Merge tag 'pm+acpi-4.2-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux/fpc-iii.git] / arch / s390 / kernel / time.c
blob9e733d965e08886611ef40535f09505c5b7b9878
1 /*
2 * Time of day based timer functions.
4 * S390 version
5 * Copyright IBM Corp. 1999, 2008
6 * Author(s): Hartmut Penner (hp@de.ibm.com),
7 * Martin Schwidefsky (schwidefsky@de.ibm.com),
8 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10 * Derived from "arch/i386/kernel/time.c"
11 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
14 #define KMSG_COMPONENT "time"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 #include <linux/kernel_stat.h>
18 #include <linux/errno.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/cpu.h>
27 #include <linux/stop_machine.h>
28 #include <linux/time.h>
29 #include <linux/device.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/smp.h>
33 #include <linux/types.h>
34 #include <linux/profile.h>
35 #include <linux/timex.h>
36 #include <linux/notifier.h>
37 #include <linux/timekeeper_internal.h>
38 #include <linux/clockchips.h>
39 #include <linux/gfp.h>
40 #include <linux/kprobes.h>
41 #include <asm/uaccess.h>
42 #include <asm/delay.h>
43 #include <asm/div64.h>
44 #include <asm/vdso.h>
45 #include <asm/irq.h>
46 #include <asm/irq_regs.h>
47 #include <asm/vtimer.h>
48 #include <asm/etr.h>
49 #include <asm/cio.h>
50 #include "entry.h"
52 /* change this if you have some constant time drift */
53 #define USECS_PER_JIFFY ((unsigned long) 1000000/HZ)
54 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
56 u64 sched_clock_base_cc = -1; /* Force to data section. */
57 EXPORT_SYMBOL_GPL(sched_clock_base_cc);
59 static DEFINE_PER_CPU(struct clock_event_device, comparators);
62 * Scheduler clock - returns current time in nanosec units.
64 unsigned long long notrace sched_clock(void)
66 return tod_to_ns(get_tod_clock_monotonic());
68 NOKPROBE_SYMBOL(sched_clock);
71 * Monotonic_clock - returns # of nanoseconds passed since time_init()
73 unsigned long long monotonic_clock(void)
75 return sched_clock();
77 EXPORT_SYMBOL(monotonic_clock);
79 void tod_to_timeval(__u64 todval, struct timespec64 *xt)
81 unsigned long long sec;
83 sec = todval >> 12;
84 do_div(sec, 1000000);
85 xt->tv_sec = sec;
86 todval -= (sec * 1000000) << 12;
87 xt->tv_nsec = ((todval * 1000) >> 12);
89 EXPORT_SYMBOL(tod_to_timeval);
91 void clock_comparator_work(void)
93 struct clock_event_device *cd;
95 S390_lowcore.clock_comparator = -1ULL;
96 cd = this_cpu_ptr(&comparators);
97 cd->event_handler(cd);
101 * Fixup the clock comparator.
103 static void fixup_clock_comparator(unsigned long long delta)
105 /* If nobody is waiting there's nothing to fix. */
106 if (S390_lowcore.clock_comparator == -1ULL)
107 return;
108 S390_lowcore.clock_comparator += delta;
109 set_clock_comparator(S390_lowcore.clock_comparator);
112 static int s390_next_event(unsigned long delta,
113 struct clock_event_device *evt)
115 S390_lowcore.clock_comparator = get_tod_clock() + delta;
116 set_clock_comparator(S390_lowcore.clock_comparator);
117 return 0;
120 static void s390_set_mode(enum clock_event_mode mode,
121 struct clock_event_device *evt)
126 * Set up lowcore and control register of the current cpu to
127 * enable TOD clock and clock comparator interrupts.
129 void init_cpu_timer(void)
131 struct clock_event_device *cd;
132 int cpu;
134 S390_lowcore.clock_comparator = -1ULL;
135 set_clock_comparator(S390_lowcore.clock_comparator);
137 cpu = smp_processor_id();
138 cd = &per_cpu(comparators, cpu);
139 cd->name = "comparator";
140 cd->features = CLOCK_EVT_FEAT_ONESHOT;
141 cd->mult = 16777;
142 cd->shift = 12;
143 cd->min_delta_ns = 1;
144 cd->max_delta_ns = LONG_MAX;
145 cd->rating = 400;
146 cd->cpumask = cpumask_of(cpu);
147 cd->set_next_event = s390_next_event;
148 cd->set_mode = s390_set_mode;
150 clockevents_register_device(cd);
152 /* Enable clock comparator timer interrupt. */
153 __ctl_set_bit(0,11);
155 /* Always allow the timing alert external interrupt. */
156 __ctl_set_bit(0, 4);
159 static void clock_comparator_interrupt(struct ext_code ext_code,
160 unsigned int param32,
161 unsigned long param64)
163 inc_irq_stat(IRQEXT_CLK);
164 if (S390_lowcore.clock_comparator == -1ULL)
165 set_clock_comparator(S390_lowcore.clock_comparator);
168 static void etr_timing_alert(struct etr_irq_parm *);
169 static void stp_timing_alert(struct stp_irq_parm *);
171 static void timing_alert_interrupt(struct ext_code ext_code,
172 unsigned int param32, unsigned long param64)
174 inc_irq_stat(IRQEXT_TLA);
175 if (param32 & 0x00c40000)
176 etr_timing_alert((struct etr_irq_parm *) &param32);
177 if (param32 & 0x00038000)
178 stp_timing_alert((struct stp_irq_parm *) &param32);
181 static void etr_reset(void);
182 static void stp_reset(void);
184 void read_persistent_clock64(struct timespec64 *ts)
186 tod_to_timeval(get_tod_clock() - TOD_UNIX_EPOCH, ts);
189 void read_boot_clock64(struct timespec64 *ts)
191 tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts);
194 static cycle_t read_tod_clock(struct clocksource *cs)
196 return get_tod_clock();
199 static struct clocksource clocksource_tod = {
200 .name = "tod",
201 .rating = 400,
202 .read = read_tod_clock,
203 .mask = -1ULL,
204 .mult = 1000,
205 .shift = 12,
206 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
209 struct clocksource * __init clocksource_default_clock(void)
211 return &clocksource_tod;
214 void update_vsyscall(struct timekeeper *tk)
216 u64 nsecps;
218 if (tk->tkr_mono.clock != &clocksource_tod)
219 return;
221 /* Make userspace gettimeofday spin until we're done. */
222 ++vdso_data->tb_update_count;
223 smp_wmb();
224 vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last;
225 vdso_data->xtime_clock_sec = tk->xtime_sec;
226 vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec;
227 vdso_data->wtom_clock_sec =
228 tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
229 vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec +
230 + ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
231 nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift;
232 while (vdso_data->wtom_clock_nsec >= nsecps) {
233 vdso_data->wtom_clock_nsec -= nsecps;
234 vdso_data->wtom_clock_sec++;
237 vdso_data->xtime_coarse_sec = tk->xtime_sec;
238 vdso_data->xtime_coarse_nsec =
239 (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
240 vdso_data->wtom_coarse_sec =
241 vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec;
242 vdso_data->wtom_coarse_nsec =
243 vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
244 while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) {
245 vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC;
246 vdso_data->wtom_coarse_sec++;
249 vdso_data->tk_mult = tk->tkr_mono.mult;
250 vdso_data->tk_shift = tk->tkr_mono.shift;
251 smp_wmb();
252 ++vdso_data->tb_update_count;
255 extern struct timezone sys_tz;
257 void update_vsyscall_tz(void)
259 /* Make userspace gettimeofday spin until we're done. */
260 ++vdso_data->tb_update_count;
261 smp_wmb();
262 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
263 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
264 smp_wmb();
265 ++vdso_data->tb_update_count;
269 * Initialize the TOD clock and the CPU timer of
270 * the boot cpu.
