3 * Copyright IBM Corp. 1999, 2000
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 * Derived from "include/asm-i386/pgtable.h"
11 #ifndef _ASM_S390_PGTABLE_H
12 #define _ASM_S390_PGTABLE_H
15 * The Linux memory management assumes a three-level page table setup.
16 * For s390 64 bit we use up to four of the five levels the hardware
17 * provides (region first tables are not used).
19 * The "pgd_xxx()" functions are trivial for a folded two-level
20 * setup: the pgd is never bad, and a pmd always exists (as it's folded
23 * This file contains the functions and defines necessary to modify and use
24 * the S390 page table tree.
27 #include <linux/sched.h>
28 #include <linux/mm_types.h>
29 #include <linux/page-flags.h>
30 #include <linux/radix-tree.h>
34 extern pgd_t swapper_pg_dir
[] __attribute__ ((aligned (4096)));
35 extern void paging_init(void);
36 extern void vmem_map_init(void);
39 * The S390 doesn't have any external MMU info: the kernel page
40 * tables contain all the necessary information.
42 #define update_mmu_cache(vma, address, ptep) do { } while (0)
43 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
46 * ZERO_PAGE is a global shared page that is always zero; used
47 * for zero-mapped memory areas etc..
50 extern unsigned long empty_zero_page
;
51 extern unsigned long zero_page_mask
;
53 #define ZERO_PAGE(vaddr) \
54 (virt_to_page((void *)(empty_zero_page + \
55 (((unsigned long)(vaddr)) &zero_page_mask))))
56 #define __HAVE_COLOR_ZERO_PAGE
58 /* TODO: s390 cannot support io_remap_pfn_range... */
59 #endif /* !__ASSEMBLY__ */
62 * PMD_SHIFT determines the size of the area a second-level page
64 * PGDIR_SHIFT determines what a third-level page table entry can map
68 #define PGDIR_SHIFT 42
70 #define PMD_SIZE (1UL << PMD_SHIFT)
71 #define PMD_MASK (~(PMD_SIZE-1))
72 #define PUD_SIZE (1UL << PUD_SHIFT)
73 #define PUD_MASK (~(PUD_SIZE-1))
74 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
75 #define PGDIR_MASK (~(PGDIR_SIZE-1))
78 * entries per page directory level: the S390 is two-level, so
79 * we don't really have any PMD directory physically.
80 * for S390 segment-table entries are combined to one PGD
81 * that leads to 1024 pte per pgd
83 #define PTRS_PER_PTE 256
84 #define PTRS_PER_PMD 2048
85 #define PTRS_PER_PUD 2048
86 #define PTRS_PER_PGD 2048
88 #define FIRST_USER_ADDRESS 0UL
90 #define pte_ERROR(e) \
91 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
92 #define pmd_ERROR(e) \
93 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
94 #define pud_ERROR(e) \
95 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
96 #define pgd_ERROR(e) \
97 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
101 * The vmalloc and module area will always be on the topmost area of the
102 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
103 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
104 * modules will reside. That makes sure that inter module branches always
105 * happen without trampolines and in addition the placement within a 2GB frame
106 * is branch prediction unit friendly.
108 extern unsigned long VMALLOC_START
;
109 extern unsigned long VMALLOC_END
;
110 extern struct page
*vmemmap
;
112 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
114 extern unsigned long MODULES_VADDR
;
115 extern unsigned long MODULES_END
;
116 #define MODULES_VADDR MODULES_VADDR
117 #define MODULES_END MODULES_END
118 #define MODULES_LEN (1UL << 31)
120 static inline int is_module_addr(void *addr
)
122 BUILD_BUG_ON(MODULES_LEN
> (1UL << 31));
123 if (addr
< (void *)MODULES_VADDR
)
125 if (addr
> (void *)MODULES_END
)
131 * A 64 bit pagetable entry of S390 has following format:
133 * 0000000000111111111122222222223333333333444444444455555555556666
134 * 0123456789012345678901234567890123456789012345678901234567890123
136 * I Page-Invalid Bit: Page is not available for address-translation
137 * P Page-Protection Bit: Store access not possible for page
138 * C Change-bit override: HW is not required to set change bit
140 * A 64 bit segmenttable entry of S390 has following format:
141 * | P-table origin | TT
142 * 0000000000111111111122222222223333333333444444444455555555556666
143 * 0123456789012345678901234567890123456789012345678901234567890123
145 * I Segment-Invalid Bit: Segment is not available for address-translation
146 * C Common-Segment Bit: Segment is not private (PoP 3-30)
147 * P Page-Protection Bit: Store access not possible for page
150 * A 64 bit region table entry of S390 has following format:
151 * | S-table origin | TF TTTL
152 * 0000000000111111111122222222223333333333444444444455555555556666
153 * 0123456789012345678901234567890123456789012345678901234567890123
155 * I Segment-Invalid Bit: Segment is not available for address-translation
160 * The 64 bit regiontable origin of S390 has following format:
161 * | region table origon | DTTL
162 * 0000000000111111111122222222223333333333444444444455555555556666
163 * 0123456789012345678901234567890123456789012345678901234567890123
165 * X Space-Switch event:
166 * G Segment-Invalid Bit:
167 * P Private-Space Bit:
168 * S Storage-Alteration:
172 * A storage key has the following format:
176 * F : fetch protection bit
181 /* Hardware bits in the page table entry */
182 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
183 #define _PAGE_INVALID 0x400 /* HW invalid bit */
184 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
186 /* Software bits in the page table entry */
187 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
188 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
189 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
190 #define _PAGE_READ 0x010 /* SW pte read bit */
191 #define _PAGE_WRITE 0x020 /* SW pte write bit */
192 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
193 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
194 #define __HAVE_ARCH_PTE_SPECIAL
196 /* Set of bits not changed in pte_modify */
197 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
201 * handle_pte_fault uses pte_present and pte_none to find out the pte type
202 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
203 * distinguish present from not-present ptes. It is changed only with the page
206 * The following table gives the different possible bit combinations for
207 * the pte hardware and software bits in the last 12 bits of a pte
208 * (. unassigned bit, x don't care, t swap type):
216 * prot-none, clean, old .11.xx0000.1
217 * prot-none, clean, young .11.xx0001.1
218 * prot-none, dirty, old .10.xx0010.1
219 * prot-none, dirty, young .10.xx0011.1
220 * read-only, clean, old .11.xx0100.1
221 * read-only, clean, young .01.xx0101.1
222 * read-only, dirty, old .11.xx0110.1
223 * read-only, dirty, young .01.xx0111.1
224 * read-write, clean, old .11.xx1100.1
225 * read-write, clean, young .01.xx1101.1
226 * read-write, dirty, old .10.xx1110.1
227 * read-write, dirty, young .00.xx1111.1
228 * HW-bits: R read-only, I invalid
229 * SW-bits: p present, y young, d dirty, r read, w write, s special,
232 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
233 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
234 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
237 /* Bits in the segment/region table address-space-control-element */
238 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
239 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
240 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
241 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
242 #define _ASCE_REAL_SPACE 0x20 /* real space control */
