Merge branch 'akpm' (patches from Andrew Morton)
[linux/fpc-iii.git] / kernel / sched / deadline.c
blob15cbc17fbf84d57ac52aa9b752d9552a4b4335ee
1 /*
2 * Deadline Scheduling Class (SCHED_DEADLINE)
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13 * Juri Lelli <juri.lelli@gmail.com>,
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
17 #include "sched.h"
19 #include <linux/slab.h>
21 struct dl_bandwidth def_dl_bandwidth;
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
25 return container_of(dl_se, struct task_struct, dl);
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
30 return container_of(dl_rq, struct rq, dl);
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
38 return &rq->dl;
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
48 struct sched_dl_entity *dl_se = &p->dl;
50 return dl_rq->rb_leftmost == &dl_se->rb_node;
53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
55 raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 dl_b->dl_period = period;
57 dl_b->dl_runtime = runtime;
60 extern unsigned long to_ratio(u64 period, u64 runtime);
62 void init_dl_bw(struct dl_bw *dl_b)
64 raw_spin_lock_init(&dl_b->lock);
65 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
66 if (global_rt_runtime() == RUNTIME_INF)
67 dl_b->bw = -1;
68 else
69 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
70 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
71 dl_b->total_bw = 0;
74 void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq)
76 dl_rq->rb_root = RB_ROOT;
78 #ifdef CONFIG_SMP
79 /* zero means no -deadline tasks */
80 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
82 dl_rq->dl_nr_migratory = 0;
83 dl_rq->overloaded = 0;
84 dl_rq->pushable_dl_tasks_root = RB_ROOT;
85 #else
86 init_dl_bw(&dl_rq->dl_bw);
87 #endif
90 #ifdef CONFIG_SMP
92 static inline int dl_overloaded(struct rq *rq)
94 return atomic_read(&rq->rd->dlo_count);
97 static inline void dl_set_overload(struct rq *rq)
99 if (!rq->online)
100 return;
102 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
104 * Must be visible before the overload count is
105 * set (as in sched_rt.c).
107 * Matched by the barrier in pull_dl_task().
109 smp_wmb();
110 atomic_inc(&rq->rd->dlo_count);
113 static inline void dl_clear_overload(struct rq *rq)
115 if (!rq->online)
116 return;
118 atomic_dec(&rq->rd->dlo_count);
119 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
122 static void update_dl_migration(struct dl_rq *dl_rq)
124 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
125 if (!dl_rq->overloaded) {
126 dl_set_overload(rq_of_dl_rq(dl_rq));
127 dl_rq->overloaded = 1;
129 } else if (dl_rq->overloaded) {
130 dl_clear_overload(rq_of_dl_rq(dl_rq));
131 dl_rq->overloaded = 0;
135 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
137 struct task_struct *p = dl_task_of(dl_se);
138 dl_rq = &rq_of_dl_rq(dl_rq)->dl;
140 if (p->nr_cpus_allowed > 1)
141 dl_rq->dl_nr_migratory++;
143 update_dl_migration(dl_rq);
146 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
148 struct task_struct *p = dl_task_of(dl_se);
149 dl_rq = &rq_of_dl_rq(dl_rq)->dl;
151 if (p->nr_cpus_allowed > 1)
152 dl_rq->dl_nr_migratory--;
154 update_dl_migration(dl_rq);
158 * The list of pushable -deadline task is not a plist, like in
159 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
161 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
163 struct dl_rq *dl_rq = &rq->dl;
164 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
165 struct rb_node *parent = NULL;
166 struct task_struct *entry;
167 int leftmost = 1;
169 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
171 while (*link) {
172 parent = *link;
173 entry = rb_entry(parent, struct task_struct,
174 pushable_dl_tasks);
175 if (dl_entity_preempt(&p->dl, &entry->dl))
176 link = &parent->rb_left;
177 else {
178 link = &parent->rb_right;
179 leftmost = 0;
183 if (leftmost)
184 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
186 rb_link_node(&p->pushable_dl_tasks, parent, link);
187 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
190 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
192 struct dl_rq *dl_rq = &rq->dl;
194 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
195 return;
197 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
198 struct rb_node *next_node;
200 next_node = rb_next(&p->pushable_dl_tasks);
201 dl_rq->pushable_dl_tasks_leftmost = next_node;
204 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
205 RB_CLEAR_NODE(&p->pushable_dl_tasks);
208 static inline int has_pushable_dl_tasks(struct rq *rq)
210 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
213 static int push_dl_task(struct rq *rq);
215 #else
217 static inline
218 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
222 static inline
223 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
227 static inline
228 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
232 static inline
233 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
237 #endif /* CONFIG_SMP */
239 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
240 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
241 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
242 int flags);
245 * We are being explicitly informed that a new instance is starting,
246 * and this means that:
247 * - the absolute deadline of the entity has to be placed at
248 * current time + relative deadline;
249 * - the runtime of the entity has to be set to the maximum value.
251 * The capability of specifying such event is useful whenever a -deadline
252 * entity wants to (try to!) synchronize its behaviour with the scheduler's
253 * one, and to (try to!) reconcile itself with its own scheduling
254 * parameters.
256 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
257 struct sched_dl_entity *pi_se)
259 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
260 struct rq *rq = rq_of_dl_rq(dl_rq);
262 WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);
265 * We use the regular wall clock time to set deadlines in the
266 * future; in fact, we must consider execution overheads (time
267 * spent on hardirq context, etc.).