272 void __init time_init(void)
274 /* Reset time synchronization interfaces. */
275 etr_reset();
276 stp_reset();
278 /* request the clock comparator external interrupt */
279 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
280 panic("Couldn't request external interrupt 0x1004");
282 /* request the timing alert external interrupt */
283 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
284 panic("Couldn't request external interrupt 0x1406");
286 if (__clocksource_register(&clocksource_tod) != 0)
287 panic("Could not register TOD clock source");
289 /* Enable TOD clock interrupts on the boot cpu. */
290 init_cpu_timer();
292 /* Enable cpu timer interrupts on the boot cpu. */
293 vtime_init();
297 * The time is "clock". old is what we think the time is.
298 * Adjust the value by a multiple of jiffies and add the delta to ntp.
299 * "delay" is an approximation how long the synchronization took. If
300 * the time correction is positive, then "delay" is subtracted from
301 * the time difference and only the remaining part is passed to ntp.
303 static unsigned long long adjust_time(unsigned long long old,
304 unsigned long long clock,
305 unsigned long long delay)
307 unsigned long long delta, ticks;
308 struct timex adjust;
310 if (clock > old) {
311 /* It is later than we thought. */
312 delta = ticks = clock - old;
313 delta = ticks = (delta < delay) ? 0 : delta - delay;
314 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
315 adjust.offset = ticks * (1000000 / HZ);
316 } else {
317 /* It is earlier than we thought. */
318 delta = ticks = old - clock;
319 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
320 delta = -delta;
321 adjust.offset = -ticks * (1000000 / HZ);
323 sched_clock_base_cc += delta;
324 if (adjust.offset != 0) {
325 pr_notice("The ETR interface has adjusted the clock "
326 "by %li microseconds\n", adjust.offset);
327 adjust.modes = ADJ_OFFSET_SINGLESHOT;
328 do_adjtimex(&adjust);
330 return delta;
333 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
334 static DEFINE_MUTEX(clock_sync_mutex);
335 static unsigned long clock_sync_flags;
337 #define CLOCK_SYNC_HAS_ETR 0
338 #define CLOCK_SYNC_HAS_STP 1
339 #define CLOCK_SYNC_ETR 2
340 #define CLOCK_SYNC_STP 3
343 * The synchronous get_clock function. It will write the current clock
344 * value to the clock pointer and return 0 if the clock is in sync with
345 * the external time source. If the clock mode is local it will return
346 * -EOPNOTSUPP and -EAGAIN if the clock is not in sync with the external
347 * reference.
349 int get_sync_clock(unsigned long long *clock)
351 atomic_t *sw_ptr;
352 unsigned int sw0, sw1;
354 sw_ptr = &get_cpu_var(clock_sync_word);
355 sw0 = atomic_read(sw_ptr);
356 *clock = get_tod_clock();
357 sw1 = atomic_read(sw_ptr);
358 put_cpu_var(clock_sync_word);
359 if (sw0 == sw1 && (sw0 & 0x80000000U))
360 /* Success: time is in sync. */
361 return 0;
362 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
363 !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
364 return -EOPNOTSUPP;
365 if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
366 !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
367 return -EACCES;
368 return -EAGAIN;
370 EXPORT_SYMBOL(get_sync_clock);
373 * Make get_sync_clock return -EAGAIN.
375 static void disable_sync_clock(void *dummy)
377 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
379 * Clear the in-sync bit 2^31. All get_sync_clock calls will
380 * fail until the sync bit is turned back on. In addition
381 * increase the "sequence" counter to avoid the race of an
382 * etr event and the complete recovery against get_sync_clock.
384 atomic_clear_mask(0x80000000, sw_ptr);
385 atomic_inc(sw_ptr);
389 * Make get_sync_clock return 0 again.
390 * Needs to be called from a context disabled for preemption.
392 static void enable_sync_clock(void)
394 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
395 atomic_set_mask(0x80000000, sw_ptr);
399 * Function to check if the clock is in sync.
401 static inline int check_sync_clock(void)
403 atomic_t *sw_ptr;
404 int rc;
406 sw_ptr = &get_cpu_var(clock_sync_word);
407 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
408 put_cpu_var(clock_sync_word);
409 return rc;
412 /* Single threaded workqueue used for etr and stp sync events */
413 static struct workqueue_struct *time_sync_wq;
415 static void __init time_init_wq(void)
417 if (time_sync_wq)
418 return;
419 time_sync_wq = create_singlethread_workqueue("timesync");
423 * External Time Reference (ETR) code.