243 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
244 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
245 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
246 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
247 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
248 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
250 /* Bits in the region table entry */
251 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
252 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
253 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
254 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
255 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
256 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
257 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
258 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
260 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
261 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
262 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
263 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
264 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
265 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
267 #define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */
268 #define _REGION3_ENTRY_RO 0x200 /* page protection bit */
270 /* Bits in the segment table entry */
271 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
272 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
273 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
274 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
275 #define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
276 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
278 #define _SEGMENT_ENTRY (0)
279 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
281 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
282 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
283 #define _SEGMENT_ENTRY_SPLIT 0x0800 /* THP splitting bit */
284 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
285 #define _SEGMENT_ENTRY_READ 0x0002 /* SW segment read bit */
286 #define _SEGMENT_ENTRY_WRITE 0x0001 /* SW segment write bit */
289 * Segment table entry encoding (R = read-only, I = invalid, y = young bit):
291 * prot-none, clean, old 00..1...1...00
292 * prot-none, clean, young 01..1...1...00
293 * prot-none, dirty, old 10..1...1...00
294 * prot-none, dirty, young 11..1...1...00
295 * read-only, clean, old 00..1...1...01
296 * read-only, clean, young 01..1...0...01
297 * read-only, dirty, old 10..1...1...01
298 * read-only, dirty, young 11..1...0...01
299 * read-write, clean, old 00..1...1...11
300 * read-write, clean, young 01..1...0...11
301 * read-write, dirty, old 10..0...1...11
302 * read-write, dirty, young 11..0...0...11
303 * The segment table origin is used to distinguish empty (origin==0) from
304 * read-write, old segment table entries (origin!=0)
305 * HW-bits: R read-only, I invalid
306 * SW-bits: y young, d dirty, r read, w write
309 #define _SEGMENT_ENTRY_SPLIT_BIT 11 /* THP splitting bit number */
311 /* Page status table bits for virtualization */
312 #define PGSTE_ACC_BITS 0xf000000000000000UL
313 #define PGSTE_FP_BIT 0x0800000000000000UL
314 #define PGSTE_PCL_BIT 0x0080000000000000UL
315 #define PGSTE_HR_BIT 0x0040000000000000UL
316 #define PGSTE_HC_BIT 0x0020000000000000UL
317 #define PGSTE_GR_BIT 0x0004000000000000UL
318 #define PGSTE_GC_BIT 0x0002000000000000UL
319 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
320 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
322 /* Guest Page State used for virtualization */
323 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
324 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
325 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
326 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
329 * A user page table pointer has the space-switch-event bit, the
330 * private-space-control bit and the storage-alteration-event-control
331 * bit set. A kernel page table pointer doesn't need them.
333 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
337 * Page protection definitions.
339 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID)
340 #define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \
341 _PAGE_INVALID | _PAGE_PROTECT)
342 #define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
343 _PAGE_INVALID | _PAGE_PROTECT)
345 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
346 _PAGE_YOUNG | _PAGE_DIRTY)
347 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
348 _PAGE_YOUNG | _PAGE_DIRTY)
349 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
353 * On s390 the page table entry has an invalid bit and a read-only bit.
354 * Read permission implies execute permission and write permission
355 * implies read permission.
358 #define __P000 PAGE_NONE
359 #define __P001 PAGE_READ
360 #define __P010 PAGE_READ
361 #define __P011 PAGE_READ
362 #define __P100 PAGE_READ
363 #define __P101 PAGE_READ
364 #define __P110 PAGE_READ
365 #define __P111 PAGE_READ
367 #define __S000 PAGE_NONE
368 #define __S001 PAGE_READ
369 #define __S010 PAGE_WRITE
370 #define __S011 PAGE_WRITE
371 #define __S100 PAGE_READ
372 #define __S101 PAGE_READ
373 #define __S110 PAGE_WRITE
374 #define __S111 PAGE_WRITE
377 * Segment entry (large page) protection definitions.
379 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
380 _SEGMENT_ENTRY_PROTECT)
381 #define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_PROTECT | \
383 #define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_READ | \
384 _SEGMENT_ENTRY_WRITE)
386 static inline int mm_has_pgste(struct mm_struct
*mm
)
389 if (unlikely(mm
->context
.has_pgste
))
395 static inline int mm_alloc_pgste(struct mm_struct
*mm
)
398 if (unlikely(mm
->context
.alloc_pgste
))
405 * In the case that a guest uses storage keys
406 * faults should no longer be backed by zero pages
408 #define mm_forbids_zeropage mm_use_skey
409 static inline int mm_use_skey(struct mm_struct
*mm
)
412 if (mm
->context
.use_skey
)
419 * pgd/pmd/pte query functions
421 static inline int pgd_present(pgd_t pgd
)
423 if ((pgd_val(pgd
) & _REGION_ENTRY_TYPE_MASK
) < _REGION_ENTRY_TYPE_R2
)
425 return (pgd_val(pgd
) & _REGION_ENTRY_ORIGIN
) != 0UL;
428 static inline int pgd_none(pgd_t pgd
)
430 if ((pgd_val(pgd
) & _REGION_ENTRY_TYPE_MASK
) < _REGION_ENTRY_TYPE_R2
)
432 return (pgd_val(pgd
) & _REGION_ENTRY_INVALID
) != 0UL;
435 static inline int pgd_bad(pgd_t pgd
)
438 * With dynamic page table levels the pgd can be a region table
439 * entry or a segment table entry. Check for the bit that are
440 * invalid for either table entry.
443 ~_SEGMENT_ENTRY_ORIGIN
& ~_REGION_ENTRY_INVALID
&
444 ~_REGION_ENTRY_TYPE_MASK
& ~_REGION_ENTRY_LENGTH
;
445 return (pgd_val(pgd
) & mask
) != 0;
448 static inline int pud_present(pud_t pud
)
450 if ((pud_val(pud
) & _REGION_ENTRY_TYPE_MASK
) < _REGION_ENTRY_TYPE_R3
)
452 return (pud_val(pud
) & _REGION_ENTRY_ORIGIN
) != 0UL;
455 static inline int pud_none(pud_t pud
)
457 if ((pud_val(pud
) & _REGION_ENTRY_TYPE_MASK
) < _REGION_ENTRY_TYPE_R3
)
459 return (pud_val(pud
) & _REGION_ENTRY_INVALID
) != 0UL;
462 static inline int pud_large(pud_t pud
)
464 if ((pud_val(pud
) & _REGION_ENTRY_TYPE_MASK
) != _REGION_ENTRY_TYPE_R3
)
466 return !!(pud_val(pud
) & _REGION3_ENTRY_LARGE
);
469 static inline int pud_bad(pud_t pud
)
472 * With dynamic page table levels the pud can be a region table
473 * entry or a segment table entry. Check for the bit that are
474 * invalid for either table entry.