269 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
270 dl_se->runtime = pi_se->dl_runtime;
271 dl_se->dl_new = 0;
275 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
276 * possibility of a entity lasting more than what it declared, and thus
277 * exhausting its runtime.
279 * Here we are interested in making runtime overrun possible, but we do
280 * not want a entity which is misbehaving to affect the scheduling of all
281 * other entities.
282 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
283 * is used, in order to confine each entity within its own bandwidth.
285 * This function deals exactly with that, and ensures that when the runtime
286 * of a entity is replenished, its deadline is also postponed. That ensures
287 * the overrunning entity can't interfere with other entity in the system and
288 * can't make them miss their deadlines. Reasons why this kind of overruns
289 * could happen are, typically, a entity voluntarily trying to overcome its
290 * runtime, or it just underestimated it during sched_setscheduler_ex().
292 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
293 struct sched_dl_entity *pi_se)
295 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
296 struct rq *rq = rq_of_dl_rq(dl_rq);
298 BUG_ON(pi_se->dl_runtime <= 0);
301 * This could be the case for a !-dl task that is boosted.
302 * Just go with full inherited parameters.
304 if (dl_se->dl_deadline == 0) {
305 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
306 dl_se->runtime = pi_se->dl_runtime;
310 * We keep moving the deadline away until we get some
311 * available runtime for the entity. This ensures correct
312 * handling of situations where the runtime overrun is
313 * arbitrary large.
315 while (dl_se->runtime <= 0) {
316 dl_se->deadline += pi_se->dl_period;
317 dl_se->runtime += pi_se->dl_runtime;
321 * At this point, the deadline really should be "in
322 * the future" with respect to rq->clock. If it's
323 * not, we are, for some reason, lagging too much!
324 * Anyway, after having warn userspace abut that,
325 * we still try to keep the things running by
326 * resetting the deadline and the budget of the
327 * entity.
329 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
330 static bool lag_once = false;
332 if (!lag_once) {
333 lag_once = true;
334 printk_sched("sched: DL replenish lagged to much\n");
336 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
337 dl_se->runtime = pi_se->dl_runtime;
342 * Here we check if --at time t-- an entity (which is probably being
343 * [re]activated or, in general, enqueued) can use its remaining runtime
344 * and its current deadline _without_ exceeding the bandwidth it is
345 * assigned (function returns true if it can't). We are in fact applying
346 * one of the CBS rules: when a task wakes up, if the residual runtime
347 * over residual deadline fits within the allocated bandwidth, then we
348 * can keep the current (absolute) deadline and residual budget without
349 * disrupting the schedulability of the system. Otherwise, we should
350 * refill the runtime and set the deadline a period in the future,
351 * because keeping the current (absolute) deadline of the task would
352 * result in breaking guarantees promised to other tasks (refer to
353 * Documentation/scheduler/sched-deadline.txt for more informations).
355 * This function returns true if:
357 * runtime / (deadline - t) > dl_runtime / dl_period ,
359 * IOW we can't recycle current parameters.
361 * Notice that the bandwidth check is done against the period. For
362 * task with deadline equal to period this is the same of using
363 * dl_deadline instead of dl_period in the equation above.
365 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
366 struct sched_dl_entity *pi_se, u64 t)
368 u64 left, right;
371 * left and right are the two sides of the equation above,
372 * after a bit of shuffling to use multiplications instead
373 * of divisions.
375 * Note that none of the time values involved in the two
376 * multiplications are absolute: dl_deadline and dl_runtime
377 * are the relative deadline and the maximum runtime of each
378 * instance, runtime is the runtime left for the last instance
379 * and (deadline - t), since t is rq->clock, is the time left
380 * to the (absolute) deadline. Even if overflowing the u64 type
381 * is very unlikely to occur in both cases, here we scale down
382 * as we want to avoid that risk at all. Scaling down by 10
383 * means that we reduce granularity to 1us. We are fine with it,
384 * since this is only a true/false check and, anyway, thinking
385 * of anything below microseconds resolution is actually fiction
386 * (but still we want to give the user that illusion >;).
388 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
389 right = ((dl_se->deadline - t) >> DL_SCALE) *
390 (pi_se->dl_runtime >> DL_SCALE);
392 return dl_time_before(right, left);
396 * When a -deadline entity is queued back on the runqueue, its runtime and
397 * deadline might need updating.
399 * The policy here is that we update the deadline of the entity only if:
400 * - the current deadline is in the past,
401 * - using the remaining runtime with the current deadline would make
402 * the entity exceed its bandwidth.
404 static void update_dl_entity(struct sched_dl_entity *dl_se,
405 struct sched_dl_entity *pi_se)
407 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
408 struct rq *rq = rq_of_dl_rq(dl_rq);
411 * The arrival of a new instance needs special treatment, i.e.,
412 * the actual scheduling parameters have to be "renewed".
414 if (dl_se->dl_new) {
415 setup_new_dl_entity(dl_se, pi_se);
416 return;
419 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
420 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
421 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
422 dl_se->runtime = pi_se->dl_runtime;
427 * If the entity depleted all its runtime, and if we want it to sleep
428 * while waiting for some new execution time to become available, we
429 * set the bandwidth enforcement timer to the replenishment instant
430 * and try to activate it.
432 * Notice that it is important for the caller to know if the timer
433 * actually started or not (i.e., the replenishment instant is in
434 * the future or in the past).