425 static int etr_port0_online;
426 static int etr_port1_online;
427 static int etr_steai_available;
429 static int __init early_parse_etr(char *p)
431 if (strncmp(p, "off", 3) == 0)
432 etr_port0_online = etr_port1_online = 0;
433 else if (strncmp(p, "port0", 5) == 0)
434 etr_port0_online = 1;
435 else if (strncmp(p, "port1", 5) == 0)
436 etr_port1_online = 1;
437 else if (strncmp(p, "on", 2) == 0)
438 etr_port0_online = etr_port1_online = 1;
439 return 0;
441 early_param("etr", early_parse_etr);
443 enum etr_event {
444 ETR_EVENT_PORT0_CHANGE,
445 ETR_EVENT_PORT1_CHANGE,
446 ETR_EVENT_PORT_ALERT,
447 ETR_EVENT_SYNC_CHECK,
448 ETR_EVENT_SWITCH_LOCAL,
449 ETR_EVENT_UPDATE,
453 * Valid bit combinations of the eacr register are (x = don't care):
454 * e0 e1 dp p0 p1 ea es sl
455 * 0 0 x 0 0 0 0 0 initial, disabled state
456 * 0 0 x 0 1 1 0 0 port 1 online
457 * 0 0 x 1 0 1 0 0 port 0 online
458 * 0 0 x 1 1 1 0 0 both ports online
459 * 0 1 x 0 1 1 0 0 port 1 online and usable, ETR or PPS mode
460 * 0 1 x 0 1 1 0 1 port 1 online, usable and ETR mode
461 * 0 1 x 0 1 1 1 0 port 1 online, usable, PPS mode, in-sync
462 * 0 1 x 0 1 1 1 1 port 1 online, usable, ETR mode, in-sync
463 * 0 1 x 1 1 1 0 0 both ports online, port 1 usable
464 * 0 1 x 1 1 1 1 0 both ports online, port 1 usable, PPS mode, in-sync
465 * 0 1 x 1 1 1 1 1 both ports online, port 1 usable, ETR mode, in-sync
466 * 1 0 x 1 0 1 0 0 port 0 online and usable, ETR or PPS mode
467 * 1 0 x 1 0 1 0 1 port 0 online, usable and ETR mode
468 * 1 0 x 1 0 1 1 0 port 0 online, usable, PPS mode, in-sync
469 * 1 0 x 1 0 1 1 1 port 0 online, usable, ETR mode, in-sync
470 * 1 0 x 1 1 1 0 0 both ports online, port 0 usable
471 * 1 0 x 1 1 1 1 0 both ports online, port 0 usable, PPS mode, in-sync
472 * 1 0 x 1 1 1 1 1 both ports online, port 0 usable, ETR mode, in-sync
473 * 1 1 x 1 1 1 1 0 both ports online & usable, ETR, in-sync
474 * 1 1 x 1 1 1 1 1 both ports online & usable, ETR, in-sync
476 static struct etr_eacr etr_eacr;
477 static u64 etr_tolec; /* time of last eacr update */
478 static struct etr_aib etr_port0;
479 static int etr_port0_uptodate;
480 static struct etr_aib etr_port1;
481 static int etr_port1_uptodate;
482 static unsigned long etr_events;
483 static struct timer_list etr_timer;
485 static void etr_timeout(unsigned long dummy);
486 static void etr_work_fn(struct work_struct *work);
487 static DEFINE_MUTEX(etr_work_mutex);
488 static DECLARE_WORK(etr_work, etr_work_fn);
491 * Reset ETR attachment.
493 static void etr_reset(void)
495 etr_eacr = (struct etr_eacr) {
496 .e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
497 .p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
498 .es = 0, .sl = 0 };
499 if (etr_setr(&etr_eacr) == 0) {
500 etr_tolec = get_tod_clock();
501 set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
502 if (etr_port0_online && etr_port1_online)
503 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
504 } else if (etr_port0_online || etr_port1_online) {
505 pr_warning("The real or virtual hardware system does "
506 "not provide an ETR interface\n");
507 etr_port0_online = etr_port1_online = 0;
511 static int __init etr_init(void)
513 struct etr_aib aib;
515 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
516 return 0;
517 time_init_wq();
518 /* Check if this machine has the steai instruction. */
519 if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
520 etr_steai_available = 1;
521 setup_timer(&etr_timer, etr_timeout, 0UL);
522 if (etr_port0_online) {
523 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
524 queue_work(time_sync_wq, &etr_work);
526 if (etr_port1_online) {
527 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
528 queue_work(time_sync_wq, &etr_work);
530 return 0;
533 arch_initcall(etr_init);
536 * Two sorts of ETR machine checks. The architecture reads:
537 * "When a machine-check niterruption occurs and if a switch-to-local or
538 * ETR-sync-check interrupt request is pending but disabled, this pending
539 * disabled interruption request is indicated and is cleared".
540 * Which means that we can get etr_switch_to_local events from the machine
541 * check handler although the interruption condition is disabled. Lovely..
545 * Switch to local machine check. This is called when the last usable
546 * ETR port goes inactive. After switch to local the clock is not in sync.
548 void etr_switch_to_local(void)
550 if (!etr_eacr.sl)
551 return;
552 disable_sync_clock(NULL);
553 if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) {
554 etr_eacr.es = etr_eacr.sl = 0;
555 etr_setr(&etr_eacr);
556 queue_work(time_sync_wq, &etr_work);
561 * ETR sync check machine check. This is called when the ETR OTE and the
562 * local clock OTE are farther apart than the ETR sync check tolerance.
563 * After a ETR sync check the clock is not in sync. The machine check
564 * is broadcasted to all cpus at the same time.
566 void etr_sync_check(void)
568 if (!etr_eacr.es)
569 return;
570 disable_sync_clock(NULL);
571 if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) {
572 etr_eacr.es = 0;
573 etr_setr(&etr_eacr);
574 queue_work(time_sync_wq, &etr_work);
579 * ETR timing alert. There are two causes:
580 * 1) port state change, check the usability of the port
581 * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
582 * sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
583 * or ETR-data word 4 (edf4) has changed.
585 static void etr_timing_alert(struct etr_irq_parm *intparm)
587 if (intparm->pc0)
588 /* ETR port 0 state change. */
589 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
590 if (intparm->pc1)
591 /* ETR port 1 state change. */
592 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
593 if (intparm->eai)
595 * ETR port alert on either port 0, 1 or both.
596 * Both ports are not up-to-date now.
598 set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
599 queue_work(time_sync_wq, &etr_work);
602 static void etr_timeout(unsigned long dummy)
604 set_bit(ETR_EVENT_UPDATE, &etr_events);
605 queue_work(time_sync_wq, &etr_work);
609 * Check if the etr mode is pss.
611 static inline int etr_mode_is_pps(struct etr_eacr eacr)
613 return eacr.es && !eacr.sl;
617 * Check if the etr mode is etr.
619 static inline int etr_mode_is_etr(struct etr_eacr eacr)
621 return eacr.es && eacr.sl;
625 * Check if the port can be used for TOD synchronization.
626 * For PPS mode the port has to receive OTEs. For ETR mode
627 * the port has to receive OTEs, the ETR stepping bit has to
628 * be zero and the validity bits for data frame 1, 2, and 3
629 * have to be 1.
631 static int etr_port_valid(struct etr_aib *aib, int port)
633 unsigned int psc;
635 /* Check that this port is receiving OTEs. */
636 if (aib->tsp == 0)
637 return 0;
639 psc = port ? aib->esw.psc1 : aib->esw.psc0;
640 if (psc == etr_lpsc_pps_mode)
641 return 1;
642 if (psc == etr_lpsc_operational_step)
643 return !aib->esw.y && aib->slsw.v1 &&
644 aib->slsw.v2 && aib->slsw.v3;
645 return 0;
649 * Check if two ports are on the same network.
651 static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
653 // FIXME: any other fields we have to compare?