477 ~_SEGMENT_ENTRY_ORIGIN
& ~_REGION_ENTRY_INVALID
&
478 ~_REGION_ENTRY_TYPE_MASK
& ~_REGION_ENTRY_LENGTH
;
479 return (pud_val(pud
) & mask
) != 0;
482 static inline int pmd_present(pmd_t pmd
)
484 return pmd_val(pmd
) != _SEGMENT_ENTRY_INVALID
;
487 static inline int pmd_none(pmd_t pmd
)
489 return pmd_val(pmd
) == _SEGMENT_ENTRY_INVALID
;
492 static inline int pmd_large(pmd_t pmd
)
494 return (pmd_val(pmd
) & _SEGMENT_ENTRY_LARGE
) != 0;
497 static inline unsigned long pmd_pfn(pmd_t pmd
)
499 unsigned long origin_mask
;
501 origin_mask
= _SEGMENT_ENTRY_ORIGIN
;
503 origin_mask
= _SEGMENT_ENTRY_ORIGIN_LARGE
;
504 return (pmd_val(pmd
) & origin_mask
) >> PAGE_SHIFT
;
507 static inline int pmd_bad(pmd_t pmd
)
510 return (pmd_val(pmd
) & ~_SEGMENT_ENTRY_BITS_LARGE
) != 0;
511 return (pmd_val(pmd
) & ~_SEGMENT_ENTRY_BITS
) != 0;
514 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
515 extern void pmdp_splitting_flush(struct vm_area_struct
*vma
,
516 unsigned long addr
, pmd_t
*pmdp
);
518 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
519 extern int pmdp_set_access_flags(struct vm_area_struct
*vma
,
520 unsigned long address
, pmd_t
*pmdp
,
521 pmd_t entry
, int dirty
);
523 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
524 extern int pmdp_clear_flush_young(struct vm_area_struct
*vma
,
525 unsigned long address
, pmd_t
*pmdp
);
527 #define __HAVE_ARCH_PMD_WRITE
528 static inline int pmd_write(pmd_t pmd
)
530 return (pmd_val(pmd
) & _SEGMENT_ENTRY_WRITE
) != 0;
533 static inline int pmd_dirty(pmd_t pmd
)
537 dirty
= (pmd_val(pmd
) & _SEGMENT_ENTRY_DIRTY
) != 0;
541 static inline int pmd_young(pmd_t pmd
)
545 young
= (pmd_val(pmd
) & _SEGMENT_ENTRY_YOUNG
) != 0;
549 static inline int pte_present(pte_t pte
)
551 /* Bit pattern: (pte & 0x001) == 0x001 */
552 return (pte_val(pte
) & _PAGE_PRESENT
) != 0;
555 static inline int pte_none(pte_t pte
)
557 /* Bit pattern: pte == 0x400 */
558 return pte_val(pte
) == _PAGE_INVALID
;
561 static inline int pte_swap(pte_t pte
)
563 /* Bit pattern: (pte & 0x201) == 0x200 */
564 return (pte_val(pte
) & (_PAGE_PROTECT
| _PAGE_PRESENT
))
568 static inline int pte_special(pte_t pte
)
570 return (pte_val(pte
) & _PAGE_SPECIAL
);
573 #define __HAVE_ARCH_PTE_SAME
574 static inline int pte_same(pte_t a
, pte_t b
)
576 return pte_val(a
) == pte_val(b
);
579 static inline pgste_t
pgste_get_lock(pte_t
*ptep
)
581 unsigned long new = 0;
589 " nihh %0,0xff7f\n" /* clear PCL bit in old */
590 " oihh %1,0x0080\n" /* set PCL bit in new */
593 : "=&d" (old
), "=&d" (new), "=Q" (ptep
[PTRS_PER_PTE
])
594 : "Q" (ptep
[PTRS_PER_PTE
]) : "cc", "memory");
599 static inline void pgste_set_unlock(pte_t
*ptep
, pgste_t pgste
)
603 " nihh %1,0xff7f\n" /* clear PCL bit */
605 : "=Q" (ptep
[PTRS_PER_PTE
])
606 : "d" (pgste_val(pgste
)), "Q" (ptep
[PTRS_PER_PTE
])
612 static inline pgste_t
pgste_get(pte_t
*ptep
)
614 unsigned long pgste
= 0;
616 pgste
= *(unsigned long *)(ptep
+ PTRS_PER_PTE
);
618 return __pgste(pgste
);
621 static inline void pgste_set(pte_t
*ptep
, pgste_t pgste
)
624 *(pgste_t
*)(ptep
+ PTRS_PER_PTE
) = pgste
;
628 static inline pgste_t
pgste_update_all(pte_t
*ptep
, pgste_t pgste
,
629 struct mm_struct
*mm
)
632 unsigned long address
, bits
, skey
;
634 if (!mm_use_skey(mm
) || pte_val(*ptep
) & _PAGE_INVALID
)
636 address
= pte_val(*ptep
) & PAGE_MASK
;
637 skey
= (unsigned long) page_get_storage_key(address
);
638 bits
= skey
& (_PAGE_CHANGED
| _PAGE_REFERENCED
);
639 /* Transfer page changed & referenced bit to guest bits in pgste */
640 pgste_val(pgste
) |= bits
<< 48; /* GR bit & GC bit */
641 /* Copy page access key and fetch protection bit to pgste */
642 pgste_val(pgste
) &= ~(PGSTE_ACC_BITS
| PGSTE_FP_BIT
);
643 pgste_val(pgste
) |= (skey
& (_PAGE_ACC_BITS
| _PAGE_FP_BIT
)) << 56;
649 static inline void pgste_set_key(pte_t
*ptep
, pgste_t pgste
, pte_t entry
,
650 struct mm_struct
*mm
)
653 unsigned long address
;
656 if (!mm_use_skey(mm
) || pte_val(entry
) & _PAGE_INVALID
)
658 VM_BUG_ON(!(pte_val(*ptep
) & _PAGE_INVALID
));
659 address
= pte_val(entry
) & PAGE_MASK
;
661 * Set page access key and fetch protection bit from pgste.