436 static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted)
438 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
439 struct rq *rq = rq_of_dl_rq(dl_rq);
440 ktime_t now, act;
441 ktime_t soft, hard;
442 unsigned long range;
443 s64 delta;
445 if (boosted)
446 return 0;
448 * We want the timer to fire at the deadline, but considering
449 * that it is actually coming from rq->clock and not from
450 * hrtimer's time base reading.
452 act = ns_to_ktime(dl_se->deadline);
453 now = hrtimer_cb_get_time(&dl_se->dl_timer);
454 delta = ktime_to_ns(now) - rq_clock(rq);
455 act = ktime_add_ns(act, delta);
458 * If the expiry time already passed, e.g., because the value
459 * chosen as the deadline is too small, don't even try to
460 * start the timer in the past!
462 if (ktime_us_delta(act, now) < 0)
463 return 0;
465 hrtimer_set_expires(&dl_se->dl_timer, act);
467 soft = hrtimer_get_softexpires(&dl_se->dl_timer);
468 hard = hrtimer_get_expires(&dl_se->dl_timer);
469 range = ktime_to_ns(ktime_sub(hard, soft));
470 __hrtimer_start_range_ns(&dl_se->dl_timer, soft,
471 range, HRTIMER_MODE_ABS, 0);
473 return hrtimer_active(&dl_se->dl_timer);
477 * This is the bandwidth enforcement timer callback. If here, we know
478 * a task is not on its dl_rq, since the fact that the timer was running
479 * means the task is throttled and needs a runtime replenishment.
481 * However, what we actually do depends on the fact the task is active,
482 * (it is on its rq) or has been removed from there by a call to
483 * dequeue_task_dl(). In the former case we must issue the runtime
484 * replenishment and add the task back to the dl_rq; in the latter, we just
485 * do nothing but clearing dl_throttled, so that runtime and deadline
486 * updating (and the queueing back to dl_rq) will be done by the
487 * next call to enqueue_task_dl().
489 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
491 struct sched_dl_entity *dl_se = container_of(timer,
492 struct sched_dl_entity,
493 dl_timer);
494 struct task_struct *p = dl_task_of(dl_se);
495 struct rq *rq = task_rq(p);
496 raw_spin_lock(&rq->lock);
499 * We need to take care of a possible races here. In fact, the
500 * task might have changed its scheduling policy to something
501 * different from SCHED_DEADLINE or changed its reservation
502 * parameters (through sched_setscheduler()).
504 if (!dl_task(p) || dl_se->dl_new)
505 goto unlock;
507 sched_clock_tick();
508 update_rq_clock(rq);
509 dl_se->dl_throttled = 0;
510 if (p->on_rq) {
511 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
512 if (task_has_dl_policy(rq->curr))
513 check_preempt_curr_dl(rq, p, 0);
514 else
515 resched_task(rq->curr);
516 #ifdef CONFIG_SMP
518 * Queueing this task back might have overloaded rq,
519 * check if we need to kick someone away.
521 if (has_pushable_dl_tasks(rq))
522 push_dl_task(rq);
523 #endif
525 unlock:
526 raw_spin_unlock(&rq->lock);
528 return HRTIMER_NORESTART;
531 void init_dl_task_timer(struct sched_dl_entity *dl_se)
533 struct hrtimer *timer = &dl_se->dl_timer;
535 if (hrtimer_active(timer)) {
536 hrtimer_try_to_cancel(timer);
537 return;
540 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
541 timer->function = dl_task_timer;
544 static
545 int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se)
547 int dmiss = dl_time_before(dl_se->deadline, rq_clock(rq));
548 int rorun = dl_se->runtime <= 0;
550 if (!rorun && !dmiss)
551 return 0;
554 * If we are beyond our current deadline and we are still
555 * executing, then we have already used some of the runtime of
556 * the next instance. Thus, if we do not account that, we are
557 * stealing bandwidth from the system at each deadline miss!
559 if (dmiss) {
560 dl_se->runtime = rorun ? dl_se->runtime : 0;
561 dl_se->runtime -= rq_clock(rq) - dl_se->deadline;
564 return 1;
568 * Update the current task's runtime statistics (provided it is still
569 * a -deadline task and has not been removed from the dl_rq).
571 static void update_curr_dl(struct rq *rq)
573 struct task_struct *curr = rq->curr;
574 struct sched_dl_entity *dl_se = &curr->dl;
575 u64 delta_exec;
577 if (!dl_task(curr) || !on_dl_rq(dl_se))
578 return;
581 * Consumed budget is computed considering the time as
582 * observed by schedulable tasks (excluding time spent
583 * in hardirq context, etc.). Deadlines are instead
584 * computed using hard walltime. This seems to be the more
585 * natural solution, but the full ramifications of this
586 * approach need further study.
588 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
589 if (unlikely((s64)delta_exec < 0))
590 delta_exec = 0;
592 schedstat_set(curr->se.statistics.exec_max,
593 max(curr->se.statistics.exec_max, delta_exec));
595 curr->se.sum_exec_runtime += delta_exec;
596 account_group_exec_runtime(curr, delta_exec);
598 curr->se.exec_start = rq_clock_task(rq);
599 cpuacct_charge(curr, delta_exec);
601 sched_rt_avg_update(rq, delta_exec);
603 dl_se->runtime -= delta_exec;
604 if (dl_runtime_exceeded(rq, dl_se)) {
605 __dequeue_task_dl(rq, curr, 0);
606 if (likely(start_dl_timer(dl_se, curr->dl.dl_boosted)))
607 dl_se->dl_throttled = 1;
608 else
609 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
611 if (!is_leftmost(curr, &rq->dl))
612 resched_task(curr);
616 * Because -- for now -- we share the rt bandwidth, we need to
617 * account our runtime there too, otherwise actual rt tasks
618 * would be able to exceed the shared quota.
