1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
23 #include <asm/pgalloc.h>
33 SCAN_LACK_REFERENCED_PAGE
,
47 SCAN_ALLOC_HUGE_PAGE_FAIL
,
48 SCAN_CGROUP_CHARGE_FAIL
,
51 SCAN_PAGE_HAS_PRIVATE
,
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/huge_memory.h>
57 /* default scan 8*512 pte (or vmas) every 30 second */
58 static unsigned int khugepaged_pages_to_scan __read_mostly
;
59 static unsigned int khugepaged_pages_collapsed
;
60 static unsigned int khugepaged_full_scans
;
61 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly
= 10000;
62 /* during fragmentation poll the hugepage allocator once every minute */
63 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly
= 60000;
64 static unsigned long khugepaged_sleep_expire
;
65 static DEFINE_SPINLOCK(khugepaged_mm_lock
);
66 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait
);
68 * default collapse hugepages if there is at least one pte mapped like
69 * it would have happened if the vma was large enough during page
72 static unsigned int khugepaged_max_ptes_none __read_mostly
;
73 static unsigned int khugepaged_max_ptes_swap __read_mostly
;
75 #define MM_SLOTS_HASH_BITS 10
76 static __read_mostly
DEFINE_HASHTABLE(mm_slots_hash
, MM_SLOTS_HASH_BITS
);
78 static struct kmem_cache
*mm_slot_cache __read_mostly
;
80 #define MAX_PTE_MAPPED_THP 8
83 * struct mm_slot - hash lookup from mm to mm_slot
84 * @hash: hash collision list
85 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
86 * @mm: the mm that this information is valid for
89 struct hlist_node hash
;
90 struct list_head mm_node
;
93 /* pte-mapped THP in this mm */
94 int nr_pte_mapped_thp
;
95 unsigned long pte_mapped_thp
[MAX_PTE_MAPPED_THP
];
99 * struct khugepaged_scan - cursor for scanning
100 * @mm_head: the head of the mm list to scan
101 * @mm_slot: the current mm_slot we are scanning
102 * @address: the next address inside that to be scanned
104 * There is only the one khugepaged_scan instance of this cursor structure.
106 struct khugepaged_scan
{
107 struct list_head mm_head
;
108 struct mm_slot
*mm_slot
;
109 unsigned long address
;
112 static struct khugepaged_scan khugepaged_scan
= {
113 .mm_head
= LIST_HEAD_INIT(khugepaged_scan
.mm_head
),
117 static ssize_t
scan_sleep_millisecs_show(struct kobject
*kobj
,
118 struct kobj_attribute
*attr
,
121 return sprintf(buf
, "%u\n", khugepaged_scan_sleep_millisecs
);
124 static ssize_t
scan_sleep_millisecs_store(struct kobject
*kobj
,
125 struct kobj_attribute
*attr
,
126 const char *buf
, size_t count
)
131 err
= kstrtoul(buf
, 10, &msecs
);
132 if (err
|| msecs
> UINT_MAX
)
135 khugepaged_scan_sleep_millisecs
= msecs
;
136 khugepaged_sleep_expire
= 0;
137 wake_up_interruptible(&khugepaged_wait
);
141 static struct kobj_attribute scan_sleep_millisecs_attr
=
142 __ATTR(scan_sleep_millisecs
, 0644, scan_sleep_millisecs_show
,
143 scan_sleep_millisecs_store
);
145 static ssize_t
alloc_sleep_millisecs_show(struct kobject
*kobj
,
146 struct kobj_attribute
*attr
,
149 return sprintf(buf
, "%u\n", khugepaged_alloc_sleep_millisecs
);
152 static ssize_t
alloc_sleep_millisecs_store(struct kobject
*kobj
,
153 struct kobj_attribute
*attr
,
154 const char *buf
, size_t count
)
159 err
= kstrtoul(buf
, 10, &msecs
);
160 if (err
|| msecs
> UINT_MAX
)
163 khugepaged_alloc_sleep_millisecs
= msecs
;
164 khugepaged_sleep_expire
= 0;
165 wake_up_interruptible(&khugepaged_wait
);
169 static struct kobj_attribute alloc_sleep_millisecs_attr
=
170 __ATTR(alloc_sleep_millisecs
, 0644, alloc_sleep_millisecs_show
,
171 alloc_sleep_millisecs_store
);
173 static ssize_t
pages_to_scan_show(struct kobject
*kobj
,
174 struct kobj_attribute
*attr
,
177 return sprintf(buf
, "%u\n", khugepaged_pages_to_scan
);
179 static ssize_t
pages_to_scan_store(struct kobject
*kobj
,
180 struct kobj_attribute
*attr
,
181 const char *buf
, size_t count
)
186 err
= kstrtoul(buf
, 10, &pages
);
187 if (err
|| !pages
|| pages
> UINT_MAX
)
190 khugepaged_pages_to_scan
= pages
;
194 static struct kobj_attribute pages_to_scan_attr
=
195 __ATTR(pages_to_scan
, 0644, pages_to_scan_show
,
196 pages_to_scan_store
);
198 static ssize_t
pages_collapsed_show(struct kobject
*kobj
,
199 struct kobj_attribute
*attr
,
202 return sprintf(buf
, "%u\n", khugepaged_pages_collapsed
);
204 static struct kobj_attribute pages_collapsed_attr
=
205 __ATTR_RO(pages_collapsed
);
207 static ssize_t
full_scans_show(struct kobject
*kobj
,
208 struct kobj_attribute
*attr
,
211 return sprintf(buf
, "%u\n", khugepaged_full_scans
);
213 static struct kobj_attribute full_scans_attr
=
214 __ATTR_RO(full_scans
);
216 static ssize_t
khugepaged_defrag_show(struct kobject
*kobj
,
217 struct kobj_attribute
*attr
, char *buf
)
219 return single_hugepage_flag_show(kobj
, attr
, buf
,
220 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
222 static ssize_t
khugepaged_defrag_store(struct kobject
*kobj
,
223 struct kobj_attribute
*attr
,
224 const char *buf
, size_t count
)
226 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
227 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
229 static struct kobj_attribute khugepaged_defrag_attr
=
230 __ATTR(defrag
, 0644, khugepaged_defrag_show
,
231 khugepaged_defrag_store
);
234 * max_ptes_none controls if khugepaged should collapse hugepages over
235 * any unmapped ptes in turn potentially increasing the memory
236 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
237 * reduce the available free memory in the system as it
238 * runs. Increasing max_ptes_none will instead potentially reduce the
239 * free memory in the system during the khugepaged scan.
