ath9k: Fix ASPM workaround usage
[linux/fpc-iii.git] / mm / vmscan.c
blob2cff0d491c6dca84391edd100e1726696c1475d5
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
50 #include <linux/swapops.h>
52 #include "internal.h"
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
57 struct scan_control {
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned;
61 /* Number of pages freed so far during a call to shrink_zones() */
62 unsigned long nr_reclaimed;
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim;
67 unsigned long hibernation_mode;
69 /* This context's GFP mask */
70 gfp_t gfp_mask;
72 int may_writepage;
74 /* Can mapped pages be reclaimed? */
75 int may_unmap;
77 /* Can pages be swapped as part of reclaim? */
78 int may_swap;
80 int order;
82 /* Scan (total_size >> priority) pages at once */
83 int priority;
86 * The memory cgroup that hit its limit and as a result is the
87 * primary target of this reclaim invocation.
89 struct mem_cgroup *target_mem_cgroup;
92 * Nodemask of nodes allowed by the caller. If NULL, all nodes
93 * are scanned.
95 nodemask_t *nodemask;
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field) \
102 do { \
103 if ((_page)->lru.prev != _base) { \
104 struct page *prev; \
106 prev = lru_to_page(&(_page->lru)); \
107 prefetch(&prev->_field); \
109 } while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field) \
116 do { \
117 if ((_page)->lru.prev != _base) { \
118 struct page *prev; \
120 prev = lru_to_page(&(_page->lru)); \
121 prefetchw(&prev->_field); \
123 } while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
129 * From 0 .. 100. Higher means more swappy.
131 int vm_swappiness = 60;
132 unsigned long vm_total_pages; /* The total number of pages which the VM controls */
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
137 #ifdef CONFIG_MEMCG
138 static bool global_reclaim(struct scan_control *sc)
140 return !sc->target_mem_cgroup;
142 #else
143 static bool global_reclaim(struct scan_control *sc)
145 return true;
147 #endif
149 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
151 if (!mem_cgroup_disabled())
152 return mem_cgroup_get_lru_size(lruvec, lru);
154 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
158 * Add a shrinker callback to be called from the vm
160 void register_shrinker(struct shrinker *shrinker)
162 atomic_long_set(&shrinker->nr_in_batch, 0);
163 down_write(&shrinker_rwsem);
164 list_add_tail(&shrinker->list, &shrinker_list);
165 up_write(&shrinker_rwsem);
167 EXPORT_SYMBOL(register_shrinker);
170 * Remove one
172 void unregister_shrinker(struct shrinker *shrinker)
174 down_write(&shrinker_rwsem);
175 list_del(&shrinker->list);
176 up_write(&shrinker_rwsem);
178 EXPORT_SYMBOL(unregister_shrinker);
180 static inline int do_shrinker_shrink(struct shrinker *shrinker,
181 struct shrink_control *sc,
182 unsigned long nr_to_scan)
184 sc->nr_to_scan = nr_to_scan;
185 return (*shrinker->shrink)(shrinker, sc);
188 #define SHRINK_BATCH 128
190 * Call the shrink functions to age shrinkable caches
192 * Here we assume it costs one seek to replace a lru page and that it also
193 * takes a seek to recreate a cache object. With this in mind we age equal
194 * percentages of the lru and ageable caches. This should balance the seeks
195 * generated by these structures.
197 * If the vm encountered mapped pages on the LRU it increase the pressure on
198 * slab to avoid swapping.
200 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
202 * `lru_pages' represents the number of on-LRU pages in all the zones which
203 * are eligible for the caller's allocation attempt. It is used for balancing
204 * slab reclaim versus page reclaim.
206 * Returns the number of slab objects which we shrunk.
208 unsigned long shrink_slab(struct shrink_control *shrink,
209 unsigned long nr_pages_scanned,
210 unsigned long lru_pages)
212 struct shrinker *shrinker;
213 unsigned long ret = 0;
215 if (nr_pages_scanned == 0)
216 nr_pages_scanned = SWAP_CLUSTER_MAX;
218 if (!down_read_trylock(&shrinker_rwsem)) {
219 /* Assume we'll be able to shrink next time */
220 ret = 1;
221 goto out;
224 list_for_each_entry(shrinker, &shrinker_list, list) {
225 unsigned long long delta;
226 long total_scan;
227 long max_pass;
228 int shrink_ret = 0;
229 long nr;
230 long new_nr;
231 long batch_size = shrinker->batch ? shrinker->batch
232 : SHRINK_BATCH;
234 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
235 if (max_pass <= 0)
236 continue;
239 * copy the current shrinker scan count into a local variable
240 * and zero it so that other concurrent shrinker invocations
241 * don't also do this scanning work.
243 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
245 total_scan = nr;
246 delta = (4 * nr_pages_scanned) / shrinker->seeks;
247 delta *= max_pass;
248 do_div(delta, lru_pages + 1);
249 total_scan += delta;
250 if (total_scan < 0) {
251 printk(KERN_ERR "shrink_slab: %pF negative objects to "
252 "delete nr=%ld\n",
253 shrinker->shrink, total_scan);
254 total_scan = max_pass;
258 * We need to avoid excessive windup on filesystem shrinkers
259 * due to large numbers of GFP_NOFS allocations causing the
260 * shrinkers to return -1 all the time. This results in a large
261 * nr being built up so when a shrink that can do some work
262 * comes along it empties the entire cache due to nr >>>
263 * max_pass. This is bad for sustaining a working set in
264 * memory.
266 * Hence only allow the shrinker to scan the entire cache when
267 * a large delta change is calculated directly.
269 if (delta < max_pass / 4)
270 total_scan = min(total_scan, max_pass / 2);
273 * Avoid risking looping forever due to too large nr value:
274 * never try to free more than twice the estimate number of
275 * freeable entries.
277 if (total_scan > max_pass * 2)
278 total_scan = max_pass * 2;
280 trace_mm_shrink_slab_start(shrinker, shrink, nr,
281 nr_pages_scanned, lru_pages,
282 max_pass, delta, total_scan);
284 while (total_scan >= batch_size) {
285 int nr_before;
287 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
288 shrink_ret = do_shrinker_shrink(shrinker, shrink,
289 batch_size);
290 if (shrink_ret == -1)
291 break;
292 if (shrink_ret < nr_before)
293 ret += nr_before - shrink_ret;
294 count_vm_events(SLABS_SCANNED, batch_size);
295 total_scan -= batch_size;
297 cond_resched();
301 * move the unused scan count back into the shrinker in a
302 * manner that handles concurrent updates. If we exhausted the
303 * scan, there is no need to do an update.
305 if (total_scan > 0)
306 new_nr = atomic_long_add_return(total_scan,
307 &shrinker->nr_in_batch);
308 else
309 new_nr = atomic_long_read(&shrinker->nr_in_batch);
311 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
313 up_read(&shrinker_rwsem);
314 out:
315 cond_resched();
316 return ret;
319 static inline int is_page_cache_freeable(struct page *page)
322 * A freeable page cache page is referenced only by the caller
323 * that isolated the page, the page cache radix tree and
324 * optional buffer heads at page->private.
326 return page_count(page) - page_has_private(page) == 2;
329 static int may_write_to_queue(struct backing_dev_info *bdi,
330 struct scan_control *sc)
332 if (current->flags & PF_SWAPWRITE)
333 return 1;
334 if (!bdi_write_congested(bdi))
335 return 1;
336 if (bdi == current->backing_dev_info)
337 return 1;
338 return 0;
342 * We detected a synchronous write error writing a page out. Probably
343 * -ENOSPC. We need to propagate that into the address_space for a subsequent
344 * fsync(), msync() or close().
346 * The tricky part is that after writepage we cannot touch the mapping: nothing
347 * prevents it from being freed up. But we have a ref on the page and once
348 * that page is locked, the mapping is pinned.
350 * We're allowed to run sleeping lock_page() here because we know the caller has
351 * __GFP_FS.
353 static void handle_write_error(struct address_space *mapping,
354 struct page *page, int error)
356 lock_page(page);
357 if (page_mapping(page) == mapping)
358 mapping_set_error(mapping, error);
359 unlock_page(page);
362 /* possible outcome of pageout() */
363 typedef enum {
364 /* failed to write page out, page is locked */
365 PAGE_KEEP,
366 /* move page to the active list, page is locked */
367 PAGE_ACTIVATE,
368 /* page has been sent to the disk successfully, page is unlocked */
369 PAGE_SUCCESS,
370 /* page is clean and locked */
371 PAGE_CLEAN,
372 } pageout_t;
375 * pageout is called by shrink_page_list() for each dirty page.
376 * Calls ->writepage().
378 static pageout_t pageout(struct page *page, struct address_space *mapping,
379 struct scan_control *sc)
382 * If the page is dirty, only perform writeback if that write
383 * will be non-blocking. To prevent this allocation from being
384 * stalled by pagecache activity. But note that there may be
385 * stalls if we need to run get_block(). We could test
386 * PagePrivate for that.
388 * If this process is currently in __generic_file_aio_write() against
389 * this page's queue, we can perform writeback even if that
390 * will block.
392 * If the page is swapcache, write it back even if that would
393 * block, for some throttling. This happens by accident, because
394 * swap_backing_dev_info is bust: it doesn't reflect the
395 * congestion state of the swapdevs. Easy to fix, if needed.
397 if (!is_page_cache_freeable(page))
398 return PAGE_KEEP;
399 if (!mapping) {
401 * Some data journaling orphaned pages can have
402 * page->mapping == NULL while being dirty with clean buffers.
404 if (page_has_private(page)) {
405 if (try_to_free_buffers(page)) {
406 ClearPageDirty(page);
407 printk("%s: orphaned page\n", __func__);
408 return PAGE_CLEAN;
411 return PAGE_KEEP;
413 if (mapping->a_ops->writepage == NULL)
414 return PAGE_ACTIVATE;
415 if (!may_write_to_queue(mapping->backing_dev_info, sc))
416 return PAGE_KEEP;
418 if (clear_page_dirty_for_io(page)) {
419 int res;
420 struct writeback_control wbc = {
421 .sync_mode = WB_SYNC_NONE,
422 .nr_to_write = SWAP_CLUSTER_MAX,
423 .range_start = 0,
424 .range_end = LLONG_MAX,
425 .for_reclaim = 1,
428 SetPageReclaim(page);
429 res = mapping->a_ops->writepage(page, &wbc);
430 if (res < 0)
431 handle_write_error(mapping, page, res);
432 if (res == AOP_WRITEPAGE_ACTIVATE) {
433 ClearPageReclaim(page);
434 return PAGE_ACTIVATE;
437 if (!PageWriteback(page)) {
438 /* synchronous write or broken a_ops? */
439 ClearPageReclaim(page);
441 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
442 inc_zone_page_state(page, NR_VMSCAN_WRITE);
443 return PAGE_SUCCESS;
446 return PAGE_CLEAN;
450 * Same as remove_mapping, but if the page is removed from the mapping, it
451 * gets returned with a refcount of 0.
453 static int __remove_mapping(struct address_space *mapping, struct page *page)
455 BUG_ON(!PageLocked(page));
456 BUG_ON(mapping != page_mapping(page));
458 spin_lock_irq(&mapping->tree_lock);
460 * The non racy check for a busy page.
462 * Must be careful with the order of the tests. When someone has
463 * a ref to the page, it may be possible that they dirty it then
464 * drop the reference. So if PageDirty is tested before page_count
465 * here, then the following race may occur:
467 * get_user_pages(&page);
468 * [user mapping goes away]
469 * write_to(page);
470 * !PageDirty(page) [good]
471 * SetPageDirty(page);
472 * put_page(page);
473 * !page_count(page) [good, discard it]
475 * [oops, our write_to data is lost]
477 * Reversing the order of the tests ensures such a situation cannot
478 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
479 * load is not satisfied before that of page->_count.
481 * Note that if SetPageDirty is always performed via set_page_dirty,
482 * and thus under tree_lock, then this ordering is not required.
484 if (!page_freeze_refs(page, 2))
485 goto cannot_free;
486 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
487 if (unlikely(PageDirty(page))) {
488 page_unfreeze_refs(page, 2);
489 goto cannot_free;
492 if (PageSwapCache(page)) {
493 swp_entry_t swap = { .val = page_private(page) };
494 __delete_from_swap_cache(page);
495 spin_unlock_irq(&mapping->tree_lock);
496 swapcache_free(swap, page);
497 } else {
498 void (*freepage)(struct page *);
500 freepage = mapping->a_ops->freepage;
502 __delete_from_page_cache(page);
503 spin_unlock_irq(&mapping->tree_lock);
504 mem_cgroup_uncharge_cache_page(page);
506 if (freepage != NULL)
507 freepage(page);
510 return 1;
512 cannot_free:
513 spin_unlock_irq(&mapping->tree_lock);
514 return 0;
518 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
519 * someone else has a ref on the page, abort and return 0. If it was
520 * successfully detached, return 1. Assumes the caller has a single ref on
521 * this page.
