1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * (c) Copyright 2002-2013 Datera, Inc.
8 * Nicholas A. Bellinger <nab@kernel.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 ******************************************************************************/
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
56 static struct workqueue_struct
*target_completion_wq
;
57 static struct kmem_cache
*se_sess_cache
;
58 struct kmem_cache
*se_ua_cache
;
59 struct kmem_cache
*t10_pr_reg_cache
;
60 struct kmem_cache
*t10_alua_lu_gp_cache
;
61 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
62 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
63 struct kmem_cache
*t10_alua_lba_map_cache
;
64 struct kmem_cache
*t10_alua_lba_map_mem_cache
;
66 static void transport_complete_task_attr(struct se_cmd
*cmd
);
67 static void transport_handle_queue_full(struct se_cmd
*cmd
,
68 struct se_device
*dev
);
69 static int transport_put_cmd(struct se_cmd
*cmd
);
70 static void target_complete_ok_work(struct work_struct
*work
);
72 int init_se_kmem_caches(void)
74 se_sess_cache
= kmem_cache_create("se_sess_cache",
75 sizeof(struct se_session
), __alignof__(struct se_session
),
78 pr_err("kmem_cache_create() for struct se_session"
82 se_ua_cache
= kmem_cache_create("se_ua_cache",
83 sizeof(struct se_ua
), __alignof__(struct se_ua
),
86 pr_err("kmem_cache_create() for struct se_ua failed\n");
87 goto out_free_sess_cache
;
89 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
90 sizeof(struct t10_pr_registration
),
91 __alignof__(struct t10_pr_registration
), 0, NULL
);
92 if (!t10_pr_reg_cache
) {
93 pr_err("kmem_cache_create() for struct t10_pr_registration"
95 goto out_free_ua_cache
;
97 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
98 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
100 if (!t10_alua_lu_gp_cache
) {
101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
103 goto out_free_pr_reg_cache
;
105 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 sizeof(struct t10_alua_lu_gp_member
),
107 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
108 if (!t10_alua_lu_gp_mem_cache
) {
109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
111 goto out_free_lu_gp_cache
;
113 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 sizeof(struct t10_alua_tg_pt_gp
),
115 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
116 if (!t10_alua_tg_pt_gp_cache
) {
117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
119 goto out_free_lu_gp_mem_cache
;
121 t10_alua_lba_map_cache
= kmem_cache_create(
122 "t10_alua_lba_map_cache",
123 sizeof(struct t10_alua_lba_map
),
124 __alignof__(struct t10_alua_lba_map
), 0, NULL
);
125 if (!t10_alua_lba_map_cache
) {
126 pr_err("kmem_cache_create() for t10_alua_lba_map_"
128 goto out_free_tg_pt_gp_cache
;
130 t10_alua_lba_map_mem_cache
= kmem_cache_create(
131 "t10_alua_lba_map_mem_cache",
132 sizeof(struct t10_alua_lba_map_member
),
133 __alignof__(struct t10_alua_lba_map_member
), 0, NULL
);
134 if (!t10_alua_lba_map_mem_cache
) {
135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
137 goto out_free_lba_map_cache
;
140 target_completion_wq
= alloc_workqueue("target_completion",
142 if (!target_completion_wq
)
143 goto out_free_lba_map_mem_cache
;
147 out_free_lba_map_mem_cache
:
148 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
149 out_free_lba_map_cache
:
150 kmem_cache_destroy(t10_alua_lba_map_cache
);
151 out_free_tg_pt_gp_cache
:
152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
153 out_free_lu_gp_mem_cache
:
154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
155 out_free_lu_gp_cache
:
156 kmem_cache_destroy(t10_alua_lu_gp_cache
);
157 out_free_pr_reg_cache
:
158 kmem_cache_destroy(t10_pr_reg_cache
);
160 kmem_cache_destroy(se_ua_cache
);
162 kmem_cache_destroy(se_sess_cache
);
167 void release_se_kmem_caches(void)
169 destroy_workqueue(target_completion_wq
);
170 kmem_cache_destroy(se_sess_cache
);
171 kmem_cache_destroy(se_ua_cache
);
172 kmem_cache_destroy(t10_pr_reg_cache
);
173 kmem_cache_destroy(t10_alua_lu_gp_cache
);
174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
176 kmem_cache_destroy(t10_alua_lba_map_cache
);
177 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock
);
182 static u32 scsi_mib_index
[SCSI_INDEX_TYPE_MAX
];
185 * Allocate a new row index for the entry type specified
187 u32
scsi_get_new_index(scsi_index_t type
)
191 BUG_ON((type
< 0) || (type
>= SCSI_INDEX_TYPE_MAX
));
193 spin_lock(&scsi_mib_index_lock
);
194 new_index
= ++scsi_mib_index
[type
];
195 spin_unlock(&scsi_mib_index_lock
);
200 void transport_subsystem_check_init(void)
203 static int sub_api_initialized
;
205 if (sub_api_initialized
)
208 ret
= request_module("target_core_iblock");
210 pr_err("Unable to load target_core_iblock\n");
212 ret
= request_module("target_core_file");
214 pr_err("Unable to load target_core_file\n");
216 ret
= request_module("target_core_pscsi");
218 pr_err("Unable to load target_core_pscsi\n");
220 ret
= request_module("target_core_user");
222 pr_err("Unable to load target_core_user\n");
224 sub_api_initialized
= 1;
227 struct se_session
*transport_init_session(enum target_prot_op sup_prot_ops
)
229 struct se_session
*se_sess
;
231 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
233 pr_err("Unable to allocate struct se_session from"
235 return ERR_PTR(-ENOMEM
);
237 INIT_LIST_HEAD(&se_sess
->sess_list
);
238 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
239 INIT_LIST_HEAD(&se_sess
->sess_cmd_list
);
240 INIT_LIST_HEAD(&se_sess
->sess_wait_list
);
241 spin_lock_init(&se_sess
->sess_cmd_lock
);
242 se_sess
->sup_prot_ops
= sup_prot_ops
;
246 EXPORT_SYMBOL(transport_init_session
);
248 int transport_alloc_session_tags(struct se_session
*se_sess
,
249 unsigned int tag_num
, unsigned int tag_size
)
253 se_sess
->sess_cmd_map
= kzalloc(tag_num
* tag_size
,
254 GFP_KERNEL
| __GFP_NOWARN
| __GFP_REPEAT
);
255 if (!se_sess
->sess_cmd_map
) {
256 se_sess
->sess_cmd_map
= vzalloc(tag_num
* tag_size
);
257 if (!se_sess
->sess_cmd_map
) {
258 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
263 rc
= percpu_ida_init(&se_sess
->sess_tag_pool
, tag_num
);
265 pr_err("Unable to init se_sess->sess_tag_pool,"
266 " tag_num: %u\n", tag_num
);
267 kvfree(se_sess
->sess_cmd_map
);
268 se_sess
->sess_cmd_map
= NULL
;
274 EXPORT_SYMBOL(transport_alloc_session_tags
);
276 struct se_session
*transport_init_session_tags(unsigned int tag_num
,
277 unsigned int tag_size
,
278 enum target_prot_op sup_prot_ops
)
280 struct se_session
*se_sess
;
283 if (tag_num
!= 0 && !tag_size
) {
284 pr_err("init_session_tags called with percpu-ida tag_num:"
285 " %u, but zero tag_size\n", tag_num
);
286 return ERR_PTR(-EINVAL
);
288 if (!tag_num
&& tag_size
) {
289 pr_err("init_session_tags called with percpu-ida tag_size:"
290 " %u, but zero tag_num\n", tag_size
);
291 return ERR_PTR(-EINVAL
);
294 se_sess
= transport_init_session(sup_prot_ops
);
298 rc
= transport_alloc_session_tags(se_sess
, tag_num
, tag_size
);
300 transport_free_session(se_sess
);
301 return ERR_PTR(-ENOMEM
);
306 EXPORT_SYMBOL(transport_init_session_tags
);
309 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
311 void __transport_register_session(
312 struct se_portal_group
*se_tpg
,
313 struct se_node_acl
*se_nacl
,
314 struct se_session
*se_sess
,
315 void *fabric_sess_ptr
)
317 const struct target_core_fabric_ops
*tfo
= se_tpg
->se_tpg_tfo
;
318 unsigned char buf
[PR_REG_ISID_LEN
];
320 se_sess
->se_tpg
= se_tpg
;
321 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
323 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
325 * Only set for struct se_session's that will actually be moving I/O.
326 * eg: *NOT* discovery sessions.
331 * Determine if fabric allows for T10-PI feature bits exposed to
332 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
334 * If so, then always save prot_type on a per se_node_acl node
335 * basis and re-instate the previous sess_prot_type to avoid
336 * disabling PI from below any previously initiator side
339 if (se_nacl
->saved_prot_type
)
340 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
;
341 else if (tfo
->tpg_check_prot_fabric_only
)
342 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
=
343 tfo
->tpg_check_prot_fabric_only(se_tpg
);
345 * If the fabric module supports an ISID based TransportID,
346 * save this value in binary from the fabric I_T Nexus now.
348 if (se_tpg
->se_tpg_tfo
->sess_get_initiator_sid
!= NULL
) {
349 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
350 se_tpg
->se_tpg_tfo
->sess_get_initiator_sid(se_sess
,
351 &buf
[0], PR_REG_ISID_LEN
);
352 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
355 spin_lock_irq(&se_nacl
->nacl_sess_lock
);
357 * The se_nacl->nacl_sess pointer will be set to the
358 * last active I_T Nexus for each struct se_node_acl.
360 se_nacl
->nacl_sess
= se_sess
;
362 list_add_tail(&se_sess
->sess_acl_list
,
363 &se_nacl
->acl_sess_list
);
364 spin_unlock_irq(&se_nacl
->nacl_sess_lock
);
366 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
368 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
369 se_tpg
->se_tpg_tfo
->get_fabric_name(), se_sess
->fabric_sess_ptr
);
371 EXPORT_SYMBOL(__transport_register_session
);
373 void transport_register_session(
374 struct se_portal_group
*se_tpg
,
375 struct se_node_acl
*se_nacl
,
376 struct se_session
*se_sess
,
377 void *fabric_sess_ptr
)
381 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
382 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
383 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
385 EXPORT_SYMBOL(transport_register_session
);
388 target_alloc_session(struct se_portal_group
*tpg
,
389 unsigned int tag_num
, unsigned int tag_size
,
390 enum target_prot_op prot_op
,
391 const char *initiatorname
, void *private,
392 int (*callback
)(struct se_portal_group
*,
393 struct se_session
*, void *))
395 struct se_session
*sess
;
398 * If the fabric driver is using percpu-ida based pre allocation
399 * of I/O descriptor tags, go ahead and perform that setup now..
402 sess
= transport_init_session_tags(tag_num
, tag_size
, prot_op
);
404 sess
= transport_init_session(prot_op
);
409 sess
->se_node_acl
= core_tpg_check_initiator_node_acl(tpg
,
410 (unsigned char *)initiatorname
);
411 if (!sess
->se_node_acl
) {
412 transport_free_session(sess
);
413 return ERR_PTR(-EACCES
);
416 * Go ahead and perform any remaining fabric setup that is
417 * required before transport_register_session().