241 static ssize_t
khugepaged_max_ptes_none_show(struct kobject
*kobj
,
242 struct kobj_attribute
*attr
,
245 return sprintf(buf
, "%u\n", khugepaged_max_ptes_none
);
247 static ssize_t
khugepaged_max_ptes_none_store(struct kobject
*kobj
,
248 struct kobj_attribute
*attr
,
249 const char *buf
, size_t count
)
252 unsigned long max_ptes_none
;
254 err
= kstrtoul(buf
, 10, &max_ptes_none
);
255 if (err
|| max_ptes_none
> HPAGE_PMD_NR
-1)
258 khugepaged_max_ptes_none
= max_ptes_none
;
262 static struct kobj_attribute khugepaged_max_ptes_none_attr
=
263 __ATTR(max_ptes_none
, 0644, khugepaged_max_ptes_none_show
,
264 khugepaged_max_ptes_none_store
);
266 static ssize_t
khugepaged_max_ptes_swap_show(struct kobject
*kobj
,
267 struct kobj_attribute
*attr
,
270 return sprintf(buf
, "%u\n", khugepaged_max_ptes_swap
);
273 static ssize_t
khugepaged_max_ptes_swap_store(struct kobject
*kobj
,
274 struct kobj_attribute
*attr
,
275 const char *buf
, size_t count
)
278 unsigned long max_ptes_swap
;
280 err
= kstrtoul(buf
, 10, &max_ptes_swap
);
281 if (err
|| max_ptes_swap
> HPAGE_PMD_NR
-1)
284 khugepaged_max_ptes_swap
= max_ptes_swap
;
289 static struct kobj_attribute khugepaged_max_ptes_swap_attr
=
290 __ATTR(max_ptes_swap
, 0644, khugepaged_max_ptes_swap_show
,
291 khugepaged_max_ptes_swap_store
);
293 static struct attribute
*khugepaged_attr
[] = {
294 &khugepaged_defrag_attr
.attr
,
295 &khugepaged_max_ptes_none_attr
.attr
,
296 &pages_to_scan_attr
.attr
,
297 &pages_collapsed_attr
.attr
,
298 &full_scans_attr
.attr
,
299 &scan_sleep_millisecs_attr
.attr
,
300 &alloc_sleep_millisecs_attr
.attr
,
301 &khugepaged_max_ptes_swap_attr
.attr
,
305 struct attribute_group khugepaged_attr_group
= {
306 .attrs
= khugepaged_attr
,
307 .name
= "khugepaged",
309 #endif /* CONFIG_SYSFS */
311 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
313 int hugepage_madvise(struct vm_area_struct
*vma
,
314 unsigned long *vm_flags
, int advice
)
320 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
321 * can't handle this properly after s390_enable_sie, so we simply
322 * ignore the madvise to prevent qemu from causing a SIGSEGV.
324 if (mm_has_pgste(vma
->vm_mm
))
327 *vm_flags
&= ~VM_NOHUGEPAGE
;
328 *vm_flags
|= VM_HUGEPAGE
;
330 * If the vma become good for khugepaged to scan,
331 * register it here without waiting a page fault that
332 * may not happen any time soon.
334 if (!(*vm_flags
& VM_NO_KHUGEPAGED
) &&
335 khugepaged_enter_vma_merge(vma
, *vm_flags
))
338 case MADV_NOHUGEPAGE
:
339 *vm_flags
&= ~VM_HUGEPAGE
;
340 *vm_flags
|= VM_NOHUGEPAGE
;
342 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
343 * this vma even if we leave the mm registered in khugepaged if
344 * it got registered before VM_NOHUGEPAGE was set.
352 int __init
khugepaged_init(void)
354 mm_slot_cache
= kmem_cache_create("khugepaged_mm_slot",
355 sizeof(struct mm_slot
),
356 __alignof__(struct mm_slot
), 0, NULL
);
360 khugepaged_pages_to_scan
= HPAGE_PMD_NR
* 8;
361 khugepaged_max_ptes_none
= HPAGE_PMD_NR
- 1;
362 khugepaged_max_ptes_swap
= HPAGE_PMD_NR
/ 8;
367 void __init
khugepaged_destroy(void)
369 kmem_cache_destroy(mm_slot_cache
);
372 static inline struct mm_slot
*alloc_mm_slot(void)
374 if (!mm_slot_cache
) /* initialization failed */
376 return kmem_cache_zalloc(mm_slot_cache
, GFP_KERNEL
);
379 static inline void free_mm_slot(struct mm_slot
*mm_slot
)
381 kmem_cache_free(mm_slot_cache
, mm_slot
);
384 static struct mm_slot
*get_mm_slot(struct mm_struct
*mm
)
386 struct mm_slot
*mm_slot
;
388 hash_for_each_possible(mm_slots_hash
, mm_slot
, hash
, (unsigned long)mm
)
389 if (mm
== mm_slot
->mm
)
395 static void insert_to_mm_slots_hash(struct mm_struct
*mm
,
396 struct mm_slot
*mm_slot
)
399 hash_add(mm_slots_hash
, &mm_slot
->hash
, (long)mm
);
402 static inline int khugepaged_test_exit(struct mm_struct
*mm
)
404 return atomic_read(&mm
->mm_users
) == 0;
407 static bool hugepage_vma_check(struct vm_area_struct
*vma
,
408 unsigned long vm_flags
)
410 if ((!(vm_flags
& VM_HUGEPAGE
) && !khugepaged_always()) ||
411 (vm_flags
& VM_NOHUGEPAGE
) ||
412 test_bit(MMF_DISABLE_THP
, &vma
->vm_mm
->flags
))
415 if (shmem_file(vma
->vm_file
) ||
416 (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS
) &&
418 (vm_flags
& VM_DENYWRITE
))) {
419 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
421 return IS_ALIGNED((vma
->vm_start
>> PAGE_SHIFT
) - vma
->vm_pgoff
,
424 if (!vma
->anon_vma
|| vma
->vm_ops
)
426 if (is_vma_temporary_stack(vma
))
428 return !(vm_flags
& VM_NO_KHUGEPAGED
);
431 int __khugepaged_enter(struct mm_struct
*mm
)
433 struct mm_slot
*mm_slot
;
436 mm_slot
= alloc_mm_slot();
440 /* __khugepaged_exit() must not run from under us */
441 VM_BUG_ON_MM(khugepaged_test_exit(mm
), mm
);
442 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE
, &mm
->flags
))) {
443 free_mm_slot(mm_slot
);
447 spin_lock(&khugepaged_mm_lock
);
448 insert_to_mm_slots_hash(mm
, mm_slot
);
450 * Insert just behind the scanning cursor, to let the area settle
453 wakeup
= list_empty(&khugepaged_scan
.mm_head
);
454 list_add_tail(&mm_slot
->mm_node
, &khugepaged_scan
.mm_head
);
455 spin_unlock(&khugepaged_mm_lock
);
459 wake_up_interruptible(&khugepaged_wait
);
464 int khugepaged_enter_vma_merge(struct vm_area_struct
*vma
,
465 unsigned long vm_flags
)
467 unsigned long hstart
, hend
;
470 * khugepaged only supports read-only files for non-shmem files.
471 * khugepaged does not yet work on special mappings. And
472 * file-private shmem THP is not supported.
474 if (!hugepage_vma_check(vma
, vm_flags
))
477 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
478 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
480 return khugepaged_enter(vma
, vm_flags
);
484 void __khugepaged_exit(struct mm_struct
*mm
)
486 struct mm_slot
*mm_slot
;
489 spin_lock(&khugepaged_mm_lock
);
490 mm_slot
= get_mm_slot(mm
);
491 if (mm_slot
&& khugepaged_scan
.mm_slot
!= mm_slot
) {
492 hash_del(&mm_slot
->hash
);
493 list_del(&mm_slot
->mm_node
);
496 spin_unlock(&khugepaged_mm_lock
);
499 clear_bit(MMF_VM_HUGEPAGE
, &mm
->flags
);
500 free_mm_slot(mm_slot
);
502 } else if (mm_slot
) {
504 * This is required to serialize against
505 * khugepaged_test_exit() (which is guaranteed to run
506 * under mmap sem read mode). Stop here (after we
507 * return all pagetables will be destroyed) until
508 * khugepaged has finished working on the pagetables
509 * under the mmap_sem.