620 * Account to the root rt group for now.
622 * The solution we're working towards is having the RT groups scheduled
623 * using deadline servers -- however there's a few nasties to figure
624 * out before that can happen.
626 if (rt_bandwidth_enabled()) {
627 struct rt_rq *rt_rq = &rq->rt;
629 raw_spin_lock(&rt_rq->rt_runtime_lock);
630 rt_rq->rt_time += delta_exec;
632 * We'll let actual RT tasks worry about the overflow here, we
633 * have our own CBS to keep us inline -- see above.
635 raw_spin_unlock(&rt_rq->rt_runtime_lock);
639 #ifdef CONFIG_SMP
641 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu);
643 static inline u64 next_deadline(struct rq *rq)
645 struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu);
647 if (next && dl_prio(next->prio))
648 return next->dl.deadline;
649 else
650 return 0;
653 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
655 struct rq *rq = rq_of_dl_rq(dl_rq);
657 if (dl_rq->earliest_dl.curr == 0 ||
658 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
660 * If the dl_rq had no -deadline tasks, or if the new task
661 * has shorter deadline than the current one on dl_rq, we
662 * know that the previous earliest becomes our next earliest,
663 * as the new task becomes the earliest itself.
665 dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr;
666 dl_rq->earliest_dl.curr = deadline;
667 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
668 } else if (dl_rq->earliest_dl.next == 0 ||
669 dl_time_before(deadline, dl_rq->earliest_dl.next)) {
671 * On the other hand, if the new -deadline task has a
672 * a later deadline than the earliest one on dl_rq, but
673 * it is earlier than the next (if any), we must
674 * recompute the next-earliest.
676 dl_rq->earliest_dl.next = next_deadline(rq);
680 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
682 struct rq *rq = rq_of_dl_rq(dl_rq);
685 * Since we may have removed our earliest (and/or next earliest)
686 * task we must recompute them.
688 if (!dl_rq->dl_nr_running) {
689 dl_rq->earliest_dl.curr = 0;
690 dl_rq->earliest_dl.next = 0;
691 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
692 } else {
693 struct rb_node *leftmost = dl_rq->rb_leftmost;
694 struct sched_dl_entity *entry;
696 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
697 dl_rq->earliest_dl.curr = entry->deadline;
698 dl_rq->earliest_dl.next = next_deadline(rq);
699 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
703 #else
705 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
706 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
708 #endif /* CONFIG_SMP */
710 static inline
711 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
713 int prio = dl_task_of(dl_se)->prio;
714 u64 deadline = dl_se->deadline;
716 WARN_ON(!dl_prio(prio));
717 dl_rq->dl_nr_running++;
718 inc_nr_running(rq_of_dl_rq(dl_rq));
720 inc_dl_deadline(dl_rq, deadline);
721 inc_dl_migration(dl_se, dl_rq);
724 static inline
725 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
727 int prio = dl_task_of(dl_se)->prio;
729 WARN_ON(!dl_prio(prio));
730 WARN_ON(!dl_rq->dl_nr_running);
731 dl_rq->dl_nr_running--;
732 dec_nr_running(rq_of_dl_rq(dl_rq));
734 dec_dl_deadline(dl_rq, dl_se->deadline);
735 dec_dl_migration(dl_se, dl_rq);
738 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
740 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
741 struct rb_node **link = &dl_rq->rb_root.rb_node;
742 struct rb_node *parent = NULL;
743 struct sched_dl_entity *entry;
744 int leftmost = 1;
746 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
748 while (*link) {
749 parent = *link;
750 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
751 if (dl_time_before(dl_se->deadline, entry->deadline))
752 link = &parent->rb_left;
753 else {
754 link = &parent->rb_right;
755 leftmost = 0;
759 if (leftmost)
760 dl_rq->rb_leftmost = &dl_se->rb_node;
762 rb_link_node(&dl_se->rb_node, parent, link);
763 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
765 inc_dl_tasks(dl_se, dl_rq);
768 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
770 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
772 if (RB_EMPTY_NODE(&dl_se->rb_node))
773 return;
775 if (dl_rq->rb_leftmost == &dl_se->rb_node) {
776 struct rb_node *next_node;
778 next_node = rb_next(&dl_se->rb_node);
779 dl_rq->rb_leftmost = next_node;
782 rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
783 RB_CLEAR_NODE(&dl_se->rb_node);
785 dec_dl_tasks(dl_se, dl_rq);
788 static void
789 enqueue_dl_entity(struct sched_dl_entity *dl_se,
790 struct sched_dl_entity *pi_se, int flags)
792 BUG_ON(on_dl_rq(dl_se));
795 * If this is a wakeup or a new instance, the scheduling
796 * parameters of the task might need updating. Otherwise,
797 * we want a replenishment of its runtime.
799 if (!dl_se->dl_new && flags & ENQUEUE_REPLENISH)
800 replenish_dl_entity(dl_se, pi_se);
801 else
802 update_dl_entity(dl_se, pi_se);
804 __enqueue_dl_entity(dl_se);
807 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
809 __dequeue_dl_entity(dl_se);
812 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
814 struct task_struct *pi_task = rt_mutex_get_top_task(p);
815 struct sched_dl_entity *pi_se = &p->dl;
818 * Use the scheduling parameters of the top pi-waiter
819 * task if we have one and its (relative) deadline is
820 * smaller than our one... OTW we keep our runtime and
821 * deadline.
