remoteproc: Don't handle empty resource table
[linux/fpc-iii.git] / mm / huge_memory.c
blob86fe697e8bfb3c4e8393b23a09f177965450ad93
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
60 static struct shrinker deferred_split_shrinker;
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
65 static struct page *get_huge_zero_page(void)
67 struct page *zero_page;
68 retry:
69 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
70 return READ_ONCE(huge_zero_page);
72 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
73 HPAGE_PMD_ORDER);
74 if (!zero_page) {
75 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
76 return NULL;
78 count_vm_event(THP_ZERO_PAGE_ALLOC);
79 preempt_disable();
80 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
81 preempt_enable();
82 __free_pages(zero_page, compound_order(zero_page));
83 goto retry;
86 /* We take additional reference here. It will be put back by shrinker */
87 atomic_set(&huge_zero_refcount, 2);
88 preempt_enable();
89 return READ_ONCE(huge_zero_page);
92 static void put_huge_zero_page(void)
95 * Counter should never go to zero here. Only shrinker can put
96 * last reference.
98 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
101 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
103 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104 return READ_ONCE(huge_zero_page);
106 if (!get_huge_zero_page())
107 return NULL;
109 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110 put_huge_zero_page();
112 return READ_ONCE(huge_zero_page);
115 void mm_put_huge_zero_page(struct mm_struct *mm)
117 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 put_huge_zero_page();
121 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122 struct shrink_control *sc)
124 /* we can free zero page only if last reference remains */
125 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
128 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129 struct shrink_control *sc)
131 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
132 struct page *zero_page = xchg(&huge_zero_page, NULL);
133 BUG_ON(zero_page == NULL);
134 __free_pages(zero_page, compound_order(zero_page));
135 return HPAGE_PMD_NR;
138 return 0;
141 static struct shrinker huge_zero_page_shrinker = {
142 .count_objects = shrink_huge_zero_page_count,
143 .scan_objects = shrink_huge_zero_page_scan,
144 .seeks = DEFAULT_SEEKS,
147 #ifdef CONFIG_SYSFS
148 static ssize_t enabled_show(struct kobject *kobj,
149 struct kobj_attribute *attr, char *buf)
151 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152 return sprintf(buf, "[always] madvise never\n");
153 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154 return sprintf(buf, "always [madvise] never\n");
155 else
156 return sprintf(buf, "always madvise [never]\n");
159 static ssize_t enabled_store(struct kobject *kobj,
160 struct kobj_attribute *attr,
161 const char *buf, size_t count)
163 ssize_t ret = count;
165 if (!memcmp("always", buf,
166 min(sizeof("always")-1, count))) {
167 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 } else if (!memcmp("madvise", buf,
170 min(sizeof("madvise")-1, count))) {
171 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173 } else if (!memcmp("never", buf,
174 min(sizeof("never")-1, count))) {
175 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 } else
178 ret = -EINVAL;
180 if (ret > 0) {
181 int err = start_stop_khugepaged();
182 if (err)
183 ret = err;
185 return ret;
187 static struct kobj_attribute enabled_attr =
188 __ATTR(enabled, 0644, enabled_show, enabled_store);
190 ssize_t single_hugepage_flag_show(struct kobject *kobj,
191 struct kobj_attribute *attr, char *buf,
192 enum transparent_hugepage_flag flag)
194 return sprintf(buf, "%d\n",
195 !!test_bit(flag, &transparent_hugepage_flags));
198 ssize_t single_hugepage_flag_store(struct kobject *kobj,
199 struct kobj_attribute *attr,
200 const char *buf, size_t count,
201 enum transparent_hugepage_flag flag)
203 unsigned long value;
204 int ret;
206 ret = kstrtoul(buf, 10, &value);
207 if (ret < 0)
208 return ret;
209 if (value > 1)
210 return -EINVAL;
212 if (value)
213 set_bit(flag, &transparent_hugepage_flags);
214 else
215 clear_bit(flag, &transparent_hugepage_flags);
217 return count;
220 static ssize_t defrag_show(struct kobject *kobj,
221 struct kobj_attribute *attr, char *buf)
223 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
224 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
225 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
226 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
234 static ssize_t defrag_store(struct kobject *kobj,
235 struct kobj_attribute *attr,
236 const char *buf, size_t count)