511 down_write(&mm
->mmap_sem
);
512 up_write(&mm
->mmap_sem
);
516 static void release_pte_page(struct page
*page
)
518 dec_node_page_state(page
, NR_ISOLATED_ANON
+ page_is_file_cache(page
));
520 putback_lru_page(page
);
523 static void release_pte_pages(pte_t
*pte
, pte_t
*_pte
)
525 while (--_pte
>= pte
) {
526 pte_t pteval
= *_pte
;
527 if (!pte_none(pteval
) && !is_zero_pfn(pte_pfn(pteval
)))
528 release_pte_page(pte_page(pteval
));
532 static int __collapse_huge_page_isolate(struct vm_area_struct
*vma
,
533 unsigned long address
,
536 struct page
*page
= NULL
;
538 int none_or_zero
= 0, result
= 0, referenced
= 0;
539 bool writable
= false;
541 for (_pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
542 _pte
++, address
+= PAGE_SIZE
) {
543 pte_t pteval
= *_pte
;
544 if (pte_none(pteval
) || (pte_present(pteval
) &&
545 is_zero_pfn(pte_pfn(pteval
)))) {
546 if (!userfaultfd_armed(vma
) &&
547 ++none_or_zero
<= khugepaged_max_ptes_none
) {
550 result
= SCAN_EXCEED_NONE_PTE
;
554 if (!pte_present(pteval
)) {
555 result
= SCAN_PTE_NON_PRESENT
;
558 page
= vm_normal_page(vma
, address
, pteval
);
559 if (unlikely(!page
)) {
560 result
= SCAN_PAGE_NULL
;
564 /* TODO: teach khugepaged to collapse THP mapped with pte */
565 if (PageCompound(page
)) {
566 result
= SCAN_PAGE_COMPOUND
;
570 VM_BUG_ON_PAGE(!PageAnon(page
), page
);
573 * We can do it before isolate_lru_page because the
574 * page can't be freed from under us. NOTE: PG_lock
575 * is needed to serialize against split_huge_page
576 * when invoked from the VM.
578 if (!trylock_page(page
)) {
579 result
= SCAN_PAGE_LOCK
;
584 * cannot use mapcount: can't collapse if there's a gup pin.
585 * The page must only be referenced by the scanned process
586 * and page swap cache.
588 if (page_count(page
) != 1 + PageSwapCache(page
)) {
590 result
= SCAN_PAGE_COUNT
;
593 if (pte_write(pteval
)) {
596 if (PageSwapCache(page
) &&
597 !reuse_swap_page(page
, NULL
)) {
599 result
= SCAN_SWAP_CACHE_PAGE
;
603 * Page is not in the swap cache. It can be collapsed
609 * Isolate the page to avoid collapsing an hugepage
610 * currently in use by the VM.
612 if (isolate_lru_page(page
)) {
614 result
= SCAN_DEL_PAGE_LRU
;
617 inc_node_page_state(page
,
618 NR_ISOLATED_ANON
+ page_is_file_cache(page
));
619 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
620 VM_BUG_ON_PAGE(PageLRU(page
), page
);
622 /* There should be enough young pte to collapse the page */
623 if (pte_young(pteval
) ||
624 page_is_young(page
) || PageReferenced(page
) ||
625 mmu_notifier_test_young(vma
->vm_mm
, address
))
628 if (likely(writable
)) {
629 if (likely(referenced
)) {
630 result
= SCAN_SUCCEED
;
631 trace_mm_collapse_huge_page_isolate(page
, none_or_zero
,
632 referenced
, writable
, result
);
636 result
= SCAN_PAGE_RO
;
640 release_pte_pages(pte
, _pte
);
641 trace_mm_collapse_huge_page_isolate(page
, none_or_zero
,
642 referenced
, writable
, result
);
646 static void __collapse_huge_page_copy(pte_t
*pte
, struct page
*page
,
647 struct vm_area_struct
*vma
,
648 unsigned long address
,
652 for (_pte
= pte
; _pte
< pte
+ HPAGE_PMD_NR
;
653 _pte
++, page
++, address
+= PAGE_SIZE
) {
654 pte_t pteval
= *_pte
;
655 struct page
*src_page
;
657 if (pte_none(pteval
) || is_zero_pfn(pte_pfn(pteval
))) {
658 clear_user_highpage(page
, address
);
659 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, 1);
660 if (is_zero_pfn(pte_pfn(pteval
))) {
662 * ptl mostly unnecessary.
666 * paravirt calls inside pte_clear here are
669 pte_clear(vma
->vm_mm
, address
, _pte
);
673 src_page
= pte_page(pteval
);
674 copy_user_highpage(page
, src_page
, address
, vma
);
675 VM_BUG_ON_PAGE(page_mapcount(src_page
) != 1, src_page
);
676 release_pte_page(src_page
);
678 * ptl mostly unnecessary, but preempt has to
679 * be disabled to update the per-cpu stats
680 * inside page_remove_rmap().
684 * paravirt calls inside pte_clear here are
687 pte_clear(vma
->vm_mm
, address
, _pte
);
688 page_remove_rmap(src_page
, false);
690 free_page_and_swap_cache(src_page
);
695 static void khugepaged_alloc_sleep(void)
699 add_wait_queue(&khugepaged_wait
, &wait
);
700 freezable_schedule_timeout_interruptible(
701 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs
));
702 remove_wait_queue(&khugepaged_wait
, &wait
);
705 static int khugepaged_node_load
[MAX_NUMNODES
];
707 static bool khugepaged_scan_abort(int nid
)
712 * If node_reclaim_mode is disabled, then no extra effort is made to
713 * allocate memory locally.
715 if (!node_reclaim_mode
)
718 /* If there is a count for this node already, it must be acceptable */
719 if (khugepaged_node_load
[nid
])
722 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
723 if (!khugepaged_node_load
[i
])
725 if (node_distance(nid
, i
) > node_reclaim_distance
)
731 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
732 static inline gfp_t
alloc_hugepage_khugepaged_gfpmask(void)
734 return khugepaged_defrag() ? GFP_TRANSHUGE
: GFP_TRANSHUGE_LIGHT
;
738 static int khugepaged_find_target_node(void)
740 static int last_khugepaged_target_node
= NUMA_NO_NODE
;
741 int nid
, target_node
= 0, max_value
= 0;
743 /* find first node with max normal pages hit */
744 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
745 if (khugepaged_node_load
[nid
] > max_value
) {
746 max_value
= khugepaged_node_load
[nid
];
750 /* do some balance if several nodes have the same hit record */
751 if (target_node
<= last_khugepaged_target_node
)
752 for (nid
= last_khugepaged_target_node
+ 1; nid
< MAX_NUMNODES
;
754 if (max_value
== khugepaged_node_load
[nid
]) {
759 last_khugepaged_target_node
= target_node
;
763 static bool khugepaged_prealloc_page(struct page
**hpage
, bool *wait
)
765 if (IS_ERR(*hpage
)) {
771 khugepaged_alloc_sleep();
781 khugepaged_alloc_page(struct page
**hpage
, gfp_t gfp
, int node
)
783 VM_BUG_ON_PAGE(*hpage
, *hpage
);
785 *hpage
= __alloc_pages_node(node
, gfp
, HPAGE_PMD_ORDER
);
786 if (unlikely(!*hpage
)) {
787 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
788 *hpage
= ERR_PTR(-ENOMEM
);
792 prep_transhuge_page(*hpage
);
793 count_vm_event(THP_COLLAPSE_ALLOC
);
797 static int khugepaged_find_target_node(void)
802 static inline struct page
*alloc_khugepaged_hugepage(void)
806 page
= alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
809 prep_transhuge_page(page
);
813 static struct page
*khugepaged_alloc_hugepage(bool *wait
)
818 hpage
= alloc_khugepaged_hugepage();
820 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
825 khugepaged_alloc_sleep();
827 count_vm_event(THP_COLLAPSE_ALLOC
);
828 } while (unlikely(!hpage
) && likely(khugepaged_enabled()));
833 static bool khugepaged_prealloc_page(struct page
**hpage
, bool *wait
)
836 *hpage
= khugepaged_alloc_hugepage(wait
);
838 if (unlikely(!*hpage
))
845 khugepaged_alloc_page(struct page
**hpage
, gfp_t gfp
, int node
)
854 * If mmap_sem temporarily dropped, revalidate vma
855 * before taking mmap_sem.