654 return aib1->edf1.net_id == aib2->edf1.net_id;
658 * Wrapper for etr_stei that converts physical port states
659 * to logical port states to be consistent with the output
660 * of stetr (see etr_psc vs. etr_lpsc).
662 static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
664 BUG_ON(etr_steai(aib, func) != 0);
665 /* Convert port state to logical port state. */
666 if (aib->esw.psc0 == 1)
667 aib->esw.psc0 = 2;
668 else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
669 aib->esw.psc0 = 1;
670 if (aib->esw.psc1 == 1)
671 aib->esw.psc1 = 2;
672 else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
673 aib->esw.psc1 = 1;
677 * Check if the aib a2 is still connected to the same attachment as
678 * aib a1, the etv values differ by one and a2 is valid.
680 static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
682 int state_a1, state_a2;
684 /* Paranoia check: e0/e1 should better be the same. */
685 if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
686 a1->esw.eacr.e1 != a2->esw.eacr.e1)
687 return 0;
689 /* Still connected to the same etr ? */
690 state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
691 state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
692 if (state_a1 == etr_lpsc_operational_step) {
693 if (state_a2 != etr_lpsc_operational_step ||
694 a1->edf1.net_id != a2->edf1.net_id ||
695 a1->edf1.etr_id != a2->edf1.etr_id ||
696 a1->edf1.etr_pn != a2->edf1.etr_pn)
697 return 0;
698 } else if (state_a2 != etr_lpsc_pps_mode)
699 return 0;
701 /* The ETV value of a2 needs to be ETV of a1 + 1. */
702 if (a1->edf2.etv + 1 != a2->edf2.etv)
703 return 0;
705 if (!etr_port_valid(a2, p))
706 return 0;
708 return 1;
711 struct clock_sync_data {
712 atomic_t cpus;
713 int in_sync;
714 unsigned long long fixup_cc;
715 int etr_port;
716 struct etr_aib *etr_aib;
719 static void clock_sync_cpu(struct clock_sync_data *sync)
721 atomic_dec(&sync->cpus);
722 enable_sync_clock();
724 * This looks like a busy wait loop but it isn't. etr_sync_cpus
725 * is called on all other cpus while the TOD clocks is stopped.
726 * __udelay will stop the cpu on an enabled wait psw until the
727 * TOD is running again.
729 while (sync->in_sync == 0) {
730 __udelay(1);
732 * A different cpu changes *in_sync. Therefore use
733 * barrier() to force memory access.
735 barrier();
737 if (sync->in_sync != 1)
738 /* Didn't work. Clear per-cpu in sync bit again. */
739 disable_sync_clock(NULL);
741 * This round of TOD syncing is done. Set the clock comparator
742 * to the next tick and let the processor continue.
744 fixup_clock_comparator(sync->fixup_cc);
748 * Sync the TOD clock using the port referred to by aibp. This port
749 * has to be enabled and the other port has to be disabled. The
750 * last eacr update has to be more than 1.6 seconds in the past.
752 static int etr_sync_clock(void *data)
754 static int first;
755 unsigned long long clock, old_clock, delay, delta;
756 struct clock_sync_data *etr_sync;
757 struct etr_aib *sync_port, *aib;
758 int port;
759 int rc;
761 etr_sync = data;
763 if (xchg(&first, 1) == 1) {
764 /* Slave */
765 clock_sync_cpu(etr_sync);
766 return 0;
769 /* Wait until all other cpus entered the sync function. */
770 while (atomic_read(&etr_sync->cpus) != 0)
771 cpu_relax();
773 port = etr_sync->etr_port;
774 aib = etr_sync->etr_aib;
775 sync_port = (port == 0) ? &etr_port0 : &etr_port1;
776 enable_sync_clock();
778 /* Set clock to next OTE. */
779 __ctl_set_bit(14, 21);
780 __ctl_set_bit(0, 29);
781 clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
782 old_clock = get_tod_clock();
783 if (set_tod_clock(clock) == 0) {
784 __udelay(1); /* Wait for the clock to start. */
785 __ctl_clear_bit(0, 29);
786 __ctl_clear_bit(14, 21);
787 etr_stetr(aib);
788 /* Adjust Linux timing variables. */
789 delay = (unsigned long long)
790 (aib->edf2.etv - sync_port->edf2.etv) << 32;
791 delta = adjust_time(old_clock, clock, delay);
792 etr_sync->fixup_cc = delta;
793 fixup_clock_comparator(delta);
794 /* Verify that the clock is properly set. */
795 if (!etr_aib_follows(sync_port, aib, port)) {
796 /* Didn't work. */
797 disable_sync_clock(NULL);
798 etr_sync->in_sync = -EAGAIN;
799 rc = -EAGAIN;
800 } else {
801 etr_sync->in_sync = 1;
802 rc = 0;
804 } else {
805 /* Could not set the clock ?!? */
806 __ctl_clear_bit(0, 29);
807 __ctl_clear_bit(14, 21);
808 disable_sync_clock(NULL);
809 etr_sync->in_sync = -EAGAIN;
810 rc = -EAGAIN;
812 xchg(&first, 0);
813 return rc;
816 static int etr_sync_clock_stop(struct etr_aib *aib, int port)
818 struct clock_sync_data etr_sync;
819 struct etr_aib *sync_port;
820 int follows;
821 int rc;
823 /* Check if the current aib is adjacent to the sync port aib. */
824 sync_port = (port == 0) ? &etr_port0 : &etr_port1;
825 follows = etr_aib_follows(sync_port, aib, port);
826 memcpy(sync_port, aib, sizeof(*aib));
827 if (!follows)
828 return -EAGAIN;
829 memset(&etr_sync, 0, sizeof(etr_sync));
830 etr_sync.etr_aib = aib;
831 etr_sync.etr_port = port;
832 get_online_cpus();
833 atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
834 rc = stop_machine(etr_sync_clock, &etr_sync, cpu_online_mask);
835 put_online_cpus();
836 return rc;
840 * Handle the immediate effects of the different events.
841 * The port change event is used for online/offline changes.
843 static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
845 if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
846 eacr.es = 0;
847 if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
848 eacr.es = eacr.sl = 0;
849 if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
850 etr_port0_uptodate = etr_port1_uptodate = 0;
852 if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
853 if (eacr.e0)
855 * Port change of an enabled port. We have to
856 * assume that this can have caused an stepping
857 * port switch.
859 etr_tolec = get_tod_clock();
860 eacr.p0 = etr_port0_online;
861 if (!eacr.p0)
862 eacr.e0 = 0;
863 etr_port0_uptodate = 0;
865 if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
866 if (eacr.e1)
868 * Port change of an enabled port. We have to
869 * assume that this can have caused an stepping
870 * port switch.
