2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
35 * RAID10 provides a combination of RAID0 and RAID1 functionality.
36 * The layout of data is defined by
39 * near_copies (stored in low byte of layout)
40 * far_copies (stored in second byte of layout)
41 * far_offset (stored in bit 16 of layout )
42 * use_far_sets (stored in bit 17 of layout )
43 * use_far_sets_bugfixed (stored in bit 18 of layout )
45 * The data to be stored is divided into chunks using chunksize. Each device
46 * is divided into far_copies sections. In each section, chunks are laid out
47 * in a style similar to raid0, but near_copies copies of each chunk is stored
48 * (each on a different drive). The starting device for each section is offset
49 * near_copies from the starting device of the previous section. Thus there
50 * are (near_copies * far_copies) of each chunk, and each is on a different
51 * drive. near_copies and far_copies must be at least one, and their product
52 * is at most raid_disks.
54 * If far_offset is true, then the far_copies are handled a bit differently.
55 * The copies are still in different stripes, but instead of being very far
56 * apart on disk, there are adjacent stripes.
58 * The far and offset algorithms are handled slightly differently if
59 * 'use_far_sets' is true. In this case, the array's devices are grouped into
60 * sets that are (near_copies * far_copies) in size. The far copied stripes
61 * are still shifted by 'near_copies' devices, but this shifting stays confined
62 * to the set rather than the entire array. This is done to improve the number
63 * of device combinations that can fail without causing the array to fail.
64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70 * [A B] [C D] [A B] [C D E]
71 * |...| |...| |...| | ... |
72 * [B A] [D C] [B A] [E C D]
76 * Number of guaranteed r10bios in case of extreme VM load:
78 #define NR_RAID10_BIOS 256
80 /* when we get a read error on a read-only array, we redirect to another
81 * device without failing the first device, or trying to over-write to
82 * correct the read error. To keep track of bad blocks on a per-bio
83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87 * bad-block marking which must be done from process context. So we record
88 * the success by setting devs[n].bio to IO_MADE_GOOD
90 #define IO_MADE_GOOD ((struct bio *)2)
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
94 /* When there are this many requests queued to be written by
95 * the raid10 thread, we become 'congested' to provide back-pressure
98 static int max_queued_requests
= 1024;
100 static void allow_barrier(struct r10conf
*conf
);
101 static void lower_barrier(struct r10conf
*conf
);
102 static int _enough(struct r10conf
*conf
, int previous
, int ignore
);
103 static int enough(struct r10conf
*conf
, int ignore
);
104 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
,
106 static void reshape_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
);
107 static void end_reshape_write(struct bio
*bio
);
108 static void end_reshape(struct r10conf
*conf
);
110 #define raid10_log(md, fmt, args...) \
111 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
113 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
115 struct r10conf
*conf
= data
;
116 int size
= offsetof(struct r10bio
, devs
[conf
->copies
]);
118 /* allocate a r10bio with room for raid_disks entries in the
120 return kzalloc(size
, gfp_flags
);
123 static void r10bio_pool_free(void *r10_bio
, void *data
)
128 /* Maximum size of each resync request */
129 #define RESYNC_BLOCK_SIZE (64*1024)
130 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
131 /* amount of memory to reserve for resync requests */
132 #define RESYNC_WINDOW (1024*1024)
133 /* maximum number of concurrent requests, memory permitting */
134 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
137 * When performing a resync, we need to read and compare, so
138 * we need as many pages are there are copies.
139 * When performing a recovery, we need 2 bios, one for read,
140 * one for write (we recover only one drive per r10buf)
143 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
145 struct r10conf
*conf
= data
;
147 struct r10bio
*r10_bio
;
152 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
156 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
) ||
157 test_bit(MD_RECOVERY_RESHAPE
, &conf
->mddev
->recovery
))
158 nalloc
= conf
->copies
; /* resync */
160 nalloc
= 2; /* recovery */
165 for (j
= nalloc
; j
-- ; ) {
166 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
169 r10_bio
->devs
[j
].bio
= bio
;
170 if (!conf
->have_replacement
)
172 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
175 r10_bio
->devs
[j
].repl_bio
= bio
;
178 * Allocate RESYNC_PAGES data pages and attach them
181 for (j
= 0 ; j
< nalloc
; j
++) {
182 struct bio
*rbio
= r10_bio
->devs
[j
].repl_bio
;
183 bio
= r10_bio
->devs
[j
].bio
;
184 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
185 if (j
> 0 && !test_bit(MD_RECOVERY_SYNC
,
186 &conf
->mddev
->recovery
)) {
187 /* we can share bv_page's during recovery
189 struct bio
*rbio
= r10_bio
->devs
[0].bio
;
190 page
= rbio
->bi_io_vec
[i
].bv_page
;
193 page
= alloc_page(gfp_flags
);
197 bio
->bi_io_vec
[i
].bv_page
= page
;
199 rbio
->bi_io_vec
[i
].bv_page
= page
;
207 safe_put_page(bio
->bi_io_vec
[i
-1].bv_page
);
209 for (i
= 0; i
< RESYNC_PAGES
; i
++)
210 safe_put_page(r10_bio
->devs
[j
].bio
->bi_io_vec
[i
].bv_page
);
213 for ( ; j
< nalloc
; j
++) {
214 if (r10_bio
->devs
[j
].bio
)
215 bio_put(r10_bio
->devs
[j
].bio
);
216 if (r10_bio
->devs
[j
].repl_bio
)
217 bio_put(r10_bio
->devs
[j
].repl_bio
);
219 r10bio_pool_free(r10_bio
, conf
);
223 static void r10buf_pool_free(void *__r10_bio
, void *data
)
226 struct r10conf
*conf
= data
;
227 struct r10bio
*r10bio
= __r10_bio
;
230 for (j
=0; j
< conf
->copies
; j
++) {
231 struct bio
*bio
= r10bio
->devs
[j
].bio
;
233 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
234 safe_put_page(bio
->bi_io_vec
[i
].bv_page
);
235 bio
->bi_io_vec
[i
].bv_page
= NULL
;
239 bio
= r10bio
->devs
[j
].repl_bio
;
243 r10bio_pool_free(r10bio
, conf
);
246 static void put_all_bios(struct r10conf
*conf
, struct r10bio
*r10_bio
)
250 for (i
= 0; i
< conf
->copies
; i
++) {
251 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
252 if (!BIO_SPECIAL(*bio
))
255 bio
= &r10_bio
->devs
[i
].repl_bio
;
256 if (r10_bio
->read_slot
< 0 && !BIO_SPECIAL(*bio
))
262 static void free_r10bio(struct r10bio
*r10_bio
)
264 struct r10conf
*conf
= r10_bio
->mddev
->private;
266 put_all_bios(conf
, r10_bio
);
267 mempool_free(r10_bio
, conf
->r10bio_pool
);
270 static void put_buf(struct r10bio
*r10_bio
)
272 struct r10conf
*conf
= r10_bio
->mddev
->private;
274 mempool_free(r10_bio
, conf
->r10buf_pool
);
279 static void reschedule_retry(struct r10bio
*r10_bio
)
282 struct mddev
*mddev
= r10_bio
->mddev
;
283 struct r10conf
*conf
= mddev
->private;
285 spin_lock_irqsave(&conf
->device_lock
, flags
);
286 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
288 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
290 /* wake up frozen array... */
291 wake_up(&conf
->wait_barrier
);
293 md_wakeup_thread(mddev
->thread
);
297 * raid_end_bio_io() is called when we have finished servicing a mirrored
298 * operation and are ready to return a success/failure code to the buffer
301 static void raid_end_bio_io(struct r10bio
*r10_bio
)
303 struct bio
*bio
= r10_bio
->master_bio
;
305 struct r10conf
*conf
= r10_bio
->mddev
->private;
307 if (bio
->bi_phys_segments
) {
309 spin_lock_irqsave(&conf
->device_lock
, flags
);
310 bio
->bi_phys_segments
--;
311 done
= (bio
->bi_phys_segments
== 0);
312 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
315 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
316 bio
->bi_error
= -EIO
;
320 * Wake up any possible resync thread that waits for the device
325 free_r10bio(r10_bio
);
329 * Update disk head position estimator based on IRQ completion info.
331 static inline void update_head_pos(int slot
, struct r10bio
*r10_bio
)
333 struct r10conf
*conf
= r10_bio
->mddev
->private;
335 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
336 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
340 * Find the disk number which triggered given bio
342 static int find_bio_disk(struct r10conf
*conf
, struct r10bio
*r10_bio
,
343 struct bio
*bio
, int *slotp
, int *replp
)
348 for (slot
= 0; slot
< conf
->copies
; slot
++) {
349 if (r10_bio
->devs
[slot
].bio
== bio
)
351 if (r10_bio
->devs
[slot
].repl_bio
== bio
) {
357 BUG_ON(slot
== conf
->copies
);
358 update_head_pos(slot
, r10_bio
);
364 return r10_bio
->devs
[slot
].devnum
;
367 static void raid10_end_read_request(struct bio
*bio
)
369 int uptodate
= !bio
->bi_error
;
370 struct r10bio
*r10_bio
= bio
->bi_private
;
372 struct md_rdev
*rdev
;
373 struct r10conf
*conf
= r10_bio
->mddev
->private;
375 slot
= r10_bio
->read_slot
;
376 dev
= r10_bio
->devs
[slot
].devnum
;
377 rdev
= r10_bio
->devs
[slot
].rdev
;
379 * this branch is our 'one mirror IO has finished' event handler:
381 update_head_pos(slot
, r10_bio
);
385 * Set R10BIO_Uptodate in our master bio, so that
386 * we will return a good error code to the higher
387 * levels even if IO on some other mirrored buffer fails.
389 * The 'master' represents the composite IO operation to
390 * user-side. So if something waits for IO, then it will
391 * wait for the 'master' bio.
393 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
395 /* If all other devices that store this block have
396 * failed, we want to return the error upwards rather
397 * than fail the last device. Here we redefine
398 * "uptodate" to mean "Don't want to retry"
400 if (!_enough(conf
, test_bit(R10BIO_Previous
, &r10_bio
->state
),
405 raid_end_bio_io(r10_bio
);
406 rdev_dec_pending(rdev
, conf
->mddev
);
409 * oops, read error - keep the refcount on the rdev
411 char b
[BDEVNAME_SIZE
];
412 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
414 bdevname(rdev
->bdev
, b
),
415 (unsigned long long)r10_bio
->sector
);
416 set_bit(R10BIO_ReadError
, &r10_bio
->state
);
417 reschedule_retry(r10_bio
);
421 static void close_write(struct r10bio
*r10_bio
)
423 /* clear the bitmap if all writes complete successfully */
424 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
426 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
428 md_write_end(r10_bio
->mddev
);
431 static void one_write_done(struct r10bio
*r10_bio
)
433 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
434 if (test_bit(R10BIO_WriteError
, &r10_bio
->state
))
435 reschedule_retry(r10_bio
);
437 close_write(r10_bio
);
438 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
))
439 reschedule_retry(r10_bio
);
441 raid_end_bio_io(r10_bio
);
446 static void raid10_end_write_request(struct bio
*bio
)
448 struct r10bio
*r10_bio
= bio
->bi_private
;
451 struct r10conf
*conf
= r10_bio
->mddev
->private;
453 struct md_rdev
*rdev
= NULL
;
454 struct bio
*to_put
= NULL
;
457 discard_error
= bio
->bi_error
&& bio_op(bio
) == REQ_OP_DISCARD
;
459 dev
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
462 rdev
= conf
->mirrors
[dev
].replacement
;
466 rdev
= conf
->mirrors
[dev
].rdev
;
469 * this branch is our 'one mirror IO has finished' event handler:
471 if (bio
->bi_error
&& !discard_error
) {
473 /* Never record new bad blocks to replacement,
476 md_error(rdev
->mddev
, rdev
);
478 set_bit(WriteErrorSeen
, &rdev
->flags
);
479 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
480 set_bit(MD_RECOVERY_NEEDED
,
481 &rdev
->mddev
->recovery
);
484 if (test_bit(FailFast
, &rdev
->flags
) &&
485 (bio
->bi_opf
& MD_FAILFAST
)) {
486 md_error(rdev
->mddev
, rdev
);
487 if (!test_bit(Faulty
, &rdev
->flags
))
488 /* This is the only remaining device,
489 * We need to retry the write without
492 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
494 r10_bio
->devs
[slot
].bio
= NULL
;
499 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
503 * Set R10BIO_Uptodate in our master bio, so that
504 * we will return a good error code for to the higher
505 * levels even if IO on some other mirrored buffer fails.
507 * The 'master' represents the composite IO operation to
508 * user-side. So if something waits for IO, then it will
509 * wait for the 'master' bio.
515 * Do not set R10BIO_Uptodate if the current device is
516 * rebuilding or Faulty. This is because we cannot use
517 * such device for properly reading the data back (we could
518 * potentially use it, if the current write would have felt
519 * before rdev->recovery_offset, but for simplicity we don't
522 if (test_bit(In_sync
, &rdev
->flags
) &&
523 !test_bit(Faulty
, &rdev
->flags
))
524 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
526 /* Maybe we can clear some bad blocks. */
527 if (is_badblock(rdev
,
528 r10_bio
->devs
[slot
].addr
,
530 &first_bad
, &bad_sectors
) && !discard_error
) {
533 r10_bio
->devs
[slot
].repl_bio
= IO_MADE_GOOD
;
535 r10_bio
->devs
[slot
].bio
= IO_MADE_GOOD
;
537 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
543 * Let's see if all mirrored write operations have finished
546 one_write_done(r10_bio
);
548 rdev_dec_pending(rdev
, conf
->mddev
);
554 * RAID10 layout manager
555 * As well as the chunksize and raid_disks count, there are two
556 * parameters: near_copies and far_copies.
557 * near_copies * far_copies must be <= raid_disks.
558 * Normally one of these will be 1.
559 * If both are 1, we get raid0.
560 * If near_copies == raid_disks, we get raid1.
562 * Chunks are laid out in raid0 style with near_copies copies of the
563 * first chunk, followed by near_copies copies of the next chunk and
565 * If far_copies > 1, then after 1/far_copies of the array has been assigned
566 * as described above, we start again with a device offset of near_copies.
567 * So we effectively have another copy of the whole array further down all
568 * the drives, but with blocks on different drives.
569 * With this layout, and block is never stored twice on the one device.
571 * raid10_find_phys finds the sector offset of a given virtual sector
572 * on each device that it is on.
574 * raid10_find_virt does the reverse mapping, from a device and a
575 * sector offset to a virtual address
578 static void __raid10_find_phys(struct geom
*geo
, struct r10bio
*r10bio
)
586 int last_far_set_start
, last_far_set_size
;
588 last_far_set_start
= (geo
->raid_disks
/ geo
->far_set_size
) - 1;
589 last_far_set_start
*= geo
->far_set_size
;
591 last_far_set_size
= geo
->far_set_size
;
592 last_far_set_size
+= (geo
->raid_disks
% geo
->far_set_size
);
594 /* now calculate first sector/dev */
595 chunk
= r10bio
->sector
>> geo
->chunk_shift
;
596 sector
= r10bio
->sector
& geo
->chunk_mask
;
598 chunk
*= geo
->near_copies
;
600 dev
= sector_div(stripe
, geo
->raid_disks
);
602 stripe
*= geo
->far_copies
;
604 sector
+= stripe
<< geo
->chunk_shift
;
606 /* and calculate all the others */
607 for (n
= 0; n
< geo
->near_copies
; n
++) {
611 r10bio
->devs
[slot
].devnum
= d
;
612 r10bio
->devs
[slot
].addr
= s
;
615 for (f
= 1; f
< geo
->far_copies
; f
++) {
616 set
= d
/ geo
->far_set_size
;
617 d
+= geo
->near_copies
;
619 if ((geo
->raid_disks
% geo
->far_set_size
) &&
620 (d
> last_far_set_start
)) {
621 d
-= last_far_set_start
;
622 d
%= last_far_set_size
;
623 d
+= last_far_set_start
;
625 d
%= geo
->far_set_size
;
626 d
+= geo
->far_set_size
* set
;
629 r10bio
->devs
[slot
].devnum
= d
;
630 r10bio
->devs
[slot
].addr
= s
;
634 if (dev
>= geo
->raid_disks
) {
636 sector
+= (geo
->chunk_mask
+ 1);
641 static void raid10_find_phys(struct r10conf
*conf
, struct r10bio
*r10bio
)
643 struct geom
*geo
= &conf
->geo
;
645 if (conf
->reshape_progress
!= MaxSector
&&
646 ((r10bio
->sector
>= conf
->reshape_progress
) !=
647 conf
->mddev
->reshape_backwards
)) {
648 set_bit(R10BIO_Previous
, &r10bio
->state
);
651 clear_bit(R10BIO_Previous
, &r10bio
->state
);
653 __raid10_find_phys(geo
, r10bio
);
656 static sector_t
raid10_find_virt(struct r10conf
*conf
, sector_t sector
, int dev
)
658 sector_t offset
, chunk
, vchunk
;
659 /* Never use conf->prev as this is only called during resync
660 * or recovery, so reshape isn't happening
662 struct geom
*geo
= &conf
->geo
;
663 int far_set_start
= (dev
/ geo
->far_set_size
) * geo
->far_set_size
;
664 int far_set_size
= geo
->far_set_size
;
665 int last_far_set_start
;
667 if (geo
->raid_disks
% geo
->far_set_size
) {
668 last_far_set_start
= (geo
->raid_disks
/ geo
->far_set_size
) - 1;
669 last_far_set_start
*= geo
->far_set_size
;
671 if (dev
>= last_far_set_start
) {
672 far_set_size
= geo
->far_set_size
;
673 far_set_size
+= (geo
->raid_disks
% geo
->far_set_size
);
674 far_set_start
= last_far_set_start
;
678 offset
= sector
& geo
->chunk_mask
;
679 if (geo
->far_offset
) {
681 chunk
= sector
>> geo
->chunk_shift
;
682 fc
= sector_div(chunk
, geo
->far_copies
);
683 dev
-= fc
* geo
->near_copies
;
684 if (dev
< far_set_start
)
687 while (sector
>= geo
->stride
) {
688 sector
-= geo
->stride
;
689 if (dev
< (geo
->near_copies
+ far_set_start
))
690 dev
+= far_set_size
- geo
->near_copies
;
692 dev
-= geo
->near_copies
;
694 chunk
= sector
>> geo
->chunk_shift
;
696 vchunk
= chunk
* geo
->raid_disks
+ dev
;
697 sector_div(vchunk
, geo
->near_copies
);
698 return (vchunk
<< geo
->chunk_shift
) + offset
;
702 * This routine returns the disk from which the requested read should
703 * be done. There is a per-array 'next expected sequential IO' sector
704 * number - if this matches on the next IO then we use the last disk.
