arm64: Implement branch predictor hardening for Falkor
[linux/fpc-iii.git] / kernel / fork.c
blob2295fc69717f6c3d877ef3cac15b55336d7746c6
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/perf_event.h>
81 #include <linux/posix-timers.h>
82 #include <linux/user-return-notifier.h>
83 #include <linux/oom.h>
84 #include <linux/khugepaged.h>
85 #include <linux/signalfd.h>
86 #include <linux/uprobes.h>
87 #include <linux/aio.h>
88 #include <linux/compiler.h>
89 #include <linux/sysctl.h>
90 #include <linux/kcov.h>
91 #include <linux/livepatch.h>
92 #include <linux/thread_info.h>
94 #include <asm/pgtable.h>
95 #include <asm/pgalloc.h>
96 #include <linux/uaccess.h>
97 #include <asm/mmu_context.h>
98 #include <asm/cacheflush.h>
99 #include <asm/tlbflush.h>
101 #include <trace/events/sched.h>
103 #define CREATE_TRACE_POINTS
104 #include <trace/events/task.h>
107 * Minimum number of threads to boot the kernel
109 #define MIN_THREADS 20
112 * Maximum number of threads
114 #define MAX_THREADS FUTEX_TID_MASK
117 * Protected counters by write_lock_irq(&tasklist_lock)
119 unsigned long total_forks; /* Handle normal Linux uptimes. */
120 int nr_threads; /* The idle threads do not count.. */
122 int max_threads; /* tunable limit on nr_threads */
124 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
126 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
128 #ifdef CONFIG_PROVE_RCU
129 int lockdep_tasklist_lock_is_held(void)
131 return lockdep_is_held(&tasklist_lock);
133 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
134 #endif /* #ifdef CONFIG_PROVE_RCU */
136 int nr_processes(void)
138 int cpu;
139 int total = 0;
141 for_each_possible_cpu(cpu)
142 total += per_cpu(process_counts, cpu);
144 return total;
147 void __weak arch_release_task_struct(struct task_struct *tsk)
151 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
152 static struct kmem_cache *task_struct_cachep;
154 static inline struct task_struct *alloc_task_struct_node(int node)
156 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
159 static inline void free_task_struct(struct task_struct *tsk)
161 kmem_cache_free(task_struct_cachep, tsk);
163 #endif
165 void __weak arch_release_thread_stack(unsigned long *stack)
169 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
172 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
173 * kmemcache based allocator.
175 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
177 #ifdef CONFIG_VMAP_STACK
179 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
180 * flush. Try to minimize the number of calls by caching stacks.
182 #define NR_CACHED_STACKS 2
183 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
185 static int free_vm_stack_cache(unsigned int cpu)
187 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
188 int i;
190 for (i = 0; i < NR_CACHED_STACKS; i++) {
191 struct vm_struct *vm_stack = cached_vm_stacks[i];
193 if (!vm_stack)
194 continue;
196 vfree(vm_stack->addr);
197 cached_vm_stacks[i] = NULL;
200 return 0;
202 #endif
204 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
206 #ifdef CONFIG_VMAP_STACK
207 void *stack;
208 int i;
210 for (i = 0; i < NR_CACHED_STACKS; i++) {
211 struct vm_struct *s;
213 s = this_cpu_xchg(cached_stacks[i], NULL);
215 if (!s)
216 continue;
218 #ifdef CONFIG_DEBUG_KMEMLEAK
219 /* Clear stale pointers from reused stack. */
220 memset(s->addr, 0, THREAD_SIZE);
221 #endif
222 tsk->stack_vm_area = s;
223 return s->addr;
226 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
227 VMALLOC_START, VMALLOC_END,
228 THREADINFO_GFP,
229 PAGE_KERNEL,
230 0, node, __builtin_return_address(0));
233 * We can't call find_vm_area() in interrupt context, and
234 * free_thread_stack() can be called in interrupt context,
235 * so cache the vm_struct.
237 if (stack)
238 tsk->stack_vm_area = find_vm_area(stack);
239 return stack;
240 #else
241 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
242 THREAD_SIZE_ORDER);
244 return page ? page_address(page) : NULL;
245 #endif
248 static inline void free_thread_stack(struct task_struct *tsk)
250 #ifdef CONFIG_VMAP_STACK
251 if (task_stack_vm_area(tsk)) {
252 int i;
254 for (i = 0; i < NR_CACHED_STACKS; i++) {
255 if (this_cpu_cmpxchg(cached_stacks[i],
256 NULL, tsk->stack_vm_area) != NULL)
257 continue;
259 return;
262 vfree_atomic(tsk->stack);
263 return;
265 #endif
267 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
269 # else
270 static struct kmem_cache *thread_stack_cache;
272 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
273 int node)
275 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
278 static void free_thread_stack(struct task_struct *tsk)
280 kmem_cache_free(thread_stack_cache, tsk->stack);
283 void thread_stack_cache_init(void)
285 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
286 THREAD_SIZE, 0, NULL);
287 BUG_ON(thread_stack_cache == NULL);
289 # endif
290 #endif
292 /* SLAB cache for signal_struct structures (tsk->signal) */
293 static struct kmem_cache *signal_cachep;
295 /* SLAB cache for sighand_struct structures (tsk->sighand) */
296 struct kmem_cache *sighand_cachep;
298 /* SLAB cache for files_struct structures (tsk->files) */
299 struct kmem_cache *files_cachep;
301 /* SLAB cache for fs_struct structures (tsk->fs) */
302 struct kmem_cache *fs_cachep;
304 /* SLAB cache for vm_area_struct structures */
305 struct kmem_cache *vm_area_cachep;
307 /* SLAB cache for mm_struct structures (tsk->mm) */
308 static struct kmem_cache *mm_cachep;
310 static void account_kernel_stack(struct task_struct *tsk, int account)
312 void *stack = task_stack_page(tsk);
313 struct vm_struct *vm = task_stack_vm_area(tsk);
315 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
317 if (vm) {
318 int i;
320 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
322 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
323 mod_zone_page_state(page_zone(vm->pages[i]),
324 NR_KERNEL_STACK_KB,
325 PAGE_SIZE / 1024 * account);
328 /* All stack pages belong to the same memcg. */
329 mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
330 account * (THREAD_SIZE / 1024));
331 } else {
333 * All stack pages are in the same zone and belong to the
334 * same memcg.
336 struct page *first_page = virt_to_page(stack);
338 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
339 THREAD_SIZE / 1024 * account);
341 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
342 account * (THREAD_SIZE / 1024));
346 static void release_task_stack(struct task_struct *tsk)
348 if (WARN_ON(tsk->state != TASK_DEAD))
349 return; /* Better to leak the stack than to free prematurely */
351 account_kernel_stack(tsk, -1);
352 arch_release_thread_stack(tsk->stack);
353 free_thread_stack(tsk);
354 tsk->stack = NULL;
355 #ifdef CONFIG_VMAP_STACK
356 tsk->stack_vm_area = NULL;
357 #endif
360 #ifdef CONFIG_THREAD_INFO_IN_TASK
361 void put_task_stack(struct task_struct *tsk)
363 if (atomic_dec_and_test(&tsk->stack_refcount))
364 release_task_stack(tsk);
366 #endif
368 void free_task(struct task_struct *tsk)
370 #ifndef CONFIG_THREAD_INFO_IN_TASK
372 * The task is finally done with both the stack and thread_info,
373 * so free both.
375 release_task_stack(tsk);
376 #else
378 * If the task had a separate stack allocation, it should be gone
379 * by now.
