2 * Deadline Scheduling Class (SCHED_DEADLINE)
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13 * Juri Lelli <juri.lelli@gmail.com>,
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
19 #include <linux/slab.h>
21 struct dl_bandwidth def_dl_bandwidth
;
23 static inline struct task_struct
*dl_task_of(struct sched_dl_entity
*dl_se
)
25 return container_of(dl_se
, struct task_struct
, dl
);
28 static inline struct rq
*rq_of_dl_rq(struct dl_rq
*dl_rq
)
30 return container_of(dl_rq
, struct rq
, dl
);
33 static inline struct dl_rq
*dl_rq_of_se(struct sched_dl_entity
*dl_se
)
35 struct task_struct
*p
= dl_task_of(dl_se
);
36 struct rq
*rq
= task_rq(p
);
41 static inline int on_dl_rq(struct sched_dl_entity
*dl_se
)
43 return !RB_EMPTY_NODE(&dl_se
->rb_node
);
46 static inline int is_leftmost(struct task_struct
*p
, struct dl_rq
*dl_rq
)
48 struct sched_dl_entity
*dl_se
= &p
->dl
;
50 return dl_rq
->rb_leftmost
== &dl_se
->rb_node
;
53 void init_dl_bandwidth(struct dl_bandwidth
*dl_b
, u64 period
, u64 runtime
)
55 raw_spin_lock_init(&dl_b
->dl_runtime_lock
);
56 dl_b
->dl_period
= period
;
57 dl_b
->dl_runtime
= runtime
;
60 extern unsigned long to_ratio(u64 period
, u64 runtime
);
62 void init_dl_bw(struct dl_bw
*dl_b
)
64 raw_spin_lock_init(&dl_b
->lock
);
65 raw_spin_lock(&def_dl_bandwidth
.dl_runtime_lock
);
66 if (global_rt_runtime() == RUNTIME_INF
)
69 dl_b
->bw
= to_ratio(global_rt_period(), global_rt_runtime());
70 raw_spin_unlock(&def_dl_bandwidth
.dl_runtime_lock
);
74 void init_dl_rq(struct dl_rq
*dl_rq
, struct rq
*rq
)
76 dl_rq
->rb_root
= RB_ROOT
;
79 /* zero means no -deadline tasks */
80 dl_rq
->earliest_dl
.curr
= dl_rq
->earliest_dl
.next
= 0;
82 dl_rq
->dl_nr_migratory
= 0;
83 dl_rq
->overloaded
= 0;
84 dl_rq
->pushable_dl_tasks_root
= RB_ROOT
;
86 init_dl_bw(&dl_rq
->dl_bw
);
92 static inline int dl_overloaded(struct rq
*rq
)
94 return atomic_read(&rq
->rd
->dlo_count
);
97 static inline void dl_set_overload(struct rq
*rq
)
102 cpumask_set_cpu(rq
->cpu
, rq
->rd
->dlo_mask
);
104 * Must be visible before the overload count is
105 * set (as in sched_rt.c).
107 * Matched by the barrier in pull_dl_task().
110 atomic_inc(&rq
->rd
->dlo_count
);
113 static inline void dl_clear_overload(struct rq
*rq
)
118 atomic_dec(&rq
->rd
->dlo_count
);
119 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->dlo_mask
);
122 static void update_dl_migration(struct dl_rq
*dl_rq
)
124 if (dl_rq
->dl_nr_migratory
&& dl_rq
->dl_nr_running
> 1) {
125 if (!dl_rq
->overloaded
) {
126 dl_set_overload(rq_of_dl_rq(dl_rq
));
127 dl_rq
->overloaded
= 1;
129 } else if (dl_rq
->overloaded
) {
130 dl_clear_overload(rq_of_dl_rq(dl_rq
));
131 dl_rq
->overloaded
= 0;
135 static void inc_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
137 struct task_struct
*p
= dl_task_of(dl_se
);
138 dl_rq
= &rq_of_dl_rq(dl_rq
)->dl
;
140 if (p
->nr_cpus_allowed
> 1)
141 dl_rq
->dl_nr_migratory
++;
143 update_dl_migration(dl_rq
);
146 static void dec_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
148 struct task_struct
*p
= dl_task_of(dl_se
);
149 dl_rq
= &rq_of_dl_rq(dl_rq
)->dl
;
151 if (p
->nr_cpus_allowed
> 1)
152 dl_rq
->dl_nr_migratory
--;
154 update_dl_migration(dl_rq
);
158 * The list of pushable -deadline task is not a plist, like in
159 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
161 static void enqueue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
163 struct dl_rq
*dl_rq
= &rq
->dl
;
164 struct rb_node
**link
= &dl_rq
->pushable_dl_tasks_root
.rb_node
;
165 struct rb_node
*parent
= NULL
;
166 struct task_struct
*entry
;
169 BUG_ON(!RB_EMPTY_NODE(&p
->pushable_dl_tasks
));
173 entry
= rb_entry(parent
, struct task_struct
,
175 if (dl_entity_preempt(&p
->dl
, &entry
->dl
))
176 link
= &parent
->rb_left
;
178 link
= &parent
->rb_right
;
184 dl_rq
->pushable_dl_tasks_leftmost
= &p
->pushable_dl_tasks
;
186 rb_link_node(&p
->pushable_dl_tasks
, parent
, link
);
187 rb_insert_color(&p
->pushable_dl_tasks
, &dl_rq
->pushable_dl_tasks_root
);
190 static void dequeue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
192 struct dl_rq
*dl_rq
= &rq
->dl
;
194 if (RB_EMPTY_NODE(&p
->pushable_dl_tasks
))
197 if (dl_rq
->pushable_dl_tasks_leftmost
== &p
->pushable_dl_tasks
) {
198 struct rb_node
*next_node
;
200 next_node
= rb_next(&p
->pushable_dl_tasks
);
201 dl_rq
->pushable_dl_tasks_leftmost
= next_node
;
204 rb_erase(&p
->pushable_dl_tasks
, &dl_rq
->pushable_dl_tasks_root
);
205 RB_CLEAR_NODE(&p
->pushable_dl_tasks
);
208 static inline int has_pushable_dl_tasks(struct rq
*rq
)
210 return !RB_EMPTY_ROOT(&rq
->dl
.pushable_dl_tasks_root
);
213 static int push_dl_task(struct rq
*rq
);
218 void enqueue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
223 void dequeue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
228 void inc_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
233 void dec_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
237 #endif /* CONFIG_SMP */
239 static void enqueue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
);
240 static void __dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
);
241 static void check_preempt_curr_dl(struct rq
*rq
, struct task_struct
*p
,
245 * We are being explicitly informed that a new instance is starting,
246 * and this means that:
247 * - the absolute deadline of the entity has to be placed at
248 * current time + relative deadline;
249 * - the runtime of the entity has to be set to the maximum value.