662 * The guest C/R information is still in the PGSTE, set real
665 nkey
= (pgste_val(pgste
) & (PGSTE_ACC_BITS
| PGSTE_FP_BIT
)) >> 56;
666 nkey
|= (pgste_val(pgste
) & (PGSTE_GR_BIT
| PGSTE_GC_BIT
)) >> 48;
667 page_set_storage_key(address
, nkey
, 0);
671 static inline pgste_t
pgste_set_pte(pte_t
*ptep
, pgste_t pgste
, pte_t entry
)
673 if ((pte_val(entry
) & _PAGE_PRESENT
) &&
674 (pte_val(entry
) & _PAGE_WRITE
) &&
675 !(pte_val(entry
) & _PAGE_INVALID
)) {
676 if (!MACHINE_HAS_ESOP
) {
678 * Without enhanced suppression-on-protection force
679 * the dirty bit on for all writable ptes.
681 pte_val(entry
) |= _PAGE_DIRTY
;
682 pte_val(entry
) &= ~_PAGE_PROTECT
;
684 if (!(pte_val(entry
) & _PAGE_PROTECT
))
685 /* This pte allows write access, set user-dirty */
686 pgste_val(pgste
) |= PGSTE_UC_BIT
;
693 * struct gmap_struct - guest address space
694 * @crst_list: list of all crst tables used in the guest address space
695 * @mm: pointer to the parent mm_struct
696 * @guest_to_host: radix tree with guest to host address translation
697 * @host_to_guest: radix tree with pointer to segment table entries
698 * @guest_table_lock: spinlock to protect all entries in the guest page table
699 * @table: pointer to the page directory
700 * @asce: address space control element for gmap page table
701 * @pfault_enabled: defines if pfaults are applicable for the guest
704 struct list_head list
;
705 struct list_head crst_list
;
706 struct mm_struct
*mm
;
707 struct radix_tree_root guest_to_host
;
708 struct radix_tree_root host_to_guest
;
709 spinlock_t guest_table_lock
;
710 unsigned long *table
;
712 unsigned long asce_end
;
718 * struct gmap_notifier - notify function block for page invalidation
719 * @notifier_call: address of callback function
721 struct gmap_notifier
{
722 struct list_head list
;
723 void (*notifier_call
)(struct gmap
*gmap
, unsigned long gaddr
);
726 struct gmap
*gmap_alloc(struct mm_struct
*mm
, unsigned long limit
);
727 void gmap_free(struct gmap
*gmap
);
728 void gmap_enable(struct gmap
*gmap
);
729 void gmap_disable(struct gmap
*gmap
);
730 int gmap_map_segment(struct gmap
*gmap
, unsigned long from
,
731 unsigned long to
, unsigned long len
);
732 int gmap_unmap_segment(struct gmap
*gmap
, unsigned long to
, unsigned long len
);
733 unsigned long __gmap_translate(struct gmap
*, unsigned long gaddr
);
734 unsigned long gmap_translate(struct gmap
*, unsigned long gaddr
);
735 int __gmap_link(struct gmap
*gmap
, unsigned long gaddr
, unsigned long vmaddr
);
736 int gmap_fault(struct gmap
*, unsigned long gaddr
, unsigned int fault_flags
);
737 void gmap_discard(struct gmap
*, unsigned long from
, unsigned long to
);
738 void __gmap_zap(struct gmap
*, unsigned long gaddr
);
739 bool gmap_test_and_clear_dirty(unsigned long address
, struct gmap
*);
742 void gmap_register_ipte_notifier(struct gmap_notifier
*);
743 void gmap_unregister_ipte_notifier(struct gmap_notifier
*);
744 int gmap_ipte_notify(struct gmap
*, unsigned long start
, unsigned long len
);
745 void gmap_do_ipte_notify(struct mm_struct
*, unsigned long addr
, pte_t
*);
747 static inline pgste_t
pgste_ipte_notify(struct mm_struct
*mm
,
749 pte_t
*ptep
, pgste_t pgste
)
752 if (pgste_val(pgste
) & PGSTE_IN_BIT
) {
753 pgste_val(pgste
) &= ~PGSTE_IN_BIT
;
754 gmap_do_ipte_notify(mm
, addr
, ptep
);
761 * Certain architectures need to do special things when PTEs
762 * within a page table are directly modified. Thus, the following
763 * hook is made available.
765 static inline void set_pte_at(struct mm_struct
*mm
, unsigned long addr
,
766 pte_t
*ptep
, pte_t entry
)
770 if (mm_has_pgste(mm
)) {
771 pgste
= pgste_get_lock(ptep
);
772 pgste_val(pgste
) &= ~_PGSTE_GPS_ZERO
;
773 pgste_set_key(ptep
, pgste
, entry
, mm
);
774 pgste
= pgste_set_pte(ptep
, pgste
, entry
);
775 pgste_set_unlock(ptep
, pgste
);
782 * query functions pte_write/pte_dirty/pte_young only work if
783 * pte_present() is true. Undefined behaviour if not..
785 static inline int pte_write(pte_t pte
)
787 return (pte_val(pte
) & _PAGE_WRITE
) != 0;
790 static inline int pte_dirty(pte_t pte
)
792 return (pte_val(pte
) & _PAGE_DIRTY
) != 0;
795 static inline int pte_young(pte_t pte
)
797 return (pte_val(pte
) & _PAGE_YOUNG
) != 0;
800 #define __HAVE_ARCH_PTE_UNUSED
801 static inline int pte_unused(pte_t pte
)
803 return pte_val(pte
) & _PAGE_UNUSED
;
807 * pgd/pmd/pte modification functions
810 static inline void pgd_clear(pgd_t
*pgd
)
812 if ((pgd_val(*pgd
) & _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R2
)
813 pgd_val(*pgd
) = _REGION2_ENTRY_EMPTY
;
816 static inline void pud_clear(pud_t
*pud
)
818 if ((pud_val(*pud
) & _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R3
)
819 pud_val(*pud
) = _REGION3_ENTRY_EMPTY
;
822 static inline void pmd_clear(pmd_t
*pmdp
)
824 pmd_val(*pmdp
) = _SEGMENT_ENTRY_INVALID
;
827 static inline void pte_clear(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
829 pte_val(*ptep
) = _PAGE_INVALID
;
833 * The following pte modification functions only work if
834 * pte_present() is true. Undefined behaviour if not..