381 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
382 #endif
383 rt_mutex_debug_task_free(tsk);
384 ftrace_graph_exit_task(tsk);
385 put_seccomp_filter(tsk);
386 arch_release_task_struct(tsk);
387 if (tsk->flags & PF_KTHREAD)
388 free_kthread_struct(tsk);
389 free_task_struct(tsk);
391 EXPORT_SYMBOL(free_task);
393 static inline void free_signal_struct(struct signal_struct *sig)
395 taskstats_tgid_free(sig);
396 sched_autogroup_exit(sig);
398 * __mmdrop is not safe to call from softirq context on x86 due to
399 * pgd_dtor so postpone it to the async context
401 if (sig->oom_mm)
402 mmdrop_async(sig->oom_mm);
403 kmem_cache_free(signal_cachep, sig);
406 static inline void put_signal_struct(struct signal_struct *sig)
408 if (atomic_dec_and_test(&sig->sigcnt))
409 free_signal_struct(sig);
412 void __put_task_struct(struct task_struct *tsk)
414 WARN_ON(!tsk->exit_state);
415 WARN_ON(atomic_read(&tsk->usage));
416 WARN_ON(tsk == current);
418 cgroup_free(tsk);
419 task_numa_free(tsk);
420 security_task_free(tsk);
421 exit_creds(tsk);
422 delayacct_tsk_free(tsk);
423 put_signal_struct(tsk->signal);
425 if (!profile_handoff_task(tsk))
426 free_task(tsk);
428 EXPORT_SYMBOL_GPL(__put_task_struct);
430 void __init __weak arch_task_cache_init(void) { }
433 * set_max_threads
435 static void set_max_threads(unsigned int max_threads_suggested)
437 u64 threads;
440 * The number of threads shall be limited such that the thread
441 * structures may only consume a small part of the available memory.
443 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
444 threads = MAX_THREADS;
445 else
446 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
447 (u64) THREAD_SIZE * 8UL);
449 if (threads > max_threads_suggested)
450 threads = max_threads_suggested;
452 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
455 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
456 /* Initialized by the architecture: */
457 int arch_task_struct_size __read_mostly;
458 #endif
460 void __init fork_init(void)
462 int i;
463 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
464 #ifndef ARCH_MIN_TASKALIGN
465 #define ARCH_MIN_TASKALIGN 0
466 #endif
467 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
469 /* create a slab on which task_structs can be allocated */
470 task_struct_cachep = kmem_cache_create("task_struct",
471 arch_task_struct_size, align,
472 SLAB_PANIC|SLAB_ACCOUNT, NULL);
473 #endif
475 /* do the arch specific task caches init */
476 arch_task_cache_init();
478 set_max_threads(MAX_THREADS);
480 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
481 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
482 init_task.signal->rlim[RLIMIT_SIGPENDING] =
483 init_task.signal->rlim[RLIMIT_NPROC];
485 for (i = 0; i < UCOUNT_COUNTS; i++) {
486 init_user_ns.ucount_max[i] = max_threads/2;
489 #ifdef CONFIG_VMAP_STACK
490 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
491 NULL, free_vm_stack_cache);
492 #endif
494 lockdep_init_task(&init_task);
497 int __weak arch_dup_task_struct(struct task_struct *dst,
498 struct task_struct *src)
500 *dst = *src;
501 return 0;
504 void set_task_stack_end_magic(struct task_struct *tsk)
506 unsigned long *stackend;
508 stackend = end_of_stack(tsk);
509 *stackend = STACK_END_MAGIC; /* for overflow detection */
512 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
514 struct task_struct *tsk;
515 unsigned long *stack;
516 struct vm_struct *stack_vm_area;
517 int err;
519 if (node == NUMA_NO_NODE)
520 node = tsk_fork_get_node(orig);
521 tsk = alloc_task_struct_node(node);
522 if (!tsk)
523 return NULL;
525 stack = alloc_thread_stack_node(tsk, node);
526 if (!stack)
527 goto free_tsk;
529 stack_vm_area = task_stack_vm_area(tsk);
531 err = arch_dup_task_struct(tsk, orig);
534 * arch_dup_task_struct() clobbers the stack-related fields. Make
535 * sure they're properly initialized before using any stack-related
536 * functions again.
538 tsk->stack = stack;
539 #ifdef CONFIG_VMAP_STACK
540 tsk->stack_vm_area = stack_vm_area;
541 #endif
542 #ifdef CONFIG_THREAD_INFO_IN_TASK
543 atomic_set(&tsk->stack_refcount, 1);
544 #endif
546 if (err)
547 goto free_stack;
549 #ifdef CONFIG_SECCOMP
551 * We must handle setting up seccomp filters once we're under
552 * the sighand lock in case orig has changed between now and
553 * then. Until then, filter must be NULL to avoid messing up
554 * the usage counts on the error path calling free_task.
556 tsk->seccomp.filter = NULL;
557 #endif
559 setup_thread_stack(tsk, orig);
560 clear_user_return_notifier(tsk);
561 clear_tsk_need_resched(tsk);
562 set_task_stack_end_magic(tsk);
564 #ifdef CONFIG_CC_STACKPROTECTOR
565 tsk->stack_canary = get_random_canary();
566 #endif
569 * One for us, one for whoever does the "release_task()" (usually
570 * parent)
572 atomic_set(&tsk->usage, 2);
573 #ifdef CONFIG_BLK_DEV_IO_TRACE
574 tsk->btrace_seq = 0;
575 #endif
576 tsk->splice_pipe = NULL;
577 tsk->task_frag.page = NULL;
578 tsk->wake_q.next = NULL;
580 account_kernel_stack(tsk, 1);
582 kcov_task_init(tsk);
584 #ifdef CONFIG_FAULT_INJECTION
585 tsk->fail_nth = 0;
586 #endif
588 return tsk;
590 free_stack:
591 free_thread_stack(tsk);
592 free_tsk:
593 free_task_struct(tsk);
594 return NULL;
597 #ifdef CONFIG_MMU
598 static __latent_entropy int dup_mmap(struct mm_struct *mm,
599 struct mm_struct *oldmm)
601 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
602 struct rb_node **rb_link, *rb_parent;
603 int retval;
604 unsigned long charge;
605 LIST_HEAD(uf);
607 uprobe_start_dup_mmap();
608 if (down_write_killable(&oldmm->mmap_sem)) {
609 retval = -EINTR;
610 goto fail_uprobe_end;
612 flush_cache_dup_mm(oldmm);
613 uprobe_dup_mmap(oldmm, mm);
615 * Not linked in yet - no deadlock potential:
617 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
619 /* No ordering required: file already has been exposed. */
620 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
622 mm->total_vm = oldmm->total_vm;
623 mm->data_vm = oldmm->data_vm;
624 mm->exec_vm = oldmm->exec_vm;
625 mm->stack_vm = oldmm->stack_vm;
627 rb_link = &mm->mm_rb.rb_node;
628 rb_parent = NULL;
629 pprev = &mm->mmap;
630 retval = ksm_fork(mm, oldmm);
631 if (retval)
632 goto out;
633 retval = khugepaged_fork(mm, oldmm);
634 if (retval)
635 goto out;
637 prev = NULL;
638 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
639 struct file *file;
641 if (mpnt->vm_flags & VM_DONTCOPY) {
642 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
643 continue;
645 charge = 0;
646 if (mpnt->vm_flags & VM_ACCOUNT) {
647 unsigned long len = vma_pages(mpnt);
649 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
650 goto fail_nomem;
651 charge = len;
653 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
654 if (!tmp)
655 goto fail_nomem;
656 *tmp = *mpnt;
657 INIT_LIST_HEAD(&tmp->anon_vma_chain);
658 retval = vma_dup_policy(mpnt, tmp);
659 if (retval)
660 goto fail_nomem_policy;
661 tmp->vm_mm = mm;
662 retval = dup_userfaultfd(tmp, &uf);
663 if (retval)
664 goto fail_nomem_anon_vma_fork;
665 if (tmp->vm_flags & VM_WIPEONFORK) {
666 /* VM_WIPEONFORK gets a clean slate in the child. */
667 tmp->anon_vma = NULL;
668 if (anon_vma_prepare(tmp))
669 goto fail_nomem_anon_vma_fork;
670 } else if (anon_vma_fork(tmp, mpnt))
671 goto fail_nomem_anon_vma_fork;
672 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
673 tmp->vm_next = tmp->vm_prev = NULL;
674 file = tmp->vm_file;
675 if (file) {
676 struct inode *inode = file_inode(file);
677 struct address_space *mapping = file->f_mapping;
679 get_file(file);
680 if (tmp->vm_flags & VM_DENYWRITE)
681 atomic_dec(&inode->i_writecount);
682 i_mmap_lock_write(mapping);
683 if (tmp->vm_flags & VM_SHARED)
684 atomic_inc(&mapping->i_mmap_writable);
685 flush_dcache_mmap_lock(mapping);
686 /* insert tmp into the share list, just after mpnt */
687 vma_interval_tree_insert_after(tmp, mpnt,
688 &mapping->i_mmap);
689 flush_dcache_mmap_unlock(mapping);
690 i_mmap_unlock_write(mapping);
694 * Clear hugetlb-related page reserves for children. This only
695 * affects MAP_PRIVATE mappings. Faults generated by the child
696 * are not guaranteed to succeed, even if read-only
698 if (is_vm_hugetlb_page(tmp))
699 reset_vma_resv_huge_pages(tmp);
702 * Link in the new vma and copy the page table entries.
