uchar sdtr_data;
8584 uchar extra_bytes;
8585 uchar scsi_cmd;
8586 uchar disable_cmd;
8587 ASC_SG_HEAD *sg_head;
8588 ASC_DCNT data_cnt;
8590 iop_base = asc_dvc->iop_base;
8591 sg_head = scsiq->sg_head;
8592 if (asc_dvc->err_code != 0)
8593 return (ERR);
8594 scsiq->q1.q_no = 0;
8595 if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
8596 scsiq->q1.extra_bytes = 0;
8598 sta = 0;
8599 target_ix = scsiq->q2.target_ix;
8600 tid_no = ASC_TIX_TO_TID(target_ix);
8601 n_q_required = 1;
8602 if (scsiq->cdbptr[0] == REQUEST_SENSE) {
8603 if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
8604 asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
8605 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8606 AscMsgOutSDTR(asc_dvc,
8607 asc_dvc->
8608 sdtr_period_tbl[(sdtr_data >> 4) &
8609 (uchar)(asc_dvc->
8610 max_sdtr_index -
8611 1)],
8612 (uchar)(sdtr_data & (uchar)
8613 ASC_SYN_MAX_OFFSET));
8614 scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
8617 if (asc_dvc->in_critical_cnt != 0) {
8618 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
8619 return (ERR);
8621 asc_dvc->in_critical_cnt++;
8622 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8623 if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
8624 asc_dvc->in_critical_cnt--;
8625 return (ERR);
8627 #if !CC_VERY_LONG_SG_LIST
8628 if (sg_entry_cnt > ASC_MAX_SG_LIST) {
8629 asc_dvc->in_critical_cnt--;
8630 return (ERR);
8632 #endif /* !CC_VERY_LONG_SG_LIST */
8633 if (sg_entry_cnt == 1) {
8634 scsiq->q1.data_addr =
8635 (ADV_PADDR)sg_head->sg_list[0].addr;
8636 scsiq->q1.data_cnt =
8637 (ADV_DCNT)sg_head->sg_list[0].bytes;
8638 scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
8640 sg_entry_cnt_minus_one = sg_entry_cnt - 1;
8642 scsi_cmd = scsiq->cdbptr[0];
8643 disable_syn_offset_one_fix = FALSE;
8644 if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
8645 !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
8646 if (scsiq->q1.cntl & QC_SG_HEAD) {
8647 data_cnt = 0;
8648 for (i = 0; i < sg_entry_cnt; i++) {
8649 data_cnt +=
8650 (ADV_DCNT)le32_to_cpu(sg_head->sg_list[i].
8651 bytes);
8653 } else {
8654 data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
8656 if (data_cnt != 0UL) {
8657 if (data_cnt < 512UL) {
8658 disable_syn_offset_one_fix = TRUE;
8659 } else {
8660 for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
8661 i++) {
8662 disable_cmd =
8663 _syn_offset_one_disable_cmd[i];
8664 if (disable_cmd == 0xFF) {
8665 break;
8667 if (scsi_cmd == disable_cmd) {
8668 disable_syn_offset_one_fix =
8669 TRUE;
8670 break;
8676 if (disable_syn_offset_one_fix) {
8677 scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG;
8678 scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
8679 ASC_TAG_FLAG_DISABLE_DISCONNECT);
8680 } else {
8681 scsiq->q2.tag_code &= 0x27;
8683 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8684 if (asc_dvc->bug_fix_cntl) {
8685 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8686 if ((scsi_cmd == READ_6) ||
8687 (scsi_cmd == READ_10)) {
8688 addr =
8689 (ADV_PADDR)le32_to_cpu(sg_head->
8690 sg_list
8691 [sg_entry_cnt_minus_one].
8692 addr) +
8693 (ADV_DCNT)le32_to_cpu(sg_head->
8694 sg_list
8695 [sg_entry_cnt_minus_one].
8696 bytes);
8697 extra_bytes =
8698 (uchar)((ushort)addr & 0x0003);
8699 if ((extra_bytes != 0)
8701 ((scsiq->q2.
8702 tag_code &
8703 ASC_TAG_FLAG_EXTRA_BYTES)
8704 == 0)) {
8705 scsiq->q2.tag_code |=
8706 ASC_TAG_FLAG_EXTRA_BYTES;
8707 scsiq->q1.extra_bytes =
8708 extra_bytes;
8709 data_cnt =
8710 le32_to_cpu(sg_head->
8711 sg_list
8712 [sg_entry_cnt_minus_one].
8713 bytes);
8714 data_cnt -=
8715 (ASC_DCNT) extra_bytes;
8716 sg_head->
8717 sg_list
8718 [sg_entry_cnt_minus_one].
8719 bytes =
8720 cpu_to_le32(data_cnt);
8725 sg_head->entry_to_copy = sg_head->entry_cnt;
8726 #if CC_VERY_LONG_SG_LIST
8728 * Set the sg_entry_cnt to the maximum possible. The rest of
8729 * the SG elements will be copied when the RISC completes the
8730 * SG elements that fit and halts.
8732 if (sg_entry_cnt > ASC_MAX_SG_LIST) {
8733 sg_entry_cnt = ASC_MAX_SG_LIST;
8735 #endif /* CC_VERY_LONG_SG_LIST */
8736 n_q_required = AscSgListToQueue(sg_entry_cnt);
8737 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
8738 (uint) n_q_required)
8739 || ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8740 if ((sta =
8741 AscSendScsiQueue(asc_dvc, scsiq,
8742 n_q_required)) == 1) {
8743 asc_dvc->in_critical_cnt--;
8744 return (sta);
8747 } else {
8748 if (asc_dvc->bug_fix_cntl) {
8749 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8750 if ((scsi_cmd == READ_6) ||
8751 (scsi_cmd == READ_10)) {
8752 addr =
8753 le32_to_cpu(scsiq->q1.data_addr) +
8754 le32_to_cpu(scsiq->q1.data_cnt);
8755 extra_bytes =
8756 (uchar)((ushort)addr & 0x0003);
8757 if ((extra_bytes != 0)
8759 ((scsiq->q2.
8760 tag_code &
8761 ASC_TAG_FLAG_EXTRA_BYTES)
8762 == 0)) {
8763 data_cnt =
8764 le32_to_cpu(scsiq->q1.
8765 data_cnt);
8766 if (((ushort)data_cnt & 0x01FF)
8767 == 0) {
8768 scsiq->q2.tag_code |=
8769 ASC_TAG_FLAG_EXTRA_BYTES;
8770 data_cnt -= (ASC_DCNT)
8771 extra_bytes;
8772 scsiq->q1.data_cnt =
8773 cpu_to_le32
8774 (data_cnt);
8775 scsiq->q1.extra_bytes =
8776 extra_bytes;
8782 n_q_required = 1;
8783 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
8784 ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8785 if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
8786 n_q_required)) == 1) {
8787 asc_dvc->in_critical_cnt--;
8788 return (sta);
8792 asc_dvc->in_critical_cnt--;
8793 return (sta);
8797 * AdvExeScsiQueue() - Send a request to the RISC microcode program.
8799 * Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
8800 * add the carrier to the ICQ (Initiator Command Queue), and tickle the
8801 * RISC to notify it a new command is ready to be executed.
8803 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
8804 * set to SCSI_MAX_RETRY.
8806 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the microcode
8807 * for DMA addresses or math operations are byte swapped to little-endian
8808 * order.
8810 * Return:
8811 * ADV_SUCCESS(1) - The request was successfully queued.
8812 * ADV_BUSY(0) - Resource unavailable; Retry again after pending
8813 * request completes.
8814 * ADV_ERROR(-1) - Invalid ADV_SCSI_REQ_Q request structure
8815 * host IC error.
8817 static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, ADV_SCSI_REQ_Q *scsiq)
8819 AdvPortAddr iop_base;
8820 ADV_PADDR req_paddr;
8821 ADV_CARR_T *new_carrp;
8824 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
8826 if (scsiq->target_id > ADV_MAX_TID) {
8827 scsiq->host_status = QHSTA_M_INVALID_DEVICE;
8828 scsiq->done_status = QD_WITH_ERROR;
8829 return ADV_ERROR;
8832 iop_base = asc_dvc->iop_base;
8835 * Allocate a carrier ensuring at least one carrier always
8836 * remains on the freelist and initialize fields.
8838 if ((new_carrp = asc_dvc->carr_freelist) == NULL) {
8839 return ADV_BUSY;
8841 asc_dvc->carr_freelist = (ADV_CARR_T *)
8842 ADV_U32_TO_VADDR(le32_to_cpu(new_carrp->next_vpa));
8843 asc_dvc->carr_pending_cnt++;
8846 * Set the carrier to be a stopper by setting 'next_vpa'
8847 * to the stopper value. The current stopper will be changed
8848 * below to point to the new stopper.
8850 new_carrp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
8853 * Clear the ADV_SCSI_REQ_Q done flag.
8855 scsiq->a_flag &= ~ADV_SCSIQ_DONE;
8857 req_paddr = virt_to_bus(scsiq);
8858 BUG_ON(req_paddr & 31);
8859 /* Wait for assertion before making little-endian */
8860 req_paddr = cpu_to_le32(req_paddr);
8862 /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
8863 scsiq->scsiq_ptr = cpu_to_le32(ADV_VADDR_TO_U32(scsiq));
8864 scsiq->scsiq_rptr = req_paddr;
8866 scsiq->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->icq_sp));
8868 * Every ADV_CARR_T.carr_pa is byte swapped to little-endian
8869 * order during initialization.
8871 scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
8874 * Use the current stopper to send the ADV_SCSI_REQ_Q command to
8875 * the microcode. The newly allocated stopper will become the new
8876 * stopper.
8878 asc_dvc->icq_sp->areq_vpa = req_paddr;
8881 * Set the 'next_vpa' pointer for the old stopper to be the
8882 * physical address of the new stopper. The RISC can only
8883 * follow physical addresses.
8885 asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
8888 * Set the host adapter stopper pointer to point to the new carrier.
8890 asc_dvc->icq_sp = new_carrp;
8892 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
8893 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
8895 * Tickle the RISC to tell it to read its Command Queue Head pointer.
8897 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
8898 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
8900 * Clear the tickle value. In the ASC-3550 the RISC flag
8901 * command 'clr_tickle_a' does not work unless the host
8902 * value is cleared.
8904 AdvWriteByteRegister(iop_base, IOPB_TICKLE,
8905 ADV_TICKLE_NOP);
8907 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
8909 * Notify the RISC a carrier is ready by writing the physical
8910 * address of the new carrier stopper to the COMMA register.
8912 AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
8913 le32_to_cpu(new_carrp->carr_pa));
8916 return ADV_SUCCESS;
8920 * Execute a single 'Scsi_Cmnd'.
8922 static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
8924 int ret, err_code;
8925 struct asc_board *boardp = shost_priv(scp->device->host);
8927 ASC_DBG(1, "scp 0x%p\n", scp);
8929 if (ASC_NARROW_BOARD(boardp)) {
8930 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
8931 struct asc_scsi_q asc_scsi_q;
8933 /* asc_build_req() can not return ASC_BUSY. */
8934 ret = asc_build_req(boardp, scp, &asc_scsi_q);
8935 if (ret == ASC_ERROR) {
8936 ASC_STATS(scp->device->host, build_error);
8937 return ASC_ERROR;
8940 ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
8941 kfree(asc_scsi_q.sg_head);
8942 err_code = asc_dvc->err_code;
8943 } else {
8944 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
8945 ADV_SCSI_REQ_Q *adv_scsiqp;
8947 switch (adv_build_req(boardp, scp, &adv_scsiqp)) {
8948 case ASC_NOERROR:
8949 ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
8950 break;
8951 case ASC_BUSY:
8952 ASC_DBG(1, "adv_build_req ASC_BUSY\n");
8954 * The asc_stats fields 'adv_build_noreq' and
8955 * 'adv_build_nosg' count wide board busy conditions.
8956 * They are updated in adv_build_req and
8957 * adv_get_sglist, respectively.
8959 return ASC_BUSY;
8960 case ASC_ERROR:
8961 default:
8962 ASC_DBG(1, "adv_build_req ASC_ERROR\n");
8963 ASC_STATS(scp->device->host, build_error);
8964 return ASC_ERROR;
8967 ret = AdvExeScsiQueue(adv_dvc, adv_scsiqp);
8968 err_code = adv_dvc->err_code;
8971 switch (ret) {
8972 case ASC_NOERROR:
8973 ASC_STATS(scp->device->host, exe_noerror);
8975 * Increment monotonically increasing per device
8976 * successful request counter. Wrapping doesn't matter.
8978 boardp->reqcnt[scp->device->id]++;
8979 ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
8980 break;
8981 case ASC_BUSY:
8982 ASC_STATS(scp->device->host, exe_busy);
8983 break;
8984 case ASC_ERROR:
8985 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
8986 "err_code 0x%x\n", err_code);
8987 ASC_STATS(scp->device->host, exe_error);
8988 scp->result = HOST_BYTE(DID_ERROR);
8989 break;
8990 default:
8991 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
8992 "err_code 0x%x\n", err_code);
8993 ASC_STATS(scp->device->host, exe_unknown);
8994 scp->result = HOST_BYTE(DID_ERROR);
8995 break;
8998 ASC_DBG(1, "end\n");
8999 return ret;
9003 * advansys_queuecommand() - interrupt-driven I/O entrypoint.
9005 * This function always returns 0. Command return status is saved
9006 * in the 'scp' result field.