238 if (!memcmp("always", buf,
239 min(sizeof("always")-1, count))) {
240 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
244 } else if (!memcmp("defer+madvise", buf,
245 min(sizeof("defer+madvise")-1, count))) {
246 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
250 } else if (!memcmp("defer", buf,
251 min(sizeof("defer")-1, count))) {
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 } else if (!memcmp("madvise", buf,
257 min(sizeof("madvise")-1, count))) {
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 } else if (!memcmp("never", buf,
263 min(sizeof("never")-1, count))) {
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 } else
269 return -EINVAL;
271 return count;
273 static struct kobj_attribute defrag_attr =
274 __ATTR(defrag, 0644, defrag_show, defrag_store);
276 static ssize_t use_zero_page_show(struct kobject *kobj,
277 struct kobj_attribute *attr, char *buf)
279 return single_hugepage_flag_show(kobj, attr, buf,
280 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
282 static ssize_t use_zero_page_store(struct kobject *kobj,
283 struct kobj_attribute *attr, const char *buf, size_t count)
285 return single_hugepage_flag_store(kobj, attr, buf, count,
286 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288 static struct kobj_attribute use_zero_page_attr =
289 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
291 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292 struct kobj_attribute *attr, char *buf)
294 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
296 static struct kobj_attribute hpage_pmd_size_attr =
297 __ATTR_RO(hpage_pmd_size);
299 #ifdef CONFIG_DEBUG_VM
300 static ssize_t debug_cow_show(struct kobject *kobj,
301 struct kobj_attribute *attr, char *buf)
303 return single_hugepage_flag_show(kobj, attr, buf,
304 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
306 static ssize_t debug_cow_store(struct kobject *kobj,
307 struct kobj_attribute *attr,
308 const char *buf, size_t count)
310 return single_hugepage_flag_store(kobj, attr, buf, count,
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
313 static struct kobj_attribute debug_cow_attr =
314 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315 #endif /* CONFIG_DEBUG_VM */
317 static struct attribute *hugepage_attr[] = {
318 &enabled_attr.attr,
319 &defrag_attr.attr,
320 &use_zero_page_attr.attr,
321 &hpage_pmd_size_attr.attr,
322 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
323 &shmem_enabled_attr.attr,
324 #endif
325 #ifdef CONFIG_DEBUG_VM
326 &debug_cow_attr.attr,
327 #endif
328 NULL,
331 static const struct attribute_group hugepage_attr_group = {
332 .attrs = hugepage_attr,
335 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
337 int err;
339 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 if (unlikely(!*hugepage_kobj)) {
341 pr_err("failed to create transparent hugepage kobject\n");
342 return -ENOMEM;
345 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
346 if (err) {
347 pr_err("failed to register transparent hugepage group\n");
348 goto delete_obj;
351 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
352 if (err) {
353 pr_err("failed to register transparent hugepage group\n");
354 goto remove_hp_group;
357 return 0;
359 remove_hp_group:
360 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361 delete_obj:
362 kobject_put(*hugepage_kobj);
363 return err;
366 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
368 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 kobject_put(hugepage_kobj);
372 #else
373 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
375 return 0;
378 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
381 #endif /* CONFIG_SYSFS */
383 static int __init hugepage_init(void)
385 int err;
386 struct kobject *hugepage_kobj;
388 if (!has_transparent_hugepage()) {
389 transparent_hugepage_flags = 0;
390 return -EINVAL;
394 * hugepages can't be allocated by the buddy allocator
396 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
398 * we use page->mapping and page->index in second tail page
399 * as list_head: assuming THP order >= 2
401 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
403 err = hugepage_init_sysfs(&hugepage_kobj);
404 if (err)
405 goto err_sysfs;
407 err = khugepaged_init();
408 if (err)
409 goto err_slab;
411 err = register_shrinker(&huge_zero_page_shrinker);
412 if (err)
413 goto err_hzp_shrinker;
414 err = register_shrinker(&deferred_split_shrinker);
415 if (err)
416 goto err_split_shrinker;
419 * By default disable transparent hugepages on smaller systems,
420 * where the extra memory used could hurt more than TLB overhead
421 * is likely to save. The admin can still enable it through /sys.