523 int remove_mapping(struct address_space *mapping, struct page *page)
525 if (__remove_mapping(mapping, page)) {
527 * Unfreezing the refcount with 1 rather than 2 effectively
528 * drops the pagecache ref for us without requiring another
529 * atomic operation.
531 page_unfreeze_refs(page, 1);
532 return 1;
534 return 0;
538 * putback_lru_page - put previously isolated page onto appropriate LRU list
539 * @page: page to be put back to appropriate lru list
541 * Add previously isolated @page to appropriate LRU list.
542 * Page may still be unevictable for other reasons.
544 * lru_lock must not be held, interrupts must be enabled.
546 void putback_lru_page(struct page *page)
548 int lru;
549 int was_unevictable = PageUnevictable(page);
551 VM_BUG_ON(PageLRU(page));
553 redo:
554 ClearPageUnevictable(page);
556 if (page_evictable(page)) {
558 * For evictable pages, we can use the cache.
559 * In event of a race, worst case is we end up with an
560 * unevictable page on [in]active list.
561 * We know how to handle that.
563 lru = page_lru_base_type(page);
564 lru_cache_add(page);
565 } else {
567 * Put unevictable pages directly on zone's unevictable
568 * list.
570 lru = LRU_UNEVICTABLE;
571 add_page_to_unevictable_list(page);
573 * When racing with an mlock or AS_UNEVICTABLE clearing
574 * (page is unlocked) make sure that if the other thread
575 * does not observe our setting of PG_lru and fails
576 * isolation/check_move_unevictable_pages,
577 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
578 * the page back to the evictable list.
580 * The other side is TestClearPageMlocked() or shmem_lock().
582 smp_mb();
586 * page's status can change while we move it among lru. If an evictable
587 * page is on unevictable list, it never be freed. To avoid that,
588 * check after we added it to the list, again.
590 if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
591 if (!isolate_lru_page(page)) {
592 put_page(page);
593 goto redo;
595 /* This means someone else dropped this page from LRU
596 * So, it will be freed or putback to LRU again. There is
597 * nothing to do here.
601 if (was_unevictable && lru != LRU_UNEVICTABLE)
602 count_vm_event(UNEVICTABLE_PGRESCUED);
603 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
604 count_vm_event(UNEVICTABLE_PGCULLED);
606 put_page(page); /* drop ref from isolate */
609 enum page_references {
610 PAGEREF_RECLAIM,
611 PAGEREF_RECLAIM_CLEAN,
612 PAGEREF_KEEP,
613 PAGEREF_ACTIVATE,
616 static enum page_references page_check_references(struct page *page,
617 struct scan_control *sc)
619 int referenced_ptes, referenced_page;
620 unsigned long vm_flags;
622 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
623 &vm_flags);
624 referenced_page = TestClearPageReferenced(page);
627 * Mlock lost the isolation race with us. Let try_to_unmap()
628 * move the page to the unevictable list.
630 if (vm_flags & VM_LOCKED)
631 return PAGEREF_RECLAIM;
633 if (referenced_ptes) {
634 if (PageSwapBacked(page))
635 return PAGEREF_ACTIVATE;
637 * All mapped pages start out with page table
638 * references from the instantiating fault, so we need
639 * to look twice if a mapped file page is used more
640 * than once.
642 * Mark it and spare it for another trip around the
643 * inactive list. Another page table reference will
644 * lead to its activation.
646 * Note: the mark is set for activated pages as well
647 * so that recently deactivated but used pages are
648 * quickly recovered.
650 SetPageReferenced(page);
652 if (referenced_page || referenced_ptes > 1)
653 return PAGEREF_ACTIVATE;
656 * Activate file-backed executable pages after first usage.
658 if (vm_flags & VM_EXEC)
659 return PAGEREF_ACTIVATE;
661 return PAGEREF_KEEP;
664 /* Reclaim if clean, defer dirty pages to writeback */
665 if (referenced_page && !PageSwapBacked(page))
666 return PAGEREF_RECLAIM_CLEAN;
668 return PAGEREF_RECLAIM;
671 /* Check if a page is dirty or under writeback */
672 static void page_check_dirty_writeback(struct page *page,
673 bool *dirty, bool *writeback)
675 struct address_space *mapping;
678 * Anonymous pages are not handled by flushers and must be written
679 * from reclaim context. Do not stall reclaim based on them
681 if (!page_is_file_cache(page)) {
682 *dirty = false;
683 *writeback = false;
684 return;
687 /* By default assume that the page flags are accurate */
688 *dirty = PageDirty(page);
689 *writeback = PageWriteback(page);
691 /* Verify dirty/writeback state if the filesystem supports it */
692 if (!page_has_private(page))
693 return;
695 mapping = page_mapping(page);
696 if (mapping && mapping->a_ops->is_dirty_writeback)
697 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
701 * shrink_page_list() returns the number of reclaimed pages
703 static unsigned long shrink_page_list(struct list_head *page_list,
704 struct zone *zone,
705 struct scan_control *sc,
706 enum ttu_flags ttu_flags,
707 unsigned long *ret_nr_dirty,
708 unsigned long *ret_nr_unqueued_dirty,
709 unsigned long *ret_nr_congested,
710 unsigned long *ret_nr_writeback,
711 unsigned long *ret_nr_immediate,
712 bool force_reclaim)
714 LIST_HEAD(ret_pages);
715 LIST_HEAD(free_pages);
716 int pgactivate = 0;
717 unsigned long nr_unqueued_dirty = 0;
718 unsigned long nr_dirty = 0;
719 unsigned long nr_congested = 0;
720 unsigned long nr_reclaimed = 0;
721 unsigned long nr_writeback = 0;
722 unsigned long nr_immediate = 0;
724 cond_resched();
726 mem_cgroup_uncharge_start();
727 while (!list_empty(page_list)) {
728 struct address_space *mapping;
729 struct page *page;
730 int may_enter_fs;
731 enum page_references references = PAGEREF_RECLAIM_CLEAN;
732 bool dirty, writeback;
734 cond_resched();
736 page = lru_to_page(page_list);
737 list_del(&page->lru);
739 if (!trylock_page(page))
740 goto keep;
742 VM_BUG_ON(PageActive(page));
743 VM_BUG_ON(page_zone(page) != zone);
745 sc->nr_scanned++;
747 if (unlikely(!page_evictable(page)))
748 goto cull_mlocked;
750 if (!sc->may_unmap && page_mapped(page))
751 goto keep_locked;
753 /* Double the slab pressure for mapped and swapcache pages */
754 if (page_mapped(page) || PageSwapCache(page))
755 sc->nr_scanned++;
757 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
758 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
761 * The number of dirty pages determines if a zone is marked
762 * reclaim_congested which affects wait_iff_congested. kswapd
763 * will stall and start writing pages if the tail of the LRU
764 * is all dirty unqueued pages.
766 page_check_dirty_writeback(page, &dirty, &writeback);
767 if (dirty || writeback)
768 nr_dirty++;
770 if (dirty && !writeback)
771 nr_unqueued_dirty++;
774 * Treat this page as congested if the underlying BDI is or if
775 * pages are cycling through the LRU so quickly that the
776 * pages marked for immediate reclaim are making it to the
777 * end of the LRU a second time.
779 mapping = page_mapping(page);
780 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
781 (writeback && PageReclaim(page)))
782 nr_congested++;
785 * If a page at the tail of the LRU is under writeback, there
786 * are three cases to consider.
788 * 1) If reclaim is encountering an excessive number of pages
789 * under writeback and this page is both under writeback and
790 * PageReclaim then it indicates that pages are being queued
791 * for IO but are being recycled through the LRU before the
792 * IO can complete. Waiting on the page itself risks an
793 * indefinite stall if it is impossible to writeback the
794 * page due to IO error or disconnected storage so instead
795 * note that the LRU is being scanned too quickly and the
796 * caller can stall after page list has been processed.
798 * 2) Global reclaim encounters a page, memcg encounters a
799 * page that is not marked for immediate reclaim or
800 * the caller does not have __GFP_IO. In this case mark
801 * the page for immediate reclaim and continue scanning.
803 * __GFP_IO is checked because a loop driver thread might
804 * enter reclaim, and deadlock if it waits on a page for
805 * which it is needed to do the write (loop masks off
806 * __GFP_IO|__GFP_FS for this reason); but more thought
807 * would probably show more reasons.
809 * Don't require __GFP_FS, since we're not going into the
810 * FS, just waiting on its writeback completion. Worryingly,
811 * ext4 gfs2 and xfs allocate pages with
812 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
813 * may_enter_fs here is liable to OOM on them.
815 * 3) memcg encounters a page that is not already marked
816 * PageReclaim. memcg does not have any dirty pages
817 * throttling so we could easily OOM just because too many
818 * pages are in writeback and there is nothing else to
819 * reclaim. Wait for the writeback to complete.
821 if (PageWriteback(page)) {
822 /* Case 1 above */
823 if (current_is_kswapd() &&
824 PageReclaim(page) &&
825 zone_is_reclaim_writeback(zone)) {
826 nr_immediate++;
827 goto keep_locked;
829 /* Case 2 above */
830 } else if (global_reclaim(sc) ||
831 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
833 * This is slightly racy - end_page_writeback()
834 * might have just cleared PageReclaim, then
835 * setting PageReclaim here end up interpreted
836 * as PageReadahead - but that does not matter
837 * enough to care. What we do want is for this
838 * page to have PageReclaim set next time memcg
839 * reclaim reaches the tests above, so it will
840 * then wait_on_page_writeback() to avoid OOM;
841 * and it's also appropriate in global reclaim.
843 SetPageReclaim(page);
844 nr_writeback++;
846 goto keep_locked;
848 /* Case 3 above */
849 } else {
850 wait_on_page_writeback(page);
854 if (!force_reclaim)
855 references = page_check_references(page, sc);
857 switch (references) {
858 case PAGEREF_ACTIVATE:
859 goto activate_locked;
860 case PAGEREF_KEEP:
861 goto keep_locked;
862 case PAGEREF_RECLAIM:
863 case PAGEREF_RECLAIM_CLEAN:
864 ; /* try to reclaim the page below */
868 * Anonymous process memory has backing store?
869 * Try to allocate it some swap space here.
871 if (PageAnon(page) && !PageSwapCache(page)) {
872 if (!(sc->gfp_mask & __GFP_IO))
873 goto keep_locked;
874 if (!add_to_swap(page, page_list))
875 goto activate_locked;
876 may_enter_fs = 1;
878 /* Adding to swap updated mapping */
879 mapping = page_mapping(page);
883 * The page is mapped into the page tables of one or more
884 * processes. Try to unmap it here.
886 if (page_mapped(page) && mapping) {
887 switch (try_to_unmap(page, ttu_flags)) {
888 case SWAP_FAIL:
889 goto activate_locked;
890 case SWAP_AGAIN:
891 goto keep_locked;
892 case SWAP_MLOCK:
893 goto cull_mlocked;
894 case SWAP_SUCCESS:
895 ; /* try to free the page below */
899 if (PageDirty(page)) {
901 * Only kswapd can writeback filesystem pages to
902 * avoid risk of stack overflow but only writeback
903 * if many dirty pages have been encountered.
905 if (page_is_file_cache(page) &&
906 (!current_is_kswapd() ||
907 !zone_is_reclaim_dirty(zone))) {
909 * Immediately reclaim when written back.
910 * Similar in principal to deactivate_page()
911 * except we already have the page isolated
912 * and know it's dirty
914 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
915 SetPageReclaim(page);
917 goto keep_locked;
920 if (references == PAGEREF_RECLAIM_CLEAN)
921 goto keep_locked;
922 if (!may_enter_fs)
923 goto keep_locked;
924 if (!sc->may_writepage)
925 goto keep_locked;
927 /* Page is dirty, try to write it out here */
928 switch (pageout(page, mapping, sc)) {
929 case PAGE_KEEP:
930 goto keep_locked;
931 case PAGE_ACTIVATE:
932 goto activate_locked;
933 case PAGE_SUCCESS:
934 if (PageWriteback(page))
935 goto keep;
936 if (PageDirty(page))
937 goto keep;
940 * A synchronous write - probably a ramdisk. Go
941 * ahead and try to reclaim the page.
943 if (!trylock_page(page))
944 goto keep;
945 if (PageDirty(page) || PageWriteback(page))
946 goto keep_locked;
947 mapping = page_mapping(page);
948 case PAGE_CLEAN:
949 ; /* try to free the page below */
954 * If the page has buffers, try to free the buffer mappings
955 * associated with this page. If we succeed we try to free
956 * the page as well.
958 * We do this even if the page is PageDirty().
959 * try_to_release_page() does not perform I/O, but it is
960 * possible for a page to have PageDirty set, but it is actually
961 * clean (all its buffers are clean). This happens if the
962 * buffers were written out directly, with submit_bh(). ext3
963 * will do this, as well as the blockdev mapping.