704 *pprev = tmp;
705 pprev = &tmp->vm_next;
706 tmp->vm_prev = prev;
707 prev = tmp;
709 __vma_link_rb(mm, tmp, rb_link, rb_parent);
710 rb_link = &tmp->vm_rb.rb_right;
711 rb_parent = &tmp->vm_rb;
713 mm->map_count++;
714 if (!(tmp->vm_flags & VM_WIPEONFORK))
715 retval = copy_page_range(mm, oldmm, mpnt);
717 if (tmp->vm_ops && tmp->vm_ops->open)
718 tmp->vm_ops->open(tmp);
720 if (retval)
721 goto out;
723 /* a new mm has just been created */
724 retval = arch_dup_mmap(oldmm, mm);
725 out:
726 up_write(&mm->mmap_sem);
727 flush_tlb_mm(oldmm);
728 up_write(&oldmm->mmap_sem);
729 dup_userfaultfd_complete(&uf);
730 fail_uprobe_end:
731 uprobe_end_dup_mmap();
732 return retval;
733 fail_nomem_anon_vma_fork:
734 mpol_put(vma_policy(tmp));
735 fail_nomem_policy:
736 kmem_cache_free(vm_area_cachep, tmp);
737 fail_nomem:
738 retval = -ENOMEM;
739 vm_unacct_memory(charge);
740 goto out;
743 static inline int mm_alloc_pgd(struct mm_struct *mm)
745 mm->pgd = pgd_alloc(mm);
746 if (unlikely(!mm->pgd))
747 return -ENOMEM;
748 return 0;
751 static inline void mm_free_pgd(struct mm_struct *mm)
753 pgd_free(mm, mm->pgd);
755 #else
756 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
758 down_write(&oldmm->mmap_sem);
759 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
760 up_write(&oldmm->mmap_sem);
761 return 0;
763 #define mm_alloc_pgd(mm) (0)
764 #define mm_free_pgd(mm)
765 #endif /* CONFIG_MMU */
767 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
769 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
770 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
772 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
774 static int __init coredump_filter_setup(char *s)
776 default_dump_filter =
777 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
778 MMF_DUMP_FILTER_MASK;
779 return 1;
782 __setup("coredump_filter=", coredump_filter_setup);
784 #include <linux/init_task.h>
786 static void mm_init_aio(struct mm_struct *mm)
788 #ifdef CONFIG_AIO
789 spin_lock_init(&mm->ioctx_lock);
790 mm->ioctx_table = NULL;
791 #endif
794 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
796 #ifdef CONFIG_MEMCG
797 mm->owner = p;
798 #endif
801 static void mm_init_uprobes_state(struct mm_struct *mm)
803 #ifdef CONFIG_UPROBES
804 mm->uprobes_state.xol_area = NULL;
805 #endif
808 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
809 struct user_namespace *user_ns)
811 mm->mmap = NULL;
812 mm->mm_rb = RB_ROOT;
813 mm->vmacache_seqnum = 0;
814 atomic_set(&mm->mm_users, 1);
815 atomic_set(&mm->mm_count, 1);
816 init_rwsem(&mm->mmap_sem);
817 INIT_LIST_HEAD(&mm->mmlist);
818 mm->core_state = NULL;
819 mm_pgtables_bytes_init(mm);
820 mm->map_count = 0;
821 mm->locked_vm = 0;
822 mm->pinned_vm = 0;
823 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
824 spin_lock_init(&mm->page_table_lock);
825 mm_init_cpumask(mm);
826 mm_init_aio(mm);
827 mm_init_owner(mm, p);
828 RCU_INIT_POINTER(mm->exe_file, NULL);
829 mmu_notifier_mm_init(mm);
830 hmm_mm_init(mm);
831 init_tlb_flush_pending(mm);
832 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
833 mm->pmd_huge_pte = NULL;
834 #endif
835 mm_init_uprobes_state(mm);
837 if (current->mm) {
838 mm->flags = current->mm->flags & MMF_INIT_MASK;
839 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
840 } else {
841 mm->flags = default_dump_filter;
842 mm->def_flags = 0;
845 if (mm_alloc_pgd(mm))
846 goto fail_nopgd;
848 if (init_new_context(p, mm))
849 goto fail_nocontext;
851 mm->user_ns = get_user_ns(user_ns);
852 return mm;
854 fail_nocontext:
855 mm_free_pgd(mm);
856 fail_nopgd:
857 free_mm(mm);
858 return NULL;
861 static void check_mm(struct mm_struct *mm)
863 int i;
865 for (i = 0; i < NR_MM_COUNTERS; i++) {
866 long x = atomic_long_read(&mm->rss_stat.count[i]);
868 if (unlikely(x))
869 printk(KERN_ALERT "BUG: Bad rss-counter state "
870 "mm:%p idx:%d val:%ld\n", mm, i, x);
873 if (mm_pgtables_bytes(mm))
874 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
875 mm_pgtables_bytes(mm));
877 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
878 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
879 #endif
883 * Allocate and initialize an mm_struct.
885 struct mm_struct *mm_alloc(void)
887 struct mm_struct *mm;
889 mm = allocate_mm();
890 if (!mm)
891 return NULL;
893 memset(mm, 0, sizeof(*mm));
894 return mm_init(mm, current, current_user_ns());
898 * Called when the last reference to the mm
899 * is dropped: either by a lazy thread or by
900 * mmput. Free the page directory and the mm.
902 void __mmdrop(struct mm_struct *mm)
904 BUG_ON(mm == &init_mm);
905 mm_free_pgd(mm);
906 destroy_context(mm);
907 hmm_mm_destroy(mm);
908 mmu_notifier_mm_destroy(mm);
909 check_mm(mm);
910 put_user_ns(mm->user_ns);
911 free_mm(mm);
913 EXPORT_SYMBOL_GPL(__mmdrop);
915 static inline void __mmput(struct mm_struct *mm)
917 VM_BUG_ON(atomic_read(&mm->mm_users));
919 uprobe_clear_state(mm);
920 exit_aio(mm);
921 ksm_exit(mm);
922 khugepaged_exit(mm); /* must run before exit_mmap */
923 exit_mmap(mm);
924 mm_put_huge_zero_page(mm);
925 set_mm_exe_file(mm, NULL);
926 if (!list_empty(&mm->mmlist)) {
927 spin_lock(&mmlist_lock);
928 list_del(&mm->mmlist);
929 spin_unlock(&mmlist_lock);
931 if (mm->binfmt)
932 module_put(mm->binfmt->module);
933 mmdrop(mm);
937 * Decrement the use count and release all resources for an mm.
939 void mmput(struct mm_struct *mm)
941 might_sleep();
943 if (atomic_dec_and_test(&mm->mm_users))
944 __mmput(mm);
946 EXPORT_SYMBOL_GPL(mmput);
948 #ifdef CONFIG_MMU
949 static void mmput_async_fn(struct work_struct *work)
951 struct mm_struct *mm = container_of(work, struct mm_struct,
952 async_put_work);
954 __mmput(mm);
957 void mmput_async(struct mm_struct *mm)
959 if (atomic_dec_and_test(&mm->mm_users)) {
960 INIT_WORK(&mm->async_put_work, mmput_async_fn);
961 schedule_work(&mm->async_put_work);
964 #endif
967 * set_mm_exe_file - change a reference to the mm's executable file
969 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
971 * Main users are mmput() and sys_execve(). Callers prevent concurrent
972 * invocations: in mmput() nobody alive left, in execve task is single
973 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
974 * mm->exe_file, but does so without using set_mm_exe_file() in order
975 * to do avoid the need for any locks.
977 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
979 struct file *old_exe_file;
982 * It is safe to dereference the exe_file without RCU as
983 * this function is only called if nobody else can access
984 * this mm -- see comment above for justification.
986 old_exe_file = rcu_dereference_raw(mm->exe_file);
988 if (new_exe_file)
989 get_file(new_exe_file);
990 rcu_assign_pointer(mm->exe_file, new_exe_file);
991 if (old_exe_file)
992 fput(old_exe_file);
996 * get_mm_exe_file - acquire a reference to the mm's executable file
998 * Returns %NULL if mm has no associated executable file.