856 * Return 0 if succeeds, otherwise return none-zero
860 static int hugepage_vma_revalidate(struct mm_struct
*mm
, unsigned long address
,
861 struct vm_area_struct
**vmap
)
863 struct vm_area_struct
*vma
;
864 unsigned long hstart
, hend
;
866 if (unlikely(khugepaged_test_exit(mm
)))
867 return SCAN_ANY_PROCESS
;
869 *vmap
= vma
= find_vma(mm
, address
);
871 return SCAN_VMA_NULL
;
873 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
874 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
875 if (address
< hstart
|| address
+ HPAGE_PMD_SIZE
> hend
)
876 return SCAN_ADDRESS_RANGE
;
877 if (!hugepage_vma_check(vma
, vma
->vm_flags
))
878 return SCAN_VMA_CHECK
;
883 * Bring missing pages in from swap, to complete THP collapse.
884 * Only done if khugepaged_scan_pmd believes it is worthwhile.
886 * Called and returns without pte mapped or spinlocks held,
887 * but with mmap_sem held to protect against vma changes.
890 static bool __collapse_huge_page_swapin(struct mm_struct
*mm
,
891 struct vm_area_struct
*vma
,
892 unsigned long address
, pmd_t
*pmd
,
897 struct vm_fault vmf
= {
900 .flags
= FAULT_FLAG_ALLOW_RETRY
,
902 .pgoff
= linear_page_index(vma
, address
),
905 /* we only decide to swapin, if there is enough young ptes */
906 if (referenced
< HPAGE_PMD_NR
/2) {
907 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 0);
910 vmf
.pte
= pte_offset_map(pmd
, address
);
911 for (; vmf
.address
< address
+ HPAGE_PMD_NR
*PAGE_SIZE
;
912 vmf
.pte
++, vmf
.address
+= PAGE_SIZE
) {
913 vmf
.orig_pte
= *vmf
.pte
;
914 if (!is_swap_pte(vmf
.orig_pte
))
917 ret
= do_swap_page(&vmf
);
919 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
920 if (ret
& VM_FAULT_RETRY
) {
921 down_read(&mm
->mmap_sem
);
922 if (hugepage_vma_revalidate(mm
, address
, &vmf
.vma
)) {
923 /* vma is no longer available, don't continue to swapin */
924 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 0);
927 /* check if the pmd is still valid */
928 if (mm_find_pmd(mm
, address
) != pmd
) {
929 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 0);
933 if (ret
& VM_FAULT_ERROR
) {
934 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 0);
937 /* pte is unmapped now, we need to map it */
938 vmf
.pte
= pte_offset_map(pmd
, vmf
.address
);
942 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 1);
946 static void collapse_huge_page(struct mm_struct
*mm
,
947 unsigned long address
,
949 int node
, int referenced
)
954 struct page
*new_page
;
955 spinlock_t
*pmd_ptl
, *pte_ptl
;
956 int isolated
= 0, result
= 0;
957 struct mem_cgroup
*memcg
;
958 struct vm_area_struct
*vma
;
959 struct mmu_notifier_range range
;
962 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
964 /* Only allocate from the target node */
965 gfp
= alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE
;
968 * Before allocating the hugepage, release the mmap_sem read lock.
969 * The allocation can take potentially a long time if it involves
970 * sync compaction, and we do not need to hold the mmap_sem during
971 * that. We will recheck the vma after taking it again in write mode.
973 up_read(&mm
->mmap_sem
);
974 new_page
= khugepaged_alloc_page(hpage
, gfp
, node
);
976 result
= SCAN_ALLOC_HUGE_PAGE_FAIL
;
980 if (unlikely(mem_cgroup_try_charge(new_page
, mm
, gfp
, &memcg
, true))) {
981 result
= SCAN_CGROUP_CHARGE_FAIL
;
985 down_read(&mm
->mmap_sem
);
986 result
= hugepage_vma_revalidate(mm
, address
, &vma
);
988 mem_cgroup_cancel_charge(new_page
, memcg
, true);
989 up_read(&mm
->mmap_sem
);
993 pmd
= mm_find_pmd(mm
, address
);
995 result
= SCAN_PMD_NULL
;
996 mem_cgroup_cancel_charge(new_page
, memcg
, true);
997 up_read(&mm
->mmap_sem
);
1002 * __collapse_huge_page_swapin always returns with mmap_sem locked.
1003 * If it fails, we release mmap_sem and jump out_nolock.
1004 * Continuing to collapse causes inconsistency.
1006 if (!__collapse_huge_page_swapin(mm
, vma
, address
, pmd
, referenced
)) {
1007 mem_cgroup_cancel_charge(new_page
, memcg
, true);
1008 up_read(&mm
->mmap_sem
);
1012 up_read(&mm
->mmap_sem
);
1014 * Prevent all access to pagetables with the exception of
1015 * gup_fast later handled by the ptep_clear_flush and the VM
1016 * handled by the anon_vma lock + PG_lock.
1018 down_write(&mm
->mmap_sem
);
1019 result
= SCAN_ANY_PROCESS
;
1020 if (!mmget_still_valid(mm
))
1022 result
= hugepage_vma_revalidate(mm
, address
, &vma
);
1025 /* check if the pmd is still valid */
1026 if (mm_find_pmd(mm
, address
) != pmd
)
1029 anon_vma_lock_write(vma
->anon_vma
);
1031 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, NULL
, mm
,
1032 address
, address
+ HPAGE_PMD_SIZE
);
1033 mmu_notifier_invalidate_range_start(&range
);
1035 pte
= pte_offset_map(pmd
, address
);
1036 pte_ptl
= pte_lockptr(mm
, pmd
);
1038 pmd_ptl
= pmd_lock(mm
, pmd
); /* probably unnecessary */
1040 * After this gup_fast can't run anymore. This also removes
1041 * any huge TLB entry from the CPU so we won't allow
1042 * huge and small TLB entries for the same virtual address
1043 * to avoid the risk of CPU bugs in that area.
1045 _pmd
= pmdp_collapse_flush(vma
, address
, pmd
);
1046 spin_unlock(pmd_ptl
);
1047 mmu_notifier_invalidate_range_end(&range
);
1050 isolated
= __collapse_huge_page_isolate(vma
, address
, pte
);
1051 spin_unlock(pte_ptl
);
1053 if (unlikely(!isolated
)) {
1056 BUG_ON(!pmd_none(*pmd
));
1058 * We can only use set_pmd_at when establishing
1059 * hugepmds and never for establishing regular pmds that
1060 * points to regular pagetables. Use pmd_populate for that
1062 pmd_populate(mm
, pmd
, pmd_pgtable(_pmd
));
1063 spin_unlock(pmd_ptl
);
1064 anon_vma_unlock_write(vma
->anon_vma
);
1070 * All pages are isolated and locked so anon_vma rmap
1071 * can't run anymore.
1073 anon_vma_unlock_write(vma
->anon_vma
);
1075 __collapse_huge_page_copy(pte
, new_page
, vma
, address
, pte_ptl
);
1077 __SetPageUptodate(new_page
);
1078 pgtable
= pmd_pgtable(_pmd
);
1080 _pmd
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
1081 _pmd
= maybe_pmd_mkwrite(pmd_mkdirty(_pmd
), vma
);
1084 * spin_lock() below is not the equivalent of smp_wmb(), so
1085 * this is needed to avoid the copy_huge_page writes to become
1086 * visible after the set_pmd_at() write.