836 static inline pte_t
pte_modify(pte_t pte
, pgprot_t newprot
)
838 pte_val(pte
) &= _PAGE_CHG_MASK
;
839 pte_val(pte
) |= pgprot_val(newprot
);
841 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
842 * invalid bit set, clear it again for readable, young pages
844 if ((pte_val(pte
) & _PAGE_YOUNG
) && (pte_val(pte
) & _PAGE_READ
))
845 pte_val(pte
) &= ~_PAGE_INVALID
;
847 * newprot for PAGE_READ and PAGE_WRITE has the page protection
848 * bit set, clear it again for writable, dirty pages
850 if ((pte_val(pte
) & _PAGE_DIRTY
) && (pte_val(pte
) & _PAGE_WRITE
))
851 pte_val(pte
) &= ~_PAGE_PROTECT
;
855 static inline pte_t
pte_wrprotect(pte_t pte
)
857 pte_val(pte
) &= ~_PAGE_WRITE
;
858 pte_val(pte
) |= _PAGE_PROTECT
;
862 static inline pte_t
pte_mkwrite(pte_t pte
)
864 pte_val(pte
) |= _PAGE_WRITE
;
865 if (pte_val(pte
) & _PAGE_DIRTY
)
866 pte_val(pte
) &= ~_PAGE_PROTECT
;
870 static inline pte_t
pte_mkclean(pte_t pte
)
872 pte_val(pte
) &= ~_PAGE_DIRTY
;
873 pte_val(pte
) |= _PAGE_PROTECT
;
877 static inline pte_t
pte_mkdirty(pte_t pte
)
879 pte_val(pte
) |= _PAGE_DIRTY
;
880 if (pte_val(pte
) & _PAGE_WRITE
)
881 pte_val(pte
) &= ~_PAGE_PROTECT
;
885 static inline pte_t
pte_mkold(pte_t pte
)
887 pte_val(pte
) &= ~_PAGE_YOUNG
;
888 pte_val(pte
) |= _PAGE_INVALID
;
892 static inline pte_t
pte_mkyoung(pte_t pte
)
894 pte_val(pte
) |= _PAGE_YOUNG
;
895 if (pte_val(pte
) & _PAGE_READ
)
896 pte_val(pte
) &= ~_PAGE_INVALID
;
900 static inline pte_t
pte_mkspecial(pte_t pte
)
902 pte_val(pte
) |= _PAGE_SPECIAL
;
906 #ifdef CONFIG_HUGETLB_PAGE
907 static inline pte_t
pte_mkhuge(pte_t pte
)
909 pte_val(pte
) |= _PAGE_LARGE
;
914 static inline void __ptep_ipte(unsigned long address
, pte_t
*ptep
)
916 unsigned long pto
= (unsigned long) ptep
;
918 /* Invalidation + global TLB flush for the pte */
921 : "=m" (*ptep
) : "m" (*ptep
), "a" (pto
), "a" (address
));
924 static inline void __ptep_ipte_local(unsigned long address
, pte_t
*ptep
)
926 unsigned long pto
= (unsigned long) ptep
;
928 /* Invalidation + local TLB flush for the pte */
930 " .insn rrf,0xb2210000,%2,%3,0,1"
931 : "=m" (*ptep
) : "m" (*ptep
), "a" (pto
), "a" (address
));
934 static inline void __ptep_ipte_range(unsigned long address
, int nr
, pte_t
*ptep
)
936 unsigned long pto
= (unsigned long) ptep
;
938 /* Invalidate a range of ptes + global TLB flush of the ptes */
941 " .insn rrf,0xb2210000,%2,%0,%1,0"
942 : "+a" (address
), "+a" (nr
) : "a" (pto
) : "memory");
946 static inline void ptep_flush_direct(struct mm_struct
*mm
,
947 unsigned long address
, pte_t
*ptep
)
951 if (pte_val(*ptep
) & _PAGE_INVALID
)
953 active
= (mm
== current
->active_mm
) ? 1 : 0;
954 count
= atomic_add_return(0x10000, &mm
->context
.attach_count
);
955 if (MACHINE_HAS_TLB_LC
&& (count
& 0xffff) <= active
&&
956 cpumask_equal(mm_cpumask(mm
), cpumask_of(smp_processor_id())))
957 __ptep_ipte_local(address
, ptep
);
959 __ptep_ipte(address
, ptep
);
960 atomic_sub(0x10000, &mm
->context
.attach_count
);
963 static inline void ptep_flush_lazy(struct mm_struct
*mm
,
964 unsigned long address
, pte_t
*ptep
)
968 if (pte_val(*ptep
) & _PAGE_INVALID
)
970 active
= (mm
== current
->active_mm
) ? 1 : 0;
971 count
= atomic_add_return(0x10000, &mm
->context
.attach_count
);
972 if ((count
& 0xffff) <= active
) {
973 pte_val(*ptep
) |= _PAGE_INVALID
;
974 mm
->context
.flush_mm
= 1;
976 __ptep_ipte(address
, ptep
);
977 atomic_sub(0x10000, &mm
->context
.attach_count
);
981 * Get (and clear) the user dirty bit for a pte.