9008 static int
9009 advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *))
9011 struct Scsi_Host *shost = scp->device->host;
9012 int asc_res, result = 0;
9014 ASC_STATS(shost, queuecommand);
9015 scp->scsi_done = done;
9017 asc_res = asc_execute_scsi_cmnd(scp);
9019 switch (asc_res) {
9020 case ASC_NOERROR:
9021 break;
9022 case ASC_BUSY:
9023 result = SCSI_MLQUEUE_HOST_BUSY;
9024 break;
9025 case ASC_ERROR:
9026 default:
9027 asc_scsi_done(scp);
9028 break;
9031 return result;
9034 static DEF_SCSI_QCMD(advansys_queuecommand)
9036 static ushort AscGetEisaChipCfg(PortAddr iop_base)
9038 PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
9039 (PortAddr) (ASC_EISA_CFG_IOP_MASK);
9040 return inpw(eisa_cfg_iop);
9044 * Return the BIOS address of the adapter at the specified
9045 * I/O port and with the specified bus type.
9047 static unsigned short AscGetChipBiosAddress(PortAddr iop_base,
9048 unsigned short bus_type)
9050 unsigned short cfg_lsw;
9051 unsigned short bios_addr;
9054 * The PCI BIOS is re-located by the motherboard BIOS. Because
9055 * of this the driver can not determine where a PCI BIOS is
9056 * loaded and executes.
9058 if (bus_type & ASC_IS_PCI)
9059 return 0;
9061 if ((bus_type & ASC_IS_EISA) != 0) {
9062 cfg_lsw = AscGetEisaChipCfg(iop_base);
9063 cfg_lsw &= 0x000F;
9064 bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
9065 return bios_addr;
9068 cfg_lsw = AscGetChipCfgLsw(iop_base);
9071 * ISA PnP uses the top bit as the 32K BIOS flag
9073 if (bus_type == ASC_IS_ISAPNP)
9074 cfg_lsw &= 0x7FFF;
9075 bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
9076 return bios_addr;
9079 static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
9081 ushort cfg_lsw;
9083 if (AscGetChipScsiID(iop_base) == new_host_id) {
9084 return (new_host_id);
9086 cfg_lsw = AscGetChipCfgLsw(iop_base);
9087 cfg_lsw &= 0xF8FF;
9088 cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
9089 AscSetChipCfgLsw(iop_base, cfg_lsw);
9090 return (AscGetChipScsiID(iop_base));
9093 static unsigned char AscGetChipScsiCtrl(PortAddr iop_base)
9095 unsigned char sc;
9097 AscSetBank(iop_base, 1);
9098 sc = inp(iop_base + IOP_REG_SC);
9099 AscSetBank(iop_base, 0);
9100 return sc;
9103 static unsigned char AscGetChipVersion(PortAddr iop_base,
9104 unsigned short bus_type)
9106 if (bus_type & ASC_IS_EISA) {
9107 PortAddr eisa_iop;
9108 unsigned char revision;
9109 eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
9110 (PortAddr) ASC_EISA_REV_IOP_MASK;
9111 revision = inp(eisa_iop);
9112 return ASC_CHIP_MIN_VER_EISA - 1 + revision;
9114 return AscGetChipVerNo(iop_base);
9117 #ifdef CONFIG_ISA
9118 static void AscEnableIsaDma(uchar dma_channel)
9120 if (dma_channel < 4) {
9121 outp(0x000B, (ushort)(0xC0 | dma_channel));
9122 outp(0x000A, dma_channel);
9123 } else if (dma_channel < 8) {
9124 outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4)));
9125 outp(0x00D4, (ushort)(dma_channel - 4));
9128 #endif /* CONFIG_ISA */
9130 static int AscStopQueueExe(PortAddr iop_base)
9132 int count = 0;
9134 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
9135 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
9136 ASC_STOP_REQ_RISC_STOP);
9137 do {
9138 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
9139 ASC_STOP_ACK_RISC_STOP) {
9140 return (1);
9142 mdelay(100);
9143 } while (count++ < 20);
9145 return (0);
9148 static ASC_DCNT AscGetMaxDmaCount(ushort bus_type)
9150 if (bus_type & ASC_IS_ISA)
9151 return ASC_MAX_ISA_DMA_COUNT;
9152 else if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
9153 return ASC_MAX_VL_DMA_COUNT;
9154 return ASC_MAX_PCI_DMA_COUNT;
9157 #ifdef CONFIG_ISA
9158 static ushort AscGetIsaDmaChannel(PortAddr iop_base)
9160 ushort channel;
9162 channel = AscGetChipCfgLsw(iop_base) & 0x0003;
9163 if (channel == 0x03)
9164 return (0);
9165 else if (channel == 0x00)
9166 return (7);
9167 return (channel + 4);
9170 static ushort AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel)
9172 ushort cfg_lsw;
9173 uchar value;
9175 if ((dma_channel >= 5) && (dma_channel <= 7)) {
9176 if (dma_channel == 7)
9177 value = 0x00;
9178 else
9179 value = dma_channel - 4;
9180 cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC;
9181 cfg_lsw |= value;
9182 AscSetChipCfgLsw(iop_base, cfg_lsw);
9183 return (AscGetIsaDmaChannel(iop_base));
9185 return 0;
9188 static uchar AscGetIsaDmaSpeed(PortAddr iop_base)
9190 uchar speed_value;
9192 AscSetBank(iop_base, 1);
9193 speed_value = AscReadChipDmaSpeed(iop_base);
9194 speed_value &= 0x07;
9195 AscSetBank(iop_base, 0);
9196 return speed_value;
9199 static uchar AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value)
9201 speed_value &= 0x07;
9202 AscSetBank(iop_base, 1);
9203 AscWriteChipDmaSpeed(iop_base, speed_value);
9204 AscSetBank(iop_base, 0);
9205 return AscGetIsaDmaSpeed(iop_base);
9207 #endif /* CONFIG_ISA */
9209 static ushort AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
9211 int i;
9212 PortAddr iop_base;
9213 ushort warn_code;
9214 uchar chip_version;
9216 iop_base = asc_dvc->iop_base;
9217 warn_code = 0;
9218 asc_dvc->err_code = 0;
9219 if ((asc_dvc->bus_type &
9220 (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
9221 asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
9223 AscSetChipControl(iop_base, CC_HALT);
9224 AscSetChipStatus(iop_base, 0);
9225 asc_dvc->bug_fix_cntl = 0;
9226 asc_dvc->pci_fix_asyn_xfer = 0;
9227 asc_dvc->pci_fix_asyn_xfer_always = 0;
9228 /* asc_dvc->init_state initialized in AscInitGetConfig(). */
9229 asc_dvc->sdtr_done = 0;
9230 asc_dvc->cur_total_qng = 0;
9231 asc_dvc->is_in_int = 0;
9232 asc_dvc->in_critical_cnt = 0;
9233 asc_dvc->last_q_shortage = 0;
9234 asc_dvc->use_tagged_qng = 0;
9235 asc_dvc->no_scam = 0;
9236 asc_dvc->unit_not_ready = 0;
9237 asc_dvc->queue_full_or_busy = 0;
9238 asc_dvc->redo_scam = 0;
9239 asc_dvc->res2 = 0;
9240 asc_dvc->min_sdtr_index = 0;
9241 asc_dvc->cfg->can_tagged_qng = 0;
9242 asc_dvc->cfg->cmd_qng_enabled = 0;
9243 asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
9244 asc_dvc->init_sdtr = 0;
9245 asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
9246 asc_dvc->scsi_reset_wait = 3;
9247 asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
9248 asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
9249 asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
9250 asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
9251 asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
9252 chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
9253 asc_dvc->cfg->chip_version = chip_version;
9254 asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
9255 asc_dvc->max_sdtr_index = 7;
9256 if ((asc_dvc->bus_type & ASC_IS_PCI) &&
9257 (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
9258 asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
9259 asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
9260 asc_dvc->max_sdtr_index = 15;
9261 if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
9262 AscSetExtraControl(iop_base,
9263 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
9264 } else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
9265 AscSetExtraControl(iop_base,
9266 (SEC_ACTIVE_NEGATE |
9267 SEC_ENABLE_FILTER));
9270 if (asc_dvc->bus_type == ASC_IS_PCI) {
9271 AscSetExtraControl(iop_base,
9272 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
9275 asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED;
9276 #ifdef CONFIG_ISA
9277 if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) {
9278 if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) {
9279 AscSetChipIFC(iop_base, IFC_INIT_DEFAULT);
9280 asc_dvc->bus_type = ASC_IS_ISAPNP;
9282 asc_dvc->cfg->isa_dma_channel =
9283 (uchar)AscGetIsaDmaChannel(iop_base);
9285 #endif /* CONFIG_ISA */
9286 for (i = 0; i <= ASC_MAX_TID; i++) {
9287 asc_dvc->cur_dvc_qng[i] = 0;
9288 asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
9289 asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
9290 asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
9291 asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
9293 return warn_code;
9296 static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
9298 int retry;
9300 for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
9301 unsigned char read_back;
9302 AscSetChipEEPCmd(iop_base, cmd_reg);
9303 mdelay(1);
9304 read_back = AscGetChipEEPCmd(iop_base);
9305 if (read_back == cmd_reg)
9306 return 1;
9308 return 0;
9311 static void AscWaitEEPRead(void)
9313 mdelay(1);
9316 static ushort AscReadEEPWord(PortAddr iop_base, uchar addr)
9318 ushort read_wval;
9319 uchar cmd_reg;
9321 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
9322 AscWaitEEPRead();
9323 cmd_reg = addr | ASC_EEP_CMD_READ;
9324 AscWriteEEPCmdReg(iop_base, cmd_reg);
9325 AscWaitEEPRead();
9326 read_wval = AscGetChipEEPData(iop_base);
9327 AscWaitEEPRead();
9328 return read_wval;
9331 static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
9332 ushort bus_type)
9334 ushort wval;
9335 ushort sum;
9336 ushort *wbuf;
9337 int cfg_beg;
9338 int cfg_end;
9339 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9340 int s_addr;
9342 wbuf = (ushort *)cfg_buf;
9343 sum = 0;
9344 /* Read two config words; Byte-swapping done by AscReadEEPWord(). */
9345 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9346 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
9347 sum += *wbuf;
9349 if (bus_type & ASC_IS_VL) {
9350 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9351 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9352 } else {
9353 cfg_beg = ASC_EEP_DVC_CFG_BEG;
9354 cfg_end = ASC_EEP_MAX_DVC_ADDR;
9356 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9357 wval = AscReadEEPWord(iop_base, (uchar)s_addr);
9358 if (s_addr <= uchar_end_in_config) {
9360 * Swap all char fields - must unswap bytes already swapped
9361 * by AscReadEEPWord().
9363 *wbuf = le16_to_cpu(wval);
9364 } else {
9365 /* Don't swap word field at the end - cntl field. */
9366 *wbuf = wval;
9368 sum += wval; /* Checksum treats all EEPROM data as words. */
9371 * Read the checksum word which will be compared against 'sum'
9372 * by the caller. Word field already swapped.
9374 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
9375 return sum;
9378 static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
9380 PortAddr iop_base;
9381 ushort q_addr;
9382 ushort saved_word;
9383 int sta;
9385 iop_base = asc_dvc->iop_base;
9386 sta = 0;
9387 q_addr = ASC_QNO_TO_QADDR(241);
9388 saved_word = AscReadLramWord(iop_base, q_addr);
9389 AscSetChipLramAddr(iop_base, q_addr);
9390 AscSetChipLramData(iop_base, 0x55AA);
9391 mdelay(10);
9392 AscSetChipLramAddr(iop_base, q_addr);
9393 if (AscGetChipLramData(iop_base) == 0x55AA) {
9394 sta = 1;
9395 AscWriteLramWord(iop_base, q_addr, saved_word);
9397 return (sta);
9400 static void AscWaitEEPWrite(void)
9402 mdelay(20);
9405 static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
9407 ushort read_back;
9408 int retry;
9410 retry = 0;
9411 while (TRUE) {
9412 AscSetChipEEPData(iop_base, data_reg);
9413 mdelay(1);
9414 read_back = AscGetChipEEPData(iop_base);
9415 if (read_back == data_reg) {
9416 return (1);
9418 if (retry++ > ASC_EEP_MAX_RETRY) {
9419 return (0);
9424 static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
9426 ushort read_wval;
9428 read_wval = AscReadEEPWord(iop_base, addr);
9429 if (read_wval != word_val) {
9430 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
9431 AscWaitEEPRead();
9432 AscWriteEEPDataReg(iop_base, word_val);
9433 AscWaitEEPRead();
9434 AscWriteEEPCmdReg(iop_base,
9435 (uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
9436 AscWaitEEPWrite();
9437 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
9438 AscWaitEEPRead();
9439 return (AscReadEEPWord(iop_base, addr));
9441 return (read_wval);
9444 static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
9445 ushort bus_type)
9447 int n_error;
9448 ushort *wbuf;
9449 ushort word;
9450 ushort sum;
9451 int s_addr;
9452 int cfg_beg;
9453 int cfg_end;
9454 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9456 wbuf = (ushort *)cfg_buf;
9457 n_error = 0;
9458 sum = 0;
9459 /* Write two config words; AscWriteEEPWord() will swap bytes. */
9460 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9461 sum += *wbuf;
9462 if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9463 n_error++;
9466 if (bus_type & ASC_IS_VL) {
9467 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9468 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9469 } else {
9470 cfg_beg = ASC_EEP_DVC_CFG_BEG;
9471 cfg_end = ASC_EEP_MAX_DVC_ADDR;
9473 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9474 if (s_addr <= uchar_end_in_config) {
9476 * This is a char field. Swap char fields before they are
9477 * swapped again by AscWriteEEPWord().
9479 word = cpu_to_le16(*wbuf);
9480 if (word !=
9481 AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
9482 n_error++;
9484 } else {
9485 /* Don't swap word field at the end - cntl field. */
9486 if (*wbuf !=
9487 AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9488 n_error++;
9491 sum += *wbuf; /* Checksum calculated from word values. */
9493 /* Write checksum word. It will be swapped by AscWriteEEPWord(). */
9494 *wbuf = sum;
9495 if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
9496 n_error++;
9499 /* Read EEPROM back again. */
9500 wbuf = (ushort *)cfg_buf;
9502 * Read two config words; Byte-swapping done by AscReadEEPWord().