1091 BUG_ON(!pmd_none(*pmd
));
1092 page_add_new_anon_rmap(new_page
, vma
, address
, true);
1093 mem_cgroup_commit_charge(new_page
, memcg
, false, true);
1094 count_memcg_events(memcg
, THP_COLLAPSE_ALLOC
, 1);
1095 lru_cache_add_active_or_unevictable(new_page
, vma
);
1096 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
1097 set_pmd_at(mm
, address
, pmd
, _pmd
);
1098 update_mmu_cache_pmd(vma
, address
, pmd
);
1099 spin_unlock(pmd_ptl
);
1103 khugepaged_pages_collapsed
++;
1104 result
= SCAN_SUCCEED
;
1106 up_write(&mm
->mmap_sem
);
1108 trace_mm_collapse_huge_page(mm
, isolated
, result
);
1111 mem_cgroup_cancel_charge(new_page
, memcg
, true);
1115 static int khugepaged_scan_pmd(struct mm_struct
*mm
,
1116 struct vm_area_struct
*vma
,
1117 unsigned long address
,
1118 struct page
**hpage
)
1122 int ret
= 0, none_or_zero
= 0, result
= 0, referenced
= 0;
1123 struct page
*page
= NULL
;
1124 unsigned long _address
;
1126 int node
= NUMA_NO_NODE
, unmapped
= 0;
1127 bool writable
= false;
1129 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
1131 pmd
= mm_find_pmd(mm
, address
);
1133 result
= SCAN_PMD_NULL
;
1137 memset(khugepaged_node_load
, 0, sizeof(khugepaged_node_load
));
1138 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1139 for (_address
= address
, _pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
1140 _pte
++, _address
+= PAGE_SIZE
) {
1141 pte_t pteval
= *_pte
;
1142 if (is_swap_pte(pteval
)) {
1143 if (++unmapped
<= khugepaged_max_ptes_swap
) {
1146 result
= SCAN_EXCEED_SWAP_PTE
;
1150 if (pte_none(pteval
) || is_zero_pfn(pte_pfn(pteval
))) {
1151 if (!userfaultfd_armed(vma
) &&
1152 ++none_or_zero
<= khugepaged_max_ptes_none
) {
1155 result
= SCAN_EXCEED_NONE_PTE
;
1159 if (!pte_present(pteval
)) {
1160 result
= SCAN_PTE_NON_PRESENT
;
1163 if (pte_write(pteval
))
1166 page
= vm_normal_page(vma
, _address
, pteval
);
1167 if (unlikely(!page
)) {
1168 result
= SCAN_PAGE_NULL
;
1172 /* TODO: teach khugepaged to collapse THP mapped with pte */
1173 if (PageCompound(page
)) {
1174 result
= SCAN_PAGE_COMPOUND
;
1179 * Record which node the original page is from and save this
1180 * information to khugepaged_node_load[].
1181 * Khupaged will allocate hugepage from the node has the max
1184 node
= page_to_nid(page
);
1185 if (khugepaged_scan_abort(node
)) {
1186 result
= SCAN_SCAN_ABORT
;
1189 khugepaged_node_load
[node
]++;
1190 if (!PageLRU(page
)) {
1191 result
= SCAN_PAGE_LRU
;
1194 if (PageLocked(page
)) {
1195 result
= SCAN_PAGE_LOCK
;
1198 if (!PageAnon(page
)) {
1199 result
= SCAN_PAGE_ANON
;
1204 * cannot use mapcount: can't collapse if there's a gup pin.
1205 * The page must only be referenced by the scanned process
1206 * and page swap cache.
1208 if (page_count(page
) != 1 + PageSwapCache(page
)) {
1209 result
= SCAN_PAGE_COUNT
;
1212 if (pte_young(pteval
) ||
1213 page_is_young(page
) || PageReferenced(page
) ||
1214 mmu_notifier_test_young(vma
->vm_mm
, address
))
1219 result
= SCAN_SUCCEED
;
1222 result
= SCAN_LACK_REFERENCED_PAGE
;
1225 result
= SCAN_PAGE_RO
;
1228 pte_unmap_unlock(pte
, ptl
);
1230 node
= khugepaged_find_target_node();
1231 /* collapse_huge_page will return with the mmap_sem released */
1232 collapse_huge_page(mm
, address
, hpage
, node
, referenced
);
1235 trace_mm_khugepaged_scan_pmd(mm
, page
, writable
, referenced
,
1236 none_or_zero
, result
, unmapped
);
1240 static void collect_mm_slot(struct mm_slot
*mm_slot
)
1242 struct mm_struct
*mm
= mm_slot
->mm
;
1244 lockdep_assert_held(&khugepaged_mm_lock
);
1246 if (khugepaged_test_exit(mm
)) {
1248 hash_del(&mm_slot
->hash
);
1249 list_del(&mm_slot
->mm_node
);
1252 * Not strictly needed because the mm exited already.
1254 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1257 /* khugepaged_mm_lock actually not necessary for the below */
1258 free_mm_slot(mm_slot
);
1263 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1265 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1266 * khugepaged should try to collapse the page table.
1268 static int khugepaged_add_pte_mapped_thp(struct mm_struct
*mm
,
1271 struct mm_slot
*mm_slot
;
1273 VM_BUG_ON(addr
& ~HPAGE_PMD_MASK
);
1275 spin_lock(&khugepaged_mm_lock
);
1276 mm_slot
= get_mm_slot(mm
);
1277 if (likely(mm_slot
&& mm_slot
->nr_pte_mapped_thp
< MAX_PTE_MAPPED_THP
))
1278 mm_slot
->pte_mapped_thp
[mm_slot
->nr_pte_mapped_thp
++] = addr
;
1279 spin_unlock(&khugepaged_mm_lock
);
1284 * Try to collapse a pte-mapped THP for mm at address haddr.
1286 * This function checks whether all the PTEs in the PMD are pointing to the
1287 * right THP. If so, retract the page table so the THP can refault in with
1290 void collapse_pte_mapped_thp(struct mm_struct
*mm
, unsigned long addr
)
1292 unsigned long haddr
= addr
& HPAGE_PMD_MASK
;
1293 struct vm_area_struct
*vma
= find_vma(mm
, haddr
);
1294 struct page
*hpage
= NULL
;
1295 pte_t
*start_pte
, *pte
;
1301 if (!vma
|| !vma
->vm_file
||
1302 vma
->vm_start
> haddr
|| vma
->vm_end
< haddr
+ HPAGE_PMD_SIZE
)
1306 * This vm_flags may not have VM_HUGEPAGE if the page was not
1307 * collapsed by this mm. But we can still collapse if the page is
1308 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1309 * will not fail the vma for missing VM_HUGEPAGE
1311 if (!hugepage_vma_check(vma
, vma
->vm_flags
| VM_HUGEPAGE
))
1314 pmd
= mm_find_pmd(mm
, haddr
);
1318 start_pte
= pte_offset_map_lock(mm
, pmd
, haddr
, &ptl
);
1320 /* step 1: check all mapped PTEs are to the right huge page */
1321 for (i
= 0, addr
= haddr
, pte
= start_pte
;
1322 i
< HPAGE_PMD_NR
; i
++, addr
+= PAGE_SIZE
, pte
++) {
1325 /* empty pte, skip */
1329 /* page swapped out, abort */
1330 if (!pte_present(*pte
))
1333 page
= vm_normal_page(vma
, addr
, *pte
);
1335 if (!page
|| !PageCompound(page
))
1339 hpage
= compound_head(page
);
1341 * The mapping of the THP should not change.
1343 * Note that uprobe, debugger, or MAP_PRIVATE may
1344 * change the page table, but the new page will
1345 * not pass PageCompound() check.
1347 if (WARN_ON(hpage
->mapping
!= vma
->vm_file
->f_mapping
))
1352 * Confirm the page maps to the correct subpage.
1354 * Note that uprobe, debugger, or MAP_PRIVATE may change
1355 * the page table, but the new page will not pass
1356 * PageCompound() check.