872 etr_tolec = get_tod_clock();
873 eacr.p1 = etr_port1_online;
874 if (!eacr.p1)
875 eacr.e1 = 0;
876 etr_port1_uptodate = 0;
878 clear_bit(ETR_EVENT_UPDATE, &etr_events);
879 return eacr;
883 * Set up a timer that expires after the etr_tolec + 1.6 seconds if
884 * one of the ports needs an update.
886 static void etr_set_tolec_timeout(unsigned long long now)
888 unsigned long micros;
890 if ((!etr_eacr.p0 || etr_port0_uptodate) &&
891 (!etr_eacr.p1 || etr_port1_uptodate))
892 return;
893 micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
894 micros = (micros > 1600000) ? 0 : 1600000 - micros;
895 mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
899 * Set up a time that expires after 1/2 second.
901 static void etr_set_sync_timeout(void)
903 mod_timer(&etr_timer, jiffies + HZ/2);
907 * Update the aib information for one or both ports.
909 static struct etr_eacr etr_handle_update(struct etr_aib *aib,
910 struct etr_eacr eacr)
912 /* With both ports disabled the aib information is useless. */
913 if (!eacr.e0 && !eacr.e1)
914 return eacr;
916 /* Update port0 or port1 with aib stored in etr_work_fn. */
917 if (aib->esw.q == 0) {
918 /* Information for port 0 stored. */
919 if (eacr.p0 && !etr_port0_uptodate) {
920 etr_port0 = *aib;
921 if (etr_port0_online)
922 etr_port0_uptodate = 1;
924 } else {
925 /* Information for port 1 stored. */
926 if (eacr.p1 && !etr_port1_uptodate) {
927 etr_port1 = *aib;
928 if (etr_port0_online)
929 etr_port1_uptodate = 1;
934 * Do not try to get the alternate port aib if the clock
935 * is not in sync yet.
937 if (!eacr.es || !check_sync_clock())
938 return eacr;
941 * If steai is available we can get the information about
942 * the other port immediately. If only stetr is available the
943 * data-port bit toggle has to be used.
945 if (etr_steai_available) {
946 if (eacr.p0 && !etr_port0_uptodate) {
947 etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
948 etr_port0_uptodate = 1;
950 if (eacr.p1 && !etr_port1_uptodate) {
951 etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
952 etr_port1_uptodate = 1;
954 } else {
956 * One port was updated above, if the other
957 * port is not uptodate toggle dp bit.
959 if ((eacr.p0 && !etr_port0_uptodate) ||
960 (eacr.p1 && !etr_port1_uptodate))
961 eacr.dp ^= 1;
962 else
963 eacr.dp = 0;
965 return eacr;
969 * Write new etr control register if it differs from the current one.
970 * Return 1 if etr_tolec has been updated as well.
972 static void etr_update_eacr(struct etr_eacr eacr)
974 int dp_changed;
976 if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
977 /* No change, return. */
978 return;
980 * The disable of an active port of the change of the data port
981 * bit can/will cause a change in the data port.
983 dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
984 (etr_eacr.dp ^ eacr.dp) != 0;
985 etr_eacr = eacr;
986 etr_setr(&etr_eacr);
987 if (dp_changed)
988 etr_tolec = get_tod_clock();
992 * ETR work. In this function you'll find the main logic. In
993 * particular this is the only function that calls etr_update_eacr(),
994 * it "controls" the etr control register.
996 static void etr_work_fn(struct work_struct *work)
998 unsigned long long now;
999 struct etr_eacr eacr;
1000 struct etr_aib aib;
1001 int sync_port;
1003 /* prevent multiple execution. */
1004 mutex_lock(&etr_work_mutex);
1006 /* Create working copy of etr_eacr. */
1007 eacr = etr_eacr;
1009 /* Check for the different events and their immediate effects. */
1010 eacr = etr_handle_events(eacr);
1012 /* Check if ETR is supposed to be active. */
1013 eacr.ea = eacr.p0 || eacr.p1;
1014 if (!eacr.ea) {
1015 /* Both ports offline. Reset everything. */
1016 eacr.dp = eacr.es = eacr.sl = 0;
1017 on_each_cpu(disable_sync_clock, NULL, 1);
1018 del_timer_sync(&etr_timer);
1019 etr_update_eacr(eacr);
1020 goto out_unlock;
1023 /* Store aib to get the current ETR status word. */
1024 BUG_ON(etr_stetr(&aib) != 0);
1025 etr_port0.esw = etr_port1.esw = aib.esw; /* Copy status word. */
1026 now = get_tod_clock();
1029 * Update the port information if the last stepping port change
1030 * or data port change is older than 1.6 seconds.
1032 if (now >= etr_tolec + (1600000 << 12))
1033 eacr = etr_handle_update(&aib, eacr);
1036 * Select ports to enable. The preferred synchronization mode is PPS.
1037 * If a port can be enabled depends on a number of things:
1038 * 1) The port needs to be online and uptodate. A port is not
1039 * disabled just because it is not uptodate, but it is only
1040 * enabled if it is uptodate.
1041 * 2) The port needs to have the same mode (pps / etr).
1042 * 3) The port needs to be usable -> etr_port_valid() == 1
1043 * 4) To enable the second port the clock needs to be in sync.
1044 * 5) If both ports are useable and are ETR ports, the network id
1045 * has to be the same.
1046 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1048 if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1049 eacr.sl = 0;
1050 eacr.e0 = 1;
1051 if (!etr_mode_is_pps(etr_eacr))
1052 eacr.es = 0;
1053 if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1054 eacr.e1 = 0;
1055 // FIXME: uptodate checks ?
1056 else if (etr_port0_uptodate && etr_port1_uptodate)
1057 eacr.e1 = 1;
1058 sync_port = (etr_port0_uptodate &&
1059 etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1060 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1061 eacr.sl = 0;
1062 eacr.e0 = 0;
1063 eacr.e1 = 1;
1064 if (!etr_mode_is_pps(etr_eacr))
1065 eacr.es = 0;
1066 sync_port = (etr_port1_uptodate &&
1067 etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1068 } else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1069 eacr.sl = 1;
1070 eacr.e0 = 1;
1071 if (!etr_mode_is_etr(etr_eacr))
1072 eacr.es = 0;
1073 if (!eacr.es || !eacr.p1 ||
1074 aib.esw.psc1 != etr_lpsc_operational_alt)
1075 eacr.e1 = 0;
1076 else if (etr_port0_uptodate && etr_port1_uptodate &&
1077 etr_compare_network(&etr_port0, &etr_port1))
1078 eacr.e1 = 1;
1079 sync_port = (etr_port0_uptodate &&
1080 etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1081 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1082 eacr.sl = 1;
1083 eacr.e0 = 0;
1084 eacr.e1 = 1;
1085 if (!etr_mode_is_etr(etr_eacr))
1086 eacr.es = 0;
1087 sync_port = (etr_port1_uptodate &&
1088 etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1089 } else {
1090 /* Both ports not usable. */
1091 eacr.es = eacr.sl = 0;
1092 sync_port = -1;
1096 * If the clock is in sync just update the eacr and return.