251 * The capability of specifying such event is useful whenever a -deadline
252 * entity wants to (try to!) synchronize its behaviour with the scheduler's
253 * one, and to (try to!) reconcile itself with its own scheduling
256 static inline void setup_new_dl_entity(struct sched_dl_entity
*dl_se
,
257 struct sched_dl_entity
*pi_se
)
259 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
260 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
262 WARN_ON(!dl_se
->dl_new
|| dl_se
->dl_throttled
);
265 * We use the regular wall clock time to set deadlines in the
266 * future; in fact, we must consider execution overheads (time
267 * spent on hardirq context, etc.).
269 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
270 dl_se
->runtime
= pi_se
->dl_runtime
;
275 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
276 * possibility of a entity lasting more than what it declared, and thus
277 * exhausting its runtime.
279 * Here we are interested in making runtime overrun possible, but we do
280 * not want a entity which is misbehaving to affect the scheduling of all
282 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
283 * is used, in order to confine each entity within its own bandwidth.
285 * This function deals exactly with that, and ensures that when the runtime
286 * of a entity is replenished, its deadline is also postponed. That ensures
287 * the overrunning entity can't interfere with other entity in the system and
288 * can't make them miss their deadlines. Reasons why this kind of overruns
289 * could happen are, typically, a entity voluntarily trying to overcome its
290 * runtime, or it just underestimated it during sched_setscheduler_ex().
292 static void replenish_dl_entity(struct sched_dl_entity
*dl_se
,
293 struct sched_dl_entity
*pi_se
)
295 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
296 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
298 BUG_ON(pi_se
->dl_runtime
<= 0);
301 * This could be the case for a !-dl task that is boosted.
302 * Just go with full inherited parameters.
304 if (dl_se
->dl_deadline
== 0) {
305 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
306 dl_se
->runtime
= pi_se
->dl_runtime
;
310 * We keep moving the deadline away until we get some
311 * available runtime for the entity. This ensures correct
312 * handling of situations where the runtime overrun is
315 while (dl_se
->runtime
<= 0) {
316 dl_se
->deadline
+= pi_se
->dl_period
;
317 dl_se
->runtime
+= pi_se
->dl_runtime
;
321 * At this point, the deadline really should be "in
322 * the future" with respect to rq->clock. If it's
323 * not, we are, for some reason, lagging too much!
324 * Anyway, after having warn userspace abut that,
325 * we still try to keep the things running by
326 * resetting the deadline and the budget of the
329 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
))) {
330 static bool lag_once
= false;
334 printk_sched("sched: DL replenish lagged to much\n");
336 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
337 dl_se
->runtime
= pi_se
->dl_runtime
;
342 * Here we check if --at time t-- an entity (which is probably being
343 * [re]activated or, in general, enqueued) can use its remaining runtime
344 * and its current deadline _without_ exceeding the bandwidth it is
345 * assigned (function returns true if it can't). We are in fact applying
346 * one of the CBS rules: when a task wakes up, if the residual runtime
347 * over residual deadline fits within the allocated bandwidth, then we
348 * can keep the current (absolute) deadline and residual budget without
349 * disrupting the schedulability of the system. Otherwise, we should
350 * refill the runtime and set the deadline a period in the future,
351 * because keeping the current (absolute) deadline of the task would
352 * result in breaking guarantees promised to other tasks (refer to
353 * Documentation/scheduler/sched-deadline.txt for more informations).
355 * This function returns true if:
357 * runtime / (deadline - t) > dl_runtime / dl_period ,
359 * IOW we can't recycle current parameters.
361 * Notice that the bandwidth check is done against the period. For
362 * task with deadline equal to period this is the same of using
363 * dl_deadline instead of dl_period in the equation above.
365 static bool dl_entity_overflow(struct sched_dl_entity
*dl_se
,
366 struct sched_dl_entity
*pi_se
, u64 t
)
371 * left and right are the two sides of the equation above,
372 * after a bit of shuffling to use multiplications instead
375 * Note that none of the time values involved in the two
376 * multiplications are absolute: dl_deadline and dl_runtime
377 * are the relative deadline and the maximum runtime of each
378 * instance, runtime is the runtime left for the last instance
379 * and (deadline - t), since t is rq->clock, is the time left
380 * to the (absolute) deadline. Even if overflowing the u64 type
381 * is very unlikely to occur in both cases, here we scale down
382 * as we want to avoid that risk at all. Scaling down by 10
383 * means that we reduce granularity to 1us. We are fine with it,
384 * since this is only a true/false check and, anyway, thinking
385 * of anything below microseconds resolution is actually fiction
386 * (but still we want to give the user that illusion >;).
388 left
= (pi_se
->dl_period
>> DL_SCALE
) * (dl_se
->runtime
>> DL_SCALE
);
389 right
= ((dl_se
->deadline
- t
) >> DL_SCALE
) *
390 (pi_se
->dl_runtime
>> DL_SCALE
);
392 return dl_time_before(right
, left
);
396 * When a -deadline entity is queued back on the runqueue, its runtime and
397 * deadline might need updating.