964 * try_to_release_page() will discover that cleanness and will
965 * drop the buffers and mark the page clean - it can be freed.
967 * Rarely, pages can have buffers and no ->mapping. These are
968 * the pages which were not successfully invalidated in
969 * truncate_complete_page(). We try to drop those buffers here
970 * and if that worked, and the page is no longer mapped into
971 * process address space (page_count == 1) it can be freed.
972 * Otherwise, leave the page on the LRU so it is swappable.
974 if (page_has_private(page)) {
975 if (!try_to_release_page(page, sc->gfp_mask))
976 goto activate_locked;
977 if (!mapping && page_count(page) == 1) {
978 unlock_page(page);
979 if (put_page_testzero(page))
980 goto free_it;
981 else {
983 * rare race with speculative reference.
984 * the speculative reference will free
985 * this page shortly, so we may
986 * increment nr_reclaimed here (and
987 * leave it off the LRU).
989 nr_reclaimed++;
990 continue;
995 if (!mapping || !__remove_mapping(mapping, page))
996 goto keep_locked;
999 * At this point, we have no other references and there is
1000 * no way to pick any more up (removed from LRU, removed
1001 * from pagecache). Can use non-atomic bitops now (and
1002 * we obviously don't have to worry about waking up a process
1003 * waiting on the page lock, because there are no references.
1005 __clear_page_locked(page);
1006 free_it:
1007 nr_reclaimed++;
1010 * Is there need to periodically free_page_list? It would
1011 * appear not as the counts should be low
1013 list_add(&page->lru, &free_pages);
1014 continue;
1016 cull_mlocked:
1017 if (PageSwapCache(page))
1018 try_to_free_swap(page);
1019 unlock_page(page);
1020 putback_lru_page(page);
1021 continue;
1023 activate_locked:
1024 /* Not a candidate for swapping, so reclaim swap space. */
1025 if (PageSwapCache(page) && vm_swap_full())
1026 try_to_free_swap(page);
1027 VM_BUG_ON(PageActive(page));
1028 SetPageActive(page);
1029 pgactivate++;
1030 keep_locked:
1031 unlock_page(page);
1032 keep:
1033 list_add(&page->lru, &ret_pages);
1034 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1037 free_hot_cold_page_list(&free_pages, 1);
1039 list_splice(&ret_pages, page_list);
1040 count_vm_events(PGACTIVATE, pgactivate);
1041 mem_cgroup_uncharge_end();
1042 *ret_nr_dirty += nr_dirty;
1043 *ret_nr_congested += nr_congested;
1044 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1045 *ret_nr_writeback += nr_writeback;
1046 *ret_nr_immediate += nr_immediate;
1047 return nr_reclaimed;
1050 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1051 struct list_head *page_list)
1053 struct scan_control sc = {
1054 .gfp_mask = GFP_KERNEL,
1055 .priority = DEF_PRIORITY,
1056 .may_unmap = 1,
1058 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1059 struct page *page, *next;
1060 LIST_HEAD(clean_pages);
1062 list_for_each_entry_safe(page, next, page_list, lru) {
1063 if (page_is_file_cache(page) && !PageDirty(page)) {
1064 ClearPageActive(page);
1065 list_move(&page->lru, &clean_pages);
1069 ret = shrink_page_list(&clean_pages, zone, &sc,
1070 TTU_UNMAP|TTU_IGNORE_ACCESS,
1071 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1072 list_splice(&clean_pages, page_list);
1073 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1074 return ret;
1078 * Attempt to remove the specified page from its LRU. Only take this page
1079 * if it is of the appropriate PageActive status. Pages which are being
1080 * freed elsewhere are also ignored.
1082 * page: page to consider
1083 * mode: one of the LRU isolation modes defined above
1085 * returns 0 on success, -ve errno on failure.
1087 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1089 int ret = -EINVAL;
1091 /* Only take pages on the LRU. */
1092 if (!PageLRU(page))
1093 return ret;
1095 /* Compaction should not handle unevictable pages but CMA can do so */
1096 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1097 return ret;
1099 ret = -EBUSY;
1102 * To minimise LRU disruption, the caller can indicate that it only
1103 * wants to isolate pages it will be able to operate on without
1104 * blocking - clean pages for the most part.
1106 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1107 * is used by reclaim when it is cannot write to backing storage
1109 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1110 * that it is possible to migrate without blocking
1112 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1113 /* All the caller can do on PageWriteback is block */
1114 if (PageWriteback(page))
1115 return ret;
1117 if (PageDirty(page)) {
1118 struct address_space *mapping;
1120 /* ISOLATE_CLEAN means only clean pages */
1121 if (mode & ISOLATE_CLEAN)
1122 return ret;
1125 * Only pages without mappings or that have a
1126 * ->migratepage callback are possible to migrate
1127 * without blocking
1129 mapping = page_mapping(page);
1130 if (mapping && !mapping->a_ops->migratepage)
1131 return ret;
1135 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1136 return ret;
1138 if (likely(get_page_unless_zero(page))) {
1140 * Be careful not to clear PageLRU until after we're
1141 * sure the page is not being freed elsewhere -- the
1142 * page release code relies on it.
1144 ClearPageLRU(page);
1145 ret = 0;
1148 return ret;
1152 * zone->lru_lock is heavily contended. Some of the functions that
1153 * shrink the lists perform better by taking out a batch of pages
1154 * and working on them outside the LRU lock.
1156 * For pagecache intensive workloads, this function is the hottest
1157 * spot in the kernel (apart from copy_*_user functions).
1159 * Appropriate locks must be held before calling this function.
1161 * @nr_to_scan: The number of pages to look through on the list.
1162 * @lruvec: The LRU vector to pull pages from.
1163 * @dst: The temp list to put pages on to.
1164 * @nr_scanned: The number of pages that were scanned.
1165 * @sc: The scan_control struct for this reclaim session
1166 * @mode: One of the LRU isolation modes
1167 * @lru: LRU list id for isolating
1169 * returns how many pages were moved onto *@dst.
1171 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1172 struct lruvec *lruvec, struct list_head *dst,
1173 unsigned long *nr_scanned, struct scan_control *sc,
1174 isolate_mode_t mode, enum lru_list lru)
1176 struct list_head *src = &lruvec->lists[lru];
1177 unsigned long nr_taken = 0;
1178 unsigned long scan;
1180 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1181 struct page *page;
1182 int nr_pages;
1184 page = lru_to_page(src);
1185 prefetchw_prev_lru_page(page, src, flags);
1187 VM_BUG_ON(!PageLRU(page));
1189 switch (__isolate_lru_page(page, mode)) {
1190 case 0:
1191 nr_pages = hpage_nr_pages(page);
1192 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1193 list_move(&page->lru, dst);
1194 nr_taken += nr_pages;
1195 break;
1197 case -EBUSY:
1198 /* else it is being freed elsewhere */
1199 list_move(&page->lru, src);
1200 continue;
1202 default:
1203 BUG();
1207 *nr_scanned = scan;
1208 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1209 nr_taken, mode, is_file_lru(lru));
1210 return nr_taken;
1214 * isolate_lru_page - tries to isolate a page from its LRU list
1215 * @page: page to isolate from its LRU list
1217 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1218 * vmstat statistic corresponding to whatever LRU list the page was on.
1220 * Returns 0 if the page was removed from an LRU list.
1221 * Returns -EBUSY if the page was not on an LRU list.
1223 * The returned page will have PageLRU() cleared. If it was found on
1224 * the active list, it will have PageActive set. If it was found on
1225 * the unevictable list, it will have the PageUnevictable bit set. That flag
1226 * may need to be cleared by the caller before letting the page go.
1228 * The vmstat statistic corresponding to the list on which the page was
1229 * found will be decremented.
1231 * Restrictions:
1232 * (1) Must be called with an elevated refcount on the page. This is a
1233 * fundamentnal difference from isolate_lru_pages (which is called
1234 * without a stable reference).
1235 * (2) the lru_lock must not be held.
1236 * (3) interrupts must be enabled.
1238 int isolate_lru_page(struct page *page)
1240 int ret = -EBUSY;
1242 VM_BUG_ON(!page_count(page));
1244 if (PageLRU(page)) {
1245 struct zone *zone = page_zone(page);
1246 struct lruvec *lruvec;
1248 spin_lock_irq(&zone->lru_lock);
1249 lruvec = mem_cgroup_page_lruvec(page, zone);
1250 if (PageLRU(page)) {
1251 int lru = page_lru(page);
1252 get_page(page);
1253 ClearPageLRU(page);
1254 del_page_from_lru_list(page, lruvec, lru);
1255 ret = 0;
1257 spin_unlock_irq(&zone->lru_lock);
1259 return ret;
1263 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1264 * then get resheduled. When there are massive number of tasks doing page
1265 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1266 * the LRU list will go small and be scanned faster than necessary, leading to
1267 * unnecessary swapping, thrashing and OOM.
1269 static int too_many_isolated(struct zone *zone, int file,
1270 struct scan_control *sc)
1272 unsigned long inactive, isolated;
1274 if (current_is_kswapd())
1275 return 0;
1277 if (!global_reclaim(sc))
1278 return 0;
1280 if (file) {
1281 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1282 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1283 } else {
1284 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1285 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1289 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1290 * won't get blocked by normal direct-reclaimers, forming a circular
1291 * deadlock.
1293 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1294 inactive >>= 3;
1296 return isolated > inactive;
1299 static noinline_for_stack void
1300 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1302 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1303 struct zone *zone = lruvec_zone(lruvec);
1304 LIST_HEAD(pages_to_free);
1307 * Put back any unfreeable pages.
1309 while (!list_empty(page_list)) {
1310 struct page *page = lru_to_page(page_list);
1311 int lru;
1313 VM_BUG_ON(PageLRU(page));
1314 list_del(&page->lru);
1315 if (unlikely(!page_evictable(page))) {
1316 spin_unlock_irq(&zone->lru_lock);
1317 putback_lru_page(page);
1318 spin_lock_irq(&zone->lru_lock);
1319 continue;
1322 lruvec = mem_cgroup_page_lruvec(page, zone);
1324 SetPageLRU(page);
1325 lru = page_lru(page);
1326 add_page_to_lru_list(page, lruvec, lru);
1328 if (is_active_lru(lru)) {
1329 int file = is_file_lru(lru);
1330 int numpages = hpage_nr_pages(page);
1331 reclaim_stat->recent_rotated[file] += numpages;
1333 if (put_page_testzero(page)) {
1334 __ClearPageLRU(page);
1335 __ClearPageActive(page);
1336 del_page_from_lru_list(page, lruvec, lru);
1338 if (unlikely(PageCompound(page))) {
1339 spin_unlock_irq(&zone->lru_lock);
1340 (*get_compound_page_dtor(page))(page);
1341 spin_lock_irq(&zone->lru_lock);
1342 } else
1343 list_add(&page->lru, &pages_to_free);
1348 * To save our caller's stack, now use input list for pages to free.
1350 list_splice(&pages_to_free, page_list);
1354 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1355 * of reclaimed pages
1357 static noinline_for_stack unsigned long
1358 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1359 struct scan_control *sc, enum lru_list lru)
1361 LIST_HEAD(page_list);
1362 unsigned long nr_scanned;
1363 unsigned long nr_reclaimed = 0;
1364 unsigned long nr_taken;
1365 unsigned long nr_dirty = 0;
1366 unsigned long nr_congested = 0;
1367 unsigned long nr_unqueued_dirty = 0;
1368 unsigned long nr_writeback = 0;
1369 unsigned long nr_immediate = 0;
1370 isolate_mode_t isolate_mode = 0;
1371 int file = is_file_lru(lru);
1372 struct zone *zone = lruvec_zone(lruvec);
1373 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1375 while (unlikely(too_many_isolated(zone, file, sc))) {
1376 congestion_wait(BLK_RW_ASYNC, HZ/10);
1378 /* We are about to die and free our memory. Return now. */
1379 if (fatal_signal_pending(current))
1380 return SWAP_CLUSTER_MAX;
1383 lru_add_drain();
1385 if (!sc->may_unmap)
1386 isolate_mode |= ISOLATE_UNMAPPED;
1387 if (!sc->may_writepage)
1388 isolate_mode |= ISOLATE_CLEAN;
1390 spin_lock_irq(&zone->lru_lock);
1392 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1393 &nr_scanned, sc, isolate_mode, lru);
1395 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1396 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1398 if (global_reclaim(sc)) {
1399 zone->pages_scanned += nr_scanned;
1400 if (current_is_kswapd())
1401 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1402 else
1403 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1405 spin_unlock_irq(&zone->lru_lock);
1407 if (nr_taken == 0)
1408 return 0;
1410 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1411 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1412 &nr_writeback, &nr_immediate,
1413 false);
1415 spin_lock_irq(&zone->lru_lock);
1417 reclaim_stat->recent_scanned[file] += nr_taken;
1419 if (global_reclaim(sc)) {
1420 if (current_is_kswapd())
1421 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1422 nr_reclaimed);
1423 else
1424 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1425 nr_reclaimed);
1428 putback_inactive_pages(lruvec, &page_list);
1430 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1432 spin_unlock_irq(&zone->lru_lock);
1434 free_hot_cold_page_list(&page_list, 1);
1437 * If reclaim is isolating dirty pages under writeback, it implies
1438 * that the long-lived page allocation rate is exceeding the page
1439 * laundering rate. Either the global limits are not being effective
1440 * at throttling processes due to the page distribution throughout
1441 * zones or there is heavy usage of a slow backing device. The
1442 * only option is to throttle from reclaim context which is not ideal
1443 * as there is no guarantee the dirtying process is throttled in the
1444 * same way balance_dirty_pages() manages.