983 static inline int ptep_test_and_clear_user_dirty(struct mm_struct
*mm
,
991 if (!mm_has_pgste(mm
))
993 pgste
= pgste_get_lock(ptep
);
994 dirty
= !!(pgste_val(pgste
) & PGSTE_UC_BIT
);
995 pgste_val(pgste
) &= ~PGSTE_UC_BIT
;
997 if (dirty
&& (pte_val(pte
) & _PAGE_PRESENT
)) {
998 pgste
= pgste_ipte_notify(mm
, addr
, ptep
, pgste
);
999 __ptep_ipte(addr
, ptep
);
1000 if (MACHINE_HAS_ESOP
|| !(pte_val(pte
) & _PAGE_WRITE
))
1001 pte_val(pte
) |= _PAGE_PROTECT
;
1003 pte_val(pte
) |= _PAGE_INVALID
;
1006 pgste_set_unlock(ptep
, pgste
);
1010 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1011 static inline int ptep_test_and_clear_young(struct vm_area_struct
*vma
,
1012 unsigned long addr
, pte_t
*ptep
)
1018 if (mm_has_pgste(vma
->vm_mm
)) {
1019 pgste
= pgste_get_lock(ptep
);
1020 pgste
= pgste_ipte_notify(vma
->vm_mm
, addr
, ptep
, pgste
);
1023 oldpte
= pte
= *ptep
;
1024 ptep_flush_direct(vma
->vm_mm
, addr
, ptep
);
1025 young
= pte_young(pte
);
1026 pte
= pte_mkold(pte
);
1028 if (mm_has_pgste(vma
->vm_mm
)) {
1029 pgste
= pgste_update_all(&oldpte
, pgste
, vma
->vm_mm
);
1030 pgste
= pgste_set_pte(ptep
, pgste
, pte
);
1031 pgste_set_unlock(ptep
, pgste
);
1038 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1039 static inline int ptep_clear_flush_young(struct vm_area_struct
*vma
,
1040 unsigned long address
, pte_t
*ptep
)
1042 return ptep_test_and_clear_young(vma
, address
, ptep
);
1046 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1047 * both clear the TLB for the unmapped pte. The reason is that
1048 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1049 * to modify an active pte. The sequence is
1050 * 1) ptep_get_and_clear
1052 * 3) flush_tlb_range
1053 * On s390 the tlb needs to get flushed with the modification of the pte
1054 * if the pte is active. The only way how this can be implemented is to
1055 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1058 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1059 static inline pte_t
ptep_get_and_clear(struct mm_struct
*mm
,
1060 unsigned long address
, pte_t
*ptep
)
1065 if (mm_has_pgste(mm
)) {
1066 pgste
= pgste_get_lock(ptep
);
1067 pgste
= pgste_ipte_notify(mm
, address
, ptep
, pgste
);
1071 ptep_flush_lazy(mm
, address
, ptep
);
1072 pte_val(*ptep
) = _PAGE_INVALID
;
1074 if (mm_has_pgste(mm
)) {
1075 pgste
= pgste_update_all(&pte
, pgste
, mm
);
1076 pgste_set_unlock(ptep
, pgste
);
1081 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1082 static inline pte_t
ptep_modify_prot_start(struct mm_struct
*mm
,
1083 unsigned long address
,
1089 if (mm_has_pgste(mm
)) {
1090 pgste
= pgste_get_lock(ptep
);
1091 pgste_ipte_notify(mm
, address
, ptep
, pgste
);
1095 ptep_flush_lazy(mm
, address
, ptep
);
1097 if (mm_has_pgste(mm
)) {
1098 pgste
= pgste_update_all(&pte
, pgste
, mm
);
1099 pgste_set(ptep
, pgste
);
1104 static inline void ptep_modify_prot_commit(struct mm_struct
*mm
,
1105 unsigned long address
,
1106 pte_t
*ptep
, pte_t pte
)
1110 if (mm_has_pgste(mm
)) {
1111 pgste
= pgste_get(ptep
);
1112 pgste_set_key(ptep
, pgste
, pte
, mm
);
1113 pgste
= pgste_set_pte(ptep
, pgste
, pte
);
1114 pgste_set_unlock(ptep
, pgste
);
1119 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1120 static inline pte_t
ptep_clear_flush(struct vm_area_struct
*vma
,
1121 unsigned long address
, pte_t
*ptep
)
1126 if (mm_has_pgste(vma
->vm_mm
)) {
1127 pgste
= pgste_get_lock(ptep
);
1128 pgste
= pgste_ipte_notify(vma
->vm_mm
, address
, ptep
, pgste
);
1132 ptep_flush_direct(vma
->vm_mm
, address
, ptep
);
1133 pte_val(*ptep
) = _PAGE_INVALID
;
1135 if (mm_has_pgste(vma
->vm_mm
)) {
1136 if ((pgste_val(pgste
) & _PGSTE_GPS_USAGE_MASK
) ==
1137 _PGSTE_GPS_USAGE_UNUSED
)
1138 pte_val(pte
) |= _PAGE_UNUSED
;
1139 pgste
= pgste_update_all(&pte
, pgste
, vma
->vm_mm
);
1140 pgste_set_unlock(ptep
, pgste
);
1146 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1147 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1148 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1149 * cannot be accessed while the batched unmap is running. In this case
1150 * full==1 and a simple pte_clear is enough. See tlb.h.
1152 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1153 static inline pte_t
ptep_get_and_clear_full(struct mm_struct
*mm
,
1154 unsigned long address
,
1155 pte_t
*ptep
, int full
)
1160 if (!full
&& mm_has_pgste(mm
)) {
1161 pgste
= pgste_get_lock(ptep
);
1162 pgste
= pgste_ipte_notify(mm
, address
, ptep
, pgste
);
1167 ptep_flush_lazy(mm
, address
, ptep
);
1168 pte_val(*ptep
) = _PAGE_INVALID
;
1170 if (!full
&& mm_has_pgste(mm
)) {
1171 pgste
= pgste_update_all(&pte
, pgste
, mm
);
1172 pgste_set_unlock(ptep
, pgste
);
1177 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1178 static inline pte_t
ptep_set_wrprotect(struct mm_struct
*mm
,
1179 unsigned long address
, pte_t
*ptep
)
1184 if (pte_write(pte
)) {
1185 if (mm_has_pgste(mm
)) {
1186 pgste
= pgste_get_lock(ptep
);
1187 pgste
= pgste_ipte_notify(mm
, address
, ptep
, pgste
);
1190 ptep_flush_lazy(mm
, address
, ptep
);
1191 pte
= pte_wrprotect(pte
);
1193 if (mm_has_pgste(mm
)) {
1194 pgste
= pgste_set_pte(ptep
, pgste
, pte
);
1195 pgste_set_unlock(ptep
, pgste
);
1202 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1203 static inline int ptep_set_access_flags(struct vm_area_struct
*vma
,
1204 unsigned long address
, pte_t
*ptep
,
1205 pte_t entry
, int dirty
)
1209 if (pte_same(*ptep
, entry
))
1211 if (mm_has_pgste(vma
->vm_mm
)) {
1212 pgste
= pgste_get_lock(ptep
);
1213 pgste
= pgste_ipte_notify(vma
->vm_mm
, address
, ptep
, pgste
);
1216 ptep_flush_direct(vma
->vm_mm
, address
, ptep
);
1218 if (mm_has_pgste(vma
->vm_mm
)) {
1219 pgste_set_key(ptep
, pgste
, entry
, vma
->vm_mm
);
1220 pgste
= pgste_set_pte(ptep
, pgste
, entry
);
1221 pgste_set_unlock(ptep
, pgste
);
1228 * Conversion functions: convert a page and protection to a page entry,
1229 * and a page entry and page directory to the page they refer to.