1358 if (WARN_ON(hpage
+ i
!= page
))
1363 /* step 2: adjust rmap */
1364 for (i
= 0, addr
= haddr
, pte
= start_pte
;
1365 i
< HPAGE_PMD_NR
; i
++, addr
+= PAGE_SIZE
, pte
++) {
1370 page
= vm_normal_page(vma
, addr
, *pte
);
1371 page_remove_rmap(page
, false);
1374 pte_unmap_unlock(start_pte
, ptl
);
1376 /* step 3: set proper refcount and mm_counters. */
1378 page_ref_sub(hpage
, count
);
1379 add_mm_counter(vma
->vm_mm
, mm_counter_file(hpage
), -count
);
1382 /* step 4: collapse pmd */
1383 ptl
= pmd_lock(vma
->vm_mm
, pmd
);
1384 _pmd
= pmdp_collapse_flush(vma
, addr
, pmd
);
1387 pte_free(mm
, pmd_pgtable(_pmd
));
1391 pte_unmap_unlock(start_pte
, ptl
);
1394 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot
*mm_slot
)
1396 struct mm_struct
*mm
= mm_slot
->mm
;
1399 if (likely(mm_slot
->nr_pte_mapped_thp
== 0))
1402 if (!down_write_trylock(&mm
->mmap_sem
))
1405 if (unlikely(khugepaged_test_exit(mm
)))
1408 for (i
= 0; i
< mm_slot
->nr_pte_mapped_thp
; i
++)
1409 collapse_pte_mapped_thp(mm
, mm_slot
->pte_mapped_thp
[i
]);
1412 mm_slot
->nr_pte_mapped_thp
= 0;
1413 up_write(&mm
->mmap_sem
);
1417 static void retract_page_tables(struct address_space
*mapping
, pgoff_t pgoff
)
1419 struct vm_area_struct
*vma
;
1423 i_mmap_lock_write(mapping
);
1424 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1426 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1427 * got written to. These VMAs are likely not worth investing
1428 * down_write(mmap_sem) as PMD-mapping is likely to be split
1431 * Not that vma->anon_vma check is racy: it can be set up after
1432 * the check but before we took mmap_sem by the fault path.
1433 * But page lock would prevent establishing any new ptes of the
1434 * page, so we are safe.
1436 * An alternative would be drop the check, but check that page
1437 * table is clear before calling pmdp_collapse_flush() under
1438 * ptl. It has higher chance to recover THP for the VMA, but
1439 * has higher cost too.
1443 addr
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
1444 if (addr
& ~HPAGE_PMD_MASK
)
1446 if (vma
->vm_end
< addr
+ HPAGE_PMD_SIZE
)
1448 pmd
= mm_find_pmd(vma
->vm_mm
, addr
);
1452 * We need exclusive mmap_sem to retract page table.
1454 * We use trylock due to lock inversion: we need to acquire
1455 * mmap_sem while holding page lock. Fault path does it in
1456 * reverse order. Trylock is a way to avoid deadlock.
1458 if (down_write_trylock(&vma
->vm_mm
->mmap_sem
)) {
1459 spinlock_t
*ptl
= pmd_lock(vma
->vm_mm
, pmd
);
1460 /* assume page table is clear */
1461 _pmd
= pmdp_collapse_flush(vma
, addr
, pmd
);
1463 up_write(&vma
->vm_mm
->mmap_sem
);
1464 mm_dec_nr_ptes(vma
->vm_mm
);
1465 pte_free(vma
->vm_mm
, pmd_pgtable(_pmd
));
1467 /* Try again later */
1468 khugepaged_add_pte_mapped_thp(vma
->vm_mm
, addr
);
1471 i_mmap_unlock_write(mapping
);
1475 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1477 * Basic scheme is simple, details are more complex:
1478 * - allocate and lock a new huge page;
1479 * - scan page cache replacing old pages with the new one
1480 * + swap/gup in pages if necessary;
1482 * + keep old pages around in case rollback is required;
1483 * - if replacing succeeds:
1486 * + unlock huge page;
1487 * - if replacing failed;
1488 * + put all pages back and unfreeze them;
1489 * + restore gaps in the page cache;
1490 * + unlock and free huge page;
1492 static void collapse_file(struct mm_struct
*mm
,
1493 struct file
*file
, pgoff_t start
,
1494 struct page
**hpage
, int node
)
1496 struct address_space
*mapping
= file
->f_mapping
;
1498 struct page
*new_page
;
1499 struct mem_cgroup
*memcg
;
1500 pgoff_t index
, end
= start
+ HPAGE_PMD_NR
;
1501 LIST_HEAD(pagelist
);
1502 XA_STATE_ORDER(xas
, &mapping
->i_pages
, start
, HPAGE_PMD_ORDER
);
1503 int nr_none
= 0, result
= SCAN_SUCCEED
;
1504 bool is_shmem
= shmem_file(file
);
1506 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS
) && !is_shmem
);
1507 VM_BUG_ON(start
& (HPAGE_PMD_NR
- 1));
1509 /* Only allocate from the target node */
1510 gfp
= alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE
;
1512 new_page
= khugepaged_alloc_page(hpage
, gfp
, node
);
1514 result
= SCAN_ALLOC_HUGE_PAGE_FAIL
;
1518 if (unlikely(mem_cgroup_try_charge(new_page
, mm
, gfp
, &memcg
, true))) {
1519 result
= SCAN_CGROUP_CHARGE_FAIL
;
1523 /* This will be less messy when we use multi-index entries */
1526 xas_create_range(&xas
);
1527 if (!xas_error(&xas
))
1529 xas_unlock_irq(&xas
);
1530 if (!xas_nomem(&xas
, GFP_KERNEL
)) {
1531 mem_cgroup_cancel_charge(new_page
, memcg
, true);
1537 __SetPageLocked(new_page
);
1539 __SetPageSwapBacked(new_page
);
1540 new_page
->index
= start
;
1541 new_page
->mapping
= mapping
;
1544 * At this point the new_page is locked and not up-to-date.
1545 * It's safe to insert it into the page cache, because nobody would
1546 * be able to map it or use it in another way until we unlock it.
1549 xas_set(&xas
, start
);
1550 for (index
= start
; index
< end
; index
++) {
1551 struct page
*page
= xas_next(&xas
);
1553 VM_BUG_ON(index
!= xas
.xa_index
);
1557 * Stop if extent has been truncated or
1558 * hole-punched, and is now completely
1561 if (index
== start
) {
1562 if (!xas_next_entry(&xas
, end
- 1)) {
1563 result
= SCAN_TRUNCATED
;
1566 xas_set(&xas
, index
);
1568 if (!shmem_charge(mapping
->host
, 1)) {
1572 xas_store(&xas
, new_page
);
1577 if (xa_is_value(page
) || !PageUptodate(page
)) {
1578 xas_unlock_irq(&xas
);
1579 /* swap in or instantiate fallocated page */
1580 if (shmem_getpage(mapping
->host
, index
, &page
,
1585 } else if (trylock_page(page
)) {
1587 xas_unlock_irq(&xas
);
1589 result
= SCAN_PAGE_LOCK
;
1592 } else { /* !is_shmem */
1593 if (!page
|| xa_is_value(page
)) {
1594 xas_unlock_irq(&xas
);
1595 page_cache_sync_readahead(mapping
, &file
->f_ra
,
1598 /* drain pagevecs to help isolate_lru_page() */
1600 page
= find_lock_page(mapping
, index
);
1601 if (unlikely(page
== NULL
)) {
1605 } else if (trylock_page(page
)) {
1607 xas_unlock_irq(&xas
);
1609 result
= SCAN_PAGE_LOCK
;
1615 * The page must be locked, so we can drop the i_pages lock
1616 * without racing with truncate.
1618 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1620 /* make sure the page is up to date */
1621 if (unlikely(!PageUptodate(page
))) {
1627 * If file was truncated then extended, or hole-punched, before
1628 * we locked the first page, then a THP might be there already.
1630 if (PageTransCompound(page
)) {
1631 result
= SCAN_PAGE_COMPOUND
;
1635 if (page_mapping(page
) != mapping
) {
1636 result
= SCAN_TRUNCATED
;
1640 if (!is_shmem
&& PageDirty(page
)) {
1642 * khugepaged only works on read-only fd, so this
1643 * page is dirty because it hasn't been flushed
1644 * since first write.