423 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
424 transparent_hugepage_flags = 0;
425 return 0;
428 err = start_stop_khugepaged();
429 if (err)
430 goto err_khugepaged;
432 return 0;
433 err_khugepaged:
434 unregister_shrinker(&deferred_split_shrinker);
435 err_split_shrinker:
436 unregister_shrinker(&huge_zero_page_shrinker);
437 err_hzp_shrinker:
438 khugepaged_destroy();
439 err_slab:
440 hugepage_exit_sysfs(hugepage_kobj);
441 err_sysfs:
442 return err;
444 subsys_initcall(hugepage_init);
446 static int __init setup_transparent_hugepage(char *str)
448 int ret = 0;
449 if (!str)
450 goto out;
451 if (!strcmp(str, "always")) {
452 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 &transparent_hugepage_flags);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 &transparent_hugepage_flags);
456 ret = 1;
457 } else if (!strcmp(str, "madvise")) {
458 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 &transparent_hugepage_flags);
460 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 &transparent_hugepage_flags);
462 ret = 1;
463 } else if (!strcmp(str, "never")) {
464 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 &transparent_hugepage_flags);
466 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 &transparent_hugepage_flags);
468 ret = 1;
470 out:
471 if (!ret)
472 pr_warn("transparent_hugepage= cannot parse, ignored\n");
473 return ret;
475 __setup("transparent_hugepage=", setup_transparent_hugepage);
477 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
479 if (likely(vma->vm_flags & VM_WRITE))
480 pmd = pmd_mkwrite(pmd);
481 return pmd;
484 static inline struct list_head *page_deferred_list(struct page *page)
487 * ->lru in the tail pages is occupied by compound_head.
488 * Let's use ->mapping + ->index in the second tail page as list_head.
490 return (struct list_head *)&page[2].mapping;
493 void prep_transhuge_page(struct page *page)
496 * we use page->mapping and page->indexlru in second tail page
497 * as list_head: assuming THP order >= 2
500 INIT_LIST_HEAD(page_deferred_list(page));
501 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
504 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
505 loff_t off, unsigned long flags, unsigned long size)
507 unsigned long addr;
508 loff_t off_end = off + len;
509 loff_t off_align = round_up(off, size);
510 unsigned long len_pad;
512 if (off_end <= off_align || (off_end - off_align) < size)
513 return 0;
515 len_pad = len + size;
516 if (len_pad < len || (off + len_pad) < off)
517 return 0;
519 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
520 off >> PAGE_SHIFT, flags);
521 if (IS_ERR_VALUE(addr))
522 return 0;
524 addr += (off - addr) & (size - 1);
525 return addr;
528 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
529 unsigned long len, unsigned long pgoff, unsigned long flags)
531 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
533 if (addr)
534 goto out;
535 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
536 goto out;
538 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
539 if (addr)
540 return addr;
542 out:
543 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
545 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
547 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
548 gfp_t gfp)
550 struct vm_area_struct *vma = vmf->vma;
551 struct mem_cgroup *memcg;
552 pgtable_t pgtable;
553 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
554 int ret = 0;
556 VM_BUG_ON_PAGE(!PageCompound(page), page);
558 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
559 put_page(page);
560 count_vm_event(THP_FAULT_FALLBACK);
561 return VM_FAULT_FALLBACK;
564 pgtable = pte_alloc_one(vma->vm_mm, haddr);
565 if (unlikely(!pgtable)) {
566 ret = VM_FAULT_OOM;
567 goto release;
570 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
572 * The memory barrier inside __SetPageUptodate makes sure that
573 * clear_huge_page writes become visible before the set_pmd_at()
574 * write.