419 if (callback
!= NULL
) {
420 int rc
= callback(tpg
, sess
, private);
422 transport_free_session(sess
);
427 transport_register_session(tpg
, sess
->se_node_acl
, sess
, private);
430 EXPORT_SYMBOL(target_alloc_session
);
432 ssize_t
target_show_dynamic_sessions(struct se_portal_group
*se_tpg
, char *page
)
434 struct se_session
*se_sess
;
437 spin_lock_bh(&se_tpg
->session_lock
);
438 list_for_each_entry(se_sess
, &se_tpg
->tpg_sess_list
, sess_list
) {
439 if (!se_sess
->se_node_acl
)
441 if (!se_sess
->se_node_acl
->dynamic_node_acl
)
443 if (strlen(se_sess
->se_node_acl
->initiatorname
) + 1 + len
> PAGE_SIZE
)
446 len
+= snprintf(page
+ len
, PAGE_SIZE
- len
, "%s\n",
447 se_sess
->se_node_acl
->initiatorname
);
448 len
+= 1; /* Include NULL terminator */
450 spin_unlock_bh(&se_tpg
->session_lock
);
454 EXPORT_SYMBOL(target_show_dynamic_sessions
);
456 static void target_complete_nacl(struct kref
*kref
)
458 struct se_node_acl
*nacl
= container_of(kref
,
459 struct se_node_acl
, acl_kref
);
460 struct se_portal_group
*se_tpg
= nacl
->se_tpg
;
462 if (!nacl
->dynamic_stop
) {
463 complete(&nacl
->acl_free_comp
);
467 mutex_lock(&se_tpg
->acl_node_mutex
);
468 list_del(&nacl
->acl_list
);
469 mutex_unlock(&se_tpg
->acl_node_mutex
);
471 core_tpg_wait_for_nacl_pr_ref(nacl
);
472 core_free_device_list_for_node(nacl
, se_tpg
);
476 void target_put_nacl(struct se_node_acl
*nacl
)
478 kref_put(&nacl
->acl_kref
, target_complete_nacl
);
480 EXPORT_SYMBOL(target_put_nacl
);
482 void transport_deregister_session_configfs(struct se_session
*se_sess
)
484 struct se_node_acl
*se_nacl
;
487 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
489 se_nacl
= se_sess
->se_node_acl
;
491 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
492 if (!list_empty(&se_sess
->sess_acl_list
))
493 list_del_init(&se_sess
->sess_acl_list
);
495 * If the session list is empty, then clear the pointer.
496 * Otherwise, set the struct se_session pointer from the tail
497 * element of the per struct se_node_acl active session list.
499 if (list_empty(&se_nacl
->acl_sess_list
))
500 se_nacl
->nacl_sess
= NULL
;
502 se_nacl
->nacl_sess
= container_of(
503 se_nacl
->acl_sess_list
.prev
,
504 struct se_session
, sess_acl_list
);
506 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
509 EXPORT_SYMBOL(transport_deregister_session_configfs
);
511 void transport_free_session(struct se_session
*se_sess
)
513 struct se_node_acl
*se_nacl
= se_sess
->se_node_acl
;
516 * Drop the se_node_acl->nacl_kref obtained from within
517 * core_tpg_get_initiator_node_acl().
520 struct se_portal_group
*se_tpg
= se_nacl
->se_tpg
;
521 const struct target_core_fabric_ops
*se_tfo
= se_tpg
->se_tpg_tfo
;
524 se_sess
->se_node_acl
= NULL
;
527 * Also determine if we need to drop the extra ->cmd_kref if
528 * it had been previously dynamically generated, and
529 * the endpoint is not caching dynamic ACLs.
531 mutex_lock(&se_tpg
->acl_node_mutex
);
532 if (se_nacl
->dynamic_node_acl
&&
533 !se_tfo
->tpg_check_demo_mode_cache(se_tpg
)) {
534 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
535 if (list_empty(&se_nacl
->acl_sess_list
))
536 se_nacl
->dynamic_stop
= true;
537 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
539 if (se_nacl
->dynamic_stop
)
540 list_del(&se_nacl
->acl_list
);
542 mutex_unlock(&se_tpg
->acl_node_mutex
);
544 if (se_nacl
->dynamic_stop
)
545 target_put_nacl(se_nacl
);
547 target_put_nacl(se_nacl
);
549 if (se_sess
->sess_cmd_map
) {
550 percpu_ida_destroy(&se_sess
->sess_tag_pool
);
551 kvfree(se_sess
->sess_cmd_map
);
553 kmem_cache_free(se_sess_cache
, se_sess
);
555 EXPORT_SYMBOL(transport_free_session
);
557 void transport_deregister_session(struct se_session
*se_sess
)
559 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
563 transport_free_session(se_sess
);
567 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
568 list_del(&se_sess
->sess_list
);
569 se_sess
->se_tpg
= NULL
;
570 se_sess
->fabric_sess_ptr
= NULL
;
571 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
573 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
574 se_tpg
->se_tpg_tfo
->get_fabric_name());
576 * If last kref is dropping now for an explicit NodeACL, awake sleeping
577 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
578 * removal context from within transport_free_session() code.
580 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
581 * to release all remaining generate_node_acl=1 created ACL resources.
584 transport_free_session(se_sess
);
586 EXPORT_SYMBOL(transport_deregister_session
);
588 static void target_remove_from_state_list(struct se_cmd
*cmd
)
590 struct se_device
*dev
= cmd
->se_dev
;
596 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
597 if (cmd
->state_active
) {
598 list_del(&cmd
->state_list
);
599 cmd
->state_active
= false;
601 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
604 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
608 target_remove_from_state_list(cmd
);
611 * Clear struct se_cmd->se_lun before the handoff to FE.
615 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
617 * Determine if frontend context caller is requesting the stopping of
618 * this command for frontend exceptions.
620 if (cmd
->transport_state
& CMD_T_STOP
) {
621 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
622 __func__
, __LINE__
, cmd
->tag
);
624 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
626 complete_all(&cmd
->t_transport_stop_comp
);
629 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
630 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
633 * Some fabric modules like tcm_loop can release their internally
634 * allocated I/O reference and struct se_cmd now.
636 * Fabric modules are expected to return '1' here if the se_cmd being
637 * passed is released at this point, or zero if not being released.
639 return cmd
->se_tfo
->check_stop_free(cmd
);
642 static void transport_lun_remove_cmd(struct se_cmd
*cmd
)
644 struct se_lun
*lun
= cmd
->se_lun
;
649 if (cmpxchg(&cmd
->lun_ref_active
, true, false))
650 percpu_ref_put(&lun
->lun_ref
);
653 void transport_cmd_finish_abort(struct se_cmd
*cmd
, int remove
)
655 bool ack_kref
= (cmd
->se_cmd_flags
& SCF_ACK_KREF
);
657 if (cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)
658 transport_lun_remove_cmd(cmd
);
660 * Allow the fabric driver to unmap any resources before
661 * releasing the descriptor via TFO->release_cmd()
664 cmd
->se_tfo
->aborted_task(cmd
);
666 if (transport_cmd_check_stop_to_fabric(cmd
))
668 if (remove
&& ack_kref
)
669 transport_put_cmd(cmd
);
672 static void target_complete_failure_work(struct work_struct
*work
)
674 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
676 transport_generic_request_failure(cmd
,
677 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
);
681 * Used when asking transport to copy Sense Data from the underlying
682 * Linux/SCSI struct scsi_cmnd
684 static unsigned char *transport_get_sense_buffer(struct se_cmd
*cmd
)
686 struct se_device
*dev
= cmd
->se_dev
;
688 WARN_ON(!cmd
->se_lun
);
693 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
)
696 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
698 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
699 dev
->se_hba
->hba_id
, dev
->transport
->name
, cmd
->scsi_status
);
700 return cmd
->sense_buffer
;
703 void target_complete_cmd(struct se_cmd
*cmd
, u8 scsi_status
)
705 struct se_device
*dev
= cmd
->se_dev
;
706 int success
= scsi_status
== GOOD
;
709 cmd
->scsi_status
= scsi_status
;
712 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
714 if (dev
&& dev
->transport
->transport_complete
) {
715 dev
->transport
->transport_complete(cmd
,
717 transport_get_sense_buffer(cmd
));
718 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
723 * Check for case where an explicit ABORT_TASK has been received
724 * and transport_wait_for_tasks() will be waiting for completion..
726 if (cmd
->transport_state
& CMD_T_ABORTED
||
727 cmd
->transport_state
& CMD_T_STOP
) {
728 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
729 complete_all(&cmd
->t_transport_stop_comp
);
731 } else if (!success
) {
732 INIT_WORK(&cmd
->work
, target_complete_failure_work
);
734 INIT_WORK(&cmd
->work
, target_complete_ok_work
);
737 cmd
->t_state
= TRANSPORT_COMPLETE
;
738 cmd
->transport_state
|= (CMD_T_COMPLETE
| CMD_T_ACTIVE
);
739 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
741 if (cmd
->se_cmd_flags
& SCF_USE_CPUID
)
742 queue_work_on(cmd
->cpuid
, target_completion_wq
, &cmd
->work
);
744 queue_work(target_completion_wq
, &cmd
->work
);
746 EXPORT_SYMBOL(target_complete_cmd
);
748 void target_complete_cmd_with_length(struct se_cmd
*cmd
, u8 scsi_status
, int length
)
750 if (scsi_status
== SAM_STAT_GOOD
&& length
< cmd
->data_length
) {
751 if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
752 cmd
->residual_count
+= cmd
->data_length
- length
;
754 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
755 cmd
->residual_count
= cmd
->data_length
- length
;
758 cmd
->data_length
= length
;
761 target_complete_cmd(cmd
, scsi_status
);
763 EXPORT_SYMBOL(target_complete_cmd_with_length
);
765 static void target_add_to_state_list(struct se_cmd
*cmd
)
767 struct se_device
*dev
= cmd
->se_dev
;
770 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
771 if (!cmd
->state_active
) {
772 list_add_tail(&cmd
->state_list
, &dev
->state_list
);
773 cmd
->state_active
= true;
775 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
779 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
781 static void transport_write_pending_qf(struct se_cmd
*cmd
);
782 static void transport_complete_qf(struct se_cmd
*cmd
);
784 void target_qf_do_work(struct work_struct
*work
)
786 struct se_device
*dev
= container_of(work
, struct se_device
,
788 LIST_HEAD(qf_cmd_list
);
789 struct se_cmd
*cmd
, *cmd_tmp
;
791 spin_lock_irq(&dev
->qf_cmd_lock
);
792 list_splice_init(&dev
->qf_cmd_list
, &qf_cmd_list
);
793 spin_unlock_irq(&dev
->qf_cmd_lock
);
795 list_for_each_entry_safe(cmd
, cmd_tmp
, &qf_cmd_list
, se_qf_node
) {
796 list_del(&cmd
->se_qf_node
);
797 atomic_dec_mb(&dev
->dev_qf_count
);
799 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
800 " context: %s\n", cmd
->se_tfo
->get_fabric_name(), cmd
,
801 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
) ? "COMPLETE_OK" :
802 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
) ? "WRITE_PENDING"
805 if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
)
806 transport_write_pending_qf(cmd
);
807 else if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
)
808 transport_complete_qf(cmd
);
812 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
814 switch (cmd
->data_direction
) {
817 case DMA_FROM_DEVICE
:
821 case DMA_BIDIRECTIONAL
:
830 void transport_dump_dev_state(
831 struct se_device
*dev
,
835 *bl
+= sprintf(b
+ *bl
, "Status: ");
836 if (dev
->export_count
)
837 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
839 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
841 *bl
+= sprintf(b
+ *bl
, " Max Queue Depth: %d", dev
->queue_depth
);
842 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u HwMaxSectors: %u\n",
843 dev
->dev_attrib
.block_size
,
844 dev
->dev_attrib
.hw_max_sectors
);
845 *bl
+= sprintf(b
+ *bl
, " ");
848 void transport_dump_vpd_proto_id(
850 unsigned char *p_buf
,
853 unsigned char buf
[VPD_TMP_BUF_SIZE
];
856 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
857 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
859 switch (vpd
->protocol_identifier
) {
861 sprintf(buf
+len
, "Fibre Channel\n");
864 sprintf(buf
+len
, "Parallel SCSI\n");
867 sprintf(buf
+len
, "SSA\n");
870 sprintf(buf
+len
, "IEEE 1394\n");
873 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
877 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
880 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
883 sprintf(buf
+len
, "Automation/Drive Interface Transport"
887 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
890 sprintf(buf
+len
, "Unknown 0x%02x\n",
891 vpd
->protocol_identifier
);
896 strncpy(p_buf
, buf
, p_buf_len
);
902 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
905 * Check if the Protocol Identifier Valid (PIV) bit is set..