1650 if (isolate_lru_page(page
)) {
1651 result
= SCAN_DEL_PAGE_LRU
;
1655 if (page_has_private(page
) &&
1656 !try_to_release_page(page
, GFP_KERNEL
)) {
1657 result
= SCAN_PAGE_HAS_PRIVATE
;
1661 if (page_mapped(page
))
1662 unmap_mapping_pages(mapping
, index
, 1, false);
1665 xas_set(&xas
, index
);
1667 VM_BUG_ON_PAGE(page
!= xas_load(&xas
), page
);
1668 VM_BUG_ON_PAGE(page_mapped(page
), page
);
1671 * The page is expected to have page_count() == 3:
1672 * - we hold a pin on it;
1673 * - one reference from page cache;
1674 * - one from isolate_lru_page;
1676 if (!page_ref_freeze(page
, 3)) {
1677 result
= SCAN_PAGE_COUNT
;
1678 xas_unlock_irq(&xas
);
1679 putback_lru_page(page
);
1684 * Add the page to the list to be able to undo the collapse if
1685 * something go wrong.
1687 list_add_tail(&page
->lru
, &pagelist
);
1689 /* Finally, replace with the new page. */
1690 xas_store(&xas
, new_page
);
1699 __inc_node_page_state(new_page
, NR_SHMEM_THPS
);
1701 __inc_node_page_state(new_page
, NR_FILE_THPS
);
1702 filemap_nr_thps_inc(mapping
);
1706 struct zone
*zone
= page_zone(new_page
);
1708 __mod_node_page_state(zone
->zone_pgdat
, NR_FILE_PAGES
, nr_none
);
1710 __mod_node_page_state(zone
->zone_pgdat
,
1715 xas_unlock_irq(&xas
);
1718 if (result
== SCAN_SUCCEED
) {
1719 struct page
*page
, *tmp
;
1722 * Replacing old pages with new one has succeeded, now we
1723 * need to copy the content and free the old pages.
1726 list_for_each_entry_safe(page
, tmp
, &pagelist
, lru
) {
1727 while (index
< page
->index
) {
1728 clear_highpage(new_page
+ (index
% HPAGE_PMD_NR
));
1731 copy_highpage(new_page
+ (page
->index
% HPAGE_PMD_NR
),
1733 list_del(&page
->lru
);
1734 page
->mapping
= NULL
;
1735 page_ref_unfreeze(page
, 1);
1736 ClearPageActive(page
);
1737 ClearPageUnevictable(page
);
1742 while (index
< end
) {
1743 clear_highpage(new_page
+ (index
% HPAGE_PMD_NR
));
1747 SetPageUptodate(new_page
);
1748 page_ref_add(new_page
, HPAGE_PMD_NR
- 1);
1749 mem_cgroup_commit_charge(new_page
, memcg
, false, true);
1752 set_page_dirty(new_page
);
1753 lru_cache_add_anon(new_page
);
1755 lru_cache_add_file(new_page
);
1757 count_memcg_events(memcg
, THP_COLLAPSE_ALLOC
, 1);
1760 * Remove pte page tables, so we can re-fault the page as huge.
1762 retract_page_tables(mapping
, start
);
1765 khugepaged_pages_collapsed
++;
1769 /* Something went wrong: roll back page cache changes */
1771 mapping
->nrpages
-= nr_none
;
1774 shmem_uncharge(mapping
->host
, nr_none
);
1776 xas_set(&xas
, start
);
1777 xas_for_each(&xas
, page
, end
- 1) {
1778 page
= list_first_entry_or_null(&pagelist
,
1780 if (!page
|| xas
.xa_index
< page
->index
) {
1784 /* Put holes back where they were */
1785 xas_store(&xas
, NULL
);
1789 VM_BUG_ON_PAGE(page
->index
!= xas
.xa_index
, page
);
1791 /* Unfreeze the page. */
1792 list_del(&page
->lru
);
1793 page_ref_unfreeze(page
, 2);
1794 xas_store(&xas
, page
);
1796 xas_unlock_irq(&xas
);
1798 putback_lru_page(page
);
1802 xas_unlock_irq(&xas
);
1804 mem_cgroup_cancel_charge(new_page
, memcg
, true);
1805 new_page
->mapping
= NULL
;
1808 unlock_page(new_page
);
1810 VM_BUG_ON(!list_empty(&pagelist
));
1811 /* TODO: tracepoints */
1814 static void khugepaged_scan_file(struct mm_struct
*mm
,
1815 struct file
*file
, pgoff_t start
, struct page
**hpage
)
1817 struct page
*page
= NULL
;
1818 struct address_space
*mapping
= file
->f_mapping
;
1819 XA_STATE(xas
, &mapping
->i_pages
, start
);
1821 int node
= NUMA_NO_NODE
;
1822 int result
= SCAN_SUCCEED
;
1826 memset(khugepaged_node_load
, 0, sizeof(khugepaged_node_load
));
1828 xas_for_each(&xas
, page
, start
+ HPAGE_PMD_NR
- 1) {
1829 if (xas_retry(&xas
, page
))
1832 if (xa_is_value(page
)) {
1833 if (++swap
> khugepaged_max_ptes_swap
) {
1834 result
= SCAN_EXCEED_SWAP_PTE
;
1840 if (PageTransCompound(page
)) {
1841 result
= SCAN_PAGE_COMPOUND
;
1845 node
= page_to_nid(page
);
1846 if (khugepaged_scan_abort(node
)) {
1847 result
= SCAN_SCAN_ABORT
;
1850 khugepaged_node_load
[node
]++;
1852 if (!PageLRU(page
)) {
1853 result
= SCAN_PAGE_LRU
;
1857 if (page_count(page
) !=
1858 1 + page_mapcount(page
) + page_has_private(page
)) {
1859 result
= SCAN_PAGE_COUNT
;
1864 * We probably should check if the page is referenced here, but
1865 * nobody would transfer pte_young() to PageReferenced() for us.
1866 * And rmap walk here is just too costly...
1871 if (need_resched()) {
1878 if (result
== SCAN_SUCCEED
) {
1879 if (present
< HPAGE_PMD_NR
- khugepaged_max_ptes_none
) {
1880 result
= SCAN_EXCEED_NONE_PTE
;
1882 node
= khugepaged_find_target_node();
1883 collapse_file(mm
, file
, start
, hpage
, node
);
1887 /* TODO: tracepoints */
1890 static void khugepaged_scan_file(struct mm_struct
*mm
,
1891 struct file
*file
, pgoff_t start
, struct page
**hpage
)
1896 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot
*mm_slot
)
1902 static unsigned int khugepaged_scan_mm_slot(unsigned int pages
,
1903 struct page
**hpage
)
1904 __releases(&khugepaged_mm_lock
)
1905 __acquires(&khugepaged_mm_lock
)
1907 struct mm_slot
*mm_slot
;
1908 struct mm_struct
*mm
;
1909 struct vm_area_struct
*vma
;
1913 lockdep_assert_held(&khugepaged_mm_lock
);
1915 if (khugepaged_scan
.mm_slot
)
1916 mm_slot
= khugepaged_scan
.mm_slot
;
1918 mm_slot
= list_entry(khugepaged_scan
.mm_head
.next
,
1919 struct mm_slot
, mm_node
);
1920 khugepaged_scan
.address
= 0;
1921 khugepaged_scan
.mm_slot
= mm_slot
;
1923 spin_unlock(&khugepaged_mm_lock
);
1924 khugepaged_collapse_pte_mapped_thps(mm_slot
);
1928 * Don't wait for semaphore (to avoid long wait times). Just move to
1929 * the next mm on the list.