1446 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1447 * of pages under pages flagged for immediate reclaim and stall if any
1448 * are encountered in the nr_immediate check below.
1450 if (nr_writeback && nr_writeback == nr_taken)
1451 zone_set_flag(zone, ZONE_WRITEBACK);
1454 * memcg will stall in page writeback so only consider forcibly
1455 * stalling for global reclaim
1457 if (global_reclaim(sc)) {
1459 * Tag a zone as congested if all the dirty pages scanned were
1460 * backed by a congested BDI and wait_iff_congested will stall.
1462 if (nr_dirty && nr_dirty == nr_congested)
1463 zone_set_flag(zone, ZONE_CONGESTED);
1466 * If dirty pages are scanned that are not queued for IO, it
1467 * implies that flushers are not keeping up. In this case, flag
1468 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1469 * pages from reclaim context. It will forcibly stall in the
1470 * next check.
1472 if (nr_unqueued_dirty == nr_taken)
1473 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1476 * In addition, if kswapd scans pages marked marked for
1477 * immediate reclaim and under writeback (nr_immediate), it
1478 * implies that pages are cycling through the LRU faster than
1479 * they are written so also forcibly stall.
1481 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1482 congestion_wait(BLK_RW_ASYNC, HZ/10);
1486 * Stall direct reclaim for IO completions if underlying BDIs or zone
1487 * is congested. Allow kswapd to continue until it starts encountering
1488 * unqueued dirty pages or cycling through the LRU too quickly.
1490 if (!sc->hibernation_mode && !current_is_kswapd())
1491 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1493 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1494 zone_idx(zone),
1495 nr_scanned, nr_reclaimed,
1496 sc->priority,
1497 trace_shrink_flags(file));
1498 return nr_reclaimed;
1502 * This moves pages from the active list to the inactive list.
1504 * We move them the other way if the page is referenced by one or more
1505 * processes, from rmap.
1507 * If the pages are mostly unmapped, the processing is fast and it is
1508 * appropriate to hold zone->lru_lock across the whole operation. But if
1509 * the pages are mapped, the processing is slow (page_referenced()) so we
1510 * should drop zone->lru_lock around each page. It's impossible to balance
1511 * this, so instead we remove the pages from the LRU while processing them.
1512 * It is safe to rely on PG_active against the non-LRU pages in here because
1513 * nobody will play with that bit on a non-LRU page.
1515 * The downside is that we have to touch page->_count against each page.
1516 * But we had to alter page->flags anyway.
1519 static void move_active_pages_to_lru(struct lruvec *lruvec,
1520 struct list_head *list,
1521 struct list_head *pages_to_free,
1522 enum lru_list lru)
1524 struct zone *zone = lruvec_zone(lruvec);
1525 unsigned long pgmoved = 0;
1526 struct page *page;
1527 int nr_pages;
1529 while (!list_empty(list)) {
1530 page = lru_to_page(list);
1531 lruvec = mem_cgroup_page_lruvec(page, zone);
1533 VM_BUG_ON(PageLRU(page));
1534 SetPageLRU(page);
1536 nr_pages = hpage_nr_pages(page);
1537 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1538 list_move(&page->lru, &lruvec->lists[lru]);
1539 pgmoved += nr_pages;
1541 if (put_page_testzero(page)) {
1542 __ClearPageLRU(page);
1543 __ClearPageActive(page);
1544 del_page_from_lru_list(page, lruvec, lru);
1546 if (unlikely(PageCompound(page))) {
1547 spin_unlock_irq(&zone->lru_lock);
1548 (*get_compound_page_dtor(page))(page);
1549 spin_lock_irq(&zone->lru_lock);
1550 } else
1551 list_add(&page->lru, pages_to_free);
1554 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1555 if (!is_active_lru(lru))
1556 __count_vm_events(PGDEACTIVATE, pgmoved);
1559 static void shrink_active_list(unsigned long nr_to_scan,
1560 struct lruvec *lruvec,
1561 struct scan_control *sc,
1562 enum lru_list lru)
1564 unsigned long nr_taken;
1565 unsigned long nr_scanned;
1566 unsigned long vm_flags;
1567 LIST_HEAD(l_hold); /* The pages which were snipped off */
1568 LIST_HEAD(l_active);
1569 LIST_HEAD(l_inactive);
1570 struct page *page;
1571 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1572 unsigned long nr_rotated = 0;
1573 isolate_mode_t isolate_mode = 0;
1574 int file = is_file_lru(lru);
1575 struct zone *zone = lruvec_zone(lruvec);
1577 lru_add_drain();
1579 if (!sc->may_unmap)
1580 isolate_mode |= ISOLATE_UNMAPPED;
1581 if (!sc->may_writepage)
1582 isolate_mode |= ISOLATE_CLEAN;
1584 spin_lock_irq(&zone->lru_lock);
1586 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1587 &nr_scanned, sc, isolate_mode, lru);
1588 if (global_reclaim(sc))
1589 zone->pages_scanned += nr_scanned;
1591 reclaim_stat->recent_scanned[file] += nr_taken;
1593 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1594 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1595 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1596 spin_unlock_irq(&zone->lru_lock);
1598 while (!list_empty(&l_hold)) {
1599 cond_resched();
1600 page = lru_to_page(&l_hold);
1601 list_del(&page->lru);
1603 if (unlikely(!page_evictable(page))) {
1604 putback_lru_page(page);
1605 continue;
1608 if (unlikely(buffer_heads_over_limit)) {
1609 if (page_has_private(page) && trylock_page(page)) {
1610 if (page_has_private(page))
1611 try_to_release_page(page, 0);
1612 unlock_page(page);
1616 if (page_referenced(page, 0, sc->target_mem_cgroup,
1617 &vm_flags)) {
1618 nr_rotated += hpage_nr_pages(page);
1620 * Identify referenced, file-backed active pages and
1621 * give them one more trip around the active list. So
1622 * that executable code get better chances to stay in
1623 * memory under moderate memory pressure. Anon pages
1624 * are not likely to be evicted by use-once streaming
1625 * IO, plus JVM can create lots of anon VM_EXEC pages,
1626 * so we ignore them here.
1628 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1629 list_add(&page->lru, &l_active);
1630 continue;
1634 ClearPageActive(page); /* we are de-activating */
1635 list_add(&page->lru, &l_inactive);
1639 * Move pages back to the lru list.
1641 spin_lock_irq(&zone->lru_lock);
1643 * Count referenced pages from currently used mappings as rotated,
1644 * even though only some of them are actually re-activated. This
1645 * helps balance scan pressure between file and anonymous pages in
1646 * get_scan_ratio.
1648 reclaim_stat->recent_rotated[file] += nr_rotated;
1650 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1651 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1652 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1653 spin_unlock_irq(&zone->lru_lock);
1655 free_hot_cold_page_list(&l_hold, 1);
1658 #ifdef CONFIG_SWAP
1659 static int inactive_anon_is_low_global(struct zone *zone)
1661 unsigned long active, inactive;
1663 active = zone_page_state(zone, NR_ACTIVE_ANON);
1664 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1666 if (inactive * zone->inactive_ratio < active)
1667 return 1;
1669 return 0;
1673 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1674 * @lruvec: LRU vector to check
1676 * Returns true if the zone does not have enough inactive anon pages,
1677 * meaning some active anon pages need to be deactivated.
1679 static int inactive_anon_is_low(struct lruvec *lruvec)
1682 * If we don't have swap space, anonymous page deactivation
1683 * is pointless.
1685 if (!total_swap_pages)
1686 return 0;
1688 if (!mem_cgroup_disabled())
1689 return mem_cgroup_inactive_anon_is_low(lruvec);
1691 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1693 #else
1694 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1696 return 0;
1698 #endif
1701 * inactive_file_is_low - check if file pages need to be deactivated
1702 * @lruvec: LRU vector to check
1704 * When the system is doing streaming IO, memory pressure here
1705 * ensures that active file pages get deactivated, until more
1706 * than half of the file pages are on the inactive list.
1708 * Once we get to that situation, protect the system's working
1709 * set from being evicted by disabling active file page aging.
1711 * This uses a different ratio than the anonymous pages, because
1712 * the page cache uses a use-once replacement algorithm.
1714 static int inactive_file_is_low(struct lruvec *lruvec)
1716 unsigned long inactive;
1717 unsigned long active;
1719 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1720 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1722 return active > inactive;
1725 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1727 if (is_file_lru(lru))
1728 return inactive_file_is_low(lruvec);
1729 else
1730 return inactive_anon_is_low(lruvec);
1733 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1734 struct lruvec *lruvec, struct scan_control *sc)
1736 if (is_active_lru(lru)) {
1737 if (inactive_list_is_low(lruvec, lru))
1738 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1739 return 0;
1742 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1745 static int vmscan_swappiness(struct scan_control *sc)
1747 if (global_reclaim(sc))
1748 return vm_swappiness;
1749 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1752 enum scan_balance {
1753 SCAN_EQUAL,
1754 SCAN_FRACT,
1755 SCAN_ANON,
1756 SCAN_FILE,
1760 * Determine how aggressively the anon and file LRU lists should be
1761 * scanned. The relative value of each set of LRU lists is determined
1762 * by looking at the fraction of the pages scanned we did rotate back
1763 * onto the active list instead of evict.
1765 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1766 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1768 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1769 unsigned long *nr)
1771 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1772 u64 fraction[2];
1773 u64 denominator = 0; /* gcc */
1774 struct zone *zone = lruvec_zone(lruvec);
1775 unsigned long anon_prio, file_prio;
1776 enum scan_balance scan_balance;
1777 unsigned long anon, file, free;
1778 bool force_scan = false;
1779 unsigned long ap, fp;
1780 enum lru_list lru;
1783 * If the zone or memcg is small, nr[l] can be 0. This
1784 * results in no scanning on this priority and a potential
1785 * priority drop. Global direct reclaim can go to the next
1786 * zone and tends to have no problems. Global kswapd is for
1787 * zone balancing and it needs to scan a minimum amount. When
1788 * reclaiming for a memcg, a priority drop can cause high
1789 * latencies, so it's better to scan a minimum amount there as
1790 * well.
1792 if (current_is_kswapd() && zone->all_unreclaimable)
1793 force_scan = true;
1794 if (!global_reclaim(sc))
1795 force_scan = true;
1797 /* If we have no swap space, do not bother scanning anon pages. */
1798 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1799 scan_balance = SCAN_FILE;
1800 goto out;
1804 * Global reclaim will swap to prevent OOM even with no
1805 * swappiness, but memcg users want to use this knob to
1806 * disable swapping for individual groups completely when
1807 * using the memory controller's swap limit feature would be
1808 * too expensive.
1810 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1811 scan_balance = SCAN_FILE;
1812 goto out;
1816 * Do not apply any pressure balancing cleverness when the
1817 * system is close to OOM, scan both anon and file equally
1818 * (unless the swappiness setting disagrees with swapping).
1820 if (!sc->priority && vmscan_swappiness(sc)) {
1821 scan_balance = SCAN_EQUAL;
1822 goto out;
1825 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1826 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1827 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1828 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1831 * If it's foreseeable that reclaiming the file cache won't be
1832 * enough to get the zone back into a desirable shape, we have
1833 * to swap. Better start now and leave the - probably heavily
1834 * thrashing - remaining file pages alone.
1836 if (global_reclaim(sc)) {
1837 free = zone_page_state(zone, NR_FREE_PAGES);
1838 if (unlikely(file + free <= high_wmark_pages(zone))) {
1839 scan_balance = SCAN_ANON;
1840 goto out;
1845 * There is enough inactive page cache, do not reclaim
1846 * anything from the anonymous working set right now.
1848 if (!inactive_file_is_low(lruvec)) {
1849 scan_balance = SCAN_FILE;
1850 goto out;
1853 scan_balance = SCAN_FRACT;
1856 * With swappiness at 100, anonymous and file have the same priority.
1857 * This scanning priority is essentially the inverse of IO cost.
1859 anon_prio = vmscan_swappiness(sc);
1860 file_prio = 200 - anon_prio;
1863 * OK, so we have swap space and a fair amount of page cache
1864 * pages. We use the recently rotated / recently scanned
1865 * ratios to determine how valuable each cache is.