705 * There is also a per-disk 'last know head position' sector that is
706 * maintained from IRQ contexts, both the normal and the resync IO
707 * completion handlers update this position correctly. If there is no
708 * perfect sequential match then we pick the disk whose head is closest.
710 * If there are 2 mirrors in the same 2 devices, performance degrades
711 * because position is mirror, not device based.
713 * The rdev for the device selected will have nr_pending incremented.
717 * FIXME: possibly should rethink readbalancing and do it differently
718 * depending on near_copies / far_copies geometry.
720 static struct md_rdev
*read_balance(struct r10conf
*conf
,
721 struct r10bio
*r10_bio
,
724 const sector_t this_sector
= r10_bio
->sector
;
726 int sectors
= r10_bio
->sectors
;
727 int best_good_sectors
;
728 sector_t new_distance
, best_dist
;
729 struct md_rdev
*best_rdev
, *rdev
= NULL
;
732 struct geom
*geo
= &conf
->geo
;
734 raid10_find_phys(conf
, r10_bio
);
736 sectors
= r10_bio
->sectors
;
739 best_dist
= MaxSector
;
740 best_good_sectors
= 0;
742 clear_bit(R10BIO_FailFast
, &r10_bio
->state
);
744 * Check if we can balance. We can balance on the whole
745 * device if no resync is going on (recovery is ok), or below
746 * the resync window. We take the first readable disk when
747 * above the resync window.
749 if (conf
->mddev
->recovery_cp
< MaxSector
750 && (this_sector
+ sectors
>= conf
->next_resync
))
753 for (slot
= 0; slot
< conf
->copies
; slot
++) {
758 if (r10_bio
->devs
[slot
].bio
== IO_BLOCKED
)
760 disk
= r10_bio
->devs
[slot
].devnum
;
761 rdev
= rcu_dereference(conf
->mirrors
[disk
].replacement
);
762 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
) ||
763 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
764 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
766 test_bit(Faulty
, &rdev
->flags
))
768 if (!test_bit(In_sync
, &rdev
->flags
) &&
769 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
772 dev_sector
= r10_bio
->devs
[slot
].addr
;
773 if (is_badblock(rdev
, dev_sector
, sectors
,
774 &first_bad
, &bad_sectors
)) {
775 if (best_dist
< MaxSector
)
776 /* Already have a better slot */
778 if (first_bad
<= dev_sector
) {
779 /* Cannot read here. If this is the
780 * 'primary' device, then we must not read
781 * beyond 'bad_sectors' from another device.
783 bad_sectors
-= (dev_sector
- first_bad
);
784 if (!do_balance
&& sectors
> bad_sectors
)
785 sectors
= bad_sectors
;
786 if (best_good_sectors
> sectors
)
787 best_good_sectors
= sectors
;
789 sector_t good_sectors
=
790 first_bad
- dev_sector
;
791 if (good_sectors
> best_good_sectors
) {
792 best_good_sectors
= good_sectors
;
797 /* Must read from here */
802 best_good_sectors
= sectors
;
808 /* At least 2 disks to choose from so failfast is OK */
809 set_bit(R10BIO_FailFast
, &r10_bio
->state
);
810 /* This optimisation is debatable, and completely destroys
811 * sequential read speed for 'far copies' arrays. So only
812 * keep it for 'near' arrays, and review those later.
814 if (geo
->near_copies
> 1 && !atomic_read(&rdev
->nr_pending
))
817 /* for far > 1 always use the lowest address */
818 else if (geo
->far_copies
> 1)
819 new_distance
= r10_bio
->devs
[slot
].addr
;
821 new_distance
= abs(r10_bio
->devs
[slot
].addr
-
822 conf
->mirrors
[disk
].head_position
);
823 if (new_distance
< best_dist
) {
824 best_dist
= new_distance
;
829 if (slot
>= conf
->copies
) {
835 atomic_inc(&rdev
->nr_pending
);
836 r10_bio
->read_slot
= slot
;
840 *max_sectors
= best_good_sectors
;
845 static int raid10_congested(struct mddev
*mddev
, int bits
)
847 struct r10conf
*conf
= mddev
->private;
850 if ((bits
& (1 << WB_async_congested
)) &&
851 conf
->pending_count
>= max_queued_requests
)
856 (i
< conf
->geo
.raid_disks
|| i
< conf
->prev
.raid_disks
)
859 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
860 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
861 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
863 ret
|= bdi_congested(q
->backing_dev_info
, bits
);
870 static void flush_pending_writes(struct r10conf
*conf
)
872 /* Any writes that have been queued but are awaiting
873 * bitmap updates get flushed here.
875 spin_lock_irq(&conf
->device_lock
);
877 if (conf
->pending_bio_list
.head
) {
879 bio
= bio_list_get(&conf
->pending_bio_list
);
880 conf
->pending_count
= 0;
881 spin_unlock_irq(&conf
->device_lock
);
882 /* flush any pending bitmap writes to disk
883 * before proceeding w/ I/O */
884 bitmap_unplug(conf
->mddev
->bitmap
);
885 wake_up(&conf
->wait_barrier
);
887 while (bio
) { /* submit pending writes */
888 struct bio
*next
= bio
->bi_next
;
889 struct md_rdev
*rdev
= (void*)bio
->bi_bdev
;
891 bio
->bi_bdev
= rdev
->bdev
;
892 if (test_bit(Faulty
, &rdev
->flags
)) {
893 bio
->bi_error
= -EIO
;
895 } else if (unlikely((bio_op(bio
) == REQ_OP_DISCARD
) &&
896 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
900 generic_make_request(bio
);
904 spin_unlock_irq(&conf
->device_lock
);
908 * Sometimes we need to suspend IO while we do something else,
909 * either some resync/recovery, or reconfigure the array.
910 * To do this we raise a 'barrier'.
911 * The 'barrier' is a counter that can be raised multiple times
912 * to count how many activities are happening which preclude
914 * We can only raise the barrier if there is no pending IO.
915 * i.e. if nr_pending == 0.
916 * We choose only to raise the barrier if no-one is waiting for the
917 * barrier to go down. This means that as soon as an IO request
918 * is ready, no other operations which require a barrier will start
919 * until the IO request has had a chance.
921 * So: regular IO calls 'wait_barrier'. When that returns there
922 * is no backgroup IO happening, It must arrange to call
923 * allow_barrier when it has finished its IO.
924 * backgroup IO calls must call raise_barrier. Once that returns
925 * there is no normal IO happeing. It must arrange to call
926 * lower_barrier when the particular background IO completes.
929 static void raise_barrier(struct r10conf
*conf
, int force
)
931 BUG_ON(force
&& !conf
->barrier
);
932 spin_lock_irq(&conf
->resync_lock
);
934 /* Wait until no block IO is waiting (unless 'force') */
935 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
938 /* block any new IO from starting */
941 /* Now wait for all pending IO to complete */
942 wait_event_lock_irq(conf
->wait_barrier
,
943 !atomic_read(&conf
->nr_pending
) && conf
->barrier
< RESYNC_DEPTH
,
946 spin_unlock_irq(&conf
->resync_lock
);
949 static void lower_barrier(struct r10conf
*conf
)
952 spin_lock_irqsave(&conf
->resync_lock
, flags
);
954 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
955 wake_up(&conf
->wait_barrier
);
958 static void wait_barrier(struct r10conf
*conf
)
960 spin_lock_irq(&conf
->resync_lock
);
963 /* Wait for the barrier to drop.
964 * However if there are already pending
965 * requests (preventing the barrier from
966 * rising completely), and the
967 * pre-process bio queue isn't empty,
968 * then don't wait, as we need to empty
969 * that queue to get the nr_pending
972 raid10_log(conf
->mddev
, "wait barrier");
973 wait_event_lock_irq(conf
->wait_barrier
,
975 (atomic_read(&conf
->nr_pending
) &&
977 (!bio_list_empty(¤t
->bio_list
[0]) ||
978 !bio_list_empty(¤t
->bio_list
[1]))),
981 if (!conf
->nr_waiting
)
982 wake_up(&conf
->wait_barrier
);
984 atomic_inc(&conf
->nr_pending
);
985 spin_unlock_irq(&conf
->resync_lock
);
988 static void allow_barrier(struct r10conf
*conf
)
990 if ((atomic_dec_and_test(&conf
->nr_pending
)) ||
991 (conf
->array_freeze_pending
))
992 wake_up(&conf
->wait_barrier
);
995 static void freeze_array(struct r10conf
*conf
, int extra
)
997 /* stop syncio and normal IO and wait for everything to
999 * We increment barrier and nr_waiting, and then
1000 * wait until nr_pending match nr_queued+extra
1001 * This is called in the context of one normal IO request
1002 * that has failed. Thus any sync request that might be pending
1003 * will be blocked by nr_pending, and we need to wait for
1004 * pending IO requests to complete or be queued for re-try.
1005 * Thus the number queued (nr_queued) plus this request (extra)
1006 * must match the number of pending IOs (nr_pending) before
1009 spin_lock_irq(&conf
->resync_lock
);
1010 conf
->array_freeze_pending
++;
1013 wait_event_lock_irq_cmd(conf
->wait_barrier
,
1014 atomic_read(&conf
->nr_pending
) == conf
->nr_queued
+extra
,
1016 flush_pending_writes(conf
));
1018 conf
->array_freeze_pending
--;
1019 spin_unlock_irq(&conf
->resync_lock
);
1022 static void unfreeze_array(struct r10conf
*conf
)
1024 /* reverse the effect of the freeze */
1025 spin_lock_irq(&conf
->resync_lock
);
1028 wake_up(&conf
->wait_barrier
);
1029 spin_unlock_irq(&conf
->resync_lock
);
1032 static sector_t
choose_data_offset(struct r10bio
*r10_bio
,
1033 struct md_rdev
*rdev
)
1035 if (!test_bit(MD_RECOVERY_RESHAPE
, &rdev
->mddev
->recovery
) ||
1036 test_bit(R10BIO_Previous
, &r10_bio
->state
))
1037 return rdev
->data_offset
;
1039 return rdev
->new_data_offset
;
1042 struct raid10_plug_cb
{
1043 struct blk_plug_cb cb
;
1044 struct bio_list pending
;
1048 static void raid10_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
1050 struct raid10_plug_cb
*plug
= container_of(cb
, struct raid10_plug_cb
,
1052 struct mddev
*mddev
= plug
->cb
.data
;
1053 struct r10conf
*conf
= mddev
->private;
1056 if (from_schedule
|| current
->bio_list
) {
1057 spin_lock_irq(&conf
->device_lock
);
1058 bio_list_merge(&conf
->pending_bio_list
, &plug
->pending
);
1059 conf
->pending_count
+= plug
->pending_cnt
;
1060 spin_unlock_irq(&conf
->device_lock
);
1061 wake_up(&conf
->wait_barrier
);
1062 md_wakeup_thread(mddev
->thread
);
1067 /* we aren't scheduling, so we can do the write-out directly. */
1068 bio
= bio_list_get(&plug
->pending
);
1069 bitmap_unplug(mddev
->bitmap
);
1070 wake_up(&conf
->wait_barrier
);
1072 while (bio
) { /* submit pending writes */
1073 struct bio
*next
= bio
->bi_next
;
1074 struct md_rdev
*rdev
= (void*)bio
->bi_bdev
;
1075 bio
->bi_next
= NULL
;
1076 bio
->bi_bdev
= rdev
->bdev
;
1077 if (test_bit(Faulty
, &rdev
->flags
)) {
1078 bio
->bi_error
= -EIO
;
1080 } else if (unlikely((bio_op(bio
) == REQ_OP_DISCARD
) &&
1081 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
1082 /* Just ignore it */
1085 generic_make_request(bio
);
1091 static void raid10_read_request(struct mddev
*mddev
, struct bio
*bio
,
1092 struct r10bio
*r10_bio
)
1094 struct r10conf
*conf
= mddev
->private;
1095 struct bio
*read_bio
;
1096 const int op
= bio_op(bio
);
1097 const unsigned long do_sync
= (bio
->bi_opf
& REQ_SYNC
);
1098 int sectors_handled
;
1101 struct md_rdev
*rdev
;
1105 * Register the new request and wait if the reconstruction
1106 * thread has put up a bar for new requests.
1107 * Continue immediately if no resync is active currently.
1111 sectors
= bio_sectors(bio
);
1112 while (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1113 bio
->bi_iter
.bi_sector
< conf
->reshape_progress
&&
1114 bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_progress
) {
1116 * IO spans the reshape position. Need to wait for reshape to
1119 raid10_log(conf
->mddev
, "wait reshape");
1120 allow_barrier(conf
);
1121 wait_event(conf
->wait_barrier
,
1122 conf
->reshape_progress
<= bio
->bi_iter
.bi_sector
||
1123 conf
->reshape_progress
>= bio
->bi_iter
.bi_sector
+
1129 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
1131 raid_end_bio_io(r10_bio
);
1134 slot
= r10_bio
->read_slot
;
1136 read_bio
= bio_clone_fast(bio
, GFP_NOIO
, mddev
->bio_set
);
1137 bio_trim(read_bio
, r10_bio
->sector
- bio
->bi_iter
.bi_sector
,
1140 r10_bio
->devs
[slot
].bio
= read_bio
;
1141 r10_bio
->devs
[slot
].rdev
= rdev
;
1143 read_bio
->bi_iter
.bi_sector
= r10_bio
->devs
[slot
].addr
+
1144 choose_data_offset(r10_bio
, rdev
);
1145 read_bio
->bi_bdev
= rdev
->bdev
;
1146 read_bio
->bi_end_io
= raid10_end_read_request
;
1147 bio_set_op_attrs(read_bio
, op
, do_sync
);
1148 if (test_bit(FailFast
, &rdev
->flags
) &&
1149 test_bit(R10BIO_FailFast
, &r10_bio
->state
))
1150 read_bio
->bi_opf
|= MD_FAILFAST
;
1151 read_bio
->bi_private
= r10_bio
;
1154 trace_block_bio_remap(bdev_get_queue(read_bio
->bi_bdev
),
1155 read_bio
, disk_devt(mddev
->gendisk
),
1157 if (max_sectors
< r10_bio
->sectors
) {
1159 * Could not read all from this device, so we will need another
1162 sectors_handled
= (r10_bio
->sector
+ max_sectors
1163 - bio
->bi_iter
.bi_sector
);
1164 r10_bio
->sectors
= max_sectors
;
1165 spin_lock_irq(&conf
->device_lock
);
1166 if (bio
->bi_phys_segments
== 0)
1167 bio
->bi_phys_segments
= 2;
1169 bio
->bi_phys_segments
++;
1170 spin_unlock_irq(&conf
->device_lock
);
1172 * Cannot call generic_make_request directly as that will be
1173 * queued in __generic_make_request and subsequent
1174 * mempool_alloc might block waiting for it. so hand bio over
1177 reschedule_retry(r10_bio
);
1179 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1181 r10_bio
->master_bio
= bio
;
1182 r10_bio
->sectors
= bio_sectors(bio
) - sectors_handled
;
1184 r10_bio
->mddev
= mddev
;
1185 r10_bio
->sector
= bio
->bi_iter
.bi_sector
+ sectors_handled
;
1188 generic_make_request(read_bio
);
1192 static void raid10_write_request(struct mddev
*mddev
, struct bio
*bio
,
1193 struct r10bio
*r10_bio
)
1195 struct r10conf
*conf
= mddev
->private;
1197 const int op
= bio_op(bio
);
1198 const unsigned long do_sync
= (bio
->bi_opf
& REQ_SYNC
);
1199 const unsigned long do_fua
= (bio
->bi_opf
& REQ_FUA
);
1200 unsigned long flags
;
1201 struct md_rdev
*blocked_rdev
;
1202 struct blk_plug_cb
*cb
;
1203 struct raid10_plug_cb
*plug
= NULL
;
1205 int sectors_handled
;
1208 md_write_start(mddev
, bio
);
1211 * Register the new request and wait if the reconstruction
1212 * thread has put up a bar for new requests.
1213 * Continue immediately if no resync is active currently.
1217 sectors
= bio_sectors(bio
);
1218 while (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1219 bio
->bi_iter
.bi_sector
< conf
->reshape_progress
&&
1220 bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_progress
) {
1222 * IO spans the reshape position. Need to wait for reshape to
1225 raid10_log(conf
->mddev
, "wait reshape");
1226 allow_barrier(conf
);
1227 wait_event(conf
->wait_barrier
,
1228 conf
->reshape_progress
<= bio
->bi_iter
.bi_sector
||
1229 conf
->reshape_progress
>= bio
->bi_iter
.bi_sector
+
1234 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1235 (mddev
->reshape_backwards
1236 ? (bio
->bi_iter
.bi_sector
< conf
->reshape_safe
&&
1237 bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_progress
)
1238 : (bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_safe
&&
1239 bio
->bi_iter
.bi_sector
< conf
->reshape_progress
))) {
1240 /* Need to update reshape_position in metadata */
1241 mddev
->reshape_position
= conf
->reshape_progress
;
1242 set_mask_bits(&mddev
->sb_flags
, 0,
1243 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1244 md_wakeup_thread(mddev
->thread
);
1245 raid10_log(conf
->mddev
, "wait reshape metadata");
1246 wait_event(mddev
->sb_wait
,
1247 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
));
1249 conf
->reshape_safe
= mddev
->reshape_position
;
1252 if (conf
->pending_count
>= max_queued_requests
) {
1253 md_wakeup_thread(mddev
->thread
);
1254 raid10_log(mddev
, "wait queued");
1255 wait_event(conf
->wait_barrier
,
1256 conf
->pending_count
< max_queued_requests
);
1258 /* first select target devices under rcu_lock and
1259 * inc refcount on their rdev. Record them by setting
1261 * If there are known/acknowledged bad blocks on any device
1262 * on which we have seen a write error, we want to avoid
1263 * writing to those blocks. This potentially requires several
1264 * writes to write around the bad blocks. Each set of writes
1265 * gets its own r10_bio with a set of bios attached. The number
1266 * of r10_bios is recored in bio->bi_phys_segments just as with
1270 r10_bio
->read_slot
= -1; /* make sure repl_bio gets freed */
1271 raid10_find_phys(conf
, r10_bio
);
1273 blocked_rdev
= NULL
;
1275 max_sectors
= r10_bio
->sectors
;
1277 for (i
= 0; i
< conf
->copies
; i
++) {
1278 int d
= r10_bio
->devs
[i
].devnum
;
1279 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1280 struct md_rdev
*rrdev
= rcu_dereference(
1281 conf
->mirrors
[d
].replacement
);
1284 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1285 atomic_inc(&rdev
->nr_pending
);
1286 blocked_rdev
= rdev
;
1289 if (rrdev
&& unlikely(test_bit(Blocked
, &rrdev
->flags
))) {
1290 atomic_inc(&rrdev
->nr_pending
);
1291 blocked_rdev
= rrdev
;
1294 if (rdev
&& (test_bit(Faulty
, &rdev
->flags
)))
1296 if (rrdev
&& (test_bit(Faulty
, &rrdev
->flags
)))
1299 r10_bio
->devs
[i
].bio
= NULL
;
1300 r10_bio
->devs
[i
].repl_bio
= NULL
;
1302 if (!rdev
&& !rrdev
) {
1303 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
1306 if (rdev
&& test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1308 sector_t dev_sector
= r10_bio
->devs
[i
].addr
;
1312 is_bad
= is_badblock(rdev
, dev_sector
, max_sectors
,
1313 &first_bad
, &bad_sectors
);
1315 /* Mustn't write here until the bad block
1318 atomic_inc(&rdev
->nr_pending
);
1319 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1320 blocked_rdev
= rdev
;
1323 if (is_bad
&& first_bad
<= dev_sector
) {
1324 /* Cannot write here at all */
1325 bad_sectors
-= (dev_sector
- first_bad
);
1326 if (bad_sectors
< max_sectors
)
1327 /* Mustn't write more than bad_sectors
1328 * to other devices yet
1330 max_sectors
= bad_sectors
;
1331 /* We don't set R10BIO_Degraded as that
1332 * only applies if the disk is missing,
1333 * so it might be re-added, and we want to
1334 * know to recover this chunk.