1097 * If there is no valid sync port wait for a port update.
1099 if ((eacr.es && check_sync_clock()) || sync_port < 0) {
1100 etr_update_eacr(eacr);
1101 etr_set_tolec_timeout(now);
1102 goto out_unlock;
1106 * Prepare control register for clock syncing
1107 * (reset data port bit, set sync check control.
1109 eacr.dp = 0;
1110 eacr.es = 1;
1113 * Update eacr and try to synchronize the clock. If the update
1114 * of eacr caused a stepping port switch (or if we have to
1115 * assume that a stepping port switch has occurred) or the
1116 * clock syncing failed, reset the sync check control bit
1117 * and set up a timer to try again after 0.5 seconds
1119 etr_update_eacr(eacr);
1120 if (now < etr_tolec + (1600000 << 12) ||
1121 etr_sync_clock_stop(&aib, sync_port) != 0) {
1122 /* Sync failed. Try again in 1/2 second. */
1123 eacr.es = 0;
1124 etr_update_eacr(eacr);
1125 etr_set_sync_timeout();
1126 } else
1127 etr_set_tolec_timeout(now);
1128 out_unlock:
1129 mutex_unlock(&etr_work_mutex);
1133 * Sysfs interface functions
1135 static struct bus_type etr_subsys = {
1136 .name = "etr",
1137 .dev_name = "etr",
1140 static struct device etr_port0_dev = {
1141 .id = 0,
1142 .bus = &etr_subsys,
1145 static struct device etr_port1_dev = {
1146 .id = 1,
1147 .bus = &etr_subsys,
1151 * ETR subsys attributes
1153 static ssize_t etr_stepping_port_show(struct device *dev,
1154 struct device_attribute *attr,
1155 char *buf)
1157 return sprintf(buf, "%i\n", etr_port0.esw.p);
1160 static DEVICE_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1162 static ssize_t etr_stepping_mode_show(struct device *dev,
1163 struct device_attribute *attr,
1164 char *buf)
1166 char *mode_str;
1168 if (etr_mode_is_pps(etr_eacr))
1169 mode_str = "pps";
1170 else if (etr_mode_is_etr(etr_eacr))
1171 mode_str = "etr";
1172 else
1173 mode_str = "local";
1174 return sprintf(buf, "%s\n", mode_str);
1177 static DEVICE_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1180 * ETR port attributes
1182 static inline struct etr_aib *etr_aib_from_dev(struct device *dev)
1184 if (dev == &etr_port0_dev)
1185 return etr_port0_online ? &etr_port0 : NULL;
1186 else
1187 return etr_port1_online ? &etr_port1 : NULL;
1190 static ssize_t etr_online_show(struct device *dev,
1191 struct device_attribute *attr,
1192 char *buf)
1194 unsigned int online;
1196 online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1197 return sprintf(buf, "%i\n", online);
1200 static ssize_t etr_online_store(struct device *dev,
1201 struct device_attribute *attr,
1202 const char *buf, size_t count)
1204 unsigned int value;
1206 value = simple_strtoul(buf, NULL, 0);
1207 if (value != 0 && value != 1)
1208 return -EINVAL;
1209 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1210 return -EOPNOTSUPP;
1211 mutex_lock(&clock_sync_mutex);
1212 if (dev == &etr_port0_dev) {
1213 if (etr_port0_online == value)
1214 goto out; /* Nothing to do. */
1215 etr_port0_online = value;
1216 if (etr_port0_online && etr_port1_online)
1217 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1218 else
1219 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1220 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1221 queue_work(time_sync_wq, &etr_work);
1222 } else {
1223 if (etr_port1_online == value)
1224 goto out; /* Nothing to do. */
1225 etr_port1_online = value;
1226 if (etr_port0_online && etr_port1_online)
1227 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1228 else
1229 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1230 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1231 queue_work(time_sync_wq, &etr_work);
1233 out:
1234 mutex_unlock(&clock_sync_mutex);
1235 return count;
1238 static DEVICE_ATTR(online, 0600, etr_online_show, etr_online_store);
1240 static ssize_t etr_stepping_control_show(struct device *dev,
1241 struct device_attribute *attr,
1242 char *buf)
1244 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1245 etr_eacr.e0 : etr_eacr.e1);
1248 static DEVICE_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1250 static ssize_t etr_mode_code_show(struct device *dev,
1251 struct device_attribute *attr, char *buf)
1253 if (!etr_port0_online && !etr_port1_online)
1254 /* Status word is not uptodate if both ports are offline. */
1255 return -ENODATA;
1256 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1257 etr_port0.esw.psc0 : etr_port0.esw.psc1);
1260 static DEVICE_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1262 static ssize_t etr_untuned_show(struct device *dev,
1263 struct device_attribute *attr, char *buf)
1265 struct etr_aib *aib = etr_aib_from_dev(dev);
1267 if (!aib || !aib->slsw.v1)
1268 return -ENODATA;
1269 return sprintf(buf, "%i\n", aib->edf1.u);
1272 static DEVICE_ATTR(untuned, 0400, etr_untuned_show, NULL);
1274 static ssize_t etr_network_id_show(struct device *dev,
1275 struct device_attribute *attr, char *buf)
1277 struct etr_aib *aib = etr_aib_from_dev(dev);
1279 if (!aib || !aib->slsw.v1)
1280 return -ENODATA;
1281 return sprintf(buf, "%i\n", aib->edf1.net_id);
1284 static DEVICE_ATTR(network, 0400, etr_network_id_show, NULL);
1286 static ssize_t etr_id_show(struct device *dev,
1287 struct device_attribute *attr, char *buf)
1289 struct etr_aib *aib = etr_aib_from_dev(dev);
1291 if (!aib || !aib->slsw.v1)
1292 return -ENODATA;
1293 return sprintf(buf, "%i\n", aib->edf1.etr_id);
1296 static DEVICE_ATTR(id, 0400, etr_id_show, NULL);
1298 static ssize_t etr_port_number_show(struct device *dev,
1299 struct device_attribute *attr, char *buf)
1301 struct etr_aib *aib = etr_aib_from_dev(dev);
1303 if (!aib || !aib->slsw.v1)
1304 return -ENODATA;
1305 return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1308 static DEVICE_ATTR(port, 0400, etr_port_number_show, NULL);
1310 static ssize_t etr_coupled_show(struct device *dev,
1311 struct device_attribute *attr, char *buf)
1313 struct etr_aib *aib = etr_aib_from_dev(dev);
1315 if (!aib || !aib->slsw.v3)
1316 return -ENODATA;
1317 return sprintf(buf, "%i\n", aib->edf3.c);
1320 static DEVICE_ATTR(coupled, 0400, etr_coupled_show, NULL);
1322 static ssize_t etr_local_time_show(struct device *dev,
1323 struct device_attribute *attr, char *buf)
1325 struct etr_aib *aib = etr_aib_from_dev(dev);