907 * from spc3r23.pdf section 7.5.1
909 if (page_83
[1] & 0x80) {
910 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
911 vpd
->protocol_identifier_set
= 1;
912 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
915 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
917 int transport_dump_vpd_assoc(
919 unsigned char *p_buf
,
922 unsigned char buf
[VPD_TMP_BUF_SIZE
];
926 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
927 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
929 switch (vpd
->association
) {
931 sprintf(buf
+len
, "addressed logical unit\n");
934 sprintf(buf
+len
, "target port\n");
937 sprintf(buf
+len
, "SCSI target device\n");
940 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
946 strncpy(p_buf
, buf
, p_buf_len
);
953 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
956 * The VPD identification association..
958 * from spc3r23.pdf Section 7.6.3.1 Table 297
960 vpd
->association
= (page_83
[1] & 0x30);
961 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
963 EXPORT_SYMBOL(transport_set_vpd_assoc
);
965 int transport_dump_vpd_ident_type(
967 unsigned char *p_buf
,
970 unsigned char buf
[VPD_TMP_BUF_SIZE
];
974 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
975 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
977 switch (vpd
->device_identifier_type
) {
979 sprintf(buf
+len
, "Vendor specific\n");
982 sprintf(buf
+len
, "T10 Vendor ID based\n");
985 sprintf(buf
+len
, "EUI-64 based\n");
988 sprintf(buf
+len
, "NAA\n");
991 sprintf(buf
+len
, "Relative target port identifier\n");
994 sprintf(buf
+len
, "SCSI name string\n");
997 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
998 vpd
->device_identifier_type
);
1004 if (p_buf_len
< strlen(buf
)+1)
1006 strncpy(p_buf
, buf
, p_buf_len
);
1008 pr_debug("%s", buf
);
1014 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
1017 * The VPD identifier type..
1019 * from spc3r23.pdf Section 7.6.3.1 Table 298
1021 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
1022 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
1024 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
1026 int transport_dump_vpd_ident(
1027 struct t10_vpd
*vpd
,
1028 unsigned char *p_buf
,
1031 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1034 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1036 switch (vpd
->device_identifier_code_set
) {
1037 case 0x01: /* Binary */
1038 snprintf(buf
, sizeof(buf
),
1039 "T10 VPD Binary Device Identifier: %s\n",
1040 &vpd
->device_identifier
[0]);
1042 case 0x02: /* ASCII */
1043 snprintf(buf
, sizeof(buf
),
1044 "T10 VPD ASCII Device Identifier: %s\n",
1045 &vpd
->device_identifier
[0]);
1047 case 0x03: /* UTF-8 */
1048 snprintf(buf
, sizeof(buf
),
1049 "T10 VPD UTF-8 Device Identifier: %s\n",
1050 &vpd
->device_identifier
[0]);
1053 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
1054 " 0x%02x", vpd
->device_identifier_code_set
);
1060 strncpy(p_buf
, buf
, p_buf_len
);
1062 pr_debug("%s", buf
);
1068 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
1070 static const char hex_str
[] = "0123456789abcdef";
1071 int j
= 0, i
= 4; /* offset to start of the identifier */
1074 * The VPD Code Set (encoding)
1076 * from spc3r23.pdf Section 7.6.3.1 Table 296
1078 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1079 switch (vpd
->device_identifier_code_set
) {
1080 case 0x01: /* Binary */
1081 vpd
->device_identifier
[j
++] =
1082 hex_str
[vpd
->device_identifier_type
];
1083 while (i
< (4 + page_83
[3])) {
1084 vpd
->device_identifier
[j
++] =
1085 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1086 vpd
->device_identifier
[j
++] =
1087 hex_str
[page_83
[i
] & 0x0f];
1091 case 0x02: /* ASCII */
1092 case 0x03: /* UTF-8 */
1093 while (i
< (4 + page_83
[3]))
1094 vpd
->device_identifier
[j
++] = page_83
[i
++];
1100 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1102 EXPORT_SYMBOL(transport_set_vpd_ident
);
1104 static sense_reason_t
1105 target_check_max_data_sg_nents(struct se_cmd
*cmd
, struct se_device
*dev
,
1110 if (!cmd
->se_tfo
->max_data_sg_nents
)
1111 return TCM_NO_SENSE
;
1113 * Check if fabric enforced maximum SGL entries per I/O descriptor
1114 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1115 * residual_count and reduce original cmd->data_length to maximum
1116 * length based on single PAGE_SIZE entry scatter-lists.
1118 mtl
= (cmd
->se_tfo
->max_data_sg_nents
* PAGE_SIZE
);
1119 if (cmd
->data_length
> mtl
) {
1121 * If an existing CDB overflow is present, calculate new residual
1122 * based on CDB size minus fabric maximum transfer length.
1124 * If an existing CDB underflow is present, calculate new residual
1125 * based on original cmd->data_length minus fabric maximum transfer
1128 * Otherwise, set the underflow residual based on cmd->data_length
1129 * minus fabric maximum transfer length.
1131 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1132 cmd
->residual_count
= (size
- mtl
);
1133 } else if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
1134 u32 orig_dl
= size
+ cmd
->residual_count
;
1135 cmd
->residual_count
= (orig_dl
- mtl
);
1137 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1138 cmd
->residual_count
= (cmd
->data_length
- mtl
);
1140 cmd
->data_length
= mtl
;
1142 * Reset sbc_check_prot() calculated protection payload
1143 * length based upon the new smaller MTL.
1145 if (cmd
->prot_length
) {
1146 u32 sectors
= (mtl
/ dev
->dev_attrib
.block_size
);
1147 cmd
->prot_length
= dev
->prot_length
* sectors
;
1150 return TCM_NO_SENSE
;
1154 target_cmd_size_check(struct se_cmd
*cmd
, unsigned int size
)
1156 struct se_device
*dev
= cmd
->se_dev
;
1158 if (cmd
->unknown_data_length
) {
1159 cmd
->data_length
= size
;
1160 } else if (size
!= cmd
->data_length
) {
1161 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1162 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1163 " 0x%02x\n", cmd
->se_tfo
->get_fabric_name(),
1164 cmd
->data_length
, size
, cmd
->t_task_cdb
[0]);
1166 if (cmd
->data_direction
== DMA_TO_DEVICE
&&
1167 cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) {
1168 pr_err("Rejecting underflow/overflow WRITE data\n");
1169 return TCM_INVALID_CDB_FIELD
;
1172 * Reject READ_* or WRITE_* with overflow/underflow for
1173 * type SCF_SCSI_DATA_CDB.
1175 if (dev
->dev_attrib
.block_size
!= 512) {
1176 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1177 " CDB on non 512-byte sector setup subsystem"
1178 " plugin: %s\n", dev
->transport
->name
);
1179 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1180 return TCM_INVALID_CDB_FIELD
;
1183 * For the overflow case keep the existing fabric provided
1184 * ->data_length. Otherwise for the underflow case, reset
1185 * ->data_length to the smaller SCSI expected data transfer
1188 if (size
> cmd
->data_length
) {
1189 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
1190 cmd
->residual_count
= (size
- cmd
->data_length
);
1192 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1193 cmd
->residual_count
= (cmd
->data_length
- size
);
1194 cmd
->data_length
= size
;
1198 return target_check_max_data_sg_nents(cmd
, dev
, size
);
1203 * Used by fabric modules containing a local struct se_cmd within their
1204 * fabric dependent per I/O descriptor.
1206 * Preserves the value of @cmd->tag.
1208 void transport_init_se_cmd(
1210 const struct target_core_fabric_ops
*tfo
,
1211 struct se_session
*se_sess
,
1215 unsigned char *sense_buffer
)
1217 INIT_LIST_HEAD(&cmd
->se_delayed_node
);
1218 INIT_LIST_HEAD(&cmd
->se_qf_node
);
1219 INIT_LIST_HEAD(&cmd
->se_cmd_list
);
1220 INIT_LIST_HEAD(&cmd
->state_list
);
1221 init_completion(&cmd
->t_transport_stop_comp
);
1222 init_completion(&cmd
->cmd_wait_comp
);
1223 spin_lock_init(&cmd
->t_state_lock
);
1224 kref_init(&cmd
->cmd_kref
);
1227 cmd
->se_sess
= se_sess
;
1228 cmd
->data_length
= data_length
;
1229 cmd
->data_direction
= data_direction
;
1230 cmd
->sam_task_attr
= task_attr
;
1231 cmd
->sense_buffer
= sense_buffer
;
1233 cmd
->state_active
= false;
1235 EXPORT_SYMBOL(transport_init_se_cmd
);
1237 static sense_reason_t
1238 transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1240 struct se_device
*dev
= cmd
->se_dev
;
1243 * Check if SAM Task Attribute emulation is enabled for this
1244 * struct se_device storage object
1246 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1249 if (cmd
->sam_task_attr
== TCM_ACA_TAG
) {
1250 pr_debug("SAM Task Attribute ACA"
1251 " emulation is not supported\n");
1252 return TCM_INVALID_CDB_FIELD
;
1259 target_setup_cmd_from_cdb(struct se_cmd
*cmd
, unsigned char *cdb
)
1261 struct se_device
*dev
= cmd
->se_dev
;
1265 * Ensure that the received CDB is less than the max (252 + 8) bytes
1266 * for VARIABLE_LENGTH_CMD
1268 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1269 pr_err("Received SCSI CDB with command_size: %d that"
1270 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1271 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1272 return TCM_INVALID_CDB_FIELD
;
1275 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1276 * allocate the additional extended CDB buffer now.. Otherwise
1277 * setup the pointer from __t_task_cdb to t_task_cdb.