1867 * Because workloads change over time (and to avoid overflow)
1868 * we keep these statistics as a floating average, which ends
1869 * up weighing recent references more than old ones.
1871 * anon in [0], file in [1]
1873 spin_lock_irq(&zone->lru_lock);
1874 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1875 reclaim_stat->recent_scanned[0] /= 2;
1876 reclaim_stat->recent_rotated[0] /= 2;
1879 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1880 reclaim_stat->recent_scanned[1] /= 2;
1881 reclaim_stat->recent_rotated[1] /= 2;
1885 * The amount of pressure on anon vs file pages is inversely
1886 * proportional to the fraction of recently scanned pages on
1887 * each list that were recently referenced and in active use.
1889 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1890 ap /= reclaim_stat->recent_rotated[0] + 1;
1892 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1893 fp /= reclaim_stat->recent_rotated[1] + 1;
1894 spin_unlock_irq(&zone->lru_lock);
1896 fraction[0] = ap;
1897 fraction[1] = fp;
1898 denominator = ap + fp + 1;
1899 out:
1900 for_each_evictable_lru(lru) {
1901 int file = is_file_lru(lru);
1902 unsigned long size;
1903 unsigned long scan;
1905 size = get_lru_size(lruvec, lru);
1906 scan = size >> sc->priority;
1908 if (!scan && force_scan)
1909 scan = min(size, SWAP_CLUSTER_MAX);
1911 switch (scan_balance) {
1912 case SCAN_EQUAL:
1913 /* Scan lists relative to size */
1914 break;
1915 case SCAN_FRACT:
1917 * Scan types proportional to swappiness and
1918 * their relative recent reclaim efficiency.
1920 scan = div64_u64(scan * fraction[file], denominator);
1921 break;
1922 case SCAN_FILE:
1923 case SCAN_ANON:
1924 /* Scan one type exclusively */
1925 if ((scan_balance == SCAN_FILE) != file)
1926 scan = 0;
1927 break;
1928 default:
1929 /* Look ma, no brain */
1930 BUG();
1932 nr[lru] = scan;
1937 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1939 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1941 unsigned long nr[NR_LRU_LISTS];
1942 unsigned long targets[NR_LRU_LISTS];
1943 unsigned long nr_to_scan;
1944 enum lru_list lru;
1945 unsigned long nr_reclaimed = 0;
1946 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1947 struct blk_plug plug;
1948 bool scan_adjusted = false;
1950 get_scan_count(lruvec, sc, nr);
1952 /* Record the original scan target for proportional adjustments later */
1953 memcpy(targets, nr, sizeof(nr));
1955 blk_start_plug(&plug);
1956 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1957 nr[LRU_INACTIVE_FILE]) {
1958 unsigned long nr_anon, nr_file, percentage;
1959 unsigned long nr_scanned;
1961 for_each_evictable_lru(lru) {
1962 if (nr[lru]) {
1963 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1964 nr[lru] -= nr_to_scan;
1966 nr_reclaimed += shrink_list(lru, nr_to_scan,
1967 lruvec, sc);
1971 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
1972 continue;
1975 * For global direct reclaim, reclaim only the number of pages
1976 * requested. Less care is taken to scan proportionally as it
1977 * is more important to minimise direct reclaim stall latency
1978 * than it is to properly age the LRU lists.
1980 if (global_reclaim(sc) && !current_is_kswapd())
1981 break;
1984 * For kswapd and memcg, reclaim at least the number of pages
1985 * requested. Ensure that the anon and file LRUs shrink
1986 * proportionally what was requested by get_scan_count(). We
1987 * stop reclaiming one LRU and reduce the amount scanning
1988 * proportional to the original scan target.
1990 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
1991 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
1993 if (nr_file > nr_anon) {
1994 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
1995 targets[LRU_ACTIVE_ANON] + 1;
1996 lru = LRU_BASE;
1997 percentage = nr_anon * 100 / scan_target;
1998 } else {
1999 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2000 targets[LRU_ACTIVE_FILE] + 1;
2001 lru = LRU_FILE;
2002 percentage = nr_file * 100 / scan_target;
2005 /* Stop scanning the smaller of the LRU */
2006 nr[lru] = 0;
2007 nr[lru + LRU_ACTIVE] = 0;
2010 * Recalculate the other LRU scan count based on its original
2011 * scan target and the percentage scanning already complete
2013 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2014 nr_scanned = targets[lru] - nr[lru];
2015 nr[lru] = targets[lru] * (100 - percentage) / 100;
2016 nr[lru] -= min(nr[lru], nr_scanned);
2018 lru += LRU_ACTIVE;
2019 nr_scanned = targets[lru] - nr[lru];
2020 nr[lru] = targets[lru] * (100 - percentage) / 100;
2021 nr[lru] -= min(nr[lru], nr_scanned);
2023 scan_adjusted = true;
2025 blk_finish_plug(&plug);
2026 sc->nr_reclaimed += nr_reclaimed;
2029 * Even if we did not try to evict anon pages at all, we want to
2030 * rebalance the anon lru active/inactive ratio.
2032 if (inactive_anon_is_low(lruvec))
2033 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2034 sc, LRU_ACTIVE_ANON);
2036 throttle_vm_writeout(sc->gfp_mask);
2039 /* Use reclaim/compaction for costly allocs or under memory pressure */
2040 static bool in_reclaim_compaction(struct scan_control *sc)
2042 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2043 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2044 sc->priority < DEF_PRIORITY - 2))
2045 return true;
2047 return false;
2051 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2052 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2053 * true if more pages should be reclaimed such that when the page allocator
2054 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2055 * It will give up earlier than that if there is difficulty reclaiming pages.
2057 static inline bool should_continue_reclaim(struct zone *zone,
2058 unsigned long nr_reclaimed,
2059 unsigned long nr_scanned,
2060 struct scan_control *sc)
2062 unsigned long pages_for_compaction;
2063 unsigned long inactive_lru_pages;
2065 /* If not in reclaim/compaction mode, stop */
2066 if (!in_reclaim_compaction(sc))
2067 return false;
2069 /* Consider stopping depending on scan and reclaim activity */
2070 if (sc->gfp_mask & __GFP_REPEAT) {
2072 * For __GFP_REPEAT allocations, stop reclaiming if the
2073 * full LRU list has been scanned and we are still failing
2074 * to reclaim pages. This full LRU scan is potentially
2075 * expensive but a __GFP_REPEAT caller really wants to succeed
2077 if (!nr_reclaimed && !nr_scanned)
2078 return false;
2079 } else {
2081 * For non-__GFP_REPEAT allocations which can presumably
2082 * fail without consequence, stop if we failed to reclaim
2083 * any pages from the last SWAP_CLUSTER_MAX number of
2084 * pages that were scanned. This will return to the
2085 * caller faster at the risk reclaim/compaction and
2086 * the resulting allocation attempt fails
2088 if (!nr_reclaimed)
2089 return false;
2093 * If we have not reclaimed enough pages for compaction and the
2094 * inactive lists are large enough, continue reclaiming
2096 pages_for_compaction = (2UL << sc->order);
2097 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2098 if (get_nr_swap_pages() > 0)
2099 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2100 if (sc->nr_reclaimed < pages_for_compaction &&
2101 inactive_lru_pages > pages_for_compaction)
2102 return true;
2104 /* If compaction would go ahead or the allocation would succeed, stop */
2105 switch (compaction_suitable(zone, sc->order)) {
2106 case COMPACT_PARTIAL:
2107 case COMPACT_CONTINUE:
2108 return false;
2109 default:
2110 return true;
2114 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2116 unsigned long nr_reclaimed, nr_scanned;
2118 do {
2119 struct mem_cgroup *root = sc->target_mem_cgroup;
2120 struct mem_cgroup_reclaim_cookie reclaim = {
2121 .zone = zone,
2122 .priority = sc->priority,
2124 struct mem_cgroup *memcg;
2126 nr_reclaimed = sc->nr_reclaimed;
2127 nr_scanned = sc->nr_scanned;
2129 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2130 do {
2131 struct lruvec *lruvec;
2133 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2135 shrink_lruvec(lruvec, sc);
2138 * Direct reclaim and kswapd have to scan all memory
2139 * cgroups to fulfill the overall scan target for the
2140 * zone.
2142 * Limit reclaim, on the other hand, only cares about
2143 * nr_to_reclaim pages to be reclaimed and it will
2144 * retry with decreasing priority if one round over the
2145 * whole hierarchy is not sufficient.
2147 if (!global_reclaim(sc) &&
2148 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2149 mem_cgroup_iter_break(root, memcg);
2150 break;
2152 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2153 } while (memcg);
2155 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2156 sc->nr_scanned - nr_scanned,
2157 sc->nr_reclaimed - nr_reclaimed);
2159 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2160 sc->nr_scanned - nr_scanned, sc));
2163 /* Returns true if compaction should go ahead for a high-order request */
2164 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2166 unsigned long balance_gap, watermark;
2167 bool watermark_ok;
2169 /* Do not consider compaction for orders reclaim is meant to satisfy */
2170 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2171 return false;
2174 * Compaction takes time to run and there are potentially other
2175 * callers using the pages just freed. Continue reclaiming until
2176 * there is a buffer of free pages available to give compaction
2177 * a reasonable chance of completing and allocating the page
2179 balance_gap = min(low_wmark_pages(zone),
2180 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2181 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2182 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2183 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2186 * If compaction is deferred, reclaim up to a point where
2187 * compaction will have a chance of success when re-enabled
2189 if (compaction_deferred(zone, sc->order))
2190 return watermark_ok;
2192 /* If compaction is not ready to start, keep reclaiming */
2193 if (!compaction_suitable(zone, sc->order))
2194 return false;
2196 return watermark_ok;
2200 * This is the direct reclaim path, for page-allocating processes. We only
2201 * try to reclaim pages from zones which will satisfy the caller's allocation
2202 * request.
2204 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2205 * Because:
2206 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2207 * allocation or
2208 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2209 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2210 * zone defense algorithm.
2212 * If a zone is deemed to be full of pinned pages then just give it a light
2213 * scan then give up on it.
2215 * This function returns true if a zone is being reclaimed for a costly
2216 * high-order allocation and compaction is ready to begin. This indicates to
2217 * the caller that it should consider retrying the allocation instead of
2218 * further reclaim.
2220 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2222 struct zoneref *z;
2223 struct zone *zone;
2224 unsigned long nr_soft_reclaimed;
2225 unsigned long nr_soft_scanned;
2226 bool aborted_reclaim = false;
2229 * If the number of buffer_heads in the machine exceeds the maximum
2230 * allowed level, force direct reclaim to scan the highmem zone as
2231 * highmem pages could be pinning lowmem pages storing buffer_heads
2233 if (buffer_heads_over_limit)
2234 sc->gfp_mask |= __GFP_HIGHMEM;
2236 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2237 gfp_zone(sc->gfp_mask), sc->nodemask) {
2238 if (!populated_zone(zone))
2239 continue;
2241 * Take care memory controller reclaiming has small influence
2242 * to global LRU.
2244 if (global_reclaim(sc)) {
2245 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2246 continue;
2247 if (zone->all_unreclaimable &&
2248 sc->priority != DEF_PRIORITY)
2249 continue; /* Let kswapd poll it */
2250 if (IS_ENABLED(CONFIG_COMPACTION)) {
2252 * If we already have plenty of memory free for
2253 * compaction in this zone, don't free any more.
2254 * Even though compaction is invoked for any
2255 * non-zero order, only frequent costly order
2256 * reclamation is disruptive enough to become a
2257 * noticeable problem, like transparent huge
2258 * page allocations.
2260 if (compaction_ready(zone, sc)) {
2261 aborted_reclaim = true;
2262 continue;
2266 * This steals pages from memory cgroups over softlimit
2267 * and returns the number of reclaimed pages and
2268 * scanned pages. This works for global memory pressure
2269 * and balancing, not for a memcg's limit.
2271 nr_soft_scanned = 0;
2272 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2273 sc->order, sc->gfp_mask,
2274 &nr_soft_scanned);
2275 sc->nr_reclaimed += nr_soft_reclaimed;
2276 sc->nr_scanned += nr_soft_scanned;
2277 /* need some check for avoid more shrink_zone() */
2280 shrink_zone(zone, sc);
2283 return aborted_reclaim;
2286 static bool zone_reclaimable(struct zone *zone)
2288 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2291 /* All zones in zonelist are unreclaimable? */
2292 static bool all_unreclaimable(struct zonelist *zonelist,
2293 struct scan_control *sc)
2295 struct zoneref *z;
2296 struct zone *zone;
2298 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2299 gfp_zone(sc->gfp_mask), sc->nodemask) {
2300 if (!populated_zone(zone))
2301 continue;
2302 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2303 continue;
2304 if (!zone->all_unreclaimable)
2305 return false;
2308 return true;
2312 * This is the main entry point to direct page reclaim.