1327 if (!aib || !aib->slsw.v3)
1328 return -ENODATA;
1329 return sprintf(buf, "%i\n", aib->edf3.blto);
1332 static DEVICE_ATTR(local_time, 0400, etr_local_time_show, NULL);
1334 static ssize_t etr_utc_offset_show(struct device *dev,
1335 struct device_attribute *attr, char *buf)
1337 struct etr_aib *aib = etr_aib_from_dev(dev);
1339 if (!aib || !aib->slsw.v3)
1340 return -ENODATA;
1341 return sprintf(buf, "%i\n", aib->edf3.buo);
1344 static DEVICE_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1346 static struct device_attribute *etr_port_attributes[] = {
1347 &dev_attr_online,
1348 &dev_attr_stepping_control,
1349 &dev_attr_state_code,
1350 &dev_attr_untuned,
1351 &dev_attr_network,
1352 &dev_attr_id,
1353 &dev_attr_port,
1354 &dev_attr_coupled,
1355 &dev_attr_local_time,
1356 &dev_attr_utc_offset,
1357 NULL
1360 static int __init etr_register_port(struct device *dev)
1362 struct device_attribute **attr;
1363 int rc;
1365 rc = device_register(dev);
1366 if (rc)
1367 goto out;
1368 for (attr = etr_port_attributes; *attr; attr++) {
1369 rc = device_create_file(dev, *attr);
1370 if (rc)
1371 goto out_unreg;
1373 return 0;
1374 out_unreg:
1375 for (; attr >= etr_port_attributes; attr--)
1376 device_remove_file(dev, *attr);
1377 device_unregister(dev);
1378 out:
1379 return rc;
1382 static void __init etr_unregister_port(struct device *dev)
1384 struct device_attribute **attr;
1386 for (attr = etr_port_attributes; *attr; attr++)
1387 device_remove_file(dev, *attr);
1388 device_unregister(dev);
1391 static int __init etr_init_sysfs(void)
1393 int rc;
1395 rc = subsys_system_register(&etr_subsys, NULL);
1396 if (rc)
1397 goto out;
1398 rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1399 if (rc)
1400 goto out_unreg_subsys;
1401 rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1402 if (rc)
1403 goto out_remove_stepping_port;
1404 rc = etr_register_port(&etr_port0_dev);
1405 if (rc)
1406 goto out_remove_stepping_mode;
1407 rc = etr_register_port(&etr_port1_dev);
1408 if (rc)
1409 goto out_remove_port0;
1410 return 0;
1412 out_remove_port0:
1413 etr_unregister_port(&etr_port0_dev);
1414 out_remove_stepping_mode:
1415 device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1416 out_remove_stepping_port:
1417 device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1418 out_unreg_subsys:
1419 bus_unregister(&etr_subsys);
1420 out:
1421 return rc;
1424 device_initcall(etr_init_sysfs);
1427 * Server Time Protocol (STP) code.
1429 static int stp_online;
1430 static struct stp_sstpi stp_info;
1431 static void *stp_page;
1433 static void stp_work_fn(struct work_struct *work);
1434 static DEFINE_MUTEX(stp_work_mutex);
1435 static DECLARE_WORK(stp_work, stp_work_fn);
1436 static struct timer_list stp_timer;
1438 static int __init early_parse_stp(char *p)
1440 if (strncmp(p, "off", 3) == 0)
1441 stp_online = 0;
1442 else if (strncmp(p, "on", 2) == 0)
1443 stp_online = 1;
1444 return 0;
1446 early_param("stp", early_parse_stp);
1449 * Reset STP attachment.
1451 static void __init stp_reset(void)
1453 int rc;
1455 stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
1456 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1457 if (rc == 0)
1458 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1459 else if (stp_online) {
1460 pr_warning("The real or virtual hardware system does "
1461 "not provide an STP interface\n");
1462 free_page((unsigned long) stp_page);
1463 stp_page = NULL;
1464 stp_online = 0;
1468 static void stp_timeout(unsigned long dummy)
1470 queue_work(time_sync_wq, &stp_work);
1473 static int __init stp_init(void)
1475 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1476 return 0;
1477 setup_timer(&stp_timer, stp_timeout, 0UL);
1478 time_init_wq();
1479 if (!stp_online)
1480 return 0;
1481 queue_work(time_sync_wq, &stp_work);
1482 return 0;
1485 arch_initcall(stp_init);
1488 * STP timing alert. There are three causes:
1489 * 1) timing status change
1490 * 2) link availability change
1491 * 3) time control parameter change
1492 * In all three cases we are only interested in the clock source state.
1493 * If a STP clock source is now available use it.
1495 static void stp_timing_alert(struct stp_irq_parm *intparm)
1497 if (intparm->tsc || intparm->lac || intparm->tcpc)
1498 queue_work(time_sync_wq, &stp_work);
1502 * STP sync check machine check. This is called when the timing state
1503 * changes from the synchronized state to the unsynchronized state.
1504 * After a STP sync check the clock is not in sync. The machine check
1505 * is broadcasted to all cpus at the same time.
1507 void stp_sync_check(void)
1509 disable_sync_clock(NULL);
1510 queue_work(time_sync_wq, &stp_work);
1514 * STP island condition machine check. This is called when an attached
1515 * server attempts to communicate over an STP link and the servers
1516 * have matching CTN ids and have a valid stratum-1 configuration
1517 * but the configurations do not match.
1519 void stp_island_check(void)
1521 disable_sync_clock(NULL);
1522 queue_work(time_sync_wq, &stp_work);
1526 static int stp_sync_clock(void *data)
1528 static int first;
1529 unsigned long long old_clock, delta;
1530 struct clock_sync_data *stp_sync;
1531 int rc;
1533 stp_sync = data;
1535 if (xchg(&first, 1) == 1) {
1536 /* Slave */
1537 clock_sync_cpu(stp_sync);
1538 return 0;
1541 /* Wait until all other cpus entered the sync function. */
1542 while (atomic_read(&stp_sync->cpus) != 0)
1543 cpu_relax();
1545 enable_sync_clock();
1547 rc = 0;
1548 if (stp_info.todoff[0] || stp_info.todoff[1] ||
1549 stp_info.todoff[2] || stp_info.todoff[3] ||
1550 stp_info.tmd != 2) {
1551 old_clock = get_tod_clock();
1552 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1553 if (rc == 0) {
1554 delta = adjust_time(old_clock, get_tod_clock(), 0);
1555 fixup_clock_comparator(delta);
1556 rc = chsc_sstpi(stp_page, &stp_info,
1557 sizeof(struct stp_sstpi));
1558 if (rc == 0 && stp_info.tmd != 2)
1559 rc = -EAGAIN;
1562 if (rc) {
1563 disable_sync_clock(NULL);
1564 stp_sync->in_sync = -EAGAIN;
1565 } else
1566 stp_sync->in_sync = 1;
1567 xchg(&first, 0);
1568 return 0;
1572 * STP work. Check for the STP state and take over the clock
1573 * synchronization if the STP clock source is usable.