1932 if (unlikely(!down_read_trylock(&mm
->mmap_sem
)))
1933 goto breakouterloop_mmap_sem
;
1934 if (likely(!khugepaged_test_exit(mm
)))
1935 vma
= find_vma(mm
, khugepaged_scan
.address
);
1938 for (; vma
; vma
= vma
->vm_next
) {
1939 unsigned long hstart
, hend
;
1942 if (unlikely(khugepaged_test_exit(mm
))) {
1946 if (!hugepage_vma_check(vma
, vma
->vm_flags
)) {
1951 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
1952 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
1955 if (khugepaged_scan
.address
> hend
)
1957 if (khugepaged_scan
.address
< hstart
)
1958 khugepaged_scan
.address
= hstart
;
1959 VM_BUG_ON(khugepaged_scan
.address
& ~HPAGE_PMD_MASK
);
1961 while (khugepaged_scan
.address
< hend
) {
1964 if (unlikely(khugepaged_test_exit(mm
)))
1965 goto breakouterloop
;
1967 VM_BUG_ON(khugepaged_scan
.address
< hstart
||
1968 khugepaged_scan
.address
+ HPAGE_PMD_SIZE
>
1970 if (IS_ENABLED(CONFIG_SHMEM
) && vma
->vm_file
) {
1972 pgoff_t pgoff
= linear_page_index(vma
,
1973 khugepaged_scan
.address
);
1975 if (shmem_file(vma
->vm_file
)
1976 && !shmem_huge_enabled(vma
))
1978 file
= get_file(vma
->vm_file
);
1979 up_read(&mm
->mmap_sem
);
1981 khugepaged_scan_file(mm
, file
, pgoff
, hpage
);
1984 ret
= khugepaged_scan_pmd(mm
, vma
,
1985 khugepaged_scan
.address
,
1988 /* move to next address */
1989 khugepaged_scan
.address
+= HPAGE_PMD_SIZE
;
1990 progress
+= HPAGE_PMD_NR
;
1992 /* we released mmap_sem so break loop */
1993 goto breakouterloop_mmap_sem
;
1994 if (progress
>= pages
)
1995 goto breakouterloop
;
1999 up_read(&mm
->mmap_sem
); /* exit_mmap will destroy ptes after this */
2000 breakouterloop_mmap_sem
:
2002 spin_lock(&khugepaged_mm_lock
);
2003 VM_BUG_ON(khugepaged_scan
.mm_slot
!= mm_slot
);
2005 * Release the current mm_slot if this mm is about to die, or
2006 * if we scanned all vmas of this mm.
2008 if (khugepaged_test_exit(mm
) || !vma
) {
2010 * Make sure that if mm_users is reaching zero while
2011 * khugepaged runs here, khugepaged_exit will find
2012 * mm_slot not pointing to the exiting mm.
2014 if (mm_slot
->mm_node
.next
!= &khugepaged_scan
.mm_head
) {
2015 khugepaged_scan
.mm_slot
= list_entry(
2016 mm_slot
->mm_node
.next
,
2017 struct mm_slot
, mm_node
);
2018 khugepaged_scan
.address
= 0;
2020 khugepaged_scan
.mm_slot
= NULL
;
2021 khugepaged_full_scans
++;
2024 collect_mm_slot(mm_slot
);
2030 static int khugepaged_has_work(void)
2032 return !list_empty(&khugepaged_scan
.mm_head
) &&
2033 khugepaged_enabled();
2036 static int khugepaged_wait_event(void)
2038 return !list_empty(&khugepaged_scan
.mm_head
) ||
2039 kthread_should_stop();
2042 static void khugepaged_do_scan(void)
2044 struct page
*hpage
= NULL
;
2045 unsigned int progress
= 0, pass_through_head
= 0;
2046 unsigned int pages
= khugepaged_pages_to_scan
;
2049 barrier(); /* write khugepaged_pages_to_scan to local stack */
2051 while (progress
< pages
) {
2052 if (!khugepaged_prealloc_page(&hpage
, &wait
))
2057 if (unlikely(kthread_should_stop() || try_to_freeze()))
2060 spin_lock(&khugepaged_mm_lock
);
2061 if (!khugepaged_scan
.mm_slot
)
2062 pass_through_head
++;
2063 if (khugepaged_has_work() &&
2064 pass_through_head
< 2)
2065 progress
+= khugepaged_scan_mm_slot(pages
- progress
,
2069 spin_unlock(&khugepaged_mm_lock
);
2072 if (!IS_ERR_OR_NULL(hpage
))
2076 static bool khugepaged_should_wakeup(void)
2078 return kthread_should_stop() ||
2079 time_after_eq(jiffies
, khugepaged_sleep_expire
);
2082 static void khugepaged_wait_work(void)
2084 if (khugepaged_has_work()) {
2085 const unsigned long scan_sleep_jiffies
=
2086 msecs_to_jiffies(khugepaged_scan_sleep_millisecs
);
2088 if (!scan_sleep_jiffies
)
2091 khugepaged_sleep_expire
= jiffies
+ scan_sleep_jiffies
;
2092 wait_event_freezable_timeout(khugepaged_wait
,
2093 khugepaged_should_wakeup(),
2094 scan_sleep_jiffies
);
2098 if (khugepaged_enabled())
2099 wait_event_freezable(khugepaged_wait
, khugepaged_wait_event());
2102 static int khugepaged(void *none
)
2104 struct mm_slot
*mm_slot
;
2107 set_user_nice(current
, MAX_NICE
);
2109 while (!kthread_should_stop()) {
2110 khugepaged_do_scan();
2111 khugepaged_wait_work();
2114 spin_lock(&khugepaged_mm_lock
);
2115 mm_slot
= khugepaged_scan
.mm_slot
;
2116 khugepaged_scan
.mm_slot
= NULL
;
2118 collect_mm_slot(mm_slot
);
2119 spin_unlock(&khugepaged_mm_lock
);
2123 static void set_recommended_min_free_kbytes(void)
2127 unsigned long recommended_min
;
2129 for_each_populated_zone(zone
) {
2131 * We don't need to worry about fragmentation of
2132 * ZONE_MOVABLE since it only has movable pages.
2134 if (zone_idx(zone
) > gfp_zone(GFP_USER
))
2140 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2141 recommended_min
= pageblock_nr_pages
* nr_zones
* 2;
2144 * Make sure that on average at least two pageblocks are almost free
2145 * of another type, one for a migratetype to fall back to and a
2146 * second to avoid subsequent fallbacks of other types There are 3
2147 * MIGRATE_TYPES we care about.
2149 recommended_min
+= pageblock_nr_pages
* nr_zones
*
2150 MIGRATE_PCPTYPES
* MIGRATE_PCPTYPES
;
2152 /* don't ever allow to reserve more than 5% of the lowmem */
2153 recommended_min
= min(recommended_min
,
2154 (unsigned long) nr_free_buffer_pages() / 20);
2155 recommended_min
<<= (PAGE_SHIFT
-10);
2157 if (recommended_min
> min_free_kbytes
) {
2158 if (user_min_free_kbytes
>= 0)
2159 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2160 min_free_kbytes
, recommended_min
);
2162 min_free_kbytes
= recommended_min
;
2164 setup_per_zone_wmarks();
2167 int start_stop_khugepaged(void)
2169 static struct task_struct
*khugepaged_thread __read_mostly
;
2170 static DEFINE_MUTEX(khugepaged_mutex
);
2173 mutex_lock(&khugepaged_mutex
);
2174 if (khugepaged_enabled()) {
2175 if (!khugepaged_thread
)
2176 khugepaged_thread
= kthread_run(khugepaged
, NULL
,
2178 if (IS_ERR(khugepaged_thread
)) {
2179 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2180 err
= PTR_ERR(khugepaged_thread
);
2181 khugepaged_thread
= NULL
;
2185 if (!list_empty(&khugepaged_scan
.mm_head
))
2186 wake_up_interruptible(&khugepaged_wait
);
2188 set_recommended_min_free_kbytes();
2189 } else if (khugepaged_thread
) {
2190 kthread_stop(khugepaged_thread
);
2191 khugepaged_thread
= NULL
;
2194 mutex_unlock(&khugepaged_mutex
);