999 * User must release file via fput().
1001 struct file *get_mm_exe_file(struct mm_struct *mm)
1003 struct file *exe_file;
1005 rcu_read_lock();
1006 exe_file = rcu_dereference(mm->exe_file);
1007 if (exe_file && !get_file_rcu(exe_file))
1008 exe_file = NULL;
1009 rcu_read_unlock();
1010 return exe_file;
1012 EXPORT_SYMBOL(get_mm_exe_file);
1015 * get_task_exe_file - acquire a reference to the task's executable file
1017 * Returns %NULL if task's mm (if any) has no associated executable file or
1018 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1019 * User must release file via fput().
1021 struct file *get_task_exe_file(struct task_struct *task)
1023 struct file *exe_file = NULL;
1024 struct mm_struct *mm;
1026 task_lock(task);
1027 mm = task->mm;
1028 if (mm) {
1029 if (!(task->flags & PF_KTHREAD))
1030 exe_file = get_mm_exe_file(mm);
1032 task_unlock(task);
1033 return exe_file;
1035 EXPORT_SYMBOL(get_task_exe_file);
1038 * get_task_mm - acquire a reference to the task's mm
1040 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1041 * this kernel workthread has transiently adopted a user mm with use_mm,
1042 * to do its AIO) is not set and if so returns a reference to it, after
1043 * bumping up the use count. User must release the mm via mmput()
1044 * after use. Typically used by /proc and ptrace.
1046 struct mm_struct *get_task_mm(struct task_struct *task)
1048 struct mm_struct *mm;
1050 task_lock(task);
1051 mm = task->mm;
1052 if (mm) {
1053 if (task->flags & PF_KTHREAD)
1054 mm = NULL;
1055 else
1056 mmget(mm);
1058 task_unlock(task);
1059 return mm;
1061 EXPORT_SYMBOL_GPL(get_task_mm);
1063 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1065 struct mm_struct *mm;
1066 int err;
1068 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1069 if (err)
1070 return ERR_PTR(err);
1072 mm = get_task_mm(task);
1073 if (mm && mm != current->mm &&
1074 !ptrace_may_access(task, mode)) {
1075 mmput(mm);
1076 mm = ERR_PTR(-EACCES);
1078 mutex_unlock(&task->signal->cred_guard_mutex);
1080 return mm;
1083 static void complete_vfork_done(struct task_struct *tsk)
1085 struct completion *vfork;
1087 task_lock(tsk);
1088 vfork = tsk->vfork_done;
1089 if (likely(vfork)) {
1090 tsk->vfork_done = NULL;
1091 complete(vfork);
1093 task_unlock(tsk);
1096 static int wait_for_vfork_done(struct task_struct *child,
1097 struct completion *vfork)
1099 int killed;
1101 freezer_do_not_count();
1102 killed = wait_for_completion_killable(vfork);
1103 freezer_count();
1105 if (killed) {
1106 task_lock(child);
1107 child->vfork_done = NULL;
1108 task_unlock(child);
1111 put_task_struct(child);
1112 return killed;
1115 /* Please note the differences between mmput and mm_release.
1116 * mmput is called whenever we stop holding onto a mm_struct,
1117 * error success whatever.
1119 * mm_release is called after a mm_struct has been removed
1120 * from the current process.
1122 * This difference is important for error handling, when we
1123 * only half set up a mm_struct for a new process and need to restore
1124 * the old one. Because we mmput the new mm_struct before
1125 * restoring the old one. . .
1126 * Eric Biederman 10 January 1998
1128 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1130 /* Get rid of any futexes when releasing the mm */
1131 #ifdef CONFIG_FUTEX
1132 if (unlikely(tsk->robust_list)) {
1133 exit_robust_list(tsk);
1134 tsk->robust_list = NULL;
1136 #ifdef CONFIG_COMPAT
1137 if (unlikely(tsk->compat_robust_list)) {
1138 compat_exit_robust_list(tsk);
1139 tsk->compat_robust_list = NULL;
1141 #endif
1142 if (unlikely(!list_empty(&tsk->pi_state_list)))
1143 exit_pi_state_list(tsk);
1144 #endif
1146 uprobe_free_utask(tsk);
1148 /* Get rid of any cached register state */
1149 deactivate_mm(tsk, mm);
1152 * Signal userspace if we're not exiting with a core dump
1153 * because we want to leave the value intact for debugging
1154 * purposes.
1156 if (tsk->clear_child_tid) {
1157 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1158 atomic_read(&mm->mm_users) > 1) {
1160 * We don't check the error code - if userspace has
1161 * not set up a proper pointer then tough luck.
1163 put_user(0, tsk->clear_child_tid);
1164 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1165 1, NULL, NULL, 0);
1167 tsk->clear_child_tid = NULL;
1171 * All done, finally we can wake up parent and return this mm to him.
1172 * Also kthread_stop() uses this completion for synchronization.
1174 if (tsk->vfork_done)
1175 complete_vfork_done(tsk);
1179 * Allocate a new mm structure and copy contents from the
1180 * mm structure of the passed in task structure.
1182 static struct mm_struct *dup_mm(struct task_struct *tsk)
1184 struct mm_struct *mm, *oldmm = current->mm;
1185 int err;
1187 mm = allocate_mm();
1188 if (!mm)
1189 goto fail_nomem;
1191 memcpy(mm, oldmm, sizeof(*mm));
1193 if (!mm_init(mm, tsk, mm->user_ns))
1194 goto fail_nomem;
1196 err = dup_mmap(mm, oldmm);
1197 if (err)
1198 goto free_pt;
1200 mm->hiwater_rss = get_mm_rss(mm);
1201 mm->hiwater_vm = mm->total_vm;
1203 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1204 goto free_pt;
1206 return mm;
1208 free_pt:
1209 /* don't put binfmt in mmput, we haven't got module yet */
1210 mm->binfmt = NULL;
1211 mmput(mm);
1213 fail_nomem:
1214 return NULL;
1217 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1219 struct mm_struct *mm, *oldmm;
1220 int retval;
1222 tsk->min_flt = tsk->maj_flt = 0;
1223 tsk->nvcsw = tsk->nivcsw = 0;
1224 #ifdef CONFIG_DETECT_HUNG_TASK
1225 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1226 #endif
1228 tsk->mm = NULL;
1229 tsk->active_mm = NULL;
1232 * Are we cloning a kernel thread?
1234 * We need to steal a active VM for that..
1236 oldmm = current->mm;
1237 if (!oldmm)
1238 return 0;
1240 /* initialize the new vmacache entries */
1241 vmacache_flush(tsk);
1243 if (clone_flags & CLONE_VM) {
1244 mmget(oldmm);
1245 mm = oldmm;
1246 goto good_mm;
1249 retval = -ENOMEM;
1250 mm = dup_mm(tsk);
1251 if (!mm)
1252 goto fail_nomem;
1254 good_mm:
1255 tsk->mm = mm;
1256 tsk->active_mm = mm;
1257 return 0;
1259 fail_nomem:
1260 return retval;
1263 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1265 struct fs_struct *fs = current->fs;
1266 if (clone_flags & CLONE_FS) {
1267 /* tsk->fs is already what we want */
1268 spin_lock(&fs->lock);
1269 if (fs->in_exec) {
1270 spin_unlock(&fs->lock);
1271 return -EAGAIN;
1273 fs->users++;
1274 spin_unlock(&fs->lock);
1275 return 0;
1277 tsk->fs = copy_fs_struct(fs);
1278 if (!tsk->fs)
1279 return -ENOMEM;
1280 return 0;
1283 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1285 struct files_struct *oldf, *newf;
1286 int error = 0;
1289 * A background process may not have any files ...