1335 * In this case the device is here, and the
1336 * fact that this chunk is not in-sync is
1337 * recorded in the bad block log.
1342 int good_sectors
= first_bad
- dev_sector
;
1343 if (good_sectors
< max_sectors
)
1344 max_sectors
= good_sectors
;
1348 r10_bio
->devs
[i
].bio
= bio
;
1349 atomic_inc(&rdev
->nr_pending
);
1352 r10_bio
->devs
[i
].repl_bio
= bio
;
1353 atomic_inc(&rrdev
->nr_pending
);
1358 if (unlikely(blocked_rdev
)) {
1359 /* Have to wait for this device to get unblocked, then retry */
1363 for (j
= 0; j
< i
; j
++) {
1364 if (r10_bio
->devs
[j
].bio
) {
1365 d
= r10_bio
->devs
[j
].devnum
;
1366 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1368 if (r10_bio
->devs
[j
].repl_bio
) {
1369 struct md_rdev
*rdev
;
1370 d
= r10_bio
->devs
[j
].devnum
;
1371 rdev
= conf
->mirrors
[d
].replacement
;
1373 /* Race with remove_disk */
1375 rdev
= conf
->mirrors
[d
].rdev
;
1377 rdev_dec_pending(rdev
, mddev
);
1380 allow_barrier(conf
);
1381 raid10_log(conf
->mddev
, "wait rdev %d blocked", blocked_rdev
->raid_disk
);
1382 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1387 if (max_sectors
< r10_bio
->sectors
) {
1388 /* We are splitting this into multiple parts, so
1389 * we need to prepare for allocating another r10_bio.
1391 r10_bio
->sectors
= max_sectors
;
1392 spin_lock_irq(&conf
->device_lock
);
1393 if (bio
->bi_phys_segments
== 0)
1394 bio
->bi_phys_segments
= 2;
1396 bio
->bi_phys_segments
++;
1397 spin_unlock_irq(&conf
->device_lock
);
1399 sectors_handled
= r10_bio
->sector
+ max_sectors
-
1400 bio
->bi_iter
.bi_sector
;
1402 atomic_set(&r10_bio
->remaining
, 1);
1403 bitmap_startwrite(mddev
->bitmap
, r10_bio
->sector
, r10_bio
->sectors
, 0);
1405 for (i
= 0; i
< conf
->copies
; i
++) {
1407 int d
= r10_bio
->devs
[i
].devnum
;
1408 if (r10_bio
->devs
[i
].bio
) {
1409 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
1410 mbio
= bio_clone_fast(bio
, GFP_NOIO
, mddev
->bio_set
);
1411 bio_trim(mbio
, r10_bio
->sector
- bio
->bi_iter
.bi_sector
,
1413 r10_bio
->devs
[i
].bio
= mbio
;
1415 mbio
->bi_iter
.bi_sector
= (r10_bio
->devs
[i
].addr
+
1416 choose_data_offset(r10_bio
, rdev
));
1417 mbio
->bi_bdev
= rdev
->bdev
;
1418 mbio
->bi_end_io
= raid10_end_write_request
;
1419 bio_set_op_attrs(mbio
, op
, do_sync
| do_fua
);
1420 if (test_bit(FailFast
, &conf
->mirrors
[d
].rdev
->flags
) &&
1422 mbio
->bi_opf
|= MD_FAILFAST
;
1423 mbio
->bi_private
= r10_bio
;
1425 if (conf
->mddev
->gendisk
)
1426 trace_block_bio_remap(bdev_get_queue(mbio
->bi_bdev
),
1427 mbio
, disk_devt(conf
->mddev
->gendisk
),
1429 /* flush_pending_writes() needs access to the rdev so...*/
1430 mbio
->bi_bdev
= (void*)rdev
;
1432 atomic_inc(&r10_bio
->remaining
);
1434 cb
= blk_check_plugged(raid10_unplug
, mddev
,
1437 plug
= container_of(cb
, struct raid10_plug_cb
,
1441 spin_lock_irqsave(&conf
->device_lock
, flags
);
1443 bio_list_add(&plug
->pending
, mbio
);
1444 plug
->pending_cnt
++;
1446 bio_list_add(&conf
->pending_bio_list
, mbio
);
1447 conf
->pending_count
++;
1449 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1451 md_wakeup_thread(mddev
->thread
);
1454 if (r10_bio
->devs
[i
].repl_bio
) {
1455 struct md_rdev
*rdev
= conf
->mirrors
[d
].replacement
;
1457 /* Replacement just got moved to main 'rdev' */
1459 rdev
= conf
->mirrors
[d
].rdev
;
1461 mbio
= bio_clone_fast(bio
, GFP_NOIO
, mddev
->bio_set
);
1462 bio_trim(mbio
, r10_bio
->sector
- bio
->bi_iter
.bi_sector
,
1464 r10_bio
->devs
[i
].repl_bio
= mbio
;
1466 mbio
->bi_iter
.bi_sector
= (r10_bio
->devs
[i
].addr
+
1467 choose_data_offset(r10_bio
, rdev
));
1468 mbio
->bi_bdev
= rdev
->bdev
;
1469 mbio
->bi_end_io
= raid10_end_write_request
;
1470 bio_set_op_attrs(mbio
, op
, do_sync
| do_fua
);
1471 mbio
->bi_private
= r10_bio
;
1473 if (conf
->mddev
->gendisk
)
1474 trace_block_bio_remap(bdev_get_queue(mbio
->bi_bdev
),
1475 mbio
, disk_devt(conf
->mddev
->gendisk
),
1477 /* flush_pending_writes() needs access to the rdev so...*/
1478 mbio
->bi_bdev
= (void*)rdev
;
1480 atomic_inc(&r10_bio
->remaining
);
1482 cb
= blk_check_plugged(raid10_unplug
, mddev
,
1485 plug
= container_of(cb
, struct raid10_plug_cb
,
1489 spin_lock_irqsave(&conf
->device_lock
, flags
);
1491 bio_list_add(&plug
->pending
, mbio
);
1492 plug
->pending_cnt
++;
1494 bio_list_add(&conf
->pending_bio_list
, mbio
);
1495 conf
->pending_count
++;
1497 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1499 md_wakeup_thread(mddev
->thread
);
1503 /* Don't remove the bias on 'remaining' (one_write_done) until
1504 * after checking if we need to go around again.
1507 if (sectors_handled
< bio_sectors(bio
)) {
1508 one_write_done(r10_bio
);
1509 /* We need another r10_bio. It has already been counted
1510 * in bio->bi_phys_segments.
1512 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1514 r10_bio
->master_bio
= bio
;
1515 r10_bio
->sectors
= bio_sectors(bio
) - sectors_handled
;
1517 r10_bio
->mddev
= mddev
;
1518 r10_bio
->sector
= bio
->bi_iter
.bi_sector
+ sectors_handled
;
1522 one_write_done(r10_bio
);
1525 static void __make_request(struct mddev
*mddev
, struct bio
*bio
)
1527 struct r10conf
*conf
= mddev
->private;
1528 struct r10bio
*r10_bio
;
1530 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1532 r10_bio
->master_bio
= bio
;
1533 r10_bio
->sectors
= bio_sectors(bio
);
1535 r10_bio
->mddev
= mddev
;
1536 r10_bio
->sector
= bio
->bi_iter
.bi_sector
;
1540 * We might need to issue multiple reads to different devices if there
1541 * are bad blocks around, so we keep track of the number of reads in
1542 * bio->bi_phys_segments. If this is 0, there is only one r10_bio and
1543 * no locking will be needed when the request completes. If it is
1544 * non-zero, then it is the number of not-completed requests.
1546 bio
->bi_phys_segments
= 0;
1547 bio_clear_flag(bio
, BIO_SEG_VALID
);
1549 if (bio_data_dir(bio
) == READ
)
1550 raid10_read_request(mddev
, bio
, r10_bio
);
1552 raid10_write_request(mddev
, bio
, r10_bio
);
1555 static void raid10_make_request(struct mddev
*mddev
, struct bio
*bio
)
1557 struct r10conf
*conf
= mddev
->private;
1558 sector_t chunk_mask
= (conf
->geo
.chunk_mask
& conf
->prev
.chunk_mask
);
1559 int chunk_sects
= chunk_mask
+ 1;
1563 if (unlikely(bio
->bi_opf
& REQ_PREFLUSH
)) {
1564 md_flush_request(mddev
, bio
);
1571 * If this request crosses a chunk boundary, we need to split
1574 if (unlikely((bio
->bi_iter
.bi_sector
& chunk_mask
) +
1575 bio_sectors(bio
) > chunk_sects
1576 && (conf
->geo
.near_copies
< conf
->geo
.raid_disks
1577 || conf
->prev
.near_copies
<
1578 conf
->prev
.raid_disks
))) {
1579 split
= bio_split(bio
, chunk_sects
-
1580 (bio
->bi_iter
.bi_sector
&
1582 GFP_NOIO
, fs_bio_set
);
1583 bio_chain(split
, bio
);
1589 * If a bio is splitted, the first part of bio will pass
1590 * barrier but the bio is queued in current->bio_list (see
1591 * generic_make_request). If there is a raise_barrier() called
1592 * here, the second part of bio can't pass barrier. But since
1593 * the first part bio isn't dispatched to underlaying disks
1594 * yet, the barrier is never released, hence raise_barrier will
1595 * alays wait. We have a deadlock.
1596 * Note, this only happens in read path. For write path, the
1597 * first part of bio is dispatched in a schedule() call
1598 * (because of blk plug) or offloaded to raid10d.
1599 * Quitting from the function immediately can change the bio
1600 * order queued in bio_list and avoid the deadlock.
1602 __make_request(mddev
, split
);
1603 if (split
!= bio
&& bio_data_dir(bio
) == READ
) {
1604 generic_make_request(bio
);
1607 } while (split
!= bio
);
1609 /* In case raid10d snuck in to freeze_array */
1610 wake_up(&conf
->wait_barrier
);
1613 static void raid10_status(struct seq_file
*seq
, struct mddev
*mddev
)
1615 struct r10conf
*conf
= mddev
->private;
1618 if (conf
->geo
.near_copies
< conf
->geo
.raid_disks
)
1619 seq_printf(seq
, " %dK chunks", mddev
->chunk_sectors
/ 2);
1620 if (conf
->geo
.near_copies
> 1)
1621 seq_printf(seq
, " %d near-copies", conf
->geo
.near_copies
);
1622 if (conf
->geo
.far_copies
> 1) {
1623 if (conf
->geo
.far_offset
)
1624 seq_printf(seq
, " %d offset-copies", conf
->geo
.far_copies
);
1626 seq_printf(seq
, " %d far-copies", conf
->geo
.far_copies
);
1627 if (conf
->geo
.far_set_size
!= conf
->geo
.raid_disks
)
1628 seq_printf(seq
, " %d devices per set", conf
->geo
.far_set_size
);
1630 seq_printf(seq
, " [%d/%d] [", conf
->geo
.raid_disks
,
1631 conf
->geo
.raid_disks
- mddev
->degraded
);
1633 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1634 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1635 seq_printf(seq
, "%s", rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1638 seq_printf(seq
, "]");
1641 /* check if there are enough drives for
1642 * every block to appear on atleast one.
1643 * Don't consider the device numbered 'ignore'
1644 * as we might be about to remove it.
1646 static int _enough(struct r10conf
*conf
, int previous
, int ignore
)
1652 disks
= conf
->prev
.raid_disks
;
1653 ncopies
= conf
->prev
.near_copies
;
1655 disks
= conf
->geo
.raid_disks
;
1656 ncopies
= conf
->geo
.near_copies
;
1661 int n
= conf
->copies
;
1665 struct md_rdev
*rdev
;
1666 if (this != ignore
&&
1667 (rdev
= rcu_dereference(conf
->mirrors
[this].rdev
)) &&
1668 test_bit(In_sync
, &rdev
->flags
))
1670 this = (this+1) % disks
;
1674 first
= (first
+ ncopies
) % disks
;
1675 } while (first
!= 0);
1682 static int enough(struct r10conf
*conf
, int ignore
)
1684 /* when calling 'enough', both 'prev' and 'geo' must
1686 * This is ensured if ->reconfig_mutex or ->device_lock
1689 return _enough(conf
, 0, ignore
) &&
1690 _enough(conf
, 1, ignore
);
1693 static void raid10_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1695 char b
[BDEVNAME_SIZE
];
1696 struct r10conf
*conf
= mddev
->private;
1697 unsigned long flags
;
1700 * If it is not operational, then we have already marked it as dead
1701 * else if it is the last working disks, ignore the error, let the
1702 * next level up know.
1703 * else mark the drive as failed
1705 spin_lock_irqsave(&conf
->device_lock
, flags
);
1706 if (test_bit(In_sync
, &rdev
->flags
)
1707 && !enough(conf
, rdev
->raid_disk
)) {
1709 * Don't fail the drive, just return an IO error.
1711 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1714 if (test_and_clear_bit(In_sync
, &rdev
->flags
))
1717 * If recovery is running, make sure it aborts.
1719 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1720 set_bit(Blocked
, &rdev
->flags
);
1721 set_bit(Faulty
, &rdev
->flags
);
1722 set_mask_bits(&mddev
->sb_flags
, 0,
1723 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1724 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1725 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1726 "md/raid10:%s: Operation continuing on %d devices.\n",
1727 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1728 mdname(mddev
), conf
->geo
.raid_disks
- mddev
->degraded
);
1731 static void print_conf(struct r10conf
*conf
)
1734 struct md_rdev
*rdev
;
1736 pr_debug("RAID10 conf printout:\n");
1738 pr_debug("(!conf)\n");
1741 pr_debug(" --- wd:%d rd:%d\n", conf
->geo
.raid_disks
- conf
->mddev
->degraded
,
1742 conf
->geo
.raid_disks
);
1744 /* This is only called with ->reconfix_mutex held, so
1745 * rcu protection of rdev is not needed */
1746 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1747 char b
[BDEVNAME_SIZE
];
1748 rdev
= conf
->mirrors
[i
].rdev
;
1750 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1751 i
, !test_bit(In_sync
, &rdev
->flags
),
1752 !test_bit(Faulty
, &rdev
->flags
),
1753 bdevname(rdev
->bdev
,b
));
1757 static void close_sync(struct r10conf
*conf
)
1760 allow_barrier(conf
);
1762 mempool_destroy(conf
->r10buf_pool
);
1763 conf
->r10buf_pool
= NULL
;
1766 static int raid10_spare_active(struct mddev
*mddev
)
1769 struct r10conf
*conf
= mddev
->private;
1770 struct raid10_info
*tmp
;
1772 unsigned long flags
;
1775 * Find all non-in_sync disks within the RAID10 configuration
1776 * and mark them in_sync
1778 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1779 tmp
= conf
->mirrors
+ i
;
1780 if (tmp
->replacement
1781 && tmp
->replacement
->recovery_offset
== MaxSector
1782 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
1783 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
1784 /* Replacement has just become active */
1786 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
1789 /* Replaced device not technically faulty,
1790 * but we need to be sure it gets removed
1791 * and never re-added.