2314 * If a full scan of the inactive list fails to free enough memory then we
2315 * are "out of memory" and something needs to be killed.
2317 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2318 * high - the zone may be full of dirty or under-writeback pages, which this
2319 * caller can't do much about. We kick the writeback threads and take explicit
2320 * naps in the hope that some of these pages can be written. But if the
2321 * allocating task holds filesystem locks which prevent writeout this might not
2322 * work, and the allocation attempt will fail.
2324 * returns: 0, if no pages reclaimed
2325 * else, the number of pages reclaimed
2327 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2328 struct scan_control *sc,
2329 struct shrink_control *shrink)
2331 unsigned long total_scanned = 0;
2332 struct reclaim_state *reclaim_state = current->reclaim_state;
2333 struct zoneref *z;
2334 struct zone *zone;
2335 unsigned long writeback_threshold;
2336 bool aborted_reclaim;
2338 delayacct_freepages_start();
2340 if (global_reclaim(sc))
2341 count_vm_event(ALLOCSTALL);
2343 do {
2344 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2345 sc->priority);
2346 sc->nr_scanned = 0;
2347 aborted_reclaim = shrink_zones(zonelist, sc);
2350 * Don't shrink slabs when reclaiming memory from over limit
2351 * cgroups but do shrink slab at least once when aborting
2352 * reclaim for compaction to avoid unevenly scanning file/anon
2353 * LRU pages over slab pages.
2355 if (global_reclaim(sc)) {
2356 unsigned long lru_pages = 0;
2357 for_each_zone_zonelist(zone, z, zonelist,
2358 gfp_zone(sc->gfp_mask)) {
2359 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2360 continue;
2362 lru_pages += zone_reclaimable_pages(zone);
2365 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2366 if (reclaim_state) {
2367 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2368 reclaim_state->reclaimed_slab = 0;
2371 total_scanned += sc->nr_scanned;
2372 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2373 goto out;
2376 * If we're getting trouble reclaiming, start doing
2377 * writepage even in laptop mode.
2379 if (sc->priority < DEF_PRIORITY - 2)
2380 sc->may_writepage = 1;
2383 * Try to write back as many pages as we just scanned. This
2384 * tends to cause slow streaming writers to write data to the
2385 * disk smoothly, at the dirtying rate, which is nice. But
2386 * that's undesirable in laptop mode, where we *want* lumpy
2387 * writeout. So in laptop mode, write out the whole world.
2389 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2390 if (total_scanned > writeback_threshold) {
2391 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2392 WB_REASON_TRY_TO_FREE_PAGES);
2393 sc->may_writepage = 1;
2395 } while (--sc->priority >= 0 && !aborted_reclaim);
2397 out:
2398 delayacct_freepages_end();
2400 if (sc->nr_reclaimed)
2401 return sc->nr_reclaimed;
2404 * As hibernation is going on, kswapd is freezed so that it can't mark
2405 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2406 * check.
2408 if (oom_killer_disabled)
2409 return 0;
2411 /* Aborted reclaim to try compaction? don't OOM, then */
2412 if (aborted_reclaim)
2413 return 1;
2415 /* top priority shrink_zones still had more to do? don't OOM, then */
2416 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2417 return 1;
2419 return 0;
2422 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2424 struct zone *zone;
2425 unsigned long pfmemalloc_reserve = 0;
2426 unsigned long free_pages = 0;
2427 int i;
2428 bool wmark_ok;
2430 for (i = 0; i <= ZONE_NORMAL; i++) {
2431 zone = &pgdat->node_zones[i];
2432 pfmemalloc_reserve += min_wmark_pages(zone);
2433 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2436 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2438 /* kswapd must be awake if processes are being throttled */
2439 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2440 pgdat->classzone_idx = min(pgdat->classzone_idx,
2441 (enum zone_type)ZONE_NORMAL);
2442 wake_up_interruptible(&pgdat->kswapd_wait);
2445 return wmark_ok;
2449 * Throttle direct reclaimers if backing storage is backed by the network
2450 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2451 * depleted. kswapd will continue to make progress and wake the processes
2452 * when the low watermark is reached.
2454 * Returns true if a fatal signal was delivered during throttling. If this
2455 * happens, the page allocator should not consider triggering the OOM killer.
2457 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2458 nodemask_t *nodemask)
2460 struct zone *zone;
2461 int high_zoneidx = gfp_zone(gfp_mask);
2462 pg_data_t *pgdat;
2465 * Kernel threads should not be throttled as they may be indirectly
2466 * responsible for cleaning pages necessary for reclaim to make forward
2467 * progress. kjournald for example may enter direct reclaim while
2468 * committing a transaction where throttling it could forcing other
2469 * processes to block on log_wait_commit().
2471 if (current->flags & PF_KTHREAD)
2472 goto out;
2475 * If a fatal signal is pending, this process should not throttle.
2476 * It should return quickly so it can exit and free its memory
2478 if (fatal_signal_pending(current))
2479 goto out;
2481 /* Check if the pfmemalloc reserves are ok */
2482 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2483 pgdat = zone->zone_pgdat;
2484 if (pfmemalloc_watermark_ok(pgdat))
2485 goto out;
2487 /* Account for the throttling */
2488 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2491 * If the caller cannot enter the filesystem, it's possible that it
2492 * is due to the caller holding an FS lock or performing a journal
2493 * transaction in the case of a filesystem like ext[3|4]. In this case,
2494 * it is not safe to block on pfmemalloc_wait as kswapd could be
2495 * blocked waiting on the same lock. Instead, throttle for up to a
2496 * second before continuing.
2498 if (!(gfp_mask & __GFP_FS)) {
2499 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2500 pfmemalloc_watermark_ok(pgdat), HZ);
2502 goto check_pending;
2505 /* Throttle until kswapd wakes the process */
2506 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2507 pfmemalloc_watermark_ok(pgdat));
2509 check_pending:
2510 if (fatal_signal_pending(current))
2511 return true;
2513 out:
2514 return false;
2517 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2518 gfp_t gfp_mask, nodemask_t *nodemask)
2520 unsigned long nr_reclaimed;
2521 struct scan_control sc = {
2522 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2523 .may_writepage = !laptop_mode,
2524 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2525 .may_unmap = 1,
2526 .may_swap = 1,
2527 .order = order,
2528 .priority = DEF_PRIORITY,
2529 .target_mem_cgroup = NULL,
2530 .nodemask = nodemask,
2532 struct shrink_control shrink = {
2533 .gfp_mask = sc.gfp_mask,
2537 * Do not enter reclaim if fatal signal was delivered while throttled.
2538 * 1 is returned so that the page allocator does not OOM kill at this
2539 * point.
2541 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2542 return 1;
2544 trace_mm_vmscan_direct_reclaim_begin(order,
2545 sc.may_writepage,
2546 gfp_mask);
2548 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2550 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2552 return nr_reclaimed;
2555 #ifdef CONFIG_MEMCG
2557 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2558 gfp_t gfp_mask, bool noswap,
2559 struct zone *zone,
2560 unsigned long *nr_scanned)
2562 struct scan_control sc = {
2563 .nr_scanned = 0,
2564 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2565 .may_writepage = !laptop_mode,
2566 .may_unmap = 1,
2567 .may_swap = !noswap,
2568 .order = 0,
2569 .priority = 0,
2570 .target_mem_cgroup = memcg,
2572 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2574 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2575 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2577 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2578 sc.may_writepage,
2579 sc.gfp_mask);
2582 * NOTE: Although we can get the priority field, using it
2583 * here is not a good idea, since it limits the pages we can scan.
2584 * if we don't reclaim here, the shrink_zone from balance_pgdat
2585 * will pick up pages from other mem cgroup's as well. We hack
2586 * the priority and make it zero.
2588 shrink_lruvec(lruvec, &sc);
2590 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2592 *nr_scanned = sc.nr_scanned;
2593 return sc.nr_reclaimed;
2596 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2597 gfp_t gfp_mask,
2598 bool noswap)
2600 struct zonelist *zonelist;
2601 unsigned long nr_reclaimed;
2602 int nid;
2603 struct scan_control sc = {
2604 .may_writepage = !laptop_mode,
2605 .may_unmap = 1,
2606 .may_swap = !noswap,
2607 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2608 .order = 0,
2609 .priority = DEF_PRIORITY,
2610 .target_mem_cgroup = memcg,
2611 .nodemask = NULL, /* we don't care the placement */
2612 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2613 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2615 struct shrink_control shrink = {
2616 .gfp_mask = sc.gfp_mask,
2620 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2621 * take care of from where we get pages. So the node where we start the
2622 * scan does not need to be the current node.
2624 nid = mem_cgroup_select_victim_node(memcg);
2626 zonelist = NODE_DATA(nid)->node_zonelists;
2628 trace_mm_vmscan_memcg_reclaim_begin(0,
2629 sc.may_writepage,
2630 sc.gfp_mask);
2632 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2634 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2636 return nr_reclaimed;
2638 #endif
2640 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2642 struct mem_cgroup *memcg;
2644 if (!total_swap_pages)
2645 return;
2647 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2648 do {
2649 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2651 if (inactive_anon_is_low(lruvec))
2652 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2653 sc, LRU_ACTIVE_ANON);
2655 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2656 } while (memcg);
2659 static bool zone_balanced(struct zone *zone, int order,
2660 unsigned long balance_gap, int classzone_idx)
2662 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2663 balance_gap, classzone_idx, 0))
2664 return false;
2666 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2667 !compaction_suitable(zone, order))
2668 return false;
2670 return true;
2674 * pgdat_balanced() is used when checking if a node is balanced.
2676 * For order-0, all zones must be balanced!
2678 * For high-order allocations only zones that meet watermarks and are in a
2679 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2680 * total of balanced pages must be at least 25% of the zones allowed by
2681 * classzone_idx for the node to be considered balanced. Forcing all zones to
2682 * be balanced for high orders can cause excessive reclaim when there are
2683 * imbalanced zones.
2684 * The choice of 25% is due to
2685 * o a 16M DMA zone that is balanced will not balance a zone on any
2686 * reasonable sized machine
2687 * o On all other machines, the top zone must be at least a reasonable
2688 * percentage of the middle zones. For example, on 32-bit x86, highmem
2689 * would need to be at least 256M for it to be balance a whole node.
2690 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2691 * to balance a node on its own. These seemed like reasonable ratios.
2693 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2695 unsigned long managed_pages = 0;
2696 unsigned long balanced_pages = 0;
2697 int i;
2699 /* Check the watermark levels */
2700 for (i = 0; i <= classzone_idx; i++) {
2701 struct zone *zone = pgdat->node_zones + i;
2703 if (!populated_zone(zone))
2704 continue;
2706 managed_pages += zone->managed_pages;
2709 * A special case here:
2711 * balance_pgdat() skips over all_unreclaimable after
2712 * DEF_PRIORITY. Effectively, it considers them balanced so
2713 * they must be considered balanced here as well!
2715 if (zone->all_unreclaimable) {
2716 balanced_pages += zone->managed_pages;
2717 continue;
2720 if (zone_balanced(zone, order, 0, i))
2721 balanced_pages += zone->managed_pages;
2722 else if (!order)
2723 return false;
2726 if (order)
2727 return balanced_pages >= (managed_pages >> 2);
2728 else
2729 return true;
2733 * Prepare kswapd for sleeping. This verifies that there are no processes
2734 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2736 * Returns true if kswapd is ready to sleep
2738 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2739 int classzone_idx)
2741 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2742 if (remaining)
2743 return false;
2746 * There is a potential race between when kswapd checks its watermarks
2747 * and a process gets throttled. There is also a potential race if
2748 * processes get throttled, kswapd wakes, a large process exits therby
2749 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2750 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2751 * so wake them now if necessary. If necessary, processes will wake
2752 * kswapd and get throttled again
2754 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2755 wake_up(&pgdat->pfmemalloc_wait);
2756 return false;
2759 return pgdat_balanced(pgdat, order, classzone_idx);
2763 * kswapd shrinks the zone by the number of pages required to reach
2764 * the high watermark.
2766 * Returns true if kswapd scanned at least the requested number of pages to
2767 * reclaim or if the lack of progress was due to pages under writeback.
2768 * This is used to determine if the scanning priority needs to be raised.
2770 static bool kswapd_shrink_zone(struct zone *zone,
2771 int classzone_idx,
2772 struct scan_control *sc,
2773 unsigned long lru_pages,
2774 unsigned long *nr_attempted)
2776 unsigned long nr_slab;
2777 int testorder = sc->order;
2778 unsigned long balance_gap;
2779 struct reclaim_state *reclaim_state = current->reclaim_state;
2780 struct shrink_control shrink = {
2781 .gfp_mask = sc->gfp_mask,
2783 bool lowmem_pressure;
2785 /* Reclaim above the high watermark. */
2786 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2789 * Kswapd reclaims only single pages with compaction enabled. Trying
2790 * too hard to reclaim until contiguous free pages have become
2791 * available can hurt performance by evicting too much useful data
2792 * from memory. Do not reclaim more than needed for compaction.