1291 oldf = current->files;
1292 if (!oldf)
1293 goto out;
1295 if (clone_flags & CLONE_FILES) {
1296 atomic_inc(&oldf->count);
1297 goto out;
1300 newf = dup_fd(oldf, &error);
1301 if (!newf)
1302 goto out;
1304 tsk->files = newf;
1305 error = 0;
1306 out:
1307 return error;
1310 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1312 #ifdef CONFIG_BLOCK
1313 struct io_context *ioc = current->io_context;
1314 struct io_context *new_ioc;
1316 if (!ioc)
1317 return 0;
1319 * Share io context with parent, if CLONE_IO is set
1321 if (clone_flags & CLONE_IO) {
1322 ioc_task_link(ioc);
1323 tsk->io_context = ioc;
1324 } else if (ioprio_valid(ioc->ioprio)) {
1325 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1326 if (unlikely(!new_ioc))
1327 return -ENOMEM;
1329 new_ioc->ioprio = ioc->ioprio;
1330 put_io_context(new_ioc);
1332 #endif
1333 return 0;
1336 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1338 struct sighand_struct *sig;
1340 if (clone_flags & CLONE_SIGHAND) {
1341 atomic_inc(&current->sighand->count);
1342 return 0;
1344 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1345 rcu_assign_pointer(tsk->sighand, sig);
1346 if (!sig)
1347 return -ENOMEM;
1349 atomic_set(&sig->count, 1);
1350 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1351 return 0;
1354 void __cleanup_sighand(struct sighand_struct *sighand)
1356 if (atomic_dec_and_test(&sighand->count)) {
1357 signalfd_cleanup(sighand);
1359 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1360 * without an RCU grace period, see __lock_task_sighand().
1362 kmem_cache_free(sighand_cachep, sighand);
1366 #ifdef CONFIG_POSIX_TIMERS
1368 * Initialize POSIX timer handling for a thread group.
1370 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1372 unsigned long cpu_limit;
1374 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1375 if (cpu_limit != RLIM_INFINITY) {
1376 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1377 sig->cputimer.running = true;
1380 /* The timer lists. */
1381 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1382 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1383 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1385 #else
1386 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1387 #endif
1389 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1391 struct signal_struct *sig;
1393 if (clone_flags & CLONE_THREAD)
1394 return 0;
1396 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1397 tsk->signal = sig;
1398 if (!sig)
1399 return -ENOMEM;
1401 sig->nr_threads = 1;
1402 atomic_set(&sig->live, 1);
1403 atomic_set(&sig->sigcnt, 1);
1405 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1406 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1407 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1409 init_waitqueue_head(&sig->wait_chldexit);
1410 sig->curr_target = tsk;
1411 init_sigpending(&sig->shared_pending);
1412 seqlock_init(&sig->stats_lock);
1413 prev_cputime_init(&sig->prev_cputime);
1415 #ifdef CONFIG_POSIX_TIMERS
1416 INIT_LIST_HEAD(&sig->posix_timers);
1417 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1418 sig->real_timer.function = it_real_fn;
1419 #endif
1421 task_lock(current->group_leader);
1422 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1423 task_unlock(current->group_leader);
1425 posix_cpu_timers_init_group(sig);
1427 tty_audit_fork(sig);
1428 sched_autogroup_fork(sig);
1430 sig->oom_score_adj = current->signal->oom_score_adj;
1431 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1433 mutex_init(&sig->cred_guard_mutex);
1435 return 0;
1438 static void copy_seccomp(struct task_struct *p)
1440 #ifdef CONFIG_SECCOMP
1442 * Must be called with sighand->lock held, which is common to
1443 * all threads in the group. Holding cred_guard_mutex is not
1444 * needed because this new task is not yet running and cannot
1445 * be racing exec.
1447 assert_spin_locked(&current->sighand->siglock);
1449 /* Ref-count the new filter user, and assign it. */
1450 get_seccomp_filter(current);
1451 p->seccomp = current->seccomp;
1454 * Explicitly enable no_new_privs here in case it got set
1455 * between the task_struct being duplicated and holding the
1456 * sighand lock. The seccomp state and nnp must be in sync.
1458 if (task_no_new_privs(current))
1459 task_set_no_new_privs(p);
1462 * If the parent gained a seccomp mode after copying thread
1463 * flags and between before we held the sighand lock, we have
1464 * to manually enable the seccomp thread flag here.
1466 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1467 set_tsk_thread_flag(p, TIF_SECCOMP);
1468 #endif
1471 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1473 current->clear_child_tid = tidptr;
1475 return task_pid_vnr(current);
1478 static void rt_mutex_init_task(struct task_struct *p)
1480 raw_spin_lock_init(&p->pi_lock);
1481 #ifdef CONFIG_RT_MUTEXES
1482 p->pi_waiters = RB_ROOT_CACHED;
1483 p->pi_top_task = NULL;
1484 p->pi_blocked_on = NULL;
1485 #endif
1488 #ifdef CONFIG_POSIX_TIMERS
1490 * Initialize POSIX timer handling for a single task.
1492 static void posix_cpu_timers_init(struct task_struct *tsk)
1494 tsk->cputime_expires.prof_exp = 0;
1495 tsk->cputime_expires.virt_exp = 0;
1496 tsk->cputime_expires.sched_exp = 0;
1497 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1498 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1499 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1501 #else
1502 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1503 #endif
1505 static inline void
1506 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1508 task->pids[type].pid = pid;
1511 static inline void rcu_copy_process(struct task_struct *p)
1513 #ifdef CONFIG_PREEMPT_RCU
1514 p->rcu_read_lock_nesting = 0;
1515 p->rcu_read_unlock_special.s = 0;
1516 p->rcu_blocked_node = NULL;
1517 INIT_LIST_HEAD(&p->rcu_node_entry);
1518 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1519 #ifdef CONFIG_TASKS_RCU
1520 p->rcu_tasks_holdout = false;
1521 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1522 p->rcu_tasks_idle_cpu = -1;
1523 #endif /* #ifdef CONFIG_TASKS_RCU */
1527 * This creates a new process as a copy of the old one,
1528 * but does not actually start it yet.
1530 * It copies the registers, and all the appropriate
1531 * parts of the process environment (as per the clone
1532 * flags). The actual kick-off is left to the caller.
1534 static __latent_entropy struct task_struct *copy_process(
1535 unsigned long clone_flags,
1536 unsigned long stack_start,
1537 unsigned long stack_size,
1538 int __user *child_tidptr,
1539 struct pid *pid,
1540 int trace,
1541 unsigned long tls,
1542 int node)
1544 int retval;
1545 struct task_struct *p;
1547 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1548 return ERR_PTR(-EINVAL);
1550 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1551 return ERR_PTR(-EINVAL);
1554 * Thread groups must share signals as well, and detached threads
1555 * can only be started up within the thread group.
1557 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1558 return ERR_PTR(-EINVAL);
1561 * Shared signal handlers imply shared VM. By way of the above,
1562 * thread groups also imply shared VM. Blocking this case allows
1563 * for various simplifications in other code.
1565 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1566 return ERR_PTR(-EINVAL);
1569 * Siblings of global init remain as zombies on exit since they are
1570 * not reaped by their parent (swapper). To solve this and to avoid
1571 * multi-rooted process trees, prevent global and container-inits
1572 * from creating siblings.
1574 if ((clone_flags & CLONE_PARENT) &&
1575 current->signal->flags & SIGNAL_UNKILLABLE)
1576 return ERR_PTR(-EINVAL);
1579 * If the new process will be in a different pid or user namespace
1580 * do not allow it to share a thread group with the forking task.
1582 if (clone_flags & CLONE_THREAD) {
1583 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1584 (task_active_pid_ns(current) !=
1585 current->nsproxy->pid_ns_for_children))
1586 return ERR_PTR(-EINVAL);
1589 retval = -ENOMEM;
1590 p = dup_task_struct(current, node);
1591 if (!p)
1592 goto fork_out;
1595 * This _must_ happen before we call free_task(), i.e. before we jump
1596 * to any of the bad_fork_* labels. This is to avoid freeing
1597 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1598 * kernel threads (PF_KTHREAD).
1600 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1602 * Clear TID on mm_release()?
1604 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1606 ftrace_graph_init_task(p);
1608 rt_mutex_init_task(p);
1610 #ifdef CONFIG_PROVE_LOCKING
1611 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1612 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1613 #endif
1614 retval = -EAGAIN;
1615 if (atomic_read(&p->real_cred->user->processes) >=
1616 task_rlimit(p, RLIMIT_NPROC)) {
1617 if (p->real_cred->user != INIT_USER &&
1618 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1619 goto bad_fork_free;
1621 current->flags &= ~PF_NPROC_EXCEEDED;
1623 retval = copy_creds(p, clone_flags);
1624 if (retval < 0)
1625 goto bad_fork_free;
1628 * If multiple threads are within copy_process(), then this check
1629 * triggers too late. This doesn't hurt, the check is only there
1630 * to stop root fork bombs.