1279 if (scsi_command_size(cdb
) > sizeof(cmd
->__t_task_cdb
)) {
1280 cmd
->t_task_cdb
= kzalloc(scsi_command_size(cdb
),
1282 if (!cmd
->t_task_cdb
) {
1283 pr_err("Unable to allocate cmd->t_task_cdb"
1284 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1285 scsi_command_size(cdb
),
1286 (unsigned long)sizeof(cmd
->__t_task_cdb
));
1287 return TCM_OUT_OF_RESOURCES
;
1290 cmd
->t_task_cdb
= &cmd
->__t_task_cdb
[0];
1292 * Copy the original CDB into cmd->
1294 memcpy(cmd
->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1296 trace_target_sequencer_start(cmd
);
1298 ret
= dev
->transport
->parse_cdb(cmd
);
1299 if (ret
== TCM_UNSUPPORTED_SCSI_OPCODE
)
1300 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1301 cmd
->se_tfo
->get_fabric_name(),
1302 cmd
->se_sess
->se_node_acl
->initiatorname
,
1303 cmd
->t_task_cdb
[0]);
1307 ret
= transport_check_alloc_task_attr(cmd
);
1311 cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
1312 atomic_long_inc(&cmd
->se_lun
->lun_stats
.cmd_pdus
);
1315 EXPORT_SYMBOL(target_setup_cmd_from_cdb
);
1318 * Used by fabric module frontends to queue tasks directly.
1319 * May only be used from process context.
1321 int transport_handle_cdb_direct(
1328 pr_err("cmd->se_lun is NULL\n");
1331 if (in_interrupt()) {
1333 pr_err("transport_generic_handle_cdb cannot be called"
1334 " from interrupt context\n");
1338 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1339 * outstanding descriptors are handled correctly during shutdown via
1340 * transport_wait_for_tasks()
1342 * Also, we don't take cmd->t_state_lock here as we only expect
1343 * this to be called for initial descriptor submission.
1345 cmd
->t_state
= TRANSPORT_NEW_CMD
;
1346 cmd
->transport_state
|= CMD_T_ACTIVE
;
1349 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1350 * so follow TRANSPORT_NEW_CMD processing thread context usage
1351 * and call transport_generic_request_failure() if necessary..
1353 ret
= transport_generic_new_cmd(cmd
);
1355 transport_generic_request_failure(cmd
, ret
);
1358 EXPORT_SYMBOL(transport_handle_cdb_direct
);
1361 transport_generic_map_mem_to_cmd(struct se_cmd
*cmd
, struct scatterlist
*sgl
,
1362 u32 sgl_count
, struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
)
1364 if (!sgl
|| !sgl_count
)
1368 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1369 * scatterlists already have been set to follow what the fabric
1370 * passes for the original expected data transfer length.
1372 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1373 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1374 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1375 return TCM_INVALID_CDB_FIELD
;
1378 cmd
->t_data_sg
= sgl
;
1379 cmd
->t_data_nents
= sgl_count
;
1380 cmd
->t_bidi_data_sg
= sgl_bidi
;
1381 cmd
->t_bidi_data_nents
= sgl_bidi_count
;
1383 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
1388 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1389 * se_cmd + use pre-allocated SGL memory.
1391 * @se_cmd: command descriptor to submit
1392 * @se_sess: associated se_sess for endpoint
1393 * @cdb: pointer to SCSI CDB
1394 * @sense: pointer to SCSI sense buffer
1395 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1396 * @data_length: fabric expected data transfer length
1397 * @task_addr: SAM task attribute
1398 * @data_dir: DMA data direction
1399 * @flags: flags for command submission from target_sc_flags_tables
1400 * @sgl: struct scatterlist memory for unidirectional mapping
1401 * @sgl_count: scatterlist count for unidirectional mapping
1402 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1403 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1404 * @sgl_prot: struct scatterlist memory protection information
1405 * @sgl_prot_count: scatterlist count for protection information
1407 * Task tags are supported if the caller has set @se_cmd->tag.
1409 * Returns non zero to signal active I/O shutdown failure. All other
1410 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1411 * but still return zero here.
1413 * This may only be called from process context, and also currently
1414 * assumes internal allocation of fabric payload buffer by target-core.
1416 int target_submit_cmd_map_sgls(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1417 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1418 u32 data_length
, int task_attr
, int data_dir
, int flags
,
1419 struct scatterlist
*sgl
, u32 sgl_count
,
1420 struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
,
1421 struct scatterlist
*sgl_prot
, u32 sgl_prot_count
)
1423 struct se_portal_group
*se_tpg
;
1427 se_tpg
= se_sess
->se_tpg
;
1429 BUG_ON(se_cmd
->se_tfo
|| se_cmd
->se_sess
);
1430 BUG_ON(in_interrupt());
1432 * Initialize se_cmd for target operation. From this point
1433 * exceptions are handled by sending exception status via
1434 * target_core_fabric_ops->queue_status() callback
1436 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1437 data_length
, data_dir
, task_attr
, sense
);
1439 if (flags
& TARGET_SCF_USE_CPUID
)
1440 se_cmd
->se_cmd_flags
|= SCF_USE_CPUID
;
1442 se_cmd
->cpuid
= WORK_CPU_UNBOUND
;
1444 if (flags
& TARGET_SCF_UNKNOWN_SIZE
)
1445 se_cmd
->unknown_data_length
= 1;
1447 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1448 * se_sess->sess_cmd_list. A second kref_get here is necessary
1449 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1450 * kref_put() to happen during fabric packet acknowledgement.
1452 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1456 * Signal bidirectional data payloads to target-core
1458 if (flags
& TARGET_SCF_BIDI_OP
)
1459 se_cmd
->se_cmd_flags
|= SCF_BIDI
;
1461 * Locate se_lun pointer and attach it to struct se_cmd
1463 rc
= transport_lookup_cmd_lun(se_cmd
, unpacked_lun
);
1465 transport_send_check_condition_and_sense(se_cmd
, rc
, 0);
1466 target_put_sess_cmd(se_cmd
);
1470 rc
= target_setup_cmd_from_cdb(se_cmd
, cdb
);
1472 transport_generic_request_failure(se_cmd
, rc
);
1477 * Save pointers for SGLs containing protection information,
1480 if (sgl_prot_count
) {
1481 se_cmd
->t_prot_sg
= sgl_prot
;
1482 se_cmd
->t_prot_nents
= sgl_prot_count
;
1483 se_cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
;
1487 * When a non zero sgl_count has been passed perform SGL passthrough
1488 * mapping for pre-allocated fabric memory instead of having target
1489 * core perform an internal SGL allocation..
1491 if (sgl_count
!= 0) {
1495 * A work-around for tcm_loop as some userspace code via
1496 * scsi-generic do not memset their associated read buffers,
1497 * so go ahead and do that here for type non-data CDBs. Also
1498 * note that this is currently guaranteed to be a single SGL
1499 * for this case by target core in target_setup_cmd_from_cdb()
1500 * -> transport_generic_cmd_sequencer().
1502 if (!(se_cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) &&
1503 se_cmd
->data_direction
== DMA_FROM_DEVICE
) {
1504 unsigned char *buf
= NULL
;
1507 buf
= kmap(sg_page(sgl
)) + sgl
->offset
;
1510 memset(buf
, 0, sgl
->length
);
1511 kunmap(sg_page(sgl
));
1515 rc
= transport_generic_map_mem_to_cmd(se_cmd
, sgl
, sgl_count
,
1516 sgl_bidi
, sgl_bidi_count
);
1518 transport_generic_request_failure(se_cmd
, rc
);
1524 * Check if we need to delay processing because of ALUA
1525 * Active/NonOptimized primary access state..
1527 core_alua_check_nonop_delay(se_cmd
);
1529 transport_handle_cdb_direct(se_cmd
);
1532 EXPORT_SYMBOL(target_submit_cmd_map_sgls
);
1535 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1537 * @se_cmd: command descriptor to submit
1538 * @se_sess: associated se_sess for endpoint
1539 * @cdb: pointer to SCSI CDB
1540 * @sense: pointer to SCSI sense buffer
1541 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1542 * @data_length: fabric expected data transfer length
1543 * @task_addr: SAM task attribute
1544 * @data_dir: DMA data direction
1545 * @flags: flags for command submission from target_sc_flags_tables
1547 * Task tags are supported if the caller has set @se_cmd->tag.
1549 * Returns non zero to signal active I/O shutdown failure. All other
1550 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1551 * but still return zero here.
1553 * This may only be called from process context, and also currently
1554 * assumes internal allocation of fabric payload buffer by target-core.
1556 * It also assumes interal target core SGL memory allocation.
1558 int target_submit_cmd(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1559 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1560 u32 data_length
, int task_attr
, int data_dir
, int flags
)
1562 return target_submit_cmd_map_sgls(se_cmd
, se_sess
, cdb
, sense
,
1563 unpacked_lun
, data_length
, task_attr
, data_dir
,
1564 flags
, NULL
, 0, NULL
, 0, NULL
, 0);
1566 EXPORT_SYMBOL(target_submit_cmd
);
1568 static void target_complete_tmr_failure(struct work_struct
*work
)
1570 struct se_cmd
*se_cmd
= container_of(work
, struct se_cmd
, work
);
1572 se_cmd
->se_tmr_req
->response
= TMR_LUN_DOES_NOT_EXIST
;
1573 se_cmd
->se_tfo
->queue_tm_rsp(se_cmd
);
1575 transport_cmd_check_stop_to_fabric(se_cmd
);
1579 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1582 * @se_cmd: command descriptor to submit
1583 * @se_sess: associated se_sess for endpoint
1584 * @sense: pointer to SCSI sense buffer
1585 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1586 * @fabric_context: fabric context for TMR req
1587 * @tm_type: Type of TM request
1588 * @gfp: gfp type for caller
1589 * @tag: referenced task tag for TMR_ABORT_TASK
1590 * @flags: submit cmd flags
1592 * Callable from all contexts.
1595 int target_submit_tmr(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1596 unsigned char *sense
, u64 unpacked_lun
,
1597 void *fabric_tmr_ptr
, unsigned char tm_type
,
1598 gfp_t gfp
, u64 tag
, int flags
)
1600 struct se_portal_group
*se_tpg
;
1603 se_tpg
= se_sess
->se_tpg
;
1606 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1607 0, DMA_NONE
, TCM_SIMPLE_TAG
, sense
);
1609 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1610 * allocation failure.