9504 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9505 if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
9506 n_error++;
9509 if (bus_type & ASC_IS_VL) {
9510 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9511 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9512 } else {
9513 cfg_beg = ASC_EEP_DVC_CFG_BEG;
9514 cfg_end = ASC_EEP_MAX_DVC_ADDR;
9516 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9517 if (s_addr <= uchar_end_in_config) {
9519 * Swap all char fields. Must unswap bytes already swapped
9520 * by AscReadEEPWord().
9522 word =
9523 le16_to_cpu(AscReadEEPWord
9524 (iop_base, (uchar)s_addr));
9525 } else {
9526 /* Don't swap word field at the end - cntl field. */
9527 word = AscReadEEPWord(iop_base, (uchar)s_addr);
9529 if (*wbuf != word) {
9530 n_error++;
9533 /* Read checksum; Byte swapping not needed. */
9534 if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
9535 n_error++;
9537 return n_error;
9540 static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
9541 ushort bus_type)
9543 int retry;
9544 int n_error;
9546 retry = 0;
9547 while (TRUE) {
9548 if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
9549 bus_type)) == 0) {
9550 break;
9552 if (++retry > ASC_EEP_MAX_RETRY) {
9553 break;
9556 return n_error;
9559 static ushort AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
9561 ASCEEP_CONFIG eep_config_buf;
9562 ASCEEP_CONFIG *eep_config;
9563 PortAddr iop_base;
9564 ushort chksum;
9565 ushort warn_code;
9566 ushort cfg_msw, cfg_lsw;
9567 int i;
9568 int write_eep = 0;
9570 iop_base = asc_dvc->iop_base;
9571 warn_code = 0;
9572 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
9573 AscStopQueueExe(iop_base);
9574 if ((AscStopChip(iop_base) == FALSE) ||
9575 (AscGetChipScsiCtrl(iop_base) != 0)) {
9576 asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
9577 AscResetChipAndScsiBus(asc_dvc);
9578 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
9580 if (AscIsChipHalted(iop_base) == FALSE) {
9581 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
9582 return (warn_code);
9584 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
9585 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
9586 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
9587 return (warn_code);
9589 eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
9590 cfg_msw = AscGetChipCfgMsw(iop_base);
9591 cfg_lsw = AscGetChipCfgLsw(iop_base);
9592 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9593 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9594 warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9595 AscSetChipCfgMsw(iop_base, cfg_msw);
9597 chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
9598 ASC_DBG(1, "chksum 0x%x\n", chksum);
9599 if (chksum == 0) {
9600 chksum = 0xaa55;
9602 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9603 warn_code |= ASC_WARN_AUTO_CONFIG;
9604 if (asc_dvc->cfg->chip_version == 3) {
9605 if (eep_config->cfg_lsw != cfg_lsw) {
9606 warn_code |= ASC_WARN_EEPROM_RECOVER;
9607 eep_config->cfg_lsw =
9608 AscGetChipCfgLsw(iop_base);
9610 if (eep_config->cfg_msw != cfg_msw) {
9611 warn_code |= ASC_WARN_EEPROM_RECOVER;
9612 eep_config->cfg_msw =
9613 AscGetChipCfgMsw(iop_base);
9617 eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9618 eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
9619 ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
9620 if (chksum != eep_config->chksum) {
9621 if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
9622 ASC_CHIP_VER_PCI_ULTRA_3050) {
9623 ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
9624 eep_config->init_sdtr = 0xFF;
9625 eep_config->disc_enable = 0xFF;
9626 eep_config->start_motor = 0xFF;
9627 eep_config->use_cmd_qng = 0;
9628 eep_config->max_total_qng = 0xF0;
9629 eep_config->max_tag_qng = 0x20;
9630 eep_config->cntl = 0xBFFF;
9631 ASC_EEP_SET_CHIP_ID(eep_config, 7);
9632 eep_config->no_scam = 0;
9633 eep_config->adapter_info[0] = 0;
9634 eep_config->adapter_info[1] = 0;
9635 eep_config->adapter_info[2] = 0;
9636 eep_config->adapter_info[3] = 0;
9637 eep_config->adapter_info[4] = 0;
9638 /* Indicate EEPROM-less board. */
9639 eep_config->adapter_info[5] = 0xBB;
9640 } else {
9641 ASC_PRINT
9642 ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
9643 write_eep = 1;
9644 warn_code |= ASC_WARN_EEPROM_CHKSUM;
9647 asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
9648 asc_dvc->cfg->disc_enable = eep_config->disc_enable;
9649 asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
9650 asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config);
9651 asc_dvc->start_motor = eep_config->start_motor;
9652 asc_dvc->dvc_cntl = eep_config->cntl;
9653 asc_dvc->no_scam = eep_config->no_scam;
9654 asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
9655 asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
9656 asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
9657 asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
9658 asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
9659 asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
9660 if (!AscTestExternalLram(asc_dvc)) {
9661 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
9662 ASC_IS_PCI_ULTRA)) {
9663 eep_config->max_total_qng =
9664 ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
9665 eep_config->max_tag_qng =
9666 ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
9667 } else {
9668 eep_config->cfg_msw |= 0x0800;
9669 cfg_msw |= 0x0800;
9670 AscSetChipCfgMsw(iop_base, cfg_msw);
9671 eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
9672 eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
9674 } else {
9676 if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
9677 eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
9679 if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
9680 eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
9682 if (eep_config->max_tag_qng > eep_config->max_total_qng) {
9683 eep_config->max_tag_qng = eep_config->max_total_qng;
9685 if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
9686 eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
9688 asc_dvc->max_total_qng = eep_config->max_total_qng;
9689 if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
9690 eep_config->use_cmd_qng) {
9691 eep_config->disc_enable = eep_config->use_cmd_qng;
9692 warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9694 ASC_EEP_SET_CHIP_ID(eep_config,
9695 ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
9696 asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
9697 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
9698 !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
9699 asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
9702 for (i = 0; i <= ASC_MAX_TID; i++) {
9703 asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
9704 asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
9705 asc_dvc->cfg->sdtr_period_offset[i] =
9706 (uchar)(ASC_DEF_SDTR_OFFSET |
9707 (asc_dvc->min_sdtr_index << 4));
9709 eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
9710 if (write_eep) {
9711 if ((i = AscSetEEPConfig(iop_base, eep_config,
9712 asc_dvc->bus_type)) != 0) {
9713 ASC_PRINT1
9714 ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
9716 } else {
9717 ASC_PRINT
9718 ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
9721 return (warn_code);
9724 static int AscInitGetConfig(struct Scsi_Host *shost)
9726 struct asc_board *board = shost_priv(shost);
9727 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9728 unsigned short warn_code = 0;
9730 asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
9731 if (asc_dvc->err_code != 0)
9732 return asc_dvc->err_code;
9734 if (AscFindSignature(asc_dvc->iop_base)) {
9735 warn_code |= AscInitAscDvcVar(asc_dvc);
9736 warn_code |= AscInitFromEEP(asc_dvc);
9737 asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
9738 if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
9739 asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
9740 } else {
9741 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9744 switch (warn_code) {
9745 case 0: /* No error */
9746 break;
9747 case ASC_WARN_IO_PORT_ROTATE:
9748 shost_printk(KERN_WARNING, shost, "I/O port address "
9749 "modified\n");
9750 break;
9751 case ASC_WARN_AUTO_CONFIG:
9752 shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9753 "enabled\n");
9754 break;
9755 case ASC_WARN_EEPROM_CHKSUM:
9756 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9757 break;
9758 case ASC_WARN_IRQ_MODIFIED:
9759 shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9760 break;
9761 case ASC_WARN_CMD_QNG_CONFLICT:
9762 shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
9763 "disconnects\n");
9764 break;
9765 default:
9766 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9767 warn_code);
9768 break;
9771 if (asc_dvc->err_code != 0)
9772 shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9773 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9775 return asc_dvc->err_code;
9778 static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
9780 struct asc_board *board = shost_priv(shost);
9781 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9782 PortAddr iop_base = asc_dvc->iop_base;
9783 unsigned short cfg_msw;
9784 unsigned short warn_code = 0;
9786 asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
9787 if (asc_dvc->err_code != 0)
9788 return asc_dvc->err_code;
9789 if (!AscFindSignature(asc_dvc->iop_base)) {
9790 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9791 return asc_dvc->err_code;
9794 cfg_msw = AscGetChipCfgMsw(iop_base);
9795 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9796 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9797 warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9798 AscSetChipCfgMsw(iop_base, cfg_msw);
9800 if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
9801 asc_dvc->cfg->cmd_qng_enabled) {
9802 asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
9803 warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9805 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9806 warn_code |= ASC_WARN_AUTO_CONFIG;
9808 #ifdef CONFIG_PCI
9809 if (asc_dvc->bus_type & ASC_IS_PCI) {
9810 cfg_msw &= 0xFFC0;
9811 AscSetChipCfgMsw(iop_base, cfg_msw);
9812 if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
9813 } else {
9814 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
9815 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
9816 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
9817 asc_dvc->bug_fix_cntl |=
9818 ASC_BUG_FIX_ASYN_USE_SYN;
9821 } else
9822 #endif /* CONFIG_PCI */
9823 if (asc_dvc->bus_type == ASC_IS_ISAPNP) {
9824 if (AscGetChipVersion(iop_base, asc_dvc->bus_type)
9825 == ASC_CHIP_VER_ASYN_BUG) {
9826 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN;
9829 if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
9830 asc_dvc->cfg->chip_scsi_id) {
9831 asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
9833 #ifdef CONFIG_ISA
9834 if (asc_dvc->bus_type & ASC_IS_ISA) {
9835 AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel);
9836 AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed);
9838 #endif /* CONFIG_ISA */
9840 asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
9842 switch (warn_code) {
9843 case 0: /* No error. */
9844 break;
9845 case ASC_WARN_IO_PORT_ROTATE:
9846 shost_printk(KERN_WARNING, shost, "I/O port address "
9847 "modified\n");
9848 break;
9849 case ASC_WARN_AUTO_CONFIG:
9850 shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9851 "enabled\n");
9852 break;
9853 case ASC_WARN_EEPROM_CHKSUM:
9854 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9855 break;
9856 case ASC_WARN_IRQ_MODIFIED:
9857 shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9858 break;
9859 case ASC_WARN_CMD_QNG_CONFLICT:
9860 shost_printk(KERN_WARNING, shost, "tag queuing w/o "
9861 "disconnects\n");
9862 break;
9863 default:
9864 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9865 warn_code);
9866 break;
9869 if (asc_dvc->err_code != 0)
9870 shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9871 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9873 return asc_dvc->err_code;
9877 * EEPROM Configuration.
9879 * All drivers should use this structure to set the default EEPROM
9880 * configuration. The BIOS now uses this structure when it is built.
9881 * Additional structure information can be found in a_condor.h where
9882 * the structure is defined.
9884 * The *_Field_IsChar structs are needed to correct for endianness.
9885 * These values are read from the board 16 bits at a time directly
9886 * into the structs. Because some fields are char, the values will be
9887 * in the wrong order. The *_Field_IsChar tells when to flip the
9888 * bytes. Data read and written to PCI memory is automatically swapped
9889 * on big-endian platforms so char fields read as words are actually being
9890 * unswapped on big-endian platforms.