399 * The policy here is that we update the deadline of the entity only if:
400 * - the current deadline is in the past,
401 * - using the remaining runtime with the current deadline would make
402 * the entity exceed its bandwidth.
404 static void update_dl_entity(struct sched_dl_entity
*dl_se
,
405 struct sched_dl_entity
*pi_se
)
407 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
408 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
411 * The arrival of a new instance needs special treatment, i.e.,
412 * the actual scheduling parameters have to be "renewed".
415 setup_new_dl_entity(dl_se
, pi_se
);
419 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
)) ||
420 dl_entity_overflow(dl_se
, pi_se
, rq_clock(rq
))) {
421 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
422 dl_se
->runtime
= pi_se
->dl_runtime
;
427 * If the entity depleted all its runtime, and if we want it to sleep
428 * while waiting for some new execution time to become available, we
429 * set the bandwidth enforcement timer to the replenishment instant
430 * and try to activate it.
432 * Notice that it is important for the caller to know if the timer
433 * actually started or not (i.e., the replenishment instant is in
434 * the future or in the past).
436 static int start_dl_timer(struct sched_dl_entity
*dl_se
, bool boosted
)
438 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
439 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
448 * We want the timer to fire at the deadline, but considering
449 * that it is actually coming from rq->clock and not from
450 * hrtimer's time base reading.
452 act
= ns_to_ktime(dl_se
->deadline
);
453 now
= hrtimer_cb_get_time(&dl_se
->dl_timer
);
454 delta
= ktime_to_ns(now
) - rq_clock(rq
);
455 act
= ktime_add_ns(act
, delta
);
458 * If the expiry time already passed, e.g., because the value
459 * chosen as the deadline is too small, don't even try to
460 * start the timer in the past!
462 if (ktime_us_delta(act
, now
) < 0)
465 hrtimer_set_expires(&dl_se
->dl_timer
, act
);
467 soft
= hrtimer_get_softexpires(&dl_se
->dl_timer
);
468 hard
= hrtimer_get_expires(&dl_se
->dl_timer
);
469 range
= ktime_to_ns(ktime_sub(hard
, soft
));
470 __hrtimer_start_range_ns(&dl_se
->dl_timer
, soft
,
471 range
, HRTIMER_MODE_ABS
, 0);
473 return hrtimer_active(&dl_se
->dl_timer
);
477 * This is the bandwidth enforcement timer callback. If here, we know
478 * a task is not on its dl_rq, since the fact that the timer was running
479 * means the task is throttled and needs a runtime replenishment.
481 * However, what we actually do depends on the fact the task is active,
482 * (it is on its rq) or has been removed from there by a call to
483 * dequeue_task_dl(). In the former case we must issue the runtime
484 * replenishment and add the task back to the dl_rq; in the latter, we just
485 * do nothing but clearing dl_throttled, so that runtime and deadline
486 * updating (and the queueing back to dl_rq) will be done by the
487 * next call to enqueue_task_dl().
489 static enum hrtimer_restart
dl_task_timer(struct hrtimer
*timer
)
491 struct sched_dl_entity
*dl_se
= container_of(timer
,
492 struct sched_dl_entity
,
494 struct task_struct
*p
= dl_task_of(dl_se
);
495 struct rq
*rq
= task_rq(p
);
496 raw_spin_lock(&rq
->lock
);
499 * We need to take care of a possible races here. In fact, the
500 * task might have changed its scheduling policy to something
501 * different from SCHED_DEADLINE or changed its reservation
502 * parameters (through sched_setscheduler()).
504 if (!dl_task(p
) || dl_se
->dl_new
)
509 dl_se
->dl_throttled
= 0;
511 enqueue_task_dl(rq
, p
, ENQUEUE_REPLENISH
);
512 if (task_has_dl_policy(rq
->curr
))
513 check_preempt_curr_dl(rq
, p
, 0);
515 resched_task(rq
->curr
);
518 * Queueing this task back might have overloaded rq,
519 * check if we need to kick someone away.
521 if (has_pushable_dl_tasks(rq
))
526 raw_spin_unlock(&rq
->lock
);
528 return HRTIMER_NORESTART
;
531 void init_dl_task_timer(struct sched_dl_entity
*dl_se
)
533 struct hrtimer
*timer
= &dl_se
->dl_timer
;
535 if (hrtimer_active(timer
)) {
536 hrtimer_try_to_cancel(timer
);
540 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
541 timer
->function
= dl_task_timer
;
545 int dl_runtime_exceeded(struct rq
*rq
, struct sched_dl_entity
*dl_se
)
547 int dmiss
= dl_time_before(dl_se
->deadline
, rq_clock(rq
));
548 int rorun
= dl_se
->runtime
<= 0;
550 if (!rorun
&& !dmiss
)
554 * If we are beyond our current deadline and we are still
555 * executing, then we have already used some of the runtime of
556 * the next instance. Thus, if we do not account that, we are
557 * stealing bandwidth from the system at each deadline miss!
560 dl_se
->runtime
= rorun
? dl_se
->runtime
: 0;
561 dl_se
->runtime
-= rq_clock(rq
) - dl_se
->deadline
;
568 * Update the current task's runtime statistics (provided it is still
569 * a -deadline task and has not been removed from the dl_rq).
571 static void update_curr_dl(struct rq
*rq
)
573 struct task_struct
*curr
= rq
->curr
;
574 struct sched_dl_entity
*dl_se
= &curr
->dl
;
577 if (!dl_task(curr
) || !on_dl_rq(dl_se
))
581 * Consumed budget is computed considering the time as
582 * observed by schedulable tasks (excluding time spent
583 * in hardirq context, etc.). Deadlines are instead
584 * computed using hard walltime. This seems to be the more
585 * natural solution, but the full ramifications of this
586 * approach need further study.