2794 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2795 compaction_suitable(zone, sc->order) !=
2796 COMPACT_SKIPPED)
2797 testorder = 0;
2800 * We put equal pressure on every zone, unless one zone has way too
2801 * many pages free already. The "too many pages" is defined as the
2802 * high wmark plus a "gap" where the gap is either the low
2803 * watermark or 1% of the zone, whichever is smaller.
2805 balance_gap = min(low_wmark_pages(zone),
2806 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2807 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2810 * If there is no low memory pressure or the zone is balanced then no
2811 * reclaim is necessary
2813 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2814 if (!lowmem_pressure && zone_balanced(zone, testorder,
2815 balance_gap, classzone_idx))
2816 return true;
2818 shrink_zone(zone, sc);
2820 reclaim_state->reclaimed_slab = 0;
2821 nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2822 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2824 /* Account for the number of pages attempted to reclaim */
2825 *nr_attempted += sc->nr_to_reclaim;
2827 if (nr_slab == 0 && !zone_reclaimable(zone))
2828 zone->all_unreclaimable = 1;
2830 zone_clear_flag(zone, ZONE_WRITEBACK);
2833 * If a zone reaches its high watermark, consider it to be no longer
2834 * congested. It's possible there are dirty pages backed by congested
2835 * BDIs but as pressure is relieved, speculatively avoid congestion
2836 * waits.
2838 if (!zone->all_unreclaimable &&
2839 zone_balanced(zone, testorder, 0, classzone_idx)) {
2840 zone_clear_flag(zone, ZONE_CONGESTED);
2841 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2844 return sc->nr_scanned >= sc->nr_to_reclaim;
2848 * For kswapd, balance_pgdat() will work across all this node's zones until
2849 * they are all at high_wmark_pages(zone).
2851 * Returns the final order kswapd was reclaiming at
2853 * There is special handling here for zones which are full of pinned pages.
2854 * This can happen if the pages are all mlocked, or if they are all used by
2855 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2856 * What we do is to detect the case where all pages in the zone have been
2857 * scanned twice and there has been zero successful reclaim. Mark the zone as
2858 * dead and from now on, only perform a short scan. Basically we're polling
2859 * the zone for when the problem goes away.
2861 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2862 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2863 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2864 * lower zones regardless of the number of free pages in the lower zones. This
2865 * interoperates with the page allocator fallback scheme to ensure that aging
2866 * of pages is balanced across the zones.
2868 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2869 int *classzone_idx)
2871 int i;
2872 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2873 unsigned long nr_soft_reclaimed;
2874 unsigned long nr_soft_scanned;
2875 struct scan_control sc = {
2876 .gfp_mask = GFP_KERNEL,
2877 .priority = DEF_PRIORITY,
2878 .may_unmap = 1,
2879 .may_swap = 1,
2880 .may_writepage = !laptop_mode,
2881 .order = order,
2882 .target_mem_cgroup = NULL,
2884 count_vm_event(PAGEOUTRUN);
2886 do {
2887 unsigned long lru_pages = 0;
2888 unsigned long nr_attempted = 0;
2889 bool raise_priority = true;
2890 bool pgdat_needs_compaction = (order > 0);
2892 sc.nr_reclaimed = 0;
2895 * Scan in the highmem->dma direction for the highest
2896 * zone which needs scanning
2898 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2899 struct zone *zone = pgdat->node_zones + i;
2901 if (!populated_zone(zone))
2902 continue;
2904 if (zone->all_unreclaimable &&
2905 sc.priority != DEF_PRIORITY)
2906 continue;
2909 * Do some background aging of the anon list, to give
2910 * pages a chance to be referenced before reclaiming.
2912 age_active_anon(zone, &sc);
2915 * If the number of buffer_heads in the machine
2916 * exceeds the maximum allowed level and this node
2917 * has a highmem zone, force kswapd to reclaim from
2918 * it to relieve lowmem pressure.
2920 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2921 end_zone = i;
2922 break;
2925 if (!zone_balanced(zone, order, 0, 0)) {
2926 end_zone = i;
2927 break;
2928 } else {
2930 * If balanced, clear the dirty and congested
2931 * flags
2933 zone_clear_flag(zone, ZONE_CONGESTED);
2934 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2938 if (i < 0)
2939 goto out;
2941 for (i = 0; i <= end_zone; i++) {
2942 struct zone *zone = pgdat->node_zones + i;
2944 if (!populated_zone(zone))
2945 continue;
2947 lru_pages += zone_reclaimable_pages(zone);
2950 * If any zone is currently balanced then kswapd will
2951 * not call compaction as it is expected that the
2952 * necessary pages are already available.
2954 if (pgdat_needs_compaction &&
2955 zone_watermark_ok(zone, order,
2956 low_wmark_pages(zone),
2957 *classzone_idx, 0))
2958 pgdat_needs_compaction = false;
2962 * If we're getting trouble reclaiming, start doing writepage
2963 * even in laptop mode.
2965 if (sc.priority < DEF_PRIORITY - 2)
2966 sc.may_writepage = 1;
2969 * Now scan the zone in the dma->highmem direction, stopping
2970 * at the last zone which needs scanning.
2972 * We do this because the page allocator works in the opposite
2973 * direction. This prevents the page allocator from allocating
2974 * pages behind kswapd's direction of progress, which would
2975 * cause too much scanning of the lower zones.
2977 for (i = 0; i <= end_zone; i++) {
2978 struct zone *zone = pgdat->node_zones + i;
2980 if (!populated_zone(zone))
2981 continue;
2983 if (zone->all_unreclaimable &&
2984 sc.priority != DEF_PRIORITY)
2985 continue;
2987 sc.nr_scanned = 0;
2989 nr_soft_scanned = 0;
2991 * Call soft limit reclaim before calling shrink_zone.
2993 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2994 order, sc.gfp_mask,
2995 &nr_soft_scanned);
2996 sc.nr_reclaimed += nr_soft_reclaimed;
2999 * There should be no need to raise the scanning
3000 * priority if enough pages are already being scanned
3001 * that that high watermark would be met at 100%
3002 * efficiency.
3004 if (kswapd_shrink_zone(zone, end_zone, &sc,
3005 lru_pages, &nr_attempted))
3006 raise_priority = false;
3010 * If the low watermark is met there is no need for processes
3011 * to be throttled on pfmemalloc_wait as they should not be
3012 * able to safely make forward progress. Wake them
3014 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3015 pfmemalloc_watermark_ok(pgdat))
3016 wake_up(&pgdat->pfmemalloc_wait);
3019 * Fragmentation may mean that the system cannot be rebalanced
3020 * for high-order allocations in all zones. If twice the
3021 * allocation size has been reclaimed and the zones are still
3022 * not balanced then recheck the watermarks at order-0 to
3023 * prevent kswapd reclaiming excessively. Assume that a
3024 * process requested a high-order can direct reclaim/compact.
3026 if (order && sc.nr_reclaimed >= 2UL << order)
3027 order = sc.order = 0;
3029 /* Check if kswapd should be suspending */
3030 if (try_to_freeze() || kthread_should_stop())
3031 break;
3034 * Compact if necessary and kswapd is reclaiming at least the
3035 * high watermark number of pages as requsted
3037 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3038 compact_pgdat(pgdat, order);
3041 * Raise priority if scanning rate is too low or there was no
3042 * progress in reclaiming pages
3044 if (raise_priority || !sc.nr_reclaimed)
3045 sc.priority--;
3046 } while (sc.priority >= 1 &&
3047 !pgdat_balanced(pgdat, order, *classzone_idx));
3049 out:
3051 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3052 * makes a decision on the order we were last reclaiming at. However,
3053 * if another caller entered the allocator slow path while kswapd
3054 * was awake, order will remain at the higher level
3056 *classzone_idx = end_zone;
3057 return order;
3060 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3062 long remaining = 0;
3063 DEFINE_WAIT(wait);
3065 if (freezing(current) || kthread_should_stop())
3066 return;
3068 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3070 /* Try to sleep for a short interval */
3071 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3072 remaining = schedule_timeout(HZ/10);
3073 finish_wait(&pgdat->kswapd_wait, &wait);
3074 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3078 * After a short sleep, check if it was a premature sleep. If not, then
3079 * go fully to sleep until explicitly woken up.
3081 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3082 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3085 * vmstat counters are not perfectly accurate and the estimated
3086 * value for counters such as NR_FREE_PAGES can deviate from the
3087 * true value by nr_online_cpus * threshold. To avoid the zone
3088 * watermarks being breached while under pressure, we reduce the
3089 * per-cpu vmstat threshold while kswapd is awake and restore
3090 * them before going back to sleep.
3092 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3095 * Compaction records what page blocks it recently failed to
3096 * isolate pages from and skips them in the future scanning.
3097 * When kswapd is going to sleep, it is reasonable to assume
3098 * that pages and compaction may succeed so reset the cache.
3100 reset_isolation_suitable(pgdat);
3102 if (!kthread_should_stop())
3103 schedule();
3105 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3106 } else {
3107 if (remaining)
3108 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3109 else
3110 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3112 finish_wait(&pgdat->kswapd_wait, &wait);
3116 * The background pageout daemon, started as a kernel thread
3117 * from the init process.
3119 * This basically trickles out pages so that we have _some_
3120 * free memory available even if there is no other activity
3121 * that frees anything up. This is needed for things like routing
3122 * etc, where we otherwise might have all activity going on in
3123 * asynchronous contexts that cannot page things out.
3125 * If there are applications that are active memory-allocators
3126 * (most normal use), this basically shouldn't matter.
3128 static int kswapd(void *p)
3130 unsigned long order, new_order;
3131 unsigned balanced_order;
3132 int classzone_idx, new_classzone_idx;
3133 int balanced_classzone_idx;
3134 pg_data_t *pgdat = (pg_data_t*)p;
3135 struct task_struct *tsk = current;
3137 struct reclaim_state reclaim_state = {
3138 .reclaimed_slab = 0,
3140 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3142 lockdep_set_current_reclaim_state(GFP_KERNEL);
3144 if (!cpumask_empty(cpumask))
3145 set_cpus_allowed_ptr(tsk, cpumask);
3146 current->reclaim_state = &reclaim_state;
3149 * Tell the memory management that we're a "memory allocator",
3150 * and that if we need more memory we should get access to it
3151 * regardless (see "__alloc_pages()"). "kswapd" should
3152 * never get caught in the normal page freeing logic.
3154 * (Kswapd normally doesn't need memory anyway, but sometimes
3155 * you need a small amount of memory in order to be able to
3156 * page out something else, and this flag essentially protects
3157 * us from recursively trying to free more memory as we're
3158 * trying to free the first piece of memory in the first place).
3160 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3161 set_freezable();
3163 order = new_order = 0;
3164 balanced_order = 0;
3165 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3166 balanced_classzone_idx = classzone_idx;
3167 for ( ; ; ) {
3168 bool ret;
3171 * If the last balance_pgdat was unsuccessful it's unlikely a
3172 * new request of a similar or harder type will succeed soon
3173 * so consider going to sleep on the basis we reclaimed at
3175 if (balanced_classzone_idx >= new_classzone_idx &&
3176 balanced_order == new_order) {
3177 new_order = pgdat->kswapd_max_order;
3178 new_classzone_idx = pgdat->classzone_idx;
3179 pgdat->kswapd_max_order = 0;
3180 pgdat->classzone_idx = pgdat->nr_zones - 1;
3183 if (order < new_order || classzone_idx > new_classzone_idx) {
3185 * Don't sleep if someone wants a larger 'order'
3186 * allocation or has tigher zone constraints
3188 order = new_order;
3189 classzone_idx = new_classzone_idx;
3190 } else {
3191 kswapd_try_to_sleep(pgdat, balanced_order,
3192 balanced_classzone_idx);
3193 order = pgdat->kswapd_max_order;
3194 classzone_idx = pgdat->classzone_idx;
3195 new_order = order;
3196 new_classzone_idx = classzone_idx;
3197 pgdat->kswapd_max_order = 0;
3198 pgdat->classzone_idx = pgdat->nr_zones - 1;
3201 ret = try_to_freeze();
3202 if (kthread_should_stop())
3203 break;
3206 * We can speed up thawing tasks if we don't call balance_pgdat
3207 * after returning from the refrigerator
3209 if (!ret) {
3210 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3211 balanced_classzone_idx = classzone_idx;
3212 balanced_order = balance_pgdat(pgdat, order,
3213 &balanced_classzone_idx);
3217 current->reclaim_state = NULL;
3218 return 0;
3222 * A zone is low on free memory, so wake its kswapd task to service it.