9892 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = {
9893 ADV_EEPROM_BIOS_ENABLE, /* cfg_lsw */
9894 0x0000, /* cfg_msw */
9895 0xFFFF, /* disc_enable */
9896 0xFFFF, /* wdtr_able */
9897 0xFFFF, /* sdtr_able */
9898 0xFFFF, /* start_motor */
9899 0xFFFF, /* tagqng_able */
9900 0xFFFF, /* bios_scan */
9901 0, /* scam_tolerant */
9902 7, /* adapter_scsi_id */
9903 0, /* bios_boot_delay */
9904 3, /* scsi_reset_delay */
9905 0, /* bios_id_lun */
9906 0, /* termination */
9907 0, /* reserved1 */
9908 0xFFE7, /* bios_ctrl */
9909 0xFFFF, /* ultra_able */
9910 0, /* reserved2 */
9911 ASC_DEF_MAX_HOST_QNG, /* max_host_qng */
9912 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
9913 0, /* dvc_cntl */
9914 0, /* bug_fix */
9915 0, /* serial_number_word1 */
9916 0, /* serial_number_word2 */
9917 0, /* serial_number_word3 */
9918 0, /* check_sum */
9919 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9920 , /* oem_name[16] */
9921 0, /* dvc_err_code */
9922 0, /* adv_err_code */
9923 0, /* adv_err_addr */
9924 0, /* saved_dvc_err_code */
9925 0, /* saved_adv_err_code */
9926 0, /* saved_adv_err_addr */
9927 0 /* num_of_err */
9930 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = {
9931 0, /* cfg_lsw */
9932 0, /* cfg_msw */
9933 0, /* -disc_enable */
9934 0, /* wdtr_able */
9935 0, /* sdtr_able */
9936 0, /* start_motor */
9937 0, /* tagqng_able */
9938 0, /* bios_scan */
9939 0, /* scam_tolerant */
9940 1, /* adapter_scsi_id */
9941 1, /* bios_boot_delay */
9942 1, /* scsi_reset_delay */
9943 1, /* bios_id_lun */
9944 1, /* termination */
9945 1, /* reserved1 */
9946 0, /* bios_ctrl */
9947 0, /* ultra_able */
9948 0, /* reserved2 */
9949 1, /* max_host_qng */
9950 1, /* max_dvc_qng */
9951 0, /* dvc_cntl */
9952 0, /* bug_fix */
9953 0, /* serial_number_word1 */
9954 0, /* serial_number_word2 */
9955 0, /* serial_number_word3 */
9956 0, /* check_sum */
9957 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9958 , /* oem_name[16] */
9959 0, /* dvc_err_code */
9960 0, /* adv_err_code */
9961 0, /* adv_err_addr */
9962 0, /* saved_dvc_err_code */
9963 0, /* saved_adv_err_code */
9964 0, /* saved_adv_err_addr */
9965 0 /* num_of_err */
9968 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = {
9969 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
9970 0x0000, /* 01 cfg_msw */
9971 0xFFFF, /* 02 disc_enable */
9972 0xFFFF, /* 03 wdtr_able */
9973 0x4444, /* 04 sdtr_speed1 */
9974 0xFFFF, /* 05 start_motor */
9975 0xFFFF, /* 06 tagqng_able */
9976 0xFFFF, /* 07 bios_scan */
9977 0, /* 08 scam_tolerant */
9978 7, /* 09 adapter_scsi_id */
9979 0, /* bios_boot_delay */
9980 3, /* 10 scsi_reset_delay */
9981 0, /* bios_id_lun */
9982 0, /* 11 termination_se */
9983 0, /* termination_lvd */
9984 0xFFE7, /* 12 bios_ctrl */
9985 0x4444, /* 13 sdtr_speed2 */
9986 0x4444, /* 14 sdtr_speed3 */
9987 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
9988 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
9989 0, /* 16 dvc_cntl */
9990 0x4444, /* 17 sdtr_speed4 */
9991 0, /* 18 serial_number_word1 */
9992 0, /* 19 serial_number_word2 */
9993 0, /* 20 serial_number_word3 */
9994 0, /* 21 check_sum */
9995 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9996 , /* 22-29 oem_name[16] */
9997 0, /* 30 dvc_err_code */
9998 0, /* 31 adv_err_code */
9999 0, /* 32 adv_err_addr */
10000 0, /* 33 saved_dvc_err_code */
10001 0, /* 34 saved_adv_err_code */
10002 0, /* 35 saved_adv_err_addr */
10003 0, /* 36 reserved */
10004 0, /* 37 reserved */
10005 0, /* 38 reserved */
10006 0, /* 39 reserved */
10007 0, /* 40 reserved */
10008 0, /* 41 reserved */
10009 0, /* 42 reserved */
10010 0, /* 43 reserved */
10011 0, /* 44 reserved */
10012 0, /* 45 reserved */
10013 0, /* 46 reserved */
10014 0, /* 47 reserved */
10015 0, /* 48 reserved */
10016 0, /* 49 reserved */
10017 0, /* 50 reserved */
10018 0, /* 51 reserved */
10019 0, /* 52 reserved */
10020 0, /* 53 reserved */
10021 0, /* 54 reserved */
10022 0, /* 55 reserved */
10023 0, /* 56 cisptr_lsw */
10024 0, /* 57 cisprt_msw */
10025 PCI_VENDOR_ID_ASP, /* 58 subsysvid */
10026 PCI_DEVICE_ID_38C0800_REV1, /* 59 subsysid */
10027 0, /* 60 reserved */
10028 0, /* 61 reserved */
10029 0, /* 62 reserved */
10030 0 /* 63 reserved */
10033 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = {
10034 0, /* 00 cfg_lsw */
10035 0, /* 01 cfg_msw */
10036 0, /* 02 disc_enable */
10037 0, /* 03 wdtr_able */
10038 0, /* 04 sdtr_speed1 */
10039 0, /* 05 start_motor */
10040 0, /* 06 tagqng_able */
10041 0, /* 07 bios_scan */
10042 0, /* 08 scam_tolerant */
10043 1, /* 09 adapter_scsi_id */
10044 1, /* bios_boot_delay */
10045 1, /* 10 scsi_reset_delay */
10046 1, /* bios_id_lun */
10047 1, /* 11 termination_se */
10048 1, /* termination_lvd */
10049 0, /* 12 bios_ctrl */
10050 0, /* 13 sdtr_speed2 */
10051 0, /* 14 sdtr_speed3 */
10052 1, /* 15 max_host_qng */
10053 1, /* max_dvc_qng */
10054 0, /* 16 dvc_cntl */
10055 0, /* 17 sdtr_speed4 */
10056 0, /* 18 serial_number_word1 */
10057 0, /* 19 serial_number_word2 */
10058 0, /* 20 serial_number_word3 */
10059 0, /* 21 check_sum */
10060 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10061 , /* 22-29 oem_name[16] */
10062 0, /* 30 dvc_err_code */
10063 0, /* 31 adv_err_code */
10064 0, /* 32 adv_err_addr */
10065 0, /* 33 saved_dvc_err_code */
10066 0, /* 34 saved_adv_err_code */
10067 0, /* 35 saved_adv_err_addr */
10068 0, /* 36 reserved */
10069 0, /* 37 reserved */
10070 0, /* 38 reserved */
10071 0, /* 39 reserved */
10072 0, /* 40 reserved */
10073 0, /* 41 reserved */
10074 0, /* 42 reserved */
10075 0, /* 43 reserved */
10076 0, /* 44 reserved */
10077 0, /* 45 reserved */
10078 0, /* 46 reserved */
10079 0, /* 47 reserved */
10080 0, /* 48 reserved */
10081 0, /* 49 reserved */
10082 0, /* 50 reserved */
10083 0, /* 51 reserved */
10084 0, /* 52 reserved */
10085 0, /* 53 reserved */
10086 0, /* 54 reserved */
10087 0, /* 55 reserved */
10088 0, /* 56 cisptr_lsw */
10089 0, /* 57 cisprt_msw */
10090 0, /* 58 subsysvid */
10091 0, /* 59 subsysid */
10092 0, /* 60 reserved */
10093 0, /* 61 reserved */
10094 0, /* 62 reserved */
10095 0 /* 63 reserved */
10098 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = {
10099 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
10100 0x0000, /* 01 cfg_msw */
10101 0xFFFF, /* 02 disc_enable */
10102 0xFFFF, /* 03 wdtr_able */
10103 0x5555, /* 04 sdtr_speed1 */
10104 0xFFFF, /* 05 start_motor */
10105 0xFFFF, /* 06 tagqng_able */
10106 0xFFFF, /* 07 bios_scan */
10107 0, /* 08 scam_tolerant */
10108 7, /* 09 adapter_scsi_id */
10109 0, /* bios_boot_delay */
10110 3, /* 10 scsi_reset_delay */
10111 0, /* bios_id_lun */
10112 0, /* 11 termination_se */
10113 0, /* termination_lvd */
10114 0xFFE7, /* 12 bios_ctrl */
10115 0x5555, /* 13 sdtr_speed2 */
10116 0x5555, /* 14 sdtr_speed3 */
10117 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
10118 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
10119 0, /* 16 dvc_cntl */
10120 0x5555, /* 17 sdtr_speed4 */
10121 0, /* 18 serial_number_word1 */
10122 0, /* 19 serial_number_word2 */
10123 0, /* 20 serial_number_word3 */
10124 0, /* 21 check_sum */
10125 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10126 , /* 22-29 oem_name[16] */
10127 0, /* 30 dvc_err_code */
10128 0, /* 31 adv_err_code */
10129 0, /* 32 adv_err_addr */
10130 0, /* 33 saved_dvc_err_code */
10131 0, /* 34 saved_adv_err_code */
10132 0, /* 35 saved_adv_err_addr */
10133 0, /* 36 reserved */
10134 0, /* 37 reserved */
10135 0, /* 38 reserved */
10136 0, /* 39 reserved */
10137 0, /* 40 reserved */
10138 0, /* 41 reserved */
10139 0, /* 42 reserved */
10140 0, /* 43 reserved */
10141 0, /* 44 reserved */
10142 0, /* 45 reserved */
10143 0, /* 46 reserved */
10144 0, /* 47 reserved */
10145 0, /* 48 reserved */
10146 0, /* 49 reserved */
10147 0, /* 50 reserved */
10148 0, /* 51 reserved */
10149 0, /* 52 reserved */
10150 0, /* 53 reserved */
10151 0, /* 54 reserved */
10152 0, /* 55 reserved */
10153 0, /* 56 cisptr_lsw */
10154 0, /* 57 cisprt_msw */
10155 PCI_VENDOR_ID_ASP, /* 58 subsysvid */
10156 PCI_DEVICE_ID_38C1600_REV1, /* 59 subsysid */
10157 0, /* 60 reserved */
10158 0, /* 61 reserved */
10159 0, /* 62 reserved */
10160 0 /* 63 reserved */
10163 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = {
10164 0, /* 00 cfg_lsw */
10165 0, /* 01 cfg_msw */
10166 0, /* 02 disc_enable */
10167 0, /* 03 wdtr_able */
10168 0, /* 04 sdtr_speed1 */
10169 0, /* 05 start_motor */
10170 0, /* 06 tagqng_able */
10171 0, /* 07 bios_scan */
10172 0, /* 08 scam_tolerant */
10173 1, /* 09 adapter_scsi_id */
10174 1, /* bios_boot_delay */
10175 1, /* 10 scsi_reset_delay */
10176 1, /* bios_id_lun */
10177 1, /* 11 termination_se */
10178 1, /* termination_lvd */
10179 0, /* 12 bios_ctrl */
10180 0, /* 13 sdtr_speed2 */
10181 0, /* 14 sdtr_speed3 */
10182 1, /* 15 max_host_qng */
10183 1, /* max_dvc_qng */
10184 0, /* 16 dvc_cntl */
10185 0, /* 17 sdtr_speed4 */
10186 0, /* 18 serial_number_word1 */
10187 0, /* 19 serial_number_word2 */
10188 0, /* 20 serial_number_word3 */
10189 0, /* 21 check_sum */
10190 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10191 , /* 22-29 oem_name[16] */
10192 0, /* 30 dvc_err_code */
10193 0, /* 31 adv_err_code */
10194 0, /* 32 adv_err_addr */
10195 0, /* 33 saved_dvc_err_code */
10196 0, /* 34 saved_adv_err_code */
10197 0, /* 35 saved_adv_err_addr */
10198 0, /* 36 reserved */
10199 0, /* 37 reserved */
10200 0, /* 38 reserved */
10201 0, /* 39 reserved */
10202 0, /* 40 reserved */
10203 0, /* 41 reserved */
10204 0, /* 42 reserved */
10205 0, /* 43 reserved */
10206 0, /* 44 reserved */
10207 0, /* 45 reserved */
10208 0, /* 46 reserved */
10209 0, /* 47 reserved */
10210 0, /* 48 reserved */
10211 0, /* 49 reserved */
10212 0, /* 50 reserved */
10213 0, /* 51 reserved */
10214 0, /* 52 reserved */
10215 0, /* 53 reserved */
10216 0, /* 54 reserved */
10217 0, /* 55 reserved */
10218 0, /* 56 cisptr_lsw */
10219 0, /* 57 cisprt_msw */
10220 0, /* 58 subsysvid */
10221 0, /* 59 subsysid */
10222 0, /* 60 reserved */
10223 0, /* 61 reserved */
10224 0, /* 62 reserved */
10225 0 /* 63 reserved */
10228 #ifdef CONFIG_PCI
10230 * Wait for EEPROM command to complete
10232 static void AdvWaitEEPCmd(AdvPortAddr iop_base)
10234 int eep_delay_ms;
10236 for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
10237 if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
10238 ASC_EEP_CMD_DONE) {
10239 break;
10241 mdelay(1);
10243 if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
10245 BUG();
10249 * Read the EEPROM from specified location
10251 static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
10253 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10254 ASC_EEP_CMD_READ | eep_word_addr);
10255 AdvWaitEEPCmd(iop_base);
10256 return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
10260 * Write the EEPROM from 'cfg_buf'.
10262 static void AdvSet3550EEPConfig(AdvPortAddr iop_base,
10263 ADVEEP_3550_CONFIG *cfg_buf)
10265 ushort *wbuf;
10266 ushort addr, chksum;
10267 ushort *charfields;
10269 wbuf = (ushort *)cfg_buf;
10270 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10271 chksum = 0;
10273 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10274 AdvWaitEEPCmd(iop_base);
10277 * Write EEPROM from word 0 to word 20.
10279 for (addr = ADV_EEP_DVC_CFG_BEGIN;
10280 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10281 ushort word;
10283 if (*charfields++) {
10284 word = cpu_to_le16(*wbuf);
10285 } else {
10286 word = *wbuf;
10288 chksum += *wbuf; /* Checksum is calculated from word values. */
10289 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10290 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10291 ASC_EEP_CMD_WRITE | addr);
10292 AdvWaitEEPCmd(iop_base);
10293 mdelay(ADV_EEP_DELAY_MS);
10297 * Write EEPROM checksum at word 21.
10299 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10300 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10301 AdvWaitEEPCmd(iop_base);
10302 wbuf++;
10303 charfields++;
10306 * Write EEPROM OEM name at words 22 to 29.
10308 for (addr = ADV_EEP_DVC_CTL_BEGIN;
10309 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10310 ushort word;
10312 if (*charfields++) {
10313 word = cpu_to_le16(*wbuf);
10314 } else {
10315 word = *wbuf;
10317 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10318 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10319 ASC_EEP_CMD_WRITE | addr);
10320 AdvWaitEEPCmd(iop_base);
10322 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10323 AdvWaitEEPCmd(iop_base);
10327 * Write the EEPROM from 'cfg_buf'.
10329 static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base,
10330 ADVEEP_38C0800_CONFIG *cfg_buf)
10332 ushort *wbuf;
10333 ushort *charfields;
10334 ushort addr, chksum;
10336 wbuf = (ushort *)cfg_buf;
10337 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10338 chksum = 0;
10340 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10341 AdvWaitEEPCmd(iop_base);
10344 * Write EEPROM from word 0 to word 20.
10346 for (addr = ADV_EEP_DVC_CFG_BEGIN;
10347 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10348 ushort word;
10350 if (*charfields++) {
10351 word = cpu_to_le16(*wbuf);
10352 } else {
10353 word = *wbuf;
10355 chksum += *wbuf; /* Checksum is calculated from word values. */
10356 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10357 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10358 ASC_EEP_CMD_WRITE | addr);
10359 AdvWaitEEPCmd(iop_base);
10360 mdelay(ADV_EEP_DELAY_MS);
10364 * Write EEPROM checksum at word 21.