1231 static inline pte_t
mk_pte_phys(unsigned long physpage
, pgprot_t pgprot
)
1234 pte_val(__pte
) = physpage
+ pgprot_val(pgprot
);
1235 return pte_mkyoung(__pte
);
1238 static inline pte_t
mk_pte(struct page
*page
, pgprot_t pgprot
)
1240 unsigned long physpage
= page_to_phys(page
);
1241 pte_t __pte
= mk_pte_phys(physpage
, pgprot
);
1243 if (pte_write(__pte
) && PageDirty(page
))
1244 __pte
= pte_mkdirty(__pte
);
1248 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1249 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1250 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1251 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1253 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1254 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1256 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1257 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1258 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1260 static inline pud_t
*pud_offset(pgd_t
*pgd
, unsigned long address
)
1262 pud_t
*pud
= (pud_t
*) pgd
;
1263 if ((pgd_val(*pgd
) & _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R2
)
1264 pud
= (pud_t
*) pgd_deref(*pgd
);
1265 return pud
+ pud_index(address
);
1268 static inline pmd_t
*pmd_offset(pud_t
*pud
, unsigned long address
)
1270 pmd_t
*pmd
= (pmd_t
*) pud
;
1271 if ((pud_val(*pud
) & _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R3
)
1272 pmd
= (pmd_t
*) pud_deref(*pud
);
1273 return pmd
+ pmd_index(address
);
1276 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1277 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1278 #define pte_page(x) pfn_to_page(pte_pfn(x))
1280 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1282 /* Find an entry in the lowest level page table.. */
1283 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1284 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1285 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1286 #define pte_unmap(pte) do { } while (0)
1288 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1289 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot
)
1292 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
1293 * Convert to segment table entry format.
1295 if (pgprot_val(pgprot
) == pgprot_val(PAGE_NONE
))
1296 return pgprot_val(SEGMENT_NONE
);
1297 if (pgprot_val(pgprot
) == pgprot_val(PAGE_READ
))
1298 return pgprot_val(SEGMENT_READ
);
1299 return pgprot_val(SEGMENT_WRITE
);
1302 static inline pmd_t
pmd_wrprotect(pmd_t pmd
)
1304 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_WRITE
;
1305 pmd_val(pmd
) |= _SEGMENT_ENTRY_PROTECT
;
1309 static inline pmd_t
pmd_mkwrite(pmd_t pmd
)
1311 pmd_val(pmd
) |= _SEGMENT_ENTRY_WRITE
;
1312 if (pmd_large(pmd
) && !(pmd_val(pmd
) & _SEGMENT_ENTRY_DIRTY
))
1314 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_PROTECT
;
1318 static inline pmd_t
pmd_mkclean(pmd_t pmd
)
1320 if (pmd_large(pmd
)) {
1321 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_DIRTY
;
1322 pmd_val(pmd
) |= _SEGMENT_ENTRY_PROTECT
;
1327 static inline pmd_t
pmd_mkdirty(pmd_t pmd
)
1329 if (pmd_large(pmd
)) {
1330 pmd_val(pmd
) |= _SEGMENT_ENTRY_DIRTY
;
1331 if (pmd_val(pmd
) & _SEGMENT_ENTRY_WRITE
)
1332 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_PROTECT
;
1337 static inline pmd_t
pmd_mkyoung(pmd_t pmd
)
1339 if (pmd_large(pmd
)) {
1340 pmd_val(pmd
) |= _SEGMENT_ENTRY_YOUNG
;
1341 if (pmd_val(pmd
) & _SEGMENT_ENTRY_READ
)
1342 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_INVALID
;
1347 static inline pmd_t
pmd_mkold(pmd_t pmd
)
1349 if (pmd_large(pmd
)) {
1350 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_YOUNG
;
1351 pmd_val(pmd
) |= _SEGMENT_ENTRY_INVALID
;
1356 static inline pmd_t
pmd_modify(pmd_t pmd
, pgprot_t newprot
)
1358 if (pmd_large(pmd
)) {
1359 pmd_val(pmd
) &= _SEGMENT_ENTRY_ORIGIN_LARGE
|
1360 _SEGMENT_ENTRY_DIRTY
| _SEGMENT_ENTRY_YOUNG
|
1361 _SEGMENT_ENTRY_LARGE
| _SEGMENT_ENTRY_SPLIT
;
1362 pmd_val(pmd
) |= massage_pgprot_pmd(newprot
);
1363 if (!(pmd_val(pmd
) & _SEGMENT_ENTRY_DIRTY
))
1364 pmd_val(pmd
) |= _SEGMENT_ENTRY_PROTECT
;
1365 if (!(pmd_val(pmd
) & _SEGMENT_ENTRY_YOUNG
))
1366 pmd_val(pmd
) |= _SEGMENT_ENTRY_INVALID
;
1369 pmd_val(pmd
) &= _SEGMENT_ENTRY_ORIGIN
;
1370 pmd_val(pmd
) |= massage_pgprot_pmd(newprot
);
1374 static inline pmd_t
mk_pmd_phys(unsigned long physpage
, pgprot_t pgprot
)
1377 pmd_val(__pmd
) = physpage
+ massage_pgprot_pmd(pgprot
);
1381 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1383 static inline void __pmdp_csp(pmd_t
*pmdp
)
1385 register unsigned long reg2
asm("2") = pmd_val(*pmdp
);
1386 register unsigned long reg3
asm("3") = pmd_val(*pmdp
) |
1387 _SEGMENT_ENTRY_INVALID
;
1388 register unsigned long reg4
asm("4") = ((unsigned long) pmdp
) + 5;
1393 : "d" (reg2
), "d" (reg3
), "d" (reg4
), "m" (*pmdp
) : "cc");
1396 static inline void __pmdp_idte(unsigned long address
, pmd_t
*pmdp
)
1400 sto
= (unsigned long) pmdp
- pmd_index(address
) * sizeof(pmd_t
);
1402 " .insn rrf,0xb98e0000,%2,%3,0,0"
1404 : "m" (*pmdp
), "a" (sto
), "a" ((address
& HPAGE_MASK
))
1408 static inline void __pmdp_idte_local(unsigned long address
, pmd_t
*pmdp
)
1412 sto
= (unsigned long) pmdp
- pmd_index(address
) * sizeof(pmd_t
);
1414 " .insn rrf,0xb98e0000,%2,%3,0,1"
1416 : "m" (*pmdp
), "a" (sto
), "a" ((address
& HPAGE_MASK
))
1420 static inline void pmdp_flush_direct(struct mm_struct
*mm
,
1421 unsigned long address
, pmd_t
*pmdp
)
1425 if (pmd_val(*pmdp
) & _SEGMENT_ENTRY_INVALID
)
1427 if (!MACHINE_HAS_IDTE
) {
1431 active
= (mm
== current
->active_mm
) ? 1 : 0;
1432 count
= atomic_add_return(0x10000, &mm
->context
.attach_count
);
1433 if (MACHINE_HAS_TLB_LC
&& (count
& 0xffff) <= active
&&
1434 cpumask_equal(mm_cpumask(mm
), cpumask_of(smp_processor_id())))
1435 __pmdp_idte_local(address
, pmdp
);
1437 __pmdp_idte(address
, pmdp
);
1438 atomic_sub(0x10000, &mm
->context