1793 set_bit(Faulty
, &tmp
->rdev
->flags
);
1794 sysfs_notify_dirent_safe(
1795 tmp
->rdev
->sysfs_state
);
1797 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
1798 } else if (tmp
->rdev
1799 && tmp
->rdev
->recovery_offset
== MaxSector
1800 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1801 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
1803 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
1806 spin_lock_irqsave(&conf
->device_lock
, flags
);
1807 mddev
->degraded
-= count
;
1808 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1814 static int raid10_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1816 struct r10conf
*conf
= mddev
->private;
1820 int last
= conf
->geo
.raid_disks
- 1;
1822 if (mddev
->recovery_cp
< MaxSector
)
1823 /* only hot-add to in-sync arrays, as recovery is
1824 * very different from resync
1827 if (rdev
->saved_raid_disk
< 0 && !_enough(conf
, 1, -1))
1830 if (md_integrity_add_rdev(rdev
, mddev
))
1833 if (rdev
->raid_disk
>= 0)
1834 first
= last
= rdev
->raid_disk
;
1836 if (rdev
->saved_raid_disk
>= first
&&
1837 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1838 mirror
= rdev
->saved_raid_disk
;
1841 for ( ; mirror
<= last
; mirror
++) {
1842 struct raid10_info
*p
= &conf
->mirrors
[mirror
];
1843 if (p
->recovery_disabled
== mddev
->recovery_disabled
)
1846 if (!test_bit(WantReplacement
, &p
->rdev
->flags
) ||
1847 p
->replacement
!= NULL
)
1849 clear_bit(In_sync
, &rdev
->flags
);
1850 set_bit(Replacement
, &rdev
->flags
);
1851 rdev
->raid_disk
= mirror
;
1854 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1855 rdev
->data_offset
<< 9);
1857 rcu_assign_pointer(p
->replacement
, rdev
);
1862 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1863 rdev
->data_offset
<< 9);
1865 p
->head_position
= 0;
1866 p
->recovery_disabled
= mddev
->recovery_disabled
- 1;
1867 rdev
->raid_disk
= mirror
;
1869 if (rdev
->saved_raid_disk
!= mirror
)
1871 rcu_assign_pointer(p
->rdev
, rdev
);
1874 if (mddev
->queue
&& blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
1875 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, mddev
->queue
);
1881 static int raid10_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1883 struct r10conf
*conf
= mddev
->private;
1885 int number
= rdev
->raid_disk
;
1886 struct md_rdev
**rdevp
;
1887 struct raid10_info
*p
= conf
->mirrors
+ number
;
1890 if (rdev
== p
->rdev
)
1892 else if (rdev
== p
->replacement
)
1893 rdevp
= &p
->replacement
;
1897 if (test_bit(In_sync
, &rdev
->flags
) ||
1898 atomic_read(&rdev
->nr_pending
)) {
1902 /* Only remove non-faulty devices if recovery
1905 if (!test_bit(Faulty
, &rdev
->flags
) &&
1906 mddev
->recovery_disabled
!= p
->recovery_disabled
&&
1907 (!p
->replacement
|| p
->replacement
== rdev
) &&
1908 number
< conf
->geo
.raid_disks
&&
1914 if (!test_bit(RemoveSynchronized
, &rdev
->flags
)) {
1916 if (atomic_read(&rdev
->nr_pending
)) {
1917 /* lost the race, try later */
1923 if (p
->replacement
) {
1924 /* We must have just cleared 'rdev' */
1925 p
->rdev
= p
->replacement
;
1926 clear_bit(Replacement
, &p
->replacement
->flags
);
1927 smp_mb(); /* Make sure other CPUs may see both as identical
1928 * but will never see neither -- if they are careful.
1930 p
->replacement
= NULL
;
1931 clear_bit(WantReplacement
, &rdev
->flags
);
1933 /* We might have just remove the Replacement as faulty
1934 * Clear the flag just in case
1936 clear_bit(WantReplacement
, &rdev
->flags
);
1938 err
= md_integrity_register(mddev
);
1946 static void end_sync_read(struct bio
*bio
)
1948 struct r10bio
*r10_bio
= bio
->bi_private
;
1949 struct r10conf
*conf
= r10_bio
->mddev
->private;
1952 if (bio
== r10_bio
->master_bio
) {
1953 /* this is a reshape read */
1954 d
= r10_bio
->read_slot
; /* really the read dev */
1956 d
= find_bio_disk(conf
, r10_bio
, bio
, NULL
, NULL
);
1959 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1961 /* The write handler will notice the lack of
1962 * R10BIO_Uptodate and record any errors etc
1964 atomic_add(r10_bio
->sectors
,
1965 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1967 /* for reconstruct, we always reschedule after a read.
1968 * for resync, only after all reads
1970 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1971 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1972 atomic_dec_and_test(&r10_bio
->remaining
)) {
1973 /* we have read all the blocks,
1974 * do the comparison in process context in raid10d
1976 reschedule_retry(r10_bio
);
1980 static void end_sync_request(struct r10bio
*r10_bio
)
1982 struct mddev
*mddev
= r10_bio
->mddev
;
1984 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1985 if (r10_bio
->master_bio
== NULL
) {
1986 /* the primary of several recovery bios */
1987 sector_t s
= r10_bio
->sectors
;
1988 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1989 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1990 reschedule_retry(r10_bio
);
1993 md_done_sync(mddev
, s
, 1);
1996 struct r10bio
*r10_bio2
= (struct r10bio
*)r10_bio
->master_bio
;
1997 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1998 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1999 reschedule_retry(r10_bio
);
2007 static void end_sync_write(struct bio
*bio
)
2009 struct r10bio
*r10_bio
= bio
->bi_private
;
2010 struct mddev
*mddev
= r10_bio
->mddev
;
2011 struct r10conf
*conf
= mddev
->private;
2017 struct md_rdev
*rdev
= NULL
;
2019 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
2021 rdev
= conf
->mirrors
[d
].replacement
;
2023 rdev
= conf
->mirrors
[d
].rdev
;
2025 if (bio
->bi_error
) {
2027 md_error(mddev
, rdev
);
2029 set_bit(WriteErrorSeen
, &rdev
->flags
);
2030 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2031 set_bit(MD_RECOVERY_NEEDED
,
2032 &rdev
->mddev
->recovery
);
2033 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
2035 } else if (is_badblock(rdev
,
2036 r10_bio
->devs
[slot
].addr
,
2038 &first_bad
, &bad_sectors
))
2039 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
2041 rdev_dec_pending(rdev
, mddev
);
2043 end_sync_request(r10_bio
);
2047 * Note: sync and recover and handled very differently for raid10
2048 * This code is for resync.
2049 * For resync, we read through virtual addresses and read all blocks.
2050 * If there is any error, we schedule a write. The lowest numbered
2051 * drive is authoritative.
2052 * However requests come for physical address, so we need to map.
2053 * For every physical address there are raid_disks/copies virtual addresses,
2054 * which is always are least one, but is not necessarly an integer.
2055 * This means that a physical address can span multiple chunks, so we may
2056 * have to submit multiple io requests for a single sync request.
2059 * We check if all blocks are in-sync and only write to blocks that
2062 static void sync_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2064 struct r10conf
*conf
= mddev
->private;
2066 struct bio
*tbio
, *fbio
;
2069 atomic_set(&r10_bio
->remaining
, 1);
2071 /* find the first device with a block */
2072 for (i
=0; i
<conf
->copies
; i
++)
2073 if (!r10_bio
->devs
[i
].bio
->bi_error
)
2076 if (i
== conf
->copies
)
2080 fbio
= r10_bio
->devs
[i
].bio
;
2081 fbio
->bi_iter
.bi_size
= r10_bio
->sectors
<< 9;
2082 fbio
->bi_iter
.bi_idx
= 0;
2084 vcnt
= (r10_bio
->sectors
+ (PAGE_SIZE
>> 9) - 1) >> (PAGE_SHIFT
- 9);
2085 /* now find blocks with errors */
2086 for (i
=0 ; i
< conf
->copies
; i
++) {
2088 struct md_rdev
*rdev
;
2090 tbio
= r10_bio
->devs
[i
].bio
;
2092 if (tbio
->bi_end_io
!= end_sync_read
)
2096 d
= r10_bio
->devs
[i
].devnum
;
2097 rdev
= conf
->mirrors
[d
].rdev
;
2098 if (!r10_bio
->devs
[i
].bio
->bi_error
) {
2099 /* We know that the bi_io_vec layout is the same for
2100 * both 'first' and 'i', so we just compare them.
2101 * All vec entries are PAGE_SIZE;
2103 int sectors
= r10_bio
->sectors
;
2104 for (j
= 0; j
< vcnt
; j
++) {
2105 int len
= PAGE_SIZE
;
2106 if (sectors
< (len
/ 512))
2107 len
= sectors
* 512;
2108 if (memcmp(page_address(fbio
->bi_io_vec
[j
].bv_page
),
2109 page_address(tbio
->bi_io_vec
[j
].bv_page
),
2116 atomic64_add(r10_bio
->sectors
, &mddev
->resync_mismatches
);
2117 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
2118 /* Don't fix anything. */
2120 } else if (test_bit(FailFast
, &rdev
->flags
)) {
2121 /* Just give up on this device */
2122 md_error(rdev
->mddev
, rdev
);
2125 /* Ok, we need to write this bio, either to correct an
2126 * inconsistency or to correct an unreadable block.
2127 * First we need to fixup bv_offset, bv_len and
2128 * bi_vecs, as the read request might have corrupted these
2132 tbio
->bi_vcnt
= vcnt
;
2133 tbio
->bi_iter
.bi_size
= fbio
->bi_iter
.bi_size
;
2134 tbio
->bi_private
= r10_bio
;
2135 tbio
->bi_iter
.bi_sector
= r10_bio
->devs
[i
].addr
;
2136 tbio
->bi_end_io
= end_sync_write
;
2137 bio_set_op_attrs(tbio
, REQ_OP_WRITE
, 0);
2139 bio_copy_data(tbio
, fbio
);
2141 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2142 atomic_inc(&r10_bio
->remaining
);
2143 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, bio_sectors(tbio
));
2145 if (test_bit(FailFast
, &conf
->mirrors
[d
].rdev
->flags
))
2146 tbio
->bi_opf
|= MD_FAILFAST
;
2147 tbio
->bi_iter
.bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
2148 tbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
2149 generic_make_request(tbio
);
2152 /* Now write out to any replacement devices
2155 for (i
= 0; i
< conf
->copies
; i
++) {
2158 tbio
= r10_bio
->devs
[i
].repl_bio
;
2159 if (!tbio
|| !tbio
->bi_end_io
)
2161 if (r10_bio
->devs
[i
].bio
->bi_end_io
!= end_sync_write
2162 && r10_bio
->devs
[i
].bio
!= fbio
)
2163 bio_copy_data(tbio
, fbio
);
2164 d
= r10_bio
->devs
[i
].devnum
;
2165 atomic_inc(&r10_bio
->remaining
);
2166 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2168 generic_make_request(tbio
);
2172 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
2173 md_done_sync(mddev
, r10_bio
->sectors
, 1);
2179 * Now for the recovery code.
2180 * Recovery happens across physical sectors.
2181 * We recover all non-is_sync drives by finding the virtual address of
2182 * each, and then choose a working drive that also has that virt address.
2183 * There is a separate r10_bio for each non-in_sync drive.
2184 * Only the first two slots are in use. The first for reading,
2185 * The second for writing.
2188 static void fix_recovery_read_error(struct r10bio
*r10_bio
)
2190 /* We got a read error during recovery.
2191 * We repeat the read in smaller page-sized sections.
2192 * If a read succeeds, write it to the new device or record
2193 * a bad block if we cannot.
2194 * If a read fails, record a bad block on both old and
2197 struct mddev
*mddev
= r10_bio
->mddev
;
2198 struct r10conf
*conf
= mddev
->private;
2199 struct bio
*bio
= r10_bio
->devs
[0].bio
;
2201 int sectors
= r10_bio
->sectors
;
2203 int dr
= r10_bio
->devs
[0].devnum
;
2204 int dw
= r10_bio
->devs
[1].devnum
;
2208 struct md_rdev
*rdev
;
2212 if (s
> (PAGE_SIZE
>>9))
2215 rdev
= conf
->mirrors
[dr
].rdev
;
2216 addr
= r10_bio
->devs
[0].addr
+ sect
,
2217 ok
= sync_page_io(rdev
,
2220 bio
->bi_io_vec
[idx
].bv_page
,
2221 REQ_OP_READ
, 0, false);
2223 rdev
= conf
->mirrors
[dw
].rdev
;
2224 addr
= r10_bio
->devs
[1].addr
+ sect
;
2225 ok
= sync_page_io(rdev
,
2228 bio
->bi_io_vec
[idx
].bv_page
,
2229 REQ_OP_WRITE
, 0, false);
2231 set_bit(WriteErrorSeen
, &rdev
->flags
);
2232 if (!test_and_set_bit(WantReplacement
,
2234 set_bit(MD_RECOVERY_NEEDED
,
2235 &rdev
->mddev
->recovery
);
2239 /* We don't worry if we cannot set a bad block -
2240 * it really is bad so there is no loss in not
2243 rdev_set_badblocks(rdev
, addr
, s
, 0);
2245 if (rdev
!= conf
->mirrors
[dw
].rdev
) {
2246 /* need bad block on destination too */
2247 struct md_rdev
*rdev2
= conf
->mirrors
[dw
].rdev
;
2248 addr
= r10_bio
->devs
[1].addr
+ sect
;
2249 ok
= rdev_set_badblocks(rdev2
, addr
, s
, 0);
2251 /* just abort the recovery */
2252 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2255 conf
->mirrors
[dw
].recovery_disabled
2256 = mddev
->recovery_disabled
;
2257 set_bit(MD_RECOVERY_INTR
,
2270 static void recovery_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2272 struct r10conf
*conf
= mddev
->private;
2274 struct bio
*wbio
, *wbio2
;
2276 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
)) {
2277 fix_recovery_read_error(r10_bio
);
2278 end_sync_request(r10_bio
);
2283 * share the pages with the first bio
2284 * and submit the write request
2286 d
= r10_bio
->devs
[1].devnum
;
2287 wbio
= r10_bio
->devs
[1].bio
;
2288 wbio2
= r10_bio
->devs
[1].repl_bio
;
2289 /* Need to test wbio2->bi_end_io before we call
2290 * generic_make_request as if the former is NULL,
2291 * the latter is free to free wbio2.
2293 if (wbio2
&& !wbio2
->bi_end_io
)
2295 if (wbio
->bi_end_io
) {
2296 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2297 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, bio_sectors(wbio
));
2298 generic_make_request(wbio
);
2301 atomic_inc(&conf
->mirrors
[d
].replacement
->nr_pending
);
2302 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2303 bio_sectors(wbio2
));
2304 generic_make_request(wbio2
);
2309 * Used by fix_read_error() to decay the per rdev read_errors.
2310 * We halve the read error count for every hour that has elapsed
2311 * since the last recorded read error.
2314 static void check_decay_read_errors(struct mddev
*mddev
, struct md_rdev
*rdev
)
2317 unsigned long hours_since_last
;
2318 unsigned int read_errors
= atomic_read(&rdev
->read_errors
);
2320 cur_time_mon
= ktime_get_seconds();
2322 if (rdev
->last_read_error
== 0) {
2323 /* first time we've seen a read error */
2324 rdev
->last_read_error
= cur_time_mon
;
2328 hours_since_last
= (long)(cur_time_mon
-
2329 rdev
->last_read_error
) / 3600;
2331 rdev
->last_read_error
= cur_time_mon
;
2334 * if hours_since_last is > the number of bits in read_errors
2335 * just set read errors to 0. We do this to avoid
2336 * overflowing the shift of read_errors by hours_since_last.
2338 if (hours_since_last
>= 8 * sizeof(read_errors
))
2339 atomic_set(&rdev
->read_errors
, 0);
2341 atomic_set(&rdev
->read_errors
, read_errors
>> hours_since_last
);
2344 static int r10_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
2345 int sectors
, struct page
*page
, int rw
)
2350 if (is_badblock(rdev
, sector
, sectors
, &first_bad
, &bad_sectors
)
2351 && (rw
== READ
|| test_bit(WriteErrorSeen
, &rdev
->flags
)))
2353 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, 0, false))
2357 set_bit(WriteErrorSeen
, &rdev
->flags
);
2358 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2359 set_bit(MD_RECOVERY_NEEDED
,
2360 &rdev
->mddev
->recovery
);
2362 /* need to record an error - either for the block or the device */
2363 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
2364 md_error(rdev
->mddev
, rdev
);
2369 * This is a kernel thread which:
2371 * 1. Retries failed read operations on working mirrors.
2372 * 2. Updates the raid superblock when problems encounter.
2373 * 3. Performs writes following reads for array synchronising.
2376 static void fix_read_error(struct r10conf
*conf
, struct mddev
*mddev
, struct r10bio
*r10_bio
)
2378 int sect
= 0; /* Offset from r10_bio->sector */
2379 int sectors
= r10_bio
->sectors
;
2380 struct md_rdev
*rdev
;
2381 int max_read_errors
= atomic_read(&mddev
->max_corr_read_errors
);
2382 int d
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2384 /* still own a reference to this rdev, so it cannot
2385 * have been cleared recently.
2387 rdev
= conf
->mirrors
[d
].rdev
;
2389 if (test_bit(Faulty
, &rdev
->flags
))
2390 /* drive has already been failed, just ignore any
2391 more fix_read_error() attempts */
2394 check_decay_read_errors(mddev
, rdev
);
2395 atomic_inc(&rdev
->read_errors
);
2396 if (atomic_read(&rdev
->read_errors
) > max_read_errors
) {
2397 char b
[BDEVNAME_SIZE
];
2398 bdevname(rdev
->bdev
, b
);
2400 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2402 atomic_read(&rdev
->read_errors
), max_read_errors
);
2403 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2405 md_error(mddev
, rdev
);
2406 r10_bio
->devs
[r10_bio
->read_slot
].bio
= IO_BLOCKED
;
2412 int sl
= r10_bio
->read_slot
;
2416 if (s
> (PAGE_SIZE
>>9))
2424 d
= r10_bio
->devs
[sl
].devnum
;
2425 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2427 test_bit(In_sync
, &rdev
->flags
) &&
2428 !test_bit(Faulty
, &rdev
->flags
) &&
2429 is_badblock(rdev
, r10_bio
->devs
[sl
].addr
+ sect
, s
,
2430 &first_bad
, &bad_sectors
) == 0) {
2431 atomic_inc(&rdev
->nr_pending
);
2433 success
= sync_page_io(rdev
,
2434 r10_bio
->devs
[sl
].addr
+
2438 REQ_OP_READ
, 0, false);
2439 rdev_dec_pending(rdev
, mddev
);
2445 if (sl
== conf
->copies
)
2447 } while (!success
&& sl
!= r10_bio
->read_slot
);
2451 /* Cannot read from anywhere, just mark the block
2452 * as bad on the first device to discourage future
2455 int dn
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2456 rdev
= conf
->mirrors
[dn
].rdev
;
2458 if (!rdev_set_badblocks(
2460 r10_bio
->devs
[r10_bio
->read_slot
].addr
2463 md_error(mddev
, rdev
);
2464 r10_bio
->devs
[r10_bio
->read_slot
].bio
2471 /* write it back and re-read */
2473 while (sl
!= r10_bio
->read_slot
) {
2474 char b
[BDEVNAME_SIZE
];
2479 d
= r10_bio
->devs
[sl
].devnum
;
2480 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2482 test_bit(Faulty
, &rdev
->flags
) ||
2483 !test_bit(In_sync
, &rdev
->flags
))
2486 atomic_inc(&rdev
->nr_pending
);
2488 if (r10_sync_page_io(rdev
,
2489 r10_bio
->devs
[sl
].addr
+
2491 s
, conf
->tmppage
, WRITE
)
2493 /* Well, this device is dead */
2494 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2496 (unsigned long long)(
2498 choose_data_offset(r10_bio
,
2500 bdevname(rdev
->bdev
, b
));
2501 pr_notice("md/raid10:%s: %s: failing drive\n",
2503 bdevname(rdev
->bdev
, b
));
2505 rdev_dec_pending(rdev
, mddev
);
2509 while (sl
!= r10_bio
->read_slot
) {
2510 char b
[BDEVNAME_SIZE
];
2515 d
= r10_bio
->devs
[sl
].devnum
;
2516 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2518 test_bit(Faulty
, &rdev
->flags
) ||
2519 !test_bit(In_sync
, &rdev
->flags
))
2522 atomic_inc(&rdev
->nr_pending
);
2524 switch (r10_sync_page_io(rdev
,
2525 r10_bio
->devs
[sl
].addr
+
2530 /* Well, this device is dead */
2531 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2533 (unsigned long long)(
2535 choose_data_offset(r10_bio
, rdev
)),
2536 bdevname(rdev
->bdev
, b
));
2537 pr_notice("md/raid10:%s: %s: failing drive\n",
2539 bdevname(rdev
->bdev
, b
));
2542 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2544 (unsigned long long)(
2546 choose_data_offset(r10_bio
, rdev
)),
2547 bdevname(rdev
->bdev
, b
));
2548 atomic_add(s
, &rdev
->corrected_errors
);
2551 rdev_dec_pending(rdev
, mddev
);
2561 static int narrow_write_error(struct r10bio
*r10_bio
, int i
)
2563 struct bio
*bio
= r10_bio
->master_bio
;
2564 struct mddev
*mddev
= r10_bio
->mddev
;
2565 struct r10conf
*conf
= mddev
->private;
2566 struct md_rdev
*rdev
= conf
->mirrors
[r10_bio
->devs
[i
].devnum
].rdev
;
2567 /* bio has the data to be written to slot 'i' where
2568 * we just recently had a write error.