10366 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10367 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10368 AdvWaitEEPCmd(iop_base);
10369 wbuf++;
10370 charfields++;
10373 * Write EEPROM OEM name at words 22 to 29.
10375 for (addr = ADV_EEP_DVC_CTL_BEGIN;
10376 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10377 ushort word;
10379 if (*charfields++) {
10380 word = cpu_to_le16(*wbuf);
10381 } else {
10382 word = *wbuf;
10384 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10385 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10386 ASC_EEP_CMD_WRITE | addr);
10387 AdvWaitEEPCmd(iop_base);
10389 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10390 AdvWaitEEPCmd(iop_base);
10394 * Write the EEPROM from 'cfg_buf'.
10396 static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base,
10397 ADVEEP_38C1600_CONFIG *cfg_buf)
10399 ushort *wbuf;
10400 ushort *charfields;
10401 ushort addr, chksum;
10403 wbuf = (ushort *)cfg_buf;
10404 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
10405 chksum = 0;
10407 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10408 AdvWaitEEPCmd(iop_base);
10411 * Write EEPROM from word 0 to word 20.
10413 for (addr = ADV_EEP_DVC_CFG_BEGIN;
10414 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10415 ushort word;
10417 if (*charfields++) {
10418 word = cpu_to_le16(*wbuf);
10419 } else {
10420 word = *wbuf;
10422 chksum += *wbuf; /* Checksum is calculated from word values. */
10423 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10424 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10425 ASC_EEP_CMD_WRITE | addr);
10426 AdvWaitEEPCmd(iop_base);
10427 mdelay(ADV_EEP_DELAY_MS);
10431 * Write EEPROM checksum at word 21.
10433 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10434 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10435 AdvWaitEEPCmd(iop_base);
10436 wbuf++;
10437 charfields++;
10440 * Write EEPROM OEM name at words 22 to 29.
10442 for (addr = ADV_EEP_DVC_CTL_BEGIN;
10443 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10444 ushort word;
10446 if (*charfields++) {
10447 word = cpu_to_le16(*wbuf);
10448 } else {
10449 word = *wbuf;
10451 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10452 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10453 ASC_EEP_CMD_WRITE | addr);
10454 AdvWaitEEPCmd(iop_base);
10456 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10457 AdvWaitEEPCmd(iop_base);
10461 * Read EEPROM configuration into the specified buffer.
10463 * Return a checksum based on the EEPROM configuration read.
10465 static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base,
10466 ADVEEP_3550_CONFIG *cfg_buf)
10468 ushort wval, chksum;
10469 ushort *wbuf;
10470 int eep_addr;
10471 ushort *charfields;
10473 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10474 wbuf = (ushort *)cfg_buf;
10475 chksum = 0;
10477 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10478 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10479 wval = AdvReadEEPWord(iop_base, eep_addr);
10480 chksum += wval; /* Checksum is calculated from word values. */
10481 if (*charfields++) {
10482 *wbuf = le16_to_cpu(wval);
10483 } else {
10484 *wbuf = wval;
10487 /* Read checksum word. */
10488 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10489 wbuf++;
10490 charfields++;
10492 /* Read rest of EEPROM not covered by the checksum. */
10493 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10494 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10495 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10496 if (*charfields++) {
10497 *wbuf = le16_to_cpu(*wbuf);
10500 return chksum;
10504 * Read EEPROM configuration into the specified buffer.
10506 * Return a checksum based on the EEPROM configuration read.
10508 static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base,
10509 ADVEEP_38C0800_CONFIG *cfg_buf)
10511 ushort wval, chksum;
10512 ushort *wbuf;
10513 int eep_addr;
10514 ushort *charfields;
10516 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10517 wbuf = (ushort *)cfg_buf;
10518 chksum = 0;
10520 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10521 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10522 wval = AdvReadEEPWord(iop_base, eep_addr);
10523 chksum += wval; /* Checksum is calculated from word values. */
10524 if (*charfields++) {
10525 *wbuf = le16_to_cpu(wval);
10526 } else {
10527 *wbuf = wval;
10530 /* Read checksum word. */
10531 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10532 wbuf++;
10533 charfields++;
10535 /* Read rest of EEPROM not covered by the checksum. */
10536 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10537 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10538 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10539 if (*charfields++) {
10540 *wbuf = le16_to_cpu(*wbuf);
10543 return chksum;
10547 * Read EEPROM configuration into the specified buffer.
10549 * Return a checksum based on the EEPROM configuration read.
10551 static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base,
10552 ADVEEP_38C1600_CONFIG *cfg_buf)
10554 ushort wval, chksum;
10555 ushort *wbuf;
10556 int eep_addr;
10557 ushort *charfields;
10559 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
10560 wbuf = (ushort *)cfg_buf;
10561 chksum = 0;
10563 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10564 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10565 wval = AdvReadEEPWord(iop_base, eep_addr);
10566 chksum += wval; /* Checksum is calculated from word values. */
10567 if (*charfields++) {
10568 *wbuf = le16_to_cpu(wval);
10569 } else {
10570 *wbuf = wval;
10573 /* Read checksum word. */
10574 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10575 wbuf++;
10576 charfields++;
10578 /* Read rest of EEPROM not covered by the checksum. */
10579 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10580 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10581 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10582 if (*charfields++) {
10583 *wbuf = le16_to_cpu(*wbuf);
10586 return chksum;
10590 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10591 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10592 * all of this is done.
10594 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10596 * For a non-fatal error return a warning code. If there are no warnings
10597 * then 0 is returned.
10599 * Note: Chip is stopped on entry.
10601 static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
10603 AdvPortAddr iop_base;
10604 ushort warn_code;
10605 ADVEEP_3550_CONFIG eep_config;
10607 iop_base = asc_dvc->iop_base;
10609 warn_code = 0;
10612 * Read the board's EEPROM configuration.
10614 * Set default values if a bad checksum is found.
10616 if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
10617 warn_code |= ASC_WARN_EEPROM_CHKSUM;
10620 * Set EEPROM default values.
10622 memcpy(&eep_config, &Default_3550_EEPROM_Config,
10623 sizeof(ADVEEP_3550_CONFIG));
10626 * Assume the 6 byte board serial number that was read from
10627 * EEPROM is correct even if the EEPROM checksum failed.
10629 eep_config.serial_number_word3 =
10630 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10632 eep_config.serial_number_word2 =
10633 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10635 eep_config.serial_number_word1 =
10636 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10638 AdvSet3550EEPConfig(iop_base, &eep_config);
10641 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10642 * EEPROM configuration that was read.
10644 * This is the mapping of EEPROM fields to Adv Library fields.
10646 asc_dvc->wdtr_able = eep_config.wdtr_able;
10647 asc_dvc->sdtr_able = eep_config.sdtr_able;
10648 asc_dvc->ultra_able = eep_config.ultra_able;
10649 asc_dvc->tagqng_able = eep_config.tagqng_able;
10650 asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10651 asc_dvc->max_host_qng = eep_config.max_host_qng;
10652 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10653 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10654 asc_dvc->start_motor = eep_config.start_motor;
10655 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10656 asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10657 asc_dvc->no_scam = eep_config.scam_tolerant;
10658 asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10659 asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10660 asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10663 * Set the host maximum queuing (max. 253, min. 16) and the per device
10664 * maximum queuing (max. 63, min. 4).
10666 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10667 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10668 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10669 /* If the value is zero, assume it is uninitialized. */
10670 if (eep_config.max_host_qng == 0) {
10671 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10672 } else {
10673 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10677 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10678 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10679 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10680 /* If the value is zero, assume it is uninitialized. */
10681 if (eep_config.max_dvc_qng == 0) {
10682 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10683 } else {
10684 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10689 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10690 * set 'max_dvc_qng' to 'max_host_qng'.
10692 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10693 eep_config.max_dvc_qng = eep_config.max_host_qng;
10697 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10698 * values based on possibly adjusted EEPROM values.
10700 asc_dvc->max_host_qng = eep_config.max_host_qng;
10701 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10704 * If the EEPROM 'termination' field is set to automatic (0), then set
10705 * the ADV_DVC_CFG 'termination' field to automatic also.
10707 * If the termination is specified with a non-zero 'termination'
10708 * value check that a legal value is set and set the ADV_DVC_CFG
10709 * 'termination' field appropriately.
10711 if (eep_config.termination == 0) {
10712 asc_dvc->cfg->termination = 0; /* auto termination */
10713 } else {
10714 /* Enable manual control with low off / high off. */
10715 if (eep_config.termination == 1) {
10716 asc_dvc->cfg->termination = TERM_CTL_SEL;
10718 /* Enable manual control with low off / high on. */
10719 } else if (eep_config.termination == 2) {
10720 asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
10722 /* Enable manual control with low on / high on. */
10723 } else if (eep_config.termination == 3) {
10724 asc_dvc->cfg->termination =
10725 TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
10726 } else {
10728 * The EEPROM 'termination' field contains a bad value. Use
10729 * automatic termination instead.
10731 asc_dvc->cfg->termination = 0;
10732 warn_code |= ASC_WARN_EEPROM_TERMINATION;
10736 return warn_code;
10740 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10741 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10742 * all of this is done.
10744 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10746 * For a non-fatal error return a warning code. If there are no warnings
10747 * then 0 is returned.
10749 * Note: Chip is stopped on entry.
10751 static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
10753 AdvPortAddr iop_base;
10754 ushort warn_code;
10755 ADVEEP_38C0800_CONFIG eep_config;
10756 uchar tid, termination;
10757 ushort sdtr_speed = 0;
10759 iop_base = asc_dvc->iop_base;
10761 warn_code = 0;
10764 * Read the board's EEPROM configuration.
10766 * Set default values if a bad checksum is found.
10768 if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
10769 eep_config.check_sum) {
10770 warn_code |= ASC_WARN_EEPROM_CHKSUM;
10773 * Set EEPROM default values.
10775 memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
10776 sizeof(ADVEEP_38C0800_CONFIG));
10779 * Assume the 6 byte board serial number that was read from
10780 * EEPROM is correct even if the EEPROM checksum failed.
10782 eep_config.serial_number_word3 =
10783 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10785 eep_config.serial_number_word2 =
10786 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10788 eep_config.serial_number_word1 =
10789 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10791 AdvSet38C0800EEPConfig(iop_base, &eep_config);
10794 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
10795 * EEPROM configuration that was read.
10797 * This is the mapping of EEPROM fields to Adv Library fields.
10799 asc_dvc->wdtr_able = eep_config.wdtr_able;
10800 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10801 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10802 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10803 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10804 asc_dvc->tagqng_able = eep_config.tagqng_able;
10805 asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10806 asc_dvc->max_host_qng = eep_config.max_host_qng;
10807 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10808 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10809 asc_dvc->start_motor = eep_config.start_motor;
10810 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10811 asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10812 asc_dvc->no_scam = eep_config.scam_tolerant;
10813 asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10814 asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10815 asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10818 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10819 * are set, then set an 'sdtr_able' bit for it.
10821 asc_dvc->sdtr_able = 0;
10822 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
10823 if (tid == 0) {
10824 sdtr_speed = asc_dvc->sdtr_speed1;
10825 } else if (tid == 4) {
10826 sdtr_speed = asc_dvc->sdtr_speed2;
10827 } else if (tid == 8) {
10828 sdtr_speed = asc_dvc->sdtr_speed3;
10829 } else if (tid == 12) {
10830 sdtr_speed = asc_dvc->sdtr_speed4;
10832 if (sdtr_speed & ADV_MAX_TID) {
10833 asc_dvc->sdtr_able |= (1 << tid);
10835 sdtr_speed >>= 4;
10839 * Set the host maximum queuing (max. 253, min. 16) and the per device
10840 * maximum queuing (max. 63, min. 4).
10842 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10843 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10844 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10845 /* If the value is zero, assume it is uninitialized. */
10846 if (eep_config.max_host_qng == 0) {
10847 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10848 } else {
10849 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10853 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10854 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10855 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10856 /* If the value is zero, assume it is uninitialized. */
10857 if (eep_config.max_dvc_qng == 0) {
10858 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10859 } else {
10860 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10865 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10866 * set 'max_dvc_qng' to 'max_host_qng'.
10868 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10869 eep_config.max_dvc_qng = eep_config.max_host_qng;
10873 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10874 * values based on possibly adjusted EEPROM values.
10876 asc_dvc->max_host_qng = eep_config.max_host_qng;
10877 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10880 * If the EEPROM 'termination' field is set to automatic (0), then set
10881 * the ADV_DVC_CFG 'termination' field to automatic also.
10883 * If the termination is specified with a non-zero 'termination'
10884 * value check that a legal value is set and set the ADV_DVC_CFG
10885 * 'termination' field appropriately.
10887 if (eep_config.termination_se == 0) {
10888 termination = 0; /* auto termination for SE */
10889 } else {
10890 /* Enable manual control with low off / high off. */
10891 if (eep_config.termination_se == 1) {
10892 termination = 0;
10894 /* Enable manual control with low off / high on. */
10895 } else if (eep_config.termination_se == 2) {
10896 termination = TERM_SE_HI;
10898 /* Enable manual control with low on / high on. */
10899 } else if (eep_config.termination_se == 3) {
10900 termination = TERM_SE;
10901 } else {
10903 * The EEPROM 'termination_se' field contains a bad value.
10904 * Use automatic termination instead.
10906 termination = 0;
10907 warn_code |= ASC_WARN_EEPROM_TERMINATION;
10911 if (eep_config.termination_lvd == 0) {
10912 asc_dvc->cfg->termination = termination; /* auto termination for LVD */
10913 } else {
10914 /* Enable manual control with low off / high off. */
10915 if (eep_config.termination_lvd == 1) {
10916 asc_dvc->cfg->termination = termination;
10918 /* Enable manual control with low off / high on. */
10919 } else if (eep_config.termination_lvd == 2) {
10920 asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10922 /* Enable manual control with low on / high on. */
10923 } else if (eep_config.termination_lvd == 3) {
10924 asc_dvc->cfg->termination = termination | TERM_LVD;
10925 } else {
10927 * The EEPROM 'termination_lvd' field contains a bad value.