1632 retval = -EAGAIN;
1633 if (nr_threads >= max_threads)
1634 goto bad_fork_cleanup_count;
1636 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1637 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1638 p->flags |= PF_FORKNOEXEC;
1639 INIT_LIST_HEAD(&p->children);
1640 INIT_LIST_HEAD(&p->sibling);
1641 rcu_copy_process(p);
1642 p->vfork_done = NULL;
1643 spin_lock_init(&p->alloc_lock);
1645 init_sigpending(&p->pending);
1647 p->utime = p->stime = p->gtime = 0;
1648 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1649 p->utimescaled = p->stimescaled = 0;
1650 #endif
1651 prev_cputime_init(&p->prev_cputime);
1653 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1654 seqcount_init(&p->vtime.seqcount);
1655 p->vtime.starttime = 0;
1656 p->vtime.state = VTIME_INACTIVE;
1657 #endif
1659 #if defined(SPLIT_RSS_COUNTING)
1660 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1661 #endif
1663 p->default_timer_slack_ns = current->timer_slack_ns;
1665 task_io_accounting_init(&p->ioac);
1666 acct_clear_integrals(p);
1668 posix_cpu_timers_init(p);
1670 p->start_time = ktime_get_ns();
1671 p->real_start_time = ktime_get_boot_ns();
1672 p->io_context = NULL;
1673 p->audit_context = NULL;
1674 cgroup_fork(p);
1675 #ifdef CONFIG_NUMA
1676 p->mempolicy = mpol_dup(p->mempolicy);
1677 if (IS_ERR(p->mempolicy)) {
1678 retval = PTR_ERR(p->mempolicy);
1679 p->mempolicy = NULL;
1680 goto bad_fork_cleanup_threadgroup_lock;
1682 #endif
1683 #ifdef CONFIG_CPUSETS
1684 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1685 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1686 seqcount_init(&p->mems_allowed_seq);
1687 #endif
1688 #ifdef CONFIG_TRACE_IRQFLAGS
1689 p->irq_events = 0;
1690 p->hardirqs_enabled = 0;
1691 p->hardirq_enable_ip = 0;
1692 p->hardirq_enable_event = 0;
1693 p->hardirq_disable_ip = _THIS_IP_;
1694 p->hardirq_disable_event = 0;
1695 p->softirqs_enabled = 1;
1696 p->softirq_enable_ip = _THIS_IP_;
1697 p->softirq_enable_event = 0;
1698 p->softirq_disable_ip = 0;
1699 p->softirq_disable_event = 0;
1700 p->hardirq_context = 0;
1701 p->softirq_context = 0;
1702 #endif
1704 p->pagefault_disabled = 0;
1706 #ifdef CONFIG_LOCKDEP
1707 p->lockdep_depth = 0; /* no locks held yet */
1708 p->curr_chain_key = 0;
1709 p->lockdep_recursion = 0;
1710 lockdep_init_task(p);
1711 #endif
1713 #ifdef CONFIG_DEBUG_MUTEXES
1714 p->blocked_on = NULL; /* not blocked yet */
1715 #endif
1716 #ifdef CONFIG_BCACHE
1717 p->sequential_io = 0;
1718 p->sequential_io_avg = 0;
1719 #endif
1721 /* Perform scheduler related setup. Assign this task to a CPU. */
1722 retval = sched_fork(clone_flags, p);
1723 if (retval)
1724 goto bad_fork_cleanup_policy;
1726 retval = perf_event_init_task(p);
1727 if (retval)
1728 goto bad_fork_cleanup_policy;
1729 retval = audit_alloc(p);
1730 if (retval)
1731 goto bad_fork_cleanup_perf;
1732 /* copy all the process information */
1733 shm_init_task(p);
1734 retval = security_task_alloc(p, clone_flags);
1735 if (retval)
1736 goto bad_fork_cleanup_audit;
1737 retval = copy_semundo(clone_flags, p);
1738 if (retval)
1739 goto bad_fork_cleanup_security;
1740 retval = copy_files(clone_flags, p);
1741 if (retval)
1742 goto bad_fork_cleanup_semundo;
1743 retval = copy_fs(clone_flags, p);
1744 if (retval)
1745 goto bad_fork_cleanup_files;
1746 retval = copy_sighand(clone_flags, p);
1747 if (retval)
1748 goto bad_fork_cleanup_fs;
1749 retval = copy_signal(clone_flags, p);
1750 if (retval)
1751 goto bad_fork_cleanup_sighand;
1752 retval = copy_mm(clone_flags, p);
1753 if (retval)
1754 goto bad_fork_cleanup_signal;
1755 retval = copy_namespaces(clone_flags, p);
1756 if (retval)
1757 goto bad_fork_cleanup_mm;
1758 retval = copy_io(clone_flags, p);
1759 if (retval)
1760 goto bad_fork_cleanup_namespaces;
1761 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1762 if (retval)
1763 goto bad_fork_cleanup_io;
1765 if (pid != &init_struct_pid) {
1766 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1767 if (IS_ERR(pid)) {
1768 retval = PTR_ERR(pid);
1769 goto bad_fork_cleanup_thread;
1773 #ifdef CONFIG_BLOCK
1774 p->plug = NULL;
1775 #endif
1776 #ifdef CONFIG_FUTEX
1777 p->robust_list = NULL;
1778 #ifdef CONFIG_COMPAT
1779 p->compat_robust_list = NULL;
1780 #endif
1781 INIT_LIST_HEAD(&p->pi_state_list);
1782 p->pi_state_cache = NULL;
1783 #endif
1785 * sigaltstack should be cleared when sharing the same VM
1787 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1788 sas_ss_reset(p);
1791 * Syscall tracing and stepping should be turned off in the
1792 * child regardless of CLONE_PTRACE.
1794 user_disable_single_step(p);
1795 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1796 #ifdef TIF_SYSCALL_EMU
1797 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1798 #endif
1799 clear_all_latency_tracing(p);
1801 /* ok, now we should be set up.. */
1802 p->pid = pid_nr(pid);
1803 if (clone_flags & CLONE_THREAD) {
1804 p->exit_signal = -1;
1805 p->group_leader = current->group_leader;
1806 p->tgid = current->tgid;
1807 } else {
1808 if (clone_flags & CLONE_PARENT)
1809 p->exit_signal = current->group_leader->exit_signal;
1810 else
1811 p->exit_signal = (clone_flags & CSIGNAL);
1812 p->group_leader = p;
1813 p->tgid = p->pid;
1816 p->nr_dirtied = 0;
1817 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1818 p->dirty_paused_when = 0;
1820 p->pdeath_signal = 0;
1821 INIT_LIST_HEAD(&p->thread_group);
1822 p->task_works = NULL;
1824 cgroup_threadgroup_change_begin(current);
1826 * Ensure that the cgroup subsystem policies allow the new process to be
1827 * forked. It should be noted the the new process's css_set can be changed
1828 * between here and cgroup_post_fork() if an organisation operation is in
1829 * progress.
1831 retval = cgroup_can_fork(p);
1832 if (retval)
1833 goto bad_fork_free_pid;
1836 * Make it visible to the rest of the system, but dont wake it up yet.
1837 * Need tasklist lock for parent etc handling!
1839 write_lock_irq(&tasklist_lock);
1841 /* CLONE_PARENT re-uses the old parent */
1842 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1843 p->real_parent = current->real_parent;
1844 p->parent_exec_id = current->parent_exec_id;
1845 } else {
1846 p->real_parent = current;
1847 p->parent_exec_id = current->self_exec_id;
1850 klp_copy_process(p);
1852 spin_lock(&current->sighand->siglock);
1855 * Copy seccomp details explicitly here, in case they were changed
1856 * before holding sighand lock.
1858 copy_seccomp(p);
1861 * Process group and session signals need to be delivered to just the
1862 * parent before the fork or both the parent and the child after the
1863 * fork. Restart if a signal comes in before we add the new process to
1864 * it's process group.
1865 * A fatal signal pending means that current will exit, so the new
1866 * thread can't slip out of an OOM kill (or normal SIGKILL).