3224 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3226 pg_data_t *pgdat;
3228 if (!populated_zone(zone))
3229 return;
3231 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3232 return;
3233 pgdat = zone->zone_pgdat;
3234 if (pgdat->kswapd_max_order < order) {
3235 pgdat->kswapd_max_order = order;
3236 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3238 if (!waitqueue_active(&pgdat->kswapd_wait))
3239 return;
3240 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3241 return;
3243 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3244 wake_up_interruptible(&pgdat->kswapd_wait);
3248 * The reclaimable count would be mostly accurate.
3249 * The less reclaimable pages may be
3250 * - mlocked pages, which will be moved to unevictable list when encountered
3251 * - mapped pages, which may require several travels to be reclaimed
3252 * - dirty pages, which is not "instantly" reclaimable
3254 unsigned long global_reclaimable_pages(void)
3256 int nr;
3258 nr = global_page_state(NR_ACTIVE_FILE) +
3259 global_page_state(NR_INACTIVE_FILE);
3261 if (get_nr_swap_pages() > 0)
3262 nr += global_page_state(NR_ACTIVE_ANON) +
3263 global_page_state(NR_INACTIVE_ANON);
3265 return nr;
3268 unsigned long zone_reclaimable_pages(struct zone *zone)
3270 int nr;
3272 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3273 zone_page_state(zone, NR_INACTIVE_FILE);
3275 if (get_nr_swap_pages() > 0)
3276 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3277 zone_page_state(zone, NR_INACTIVE_ANON);
3279 return nr;
3282 #ifdef CONFIG_HIBERNATION
3284 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3285 * freed pages.
3287 * Rather than trying to age LRUs the aim is to preserve the overall
3288 * LRU order by reclaiming preferentially
3289 * inactive > active > active referenced > active mapped
3291 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3293 struct reclaim_state reclaim_state;
3294 struct scan_control sc = {
3295 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3296 .may_swap = 1,
3297 .may_unmap = 1,
3298 .may_writepage = 1,
3299 .nr_to_reclaim = nr_to_reclaim,
3300 .hibernation_mode = 1,
3301 .order = 0,
3302 .priority = DEF_PRIORITY,
3304 struct shrink_control shrink = {
3305 .gfp_mask = sc.gfp_mask,
3307 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3308 struct task_struct *p = current;
3309 unsigned long nr_reclaimed;
3311 p->flags |= PF_MEMALLOC;
3312 lockdep_set_current_reclaim_state(sc.gfp_mask);
3313 reclaim_state.reclaimed_slab = 0;
3314 p->reclaim_state = &reclaim_state;
3316 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3318 p->reclaim_state = NULL;
3319 lockdep_clear_current_reclaim_state();
3320 p->flags &= ~PF_MEMALLOC;
3322 return nr_reclaimed;
3324 #endif /* CONFIG_HIBERNATION */
3326 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3327 not required for correctness. So if the last cpu in a node goes
3328 away, we get changed to run anywhere: as the first one comes back,
3329 restore their cpu bindings. */
3330 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3331 void *hcpu)
3333 int nid;
3335 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3336 for_each_node_state(nid, N_MEMORY) {
3337 pg_data_t *pgdat = NODE_DATA(nid);
3338 const struct cpumask *mask;
3340 mask = cpumask_of_node(pgdat->node_id);
3342 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3343 /* One of our CPUs online: restore mask */
3344 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3347 return NOTIFY_OK;
3351 * This kswapd start function will be called by init and node-hot-add.
3352 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3354 int kswapd_run(int nid)
3356 pg_data_t *pgdat = NODE_DATA(nid);
3357 int ret = 0;
3359 if (pgdat->kswapd)
3360 return 0;
3362 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3363 if (IS_ERR(pgdat->kswapd)) {
3364 /* failure at boot is fatal */
3365 BUG_ON(system_state == SYSTEM_BOOTING);
3366 pr_err("Failed to start kswapd on node %d\n", nid);
3367 ret = PTR_ERR(pgdat->kswapd);
3368 pgdat->kswapd = NULL;
3370 return ret;
3374 * Called by memory hotplug when all memory in a node is offlined. Caller must
3375 * hold lock_memory_hotplug().
3377 void kswapd_stop(int nid)
3379 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3381 if (kswapd) {
3382 kthread_stop(kswapd);
3383 NODE_DATA(nid)->kswapd = NULL;
3387 static int __init kswapd_init(void)
3389 int nid;
3391 swap_setup();
3392 for_each_node_state(nid, N_MEMORY)
3393 kswapd_run(nid);
3394 hotcpu_notifier(cpu_callback, 0);
3395 return 0;
3398 module_init(kswapd_init)
3400 #ifdef CONFIG_NUMA
3402 * Zone reclaim mode
3404 * If non-zero call zone_reclaim when the number of free pages falls below
3405 * the watermarks.
3407 int zone_reclaim_mode __read_mostly;
3409 #define RECLAIM_OFF 0
3410 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3411 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3412 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3415 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3416 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3417 * a zone.
3419 #define ZONE_RECLAIM_PRIORITY 4
3422 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3423 * occur.
3425 int sysctl_min_unmapped_ratio = 1;
3428 * If the number of slab pages in a zone grows beyond this percentage then
3429 * slab reclaim needs to occur.
3431 int sysctl_min_slab_ratio = 5;
3433 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3435 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3436 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3437 zone_page_state(zone, NR_ACTIVE_FILE);
3440 * It's possible for there to be more file mapped pages than
3441 * accounted for by the pages on the file LRU lists because
3442 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3444 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3447 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3448 static long zone_pagecache_reclaimable(struct zone *zone)
3450 long nr_pagecache_reclaimable;
3451 long delta = 0;
3454 * If RECLAIM_SWAP is set, then all file pages are considered
3455 * potentially reclaimable. Otherwise, we have to worry about
3456 * pages like swapcache and zone_unmapped_file_pages() provides
3457 * a better estimate
3459 if (zone_reclaim_mode & RECLAIM_SWAP)
3460 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3461 else
3462 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3464 /* If we can't clean pages, remove dirty pages from consideration */
3465 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3466 delta += zone_page_state(zone, NR_FILE_DIRTY);
3468 /* Watch for any possible underflows due to delta */
3469 if (unlikely(delta > nr_pagecache_reclaimable))
3470 delta = nr_pagecache_reclaimable;
3472 return nr_pagecache_reclaimable - delta;
3476 * Try to free up some pages from this zone through reclaim.
3478 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3480 /* Minimum pages needed in order to stay on node */
3481 const unsigned long nr_pages = 1 << order;
3482 struct task_struct *p = current;
3483 struct reclaim_state reclaim_state;
3484 struct scan_control sc = {
3485 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3486 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3487 .may_swap = 1,
3488 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3489 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3490 .order = order,
3491 .priority = ZONE_RECLAIM_PRIORITY,
3493 struct shrink_control shrink = {
3494 .gfp_mask = sc.gfp_mask,
3496 unsigned long nr_slab_pages0, nr_slab_pages1;
3498 cond_resched();
3500 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3501 * and we also need to be able to write out pages for RECLAIM_WRITE
3502 * and RECLAIM_SWAP.
3504 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3505 lockdep_set_current_reclaim_state(gfp_mask);
3506 reclaim_state.reclaimed_slab = 0;
3507 p->reclaim_state = &reclaim_state;
3509 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3511 * Free memory by calling shrink zone with increasing
3512 * priorities until we have enough memory freed.
3514 do {
3515 shrink_zone(zone, &sc);
3516 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3519 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3520 if (nr_slab_pages0 > zone->min_slab_pages) {
3522 * shrink_slab() does not currently allow us to determine how
3523 * many pages were freed in this zone. So we take the current
3524 * number of slab pages and shake the slab until it is reduced
3525 * by the same nr_pages that we used for reclaiming unmapped
3526 * pages.
3528 * Note that shrink_slab will free memory on all zones and may
3529 * take a long time.
3531 for (;;) {
3532 unsigned long lru_pages = zone_reclaimable_pages(zone);
3534 /* No reclaimable slab or very low memory pressure */
3535 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3536 break;
3538 /* Freed enough memory */
3539 nr_slab_pages1 = zone_page_state(zone,
3540 NR_SLAB_RECLAIMABLE);
3541 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3542 break;
3546 * Update nr_reclaimed by the number of slab pages we
3547 * reclaimed from this zone.
3549 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3550 if (nr_slab_pages1 < nr_slab_pages0)
3551 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3554 p->reclaim_state = NULL;
3555 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3556 lockdep_clear_current_reclaim_state();
3557 return sc.nr_reclaimed >= nr_pages;
3560 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3562 int node_id;
3563 int ret;
3566 * Zone reclaim reclaims unmapped file backed pages and
3567 * slab pages if we are over the defined limits.
3569 * A small portion of unmapped file backed pages is needed for
3570 * file I/O otherwise pages read by file I/O will be immediately
3571 * thrown out if the zone is overallocated. So we do not reclaim
3572 * if less than a specified percentage of the zone is used by
3573 * unmapped file backed pages.
3575 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3576 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3577 return ZONE_RECLAIM_FULL;
3579 if (zone->all_unreclaimable)
3580 return ZONE_RECLAIM_FULL;
3583 * Do not scan if the allocation should not be delayed.
3585 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3586 return ZONE_RECLAIM_NOSCAN;
3589 * Only run zone reclaim on the local zone or on zones that do not
3590 * have associated processors. This will favor the local processor
3591 * over remote processors and spread off node memory allocations
3592 * as wide as possible.
3594 node_id = zone_to_nid(zone);
3595 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3596 return ZONE_RECLAIM_NOSCAN;
3598 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3599 return ZONE_RECLAIM_NOSCAN;
3601 ret = __zone_reclaim(zone, gfp_mask, order);
3602 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3604 if (!ret)
3605 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3607 return ret;
3609 #endif
3612 * page_evictable - test whether a page is evictable
3613 * @page: the page to test
3615 * Test whether page is evictable--i.e., should be placed on active/inactive
3616 * lists vs unevictable list.
3618 * Reasons page might not be evictable:
3619 * (1) page's mapping marked unevictable
3620 * (2) page is part of an mlocked VMA
3623 int page_evictable(struct page *page)
3625 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3628 #ifdef CONFIG_SHMEM
3630 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3631 * @pages: array of pages to check
3632 * @nr_pages: number of pages to check
3634 * Checks pages for evictability and moves them to the appropriate lru list.
3636 * This function is only used for SysV IPC SHM_UNLOCK.
3638 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3640 struct lruvec *lruvec;
3641 struct zone *zone = NULL;
3642 int pgscanned = 0;
3643 int pgrescued = 0;
3644 int i;
3646 for (i = 0; i < nr_pages; i++) {
3647 struct page *page = pages[i];
3648 struct zone *pagezone;
3650 pgscanned++;
3651 pagezone = page_zone(page);
3652 if (pagezone != zone) {
3653 if (zone)
3654 spin_unlock_irq(&zone->lru_lock);
3655 zone = pagezone;
3656 spin_lock_irq(&zone->lru_lock);
3658 lruvec = mem_cgroup_page_lruvec(page, zone);
3660 if (!PageLRU(page) || !PageUnevictable(page))
3661 continue;
3663 if (page_evictable(page)) {
3664 enum lru_list lru = page_lru_base_type(page);
3666 VM_BUG_ON(PageActive(page));
3667 ClearPageUnevictable(page);
3668 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3669 add_page_to_lru_list(page, lruvec, lru);
3670 pgrescued++;
3674 if (zone) {
3675 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3676 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3677 spin_unlock_irq(&zone->lru_lock);
3680 #endif /* CONFIG_SHMEM */
3682 static void warn_scan_unevictable_pages(void)
3684 printk_once(KERN_WARNING
3685 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3686 "disabled for lack of a legitimate use case. If you have "
3687 "one, please send an email to linux-mm@kvack.org.\n",
3688 current->comm);
3692 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3693 * all nodes' unevictable lists for evictable pages
3695 unsigned long scan_unevictable_pages;
3697 int scan_unevictable_handler(struct ctl_table *table, int write,
3698 void __user *buffer,
3699 size_t *length, loff_t *ppos)
3701 warn_scan_unevictable_pages();
3702 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3703 scan_unevictable_pages = 0;
3704 return 0;
3707 #ifdef CONFIG_NUMA
3709 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3710 * a specified node's per zone unevictable lists for evictable pages.
3713 static ssize_t read_scan_unevictable_node(struct device *dev,
3714 struct device_attribute *attr,
3715 char *buf)
3717 warn_scan_unevictable_pages();
3718 return sprintf(buf, "0\n"); /* always zero; should fit... */
3721 static ssize_t write_scan_unevictable_node(struct device *dev,
3722 struct device_attribute *attr,
3723 const char *buf, size_t count)
3725 warn_scan_unevictable_pages();
3726 return 1;
3730 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3731 read_scan_unevictable_node,
3732 write_scan_unevictable_node);
3734 int scan_unevictable_register_node(struct node *node)
3736 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3739 void scan_unevictable_unregister_node(struct node *node)
3741 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3743 #endif