823 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio))
824 pi_se = &pi_task->dl;
827 * If p is throttled, we do nothing. In fact, if it exhausted
828 * its budget it needs a replenishment and, since it now is on
829 * its rq, the bandwidth timer callback (which clearly has not
830 * run yet) will take care of this.
832 if (p->dl.dl_throttled)
833 return;
835 enqueue_dl_entity(&p->dl, pi_se, flags);
837 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
838 enqueue_pushable_dl_task(rq, p);
841 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
843 dequeue_dl_entity(&p->dl);
844 dequeue_pushable_dl_task(rq, p);
847 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
849 update_curr_dl(rq);
850 __dequeue_task_dl(rq, p, flags);
854 * Yield task semantic for -deadline tasks is:
856 * get off from the CPU until our next instance, with
857 * a new runtime. This is of little use now, since we
858 * don't have a bandwidth reclaiming mechanism. Anyway,
859 * bandwidth reclaiming is planned for the future, and
860 * yield_task_dl will indicate that some spare budget
861 * is available for other task instances to use it.
863 static void yield_task_dl(struct rq *rq)
865 struct task_struct *p = rq->curr;
868 * We make the task go to sleep until its current deadline by
869 * forcing its runtime to zero. This way, update_curr_dl() stops
870 * it and the bandwidth timer will wake it up and will give it
871 * new scheduling parameters (thanks to dl_new=1).
873 if (p->dl.runtime > 0) {
874 rq->curr->dl.dl_new = 1;
875 p->dl.runtime = 0;
877 update_curr_dl(rq);
880 #ifdef CONFIG_SMP
882 static int find_later_rq(struct task_struct *task);
884 static int
885 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
887 struct task_struct *curr;
888 struct rq *rq;
890 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
891 goto out;
893 rq = cpu_rq(cpu);
895 rcu_read_lock();
896 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
899 * If we are dealing with a -deadline task, we must
900 * decide where to wake it up.
901 * If it has a later deadline and the current task
902 * on this rq can't move (provided the waking task
903 * can!) we prefer to send it somewhere else. On the
904 * other hand, if it has a shorter deadline, we
905 * try to make it stay here, it might be important.
907 if (unlikely(dl_task(curr)) &&
908 (curr->nr_cpus_allowed < 2 ||
909 !dl_entity_preempt(&p->dl, &curr->dl)) &&
910 (p->nr_cpus_allowed > 1)) {
911 int target = find_later_rq(p);
913 if (target != -1)
914 cpu = target;
916 rcu_read_unlock();
918 out:
919 return cpu;
922 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
925 * Current can't be migrated, useless to reschedule,
926 * let's hope p can move out.
928 if (rq->curr->nr_cpus_allowed == 1 ||
929 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
930 return;
933 * p is migratable, so let's not schedule it and
934 * see if it is pushed or pulled somewhere else.
936 if (p->nr_cpus_allowed != 1 &&
937 cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
938 return;
940 resched_task(rq->curr);
943 #endif /* CONFIG_SMP */
946 * Only called when both the current and waking task are -deadline
947 * tasks.
949 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
950 int flags)
952 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
953 resched_task(rq->curr);
954 return;
957 #ifdef CONFIG_SMP
959 * In the unlikely case current and p have the same deadline
960 * let us try to decide what's the best thing to do...
962 if ((p->dl.deadline == rq->curr->dl.deadline) &&
963 !test_tsk_need_resched(rq->curr))
964 check_preempt_equal_dl(rq, p);
965 #endif /* CONFIG_SMP */
968 #ifdef CONFIG_SCHED_HRTICK
969 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
971 s64 delta = p->dl.dl_runtime - p->dl.runtime;
973 if (delta > 10000)
974 hrtick_start(rq, p->dl.runtime);
976 #endif
978 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
979 struct dl_rq *dl_rq)
981 struct rb_node *left = dl_rq->rb_leftmost;
983 if (!left)
984 return NULL;
986 return rb_entry(left, struct sched_dl_entity, rb_node);
989 struct task_struct *pick_next_task_dl(struct rq *rq)
991 struct sched_dl_entity *dl_se;
992 struct task_struct *p;
993 struct dl_rq *dl_rq;
995 dl_rq = &rq->dl;
997 if (unlikely(!dl_rq->dl_nr_running))
998 return NULL;
1000 dl_se = pick_next_dl_entity(rq, dl_rq);
1001 BUG_ON(!dl_se);
1003 p = dl_task_of(dl_se);
1004 p->se.exec_start = rq_clock_task(rq);
1006 /* Running task will never be pushed. */
1007 dequeue_pushable_dl_task(rq, p);
1009 #ifdef CONFIG_SCHED_HRTICK
1010 if (hrtick_enabled(rq))
1011 start_hrtick_dl(rq, p);
1012 #endif
1014 #ifdef CONFIG_SMP
1015 rq->post_schedule = has_pushable_dl_tasks(rq);
1016 #endif /* CONFIG_SMP */
1018 return p;
1021 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1023 update_curr_dl(rq);
1025 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1026 enqueue_pushable_dl_task(rq, p);
1029 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1031 update_curr_dl(rq);
1033 #ifdef CONFIG_SCHED_HRTICK
1034 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0)
1035 start_hrtick_dl(rq, p);
1036 #endif
1039 static void task_fork_dl(struct task_struct *p)
1042 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1043 * sched_fork()
1047 static void task_dead_dl(struct task_struct *p)
1049 struct hrtimer *timer = &p->dl.dl_timer;
1050 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1053 * Since we are TASK_DEAD we won't slip out of the domain!