1612 ret
= core_tmr_alloc_req(se_cmd
, fabric_tmr_ptr
, tm_type
, gfp
);
1616 if (tm_type
== TMR_ABORT_TASK
)
1617 se_cmd
->se_tmr_req
->ref_task_tag
= tag
;
1619 /* See target_submit_cmd for commentary */
1620 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1622 core_tmr_release_req(se_cmd
->se_tmr_req
);
1626 ret
= transport_lookup_tmr_lun(se_cmd
, unpacked_lun
);
1629 * For callback during failure handling, push this work off
1630 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1632 INIT_WORK(&se_cmd
->work
, target_complete_tmr_failure
);
1633 schedule_work(&se_cmd
->work
);
1636 transport_generic_handle_tmr(se_cmd
);
1639 EXPORT_SYMBOL(target_submit_tmr
);
1642 * Handle SAM-esque emulation for generic transport request failures.
1644 void transport_generic_request_failure(struct se_cmd
*cmd
,
1645 sense_reason_t sense_reason
)
1647 int ret
= 0, post_ret
= 0;
1649 if (transport_check_aborted_status(cmd
, 1))
1652 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1653 " CDB: 0x%02x\n", cmd
, cmd
->tag
, cmd
->t_task_cdb
[0]);
1654 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1655 cmd
->se_tfo
->get_cmd_state(cmd
),
1656 cmd
->t_state
, sense_reason
);
1657 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1658 (cmd
->transport_state
& CMD_T_ACTIVE
) != 0,
1659 (cmd
->transport_state
& CMD_T_STOP
) != 0,
1660 (cmd
->transport_state
& CMD_T_SENT
) != 0);
1663 * For SAM Task Attribute emulation for failed struct se_cmd
1665 transport_complete_task_attr(cmd
);
1667 * Handle special case for COMPARE_AND_WRITE failure, where the
1668 * callback is expected to drop the per device ->caw_sem.
1670 if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
1671 cmd
->transport_complete_callback
)
1672 cmd
->transport_complete_callback(cmd
, false, &post_ret
);
1674 switch (sense_reason
) {
1675 case TCM_NON_EXISTENT_LUN
:
1676 case TCM_UNSUPPORTED_SCSI_OPCODE
:
1677 case TCM_INVALID_CDB_FIELD
:
1678 case TCM_INVALID_PARAMETER_LIST
:
1679 case TCM_PARAMETER_LIST_LENGTH_ERROR
:
1680 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
1681 case TCM_UNKNOWN_MODE_PAGE
:
1682 case TCM_WRITE_PROTECTED
:
1683 case TCM_ADDRESS_OUT_OF_RANGE
:
1684 case TCM_CHECK_CONDITION_ABORT_CMD
:
1685 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
1686 case TCM_CHECK_CONDITION_NOT_READY
:
1687 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
:
1688 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
:
1689 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
:
1690 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE
:
1691 case TCM_TOO_MANY_TARGET_DESCS
:
1692 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE
:
1693 case TCM_TOO_MANY_SEGMENT_DESCS
:
1694 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE
:
1696 case TCM_OUT_OF_RESOURCES
:
1697 sense_reason
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1699 case TCM_RESERVATION_CONFLICT
:
1701 * No SENSE Data payload for this case, set SCSI Status
1702 * and queue the response to $FABRIC_MOD.
1704 * Uses linux/include/scsi/scsi.h SAM status codes defs
1706 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1708 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1709 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1712 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1715 cmd
->se_dev
->dev_attrib
.emulate_ua_intlck_ctrl
== 2) {
1716 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
1717 cmd
->orig_fe_lun
, 0x2C,
1718 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
1720 trace_target_cmd_complete(cmd
);
1721 ret
= cmd
->se_tfo
->queue_status(cmd
);
1722 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1726 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1727 cmd
->t_task_cdb
[0], sense_reason
);
1728 sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
1732 ret
= transport_send_check_condition_and_sense(cmd
, sense_reason
, 0);
1733 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1737 transport_lun_remove_cmd(cmd
);
1738 transport_cmd_check_stop_to_fabric(cmd
);
1742 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
1743 transport_handle_queue_full(cmd
, cmd
->se_dev
);
1745 EXPORT_SYMBOL(transport_generic_request_failure
);
1747 void __target_execute_cmd(struct se_cmd
*cmd
, bool do_checks
)
1751 if (!cmd
->execute_cmd
) {
1752 ret
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1757 * Check for an existing UNIT ATTENTION condition after
1758 * target_handle_task_attr() has done SAM task attr
1759 * checking, and possibly have already defered execution
1760 * out to target_restart_delayed_cmds() context.
1762 ret
= target_scsi3_ua_check(cmd
);
1766 ret
= target_alua_state_check(cmd
);
1770 ret
= target_check_reservation(cmd
);
1772 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1777 ret
= cmd
->execute_cmd(cmd
);
1781 spin_lock_irq(&cmd
->t_state_lock
);
1782 cmd
->transport_state
&= ~CMD_T_SENT
;
1783 spin_unlock_irq(&cmd
->t_state_lock
);
1785 transport_generic_request_failure(cmd
, ret
);
1788 static int target_write_prot_action(struct se_cmd
*cmd
)
1792 * Perform WRITE_INSERT of PI using software emulation when backend
1793 * device has PI enabled, if the transport has not already generated
1794 * PI using hardware WRITE_INSERT offload.
1796 switch (cmd
->prot_op
) {
1797 case TARGET_PROT_DOUT_INSERT
:
1798 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_INSERT
))
1799 sbc_dif_generate(cmd
);
1801 case TARGET_PROT_DOUT_STRIP
:
1802 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_STRIP
)
1805 sectors
= cmd
->data_length
>> ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
1806 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
1807 sectors
, 0, cmd
->t_prot_sg
, 0);
1808 if (unlikely(cmd
->pi_err
)) {
1809 spin_lock_irq(&cmd
->t_state_lock
);
1810 cmd
->transport_state
&= ~CMD_T_SENT
;
1811 spin_unlock_irq(&cmd
->t_state_lock
);
1812 transport_generic_request_failure(cmd
, cmd
->pi_err
);
1823 static bool target_handle_task_attr(struct se_cmd
*cmd
)
1825 struct se_device
*dev
= cmd
->se_dev
;
1827 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1830 cmd
->se_cmd_flags
|= SCF_TASK_ATTR_SET
;
1833 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1834 * to allow the passed struct se_cmd list of tasks to the front of the list.
1836 switch (cmd
->sam_task_attr
) {
1838 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1839 cmd
->t_task_cdb
[0]);
1841 case TCM_ORDERED_TAG
:
1842 atomic_inc_mb(&dev
->dev_ordered_sync
);
1844 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1845 cmd
->t_task_cdb
[0]);
1848 * Execute an ORDERED command if no other older commands
1849 * exist that need to be completed first.
1851 if (!atomic_read(&dev
->simple_cmds
))
1856 * For SIMPLE and UNTAGGED Task Attribute commands
1858 atomic_inc_mb(&dev
->simple_cmds
);
1862 if (atomic_read(&dev
->dev_ordered_sync
) == 0)
1865 spin_lock(&dev
->delayed_cmd_lock
);
1866 list_add_tail(&cmd
->se_delayed_node
, &dev
->delayed_cmd_list
);
1867 spin_unlock(&dev
->delayed_cmd_lock
);
1869 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1870 cmd
->t_task_cdb
[0], cmd
->sam_task_attr
);
1874 static int __transport_check_aborted_status(struct se_cmd
*, int);
1876 void target_execute_cmd(struct se_cmd
*cmd
)
1879 * Determine if frontend context caller is requesting the stopping of
1880 * this command for frontend exceptions.
1882 * If the received CDB has aleady been aborted stop processing it here.
1884 spin_lock_irq(&cmd
->t_state_lock
);
1885 if (__transport_check_aborted_status(cmd
, 1)) {
1886 spin_unlock_irq(&cmd
->t_state_lock
);
1889 if (cmd
->transport_state
& CMD_T_STOP
) {
1890 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1891 __func__
, __LINE__
, cmd
->tag
);
1893 spin_unlock_irq(&cmd
->t_state_lock
);
1894 complete_all(&cmd
->t_transport_stop_comp
);
1898 cmd
->t_state
= TRANSPORT_PROCESSING
;
1899 cmd
->transport_state
|= CMD_T_ACTIVE
| CMD_T_SENT
;
1900 spin_unlock_irq(&cmd
->t_state_lock
);
1902 if (target_write_prot_action(cmd
))
1905 if (target_handle_task_attr(cmd
)) {
1906 spin_lock_irq(&cmd
->t_state_lock
);
1907 cmd
->transport_state
&= ~CMD_T_SENT
;
1908 spin_unlock_irq(&cmd
->t_state_lock
);
1912 __target_execute_cmd(cmd
, true);
1914 EXPORT_SYMBOL(target_execute_cmd
);
1917 * Process all commands up to the last received ORDERED task attribute which
1918 * requires another blocking boundary
1920 static void target_restart_delayed_cmds(struct se_device
*dev
)
1925 spin_lock(&dev
->delayed_cmd_lock
);
1926 if (list_empty(&dev
->delayed_cmd_list
)) {
1927 spin_unlock(&dev
->delayed_cmd_lock
);
1931 cmd
= list_entry(dev
->delayed_cmd_list
.next
,
1932 struct se_cmd
, se_delayed_node
);
1933 list_del(&cmd
->se_delayed_node
);
1934 spin_unlock(&dev
->delayed_cmd_lock
);
1936 __target_execute_cmd(cmd
, true);
1938 if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
)
1944 * Called from I/O completion to determine which dormant/delayed
1945 * and ordered cmds need to have their tasks added to the execution queue.
1947 static void transport_complete_task_attr(struct se_cmd
*cmd
)
1949 struct se_device
*dev
= cmd
->se_dev
;
1951 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1954 if (!(cmd
->se_cmd_flags
& SCF_TASK_ATTR_SET
))
1957 if (cmd
->sam_task_attr
== TCM_SIMPLE_TAG
) {
1958 atomic_dec_mb(&dev
->simple_cmds
);
1959 dev
->dev_cur_ordered_id
++;
1960 } else if (cmd
->sam_task_attr
== TCM_HEAD_TAG
) {
1961 dev
->dev_cur_ordered_id
++;
1962 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
1963 dev
->dev_cur_ordered_id
);
1964 } else if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
) {
1965 atomic_dec_mb(&dev
->dev_ordered_sync
);
1967 dev
->dev_cur_ordered_id
++;
1968 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
1969 dev
->dev_cur_ordered_id
);
1972 target_restart_delayed_cmds(dev
);
1975 static void transport_complete_qf(struct se_cmd
*cmd
)
1979 transport_complete_task_attr(cmd
);
1981 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
1982 trace_target_cmd_complete(cmd
);
1983 ret
= cmd
->se_tfo
->queue_status(cmd
);
1987 switch (cmd
->data_direction
) {
1988 case DMA_FROM_DEVICE
:
1989 if (cmd
->scsi_status
)
1992 trace_target_cmd_complete(cmd
);
1993 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
1996 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
1997 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2000 /* Fall through for DMA_TO_DEVICE */
2003 trace_target_cmd_complete(cmd
);
2004 ret
= cmd
->se_tfo
->queue_status(cmd
);
2012 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2015 transport_lun_remove_cmd(cmd
);
2016 transport_cmd_check_stop_to_fabric(cmd
);
2019 static void transport_handle_queue_full(
2021 struct se_device
*dev
)
2023 spin_lock_irq(&dev
->qf_cmd_lock
);
2024 list_add_tail(&cmd
->se_qf_node
, &cmd
->se_dev
->qf_cmd_list
);
2025 atomic_inc_mb(&dev
->dev_qf_count
);
2026 spin_unlock_irq(&cmd
->se_dev
->qf_cmd_lock
);
2028 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2031 static bool target_read_prot_action(struct se_cmd
*cmd
)
2033 switch (cmd
->prot_op
) {
2034 case TARGET_PROT_DIN_STRIP
:
2035 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_STRIP
)) {
2036 u32 sectors
= cmd
->data_length
>>
2037 ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
2039 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
2040 sectors
, 0, cmd
->t_prot_sg
,
2046 case TARGET_PROT_DIN_INSERT
:
2047 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_INSERT
)
2050 sbc_dif_generate(cmd
);
2059 static void target_complete_ok_work(struct work_struct
*work
)
2061 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
2065 * Check if we need to move delayed/dormant tasks from cmds on the
2066 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2069 transport_complete_task_attr(cmd
);
2072 * Check to schedule QUEUE_FULL work, or execute an existing
2073 * cmd->transport_qf_callback()
2075 if (atomic_read(&cmd
->se_dev
->dev_qf_count
) != 0)
2076 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2079 * Check if we need to send a sense buffer from
2080 * the struct se_cmd in question.