10928 * Use automatic termination instead.
10930 asc_dvc->cfg->termination = termination;
10931 warn_code |= ASC_WARN_EEPROM_TERMINATION;
10935 return warn_code;
10939 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
10940 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
10941 * all of this is done.
10943 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
10945 * For a non-fatal error return a warning code. If there are no warnings
10946 * then 0 is returned.
10948 * Note: Chip is stopped on entry.
10950 static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
10952 AdvPortAddr iop_base;
10953 ushort warn_code;
10954 ADVEEP_38C1600_CONFIG eep_config;
10955 uchar tid, termination;
10956 ushort sdtr_speed = 0;
10958 iop_base = asc_dvc->iop_base;
10960 warn_code = 0;
10963 * Read the board's EEPROM configuration.
10965 * Set default values if a bad checksum is found.
10967 if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
10968 eep_config.check_sum) {
10969 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
10970 warn_code |= ASC_WARN_EEPROM_CHKSUM;
10973 * Set EEPROM default values.
10975 memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
10976 sizeof(ADVEEP_38C1600_CONFIG));
10978 if (PCI_FUNC(pdev->devfn) != 0) {
10979 u8 ints;
10981 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
10982 * and old Mac system booting problem. The Expansion
10983 * ROM must be disabled in Function 1 for these systems
10985 eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
10987 * Clear the INTAB (bit 11) if the GPIO 0 input
10988 * indicates the Function 1 interrupt line is wired
10989 * to INTB.
10991 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
10992 * 1 - Function 1 interrupt line wired to INT A.
10993 * 0 - Function 1 interrupt line wired to INT B.
10995 * Note: Function 0 is always wired to INTA.
10996 * Put all 5 GPIO bits in input mode and then read
10997 * their input values.
10999 AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
11000 ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
11001 if ((ints & 0x01) == 0)
11002 eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
11006 * Assume the 6 byte board serial number that was read from
11007 * EEPROM is correct even if the EEPROM checksum failed.
11009 eep_config.serial_number_word3 =
11010 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
11011 eep_config.serial_number_word2 =
11012 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
11013 eep_config.serial_number_word1 =
11014 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
11016 AdvSet38C1600EEPConfig(iop_base, &eep_config);
11020 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
11021 * EEPROM configuration that was read.
11023 * This is the mapping of EEPROM fields to Adv Library fields.
11025 asc_dvc->wdtr_able = eep_config.wdtr_able;
11026 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
11027 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
11028 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
11029 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
11030 asc_dvc->ppr_able = 0;
11031 asc_dvc->tagqng_able = eep_config.tagqng_able;
11032 asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11033 asc_dvc->max_host_qng = eep_config.max_host_qng;
11034 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11035 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
11036 asc_dvc->start_motor = eep_config.start_motor;
11037 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11038 asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11039 asc_dvc->no_scam = eep_config.scam_tolerant;
11042 * For every Target ID if any of its 'sdtr_speed[1234]' bits
11043 * are set, then set an 'sdtr_able' bit for it.
11045 asc_dvc->sdtr_able = 0;
11046 for (tid = 0; tid <= ASC_MAX_TID; tid++) {
11047 if (tid == 0) {
11048 sdtr_speed = asc_dvc->sdtr_speed1;
11049 } else if (tid == 4) {
11050 sdtr_speed = asc_dvc->sdtr_speed2;
11051 } else if (tid == 8) {
11052 sdtr_speed = asc_dvc->sdtr_speed3;
11053 } else if (tid == 12) {
11054 sdtr_speed = asc_dvc->sdtr_speed4;
11056 if (sdtr_speed & ASC_MAX_TID) {
11057 asc_dvc->sdtr_able |= (1 << tid);
11059 sdtr_speed >>= 4;
11063 * Set the host maximum queuing (max. 253, min. 16) and the per device
11064 * maximum queuing (max. 63, min. 4).
11066 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11067 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11068 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11069 /* If the value is zero, assume it is uninitialized. */
11070 if (eep_config.max_host_qng == 0) {
11071 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11072 } else {
11073 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11077 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11078 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11079 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11080 /* If the value is zero, assume it is uninitialized. */
11081 if (eep_config.max_dvc_qng == 0) {
11082 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11083 } else {
11084 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11089 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11090 * set 'max_dvc_qng' to 'max_host_qng'.
11092 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11093 eep_config.max_dvc_qng = eep_config.max_host_qng;
11097 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
11098 * values based on possibly adjusted EEPROM values.
11100 asc_dvc->max_host_qng = eep_config.max_host_qng;
11101 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11104 * If the EEPROM 'termination' field is set to automatic (0), then set
11105 * the ASC_DVC_CFG 'termination' field to automatic also.
11107 * If the termination is specified with a non-zero 'termination'
11108 * value check that a legal value is set and set the ASC_DVC_CFG
11109 * 'termination' field appropriately.
11111 if (eep_config.termination_se == 0) {
11112 termination = 0; /* auto termination for SE */
11113 } else {
11114 /* Enable manual control with low off / high off. */
11115 if (eep_config.termination_se == 1) {
11116 termination = 0;
11118 /* Enable manual control with low off / high on. */
11119 } else if (eep_config.termination_se == 2) {
11120 termination = TERM_SE_HI;
11122 /* Enable manual control with low on / high on. */
11123 } else if (eep_config.termination_se == 3) {
11124 termination = TERM_SE;
11125 } else {
11127 * The EEPROM 'termination_se' field contains a bad value.
11128 * Use automatic termination instead.
11130 termination = 0;
11131 warn_code |= ASC_WARN_EEPROM_TERMINATION;
11135 if (eep_config.termination_lvd == 0) {
11136 asc_dvc->cfg->termination = termination; /* auto termination for LVD */
11137 } else {
11138 /* Enable manual control with low off / high off. */
11139 if (eep_config.termination_lvd == 1) {
11140 asc_dvc->cfg->termination = termination;
11142 /* Enable manual control with low off / high on. */
11143 } else if (eep_config.termination_lvd == 2) {
11144 asc_dvc->cfg->termination = termination | TERM_LVD_HI;
11146 /* Enable manual control with low on / high on. */
11147 } else if (eep_config.termination_lvd == 3) {
11148 asc_dvc->cfg->termination = termination | TERM_LVD;
11149 } else {
11151 * The EEPROM 'termination_lvd' field contains a bad value.
11152 * Use automatic termination instead.
11154 asc_dvc->cfg->termination = termination;
11155 warn_code |= ASC_WARN_EEPROM_TERMINATION;
11159 return warn_code;
11163 * Initialize the ADV_DVC_VAR structure.
11165 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11167 * For a non-fatal error return a warning code. If there are no warnings
11168 * then 0 is returned.
11170 static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
11172 struct asc_board *board = shost_priv(shost);
11173 ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
11174 unsigned short warn_code = 0;
11175 AdvPortAddr iop_base = asc_dvc->iop_base;
11176 u16 cmd;
11177 int status;
11179 asc_dvc->err_code = 0;
11182 * Save the state of the PCI Configuration Command Register
11183 * "Parity Error Response Control" Bit. If the bit is clear (0),
11184 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
11185 * DMA parity errors.
11187 asc_dvc->cfg->control_flag = 0;
11188 pci_read_config_word(pdev, PCI_COMMAND, &cmd);
11189 if ((cmd & PCI_COMMAND_PARITY) == 0)
11190 asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
11192 asc_dvc->cfg->chip_version =
11193 AdvGetChipVersion(iop_base, asc_dvc->bus_type);
11195 ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
11196 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
11197 (ushort)ADV_CHIP_ID_BYTE);
11199 ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
11200 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
11201 (ushort)ADV_CHIP_ID_WORD);
11204 * Reset the chip to start and allow register writes.
11206 if (AdvFindSignature(iop_base) == 0) {
11207 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
11208 return ADV_ERROR;
11209 } else {
11211 * The caller must set 'chip_type' to a valid setting.
11213 if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
11214 asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
11215 asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
11216 asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
11217 return ADV_ERROR;
11221 * Reset Chip.
11223 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
11224 ADV_CTRL_REG_CMD_RESET);
11225 mdelay(100);
11226 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
11227 ADV_CTRL_REG_CMD_WR_IO_REG);
11229 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
11230 status = AdvInitFrom38C1600EEP(asc_dvc);
11231 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
11232 status = AdvInitFrom38C0800EEP(asc_dvc);
11233 } else {
11234 status = AdvInitFrom3550EEP(asc_dvc);
11236 warn_code |= status;
11239 if (warn_code != 0)
11240 shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
11242 if (asc_dvc->err_code)
11243 shost_printk(KERN_ERR, shost, "error code 0x%x\n",
11244 asc_dvc->err_code);
11246 return asc_dvc->err_code;
11248 #endif
11250 static struct scsi_host_template advansys_template = {
11251 .proc_name = DRV_NAME,
11252 #ifdef CONFIG_PROC_FS
11253 .show_info = advansys_show_info,
11254 #endif
11255 .name = DRV_NAME,
11256 .info = advansys_info,
11257 .queuecommand = advansys_queuecommand,
11258 .eh_bus_reset_handler = advansys_reset,
11259 .bios_param = advansys_biosparam,
11260 .slave_configure = advansys_slave_configure,
11262 * Because the driver may control an ISA adapter 'unchecked_isa_dma'
11263 * must be set. The flag will be cleared in advansys_board_found
11264 * for non-ISA adapters.
11266 .unchecked_isa_dma = 1,
11268 * All adapters controlled by this driver are capable of large
11269 * scatter-gather lists. According to the mid-level SCSI documentation
11270 * this obviates any performance gain provided by setting
11271 * 'use_clustering'. But empirically while CPU utilization is increased
11272 * by enabling clustering, I/O throughput increases as well.
11274 .use_clustering = ENABLE_CLUSTERING,
11277 static int advansys_wide_init_chip(struct Scsi_Host *shost)
11279 struct asc_board *board = shost_priv(shost);
11280 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
11281 int req_cnt = 0;
11282 adv_req_t *reqp = NULL;
11283 int sg_cnt = 0;
11284 adv_sgblk_t *sgp;
11285 int warn_code, err_code;
11288 * Allocate buffer carrier structures. The total size
11289 * is about 4 KB, so allocate all at once.
11291 adv_dvc->carrier_buf = kmalloc(ADV_CARRIER_BUFSIZE, GFP_KERNEL);
11292 ASC_DBG(1, "carrier_buf 0x%p\n", adv_dvc->carrier_buf);
11294 if (!adv_dvc->carrier_buf)
11295 goto kmalloc_failed;
11298 * Allocate up to 'max_host_qng' request structures for the Wide
11299 * board. The total size is about 16 KB, so allocate all at once.
11300 * If the allocation fails decrement and try again.
11302 for (req_cnt = adv_dvc->max_host_qng; req_cnt > 0; req_cnt--) {
11303 reqp = kmalloc(sizeof(adv_req_t) * req_cnt, GFP_KERNEL);
11305 ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", reqp, req_cnt,
11306 (ulong)sizeof(adv_req_t) * req_cnt);
11308 if (reqp)
11309 break;
11312 if (!reqp)
11313 goto kmalloc_failed;
11315 adv_dvc->orig_reqp = reqp;
11318 * Allocate up to ADV_TOT_SG_BLOCK request structures for
11319 * the Wide board. Each structure is about 136 bytes.
11321 board->adv_sgblkp = NULL;
11322 for (sg_cnt = 0; sg_cnt < ADV_TOT_SG_BLOCK; sg_cnt++) {
11323 sgp = kmalloc(sizeof(adv_sgblk_t), GFP_KERNEL);
11325 if (!sgp)
11326 break;
11328 sgp->next_sgblkp = board->adv_sgblkp;
11329 board->adv_sgblkp = sgp;
11333 ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", sg_cnt, sizeof(adv_sgblk_t),
11334 sizeof(adv_sgblk_t) * sg_cnt);
11336 if (!board->adv_sgblkp)
11337 goto kmalloc_failed;
11340 * Point 'adv_reqp' to the request structures and
11341 * link them together.
11343 req_cnt--;
11344 reqp[req_cnt].next_reqp = NULL;
11345 for (; req_cnt > 0; req_cnt--) {
11346 reqp[req_cnt - 1].next_reqp = &reqp[req_cnt];
11348 board->adv_reqp = &reqp[0];
11350 if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
11351 ASC_DBG(2, "AdvInitAsc3550Driver()\n");
11352 warn_code = AdvInitAsc3550Driver(adv_dvc);
11353 } else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
11354 ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
11355 warn_code = AdvInitAsc38C0800Driver(adv_dvc);
11356 } else {
11357 ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
11358 warn_code = AdvInitAsc38C1600Driver(adv_dvc);
11360 err_code = adv_dvc->err_code;
11362 if (warn_code || err_code) {
11363 shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
11364 "0x%x\n", warn_code, err_code);
11367 goto exit;
11369 kmalloc_failed:
11370 shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
11371 err_code = ADV_ERROR;
11372 exit:
11373 return err_code;
11376 static void advansys_wide_free_mem(struct asc_board *board)
11378 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
11379 kfree(adv_dvc->carrier_buf);
11380 adv_dvc->carrier_buf = NULL;
11381 kfree(adv_dvc->orig_reqp);
11382 adv_dvc->orig_reqp = board->adv_reqp = NULL;
11383 while (board->adv_sgblkp) {
11384 adv_sgblk_t *sgp = board->adv_sgblkp;
11385 board->adv_sgblkp = sgp->next_sgblkp;
11386 kfree(sgp);
11390 static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop,
11391 int bus_type)
11393 struct pci_dev *pdev;
11394 struct asc_board *boardp = shost_priv(shost);
11395 ASC_DVC_VAR *asc_dvc_varp = NULL;
11396 ADV_DVC_VAR *adv_dvc_varp = NULL;
11397 int share_irq, warn_code, ret;
11399 pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
11401 if (ASC_NARROW_BOARD(boardp)) {
11402 ASC_DBG(1, "narrow board\n");
11403 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
11404 asc_dvc_varp->bus_type = bus_type;
11405 asc_dvc_varp->drv_ptr = boardp;
11406 asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
11407 asc_dvc_varp->iop_base = iop;
11408 } else {
11409 #ifdef CONFIG_PCI
11410 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
11411 adv_dvc_varp->drv_ptr = boardp;
11412 adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
11413 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
11414 ASC_DBG(1, "wide board ASC-3550\n");
11415 adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
11416 } else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
11417 ASC_DBG(1, "wide board ASC-38C0800\n");
11418 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
11419 } else {
11420 ASC_DBG(1, "wide board ASC-38C1600\n");
11421 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
11424 boardp->asc_n_io_port = pci_resource_len(pdev, 1);
11425 boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
11426 if (!boardp->ioremap_addr) {
11427 shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
11428 "returned NULL\n",
11429 (long)pci_resource_start(pdev, 1),
11430 boardp->asc_n_io_port);
11431 ret = -ENODEV;
11432 goto err_shost;
11434 adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
11435 ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
11438 * Even though it isn't used to access wide boards, other
11439 * than for the debug line below, save I/O Port address so
11440 * that it can be reported.