588 delta_exec
= rq_clock_task(rq
) - curr
->se
.exec_start
;
589 if (unlikely((s64
)delta_exec
< 0))
592 schedstat_set(curr
->se
.statistics
.exec_max
,
593 max(curr
->se
.statistics
.exec_max
, delta_exec
));
595 curr
->se
.sum_exec_runtime
+= delta_exec
;
596 account_group_exec_runtime(curr
, delta_exec
);
598 curr
->se
.exec_start
= rq_clock_task(rq
);
599 cpuacct_charge(curr
, delta_exec
);
601 sched_rt_avg_update(rq
, delta_exec
);
603 dl_se
->runtime
-= delta_exec
;
604 if (dl_runtime_exceeded(rq
, dl_se
)) {
605 __dequeue_task_dl(rq
, curr
, 0);
606 if (likely(start_dl_timer(dl_se
, curr
->dl
.dl_boosted
)))
607 dl_se
->dl_throttled
= 1;
609 enqueue_task_dl(rq
, curr
, ENQUEUE_REPLENISH
);
611 if (!is_leftmost(curr
, &rq
->dl
))
616 * Because -- for now -- we share the rt bandwidth, we need to
617 * account our runtime there too, otherwise actual rt tasks
618 * would be able to exceed the shared quota.
620 * Account to the root rt group for now.
622 * The solution we're working towards is having the RT groups scheduled
623 * using deadline servers -- however there's a few nasties to figure
624 * out before that can happen.
626 if (rt_bandwidth_enabled()) {
627 struct rt_rq
*rt_rq
= &rq
->rt
;
629 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
630 rt_rq
->rt_time
+= delta_exec
;
632 * We'll let actual RT tasks worry about the overflow here, we
633 * have our own CBS to keep us inline -- see above.
635 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
641 static struct task_struct
*pick_next_earliest_dl_task(struct rq
*rq
, int cpu
);
643 static inline u64
next_deadline(struct rq
*rq
)
645 struct task_struct
*next
= pick_next_earliest_dl_task(rq
, rq
->cpu
);
647 if (next
&& dl_prio(next
->prio
))
648 return next
->dl
.deadline
;
653 static void inc_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
)
655 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
657 if (dl_rq
->earliest_dl
.curr
== 0 ||
658 dl_time_before(deadline
, dl_rq
->earliest_dl
.curr
)) {
660 * If the dl_rq had no -deadline tasks, or if the new task
661 * has shorter deadline than the current one on dl_rq, we
662 * know that the previous earliest becomes our next earliest,
663 * as the new task becomes the earliest itself.
665 dl_rq
->earliest_dl
.next
= dl_rq
->earliest_dl
.curr
;
666 dl_rq
->earliest_dl
.curr
= deadline
;
667 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, deadline
, 1);
668 } else if (dl_rq
->earliest_dl
.next
== 0 ||
669 dl_time_before(deadline
, dl_rq
->earliest_dl
.next
)) {
671 * On the other hand, if the new -deadline task has a
672 * a later deadline than the earliest one on dl_rq, but
673 * it is earlier than the next (if any), we must
674 * recompute the next-earliest.
676 dl_rq
->earliest_dl
.next
= next_deadline(rq
);
680 static void dec_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
)
682 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
685 * Since we may have removed our earliest (and/or next earliest)
686 * task we must recompute them.
688 if (!dl_rq
->dl_nr_running
) {
689 dl_rq
->earliest_dl
.curr
= 0;
690 dl_rq
->earliest_dl
.next
= 0;
691 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, 0, 0);
693 struct rb_node
*leftmost
= dl_rq
->rb_leftmost
;
694 struct sched_dl_entity
*entry
;
696 entry
= rb_entry(leftmost
, struct sched_dl_entity
, rb_node
);
697 dl_rq
->earliest_dl
.curr
= entry
->deadline
;
698 dl_rq
->earliest_dl
.next
= next_deadline(rq
);
699 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, entry
->deadline
, 1);
705 static inline void inc_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
) {}
706 static inline void dec_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
) {}
708 #endif /* CONFIG_SMP */
711 void inc_dl_tasks(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
713 int prio
= dl_task_of(dl_se
)->prio
;
714 u64 deadline
= dl_se
->deadline
;
716 WARN_ON(!dl_prio(prio
));
717 dl_rq
->dl_nr_running
++;
718 inc_nr_running(rq_of_dl_rq(dl_rq
));
720 inc_dl_deadline(dl_rq
, deadline
);
721 inc_dl_migration(dl_se
, dl_rq
);
725 void dec_dl_tasks(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
727 int prio
= dl_task_of(dl_se
)->prio
;
729 WARN_ON(!dl_prio(prio
));
730 WARN_ON(!dl_rq
->dl_nr_running
);
731 dl_rq
->dl_nr_running
--;
732 dec_nr_running(rq_of_dl_rq(dl_rq
));
734 dec_dl_deadline(dl_rq
, dl_se
->deadline
);
735 dec_dl_migration(dl_se
, dl_rq
);
738 static void __enqueue_dl_entity(struct sched_dl_entity
*dl_se
)
740 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
741 struct rb_node
**link
= &dl_rq
->rb_root
.rb_node
;
742 struct rb_node
*parent
= NULL
;
743 struct sched_dl_entity
*entry
;
746 BUG_ON(!RB_EMPTY_NODE(&dl_se
->rb_node
));
750 entry
= rb_entry(parent
, struct sched_dl_entity
, rb_node
);
751 if (dl_time_before(dl_se
->deadline
, entry
->deadline
))
752 link
= &parent
->rb_left
;
754 link
= &parent
->rb_right
;
760 dl_rq
->rb_leftmost
= &dl_se
->rb_node
;
762 rb_link_node(&dl_se
->rb_node
, parent
, link
);
763 rb_insert_color(&dl_se
->rb_node
, &dl_rq
->rb_root
);
765 inc_dl_tasks(dl_se
, dl_rq
);
768 static void __dequeue_dl_entity(struct sched_dl_entity
*dl_se
)
770 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
772 if (RB_EMPTY_NODE(&dl_se
->rb_node
))
775 if (dl_rq
->rb_leftmost
== &dl_se
->rb_node
) {
776 struct rb_node
*next_node
;
778 next_node
= rb_next(&dl_se
->rb_node
);
779 dl_rq
->rb_leftmost
= next_node
;
782 rb_erase(&dl_se
->rb_node
, &dl_rq
->rb_root
);
783 RB_CLEAR_NODE(&dl_se
->rb_node
);
785 dec_dl_tasks(dl_se
, dl_rq
);
789 enqueue_dl_entity(struct sched_dl_entity
*dl_se
,
790 struct sched_dl_entity
*pi_se
, int flags
)
792 BUG_ON(on_dl_rq(dl_se
));
795 * If this is a wakeup or a new instance, the scheduling
796 * parameters of the task might need updating. Otherwise,
797 * we want a replenishment of its runtime.