1055 raw_spin_lock_irq(&dl_b->lock);
1056 dl_b->total_bw -= p->dl.dl_bw;
1057 raw_spin_unlock_irq(&dl_b->lock);
1059 hrtimer_cancel(timer);
1062 static void set_curr_task_dl(struct rq *rq)
1064 struct task_struct *p = rq->curr;
1066 p->se.exec_start = rq_clock_task(rq);
1068 /* You can't push away the running task */
1069 dequeue_pushable_dl_task(rq, p);
1072 #ifdef CONFIG_SMP
1074 /* Only try algorithms three times */
1075 #define DL_MAX_TRIES 3
1077 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1079 if (!task_running(rq, p) &&
1080 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
1081 (p->nr_cpus_allowed > 1))
1082 return 1;
1084 return 0;
1087 /* Returns the second earliest -deadline task, NULL otherwise */
1088 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu)
1090 struct rb_node *next_node = rq->dl.rb_leftmost;
1091 struct sched_dl_entity *dl_se;
1092 struct task_struct *p = NULL;
1094 next_node:
1095 next_node = rb_next(next_node);
1096 if (next_node) {
1097 dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node);
1098 p = dl_task_of(dl_se);
1100 if (pick_dl_task(rq, p, cpu))
1101 return p;
1103 goto next_node;
1106 return NULL;
1109 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1111 static int find_later_rq(struct task_struct *task)
1113 struct sched_domain *sd;
1114 struct cpumask *later_mask = __get_cpu_var(local_cpu_mask_dl);
1115 int this_cpu = smp_processor_id();
1116 int best_cpu, cpu = task_cpu(task);
1118 /* Make sure the mask is initialized first */
1119 if (unlikely(!later_mask))
1120 return -1;
1122 if (task->nr_cpus_allowed == 1)
1123 return -1;
1125 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1126 task, later_mask);
1127 if (best_cpu == -1)
1128 return -1;
1131 * If we are here, some target has been found,
1132 * the most suitable of which is cached in best_cpu.
1133 * This is, among the runqueues where the current tasks
1134 * have later deadlines than the task's one, the rq
1135 * with the latest possible one.
1137 * Now we check how well this matches with task's
1138 * affinity and system topology.
1140 * The last cpu where the task run is our first
1141 * guess, since it is most likely cache-hot there.
1143 if (cpumask_test_cpu(cpu, later_mask))
1144 return cpu;
1146 * Check if this_cpu is to be skipped (i.e., it is
1147 * not in the mask) or not.
1149 if (!cpumask_test_cpu(this_cpu, later_mask))
1150 this_cpu = -1;
1152 rcu_read_lock();
1153 for_each_domain(cpu, sd) {
1154 if (sd->flags & SD_WAKE_AFFINE) {
1157 * If possible, preempting this_cpu is
1158 * cheaper than migrating.
1160 if (this_cpu != -1 &&
1161 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1162 rcu_read_unlock();
1163 return this_cpu;
1167 * Last chance: if best_cpu is valid and is
1168 * in the mask, that becomes our choice.
1170 if (best_cpu < nr_cpu_ids &&
1171 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1172 rcu_read_unlock();
1173 return best_cpu;
1177 rcu_read_unlock();
1180 * At this point, all our guesses failed, we just return
1181 * 'something', and let the caller sort the things out.
1183 if (this_cpu != -1)
1184 return this_cpu;
1186 cpu = cpumask_any(later_mask);
1187 if (cpu < nr_cpu_ids)
1188 return cpu;
1190 return -1;
1193 /* Locks the rq it finds */
1194 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1196 struct rq *later_rq = NULL;
1197 int tries;
1198 int cpu;
1200 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1201 cpu = find_later_rq(task);
1203 if ((cpu == -1) || (cpu == rq->cpu))
1204 break;
1206 later_rq = cpu_rq(cpu);
1208 /* Retry if something changed. */
1209 if (double_lock_balance(rq, later_rq)) {
1210 if (unlikely(task_rq(task) != rq ||
1211 !cpumask_test_cpu(later_rq->cpu,
1212 &task->cpus_allowed) ||
1213 task_running(rq, task) || !task->on_rq)) {
1214 double_unlock_balance(rq, later_rq);
1215 later_rq = NULL;
1216 break;
1221 * If the rq we found has no -deadline task, or
1222 * its earliest one has a later deadline than our
1223 * task, the rq is a good one.
1225 if (!later_rq->dl.dl_nr_running ||
1226 dl_time_before(task->dl.deadline,
1227 later_rq->dl.earliest_dl.curr))
1228 break;
1230 /* Otherwise we try again. */
1231 double_unlock_balance(rq, later_rq);
1232 later_rq = NULL;
1235 return later_rq;
1238 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1240 struct task_struct *p;
1242 if (!has_pushable_dl_tasks(rq))
1243 return NULL;
1245 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1246 struct task_struct, pushable_dl_tasks);
1248 BUG_ON(rq->cpu != task_cpu(p));
1249 BUG_ON(task_current(rq, p));
1250 BUG_ON(p->nr_cpus_allowed <= 1);
1252 BUG_ON(!p->on_rq);
1253 BUG_ON(!dl_task(p));
1255 return p;
1259 * See if the non running -deadline tasks on this rq
1260 * can be sent to some other CPU where they can preempt
1261 * and start executing.