.attach_count
);
1441 static inline void pmdp_flush_lazy(struct mm_struct
*mm
,
1442 unsigned long address
, pmd_t
*pmdp
)
1446 if (pmd_val(*pmdp
) & _SEGMENT_ENTRY_INVALID
)
1448 active
= (mm
== current
->active_mm
) ? 1 : 0;
1449 count
= atomic_add_return(0x10000, &mm
->context
.attach_count
);
1450 if ((count
& 0xffff) <= active
) {
1451 pmd_val(*pmdp
) |= _SEGMENT_ENTRY_INVALID
;
1452 mm
->context
.flush_mm
= 1;
1453 } else if (MACHINE_HAS_IDTE
)
1454 __pmdp_idte(address
, pmdp
);
1457 atomic_sub(0x10000, &mm
->context
.attach_count
);
1460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1462 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1463 extern void pgtable_trans_huge_deposit(struct mm_struct
*mm
, pmd_t
*pmdp
,
1466 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1467 extern pgtable_t
pgtable_trans_huge_withdraw(struct mm_struct
*mm
, pmd_t
*pmdp
);
1469 static inline int pmd_trans_splitting(pmd_t pmd
)
1471 return (pmd_val(pmd
) & _SEGMENT_ENTRY_LARGE
) &&
1472 (pmd_val(pmd
) & _SEGMENT_ENTRY_SPLIT
);
1475 static inline void set_pmd_at(struct mm_struct
*mm
, unsigned long addr
,
1476 pmd_t
*pmdp
, pmd_t entry
)
1481 static inline pmd_t
pmd_mkhuge(pmd_t pmd
)
1483 pmd_val(pmd
) |= _SEGMENT_ENTRY_LARGE
;
1484 pmd_val(pmd
) |= _SEGMENT_ENTRY_YOUNG
;
1485 pmd_val(pmd
) |= _SEGMENT_ENTRY_PROTECT
;
1489 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1490 static inline int pmdp_test_and_clear_young(struct vm_area_struct
*vma
,
1491 unsigned long address
, pmd_t
*pmdp
)
1496 pmdp_flush_direct(vma
->vm_mm
, address
, pmdp
);
1497 *pmdp
= pmd_mkold(pmd
);
1498 return pmd_young(pmd
);
1501 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1502 static inline pmd_t
pmdp_huge_get_and_clear(struct mm_struct
*mm
,
1503 unsigned long address
, pmd_t
*pmdp
)
1507 pmdp_flush_direct(mm
, address
, pmdp
);
1512 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1513 static inline pmd_t
pmdp_huge_get_and_clear_full(struct mm_struct
*mm
,
1514 unsigned long address
,
1515 pmd_t
*pmdp
, int full
)
1520 pmdp_flush_lazy(mm
, address
, pmdp
);
1525 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1526 static inline pmd_t
pmdp_huge_clear_flush(struct vm_area_struct
*vma
,
1527 unsigned long address
, pmd_t
*pmdp
)
1529 return pmdp_huge_get_and_clear(vma
->vm_mm
, address
, pmdp
);
1532 #define __HAVE_ARCH_PMDP_INVALIDATE
1533 static inline void pmdp_invalidate(struct vm_area_struct
*vma
,
1534 unsigned long address
, pmd_t
*pmdp
)
1536 pmdp_flush_direct(vma
->vm_mm
, address
, pmdp
);
1539 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1540 static inline void pmdp_set_wrprotect(struct mm_struct
*mm
,
1541 unsigned long address
, pmd_t
*pmdp
)
1545 if (pmd_write(pmd
)) {
1546 pmdp_flush_direct(mm
, address
, pmdp
);
1547 set_pmd_at(mm
, address
, pmdp
, pmd_wrprotect(pmd
));
1551 static inline pmd_t
pmdp_collapse_flush(struct vm_area_struct
*vma
,
1552 unsigned long address
,
1555 return pmdp_huge_get_and_clear(vma
->vm_mm
, address
, pmdp
);
1557 #define pmdp_collapse_flush pmdp_collapse_flush
1559 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1560 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1562 static inline int pmd_trans_huge(pmd_t pmd
)
1564 return pmd_val(pmd
) & _SEGMENT_ENTRY_LARGE
;
1567 static inline int has_transparent_hugepage(void)
1569 return MACHINE_HAS_HPAGE
? 1 : 0;
1571 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1574 * 64 bit swap entry format:
1575 * A page-table entry has some bits we have to treat in a special way.
1576 * Bits 52 and bit 55 have to be zero, otherwise a specification
1577 * exception will occur instead of a page translation exception. The
1578 * specification exception has the bad habit not to store necessary
1579 * information in the lowcore.
1580 * Bits 54 and 63 are used to indicate the page type.
1581 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1582 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1583 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1585 * | offset |01100|type |00|
1586 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1587 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1590 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1591 #define __SWP_OFFSET_SHIFT 12
1592 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1593 #define __SWP_TYPE_SHIFT 2
1595 static inline pte_t
mk_swap_pte(unsigned long type
, unsigned long offset
)
1599 pte_val(pte
) = _PAGE_INVALID
| _PAGE_PROTECT
;
1600 pte_val(pte
) |= (offset
& __SWP_OFFSET_MASK
) << __SWP_OFFSET_SHIFT
;
1601 pte_val(pte
) |= (type
& __SWP_TYPE_MASK
) << __SWP_TYPE_SHIFT
;
1605 static inline unsigned long __swp_type(swp_entry_t entry
)
1607 return (entry
.val
>> __SWP_TYPE_SHIFT
) & __SWP_TYPE_MASK
;
1610 static inline unsigned long __swp_offset(swp_entry_t entry
)
1612 return (entry
.val
>> __SWP_OFFSET_SHIFT
) & __SWP_OFFSET_MASK
;
1615 static inline swp_entry_t
__swp_entry(unsigned long type
, unsigned long offset
)
1617 return (swp_entry_t
) { pte_val(mk_swap_pte(type
, offset
)) };
1620 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1621 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1623 #endif /* !__ASSEMBLY__ */
1625 #define kern_addr_valid(addr) (1)
1627 extern int vmem_add_mapping(unsigned long start
, unsigned long size
);
1628 extern int vmem_remove_mapping(unsigned long start
, unsigned long size
);
1629 extern int s390_enable_sie(void);
1630 extern int s390_enable_skey(void);
1631 extern void s390_reset_cmma(struct mm_struct
*mm
);
1633 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1634 #define HAVE_ARCH_UNMAPPED_AREA
1635 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1638 * No page table caches to initialise
1640 static inline void pgtable_cache_init(void) { }
1641 static inline void check_pgt_cache(void) { }
1643 #include <asm-generic/pgtable.h>
1645 #endif /* _S390_PAGE_H */