799 if (!dl_se
->dl_new
&& flags
& ENQUEUE_REPLENISH
)
800 replenish_dl_entity(dl_se
, pi_se
);
802 update_dl_entity(dl_se
, pi_se
);
804 __enqueue_dl_entity(dl_se
);
807 static void dequeue_dl_entity(struct sched_dl_entity
*dl_se
)
809 __dequeue_dl_entity(dl_se
);
812 static void enqueue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
814 struct task_struct
*pi_task
= rt_mutex_get_top_task(p
);
815 struct sched_dl_entity
*pi_se
= &p
->dl
;
818 * Use the scheduling parameters of the top pi-waiter
819 * task if we have one and its (relative) deadline is
820 * smaller than our one... OTW we keep our runtime and
823 if (pi_task
&& p
->dl
.dl_boosted
&& dl_prio(pi_task
->normal_prio
))
824 pi_se
= &pi_task
->dl
;
827 * If p is throttled, we do nothing. In fact, if it exhausted
828 * its budget it needs a replenishment and, since it now is on
829 * its rq, the bandwidth timer callback (which clearly has not
830 * run yet) will take care of this.
832 if (p
->dl
.dl_throttled
)
835 enqueue_dl_entity(&p
->dl
, pi_se
, flags
);
837 if (!task_current(rq
, p
) && p
->nr_cpus_allowed
> 1)
838 enqueue_pushable_dl_task(rq
, p
);
841 static void __dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
843 dequeue_dl_entity(&p
->dl
);
844 dequeue_pushable_dl_task(rq
, p
);
847 static void dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
850 __dequeue_task_dl(rq
, p
, flags
);
854 * Yield task semantic for -deadline tasks is:
856 * get off from the CPU until our next instance, with
857 * a new runtime. This is of little use now, since we
858 * don't have a bandwidth reclaiming mechanism. Anyway,
859 * bandwidth reclaiming is planned for the future, and
860 * yield_task_dl will indicate that some spare budget
861 * is available for other task instances to use it.
863 static void yield_task_dl(struct rq
*rq
)
865 struct task_struct
*p
= rq
->curr
;
868 * We make the task go to sleep until its current deadline by
869 * forcing its runtime to zero. This way, update_curr_dl() stops
870 * it and the bandwidth timer will wake it up and will give it
871 * new scheduling parameters (thanks to dl_new=1).
873 if (p
->dl
.runtime
> 0) {
874 rq
->curr
->dl
.dl_new
= 1;
882 static int find_later_rq(struct task_struct
*task
);
885 select_task_rq_dl(struct task_struct
*p
, int cpu
, int sd_flag
, int flags
)
887 struct task_struct
*curr
;
890 if (sd_flag
!= SD_BALANCE_WAKE
&& sd_flag
!= SD_BALANCE_FORK
)
896 curr
= ACCESS_ONCE(rq
->curr
); /* unlocked access */
899 * If we are dealing with a -deadline task, we must
900 * decide where to wake it up.
901 * If it has a later deadline and the current task
902 * on this rq can't move (provided the waking task
903 * can!) we prefer to send it somewhere else. On the
904 * other hand, if it has a shorter deadline, we
905 * try to make it stay here, it might be important.
907 if (unlikely(dl_task(curr
)) &&
908 (curr
->nr_cpus_allowed
< 2 ||
909 !dl_entity_preempt(&p
->dl
, &curr
->dl
)) &&
910 (p
->nr_cpus_allowed
> 1)) {
911 int target
= find_later_rq(p
);
922 static void check_preempt_equal_dl(struct rq
*rq
, struct task_struct
*p
)
925 * Current can't be migrated, useless to reschedule,
926 * let's hope p can move out.
928 if (rq
->curr
->nr_cpus_allowed
== 1 ||
929 cpudl_find(&rq
->rd
->cpudl
, rq
->curr
, NULL
) == -1)
933 * p is migratable, so let's not schedule it and
934 * see if it is pushed or pulled somewhere else.
936 if (p
->nr_cpus_allowed
!= 1 &&
937 cpudl_find(&rq
->rd
->cpudl
, p
, NULL
) != -1)
940 resched_task(rq
->curr
);
943 #endif /* CONFIG_SMP */
946 * Only called when both the current and waking task are -deadline
949 static void check_preempt_curr_dl(struct rq
*rq
, struct task_struct
*p
,
952 if (dl_entity_preempt(&p
->dl
, &rq
->curr
->dl
)) {
953 resched_task(rq
->curr
);
959 * In the unlikely case current and p have the same deadline
960 * let us try to decide what's the best thing to do...