2569 * We repeatedly clone the bio and trim down to one block,
2570 * then try the write. Where the write fails we record
2572 * It is conceivable that the bio doesn't exactly align with
2573 * blocks. We must handle this.
2575 * We currently own a reference to the rdev.
2581 int sect_to_write
= r10_bio
->sectors
;
2584 if (rdev
->badblocks
.shift
< 0)
2587 block_sectors
= roundup(1 << rdev
->badblocks
.shift
,
2588 bdev_logical_block_size(rdev
->bdev
) >> 9);
2589 sector
= r10_bio
->sector
;
2590 sectors
= ((r10_bio
->sector
+ block_sectors
)
2591 & ~(sector_t
)(block_sectors
- 1))
2594 while (sect_to_write
) {
2597 if (sectors
> sect_to_write
)
2598 sectors
= sect_to_write
;
2599 /* Write at 'sector' for 'sectors' */
2600 wbio
= bio_clone_fast(bio
, GFP_NOIO
, mddev
->bio_set
);
2601 bio_trim(wbio
, sector
- bio
->bi_iter
.bi_sector
, sectors
);
2602 wsector
= r10_bio
->devs
[i
].addr
+ (sector
- r10_bio
->sector
);
2603 wbio
->bi_iter
.bi_sector
= wsector
+
2604 choose_data_offset(r10_bio
, rdev
);
2605 wbio
->bi_bdev
= rdev
->bdev
;
2606 bio_set_op_attrs(wbio
, REQ_OP_WRITE
, 0);
2608 if (submit_bio_wait(wbio
) < 0)
2610 ok
= rdev_set_badblocks(rdev
, wsector
,
2615 sect_to_write
-= sectors
;
2617 sectors
= block_sectors
;
2622 static void handle_read_error(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2624 int slot
= r10_bio
->read_slot
;
2626 struct r10conf
*conf
= mddev
->private;
2627 struct md_rdev
*rdev
= r10_bio
->devs
[slot
].rdev
;
2628 char b
[BDEVNAME_SIZE
];
2629 unsigned long do_sync
;
2632 sector_t bio_last_sector
;
2634 /* we got a read error. Maybe the drive is bad. Maybe just
2635 * the block and we can fix it.
2636 * We freeze all other IO, and try reading the block from
2637 * other devices. When we find one, we re-write
2638 * and check it that fixes the read error.
2639 * This is all done synchronously while the array is
2642 bio
= r10_bio
->devs
[slot
].bio
;
2643 bdevname(bio
->bi_bdev
, b
);
2644 bio_dev
= bio
->bi_bdev
->bd_dev
;
2645 bio_last_sector
= r10_bio
->devs
[slot
].addr
+ rdev
->data_offset
+ r10_bio
->sectors
;
2647 r10_bio
->devs
[slot
].bio
= NULL
;
2650 r10_bio
->devs
[slot
].bio
= IO_BLOCKED
;
2651 else if (!test_bit(FailFast
, &rdev
->flags
)) {
2652 freeze_array(conf
, 1);
2653 fix_read_error(conf
, mddev
, r10_bio
);
2654 unfreeze_array(conf
);
2656 md_error(mddev
, rdev
);
2658 rdev_dec_pending(rdev
, mddev
);
2661 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
2663 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
2665 (unsigned long long)r10_bio
->sector
);
2666 raid_end_bio_io(r10_bio
);
2670 do_sync
= (r10_bio
->master_bio
->bi_opf
& REQ_SYNC
);
2671 slot
= r10_bio
->read_slot
;
2672 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
2674 bdevname(rdev
->bdev
, b
),
2675 (unsigned long long)r10_bio
->sector
);
2676 bio
= bio_clone_fast(r10_bio
->master_bio
, GFP_NOIO
, mddev
->bio_set
);
2677 bio_trim(bio
, r10_bio
->sector
- bio
->bi_iter
.bi_sector
, max_sectors
);
2678 r10_bio
->devs
[slot
].bio
= bio
;
2679 r10_bio
->devs
[slot
].rdev
= rdev
;
2680 bio
->bi_iter
.bi_sector
= r10_bio
->devs
[slot
].addr
2681 + choose_data_offset(r10_bio
, rdev
);
2682 bio
->bi_bdev
= rdev
->bdev
;
2683 bio_set_op_attrs(bio
, REQ_OP_READ
, do_sync
);
2684 if (test_bit(FailFast
, &rdev
->flags
) &&
2685 test_bit(R10BIO_FailFast
, &r10_bio
->state
))
2686 bio
->bi_opf
|= MD_FAILFAST
;
2687 bio
->bi_private
= r10_bio
;
2688 bio
->bi_end_io
= raid10_end_read_request
;
2689 trace_block_bio_remap(bdev_get_queue(bio
->bi_bdev
),
2691 bio_last_sector
- r10_bio
->sectors
);
2693 if (max_sectors
< r10_bio
->sectors
) {
2694 /* Drat - have to split this up more */
2695 struct bio
*mbio
= r10_bio
->master_bio
;
2696 int sectors_handled
=
2697 r10_bio
->sector
+ max_sectors
2698 - mbio
->bi_iter
.bi_sector
;
2699 r10_bio
->sectors
= max_sectors
;
2700 spin_lock_irq(&conf
->device_lock
);
2701 if (mbio
->bi_phys_segments
== 0)
2702 mbio
->bi_phys_segments
= 2;
2704 mbio
->bi_phys_segments
++;
2705 spin_unlock_irq(&conf
->device_lock
);
2706 generic_make_request(bio
);
2708 r10_bio
= mempool_alloc(conf
->r10bio_pool
,
2710 r10_bio
->master_bio
= mbio
;
2711 r10_bio
->sectors
= bio_sectors(mbio
) - sectors_handled
;
2713 set_bit(R10BIO_ReadError
,
2715 r10_bio
->mddev
= mddev
;
2716 r10_bio
->sector
= mbio
->bi_iter
.bi_sector
2721 generic_make_request(bio
);
2724 static void handle_write_completed(struct r10conf
*conf
, struct r10bio
*r10_bio
)
2726 /* Some sort of write request has finished and it
2727 * succeeded in writing where we thought there was a
2728 * bad block. So forget the bad block.
2729 * Or possibly if failed and we need to record
2733 struct md_rdev
*rdev
;
2735 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
) ||
2736 test_bit(R10BIO_IsRecover
, &r10_bio
->state
)) {
2737 for (m
= 0; m
< conf
->copies
; m
++) {
2738 int dev
= r10_bio
->devs
[m
].devnum
;
2739 rdev
= conf
->mirrors
[dev
].rdev
;
2740 if (r10_bio
->devs
[m
].bio
== NULL
)
2742 if (!r10_bio
->devs
[m
].bio
->bi_error
) {
2743 rdev_clear_badblocks(
2745 r10_bio
->devs
[m
].addr
,
2746 r10_bio
->sectors
, 0);
2748 if (!rdev_set_badblocks(
2750 r10_bio
->devs
[m
].addr
,
2751 r10_bio
->sectors
, 0))
2752 md_error(conf
->mddev
, rdev
);
2754 rdev
= conf
->mirrors
[dev
].replacement
;
2755 if (r10_bio
->devs
[m
].repl_bio
== NULL
)
2758 if (!r10_bio
->devs
[m
].repl_bio
->bi_error
) {
2759 rdev_clear_badblocks(
2761 r10_bio
->devs
[m
].addr
,
2762 r10_bio
->sectors
, 0);
2764 if (!rdev_set_badblocks(
2766 r10_bio
->devs
[m
].addr
,
2767 r10_bio
->sectors
, 0))
2768 md_error(conf
->mddev
, rdev
);
2774 for (m
= 0; m
< conf
->copies
; m
++) {
2775 int dev
= r10_bio
->devs
[m
].devnum
;
2776 struct bio
*bio
= r10_bio
->devs
[m
].bio
;
2777 rdev
= conf
->mirrors
[dev
].rdev
;
2778 if (bio
== IO_MADE_GOOD
) {
2779 rdev_clear_badblocks(
2781 r10_bio
->devs
[m
].addr
,
2782 r10_bio
->sectors
, 0);
2783 rdev_dec_pending(rdev
, conf
->mddev
);
2784 } else if (bio
!= NULL
&& bio
->bi_error
) {
2786 if (!narrow_write_error(r10_bio
, m
)) {
2787 md_error(conf
->mddev
, rdev
);
2788 set_bit(R10BIO_Degraded
,
2791 rdev_dec_pending(rdev
, conf
->mddev
);
2793 bio
= r10_bio
->devs
[m
].repl_bio
;
2794 rdev
= conf
->mirrors
[dev
].replacement
;
2795 if (rdev
&& bio
== IO_MADE_GOOD
) {
2796 rdev_clear_badblocks(
2798 r10_bio
->devs
[m
].addr
,
2799 r10_bio
->sectors
, 0);
2800 rdev_dec_pending(rdev
, conf
->mddev
);
2804 spin_lock_irq(&conf
->device_lock
);
2805 list_add(&r10_bio
->retry_list
, &conf
->bio_end_io_list
);
2807 spin_unlock_irq(&conf
->device_lock
);
2808 md_wakeup_thread(conf
->mddev
->thread
);
2810 if (test_bit(R10BIO_WriteError
,
2812 close_write(r10_bio
);
2813 raid_end_bio_io(r10_bio
);
2818 static void raid10d(struct md_thread
*thread
)
2820 struct mddev
*mddev
= thread
->mddev
;
2821 struct r10bio
*r10_bio
;
2822 unsigned long flags
;
2823 struct r10conf
*conf
= mddev
->private;
2824 struct list_head
*head
= &conf
->retry_list
;
2825 struct blk_plug plug
;
2827 md_check_recovery(mddev
);
2829 if (!list_empty_careful(&conf
->bio_end_io_list
) &&
2830 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
)) {
2832 spin_lock_irqsave(&conf
->device_lock
, flags
);
2833 if (!test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
)) {
2834 while (!list_empty(&conf
->bio_end_io_list
)) {
2835 list_move(conf
->bio_end_io_list
.prev
, &tmp
);
2839 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2840 while (!list_empty(&tmp
)) {
2841 r10_bio
= list_first_entry(&tmp
, struct r10bio
,
2843 list_del(&r10_bio
->retry_list
);
2844 if (mddev
->degraded
)
2845 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
2847 if (test_bit(R10BIO_WriteError
,
2849 close_write(r10_bio
);
2850 raid_end_bio_io(r10_bio
);
2854 blk_start_plug(&plug
);
2857 flush_pending_writes(conf
);
2859 spin_lock_irqsave(&conf
->device_lock
, flags
);
2860 if (list_empty(head
)) {
2861 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2864 r10_bio
= list_entry(head
->prev
, struct r10bio
, retry_list
);
2865 list_del(head
->prev
);
2867 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2869 mddev
= r10_bio
->mddev
;
2870 conf
= mddev
->private;
2871 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
2872 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
2873 handle_write_completed(conf
, r10_bio
);
2874 else if (test_bit(R10BIO_IsReshape
, &r10_bio
->state
))
2875 reshape_request_write(mddev
, r10_bio
);
2876 else if (test_bit(R10BIO_IsSync
, &r10_bio
->state
))
2877 sync_request_write(mddev
, r10_bio
);
2878 else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
))
2879 recovery_request_write(mddev
, r10_bio
);
2880 else if (test_bit(R10BIO_ReadError
, &r10_bio
->state
))
2881 handle_read_error(mddev
, r10_bio
);
2883 /* just a partial read to be scheduled from a
2886 int slot
= r10_bio
->read_slot
;
2887 generic_make_request(r10_bio
->devs
[slot
].bio
);
2891 if (mddev
->sb_flags
& ~(1<<MD_SB_CHANGE_PENDING
))
2892 md_check_recovery(mddev
);
2894 blk_finish_plug(&plug
);
2897 static int init_resync(struct r10conf
*conf
)
2902 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2903 BUG_ON(conf
->r10buf_pool
);
2904 conf
->have_replacement
= 0;
2905 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++)
2906 if (conf
->mirrors
[i
].replacement
)
2907 conf
->have_replacement
= 1;
2908 conf
->r10buf_pool
= mempool_create(buffs
, r10buf_pool_alloc
, r10buf_pool_free
, conf
);
2909 if (!conf
->r10buf_pool
)
2911 conf
->next_resync
= 0;
2916 * perform a "sync" on one "block"
2918 * We need to make sure that no normal I/O request - particularly write
2919 * requests - conflict with active sync requests.
2921 * This is achieved by tracking pending requests and a 'barrier' concept
2922 * that can be installed to exclude normal IO requests.
2924 * Resync and recovery are handled very differently.
2925 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2927 * For resync, we iterate over virtual addresses, read all copies,
2928 * and update if there are differences. If only one copy is live,
2930 * For recovery, we iterate over physical addresses, read a good
2931 * value for each non-in_sync drive, and over-write.
2933 * So, for recovery we may have several outstanding complex requests for a
2934 * given address, one for each out-of-sync device. We model this by allocating
2935 * a number of r10_bio structures, one for each out-of-sync device.
2936 * As we setup these structures, we collect all bio's together into a list
2937 * which we then process collectively to add pages, and then process again
2938 * to pass to generic_make_request.
2940 * The r10_bio structures are linked using a borrowed master_bio pointer.
2941 * This link is counted in ->remaining. When the r10_bio that points to NULL
2942 * has its remaining count decremented to 0, the whole complex operation
2947 static sector_t
raid10_sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2950 struct r10conf
*conf
= mddev
->private;
2951 struct r10bio
*r10_bio
;
2952 struct bio
*biolist
= NULL
, *bio
;
2953 sector_t max_sector
, nr_sectors
;
2956 sector_t sync_blocks
;
2957 sector_t sectors_skipped
= 0;
2958 int chunks_skipped
= 0;
2959 sector_t chunk_mask
= conf
->geo
.chunk_mask
;
2961 if (!conf
->r10buf_pool
)
2962 if (init_resync(conf
))
2966 * Allow skipping a full rebuild for incremental assembly
2967 * of a clean array, like RAID1 does.
2969 if (mddev
->bitmap
== NULL
&&
2970 mddev
->recovery_cp
== MaxSector
&&
2971 mddev
->reshape_position
== MaxSector
&&
2972 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) &&
2973 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2974 !test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
2975 conf
->fullsync
== 0) {
2977 return mddev
->dev_sectors
- sector_nr
;
2981 max_sector
= mddev
->dev_sectors
;
2982 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) ||
2983 test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
2984 max_sector
= mddev
->resync_max_sectors
;
2985 if (sector_nr
>= max_sector
) {
2986 /* If we aborted, we need to abort the
2987 * sync on the 'current' bitmap chucks (there can
2988 * be several when recovering multiple devices).
2989 * as we may have started syncing it but not finished.
2990 * We can find the current address in
2991 * mddev->curr_resync, but for recovery,
2992 * we need to convert that to several
2993 * virtual addresses.
2995 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
3001 if (mddev
->curr_resync
< max_sector
) { /* aborted */
3002 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
3003 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
3005 else for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
3007 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
3008 bitmap_end_sync(mddev
->bitmap
, sect
,
3012 /* completed sync */
3013 if ((!mddev
->bitmap
|| conf
->fullsync
)
3014 && conf
->have_replacement
3015 && test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
3016 /* Completed a full sync so the replacements
3017 * are now fully recovered.
3020 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
3021 struct md_rdev
*rdev
=
3022 rcu_dereference(conf
->mirrors
[i
].replacement
);
3024 rdev
->recovery_offset
= MaxSector
;
3030 bitmap_close_sync(mddev
->bitmap
);
3033 return sectors_skipped
;
3036 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
3037 return reshape_request(mddev
, sector_nr
, skipped
);
3039 if (chunks_skipped
>= conf
->geo
.raid_disks
) {
3040 /* if there has been nothing to do on any drive,
3041 * then there is nothing to do at all..
3044 return (max_sector
- sector_nr
) + sectors_skipped
;
3047 if (max_sector
> mddev
->resync_max
)
3048 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
3050 /* make sure whole request will fit in a chunk - if chunks
3053 if (conf
->geo
.near_copies
< conf
->geo
.raid_disks
&&
3054 max_sector
> (sector_nr
| chunk_mask
))
3055 max_sector
= (sector_nr
| chunk_mask
) + 1;
3058 * If there is non-resync activity waiting for a turn, then let it
3059 * though before starting on this new sync request.
3061 if (conf
->nr_waiting
)
3062 schedule_timeout_uninterruptible(1);
3064 /* Again, very different code for resync and recovery.