1575 static void stp_work_fn(struct work_struct *work)
1577 struct clock_sync_data stp_sync;
1578 int rc;
1580 /* prevent multiple execution. */
1581 mutex_lock(&stp_work_mutex);
1583 if (!stp_online) {
1584 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1585 del_timer_sync(&stp_timer);
1586 goto out_unlock;
1589 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1590 if (rc)
1591 goto out_unlock;
1593 rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1594 if (rc || stp_info.c == 0)
1595 goto out_unlock;
1597 /* Skip synchronization if the clock is already in sync. */
1598 if (check_sync_clock())
1599 goto out_unlock;
1601 memset(&stp_sync, 0, sizeof(stp_sync));
1602 get_online_cpus();
1603 atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1604 stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask);
1605 put_online_cpus();
1607 if (!check_sync_clock())
1609 * There is a usable clock but the synchonization failed.
1610 * Retry after a second.
1612 mod_timer(&stp_timer, jiffies + HZ);
1614 out_unlock:
1615 mutex_unlock(&stp_work_mutex);
1619 * STP subsys sysfs interface functions
1621 static struct bus_type stp_subsys = {
1622 .name = "stp",
1623 .dev_name = "stp",
1626 static ssize_t stp_ctn_id_show(struct device *dev,
1627 struct device_attribute *attr,
1628 char *buf)
1630 if (!stp_online)
1631 return -ENODATA;
1632 return sprintf(buf, "%016llx\n",
1633 *(unsigned long long *) stp_info.ctnid);
1636 static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1638 static ssize_t stp_ctn_type_show(struct device *dev,
1639 struct device_attribute *attr,
1640 char *buf)
1642 if (!stp_online)
1643 return -ENODATA;
1644 return sprintf(buf, "%i\n", stp_info.ctn);
1647 static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1649 static ssize_t stp_dst_offset_show(struct device *dev,
1650 struct device_attribute *attr,
1651 char *buf)
1653 if (!stp_online || !(stp_info.vbits & 0x2000))
1654 return -ENODATA;
1655 return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1658 static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1660 static ssize_t stp_leap_seconds_show(struct device *dev,
1661 struct device_attribute *attr,
1662 char *buf)
1664 if (!stp_online || !(stp_info.vbits & 0x8000))
1665 return -ENODATA;
1666 return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1669 static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1671 static ssize_t stp_stratum_show(struct device *dev,
1672 struct device_attribute *attr,
1673 char *buf)
1675 if (!stp_online)
1676 return -ENODATA;
1677 return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1680 static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
1682 static ssize_t stp_time_offset_show(struct device *dev,
1683 struct device_attribute *attr,
1684 char *buf)
1686 if (!stp_online || !(stp_info.vbits & 0x0800))
1687 return -ENODATA;
1688 return sprintf(buf, "%i\n", (int) stp_info.tto);
1691 static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1693 static ssize_t stp_time_zone_offset_show(struct device *dev,
1694 struct device_attribute *attr,
1695 char *buf)
1697 if (!stp_online || !(stp_info.vbits & 0x4000))
1698 return -ENODATA;
1699 return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1702 static DEVICE_ATTR(time_zone_offset, 0400,
1703 stp_time_zone_offset_show, NULL);
1705 static ssize_t stp_timing_mode_show(struct device *dev,
1706 struct device_attribute *attr,
1707 char *buf)
1709 if (!stp_online)
1710 return -ENODATA;
1711 return sprintf(buf, "%i\n", stp_info.tmd);
1714 static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1716 static ssize_t stp_timing_state_show(struct device *dev,
1717 struct device_attribute *attr,
1718 char *buf)
1720 if (!stp_online)
1721 return -ENODATA;
1722 return sprintf(buf, "%i\n", stp_info.tst);
1725 static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1727 static ssize_t stp_online_show(struct device *dev,
1728 struct device_attribute *attr,
1729 char *buf)
1731 return sprintf(buf, "%i\n", stp_online);
1734 static ssize_t stp_online_store(struct device *dev,
1735 struct device_attribute *attr,
1736 const char *buf, size_t count)
1738 unsigned int value;
1740 value = simple_strtoul(buf, NULL, 0);
1741 if (value != 0 && value != 1)
1742 return -EINVAL;
1743 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1744 return -EOPNOTSUPP;
1745 mutex_lock(&clock_sync_mutex);
1746 stp_online = value;
1747 if (stp_online)
1748 set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1749 else
1750 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1751 queue_work(time_sync_wq, &stp_work);
1752 mutex_unlock(&clock_sync_mutex);
1753 return count;
1757 * Can't use DEVICE_ATTR because the attribute should be named
1758 * stp/online but dev_attr_online already exists in this file ..
1760 static struct device_attribute dev_attr_stp_online = {
1761 .attr = { .name = "online", .mode = 0600 },
1762 .show = stp_online_show,
1763 .store = stp_online_store,
1766 static struct device_attribute *stp_attributes[] = {
1767 &dev_attr_ctn_id,
1768 &dev_attr_ctn_type,
1769 &dev_attr_dst_offset,
1770 &dev_attr_leap_seconds,
1771 &dev_attr_stp_online,
1772 &dev_attr_stratum,
1773 &dev_attr_time_offset,
1774 &dev_attr_time_zone_offset,
1775 &dev_attr_timing_mode,
1776 &dev_attr_timing_state,
1777 NULL
1780 static int __init stp_init_sysfs(void)
1782 struct device_attribute **attr;
1783 int rc;
1785 rc = subsys_system_register(&stp_subsys, NULL);
1786 if (rc)
1787 goto out;
1788 for (attr = stp_attributes; *attr; attr++) {
1789 rc = device_create_file(stp_subsys.dev_root, *attr);
1790 if (rc)
1791 goto out_unreg;
1793 return 0;
1794 out_unreg:
1795 for (; attr >= stp_attributes; attr--)
1796 device_remove_file(stp_subsys.dev_root, *attr);
1797 bus_unregister(&stp_subsys);
1798 out:
1799 return rc;
1802 device_initcall(stp_init_sysfs);