11442 boardp->ioport = iop;
11444 ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
11445 (ushort)inp(iop + 1), (ushort)inpw(iop));
11446 #endif /* CONFIG_PCI */
11449 if (ASC_NARROW_BOARD(boardp)) {
11451 * Set the board bus type and PCI IRQ before
11452 * calling AscInitGetConfig().
11454 switch (asc_dvc_varp->bus_type) {
11455 #ifdef CONFIG_ISA
11456 case ASC_IS_ISA:
11457 shost->unchecked_isa_dma = TRUE;
11458 share_irq = 0;
11459 break;
11460 case ASC_IS_VL:
11461 shost->unchecked_isa_dma = FALSE;
11462 share_irq = 0;
11463 break;
11464 case ASC_IS_EISA:
11465 shost->unchecked_isa_dma = FALSE;
11466 share_irq = IRQF_SHARED;
11467 break;
11468 #endif /* CONFIG_ISA */
11469 #ifdef CONFIG_PCI
11470 case ASC_IS_PCI:
11471 shost->unchecked_isa_dma = FALSE;
11472 share_irq = IRQF_SHARED;
11473 break;
11474 #endif /* CONFIG_PCI */
11475 default:
11476 shost_printk(KERN_ERR, shost, "unknown adapter type: "
11477 "%d\n", asc_dvc_varp->bus_type);
11478 shost->unchecked_isa_dma = TRUE;
11479 share_irq = 0;
11480 break;
11484 * NOTE: AscInitGetConfig() may change the board's
11485 * bus_type value. The bus_type value should no
11486 * longer be used. If the bus_type field must be
11487 * referenced only use the bit-wise AND operator "&".
11489 ASC_DBG(2, "AscInitGetConfig()\n");
11490 ret = AscInitGetConfig(shost) ? -ENODEV : 0;
11491 } else {
11492 #ifdef CONFIG_PCI
11494 * For Wide boards set PCI information before calling
11495 * AdvInitGetConfig().
11497 shost->unchecked_isa_dma = FALSE;
11498 share_irq = IRQF_SHARED;
11499 ASC_DBG(2, "AdvInitGetConfig()\n");
11501 ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
11502 #endif /* CONFIG_PCI */
11505 if (ret)
11506 goto err_unmap;
11509 * Save the EEPROM configuration so that it can be displayed
11510 * from /proc/scsi/advansys/[0...].
11512 if (ASC_NARROW_BOARD(boardp)) {
11514 ASCEEP_CONFIG *ep;
11517 * Set the adapter's target id bit in the 'init_tidmask' field.
11519 boardp->init_tidmask |=
11520 ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
11523 * Save EEPROM settings for the board.
11525 ep = &boardp->eep_config.asc_eep;
11527 ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
11528 ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
11529 ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
11530 ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed);
11531 ep->start_motor = asc_dvc_varp->start_motor;
11532 ep->cntl = asc_dvc_varp->dvc_cntl;
11533 ep->no_scam = asc_dvc_varp->no_scam;
11534 ep->max_total_qng = asc_dvc_varp->max_total_qng;
11535 ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
11536 /* 'max_tag_qng' is set to the same value for every device. */
11537 ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
11538 ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
11539 ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
11540 ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
11541 ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
11542 ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
11543 ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
11546 * Modify board configuration.
11548 ASC_DBG(2, "AscInitSetConfig()\n");
11549 ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
11550 if (ret)
11551 goto err_unmap;
11552 } else {
11553 ADVEEP_3550_CONFIG *ep_3550;
11554 ADVEEP_38C0800_CONFIG *ep_38C0800;
11555 ADVEEP_38C1600_CONFIG *ep_38C1600;
11558 * Save Wide EEP Configuration Information.
11560 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
11561 ep_3550 = &boardp->eep_config.adv_3550_eep;
11563 ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
11564 ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
11565 ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11566 ep_3550->termination = adv_dvc_varp->cfg->termination;
11567 ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
11568 ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
11569 ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
11570 ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
11571 ep_3550->ultra_able = adv_dvc_varp->ultra_able;
11572 ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
11573 ep_3550->start_motor = adv_dvc_varp->start_motor;
11574 ep_3550->scsi_reset_delay =
11575 adv_dvc_varp->scsi_reset_wait;
11576 ep_3550->serial_number_word1 =
11577 adv_dvc_varp->cfg->serial1;
11578 ep_3550->serial_number_word2 =
11579 adv_dvc_varp->cfg->serial2;
11580 ep_3550->serial_number_word3 =
11581 adv_dvc_varp->cfg->serial3;
11582 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
11583 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
11585 ep_38C0800->adapter_scsi_id =
11586 adv_dvc_varp->chip_scsi_id;
11587 ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
11588 ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11589 ep_38C0800->termination_lvd =
11590 adv_dvc_varp->cfg->termination;
11591 ep_38C0800->disc_enable =
11592 adv_dvc_varp->cfg->disc_enable;
11593 ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
11594 ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
11595 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11596 ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11597 ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11598 ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11599 ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11600 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11601 ep_38C0800->start_motor = adv_dvc_varp->start_motor;
11602 ep_38C0800->scsi_reset_delay =
11603 adv_dvc_varp->scsi_reset_wait;
11604 ep_38C0800->serial_number_word1 =
11605 adv_dvc_varp->cfg->serial1;
11606 ep_38C0800->serial_number_word2 =
11607 adv_dvc_varp->cfg->serial2;
11608 ep_38C0800->serial_number_word3 =
11609 adv_dvc_varp->cfg->serial3;
11610 } else {
11611 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
11613 ep_38C1600->adapter_scsi_id =
11614 adv_dvc_varp->chip_scsi_id;
11615 ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
11616 ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11617 ep_38C1600->termination_lvd =
11618 adv_dvc_varp->cfg->termination;
11619 ep_38C1600->disc_enable =
11620 adv_dvc_varp->cfg->disc_enable;
11621 ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
11622 ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
11623 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11624 ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11625 ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11626 ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11627 ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11628 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11629 ep_38C1600->start_motor = adv_dvc_varp->start_motor;
11630 ep_38C1600->scsi_reset_delay =
11631 adv_dvc_varp->scsi_reset_wait;
11632 ep_38C1600->serial_number_word1 =
11633 adv_dvc_varp->cfg->serial1;
11634 ep_38C1600->serial_number_word2 =
11635 adv_dvc_varp->cfg->serial2;
11636 ep_38C1600->serial_number_word3 =
11637 adv_dvc_varp->cfg->serial3;
11641 * Set the adapter's target id bit in the 'init_tidmask' field.
11643 boardp->init_tidmask |=
11644 ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
11648 * Channels are numbered beginning with 0. For AdvanSys one host
11649 * structure supports one channel. Multi-channel boards have a
11650 * separate host structure for each channel.
11652 shost->max_channel = 0;
11653 if (ASC_NARROW_BOARD(boardp)) {
11654 shost->max_id = ASC_MAX_TID + 1;
11655 shost->max_lun = ASC_MAX_LUN + 1;
11656 shost->max_cmd_len = ASC_MAX_CDB_LEN;
11658 shost->io_port = asc_dvc_varp->iop_base;
11659 boardp->asc_n_io_port = ASC_IOADR_GAP;
11660 shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
11662 /* Set maximum number of queues the adapter can handle. */
11663 shost->can_queue = asc_dvc_varp->max_total_qng;
11664 } else {
11665 shost->max_id = ADV_MAX_TID + 1;
11666 shost->max_lun = ADV_MAX_LUN + 1;
11667 shost->max_cmd_len = ADV_MAX_CDB_LEN;
11670 * Save the I/O Port address and length even though
11671 * I/O ports are not used to access Wide boards.
11672 * Instead the Wide boards are accessed with
11673 * PCI Memory Mapped I/O.
11675 shost->io_port = iop;
11677 shost->this_id = adv_dvc_varp->chip_scsi_id;
11679 /* Set maximum number of queues the adapter can handle. */
11680 shost->can_queue = adv_dvc_varp->max_host_qng;
11684 * Following v1.3.89, 'cmd_per_lun' is no longer needed
11685 * and should be set to zero.
11687 * But because of a bug introduced in v1.3.89 if the driver is
11688 * compiled as a module and 'cmd_per_lun' is zero, the Mid-Level
11689 * SCSI function 'allocate_device' will panic. To allow the driver
11690 * to work as a module in these kernels set 'cmd_per_lun' to 1.
11692 * Note: This is wrong. cmd_per_lun should be set to the depth
11693 * you want on untagged devices always.
11694 #ifdef MODULE
11696 shost->cmd_per_lun = 1;
11697 /* #else
11698 shost->cmd_per_lun = 0;
11699 #endif */
11702 * Set the maximum number of scatter-gather elements the
11703 * adapter can handle.
11705 if (ASC_NARROW_BOARD(boardp)) {
11707 * Allow two commands with 'sg_tablesize' scatter-gather
11708 * elements to be executed simultaneously. This value is
11709 * the theoretical hardware limit. It may be decreased
11710 * below.
11712 shost->sg_tablesize =
11713 (((asc_dvc_varp->max_total_qng - 2) / 2) *
11714 ASC_SG_LIST_PER_Q) + 1;
11715 } else {
11716 shost->sg_tablesize = ADV_MAX_SG_LIST;
11720 * The value of 'sg_tablesize' can not exceed the SCSI
11721 * mid-level driver definition of SG_ALL. SG_ALL also
11722 * must not be exceeded, because it is used to define the
11723 * size of the scatter-gather table in 'struct asc_sg_head'.
11725 if (shost->sg_tablesize > SG_ALL) {
11726 shost->sg_tablesize = SG_ALL;
11729 ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
11731 /* BIOS start address. */
11732 if (ASC_NARROW_BOARD(boardp)) {
11733 shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
11734 asc_dvc_varp->bus_type);
11735 } else {
11737 * Fill-in BIOS board variables. The Wide BIOS saves
11738 * information in LRAM that is used by the driver.
11740 AdvReadWordLram(adv_dvc_varp->iop_base,
11741 BIOS_SIGNATURE, boardp->bios_signature);
11742 AdvReadWordLram(adv_dvc_varp->iop_base,
11743 BIOS_VERSION, boardp->bios_version);
11744 AdvReadWordLram(adv_dvc_varp->iop_base,
11745 BIOS_CODESEG, boardp->bios_codeseg);
11746 AdvReadWordLram(adv_dvc_varp->iop_base,
11747 BIOS_CODELEN, boardp->bios_codelen);
11749 ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
11750 boardp->bios_signature, boardp->bios_version);
11752 ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
11753 boardp->bios_codeseg, boardp->bios_codelen);
11756 * If the BIOS saved a valid signature, then fill in
11757 * the BIOS code segment base address.
11759 if (boardp->bios_signature == 0x55AA) {
11761 * Convert x86 realmode code segment to a linear
11762 * address by shifting left 4.
11764 shost->base = ((ulong)boardp->bios_codeseg << 4);
11765 } else {
11766 shost->base = 0;
11771 * Register Board Resources - I/O Port, DMA, IRQ
11774 /* Register DMA Channel for Narrow boards. */
11775 shost->dma_channel = NO_ISA_DMA; /* Default to no ISA DMA. */
11776 #ifdef CONFIG_ISA
11777 if (ASC_NARROW_BOARD(boardp)) {
11778 /* Register DMA channel for ISA bus. */
11779 if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
11780 shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel;
11781 ret = request_dma(shost->dma_channel, DRV_NAME);
11782 if (ret) {
11783 shost_printk(KERN_ERR, shost, "request_dma() "
11784 "%d failed %d\n",
11785 shost->dma_channel, ret);
11786 goto err_unmap;
11788 AscEnableIsaDma(shost->dma_channel);
11791 #endif /* CONFIG_ISA */
11793 /* Register IRQ Number. */
11794 ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
11796 ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
11797 DRV_NAME, shost);
11799 if (ret) {
11800 if (ret == -EBUSY) {
11801 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11802 "already in use\n", boardp->irq);
11803 } else if (ret == -EINVAL) {
11804 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11805 "not valid\n", boardp->irq);
11806 } else {
11807 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11808 "failed with %d\n", boardp->irq, ret);
11810 goto err_free_dma;
11814 * Initialize board RISC chip and enable interrupts.