1263 static int push_dl_task(struct rq *rq)
1265 struct task_struct *next_task;
1266 struct rq *later_rq;
1268 if (!rq->dl.overloaded)
1269 return 0;
1271 next_task = pick_next_pushable_dl_task(rq);
1272 if (!next_task)
1273 return 0;
1275 retry:
1276 if (unlikely(next_task == rq->curr)) {
1277 WARN_ON(1);
1278 return 0;
1282 * If next_task preempts rq->curr, and rq->curr
1283 * can move away, it makes sense to just reschedule
1284 * without going further in pushing next_task.
1286 if (dl_task(rq->curr) &&
1287 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1288 rq->curr->nr_cpus_allowed > 1) {
1289 resched_task(rq->curr);
1290 return 0;
1293 /* We might release rq lock */
1294 get_task_struct(next_task);
1296 /* Will lock the rq it'll find */
1297 later_rq = find_lock_later_rq(next_task, rq);
1298 if (!later_rq) {
1299 struct task_struct *task;
1302 * We must check all this again, since
1303 * find_lock_later_rq releases rq->lock and it is
1304 * then possible that next_task has migrated.
1306 task = pick_next_pushable_dl_task(rq);
1307 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1309 * The task is still there. We don't try
1310 * again, some other cpu will pull it when ready.
1312 dequeue_pushable_dl_task(rq, next_task);
1313 goto out;
1316 if (!task)
1317 /* No more tasks */
1318 goto out;
1320 put_task_struct(next_task);
1321 next_task = task;
1322 goto retry;
1325 deactivate_task(rq, next_task, 0);
1326 set_task_cpu(next_task, later_rq->cpu);
1327 activate_task(later_rq, next_task, 0);
1329 resched_task(later_rq->curr);
1331 double_unlock_balance(rq, later_rq);
1333 out:
1334 put_task_struct(next_task);
1336 return 1;
1339 static void push_dl_tasks(struct rq *rq)
1341 /* Terminates as it moves a -deadline task */
1342 while (push_dl_task(rq))
1346 static int pull_dl_task(struct rq *this_rq)
1348 int this_cpu = this_rq->cpu, ret = 0, cpu;
1349 struct task_struct *p;
1350 struct rq *src_rq;
1351 u64 dmin = LONG_MAX;
1353 if (likely(!dl_overloaded(this_rq)))
1354 return 0;
1357 * Match the barrier from dl_set_overloaded; this guarantees that if we
1358 * see overloaded we must also see the dlo_mask bit.
1360 smp_rmb();
1362 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1363 if (this_cpu == cpu)
1364 continue;
1366 src_rq = cpu_rq(cpu);
1369 * It looks racy, abd it is! However, as in sched_rt.c,
1370 * we are fine with this.
1372 if (this_rq->dl.dl_nr_running &&
1373 dl_time_before(this_rq->dl.earliest_dl.curr,
1374 src_rq->dl.earliest_dl.next))
1375 continue;
1377 /* Might drop this_rq->lock */
1378 double_lock_balance(this_rq, src_rq);
1381 * If there are no more pullable tasks on the
1382 * rq, we're done with it.
1384 if (src_rq->dl.dl_nr_running <= 1)
1385 goto skip;
1387 p = pick_next_earliest_dl_task(src_rq, this_cpu);
1390 * We found a task to be pulled if:
1391 * - it preempts our current (if there's one),
1392 * - it will preempt the last one we pulled (if any).
1394 if (p && dl_time_before(p->dl.deadline, dmin) &&
1395 (!this_rq->dl.dl_nr_running ||
1396 dl_time_before(p->dl.deadline,
1397 this_rq->dl.earliest_dl.curr))) {
1398 WARN_ON(p == src_rq->curr);
1399 WARN_ON(!p->on_rq);
1402 * Then we pull iff p has actually an earlier
1403 * deadline than the current task of its runqueue.
1405 if (dl_time_before(p->dl.deadline,
1406 src_rq->curr->dl.deadline))
1407 goto skip;
1409 ret = 1;
1411 deactivate_task(src_rq, p, 0);
1412 set_task_cpu(p, this_cpu);
1413 activate_task(this_rq, p, 0);
1414 dmin = p->dl.deadline;
1416 /* Is there any other task even earlier? */
1418 skip:
1419 double_unlock_balance(this_rq, src_rq);
1422 return ret;
1425 static void pre_schedule_dl(struct rq *rq, struct task_struct *prev)
1427 /* Try to pull other tasks here */
1428 if (dl_task(prev))
1429 pull_dl_task(rq);
1432 static void post_schedule_dl(struct rq *rq)
1434 push_dl_tasks(rq);
1438 * Since the task is not running and a reschedule is not going to happen
1439 * anytime soon on its runqueue, we try pushing it away now.
1441 static void task_woken_dl(struct rq *rq, struct task_struct *p)
1443 if (!task_running(rq, p) &&
1444 !test_tsk_need_resched(rq->curr) &&
1445 has_pushable_dl_tasks(rq) &&
1446 p->nr_cpus_allowed > 1 &&
1447 dl_task(rq->curr) &&
1448 (rq->curr->nr_cpus_allowed < 2 ||
1449 dl_entity_preempt(&rq->curr->dl, &p->dl))) {
1450 push_dl_tasks(rq);
1454 static void set_cpus_allowed_dl(struct task_struct *p,
1455 const struct cpumask *new_mask)
1457 struct rq *rq;
1458 int weight;
1460 BUG_ON(!dl_task(p));
1463 * Update only if the task is actually running (i.e.,
1464 * it is on the rq AND it is not throttled).