3065 * Both must result in an r10bio with a list of bios that
3066 * have bi_end_io, bi_sector, bi_bdev set,
3067 * and bi_private set to the r10bio.
3068 * For recovery, we may actually create several r10bios
3069 * with 2 bios in each, that correspond to the bios in the main one.
3070 * In this case, the subordinate r10bios link back through a
3071 * borrowed master_bio pointer, and the counter in the master
3072 * includes a ref from each subordinate.
3074 /* First, we decide what to do and set ->bi_end_io
3075 * To end_sync_read if we want to read, and
3076 * end_sync_write if we will want to write.
3079 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
3080 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
3081 /* recovery... the complicated one */
3085 for (i
= 0 ; i
< conf
->geo
.raid_disks
; i
++) {
3091 struct raid10_info
*mirror
= &conf
->mirrors
[i
];
3092 struct md_rdev
*mrdev
, *mreplace
;
3095 mrdev
= rcu_dereference(mirror
->rdev
);
3096 mreplace
= rcu_dereference(mirror
->replacement
);
3098 if ((mrdev
== NULL
||
3099 test_bit(Faulty
, &mrdev
->flags
) ||
3100 test_bit(In_sync
, &mrdev
->flags
)) &&
3101 (mreplace
== NULL
||
3102 test_bit(Faulty
, &mreplace
->flags
))) {
3108 /* want to reconstruct this device */
3110 sect
= raid10_find_virt(conf
, sector_nr
, i
);
3111 if (sect
>= mddev
->resync_max_sectors
) {
3112 /* last stripe is not complete - don't
3113 * try to recover this sector.
3118 if (mreplace
&& test_bit(Faulty
, &mreplace
->flags
))
3120 /* Unless we are doing a full sync, or a replacement
3121 * we only need to recover the block if it is set in
3124 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
3126 if (sync_blocks
< max_sync
)
3127 max_sync
= sync_blocks
;
3131 /* yep, skip the sync_blocks here, but don't assume
3132 * that there will never be anything to do here
3134 chunks_skipped
= -1;
3138 atomic_inc(&mrdev
->nr_pending
);
3140 atomic_inc(&mreplace
->nr_pending
);
3143 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
3145 raise_barrier(conf
, rb2
!= NULL
);
3146 atomic_set(&r10_bio
->remaining
, 0);
3148 r10_bio
->master_bio
= (struct bio
*)rb2
;
3150 atomic_inc(&rb2
->remaining
);
3151 r10_bio
->mddev
= mddev
;
3152 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
3153 r10_bio
->sector
= sect
;
3155 raid10_find_phys(conf
, r10_bio
);
3157 /* Need to check if the array will still be
3161 for (j
= 0; j
< conf
->geo
.raid_disks
; j
++) {
3162 struct md_rdev
*rdev
= rcu_dereference(
3163 conf
->mirrors
[j
].rdev
);
3164 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
)) {
3170 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
3171 &sync_blocks
, still_degraded
);
3174 for (j
=0; j
<conf
->copies
;j
++) {
3176 int d
= r10_bio
->devs
[j
].devnum
;
3177 sector_t from_addr
, to_addr
;
3178 struct md_rdev
*rdev
=
3179 rcu_dereference(conf
->mirrors
[d
].rdev
);
3180 sector_t sector
, first_bad
;
3183 !test_bit(In_sync
, &rdev
->flags
))
3185 /* This is where we read from */
3187 sector
= r10_bio
->devs
[j
].addr
;
3189 if (is_badblock(rdev
, sector
, max_sync
,
3190 &first_bad
, &bad_sectors
)) {
3191 if (first_bad
> sector
)
3192 max_sync
= first_bad
- sector
;
3194 bad_sectors
-= (sector
3196 if (max_sync
> bad_sectors
)
3197 max_sync
= bad_sectors
;
3201 bio
= r10_bio
->devs
[0].bio
;
3203 bio
->bi_next
= biolist
;
3205 bio
->bi_private
= r10_bio
;
3206 bio
->bi_end_io
= end_sync_read
;
3207 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
3208 if (test_bit(FailFast
, &rdev
->flags
))
3209 bio
->bi_opf
|= MD_FAILFAST
;
3210 from_addr
= r10_bio
->devs
[j
].addr
;
3211 bio
->bi_iter
.bi_sector
= from_addr
+
3213 bio
->bi_bdev
= rdev
->bdev
;
3214 atomic_inc(&rdev
->nr_pending
);
3215 /* and we write to 'i' (if not in_sync) */
3217 for (k
=0; k
<conf
->copies
; k
++)
3218 if (r10_bio
->devs
[k
].devnum
== i
)
3220 BUG_ON(k
== conf
->copies
);
3221 to_addr
= r10_bio
->devs
[k
].addr
;
3222 r10_bio
->devs
[0].devnum
= d
;
3223 r10_bio
->devs
[0].addr
= from_addr
;
3224 r10_bio
->devs
[1].devnum
= i
;
3225 r10_bio
->devs
[1].addr
= to_addr
;
3227 if (!test_bit(In_sync
, &mrdev
->flags
)) {
3228 bio
= r10_bio
->devs
[1].bio
;
3230 bio
->bi_next
= biolist
;
3232 bio
->bi_private
= r10_bio
;
3233 bio
->bi_end_io
= end_sync_write
;
3234 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
3235 bio
->bi_iter
.bi_sector
= to_addr
3236 + mrdev
->data_offset
;
3237 bio
->bi_bdev
= mrdev
->bdev
;
3238 atomic_inc(&r10_bio
->remaining
);
3240 r10_bio
->devs
[1].bio
->bi_end_io
= NULL
;
3242 /* and maybe write to replacement */
3243 bio
= r10_bio
->devs
[1].repl_bio
;
3245 bio
->bi_end_io
= NULL
;
3246 /* Note: if mreplace != NULL, then bio
3247 * cannot be NULL as r10buf_pool_alloc will
3248 * have allocated it.
3249 * So the second test here is pointless.
3250 * But it keeps semantic-checkers happy, and
3251 * this comment keeps human reviewers
3254 if (mreplace
== NULL
|| bio
== NULL
||
3255 test_bit(Faulty
, &mreplace
->flags
))
3258 bio
->bi_next
= biolist
;
3260 bio
->bi_private
= r10_bio
;
3261 bio
->bi_end_io
= end_sync_write
;
3262 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
3263 bio
->bi_iter
.bi_sector
= to_addr
+
3264 mreplace
->data_offset
;
3265 bio
->bi_bdev
= mreplace
->bdev
;
3266 atomic_inc(&r10_bio
->remaining
);
3270 if (j
== conf
->copies
) {
3271 /* Cannot recover, so abort the recovery or
3272 * record a bad block */
3274 /* problem is that there are bad blocks
3275 * on other device(s)
3278 for (k
= 0; k
< conf
->copies
; k
++)
3279 if (r10_bio
->devs
[k
].devnum
== i
)
3281 if (!test_bit(In_sync
,
3283 && !rdev_set_badblocks(
3285 r10_bio
->devs
[k
].addr
,
3289 !rdev_set_badblocks(
3291 r10_bio
->devs
[k
].addr
,
3296 if (!test_and_set_bit(MD_RECOVERY_INTR
,
3298 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3300 mirror
->recovery_disabled
3301 = mddev
->recovery_disabled
;
3305 atomic_dec(&rb2
->remaining
);
3307 rdev_dec_pending(mrdev
, mddev
);
3309 rdev_dec_pending(mreplace
, mddev
);
3312 rdev_dec_pending(mrdev
, mddev
);
3314 rdev_dec_pending(mreplace
, mddev
);
3315 if (r10_bio
->devs
[0].bio
->bi_opf
& MD_FAILFAST
) {
3316 /* Only want this if there is elsewhere to
3317 * read from. 'j' is currently the first
3321 for (; j
< conf
->copies
; j
++) {
3322 int d
= r10_bio
->devs
[j
].devnum
;
3323 if (conf
->mirrors
[d
].rdev
&&
3325 &conf
->mirrors
[d
].rdev
->flags
))
3329 r10_bio
->devs
[0].bio
->bi_opf
3333 if (biolist
== NULL
) {
3335 struct r10bio
*rb2
= r10_bio
;
3336 r10_bio
= (struct r10bio
*) rb2
->master_bio
;
3337 rb2
->master_bio
= NULL
;
3343 /* resync. Schedule a read for every block at this virt offset */
3346 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
, 0);
3348 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
3349 &sync_blocks
, mddev
->degraded
) &&
3350 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
,
3351 &mddev
->recovery
)) {
3352 /* We can skip this block */
3354 return sync_blocks
+ sectors_skipped
;
3356 if (sync_blocks
< max_sync
)
3357 max_sync
= sync_blocks
;
3358 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
3361 r10_bio
->mddev
= mddev
;
3362 atomic_set(&r10_bio
->remaining
, 0);
3363 raise_barrier(conf
, 0);
3364 conf
->next_resync
= sector_nr
;
3366 r10_bio
->master_bio
= NULL
;
3367 r10_bio
->sector
= sector_nr
;
3368 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
3369 raid10_find_phys(conf
, r10_bio
);
3370 r10_bio
->sectors
= (sector_nr
| chunk_mask
) - sector_nr
+ 1;
3372 for (i
= 0; i
< conf
->copies
; i
++) {
3373 int d
= r10_bio
->devs
[i
].devnum
;
3374 sector_t first_bad
, sector
;
3376 struct md_rdev
*rdev
;
3378 if (r10_bio
->devs
[i
].repl_bio
)
3379 r10_bio
->devs
[i
].repl_bio
->bi_end_io
= NULL
;
3381 bio
= r10_bio
->devs
[i
].bio
;
3383 bio
->bi_error
= -EIO
;
3385 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
3386 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
)) {
3390 sector
= r10_bio
->devs
[i
].addr
;
3391 if (is_badblock(rdev
, sector
, max_sync
,
3392 &first_bad
, &bad_sectors
)) {
3393 if (first_bad
> sector
)
3394 max_sync
= first_bad
- sector
;
3396 bad_sectors
-= (sector
- first_bad
);
3397 if (max_sync
> bad_sectors
)
3398 max_sync
= bad_sectors
;
3403 atomic_inc(&rdev
->nr_pending
);
3404 atomic_inc(&r10_bio
->remaining
);
3405 bio
->bi_next
= biolist
;
3407 bio
->bi_private
= r10_bio
;
3408 bio
->bi_end_io
= end_sync_read
;
3409 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
3410 if (test_bit(FailFast
, &conf
->mirrors
[d
].rdev
->flags
))
3411 bio
->bi_opf
|= MD_FAILFAST
;
3412 bio
->bi_iter
.bi_sector
= sector
+ rdev
->data_offset
;
3413 bio
->bi_bdev
= rdev
->bdev
;
3416 rdev
= rcu_dereference(conf
->mirrors
[d
].replacement
);
3417 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
)) {
3421 atomic_inc(&rdev
->nr_pending
);
3424 /* Need to set up for writing to the replacement */
3425 bio
= r10_bio
->devs
[i
].repl_bio
;
3427 bio
->bi_error
= -EIO
;
3429 sector
= r10_bio
->devs
[i
].addr
;
3430 bio
->bi_next
= biolist
;
3432 bio
->bi_private
= r10_bio
;
3433 bio
->bi_end_io
= end_sync_write
;
3434 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
3435 if (test_bit(FailFast
, &conf
->mirrors
[d
].rdev
->flags
))
3436 bio
->bi_opf
|= MD_FAILFAST
;
3437 bio
->bi_iter
.bi_sector
= sector
+ rdev
->data_offset
;
3438 bio
->bi_bdev
= rdev
->bdev
;
3443 for (i
=0; i
<conf
->copies
; i
++) {
3444 int d
= r10_bio
->devs
[i
].devnum
;
3445 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
3446 rdev_dec_pending(conf
->mirrors
[d
].rdev
,
3448 if (r10_bio
->devs
[i
].repl_bio
&&
3449 r10_bio
->devs
[i
].repl_bio
->bi_end_io
)
3451 conf
->mirrors
[d
].replacement
,
3461 if (sector_nr
+ max_sync
< max_sector
)
3462 max_sector
= sector_nr
+ max_sync
;
3465 int len
= PAGE_SIZE
;
3466 if (sector_nr
+ (len
>>9) > max_sector
)
3467 len
= (max_sector
- sector_nr
) << 9;
3470 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
3472 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
3473 if (bio_add_page(bio
, page
, len
, 0))
3477 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
3478 for (bio2
= biolist
;
3479 bio2
&& bio2
!= bio
;
3480 bio2
= bio2
->bi_next
) {
3481 /* remove last page from this bio */
3483 bio2
->bi_iter
.bi_size
-= len
;
3484 bio_clear_flag(bio2
, BIO_SEG_VALID
);
3488 nr_sectors
+= len
>>9;
3489 sector_nr
+= len
>>9;
3490 } while (biolist
->bi_vcnt
< RESYNC_PAGES
);
3492 r10_bio
->sectors
= nr_sectors
;
3496 biolist
= biolist
->bi_next
;
3498 bio
->bi_next
= NULL
;
3499 r10_bio
= bio
->bi_private
;
3500 r10_bio
->sectors
= nr_sectors
;
3502 if (bio
->bi_end_io
== end_sync_read
) {
3503 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
3505 generic_make_request(bio
);
3509 if (sectors_skipped
)
3510 /* pretend they weren't skipped, it makes
3511 * no important difference in this case
3513 md_done_sync(mddev
, sectors_skipped
, 1);
3515 return sectors_skipped
+ nr_sectors
;
3517 /* There is nowhere to write, so all non-sync
3518 * drives must be failed or in resync, all drives
3519 * have a bad block, so try the next chunk...
3521 if (sector_nr
+ max_sync
< max_sector
)
3522 max_sector
= sector_nr
+ max_sync
;
3524 sectors_skipped
+= (max_sector
- sector_nr
);
3526 sector_nr
= max_sector
;
3531 raid10_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
3534 struct r10conf
*conf
= mddev
->private;
3537 raid_disks
= min(conf
->geo
.raid_disks
,
3538 conf
->prev
.raid_disks
);
3540 sectors
= conf
->dev_sectors
;
3542 size
= sectors
>> conf
->geo
.chunk_shift
;
3543 sector_div(size
, conf
->geo
.far_copies
);
3544 size
= size
* raid_disks
;
3545 sector_div(size
, conf
->geo
.near_copies
);
3547 return size
<< conf
->geo
.chunk_shift
;
3550 static void calc_sectors(struct r10conf
*conf
, sector_t size
)
3552 /* Calculate the number of sectors-per-device that will
3553 * actually be used, and set conf->dev_sectors and
3557 size
= size
>> conf
->geo
.chunk_shift
;
3558 sector_div(size
, conf
->geo
.far_copies
);
3559 size
= size
* conf
->geo
.raid_disks
;
3560 sector_div(size
, conf
->geo
.near_copies
);
3561 /* 'size' is now the number of chunks in the array */
3562 /* calculate "used chunks per device" */
3563 size
= size
* conf
->copies
;
3565 /* We need to round up when dividing by raid_disks to
3566 * get the stride size.