962 if ((p
->dl
.deadline
== rq
->curr
->dl
.deadline
) &&
963 !test_tsk_need_resched(rq
->curr
))
964 check_preempt_equal_dl(rq
, p
);
965 #endif /* CONFIG_SMP */
968 #ifdef CONFIG_SCHED_HRTICK
969 static void start_hrtick_dl(struct rq
*rq
, struct task_struct
*p
)
971 s64 delta
= p
->dl
.dl_runtime
- p
->dl
.runtime
;
974 hrtick_start(rq
, p
->dl
.runtime
);
978 static struct sched_dl_entity
*pick_next_dl_entity(struct rq
*rq
,
981 struct rb_node
*left
= dl_rq
->rb_leftmost
;
986 return rb_entry(left
, struct sched_dl_entity
, rb_node
);
989 struct task_struct
*pick_next_task_dl(struct rq
*rq
)
991 struct sched_dl_entity
*dl_se
;
992 struct task_struct
*p
;
997 if (unlikely(!dl_rq
->dl_nr_running
))
1000 dl_se
= pick_next_dl_entity(rq
, dl_rq
);
1003 p
= dl_task_of(dl_se
);
1004 p
->se
.exec_start
= rq_clock_task(rq
);
1006 /* Running task will never be pushed. */
1007 dequeue_pushable_dl_task(rq
, p
);
1009 #ifdef CONFIG_SCHED_HRTICK
1010 if (hrtick_enabled(rq
))
1011 start_hrtick_dl(rq
, p
);
1015 rq
->post_schedule
= has_pushable_dl_tasks(rq
);
1016 #endif /* CONFIG_SMP */
1021 static void put_prev_task_dl(struct rq
*rq
, struct task_struct
*p
)
1025 if (on_dl_rq(&p
->dl
) && p
->nr_cpus_allowed
> 1)
1026 enqueue_pushable_dl_task(rq
, p
);
1029 static void task_tick_dl(struct rq
*rq
, struct task_struct
*p
, int queued
)
1033 #ifdef CONFIG_SCHED_HRTICK
1034 if (hrtick_enabled(rq
) && queued
&& p
->dl
.runtime
> 0)
1035 start_hrtick_dl(rq
, p
);
1039 static void task_fork_dl(struct task_struct
*p
)
1042 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1047 static void task_dead_dl(struct task_struct
*p
)
1049 struct hrtimer
*timer
= &p
->dl
.dl_timer
;
1050 struct dl_bw
*dl_b
= dl_bw_of(task_cpu(p
));
1053 * Since we are TASK_DEAD we won't slip out of the domain!
1055 raw_spin_lock_irq(&dl_b
->lock
);
1056 dl_b
->total_bw
-= p
->dl
.dl_bw
;
1057 raw_spin_unlock_irq(&dl_b
->lock
);
1059 hrtimer_cancel(timer
);
1062 static void set_curr_task_dl(struct rq
*rq
)
1064 struct task_struct
*p
= rq
->curr
;
1066 p
->se
.exec_start
= rq_clock_task(rq
);
1068 /* You can't push away the running task */
1069 dequeue_pushable_dl_task(rq
, p
);
1074 /* Only try algorithms three times */
1075 #define DL_MAX_TRIES 3
1077 static int pick_dl_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
1079 if (!task_running(rq
, p
) &&
1080 (cpu
< 0 || cpumask_test_cpu(cpu
, &p
->cpus_allowed
)) &&
1081 (p
->nr_cpus_allowed
> 1))
1087 /* Returns the second earliest -deadline task, NULL otherwise */
1088 static struct task_struct
*pick_next_earliest_dl_task(struct rq
*rq
, int cpu
)
1090 struct rb_node
*next_node
= rq
->dl
.rb_leftmost
;
1091 struct sched_dl_entity
*dl_se
;
1092 struct task_struct
*p
= NULL
;
1095 next_node
= rb_next(next_node
);
1097 dl_se
= rb_entry(next_node
, struct sched_dl_entity
, rb_node
);
1098 p
= dl_task_of(dl_se
);
1100 if (pick_dl_task(rq
, p
, cpu
))
1109 static DEFINE_PER_CPU(cpumask_var_t
, local_cpu_mask_dl
);
1111 static int find_later_rq(struct task_struct
*task
)
1113 struct sched_domain
*sd
;
1114 struct cpumask
*later_mask
= __get_cpu_var(local_cpu_mask_dl
);
1115 int this_cpu
= smp_processor_id();
1116 int best_cpu
, cpu
= task_cpu(task
);
1118 /* Make sure the mask is initialized first */
1119 if (unlikely(!later_mask
))
1122 if (task
->nr_cpus_allowed
== 1)
1125 best_cpu
= cpudl_find(&task_rq(task
)->rd
->cpudl
,
1131 * If we are here, some target has been found,
1132 * the most suitable of which is cached in best_cpu.
1133 * This is, among the runqueues where the current tasks
1134 * have later deadlines than the task's one, the rq
1135 * with the latest possible one.
1137 * Now we check how well this matches with task's
1138 * affinity and system topology.
1140 * The last cpu where the task run is our first
1141 * guess, since it is most likely cache-hot there.
1143 if (cpumask_test_cpu(cpu
, later_mask
))
1146 * Check if this_cpu is to be skipped (i.e., it is
1147 * not in the mask) or not.
1149 if (!cpumask_test_cpu(this_cpu
, later_mask
))
1153 for_each_domain(cpu
, sd
) {
1154 if (sd
->flags
& SD_WAKE_AFFINE
) {
1157 * If possible, preempting this_cpu is
1158 * cheaper than migrating.
1160 if (this_cpu
!= -1 &&
1161 cpumask_test_cpu(this_cpu
, sched_domain_span(sd
))) {
1167 * Last chance: if best_cpu is valid and is
1168 * in the mask, that becomes our choice.
1170 if (best_cpu
< nr_cpu_ids
&&
1171 cpumask_test_cpu(best_cpu
, sched_domain_span(sd
))) {
1180 * At this point, all our guesses failed, we just return
1181 * 'something', and let the caller sort the things out.
1186 cpu
= cpumask_any(later_mask
);
1187 if (cpu
< nr_cpu_ids
)
1193 /* Locks the rq it finds */
1194 static struct rq
*find_lock_later_rq(struct task_struct
*task
, struct rq
*rq
)
1196 struct rq
*later_rq
= NULL
;
1200 for (tries
= 0; tries
< DL_MAX_TRIES
; tries
++) {
1201 cpu
= find_later_rq(task
);
1203 if ((cpu
== -1) || (cpu
== rq
->cpu
))
1206 later_rq
= cpu_rq(cpu
);
1208 /* Retry if something changed. */
1209 if (double_lock_balance(rq
, later_rq
)) {
1210 if (unlikely(task_rq(task
) != rq
||
1211 !cpumask_test_cpu(later_rq
->cpu
,
1212 &task
->cpus_allowed
) ||
1213 task_running(rq
, task
) || !task
->on_rq
)) {
1214 double_unlock_balance(rq
, later_rq
);
1221 * If the rq we found has no -deadline task, or
1222 * its earliest one has a later deadline than our
1223 * task, the rq is a good one.