2082 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
2083 WARN_ON(!cmd
->scsi_status
);
2084 ret
= transport_send_check_condition_and_sense(
2086 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2089 transport_lun_remove_cmd(cmd
);
2090 transport_cmd_check_stop_to_fabric(cmd
);
2094 * Check for a callback, used by amongst other things
2095 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2097 if (cmd
->transport_complete_callback
) {
2099 bool caw
= (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
);
2100 bool zero_dl
= !(cmd
->data_length
);
2103 rc
= cmd
->transport_complete_callback(cmd
, true, &post_ret
);
2104 if (!rc
&& !post_ret
) {
2110 ret
= transport_send_check_condition_and_sense(cmd
,
2112 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2115 transport_lun_remove_cmd(cmd
);
2116 transport_cmd_check_stop_to_fabric(cmd
);
2122 switch (cmd
->data_direction
) {
2123 case DMA_FROM_DEVICE
:
2124 if (cmd
->scsi_status
)
2127 atomic_long_add(cmd
->data_length
,
2128 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2130 * Perform READ_STRIP of PI using software emulation when
2131 * backend had PI enabled, if the transport will not be
2132 * performing hardware READ_STRIP offload.
2134 if (target_read_prot_action(cmd
)) {
2135 ret
= transport_send_check_condition_and_sense(cmd
,
2137 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2140 transport_lun_remove_cmd(cmd
);
2141 transport_cmd_check_stop_to_fabric(cmd
);
2145 trace_target_cmd_complete(cmd
);
2146 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2147 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2151 atomic_long_add(cmd
->data_length
,
2152 &cmd
->se_lun
->lun_stats
.rx_data_octets
);
2154 * Check if we need to send READ payload for BIDI-COMMAND
2156 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2157 atomic_long_add(cmd
->data_length
,
2158 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2159 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2160 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2164 /* Fall through for DMA_TO_DEVICE */
2167 trace_target_cmd_complete(cmd
);
2168 ret
= cmd
->se_tfo
->queue_status(cmd
);
2169 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2176 transport_lun_remove_cmd(cmd
);
2177 transport_cmd_check_stop_to_fabric(cmd
);
2181 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2182 " data_direction: %d\n", cmd
, cmd
->data_direction
);
2183 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
2184 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2187 void target_free_sgl(struct scatterlist
*sgl
, int nents
)
2189 struct scatterlist
*sg
;
2192 for_each_sg(sgl
, sg
, nents
, count
)
2193 __free_page(sg_page(sg
));
2197 EXPORT_SYMBOL(target_free_sgl
);
2199 static inline void transport_reset_sgl_orig(struct se_cmd
*cmd
)
2202 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2203 * emulation, and free + reset pointers if necessary..
2205 if (!cmd
->t_data_sg_orig
)
2208 kfree(cmd
->t_data_sg
);
2209 cmd
->t_data_sg
= cmd
->t_data_sg_orig
;
2210 cmd
->t_data_sg_orig
= NULL
;
2211 cmd
->t_data_nents
= cmd
->t_data_nents_orig
;
2212 cmd
->t_data_nents_orig
= 0;
2215 static inline void transport_free_pages(struct se_cmd
*cmd
)
2217 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2218 target_free_sgl(cmd
->t_prot_sg
, cmd
->t_prot_nents
);
2219 cmd
->t_prot_sg
= NULL
;
2220 cmd
->t_prot_nents
= 0;
2223 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) {
2225 * Release special case READ buffer payload required for
2226 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2228 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) {
2229 target_free_sgl(cmd
->t_bidi_data_sg
,
2230 cmd
->t_bidi_data_nents
);
2231 cmd
->t_bidi_data_sg
= NULL
;
2232 cmd
->t_bidi_data_nents
= 0;
2234 transport_reset_sgl_orig(cmd
);
2237 transport_reset_sgl_orig(cmd
);
2239 target_free_sgl(cmd
->t_data_sg
, cmd
->t_data_nents
);
2240 cmd
->t_data_sg
= NULL
;
2241 cmd
->t_data_nents
= 0;
2243 target_free_sgl(cmd
->t_bidi_data_sg
, cmd
->t_bidi_data_nents
);
2244 cmd
->t_bidi_data_sg
= NULL
;
2245 cmd
->t_bidi_data_nents
= 0;
2249 * transport_put_cmd - release a reference to a command
2250 * @cmd: command to release
2252 * This routine releases our reference to the command and frees it if possible.
2254 static int transport_put_cmd(struct se_cmd
*cmd
)
2256 BUG_ON(!cmd
->se_tfo
);
2258 * If this cmd has been setup with target_get_sess_cmd(), drop
2259 * the kref and call ->release_cmd() in kref callback.
2261 return target_put_sess_cmd(cmd
);
2264 void *transport_kmap_data_sg(struct se_cmd
*cmd
)
2266 struct scatterlist
*sg
= cmd
->t_data_sg
;
2267 struct page
**pages
;
2271 * We need to take into account a possible offset here for fabrics like
2272 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2273 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2275 if (!cmd
->t_data_nents
)
2279 if (cmd
->t_data_nents
== 1)
2280 return kmap(sg_page(sg
)) + sg
->offset
;
2282 /* >1 page. use vmap */
2283 pages
= kmalloc(sizeof(*pages
) * cmd
->t_data_nents
, GFP_KERNEL
);
2287 /* convert sg[] to pages[] */
2288 for_each_sg(cmd
->t_data_sg
, sg
, cmd
->t_data_nents
, i
) {
2289 pages
[i
] = sg_page(sg
);
2292 cmd
->t_data_vmap
= vmap(pages
, cmd
->t_data_nents
, VM_MAP
, PAGE_KERNEL
);
2294 if (!cmd
->t_data_vmap
)
2297 return cmd
->t_data_vmap
+ cmd
->t_data_sg
[0].offset
;
2299 EXPORT_SYMBOL(transport_kmap_data_sg
);
2301 void transport_kunmap_data_sg(struct se_cmd
*cmd
)
2303 if (!cmd
->t_data_nents
) {
2305 } else if (cmd
->t_data_nents
== 1) {
2306 kunmap(sg_page(cmd
->t_data_sg
));
2310 vunmap(cmd
->t_data_vmap
);
2311 cmd
->t_data_vmap
= NULL
;
2313 EXPORT_SYMBOL(transport_kunmap_data_sg
);
2316 target_alloc_sgl(struct scatterlist
**sgl
, unsigned int *nents
, u32 length
,
2317 bool zero_page
, bool chainable
)
2319 struct scatterlist
*sg
;
2321 gfp_t zero_flag
= (zero_page
) ? __GFP_ZERO
: 0;
2322 unsigned int nalloc
, nent
;
2325 nalloc
= nent
= DIV_ROUND_UP(length
, PAGE_SIZE
);
2328 sg
= kmalloc_array(nalloc
, sizeof(struct scatterlist
), GFP_KERNEL
);
2332 sg_init_table(sg
, nalloc
);
2335 u32 page_len
= min_t(u32
, length
, PAGE_SIZE
);
2336 page
= alloc_page(GFP_KERNEL
| zero_flag
);
2340 sg_set_page(&sg
[i
], page
, page_len
, 0);
2351 __free_page(sg_page(&sg
[i
]));
2356 EXPORT_SYMBOL(target_alloc_sgl
);
2359 * Allocate any required resources to execute the command. For writes we
2360 * might not have the payload yet, so notify the fabric via a call to
2361 * ->write_pending instead. Otherwise place it on the execution queue.
2364 transport_generic_new_cmd(struct se_cmd
*cmd
)
2366 unsigned long flags
;
2368 bool zero_flag
= !(cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
);
2370 if (cmd
->prot_op
!= TARGET_PROT_NORMAL
&&
2371 !(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2372 ret
= target_alloc_sgl(&cmd
->t_prot_sg
, &cmd
->t_prot_nents
,
2373 cmd
->prot_length
, true, false);
2375 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2379 * Determine is the TCM fabric module has already allocated physical
2380 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2383 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) &&
2386 if ((cmd
->se_cmd_flags
& SCF_BIDI
) ||
2387 (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)) {
2390 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)
2391 bidi_length
= cmd
->t_task_nolb
*
2392 cmd
->se_dev
->dev_attrib
.block_size
;
2394 bidi_length
= cmd
->data_length
;
2396 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2397 &cmd
->t_bidi_data_nents
,
2398 bidi_length
, zero_flag
, false);
2400 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2403 ret
= target_alloc_sgl(&cmd
->t_data_sg
, &cmd
->t_data_nents
,
2404 cmd
->data_length
, zero_flag
, false);
2406 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2407 } else if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
2410 * Special case for COMPARE_AND_WRITE with fabrics
2411 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2413 u32 caw_length
= cmd
->t_task_nolb
*
2414 cmd
->se_dev
->dev_attrib
.block_size
;
2416 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2417 &cmd
->t_bidi_data_nents
,
2418 caw_length
, zero_flag
, false);
2420 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2423 * If this command is not a write we can execute it right here,
2424 * for write buffers we need to notify the fabric driver first
2425 * and let it call back once the write buffers are ready.
2427 target_add_to_state_list(cmd
);
2428 if (cmd
->data_direction
!= DMA_TO_DEVICE
|| cmd
->data_length
== 0) {
2429 target_execute_cmd(cmd
);
2433 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2434 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
2436 * Determine if frontend context caller is requesting the stopping of
2437 * this command for frontend exceptions.