3568 size
= DIV_ROUND_UP_SECTOR_T(size
, conf
->geo
.raid_disks
);
3570 conf
->dev_sectors
= size
<< conf
->geo
.chunk_shift
;
3572 if (conf
->geo
.far_offset
)
3573 conf
->geo
.stride
= 1 << conf
->geo
.chunk_shift
;
3575 sector_div(size
, conf
->geo
.far_copies
);
3576 conf
->geo
.stride
= size
<< conf
->geo
.chunk_shift
;
3580 enum geo_type
{geo_new
, geo_old
, geo_start
};
3581 static int setup_geo(struct geom
*geo
, struct mddev
*mddev
, enum geo_type
new)
3584 int layout
, chunk
, disks
;
3587 layout
= mddev
->layout
;
3588 chunk
= mddev
->chunk_sectors
;
3589 disks
= mddev
->raid_disks
- mddev
->delta_disks
;
3592 layout
= mddev
->new_layout
;
3593 chunk
= mddev
->new_chunk_sectors
;
3594 disks
= mddev
->raid_disks
;
3596 default: /* avoid 'may be unused' warnings */
3597 case geo_start
: /* new when starting reshape - raid_disks not
3599 layout
= mddev
->new_layout
;
3600 chunk
= mddev
->new_chunk_sectors
;
3601 disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
3606 if (chunk
< (PAGE_SIZE
>> 9) ||
3607 !is_power_of_2(chunk
))
3610 fc
= (layout
>> 8) & 255;
3611 fo
= layout
& (1<<16);
3612 geo
->raid_disks
= disks
;
3613 geo
->near_copies
= nc
;
3614 geo
->far_copies
= fc
;
3615 geo
->far_offset
= fo
;
3616 switch (layout
>> 17) {
3617 case 0: /* original layout. simple but not always optimal */
3618 geo
->far_set_size
= disks
;
3620 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3621 * actually using this, but leave code here just in case.*/
3622 geo
->far_set_size
= disks
/fc
;
3623 WARN(geo
->far_set_size
< fc
,
3624 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3626 case 2: /* "improved" layout fixed to match documentation */
3627 geo
->far_set_size
= fc
* nc
;
3629 default: /* Not a valid layout */
3632 geo
->chunk_mask
= chunk
- 1;
3633 geo
->chunk_shift
= ffz(~chunk
);
3637 static struct r10conf
*setup_conf(struct mddev
*mddev
)
3639 struct r10conf
*conf
= NULL
;
3644 copies
= setup_geo(&geo
, mddev
, geo_new
);
3647 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3648 mdname(mddev
), PAGE_SIZE
);
3652 if (copies
< 2 || copies
> mddev
->raid_disks
) {
3653 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3654 mdname(mddev
), mddev
->new_layout
);
3659 conf
= kzalloc(sizeof(struct r10conf
), GFP_KERNEL
);
3663 /* FIXME calc properly */
3664 conf
->mirrors
= kzalloc(sizeof(struct raid10_info
)*(mddev
->raid_disks
+
3665 max(0,-mddev
->delta_disks
)),
3670 conf
->tmppage
= alloc_page(GFP_KERNEL
);
3675 conf
->copies
= copies
;
3676 conf
->r10bio_pool
= mempool_create(NR_RAID10_BIOS
, r10bio_pool_alloc
,
3677 r10bio_pool_free
, conf
);
3678 if (!conf
->r10bio_pool
)
3681 calc_sectors(conf
, mddev
->dev_sectors
);
3682 if (mddev
->reshape_position
== MaxSector
) {
3683 conf
->prev
= conf
->geo
;
3684 conf
->reshape_progress
= MaxSector
;
3686 if (setup_geo(&conf
->prev
, mddev
, geo_old
) != conf
->copies
) {
3690 conf
->reshape_progress
= mddev
->reshape_position
;
3691 if (conf
->prev
.far_offset
)
3692 conf
->prev
.stride
= 1 << conf
->prev
.chunk_shift
;
3694 /* far_copies must be 1 */
3695 conf
->prev
.stride
= conf
->dev_sectors
;
3697 conf
->reshape_safe
= conf
->reshape_progress
;
3698 spin_lock_init(&conf
->device_lock
);
3699 INIT_LIST_HEAD(&conf
->retry_list
);
3700 INIT_LIST_HEAD(&conf
->bio_end_io_list
);
3702 spin_lock_init(&conf
->resync_lock
);
3703 init_waitqueue_head(&conf
->wait_barrier
);
3704 atomic_set(&conf
->nr_pending
, 0);
3706 conf
->thread
= md_register_thread(raid10d
, mddev
, "raid10");
3710 conf
->mddev
= mddev
;
3715 mempool_destroy(conf
->r10bio_pool
);
3716 kfree(conf
->mirrors
);
3717 safe_put_page(conf
->tmppage
);
3720 return ERR_PTR(err
);
3723 static int raid10_run(struct mddev
*mddev
)
3725 struct r10conf
*conf
;
3726 int i
, disk_idx
, chunk_size
;
3727 struct raid10_info
*disk
;
3728 struct md_rdev
*rdev
;
3730 sector_t min_offset_diff
= 0;
3732 bool discard_supported
= false;
3734 if (mddev
->private == NULL
) {
3735 conf
= setup_conf(mddev
);
3737 return PTR_ERR(conf
);
3738 mddev
->private = conf
;
3740 conf
= mddev
->private;
3744 mddev
->thread
= conf
->thread
;
3745 conf
->thread
= NULL
;
3747 chunk_size
= mddev
->chunk_sectors
<< 9;
3749 blk_queue_max_discard_sectors(mddev
->queue
,
3750 mddev
->chunk_sectors
);
3751 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
3752 blk_queue_io_min(mddev
->queue
, chunk_size
);
3753 if (conf
->geo
.raid_disks
% conf
->geo
.near_copies
)
3754 blk_queue_io_opt(mddev
->queue
, chunk_size
* conf
->geo
.raid_disks
);
3756 blk_queue_io_opt(mddev
->queue
, chunk_size
*
3757 (conf
->geo
.raid_disks
/ conf
->geo
.near_copies
));
3760 rdev_for_each(rdev
, mddev
) {
3762 struct request_queue
*q
;
3764 disk_idx
= rdev
->raid_disk
;
3767 if (disk_idx
>= conf
->geo
.raid_disks
&&
3768 disk_idx
>= conf
->prev
.raid_disks
)
3770 disk
= conf
->mirrors
+ disk_idx
;
3772 if (test_bit(Replacement
, &rdev
->flags
)) {
3773 if (disk
->replacement
)
3775 disk
->replacement
= rdev
;
3781 q
= bdev_get_queue(rdev
->bdev
);
3782 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
3783 if (!mddev
->reshape_backwards
)
3787 if (first
|| diff
< min_offset_diff
)
3788 min_offset_diff
= diff
;
3791 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
3792 rdev
->data_offset
<< 9);
3794 disk
->head_position
= 0;
3796 if (blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
3797 discard_supported
= true;
3801 if (discard_supported
)
3802 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
3805 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
3808 /* need to check that every block has at least one working mirror */
3809 if (!enough(conf
, -1)) {
3810 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3815 if (conf
->reshape_progress
!= MaxSector
) {
3816 /* must ensure that shape change is supported */
3817 if (conf
->geo
.far_copies
!= 1 &&
3818 conf
->geo
.far_offset
== 0)
3820 if (conf
->prev
.far_copies
!= 1 &&
3821 conf
->prev
.far_offset
== 0)
3825 mddev
->degraded
= 0;
3827 i
< conf
->geo
.raid_disks
3828 || i
< conf
->prev
.raid_disks
;
3831 disk
= conf
->mirrors
+ i
;
3833 if (!disk
->rdev
&& disk
->replacement
) {
3834 /* The replacement is all we have - use it */
3835 disk
->rdev
= disk
->replacement
;
3836 disk
->replacement
= NULL
;
3837 clear_bit(Replacement
, &disk
->rdev
->flags
);
3841 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
3842 disk
->head_position
= 0;
3845 disk
->rdev
->saved_raid_disk
< 0)
3848 disk
->recovery_disabled
= mddev
->recovery_disabled
- 1;
3851 if (mddev
->recovery_cp
!= MaxSector
)
3852 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3854 pr_info("md/raid10:%s: active with %d out of %d devices\n",
3855 mdname(mddev
), conf
->geo
.raid_disks
- mddev
->degraded
,
3856 conf
->geo
.raid_disks
);
3858 * Ok, everything is just fine now
3860 mddev
->dev_sectors
= conf
->dev_sectors
;
3861 size
= raid10_size(mddev
, 0, 0);
3862 md_set_array_sectors(mddev
, size
);
3863 mddev
->resync_max_sectors
= size
;
3864 set_bit(MD_FAILFAST_SUPPORTED
, &mddev
->flags
);
3867 int stripe
= conf
->geo
.raid_disks
*
3868 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
3870 /* Calculate max read-ahead size.
3871 * We need to readahead at least twice a whole stripe....
3874 stripe
/= conf
->geo
.near_copies
;
3875 if (mddev
->queue
->backing_dev_info
->ra_pages
< 2 * stripe
)
3876 mddev
->queue
->backing_dev_info
->ra_pages
= 2 * stripe
;
3879 if (md_integrity_register(mddev
))
3882 if (conf
->reshape_progress
!= MaxSector
) {
3883 unsigned long before_length
, after_length
;
3885 before_length
= ((1 << conf
->prev
.chunk_shift
) *
3886 conf
->prev
.far_copies
);
3887 after_length
= ((1 << conf
->geo
.chunk_shift
) *
3888 conf
->geo
.far_copies
);
3890 if (max(before_length
, after_length
) > min_offset_diff
) {
3891 /* This cannot work */
3892 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3895 conf
->offset_diff
= min_offset_diff
;
3897 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
3898 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
3899 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
3900 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
3901 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
3908 md_unregister_thread(&mddev
->thread
);
3909 mempool_destroy(conf
->r10bio_pool
);
3910 safe_put_page(conf
->tmppage
);
3911 kfree(conf
->mirrors
);
3913 mddev
->private = NULL
;
3918 static void raid10_free(struct mddev
*mddev
, void *priv
)
3920 struct r10conf
*conf
= priv
;
3922 mempool_destroy(conf
->r10bio_pool
);
3923 safe_put_page(conf
->tmppage
);
3924 kfree(conf
->mirrors
);
3925 kfree(conf
->mirrors_old
);
3926 kfree(conf
->mirrors_new
);
3930 static void raid10_quiesce(struct mddev
*mddev
, int state
)
3932 struct r10conf
*conf
= mddev
->private;
3936 raise_barrier(conf
, 0);
3939 lower_barrier(conf
);
3944 static int raid10_resize(struct mddev
*mddev
, sector_t sectors
)
3946 /* Resize of 'far' arrays is not supported.
3947 * For 'near' and 'offset' arrays we can set the
3948 * number of sectors used to be an appropriate multiple
3949 * of the chunk size.
3950 * For 'offset', this is far_copies*chunksize.
3951 * For 'near' the multiplier is the LCM of
3952 * near_copies and raid_disks.
3953 * So if far_copies > 1 && !far_offset, fail.
3954 * Else find LCM(raid_disks, near_copy)*far_copies and
3955 * multiply by chunk_size. Then round to this number.
3956 * This is mostly done by raid10_size()
3958 struct r10conf
*conf
= mddev
->private;
3959 sector_t oldsize
, size
;
3961 if (mddev
->reshape_position
!= MaxSector
)
3964 if (conf
->geo
.far_copies
> 1 && !conf
->geo
.far_offset
)
3967 oldsize
= raid10_size(mddev
, 0, 0);
3968 size
= raid10_size(mddev
, sectors
, 0);
3969 if (mddev
->external_size
&&
3970 mddev
->array_sectors
> size
)
3972 if (mddev
->bitmap
) {
3973 int ret
= bitmap_resize(mddev
->bitmap
, size
, 0, 0);
3977 md_set_array_sectors(mddev
, size
);
3978 if (sectors
> mddev
->dev_sectors
&&
3979 mddev
->recovery_cp
> oldsize
) {
3980 mddev
->recovery_cp
= oldsize
;
3981 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3983 calc_sectors(conf
, sectors
);
3984 mddev
->dev_sectors
= conf
->dev_sectors
;
3985 mddev
->resync_max_sectors
= size
;
3989 static void *raid10_takeover_raid0(struct mddev
*mddev
, sector_t size
, int devs
)
3991 struct md_rdev
*rdev
;
3992 struct r10conf
*conf
;
3994 if (mddev
->degraded
> 0) {
3995 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3997 return ERR_PTR(-EINVAL
);
3999 sector_div(size
, devs
);
4001 /* Set new parameters */
4002 mddev
->new_level
= 10;
4003 /* new layout: far_copies = 1, near_copies = 2 */
4004 mddev
->new_layout
= (1<<8) + 2;
4005 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
4006 mddev
->delta_disks
= mddev
->raid_disks
;
4007 mddev
->raid_disks
*= 2;
4008 /* make sure it will be not marked as dirty */
4009 mddev
->recovery_cp
= MaxSector
;
4010 mddev
->dev_sectors
= size
;
4012 conf
= setup_conf(mddev
);
4013 if (!IS_ERR(conf
)) {
4014 rdev_for_each(rdev
, mddev
)
4015 if (rdev
->raid_disk
>= 0) {
4016 rdev
->new_raid_disk
= rdev
->raid_disk
* 2;
4017 rdev
->sectors
= size
;
4025 static void *raid10_takeover(struct mddev
*mddev
)
4027 struct r0conf
*raid0_conf
;
4029 /* raid10 can take over:
4030 * raid0 - providing it has only two drives
4032 if (mddev
->level
== 0) {
4033 /* for raid0 takeover only one zone is supported */
4034 raid0_conf
= mddev
->private;
4035 if (raid0_conf
->nr_strip_zones
> 1) {
4036 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4038 return ERR_PTR(-EINVAL
);
4040 return raid10_takeover_raid0(mddev
,
4041 raid0_conf
->strip_zone
->zone_end
,
4042 raid0_conf
->strip_zone
->nb_dev
);
4044 return ERR_PTR(-EINVAL
);
4047 static int raid10_check_reshape(struct mddev
*mddev
)
4049 /* Called when there is a request to change
4050 * - layout (to ->new_layout)
4051 * - chunk size (to ->new_chunk_sectors)
4052 * - raid_disks (by delta_disks)
4053 * or when trying to restart a reshape that was ongoing.
4055 * We need to validate the request and possibly allocate
4056 * space if that might be an issue later.
4058 * Currently we reject any reshape of a 'far' mode array,
4059 * allow chunk size to change if new is generally acceptable,
4060 * allow raid_disks to increase, and allow
4061 * a switch between 'near' mode and 'offset' mode.
4063 struct r10conf
*conf
= mddev
->private;
4066 if (conf
->geo
.far_copies
!= 1 && !conf
->geo
.far_offset
)
4069 if (setup_geo(&geo
, mddev
, geo_start
) != conf
->copies
)
4070 /* mustn't change number of copies */
4072 if (geo
.far_copies
> 1 && !geo
.far_offset
)
4073 /* Cannot switch to 'far' mode */
4076 if (mddev
->array_sectors
& geo
.chunk_mask
)
4077 /* not factor of array size */
4080 if (!enough(conf
, -1))
4083 kfree(conf
->mirrors_new
);
4084 conf
->mirrors_new
= NULL
;
4085 if (mddev
->delta_disks
> 0) {
4086 /* allocate new 'mirrors' list */
4087 conf
->mirrors_new
= kzalloc(
4088 sizeof(struct raid10_info
)
4089 *(mddev
->raid_disks
+
4090 mddev
->delta_disks
),
4092 if (!conf
->mirrors_new
)
4099 * Need to check if array has failed when deciding whether to:
4101 * - remove non-faulty devices
4104 * This determination is simple when no reshape is happening.
4105 * However if there is a reshape, we need to carefully check
4106 * both the before and after sections.
4107 * This is because some failed devices may only affect one
4108 * of the two sections, and some non-in_sync devices may
4109 * be insync in the section most affected by failed devices.
4111 static int calc_degraded(struct r10conf
*conf
)
4113 int degraded
, degraded2
;
4118 /* 'prev' section first */
4119 for (i
= 0; i
< conf
->prev
.raid_disks
; i
++) {
4120 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
4121 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
4123 else if (!test_bit(In_sync
, &rdev
->flags
))
4124 /* When we can reduce the number of devices in
4125 * an array, this might not contribute to
4126 * 'degraded'. It does now.
4131 if (conf
->geo
.raid_disks
== conf
->prev
.raid_disks
)
4135 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
4136 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
4137 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
4139 else if (!test_bit(In_sync
, &rdev
->flags
)) {
4140 /* If reshape is increasing the number of devices,
4141 * this section has already been recovered, so
4142 * it doesn't contribute to degraded.
4145 if (conf
->geo
.raid_disks
<= conf
->prev
.raid_disks
)
4150 if (degraded2
> degraded
)
4155 static int raid10_start_reshape(struct mddev
*mddev
)
4157 /* A 'reshape' has been requested. This commits
4158 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4159 * This also checks if there are enough spares and adds them
4161 * We currently require enough spares to make the final
4162 * array non-degraded. We also require that the difference
4163 * between old and new data_offset - on each device - is
4164 * enough that we never risk over-writing.
4167 unsigned long before_length
, after_length
;
4168 sector_t min_offset_diff
= 0;
4171 struct r10conf
*conf
= mddev
->private;
4172 struct md_rdev
*rdev
;
4176 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
4179 if (setup_geo(&new, mddev
, geo_start
) != conf
->copies
)
4182 before_length
= ((1 << conf
->prev
.chunk_shift
) *
4183 conf
->prev
.far_copies
);
4184 after_length
= ((1 << conf
->geo
.chunk_shift
) *
4185 conf
->geo
.far_copies
);
4187 rdev_for_each(rdev
, mddev
) {
4188 if (!test_bit(In_sync
, &rdev
->flags
)
4189 && !test_bit(Faulty
, &rdev
->flags
))
4191 if (rdev
->raid_disk
>= 0) {
4192 long long diff
= (rdev
->new_data_offset
4193 - rdev
->data_offset
);
4194 if (!mddev
->reshape_backwards
)
4198 if (first
|| diff
< min_offset_diff
)
4199 min_offset_diff
= diff
;
4203 if (max(before_length
, after_length
) > min_offset_diff
)
4206 if (spares
< mddev
->delta_disks
)
4209 conf
->offset_diff
= min_offset_diff
;
4210 spin_lock_irq(&conf
->device_lock
);
4211 if (conf
->mirrors_new
) {
4212 memcpy(conf
->mirrors_new
, conf
->mirrors
,
4213 sizeof(struct raid10_info
)*conf
->prev
.raid_disks
);
4215 kfree(conf
->mirrors_old
);
4216 conf
->mirrors_old
= conf
->mirrors
;
4217 conf
->mirrors
= conf
->mirrors_new
;
4218 conf
->mirrors_new
= NULL
;
4220 setup_geo(&conf
->geo
, mddev
, geo_start
);
4222 if (mddev
->reshape_backwards
) {
4223 sector_t size
= raid10_size(mddev
, 0, 0);
4224 if (size
< mddev
->array_sectors
) {
4225 spin_unlock_irq(&conf
->device_lock
);
4226 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4230 mddev
->resync_max_sectors
= size
;
4231 conf
->reshape_progress
= size
;
4233 conf
->reshape_progress
= 0;
4234 conf
->reshape_safe
= conf
->reshape_progress
;
4235 spin_unlock_irq(&conf
->device_lock
);
4237 if (mddev
->delta_disks
&& mddev
->bitmap
) {
4238 ret
= bitmap_resize(mddev
->bitmap
,
4239 raid10_size(mddev
, 0,
4240 conf
->geo
.raid_disks
),
4245 if (mddev
->delta_disks
> 0) {
4246 rdev_for_each(rdev
, mddev
)
4247 if (rdev
->raid_disk
< 0 &&
4248 !test_bit(Faulty
, &rdev
->flags
)) {
4249 if (raid10_add_disk(mddev
, rdev
) == 0) {
4250 if (rdev
->raid_disk
>=
4251 conf
->prev
.raid_disks
)
4252 set_bit(In_sync
, &rdev
->flags
);
4254 rdev
->recovery_offset
= 0;
4256 if (sysfs_link_rdev(mddev
, rdev
))
4257 /* Failure here is OK */;
4259 } else if (rdev
->raid_disk
>= conf
->prev
.raid_disks
4260 && !test_bit(Faulty
, &rdev
->flags
)) {
4261 /* This is a spare that was manually added */
4262 set_bit(In_sync
, &rdev
->flags
);
4265 /* When a reshape changes the number of devices,
4266 * ->degraded is measured against the larger of the
4267 * pre and post numbers.
4269 spin_lock_irq(&conf
->device_lock
);
4270 mddev
->degraded
= calc_degraded(conf
);
4271 spin_unlock_irq(&conf
->device_lock
);
4272 mddev
->raid_disks
= conf
->geo
.raid_disks
;
4273 mddev
->reshape_position
= conf
->reshape_progress
;
4274 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
4276 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4277 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4278 clear_bit(MD_RECOVERY_DONE
, &mddev
->recovery
);
4279 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4280 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4282 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4284 if (!mddev
->sync_thread
) {
4288 conf
->reshape_checkpoint
= jiffies
;
4289 md_wakeup_thread(mddev
->sync_thread
);
4290 md_new_event(mddev
);
4294 mddev
->recovery
= 0;
4295 spin_lock_irq(&conf
->device_lock
);
4296 conf
->geo
= conf
->prev
;
4297 mddev
->raid_disks
= conf
->geo
.raid_disks
;
4298 rdev_for_each(rdev
, mddev
)
4299 rdev
->new_data_offset
= rdev
->data_offset
;
4301 conf
->reshape_progress
= MaxSector
;
4302 conf
->reshape_safe
= MaxSector
;
4303 mddev
->reshape_position
= MaxSector
;
4304 spin_unlock_irq(&conf
->device_lock
);
4308 /* Calculate the last device-address that could contain
4309 * any block from the chunk that includes the array-address 's'
4310 * and report the next address.