1225 if (!later_rq
->dl
.dl_nr_running
||
1226 dl_time_before(task
->dl
.deadline
,
1227 later_rq
->dl
.earliest_dl
.curr
))
1230 /* Otherwise we try again. */
1231 double_unlock_balance(rq
, later_rq
);
1238 static struct task_struct
*pick_next_pushable_dl_task(struct rq
*rq
)
1240 struct task_struct
*p
;
1242 if (!has_pushable_dl_tasks(rq
))
1245 p
= rb_entry(rq
->dl
.pushable_dl_tasks_leftmost
,
1246 struct task_struct
, pushable_dl_tasks
);
1248 BUG_ON(rq
->cpu
!= task_cpu(p
));
1249 BUG_ON(task_current(rq
, p
));
1250 BUG_ON(p
->nr_cpus_allowed
<= 1);
1253 BUG_ON(!dl_task(p
));
1259 * See if the non running -deadline tasks on this rq
1260 * can be sent to some other CPU where they can preempt
1261 * and start executing.
1263 static int push_dl_task(struct rq
*rq
)
1265 struct task_struct
*next_task
;
1266 struct rq
*later_rq
;
1268 if (!rq
->dl
.overloaded
)
1271 next_task
= pick_next_pushable_dl_task(rq
);
1276 if (unlikely(next_task
== rq
->curr
)) {
1282 * If next_task preempts rq->curr, and rq->curr
1283 * can move away, it makes sense to just reschedule
1284 * without going further in pushing next_task.
1286 if (dl_task(rq
->curr
) &&
1287 dl_time_before(next_task
->dl
.deadline
, rq
->curr
->dl
.deadline
) &&
1288 rq
->curr
->nr_cpus_allowed
> 1) {
1289 resched_task(rq
->curr
);
1293 /* We might release rq lock */
1294 get_task_struct(next_task
);
1296 /* Will lock the rq it'll find */
1297 later_rq
= find_lock_later_rq(next_task
, rq
);
1299 struct task_struct
*task
;
1302 * We must check all this again, since
1303 * find_lock_later_rq releases rq->lock and it is
1304 * then possible that next_task has migrated.
1306 task
= pick_next_pushable_dl_task(rq
);
1307 if (task_cpu(next_task
) == rq
->cpu
&& task
== next_task
) {
1309 * The task is still there. We don't try
1310 * again, some other cpu will pull it when ready.
1312 dequeue_pushable_dl_task(rq
, next_task
);
1320 put_task_struct(next_task
);
1325 deactivate_task(rq
, next_task
, 0);
1326 set_task_cpu(next_task
, later_rq
->cpu
);
1327 activate_task(later_rq
, next_task
, 0);
1329 resched_task(later_rq
->curr
);
1331 double_unlock_balance(rq
, later_rq
);
1334 put_task_struct(next_task
);
1339 static void push_dl_tasks(struct rq
*rq
)
1341 /* Terminates as it moves a -deadline task */
1342 while (push_dl_task(rq
))
1346 static int pull_dl_task(struct rq
*this_rq
)
1348 int this_cpu
= this_rq
->cpu
, ret
= 0, cpu
;
1349 struct task_struct
*p
;
1351 u64 dmin
= LONG_MAX
;
1353 if (likely(!dl_overloaded(this_rq
)))
1357 * Match the barrier from dl_set_overloaded; this guarantees that if we
1358 * see overloaded we must also see the dlo_mask bit.
1362 for_each_cpu(cpu
, this_rq
->rd
->dlo_mask
) {
1363 if (this_cpu
== cpu
)
1366 src_rq
= cpu_rq(cpu
);
1369 * It looks racy, abd it is! However, as in sched_rt.c,
1370 * we are fine with this.
1372 if (this_rq
->dl
.dl_nr_running
&&
1373 dl_time_before(this_rq
->dl
.earliest_dl
.curr
,
1374 src_rq
->dl
.earliest_dl
.next
))
1377 /* Might drop this_rq->lock */
1378 double_lock_balance(this_rq
, src_rq
);
1381 * If there are no more pullable tasks on the
1382 * rq, we're done with it.
1384 if (src_rq
->dl
.dl_nr_running
<= 1)
1387 p
= pick_next_earliest_dl_task(src_rq
, this_cpu
);
1390 * We found a task to be pulled if:
1391 * - it preempts our current (if there's one),
1392 * - it will preempt the last one we pulled (if any).
1394 if (p
&& dl_time_before(p
->dl
.deadline
, dmin
) &&
1395 (!this_rq
->dl
.dl_nr_running
||
1396 dl_time_before(p
->dl
.deadline
,
1397 this_rq
->dl
.earliest_dl
.curr
))) {
1398 WARN_ON(p
== src_rq
->curr
);
1402 * Then we pull iff p has actually an earlier
1403 * deadline than the current task of its runqueue.
1405 if (dl_time_before(p
->dl
.deadline
,
1406 src_rq
->curr
->dl
.deadline
))
1411 deactivate_task(src_rq
, p
, 0);
1412 set_task_cpu(p
, this_cpu
);
1413 activate_task(this_rq
, p
, 0);
1414 dmin
= p
->dl
.deadline
;
1416 /* Is there any other task even earlier? */
1419 double_unlock_balance(this_rq
, src_rq
);
1425 static void pre_schedule_dl(struct rq
*rq
, struct task_struct
*prev
)
1427 /* Try to pull other tasks here */
1432 static void post_schedule_dl(struct rq
*rq
)
1438 * Since the task is not running and a reschedule is not going to happen
1439 * anytime soon on its runqueue, we try pushing it away now.