1868 recalc_sigpending();
1869 if (signal_pending(current)) {
1870 retval = -ERESTARTNOINTR;
1871 goto bad_fork_cancel_cgroup;
1873 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
1874 retval = -ENOMEM;
1875 goto bad_fork_cancel_cgroup;
1878 if (likely(p->pid)) {
1879 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1881 init_task_pid(p, PIDTYPE_PID, pid);
1882 if (thread_group_leader(p)) {
1883 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1884 init_task_pid(p, PIDTYPE_SID, task_session(current));
1886 if (is_child_reaper(pid)) {
1887 ns_of_pid(pid)->child_reaper = p;
1888 p->signal->flags |= SIGNAL_UNKILLABLE;
1891 p->signal->leader_pid = pid;
1892 p->signal->tty = tty_kref_get(current->signal->tty);
1894 * Inherit has_child_subreaper flag under the same
1895 * tasklist_lock with adding child to the process tree
1896 * for propagate_has_child_subreaper optimization.
1898 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1899 p->real_parent->signal->is_child_subreaper;
1900 list_add_tail(&p->sibling, &p->real_parent->children);
1901 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1902 attach_pid(p, PIDTYPE_PGID);
1903 attach_pid(p, PIDTYPE_SID);
1904 __this_cpu_inc(process_counts);
1905 } else {
1906 current->signal->nr_threads++;
1907 atomic_inc(&current->signal->live);
1908 atomic_inc(&current->signal->sigcnt);
1909 list_add_tail_rcu(&p->thread_group,
1910 &p->group_leader->thread_group);
1911 list_add_tail_rcu(&p->thread_node,
1912 &p->signal->thread_head);
1914 attach_pid(p, PIDTYPE_PID);
1915 nr_threads++;
1918 total_forks++;
1919 spin_unlock(&current->sighand->siglock);
1920 syscall_tracepoint_update(p);
1921 write_unlock_irq(&tasklist_lock);
1923 proc_fork_connector(p);
1924 cgroup_post_fork(p);
1925 cgroup_threadgroup_change_end(current);
1926 perf_event_fork(p);
1928 trace_task_newtask(p, clone_flags);
1929 uprobe_copy_process(p, clone_flags);
1931 return p;
1933 bad_fork_cancel_cgroup:
1934 spin_unlock(&current->sighand->siglock);
1935 write_unlock_irq(&tasklist_lock);
1936 cgroup_cancel_fork(p);
1937 bad_fork_free_pid:
1938 cgroup_threadgroup_change_end(current);
1939 if (pid != &init_struct_pid)
1940 free_pid(pid);
1941 bad_fork_cleanup_thread:
1942 exit_thread(p);
1943 bad_fork_cleanup_io:
1944 if (p->io_context)
1945 exit_io_context(p);
1946 bad_fork_cleanup_namespaces:
1947 exit_task_namespaces(p);
1948 bad_fork_cleanup_mm:
1949 if (p->mm)
1950 mmput(p->mm);
1951 bad_fork_cleanup_signal:
1952 if (!(clone_flags & CLONE_THREAD))
1953 free_signal_struct(p->signal);
1954 bad_fork_cleanup_sighand:
1955 __cleanup_sighand(p->sighand);
1956 bad_fork_cleanup_fs:
1957 exit_fs(p); /* blocking */
1958 bad_fork_cleanup_files:
1959 exit_files(p); /* blocking */
1960 bad_fork_cleanup_semundo:
1961 exit_sem(p);
1962 bad_fork_cleanup_security:
1963 security_task_free(p);
1964 bad_fork_cleanup_audit:
1965 audit_free(p);
1966 bad_fork_cleanup_perf:
1967 perf_event_free_task(p);
1968 bad_fork_cleanup_policy:
1969 lockdep_free_task(p);
1970 #ifdef CONFIG_NUMA
1971 mpol_put(p->mempolicy);
1972 bad_fork_cleanup_threadgroup_lock:
1973 #endif
1974 delayacct_tsk_free(p);
1975 bad_fork_cleanup_count:
1976 atomic_dec(&p->cred->user->processes);
1977 exit_creds(p);
1978 bad_fork_free:
1979 p->state = TASK_DEAD;
1980 put_task_stack(p);
1981 free_task(p);
1982 fork_out:
1983 return ERR_PTR(retval);
1986 static inline void init_idle_pids(struct pid_link *links)
1988 enum pid_type type;
1990 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1991 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1992 links[type].pid = &init_struct_pid;
1996 struct task_struct *fork_idle(int cpu)
1998 struct task_struct *task;
1999 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2000 cpu_to_node(cpu));
2001 if (!IS_ERR(task)) {
2002 init_idle_pids(task->pids);
2003 init_idle(task, cpu);
2006 return task;
2010 * Ok, this is the main fork-routine.
2012 * It copies the process, and if successful kick-starts
2013 * it and waits for it to finish using the VM if required.
2015 long _do_fork(unsigned long clone_flags,
2016 unsigned long stack_start,
2017 unsigned long stack_size,
2018 int __user *parent_tidptr,
2019 int __user *child_tidptr,
2020 unsigned long tls)
2022 struct task_struct *p;
2023 int trace = 0;
2024 long nr;
2027 * Determine whether and which event to report to ptracer. When
2028 * called from kernel_thread or CLONE_UNTRACED is explicitly
2029 * requested, no event is reported; otherwise, report if the event
2030 * for the type of forking is enabled.
2032 if (!(clone_flags & CLONE_UNTRACED)) {
2033 if (clone_flags & CLONE_VFORK)
2034 trace = PTRACE_EVENT_VFORK;
2035 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2036 trace = PTRACE_EVENT_CLONE;
2037 else
2038 trace = PTRACE_EVENT_FORK;
2040 if (likely(!ptrace_event_enabled(current, trace)))
2041 trace = 0;
2044 p = copy_process(clone_flags, stack_start, stack_size,
2045 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2046 add_latent_entropy();
2048 * Do this prior waking up the new thread - the thread pointer
2049 * might get invalid after that point, if the thread exits quickly.
2051 if (!IS_ERR(p)) {
2052 struct completion vfork;
2053 struct pid *pid;
2055 trace_sched_process_fork(current, p);
2057 pid = get_task_pid(p, PIDTYPE_PID);
2058 nr = pid_vnr(pid);
2060 if (clone_flags & CLONE_PARENT_SETTID)
2061 put_user(nr, parent_tidptr);
2063 if (clone_flags & CLONE_VFORK) {
2064 p->vfork_done = &vfork;
2065 init_completion(&vfork);
2066 get_task_struct(p);
2069 wake_up_new_task(p);
2071 /* forking complete and child started to run, tell ptracer */
2072 if (unlikely(trace))
2073 ptrace_event_pid(trace, pid);
2075 if (clone_flags & CLONE_VFORK) {
2076 if (!wait_for_vfork_done(p, &vfork))
2077 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2080 put_pid(pid);
2081 } else {
2082 nr = PTR_ERR(p);
2084 return nr;
2087 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2088 /* For compatibility with architectures that call do_fork directly rather than
2089 * using the syscall entry points below. */
2090 long do_fork(unsigned long clone_flags,
2091 unsigned long stack_start,
2092 unsigned long stack_size,
2093 int __user *parent_tidptr,
2094 int __user *child_tidptr)
2096 return _do_fork(clone_flags, stack_start, stack_size,
2097 parent_tidptr, child_tidptr, 0);
2099 #endif
2102 * Create a kernel thread.