4311 * i.e. the address returned will be chunk-aligned and after
4312 * any data that is in the chunk containing 's'.
4314 static sector_t
last_dev_address(sector_t s
, struct geom
*geo
)
4316 s
= (s
| geo
->chunk_mask
) + 1;
4317 s
>>= geo
->chunk_shift
;
4318 s
*= geo
->near_copies
;
4319 s
= DIV_ROUND_UP_SECTOR_T(s
, geo
->raid_disks
);
4320 s
*= geo
->far_copies
;
4321 s
<<= geo
->chunk_shift
;
4325 /* Calculate the first device-address that could contain
4326 * any block from the chunk that includes the array-address 's'.
4327 * This too will be the start of a chunk
4329 static sector_t
first_dev_address(sector_t s
, struct geom
*geo
)
4331 s
>>= geo
->chunk_shift
;
4332 s
*= geo
->near_copies
;
4333 sector_div(s
, geo
->raid_disks
);
4334 s
*= geo
->far_copies
;
4335 s
<<= geo
->chunk_shift
;
4339 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
,
4342 /* We simply copy at most one chunk (smallest of old and new)
4343 * at a time, possibly less if that exceeds RESYNC_PAGES,
4344 * or we hit a bad block or something.
4345 * This might mean we pause for normal IO in the middle of
4346 * a chunk, but that is not a problem as mddev->reshape_position
4347 * can record any location.
4349 * If we will want to write to a location that isn't
4350 * yet recorded as 'safe' (i.e. in metadata on disk) then
4351 * we need to flush all reshape requests and update the metadata.
4353 * When reshaping forwards (e.g. to more devices), we interpret
4354 * 'safe' as the earliest block which might not have been copied
4355 * down yet. We divide this by previous stripe size and multiply
4356 * by previous stripe length to get lowest device offset that we
4357 * cannot write to yet.
4358 * We interpret 'sector_nr' as an address that we want to write to.
4359 * From this we use last_device_address() to find where we might
4360 * write to, and first_device_address on the 'safe' position.
4361 * If this 'next' write position is after the 'safe' position,
4362 * we must update the metadata to increase the 'safe' position.
4364 * When reshaping backwards, we round in the opposite direction
4365 * and perform the reverse test: next write position must not be
4366 * less than current safe position.
4368 * In all this the minimum difference in data offsets
4369 * (conf->offset_diff - always positive) allows a bit of slack,
4370 * so next can be after 'safe', but not by more than offset_diff
4372 * We need to prepare all the bios here before we start any IO
4373 * to ensure the size we choose is acceptable to all devices.
4374 * The means one for each copy for write-out and an extra one for
4376 * We store the read-in bio in ->master_bio and the others in
4377 * ->devs[x].bio and ->devs[x].repl_bio.
4379 struct r10conf
*conf
= mddev
->private;
4380 struct r10bio
*r10_bio
;
4381 sector_t next
, safe
, last
;
4385 struct md_rdev
*rdev
;
4388 struct bio
*bio
, *read_bio
;
4389 int sectors_done
= 0;
4391 if (sector_nr
== 0) {
4392 /* If restarting in the middle, skip the initial sectors */
4393 if (mddev
->reshape_backwards
&&
4394 conf
->reshape_progress
< raid10_size(mddev
, 0, 0)) {
4395 sector_nr
= (raid10_size(mddev
, 0, 0)
4396 - conf
->reshape_progress
);
4397 } else if (!mddev
->reshape_backwards
&&
4398 conf
->reshape_progress
> 0)
4399 sector_nr
= conf
->reshape_progress
;
4401 mddev
->curr_resync_completed
= sector_nr
;
4402 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4408 /* We don't use sector_nr to track where we are up to
4409 * as that doesn't work well for ->reshape_backwards.
4410 * So just use ->reshape_progress.
4412 if (mddev
->reshape_backwards
) {
4413 /* 'next' is the earliest device address that we might
4414 * write to for this chunk in the new layout
4416 next
= first_dev_address(conf
->reshape_progress
- 1,
4419 /* 'safe' is the last device address that we might read from
4420 * in the old layout after a restart
4422 safe
= last_dev_address(conf
->reshape_safe
- 1,
4425 if (next
+ conf
->offset_diff
< safe
)
4428 last
= conf
->reshape_progress
- 1;
4429 sector_nr
= last
& ~(sector_t
)(conf
->geo
.chunk_mask
4430 & conf
->prev
.chunk_mask
);
4431 if (sector_nr
+ RESYNC_BLOCK_SIZE
/512 < last
)
4432 sector_nr
= last
+ 1 - RESYNC_BLOCK_SIZE
/512;
4434 /* 'next' is after the last device address that we
4435 * might write to for this chunk in the new layout
4437 next
= last_dev_address(conf
->reshape_progress
, &conf
->geo
);
4439 /* 'safe' is the earliest device address that we might
4440 * read from in the old layout after a restart
4442 safe
= first_dev_address(conf
->reshape_safe
, &conf
->prev
);
4444 /* Need to update metadata if 'next' might be beyond 'safe'
4445 * as that would possibly corrupt data
4447 if (next
> safe
+ conf
->offset_diff
)
4450 sector_nr
= conf
->reshape_progress
;
4451 last
= sector_nr
| (conf
->geo
.chunk_mask
4452 & conf
->prev
.chunk_mask
);
4454 if (sector_nr
+ RESYNC_BLOCK_SIZE
/512 <= last
)
4455 last
= sector_nr
+ RESYNC_BLOCK_SIZE
/512 - 1;
4459 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
4460 /* Need to update reshape_position in metadata */
4462 mddev
->reshape_position
= conf
->reshape_progress
;
4463 if (mddev
->reshape_backwards
)
4464 mddev
->curr_resync_completed
= raid10_size(mddev
, 0, 0)
4465 - conf
->reshape_progress
;
4467 mddev
->curr_resync_completed
= conf
->reshape_progress
;
4468 conf
->reshape_checkpoint
= jiffies
;
4469 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
4470 md_wakeup_thread(mddev
->thread
);
4471 wait_event(mddev
->sb_wait
, mddev
->sb_flags
== 0 ||
4472 test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
4473 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
4474 allow_barrier(conf
);
4475 return sectors_done
;
4477 conf
->reshape_safe
= mddev
->reshape_position
;
4478 allow_barrier(conf
);
4482 /* Now schedule reads for blocks from sector_nr to last */
4483 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
4485 raise_barrier(conf
, sectors_done
!= 0);
4486 atomic_set(&r10_bio
->remaining
, 0);
4487 r10_bio
->mddev
= mddev
;
4488 r10_bio
->sector
= sector_nr
;
4489 set_bit(R10BIO_IsReshape
, &r10_bio
->state
);
4490 r10_bio
->sectors
= last
- sector_nr
+ 1;
4491 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
4492 BUG_ON(!test_bit(R10BIO_Previous
, &r10_bio
->state
));
4495 /* Cannot read from here, so need to record bad blocks
4496 * on all the target devices.
4499 mempool_free(r10_bio
, conf
->r10buf_pool
);
4500 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
4501 return sectors_done
;
4504 read_bio
= bio_alloc_mddev(GFP_KERNEL
, RESYNC_PAGES
, mddev
);
4506 read_bio
->bi_bdev
= rdev
->bdev
;
4507 read_bio
->bi_iter
.bi_sector
= (r10_bio
->devs
[r10_bio
->read_slot
].addr
4508 + rdev
->data_offset
);
4509 read_bio
->bi_private
= r10_bio
;
4510 read_bio
->bi_end_io
= end_sync_read
;
4511 bio_set_op_attrs(read_bio
, REQ_OP_READ
, 0);
4512 read_bio
->bi_flags
&= (~0UL << BIO_RESET_BITS
);
4513 read_bio
->bi_error
= 0;
4514 read_bio
->bi_vcnt
= 0;
4515 read_bio
->bi_iter
.bi_size
= 0;
4516 r10_bio
->master_bio
= read_bio
;
4517 r10_bio
->read_slot
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
4519 /* Now find the locations in the new layout */
4520 __raid10_find_phys(&conf
->geo
, r10_bio
);
4523 read_bio
->bi_next
= NULL
;
4526 for (s
= 0; s
< conf
->copies
*2; s
++) {
4528 int d
= r10_bio
->devs
[s
/2].devnum
;
4529 struct md_rdev
*rdev2
;
4531 rdev2
= rcu_dereference(conf
->mirrors
[d
].replacement
);
4532 b
= r10_bio
->devs
[s
/2].repl_bio
;
4534 rdev2
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4535 b
= r10_bio
->devs
[s
/2].bio
;
4537 if (!rdev2
|| test_bit(Faulty
, &rdev2
->flags
))
4541 b
->bi_bdev
= rdev2
->bdev
;
4542 b
->bi_iter
.bi_sector
= r10_bio
->devs
[s
/2].addr
+
4543 rdev2
->new_data_offset
;
4544 b
->bi_private
= r10_bio
;
4545 b
->bi_end_io
= end_reshape_write
;
4546 bio_set_op_attrs(b
, REQ_OP_WRITE
, 0);
4551 /* Now add as many pages as possible to all of these bios. */
4554 for (s
= 0 ; s
< max_sectors
; s
+= PAGE_SIZE
>> 9) {
4555 struct page
*page
= r10_bio
->devs
[0].bio
->bi_io_vec
[s
/(PAGE_SIZE
>>9)].bv_page
;
4556 int len
= (max_sectors
- s
) << 9;
4557 if (len
> PAGE_SIZE
)
4559 for (bio
= blist
; bio
; bio
= bio
->bi_next
) {
4561 if (bio_add_page(bio
, page
, len
, 0))
4564 /* Didn't fit, must stop */
4566 bio2
&& bio2
!= bio
;
4567 bio2
= bio2
->bi_next
) {
4568 /* Remove last page from this bio */
4570 bio2
->bi_iter
.bi_size
-= len
;
4571 bio_clear_flag(bio2
, BIO_SEG_VALID
);
4575 sector_nr
+= len
>> 9;
4576 nr_sectors
+= len
>> 9;
4580 r10_bio
->sectors
= nr_sectors
;
4582 /* Now submit the read */
4583 md_sync_acct(read_bio
->bi_bdev
, r10_bio
->sectors
);
4584 atomic_inc(&r10_bio
->remaining
);
4585 read_bio
->bi_next
= NULL
;
4586 generic_make_request(read_bio
);
4587 sector_nr
+= nr_sectors
;
4588 sectors_done
+= nr_sectors
;
4589 if (sector_nr
<= last
)
4592 /* Now that we have done the whole section we can
4593 * update reshape_progress
4595 if (mddev
->reshape_backwards
)
4596 conf
->reshape_progress
-= sectors_done
;
4598 conf
->reshape_progress
+= sectors_done
;
4600 return sectors_done
;
4603 static void end_reshape_request(struct r10bio
*r10_bio
);
4604 static int handle_reshape_read_error(struct mddev
*mddev
,
4605 struct r10bio
*r10_bio
);
4606 static void reshape_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
4608 /* Reshape read completed. Hopefully we have a block
4610 * If we got a read error then we do sync 1-page reads from
4611 * elsewhere until we find the data - or give up.
4613 struct r10conf
*conf
= mddev
->private;
4616 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
4617 if (handle_reshape_read_error(mddev
, r10_bio
) < 0) {
4618 /* Reshape has been aborted */
4619 md_done_sync(mddev
, r10_bio
->sectors
, 0);
4623 /* We definitely have the data in the pages, schedule the
4626 atomic_set(&r10_bio
->remaining
, 1);
4627 for (s
= 0; s
< conf
->copies
*2; s
++) {
4629 int d
= r10_bio
->devs
[s
/2].devnum
;
4630 struct md_rdev
*rdev
;
4633 rdev
= rcu_dereference(conf
->mirrors
[d
].replacement
);
4634 b
= r10_bio
->devs
[s
/2].repl_bio
;
4636 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4637 b
= r10_bio
->devs
[s
/2].bio
;
4639 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)) {
4643 atomic_inc(&rdev
->nr_pending
);
4645 md_sync_acct(b
->bi_bdev
, r10_bio
->sectors
);
4646 atomic_inc(&r10_bio
->remaining
);
4648 generic_make_request(b
);
4650 end_reshape_request(r10_bio
);
4653 static void end_reshape(struct r10conf
*conf
)
4655 if (test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
))
4658 spin_lock_irq(&conf
->device_lock
);
4659 conf
->prev
= conf
->geo
;
4660 md_finish_reshape(conf
->mddev
);
4662 conf
->reshape_progress
= MaxSector
;
4663 conf
->reshape_safe
= MaxSector
;
4664 spin_unlock_irq(&conf
->device_lock
);
4666 /* read-ahead size must cover two whole stripes, which is
4667 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4669 if (conf
->mddev
->queue
) {
4670 int stripe
= conf
->geo
.raid_disks
*
4671 ((conf
->mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
4672 stripe
/= conf
->geo
.near_copies
;
4673 if (conf
->mddev
->queue
->backing_dev_info
->ra_pages
< 2 * stripe
)
4674 conf
->mddev
->queue
->backing_dev_info
->ra_pages
= 2 * stripe
;
4679 static int handle_reshape_read_error(struct mddev
*mddev
,
4680 struct r10bio
*r10_bio
)
4682 /* Use sync reads to get the blocks from somewhere else */
4683 int sectors
= r10_bio
->sectors
;
4684 struct r10conf
*conf
= mddev
->private;
4686 struct r10bio r10_bio
;
4687 struct r10dev devs
[conf
->copies
];
4689 struct r10bio
*r10b
= &on_stack
.r10_bio
;
4692 struct bio_vec
*bvec
= r10_bio
->master_bio
->bi_io_vec
;
4694 r10b
->sector
= r10_bio
->sector
;
4695 __raid10_find_phys(&conf
->prev
, r10b
);
4700 int first_slot
= slot
;
4702 if (s
> (PAGE_SIZE
>> 9))
4707 int d
= r10b
->devs
[slot
].devnum
;
4708 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4711 test_bit(Faulty
, &rdev
->flags
) ||
4712 !test_bit(In_sync
, &rdev
->flags
))
4715 addr
= r10b
->devs
[slot
].addr
+ idx
* PAGE_SIZE
;
4716 atomic_inc(&rdev
->nr_pending
);
4718 success
= sync_page_io(rdev
,
4722 REQ_OP_READ
, 0, false);
4723 rdev_dec_pending(rdev
, mddev
);
4729 if (slot
>= conf
->copies
)
4731 if (slot
== first_slot
)
4736 /* couldn't read this block, must give up */
4737 set_bit(MD_RECOVERY_INTR
,
4747 static void end_reshape_write(struct bio
*bio
)
4749 struct r10bio
*r10_bio
= bio
->bi_private
;
4750 struct mddev
*mddev
= r10_bio
->mddev
;
4751 struct r10conf
*conf
= mddev
->private;
4755 struct md_rdev
*rdev
= NULL
;
4757 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
4759 rdev
= conf
->mirrors
[d
].replacement
;
4762 rdev
= conf
->mirrors
[d
].rdev
;
4765 if (bio
->bi_error
) {
4766 /* FIXME should record badblock */
4767 md_error(mddev
, rdev
);
4770 rdev_dec_pending(rdev
, mddev
);
4771 end_reshape_request(r10_bio
);
4774 static void end_reshape_request(struct r10bio
*r10_bio
)
4776 if (!atomic_dec_and_test(&r10_bio
->remaining
))
4778 md_done_sync(r10_bio
->mddev
, r10_bio
->sectors
, 1);
4779 bio_put(r10_bio
->master_bio
);
4783 static void raid10_finish_reshape(struct mddev
*mddev
)
4785 struct r10conf
*conf
= mddev
->private;
4787 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
4790 if (mddev
->delta_disks
> 0) {
4791 sector_t size
= raid10_size(mddev
, 0, 0);
4792 md_set_array_sectors(mddev
, size
);
4793 if (mddev
->recovery_cp
> mddev
->resync_max_sectors
) {
4794 mddev
->recovery_cp
= mddev
->resync_max_sectors
;
4795 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4797 mddev
->resync_max_sectors
= size
;
4799 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
4800 revalidate_disk(mddev
->gendisk
);
4805 for (d
= conf
->geo
.raid_disks
;
4806 d
< conf
->geo
.raid_disks
- mddev
->delta_disks
;
4808 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4810 clear_bit(In_sync
, &rdev
->flags
);
4811 rdev
= rcu_dereference(conf
->mirrors
[d
].replacement
);
4813 clear_bit(In_sync
, &rdev
->flags
);
4817 mddev
->layout
= mddev
->new_layout
;
4818 mddev
->chunk_sectors
= 1 << conf
->geo
.chunk_shift
;
4819 mddev
->reshape_position
= MaxSector
;
4820 mddev
->delta_disks
= 0;
4821 mddev
->reshape_backwards
= 0;
4824 static struct md_personality raid10_personality
=
4828 .owner
= THIS_MODULE
,
4829 .make_request
= raid10_make_request
,
4831 .free
= raid10_free
,
4832 .status
= raid10_status
,
4833 .error_handler
= raid10_error
,
4834 .hot_add_disk
= raid10_add_disk
,
4835 .hot_remove_disk
= raid10_remove_disk
,
4836 .spare_active
= raid10_spare_active
,
4837 .sync_request
= raid10_sync_request
,
4838 .quiesce
= raid10_quiesce
,
4839 .size
= raid10_size
,
4840 .resize
= raid10_resize
,
4841 .takeover
= raid10_takeover
,
4842 .check_reshape
= raid10_check_reshape
,
4843 .start_reshape
= raid10_start_reshape
,
4844 .finish_reshape
= raid10_finish_reshape
,
4845 .congested
= raid10_congested
,
4848 static int __init
raid_init(void)
4850 return register_md_personality(&raid10_personality
);
4853 static void raid_exit(void)
4855 unregister_md_personality(&raid10_personality
);
4858 module_init(raid_init
);
4859 module_exit(raid_exit
);
4860 MODULE_LICENSE("GPL");
4861 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4862 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4863 MODULE_ALIAS("md-raid10");
4864 MODULE_ALIAS("md-level-10");
4866 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);