11816 if (ASC_NARROW_BOARD(boardp)) {
11817 ASC_DBG(2, "AscInitAsc1000Driver()\n");
11819 asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
11820 if (!asc_dvc_varp->overrun_buf) {
11821 ret = -ENOMEM;
11822 goto err_free_irq;
11824 warn_code = AscInitAsc1000Driver(asc_dvc_varp);
11826 if (warn_code || asc_dvc_varp->err_code) {
11827 shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
11828 "warn 0x%x, error 0x%x\n",
11829 asc_dvc_varp->init_state, warn_code,
11830 asc_dvc_varp->err_code);
11831 if (!asc_dvc_varp->overrun_dma) {
11832 ret = -ENODEV;
11833 goto err_free_mem;
11836 } else {
11837 if (advansys_wide_init_chip(shost)) {
11838 ret = -ENODEV;
11839 goto err_free_mem;
11843 ASC_DBG_PRT_SCSI_HOST(2, shost);
11845 ret = scsi_add_host(shost, boardp->dev);
11846 if (ret)
11847 goto err_free_mem;
11849 scsi_scan_host(shost);
11850 return 0;
11852 err_free_mem:
11853 if (ASC_NARROW_BOARD(boardp)) {
11854 if (asc_dvc_varp->overrun_dma)
11855 dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma,
11856 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11857 kfree(asc_dvc_varp->overrun_buf);
11858 } else
11859 advansys_wide_free_mem(boardp);
11860 err_free_irq:
11861 free_irq(boardp->irq, shost);
11862 err_free_dma:
11863 #ifdef CONFIG_ISA
11864 if (shost->dma_channel != NO_ISA_DMA)
11865 free_dma(shost->dma_channel);
11866 #endif
11867 err_unmap:
11868 if (boardp->ioremap_addr)
11869 iounmap(boardp->ioremap_addr);
11870 err_shost:
11871 return ret;
11875 * advansys_release()
11877 * Release resources allocated for a single AdvanSys adapter.
11879 static int advansys_release(struct Scsi_Host *shost)
11881 struct asc_board *board = shost_priv(shost);
11882 ASC_DBG(1, "begin\n");
11883 scsi_remove_host(shost);
11884 free_irq(board->irq, shost);
11885 #ifdef CONFIG_ISA
11886 if (shost->dma_channel != NO_ISA_DMA) {
11887 ASC_DBG(1, "free_dma()\n");
11888 free_dma(shost->dma_channel);
11890 #endif
11891 if (ASC_NARROW_BOARD(board)) {
11892 dma_unmap_single(board->dev,
11893 board->dvc_var.asc_dvc_var.overrun_dma,
11894 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11895 kfree(board->dvc_var.asc_dvc_var.overrun_buf);
11896 } else {
11897 iounmap(board->ioremap_addr);
11898 advansys_wide_free_mem(board);
11900 scsi_host_put(shost);
11901 ASC_DBG(1, "end\n");
11902 return 0;
11905 #define ASC_IOADR_TABLE_MAX_IX 11
11907 static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
11908 0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
11909 0x0210, 0x0230, 0x0250, 0x0330
11913 * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw. It decodes as:
11914 * 00: 10
11915 * 01: 11
11916 * 10: 12
11917 * 11: 15
11919 static unsigned int advansys_isa_irq_no(PortAddr iop_base)
11921 unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11922 unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10;
11923 if (chip_irq == 13)
11924 chip_irq = 15;
11925 return chip_irq;
11928 static int advansys_isa_probe(struct device *dev, unsigned int id)
11930 int err = -ENODEV;
11931 PortAddr iop_base = _asc_def_iop_base[id];
11932 struct Scsi_Host *shost;
11933 struct asc_board *board;
11935 if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11936 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11937 return -ENODEV;
11939 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11940 if (!AscFindSignature(iop_base))
11941 goto release_region;
11942 if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT))
11943 goto release_region;
11945 err = -ENOMEM;
11946 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11947 if (!shost)
11948 goto release_region;
11950 board = shost_priv(shost);
11951 board->irq = advansys_isa_irq_no(iop_base);
11952 board->dev = dev;
11954 err = advansys_board_found(shost, iop_base, ASC_IS_ISA);
11955 if (err)
11956 goto free_host;
11958 dev_set_drvdata(dev, shost);
11959 return 0;
11961 free_host:
11962 scsi_host_put(shost);
11963 release_region:
11964 release_region(iop_base, ASC_IOADR_GAP);
11965 return err;
11968 static int advansys_isa_remove(struct device *dev, unsigned int id)
11970 int ioport = _asc_def_iop_base[id];
11971 advansys_release(dev_get_drvdata(dev));
11972 release_region(ioport, ASC_IOADR_GAP);
11973 return 0;
11976 static struct isa_driver advansys_isa_driver = {
11977 .probe = advansys_isa_probe,
11978 .remove = advansys_isa_remove,
11979 .driver = {
11980 .owner = THIS_MODULE,
11981 .name = DRV_NAME,
11986 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw. It decodes as:
11987 * 000: invalid
11988 * 001: 10
11989 * 010: 11
11990 * 011: 12
11991 * 100: invalid
11992 * 101: 14
11993 * 110: 15
11994 * 111: invalid
11996 static unsigned int advansys_vlb_irq_no(PortAddr iop_base)
11998 unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11999 unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
12000 if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
12001 return 0;
12002 return chip_irq;
12005 static int advansys_vlb_probe(struct device *dev, unsigned int id)
12007 int err = -ENODEV;
12008 PortAddr iop_base = _asc_def_iop_base[id];
12009 struct Scsi_Host *shost;
12010 struct asc_board *board;
12012 if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
12013 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
12014 return -ENODEV;
12016 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
12017 if (!AscFindSignature(iop_base))
12018 goto release_region;
12020 * I don't think this condition can actually happen, but the old
12021 * driver did it, and the chances of finding a VLB setup in 2007
12022 * to do testing with is slight to none.
12024 if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
12025 goto release_region;
12027 err = -ENOMEM;
12028 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12029 if (!shost)
12030 goto release_region;
12032 board = shost_priv(shost);
12033 board->irq = advansys_vlb_irq_no(iop_base);
12034 board->dev = dev;
12036 err = advansys_board_found(shost, iop_base, ASC_IS_VL);
12037 if (err)
12038 goto free_host;
12040 dev_set_drvdata(dev, shost);
12041 return 0;
12043 free_host:
12044 scsi_host_put(shost);
12045 release_region:
12046 release_region(iop_base, ASC_IOADR_GAP);
12047 return -ENODEV;
12050 static struct isa_driver advansys_vlb_driver = {
12051 .probe = advansys_vlb_probe,
12052 .remove = advansys_isa_remove,
12053 .driver = {
12054 .owner = THIS_MODULE,
12055 .name = "advansys_vlb",
12059 static struct eisa_device_id advansys_eisa_table[] = {
12060 { "ABP7401" },
12061 { "ABP7501" },
12062 { "" }
12065 MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
12068 * EISA is a little more tricky than PCI; each EISA device may have two
12069 * channels, and this driver is written to make each channel its own Scsi_Host
12071 struct eisa_scsi_data {
12072 struct Scsi_Host *host[2];
12076 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw. It decodes as:
12077 * 000: 10
12078 * 001: 11
12079 * 010: 12
12080 * 011: invalid
12081 * 100: 14
12082 * 101: 15
12083 * 110: invalid
12084 * 111: invalid
12086 static unsigned int advansys_eisa_irq_no(struct eisa_device *edev)
12088 unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
12089 unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
12090 if ((chip_irq == 13) || (chip_irq > 15))
12091 return 0;
12092 return chip_irq;
12095 static int advansys_eisa_probe(struct device *dev)
12097 int i, ioport, irq = 0;
12098 int err;
12099 struct eisa_device *edev = to_eisa_device(dev);
12100 struct eisa_scsi_data *data;
12102 err = -ENOMEM;
12103 data = kzalloc(sizeof(*data), GFP_KERNEL);
12104 if (!data)
12105 goto fail;
12106 ioport = edev->base_addr + 0xc30;
12108 err = -ENODEV;
12109 for (i = 0; i < 2; i++, ioport += 0x20) {
12110 struct asc_board *board;
12111 struct Scsi_Host *shost;
12112 if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
12113 printk(KERN_WARNING "Region %x-%x busy\n", ioport,
12114 ioport + ASC_IOADR_GAP - 1);
12115 continue;
12117 if (!AscFindSignature(ioport)) {
12118 release_region(ioport, ASC_IOADR_GAP);
12119 continue;
12123 * I don't know why we need to do this for EISA chips, but
12124 * not for any others. It looks to be equivalent to
12125 * AscGetChipCfgMsw, but I may have overlooked something,
12126 * so I'm not converting it until I get an EISA board to
12127 * test with.
12129 inw(ioport + 4);
12131 if (!irq)
12132 irq = advansys_eisa_irq_no(edev);
12134 err = -ENOMEM;
12135 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12136 if (!shost)
12137 goto release_region;
12139 board = shost_priv(shost);
12140 board->irq = irq;
12141 board->dev = dev;
12143 err = advansys_board_found(shost, ioport, ASC_IS_EISA);
12144 if (!err) {
12145 data->host[i] = shost;
12146 continue;
12149 scsi_host_put(shost);
12150 release_region:
12151 release_region(ioport, ASC_IOADR_GAP);
12152 break;
12155 if (err)
12156 goto free_data;
12157 dev_set_drvdata(dev, data);
12158 return 0;
12160 free_data:
12161 kfree(data->host[0]);
12162 kfree(data->host[1]);
12163 kfree(data);
12164 fail:
12165 return err;
12168 static int advansys_eisa_remove(struct device *dev)
12170 int i;
12171 struct eisa_scsi_data *data = dev_get_drvdata(dev);
12173 for (i = 0; i < 2; i++) {
12174 int ioport;
12175 struct Scsi_Host *shost = data->host[i];
12176 if (!shost)
12177 continue;
12178 ioport = shost->io_port;
12179 advansys_release(shost);
12180 release_region(ioport, ASC_IOADR_GAP);
12183 kfree(data);
12184 return 0;
12187 static struct eisa_driver advansys_eisa_driver = {
12188 .id_table = advansys_eisa_table,
12189 .driver = {
12190 .name = DRV_NAME,
12191 .probe = advansys_eisa_probe,
12192 .remove = advansys_eisa_remove,
12196 /* PCI Devices supported by this driver */
12197 static struct pci_device_id advansys_pci_tbl[] = {
12198 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
12199 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12200 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
12201 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12202 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
12203 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12204 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
12205 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12206 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
12207 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12208 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
12209 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12213 MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
12215 static void advansys_set_latency(struct pci_dev *pdev)
12217 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
12218 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
12219 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
12220 } else {
12221 u8 latency;
12222 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
12223 if (latency < 0x20)
12224 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
12228 static int advansys_pci_probe(struct pci_dev *pdev,
12229 const struct pci_device_id *ent)
12231 int err, ioport;
12232 struct Scsi_Host *shost;
12233 struct asc_board *board;
12235 err = pci_enable_device(pdev);
12236 if (err)
12237 goto fail;
12238 err = pci_request_regions(pdev, DRV_NAME);
12239 if (err)
12240 goto disable_device;
12241 pci_set_master(pdev);
12242 advansys_set_latency(pdev);
12244 err = -ENODEV;
12245 if (pci_resource_len(pdev, 0) == 0)
12246 goto release_region;
12248 ioport = pci_resource_start(pdev, 0);
12250 err = -ENOMEM;
12251 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12252 if (!shost)
12253 goto release_region;
12255 board = shost_priv(shost);
12256 board->irq = pdev->irq;
12257 board->dev = &pdev->dev;
12259 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
12260 pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
12261 pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
12262 board->flags |= ASC_IS_WIDE_BOARD;
12265 err = advansys_board_found(shost, ioport, ASC_IS_PCI);
12266 if (err)
12267 goto free_host;
12269 pci_set_drvdata(pdev, shost);
12270 return 0;
12272 free_host:
12273 scsi_host_put(shost);
12274 release_region:
12275 pci_release_regions(pdev);
12276 disable_device:
12277 pci_disable_device(pdev);
12278 fail:
12279 return err;
12282 static void advansys_pci_remove(struct pci_dev *pdev)
12284 advansys_release(pci_get_drvdata(pdev));
12285 pci_release_regions(pdev);
12286 pci_disable_device(pdev);
12289 static struct pci_driver advansys_pci_driver = {
12290 .name = DRV_NAME,
12291 .id_table = advansys_pci_tbl,
12292 .probe = advansys_pci_probe,
12293 .remove = advansys_pci_remove,
12296 static int __init advansys_init(void)
12298 int error;
12300 error = isa_register_driver(&advansys_isa_driver,
12301 ASC_IOADR_TABLE_MAX_IX);
12302 if (error)
12303 goto fail;
12305 error = isa_register_driver(&advansys_vlb_driver,
12306 ASC_IOADR_TABLE_MAX_IX);
12307 if (error)
12308 goto unregister_isa;
12310 error = eisa_driver_register(&advansys_eisa_driver);
12311 if (error)
12312 goto unregister_vlb;
12314 error = pci_register_driver(&advansys_pci_driver);
12315 if (error)
12316 goto unregister_eisa;
12318 return 0;
12320 unregister_eisa:
12321 eisa_driver_unregister(&advansys_eisa_driver);
12322 unregister_vlb:
12323 isa_unregister_driver(&advansys_vlb_driver);
12324 unregister_isa:
12325 isa_unregister_driver(&advansys_isa_driver);
12326 fail:
12327 return error;
12330 static void __exit advansys_exit(void)
12332 pci_unregister_driver(&advansys_pci_driver);
12333 eisa_driver_unregister(&advansys_eisa_driver);
12334 isa_unregister_driver(&advansys_vlb_driver);
12335 isa_unregister_driver(&advansys_isa_driver);
12338 module_init(advansys_init);
12339 module_exit(advansys_exit);
12341 MODULE_LICENSE("GPL");
12342 MODULE_FIRMWARE("advansys/mcode.bin");
12343 MODULE_FIRMWARE("advansys/3550.bin");
12344 MODULE_FIRMWARE("advansys/38C0800.bin");
12345 MODULE_FIRMWARE("advansys/38C1600.bin");