2104 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2106 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2107 (unsigned long)arg, NULL, NULL, 0);
2110 #ifdef __ARCH_WANT_SYS_FORK
2111 SYSCALL_DEFINE0(fork)
2113 #ifdef CONFIG_MMU
2114 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2115 #else
2116 /* can not support in nommu mode */
2117 return -EINVAL;
2118 #endif
2120 #endif
2122 #ifdef __ARCH_WANT_SYS_VFORK
2123 SYSCALL_DEFINE0(vfork)
2125 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2126 0, NULL, NULL, 0);
2128 #endif
2130 #ifdef __ARCH_WANT_SYS_CLONE
2131 #ifdef CONFIG_CLONE_BACKWARDS
2132 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2133 int __user *, parent_tidptr,
2134 unsigned long, tls,
2135 int __user *, child_tidptr)
2136 #elif defined(CONFIG_CLONE_BACKWARDS2)
2137 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2138 int __user *, parent_tidptr,
2139 int __user *, child_tidptr,
2140 unsigned long, tls)
2141 #elif defined(CONFIG_CLONE_BACKWARDS3)
2142 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2143 int, stack_size,
2144 int __user *, parent_tidptr,
2145 int __user *, child_tidptr,
2146 unsigned long, tls)
2147 #else
2148 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2149 int __user *, parent_tidptr,
2150 int __user *, child_tidptr,
2151 unsigned long, tls)
2152 #endif
2154 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2156 #endif
2158 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2160 struct task_struct *leader, *parent, *child;
2161 int res;
2163 read_lock(&tasklist_lock);
2164 leader = top = top->group_leader;
2165 down:
2166 for_each_thread(leader, parent) {
2167 list_for_each_entry(child, &parent->children, sibling) {
2168 res = visitor(child, data);
2169 if (res) {
2170 if (res < 0)
2171 goto out;
2172 leader = child;
2173 goto down;
2180 if (leader != top) {
2181 child = leader;
2182 parent = child->real_parent;
2183 leader = parent->group_leader;
2184 goto up;
2186 out:
2187 read_unlock(&tasklist_lock);
2190 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2191 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2192 #endif
2194 static void sighand_ctor(void *data)
2196 struct sighand_struct *sighand = data;
2198 spin_lock_init(&sighand->siglock);
2199 init_waitqueue_head(&sighand->signalfd_wqh);
2202 void __init proc_caches_init(void)
2204 sighand_cachep = kmem_cache_create("sighand_cache",
2205 sizeof(struct sighand_struct), 0,
2206 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2207 SLAB_ACCOUNT, sighand_ctor);
2208 signal_cachep = kmem_cache_create("signal_cache",
2209 sizeof(struct signal_struct), 0,
2210 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2211 NULL);
2212 files_cachep = kmem_cache_create("files_cache",
2213 sizeof(struct files_struct), 0,
2214 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2215 NULL);
2216 fs_cachep = kmem_cache_create("fs_cache",
2217 sizeof(struct fs_struct), 0,
2218 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2219 NULL);
2221 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2222 * whole struct cpumask for the OFFSTACK case. We could change
2223 * this to *only* allocate as much of it as required by the
2224 * maximum number of CPU's we can ever have. The cpumask_allocation
2225 * is at the end of the structure, exactly for that reason.
2227 mm_cachep = kmem_cache_create("mm_struct",
2228 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2229 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2230 NULL);
2231 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2232 mmap_init();
2233 nsproxy_cache_init();
2237 * Check constraints on flags passed to the unshare system call.
2239 static int check_unshare_flags(unsigned long unshare_flags)
2241 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2242 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2243 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2244 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2245 return -EINVAL;
2247 * Not implemented, but pretend it works if there is nothing
2248 * to unshare. Note that unsharing the address space or the
2249 * signal handlers also need to unshare the signal queues (aka
2250 * CLONE_THREAD).
2252 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2253 if (!thread_group_empty(current))
2254 return -EINVAL;
2256 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2257 if (atomic_read(&current->sighand->count) > 1)
2258 return -EINVAL;
2260 if (unshare_flags & CLONE_VM) {
2261 if (!current_is_single_threaded())
2262 return -EINVAL;
2265 return 0;
2269 * Unshare the filesystem structure if it is being shared
2271 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2273 struct fs_struct *fs = current->fs;
2275 if (!(unshare_flags & CLONE_FS) || !fs)
2276 return 0;
2278 /* don't need lock here; in the worst case we'll do useless copy */
2279 if (fs->users == 1)
2280 return 0;
2282 *new_fsp = copy_fs_struct(fs);
2283 if (!*new_fsp)
2284 return -ENOMEM;
2286 return 0;
2290 * Unshare file descriptor table if it is being shared
2292 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2294 struct files_struct *fd = current->files;
2295 int error = 0;
2297 if ((unshare_flags & CLONE_FILES) &&
2298 (fd && atomic_read(&fd->count) > 1)) {
2299 *new_fdp = dup_fd(fd, &error);
2300 if (!*new_fdp)
2301 return error;
2304 return 0;
2308 * unshare allows a process to 'unshare' part of the process
2309 * context which was originally shared using clone. copy_*
2310 * functions used by do_fork() cannot be used here directly
2311 * because they modify an inactive task_struct that is being
2312 * constructed. Here we are modifying the current, active,
2313 * task_struct.
2315 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2317 struct fs_struct *fs, *new_fs = NULL;
2318 struct files_struct *fd, *new_fd = NULL;
2319 struct cred *new_cred = NULL;
2320 struct nsproxy *new_nsproxy = NULL;
2321 int do_sysvsem = 0;
2322 int err;
2325 * If unsharing a user namespace must also unshare the thread group
2326 * and unshare the filesystem root and working directories.
2328 if (unshare_flags & CLONE_NEWUSER)
2329 unshare_flags |= CLONE_THREAD | CLONE_FS;
2331 * If unsharing vm, must also unshare signal handlers.
2333 if (unshare_flags & CLONE_VM)
2334 unshare_flags |= CLONE_SIGHAND;
2336 * If unsharing a signal handlers, must also unshare the signal queues.
2338 if (unshare_flags & CLONE_SIGHAND)
2339 unshare_flags |= CLONE_THREAD;
2341 * If unsharing namespace, must also unshare filesystem information.
2343 if (unshare_flags & CLONE_NEWNS)
2344 unshare_flags |= CLONE_FS;
2346 err = check_unshare_flags(unshare_flags);
2347 if (err)
2348 goto bad_unshare_out;
2350 * CLONE_NEWIPC must also detach from the undolist: after switching
2351 * to a new ipc namespace, the semaphore arrays from the old
2352 * namespace are unreachable.
2354 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2355 do_sysvsem = 1;
2356 err = unshare_fs(unshare_flags, &new_fs);
2357 if (err)
2358 goto bad_unshare_out;
2359 err = unshare_fd(unshare_flags, &new_fd);
2360 if (err)
2361 goto bad_unshare_cleanup_fs;
2362 err = unshare_userns(unshare_flags, &new_cred);
2363 if (err)
2364 goto bad_unshare_cleanup_fd;
2365 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2366 new_cred, new_fs);
2367 if (err)
2368 goto bad_unshare_cleanup_cred;
2370 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2371 if (do_sysvsem) {
2373 * CLONE_SYSVSEM is equivalent to sys_exit().
2375 exit_sem(current);
2377 if (unshare_flags & CLONE_NEWIPC) {
2378 /* Orphan segments in old ns (see sem above). */
2379 exit_shm(current);
2380 shm_init_task(current);
2383 if (new_nsproxy)
2384 switch_task_namespaces(current, new_nsproxy);
2386 task_lock(current);
2388 if (new_fs) {
2389 fs = current->fs;
2390 spin_lock(&fs->lock);
2391 current->fs = new_fs;
2392 if (--fs->users)
2393 new_fs = NULL;
2394 else
2395 new_fs = fs;
2396 spin_unlock(&fs->lock);
2399 if (new_fd) {
2400 fd = current->files;
2401 current->files = new_fd;
2402 new_fd = fd;
2405 task_unlock(current);
2407 if (new_cred) {
2408 /* Install the new user namespace */
2409 commit_creds(new_cred);
2410 new_cred = NULL;
2414 perf_event_namespaces(current);
2416 bad_unshare_cleanup_cred:
2417 if (new_cred)
2418 put_cred(new_cred);
2419 bad_unshare_cleanup_fd:
2420 if (new_fd)
2421 put_files_struct(new_fd);
2423 bad_unshare_cleanup_fs:
2424 if (new_fs)
2425 free_fs_struct(new_fs);
2427 bad_unshare_out:
2428 return err;
2432 * Helper to unshare the files of the current task.
2433 * We don't want to expose copy_files internals to
2434 * the exec layer of the kernel.
2437 int unshare_files(struct files_struct **displaced)
2439 struct task_struct *task = current;
2440 struct files_struct *copy = NULL;
2441 int error;
2443 error = unshare_fd(CLONE_FILES, &copy);
2444 if (error || !copy) {
2445 *displaced = NULL;
2446 return error;
2448 *displaced = task->files;
2449 task_lock(task);
2450 task->files = copy;
2451 task_unlock(task);
2452 return 0;
2455 int sysctl_max_threads(struct ctl_table *table, int write,
2456 void __user *buffer, size_t *lenp, loff_t *ppos)
2458 struct ctl_table t;
2459 int ret;
2460 int threads = max_threads;
2461 int min = MIN_THREADS;
2462 int max = MAX_THREADS;
2464 t = *table;
2465 t.data = &threads;
2466 t.extra1 = &min;
2467 t.extra2 = &max;
2469 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2470 if (ret || !write)
2471 return ret;
2473 set_max_threads(threads);
2475 return 0;