1441 static void task_woken_dl(struct rq
*rq
, struct task_struct
*p
)
1443 if (!task_running(rq
, p
) &&
1444 !test_tsk_need_resched(rq
->curr
) &&
1445 has_pushable_dl_tasks(rq
) &&
1446 p
->nr_cpus_allowed
> 1 &&
1447 dl_task(rq
->curr
) &&
1448 (rq
->curr
->nr_cpus_allowed
< 2 ||
1449 dl_entity_preempt(&rq
->curr
->dl
, &p
->dl
))) {
1454 static void set_cpus_allowed_dl(struct task_struct
*p
,
1455 const struct cpumask
*new_mask
)
1460 BUG_ON(!dl_task(p
));
1463 * Update only if the task is actually running (i.e.,
1464 * it is on the rq AND it is not throttled).
1466 if (!on_dl_rq(&p
->dl
))
1469 weight
= cpumask_weight(new_mask
);
1472 * Only update if the process changes its state from whether it
1473 * can migrate or not.
1475 if ((p
->nr_cpus_allowed
> 1) == (weight
> 1))
1481 * The process used to be able to migrate OR it can now migrate
1484 if (!task_current(rq
, p
))
1485 dequeue_pushable_dl_task(rq
, p
);
1486 BUG_ON(!rq
->dl
.dl_nr_migratory
);
1487 rq
->dl
.dl_nr_migratory
--;
1489 if (!task_current(rq
, p
))
1490 enqueue_pushable_dl_task(rq
, p
);
1491 rq
->dl
.dl_nr_migratory
++;
1494 update_dl_migration(&rq
->dl
);
1497 /* Assumes rq->lock is held */
1498 static void rq_online_dl(struct rq
*rq
)
1500 if (rq
->dl
.overloaded
)
1501 dl_set_overload(rq
);
1503 if (rq
->dl
.dl_nr_running
> 0)
1504 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, rq
->dl
.earliest_dl
.curr
, 1);
1507 /* Assumes rq->lock is held */
1508 static void rq_offline_dl(struct rq
*rq
)
1510 if (rq
->dl
.overloaded
)
1511 dl_clear_overload(rq
);
1513 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, 0, 0);
1516 void init_sched_dl_class(void)
1520 for_each_possible_cpu(i
)
1521 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl
, i
),
1522 GFP_KERNEL
, cpu_to_node(i
));
1525 #endif /* CONFIG_SMP */
1527 static void switched_from_dl(struct rq
*rq
, struct task_struct
*p
)
1529 if (hrtimer_active(&p
->dl
.dl_timer
) && !dl_policy(p
->policy
))
1530 hrtimer_try_to_cancel(&p
->dl
.dl_timer
);
1534 * Since this might be the only -deadline task on the rq,
1535 * this is the right place to try to pull some other one
1536 * from an overloaded cpu, if any.
1538 if (!rq
->dl
.dl_nr_running
)
1544 * When switching to -deadline, we may overload the rq, then
1545 * we try to push someone off, if possible.
1547 static void switched_to_dl(struct rq
*rq
, struct task_struct
*p
)
1549 int check_resched
= 1;
1552 * If p is throttled, don't consider the possibility
1553 * of preempting rq->curr, the check will be done right
1554 * after its runtime will get replenished.
1556 if (unlikely(p
->dl
.dl_throttled
))
1559 if (p
->on_rq
|| rq
->curr
!= p
) {
1561 if (rq
->dl
.overloaded
&& push_dl_task(rq
) && rq
!= task_rq(p
))
1562 /* Only reschedule if pushing failed */
1564 #endif /* CONFIG_SMP */
1565 if (check_resched
&& task_has_dl_policy(rq
->curr
))
1566 check_preempt_curr_dl(rq
, p
, 0);
1571 * If the scheduling parameters of a -deadline task changed,
1572 * a push or pull operation might be needed.
1574 static void prio_changed_dl(struct rq
*rq
, struct task_struct
*p
,
1577 if (p
->on_rq
|| rq
->curr
== p
) {
1580 * This might be too much, but unfortunately
1581 * we don't have the old deadline value, and
1582 * we can't argue if the task is increasing
1583 * or lowering its prio, so...
1585 if (!rq
->dl
.overloaded
)
1589 * If we now have a earlier deadline task than p,
1590 * then reschedule, provided p is still on this
1593 if (dl_time_before(rq
->dl
.earliest_dl
.curr
, p
->dl
.deadline
) &&
1598 * Again, we don't know if p has a earlier
1599 * or later deadline, so let's blindly set a
1600 * (maybe not needed) rescheduling point.
1603 #endif /* CONFIG_SMP */
1605 switched_to_dl(rq
, p
);
1608 const struct sched_class dl_sched_class
= {
1609 .next
= &rt_sched_class
,
1610 .enqueue_task
= enqueue_task_dl
,
1611 .dequeue_task
= dequeue_task_dl
,
1612 .yield_task
= yield_task_dl
,
1614 .check_preempt_curr
= check_preempt_curr_dl
,
1616 .pick_next_task
= pick_next_task_dl
,
1617 .put_prev_task
= put_prev_task_dl
,
1620 .select_task_rq
= select_task_rq_dl
,
1621 .set_cpus_allowed
= set_cpus_allowed_dl
,
1622 .rq_online
= rq_online_dl
,
1623 .rq_offline
= rq_offline_dl
,
1624 .pre_schedule
= pre_schedule_dl
,
1625 .post_schedule
= post_schedule_dl
,
1626 .task_woken
= task_woken_dl
,
1629 .set_curr_task
= set_curr_task_dl
,
1630 .task_tick
= task_tick_dl
,
1631 .task_fork
= task_fork_dl
,
1632 .task_dead
= task_dead_dl
,
1634 .prio_changed
= prio_changed_dl
,
1635 .switched_from
= switched_from_dl
,
1636 .switched_to
= switched_to_dl
,