2439 if (cmd
->transport_state
& CMD_T_STOP
) {
2440 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2441 __func__
, __LINE__
, cmd
->tag
);
2443 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2445 complete_all(&cmd
->t_transport_stop_comp
);
2448 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
2449 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2451 ret
= cmd
->se_tfo
->write_pending(cmd
);
2452 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2455 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2458 return (!ret
) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2461 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd
);
2462 cmd
->t_state
= TRANSPORT_COMPLETE_QF_WP
;
2463 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2466 EXPORT_SYMBOL(transport_generic_new_cmd
);
2468 static void transport_write_pending_qf(struct se_cmd
*cmd
)
2472 ret
= cmd
->se_tfo
->write_pending(cmd
);
2473 if (ret
== -EAGAIN
|| ret
== -ENOMEM
) {
2474 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2476 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2481 __transport_wait_for_tasks(struct se_cmd
*, bool, bool *, bool *,
2482 unsigned long *flags
);
2484 static void target_wait_free_cmd(struct se_cmd
*cmd
, bool *aborted
, bool *tas
)
2486 unsigned long flags
;
2488 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2489 __transport_wait_for_tasks(cmd
, true, aborted
, tas
, &flags
);
2490 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2493 int transport_generic_free_cmd(struct se_cmd
*cmd
, int wait_for_tasks
)
2496 bool aborted
= false, tas
= false;
2498 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)) {
2499 if (wait_for_tasks
&& (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2500 target_wait_free_cmd(cmd
, &aborted
, &tas
);
2502 if (!aborted
|| tas
)
2503 ret
= transport_put_cmd(cmd
);
2506 target_wait_free_cmd(cmd
, &aborted
, &tas
);
2508 * Handle WRITE failure case where transport_generic_new_cmd()
2509 * has already added se_cmd to state_list, but fabric has
2510 * failed command before I/O submission.
2512 if (cmd
->state_active
)
2513 target_remove_from_state_list(cmd
);
2516 transport_lun_remove_cmd(cmd
);
2518 if (!aborted
|| tas
)
2519 ret
= transport_put_cmd(cmd
);
2522 * If the task has been internally aborted due to TMR ABORT_TASK
2523 * or LUN_RESET, target_core_tmr.c is responsible for performing
2524 * the remaining calls to target_put_sess_cmd(), and not the
2525 * callers of this function.
2528 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd
->tag
);
2529 wait_for_completion(&cmd
->cmd_wait_comp
);
2530 cmd
->se_tfo
->release_cmd(cmd
);
2535 EXPORT_SYMBOL(transport_generic_free_cmd
);
2537 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2538 * @se_cmd: command descriptor to add
2539 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2541 int target_get_sess_cmd(struct se_cmd
*se_cmd
, bool ack_kref
)
2543 struct se_session
*se_sess
= se_cmd
->se_sess
;
2544 unsigned long flags
;
2548 * Add a second kref if the fabric caller is expecting to handle
2549 * fabric acknowledgement that requires two target_put_sess_cmd()
2550 * invocations before se_cmd descriptor release.
2553 if (!kref_get_unless_zero(&se_cmd
->cmd_kref
))
2556 se_cmd
->se_cmd_flags
|= SCF_ACK_KREF
;
2559 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2560 if (se_sess
->sess_tearing_down
) {
2564 list_add_tail(&se_cmd
->se_cmd_list
, &se_sess
->sess_cmd_list
);
2566 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2568 if (ret
&& ack_kref
)
2569 target_put_sess_cmd(se_cmd
);
2573 EXPORT_SYMBOL(target_get_sess_cmd
);
2575 static void target_free_cmd_mem(struct se_cmd
*cmd
)
2577 transport_free_pages(cmd
);
2579 if (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)
2580 core_tmr_release_req(cmd
->se_tmr_req
);
2581 if (cmd
->t_task_cdb
!= cmd
->__t_task_cdb
)
2582 kfree(cmd
->t_task_cdb
);
2585 static void target_release_cmd_kref(struct kref
*kref
)
2587 struct se_cmd
*se_cmd
= container_of(kref
, struct se_cmd
, cmd_kref
);
2588 struct se_session
*se_sess
= se_cmd
->se_sess
;
2589 unsigned long flags
;
2593 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2595 spin_lock(&se_cmd
->t_state_lock
);
2596 fabric_stop
= (se_cmd
->transport_state
& CMD_T_FABRIC_STOP
) &&
2597 (se_cmd
->transport_state
& CMD_T_ABORTED
);
2598 spin_unlock(&se_cmd
->t_state_lock
);
2600 if (se_cmd
->cmd_wait_set
|| fabric_stop
) {
2601 list_del_init(&se_cmd
->se_cmd_list
);
2602 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2603 target_free_cmd_mem(se_cmd
);
2604 complete(&se_cmd
->cmd_wait_comp
);
2607 list_del_init(&se_cmd
->se_cmd_list
);
2608 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2611 target_free_cmd_mem(se_cmd
);
2612 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2616 * target_put_sess_cmd - decrease the command reference count
2617 * @se_cmd: command to drop a reference from
2619 * Returns 1 if and only if this target_put_sess_cmd() call caused the
2620 * refcount to drop to zero. Returns zero otherwise.
2622 int target_put_sess_cmd(struct se_cmd
*se_cmd
)
2624 return kref_put(&se_cmd
->cmd_kref
, target_release_cmd_kref
);
2626 EXPORT_SYMBOL(target_put_sess_cmd
);
2628 /* target_sess_cmd_list_set_waiting - Flag all commands in
2629 * sess_cmd_list to complete cmd_wait_comp. Set
2630 * sess_tearing_down so no more commands are queued.
2631 * @se_sess: session to flag
2633 void target_sess_cmd_list_set_waiting(struct se_session
*se_sess
)
2635 struct se_cmd
*se_cmd
, *tmp_cmd
;
2636 unsigned long flags
;
2639 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2640 if (se_sess
->sess_tearing_down
) {
2641 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2644 se_sess
->sess_tearing_down
= 1;
2645 list_splice_init(&se_sess
->sess_cmd_list
, &se_sess
->sess_wait_list
);
2647 list_for_each_entry_safe(se_cmd
, tmp_cmd
,
2648 &se_sess
->sess_wait_list
, se_cmd_list
) {
2649 rc
= kref_get_unless_zero(&se_cmd
->cmd_kref
);
2651 se_cmd
->cmd_wait_set
= 1;
2652 spin_lock(&se_cmd
->t_state_lock
);
2653 se_cmd
->transport_state
|= CMD_T_FABRIC_STOP
;
2654 spin_unlock(&se_cmd
->t_state_lock
);
2656 list_del_init(&se_cmd
->se_cmd_list
);
2659 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2661 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting
);
2663 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2664 * @se_sess: session to wait for active I/O
2666 void target_wait_for_sess_cmds(struct se_session
*se_sess
)
2668 struct se_cmd
*se_cmd
, *tmp_cmd
;
2669 unsigned long flags
;
2672 list_for_each_entry_safe(se_cmd
, tmp_cmd
,
2673 &se_sess
->sess_wait_list
, se_cmd_list
) {
2674 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2675 " %d\n", se_cmd
, se_cmd
->t_state
,
2676 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2678 spin_lock_irqsave(&se_cmd
->t_state_lock
, flags
);
2679 tas
= (se_cmd
->transport_state
& CMD_T_TAS
);
2680 spin_unlock_irqrestore(&se_cmd
->t_state_lock
, flags
);
2682 if (!target_put_sess_cmd(se_cmd
)) {
2684 target_put_sess_cmd(se_cmd
);
2687 wait_for_completion(&se_cmd
->cmd_wait_comp
);
2688 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2689 " fabric state: %d\n", se_cmd
, se_cmd
->t_state
,
2690 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2692 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2695 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2696 WARN_ON(!list_empty(&se_sess
->sess_cmd_list
));
2697 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2700 EXPORT_SYMBOL(target_wait_for_sess_cmds
);
2702 static void target_lun_confirm(struct percpu_ref
*ref
)
2704 struct se_lun
*lun
= container_of(ref
, struct se_lun
, lun_ref
);
2706 complete(&lun
->lun_ref_comp
);
2709 void transport_clear_lun_ref(struct se_lun
*lun
)
2712 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
2713 * the initial reference and schedule confirm kill to be
2714 * executed after one full RCU grace period has completed.
2716 percpu_ref_kill_and_confirm(&lun
->lun_ref
, target_lun_confirm
);
2718 * The first completion waits for percpu_ref_switch_to_atomic_rcu()
2719 * to call target_lun_confirm after lun->lun_ref has been marked
2720 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
2721 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
2722 * fails for all new incoming I/O.
2724 wait_for_completion(&lun
->lun_ref_comp
);
2726 * The second completion waits for percpu_ref_put_many() to
2727 * invoke ->release() after lun->lun_ref has switched to
2728 * atomic_t mode, and lun->lun_ref.count has reached zero.
2730 * At this point all target-core lun->lun_ref references have
2731 * been dropped via transport_lun_remove_cmd(), and it's safe
2732 * to proceed with the remaining LUN shutdown.