1466 if (!on_dl_rq(&p->dl))
1467 return;
1469 weight = cpumask_weight(new_mask);
1472 * Only update if the process changes its state from whether it
1473 * can migrate or not.
1475 if ((p->nr_cpus_allowed > 1) == (weight > 1))
1476 return;
1478 rq = task_rq(p);
1481 * The process used to be able to migrate OR it can now migrate
1483 if (weight <= 1) {
1484 if (!task_current(rq, p))
1485 dequeue_pushable_dl_task(rq, p);
1486 BUG_ON(!rq->dl.dl_nr_migratory);
1487 rq->dl.dl_nr_migratory--;
1488 } else {
1489 if (!task_current(rq, p))
1490 enqueue_pushable_dl_task(rq, p);
1491 rq->dl.dl_nr_migratory++;
1494 update_dl_migration(&rq->dl);
1497 /* Assumes rq->lock is held */
1498 static void rq_online_dl(struct rq *rq)
1500 if (rq->dl.overloaded)
1501 dl_set_overload(rq);
1503 if (rq->dl.dl_nr_running > 0)
1504 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1507 /* Assumes rq->lock is held */
1508 static void rq_offline_dl(struct rq *rq)
1510 if (rq->dl.overloaded)
1511 dl_clear_overload(rq);
1513 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1516 void init_sched_dl_class(void)
1518 unsigned int i;
1520 for_each_possible_cpu(i)
1521 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1522 GFP_KERNEL, cpu_to_node(i));
1525 #endif /* CONFIG_SMP */
1527 static void switched_from_dl(struct rq *rq, struct task_struct *p)
1529 if (hrtimer_active(&p->dl.dl_timer) && !dl_policy(p->policy))
1530 hrtimer_try_to_cancel(&p->dl.dl_timer);
1532 #ifdef CONFIG_SMP
1534 * Since this might be the only -deadline task on the rq,
1535 * this is the right place to try to pull some other one
1536 * from an overloaded cpu, if any.
1538 if (!rq->dl.dl_nr_running)
1539 pull_dl_task(rq);
1540 #endif
1544 * When switching to -deadline, we may overload the rq, then
1545 * we try to push someone off, if possible.
1547 static void switched_to_dl(struct rq *rq, struct task_struct *p)
1549 int check_resched = 1;
1552 * If p is throttled, don't consider the possibility
1553 * of preempting rq->curr, the check will be done right
1554 * after its runtime will get replenished.
1556 if (unlikely(p->dl.dl_throttled))
1557 return;
1559 if (p->on_rq || rq->curr != p) {
1560 #ifdef CONFIG_SMP
1561 if (rq->dl.overloaded && push_dl_task(rq) && rq != task_rq(p))
1562 /* Only reschedule if pushing failed */
1563 check_resched = 0;
1564 #endif /* CONFIG_SMP */
1565 if (check_resched && task_has_dl_policy(rq->curr))
1566 check_preempt_curr_dl(rq, p, 0);
1571 * If the scheduling parameters of a -deadline task changed,
1572 * a push or pull operation might be needed.
1574 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1575 int oldprio)
1577 if (p->on_rq || rq->curr == p) {
1578 #ifdef CONFIG_SMP
1580 * This might be too much, but unfortunately
1581 * we don't have the old deadline value, and
1582 * we can't argue if the task is increasing
1583 * or lowering its prio, so...
1585 if (!rq->dl.overloaded)
1586 pull_dl_task(rq);
1589 * If we now have a earlier deadline task than p,
1590 * then reschedule, provided p is still on this
1591 * runqueue.
1593 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) &&
1594 rq->curr == p)
1595 resched_task(p);
1596 #else
1598 * Again, we don't know if p has a earlier
1599 * or later deadline, so let's blindly set a
1600 * (maybe not needed) rescheduling point.
1602 resched_task(p);
1603 #endif /* CONFIG_SMP */
1604 } else
1605 switched_to_dl(rq, p);
1608 const struct sched_class dl_sched_class = {
1609 .next = &rt_sched_class,
1610 .enqueue_task = enqueue_task_dl,
1611 .dequeue_task = dequeue_task_dl,
1612 .yield_task = yield_task_dl,
1614 .check_preempt_curr = check_preempt_curr_dl,
1616 .pick_next_task = pick_next_task_dl,
1617 .put_prev_task = put_prev_task_dl,
1619 #ifdef CONFIG_SMP
1620 .select_task_rq = select_task_rq_dl,
1621 .set_cpus_allowed = set_cpus_allowed_dl,
1622 .rq_online = rq_online_dl,
1623 .rq_offline = rq_offline_dl,
1624 .pre_schedule = pre_schedule_dl,
1625 .post_schedule = post_schedule_dl,
1626 .task_woken = task_woken_dl,
1627 #endif
1629 .set_curr_task = set_curr_task_dl,
1630 .task_tick = task_tick_dl,
1631 .task_fork = task_fork_dl,
1632 .task_dead = task_dead_dl,
1634 .prio_changed = prio_changed_dl,
1635 .switched_from = switched_from_dl,
1636 .switched_to = switched_to_dl,