2734 wait_for_completion(&lun
->lun_shutdown_comp
);
2738 __transport_wait_for_tasks(struct se_cmd
*cmd
, bool fabric_stop
,
2739 bool *aborted
, bool *tas
, unsigned long *flags
)
2740 __releases(&cmd
->t_state_lock
)
2741 __acquires(&cmd
->t_state_lock
)
2744 assert_spin_locked(&cmd
->t_state_lock
);
2745 WARN_ON_ONCE(!irqs_disabled());
2748 cmd
->transport_state
|= CMD_T_FABRIC_STOP
;
2750 if (cmd
->transport_state
& CMD_T_ABORTED
)
2753 if (cmd
->transport_state
& CMD_T_TAS
)
2756 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) &&
2757 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2760 if (!(cmd
->se_cmd_flags
& SCF_SUPPORTED_SAM_OPCODE
) &&
2761 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2764 if (!(cmd
->transport_state
& CMD_T_ACTIVE
))
2767 if (fabric_stop
&& *aborted
)
2770 cmd
->transport_state
|= CMD_T_STOP
;
2772 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d,"
2773 " t_state: %d, CMD_T_STOP\n", cmd
, cmd
->tag
,
2774 cmd
->se_tfo
->get_cmd_state(cmd
), cmd
->t_state
);
2776 spin_unlock_irqrestore(&cmd
->t_state_lock
, *flags
);
2778 wait_for_completion(&cmd
->t_transport_stop_comp
);
2780 spin_lock_irqsave(&cmd
->t_state_lock
, *flags
);
2781 cmd
->transport_state
&= ~(CMD_T_ACTIVE
| CMD_T_STOP
);
2783 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2784 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd
->tag
);
2790 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
2791 * @cmd: command to wait on
2793 bool transport_wait_for_tasks(struct se_cmd
*cmd
)
2795 unsigned long flags
;
2796 bool ret
, aborted
= false, tas
= false;
2798 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2799 ret
= __transport_wait_for_tasks(cmd
, false, &aborted
, &tas
, &flags
);
2800 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2804 EXPORT_SYMBOL(transport_wait_for_tasks
);
2810 bool add_sector_info
;
2813 static const struct sense_info sense_info_table
[] = {
2817 [TCM_NON_EXISTENT_LUN
] = {
2818 .key
= ILLEGAL_REQUEST
,
2819 .asc
= 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2821 [TCM_UNSUPPORTED_SCSI_OPCODE
] = {
2822 .key
= ILLEGAL_REQUEST
,
2823 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
2825 [TCM_SECTOR_COUNT_TOO_MANY
] = {
2826 .key
= ILLEGAL_REQUEST
,
2827 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
2829 [TCM_UNKNOWN_MODE_PAGE
] = {
2830 .key
= ILLEGAL_REQUEST
,
2831 .asc
= 0x24, /* INVALID FIELD IN CDB */
2833 [TCM_CHECK_CONDITION_ABORT_CMD
] = {
2834 .key
= ABORTED_COMMAND
,
2835 .asc
= 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
2838 [TCM_INCORRECT_AMOUNT_OF_DATA
] = {
2839 .key
= ABORTED_COMMAND
,
2840 .asc
= 0x0c, /* WRITE ERROR */
2841 .ascq
= 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
2843 [TCM_INVALID_CDB_FIELD
] = {
2844 .key
= ILLEGAL_REQUEST
,
2845 .asc
= 0x24, /* INVALID FIELD IN CDB */
2847 [TCM_INVALID_PARAMETER_LIST
] = {
2848 .key
= ILLEGAL_REQUEST
,
2849 .asc
= 0x26, /* INVALID FIELD IN PARAMETER LIST */
2851 [TCM_TOO_MANY_TARGET_DESCS
] = {
2852 .key
= ILLEGAL_REQUEST
,
2854 .ascq
= 0x06, /* TOO MANY TARGET DESCRIPTORS */
2856 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE
] = {
2857 .key
= ILLEGAL_REQUEST
,
2859 .ascq
= 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
2861 [TCM_TOO_MANY_SEGMENT_DESCS
] = {
2862 .key
= ILLEGAL_REQUEST
,
2864 .ascq
= 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
2866 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE
] = {
2867 .key
= ILLEGAL_REQUEST
,
2869 .ascq
= 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
2871 [TCM_PARAMETER_LIST_LENGTH_ERROR
] = {
2872 .key
= ILLEGAL_REQUEST
,
2873 .asc
= 0x1a, /* PARAMETER LIST LENGTH ERROR */
2875 [TCM_UNEXPECTED_UNSOLICITED_DATA
] = {
2876 .key
= ILLEGAL_REQUEST
,
2877 .asc
= 0x0c, /* WRITE ERROR */
2878 .ascq
= 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
2880 [TCM_SERVICE_CRC_ERROR
] = {
2881 .key
= ABORTED_COMMAND
,
2882 .asc
= 0x47, /* PROTOCOL SERVICE CRC ERROR */
2883 .ascq
= 0x05, /* N/A */
2885 [TCM_SNACK_REJECTED
] = {
2886 .key
= ABORTED_COMMAND
,
2887 .asc
= 0x11, /* READ ERROR */
2888 .ascq
= 0x13, /* FAILED RETRANSMISSION REQUEST */
2890 [TCM_WRITE_PROTECTED
] = {
2891 .key
= DATA_PROTECT
,
2892 .asc
= 0x27, /* WRITE PROTECTED */
2894 [TCM_ADDRESS_OUT_OF_RANGE
] = {
2895 .key
= ILLEGAL_REQUEST
,
2896 .asc
= 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2898 [TCM_CHECK_CONDITION_UNIT_ATTENTION
] = {
2899 .key
= UNIT_ATTENTION
,
2901 [TCM_CHECK_CONDITION_NOT_READY
] = {
2904 [TCM_MISCOMPARE_VERIFY
] = {
2906 .asc
= 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
2909 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
] = {
2910 .key
= ABORTED_COMMAND
,
2912 .ascq
= 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
2913 .add_sector_info
= true,
2915 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
] = {
2916 .key
= ABORTED_COMMAND
,
2918 .ascq
= 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2919 .add_sector_info
= true,
2921 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
] = {
2922 .key
= ABORTED_COMMAND
,
2924 .ascq
= 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2925 .add_sector_info
= true,
2927 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE
] = {
2928 .key
= COPY_ABORTED
,
2930 .ascq
= 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
2933 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
] = {
2935 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2936 * Solaris initiators. Returning NOT READY instead means the
2937 * operations will be retried a finite number of times and we
2938 * can survive intermittent errors.
2941 .asc
= 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
2945 static int translate_sense_reason(struct se_cmd
*cmd
, sense_reason_t reason
)
2947 const struct sense_info
*si
;
2948 u8
*buffer
= cmd
->sense_buffer
;
2949 int r
= (__force
int)reason
;
2951 bool desc_format
= target_sense_desc_format(cmd
->se_dev
);
2953 if (r
< ARRAY_SIZE(sense_info_table
) && sense_info_table
[r
].key
)
2954 si
= &sense_info_table
[r
];
2956 si
= &sense_info_table
[(__force
int)
2957 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
];
2959 if (reason
== TCM_CHECK_CONDITION_UNIT_ATTENTION
) {
2960 core_scsi3_ua_for_check_condition(cmd
, &asc
, &ascq
);
2961 WARN_ON_ONCE(asc
== 0);
2962 } else if (si
->asc
== 0) {
2963 WARN_ON_ONCE(cmd
->scsi_asc
== 0);
2964 asc
= cmd
->scsi_asc
;
2965 ascq
= cmd
->scsi_ascq
;
2971 scsi_build_sense_buffer(desc_format
, buffer
, si
->key
, asc
, ascq
);
2972 if (si
->add_sector_info
)
2973 return scsi_set_sense_information(buffer
,
2974 cmd
->scsi_sense_length
,
2981 transport_send_check_condition_and_sense(struct se_cmd
*cmd
,
2982 sense_reason_t reason
, int from_transport
)
2984 unsigned long flags
;
2986 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2987 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
2988 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2991 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
2992 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2994 if (!from_transport
) {
2997 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
2998 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
2999 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
3000 rc
= translate_sense_reason(cmd
, reason
);
3005 trace_target_cmd_complete(cmd
);
3006 return cmd
->se_tfo
->queue_status(cmd
);
3008 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
3010 static int __transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
3011 __releases(&cmd
->t_state_lock
)
3012 __acquires(&cmd
->t_state_lock
)
3014 assert_spin_locked(&cmd
->t_state_lock
);
3015 WARN_ON_ONCE(!irqs_disabled());
3017 if (!(cmd
->transport_state
& CMD_T_ABORTED
))
3020 * If cmd has been aborted but either no status is to be sent or it has
3021 * already been sent, just return
3023 if (!send_status
|| !(cmd
->se_cmd_flags
& SCF_SEND_DELAYED_TAS
)) {
3025 cmd
->se_cmd_flags
|= SCF_SEND_DELAYED_TAS
;
3029 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
3030 " 0x%02x ITT: 0x%08llx\n", cmd
->t_task_cdb
[0], cmd
->tag
);
3032 cmd
->se_cmd_flags
&= ~SCF_SEND_DELAYED_TAS
;
3033 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
3034 trace_target_cmd_complete(cmd
);
3036 spin_unlock_irq(&cmd
->t_state_lock
);
3037 cmd
->se_tfo
->queue_status(cmd
);
3038 spin_lock_irq(&cmd
->t_state_lock
);
3043 int transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
3047 spin_lock_irq(&cmd
->t_state_lock
);
3048 ret
= __transport_check_aborted_status(cmd
, send_status
);
3049 spin_unlock_irq(&cmd
->t_state_lock
);
3053 EXPORT_SYMBOL(transport_check_aborted_status
);
3055 void transport_send_task_abort(struct se_cmd
*cmd
)
3057 unsigned long flags
;
3059 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3060 if (cmd
->se_cmd_flags
& (SCF_SENT_CHECK_CONDITION
)) {
3061 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3064 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3067 * If there are still expected incoming fabric WRITEs, we wait
3068 * until until they have completed before sending a TASK_ABORTED
3069 * response. This response with TASK_ABORTED status will be
3070 * queued back to fabric module by transport_check_aborted_status().
3072 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
3073 if (cmd
->se_tfo
->write_pending_status(cmd
) != 0) {
3074 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3075 if (cmd
->se_cmd_flags
& SCF_SEND_DELAYED_TAS
) {
3076 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3079 cmd
->se_cmd_flags
|= SCF_SEND_DELAYED_TAS
;
3080 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3085 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
3087 transport_lun_remove_cmd(cmd
);
3089 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3090 cmd
->t_task_cdb
[0], cmd
->tag
);
3092 trace_target_cmd_complete(cmd
);
3093 cmd
->se_tfo
->queue_status(cmd
);
3096 static void target_tmr_work(struct work_struct
*work
)
3098 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
3099 struct se_device
*dev
= cmd
->se_dev
;
3100 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
3101 unsigned long flags
;
3104 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3105 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3106 tmr
->response
= TMR_FUNCTION_REJECTED
;
3107 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3110 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3112 switch (tmr
->function
) {
3113 case TMR_ABORT_TASK
:
3114 core_tmr_abort_task(dev
, tmr
, cmd
->se_sess
);
3116 case TMR_ABORT_TASK_SET
:
3118 case TMR_CLEAR_TASK_SET
:
3119 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
3122 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
3123 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
3124 TMR_FUNCTION_REJECTED
;
3125 if (tmr
->response
== TMR_FUNCTION_COMPLETE
) {
3126 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
3127 cmd
->orig_fe_lun
, 0x29,
3128 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED
);
3131 case TMR_TARGET_WARM_RESET
:
3132 tmr
->response
= TMR_FUNCTION_REJECTED
;
3134 case TMR_TARGET_COLD_RESET
:
3135 tmr
->response
= TMR_FUNCTION_REJECTED
;
3138 pr_err("Uknown TMR function: 0x%02x.\n",
3140 tmr
->response
= TMR_FUNCTION_REJECTED
;
3144 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3145 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3146 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3149 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3151 cmd
->se_tfo
->queue_tm_rsp(cmd
);
3154 transport_cmd_check_stop_to_fabric(cmd
);
3157 int transport_generic_handle_tmr(
3160 unsigned long flags
;
3161 bool aborted
= false;
3163 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3164 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3167 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
3168 cmd
->transport_state
|= CMD_T_ACTIVE
;
3170 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3173 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
3174 "ref_tag: %llu tag: %llu\n", cmd
->se_tmr_req
->function
,
3175 cmd
->se_tmr_req
->ref_task_tag
, cmd
->tag
);
3176 transport_cmd_check_stop_to_fabric(cmd
);
3180 INIT_WORK(&cmd
->work
, target_tmr_work
);
3181 queue_work(cmd
->se_dev
->tmr_wq
, &cmd
->work
);
3184 EXPORT_SYMBOL(transport_generic_handle_tmr
);
3187 target_check_wce(struct se_device
*dev
)
3191 if (dev
->transport
->get_write_cache
)
3192 wce
= dev
->transport
->get_write_cache(dev
);
3193 else if (dev
->dev_attrib
.emulate_write_cache
> 0)
3200 target_check_fua(struct se_device
*dev
)
3202 return target_check_wce(dev
) && dev
->dev_attrib
.emulate_fua_write
> 0;