576 __SetPageUptodate(page);
578 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
579 if (unlikely(!pmd_none(*vmf->pmd))) {
580 goto unlock_release;
581 } else {
582 pmd_t entry;
584 ret = check_stable_address_space(vma->vm_mm);
585 if (ret)
586 goto unlock_release;
588 /* Deliver the page fault to userland */
589 if (userfaultfd_missing(vma)) {
590 int ret;
592 spin_unlock(vmf->ptl);
593 mem_cgroup_cancel_charge(page, memcg, true);
594 put_page(page);
595 pte_free(vma->vm_mm, pgtable);
596 ret = handle_userfault(vmf, VM_UFFD_MISSING);
597 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
598 return ret;
601 entry = mk_huge_pmd(page, vma->vm_page_prot);
602 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
603 page_add_new_anon_rmap(page, vma, haddr, true);
604 mem_cgroup_commit_charge(page, memcg, false, true);
605 lru_cache_add_active_or_unevictable(page, vma);
606 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
607 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
608 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
609 mm_inc_nr_ptes(vma->vm_mm);
610 spin_unlock(vmf->ptl);
611 count_vm_event(THP_FAULT_ALLOC);
614 return 0;
615 unlock_release:
616 spin_unlock(vmf->ptl);
617 release:
618 if (pgtable)
619 pte_free(vma->vm_mm, pgtable);
620 mem_cgroup_cancel_charge(page, memcg, true);
621 put_page(page);
622 return ret;
627 * always: directly stall for all thp allocations
628 * defer: wake kswapd and fail if not immediately available
629 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
630 * fail if not immediately available
631 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
632 * available
633 * never: never stall for any thp allocation
635 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
637 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
639 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
640 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
641 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
642 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
643 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
644 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
645 __GFP_KSWAPD_RECLAIM);
646 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
647 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
649 return GFP_TRANSHUGE_LIGHT;
652 /* Caller must hold page table lock. */
653 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
654 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
655 struct page *zero_page)
657 pmd_t entry;
658 if (!pmd_none(*pmd))
659 return false;
660 entry = mk_pmd(zero_page, vma->vm_page_prot);
661 entry = pmd_mkhuge(entry);
662 if (pgtable)
663 pgtable_trans_huge_deposit(mm, pmd, pgtable);
664 set_pmd_at(mm, haddr, pmd, entry);
665 mm_inc_nr_ptes(mm);
666 return true;
669 int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
671 struct vm_area_struct *vma = vmf->vma;
672 gfp_t gfp;
673 struct page *page;
674 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
676 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
677 return VM_FAULT_FALLBACK;
678 if (unlikely(anon_vma_prepare(vma)))
679 return VM_FAULT_OOM;
680 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
681 return VM_FAULT_OOM;
682 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
683 !mm_forbids_zeropage(vma->vm_mm) &&
684 transparent_hugepage_use_zero_page()) {
685 pgtable_t pgtable;
686 struct page *zero_page;
687 bool set;
688 int ret;
689 pgtable = pte_alloc_one(vma->vm_mm, haddr);
690 if (unlikely(!pgtable))
691 return VM_FAULT_OOM;
692 zero_page = mm_get_huge_zero_page(vma->vm_mm);
693 if (unlikely(!zero_page)) {
694 pte_free(vma->vm_mm, pgtable);
695 count_vm_event(THP_FAULT_FALLBACK);
696 return VM_FAULT_FALLBACK;
698 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
699 ret = 0;
700 set = false;
701 if (pmd_none(*vmf->pmd)) {
702 ret = check_stable_address_space(vma->vm_mm);
703 if (ret) {
704 spin_unlock(vmf->ptl);
705 } else if (userfaultfd_missing(vma)) {
706 spin_unlock(vmf->ptl);
707 ret = handle_userfault(vmf, VM_UFFD_MISSING);
708 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
709 } else {
710 set_huge_zero_page(pgtable, vma->vm_mm, vma,
711 haddr, vmf->pmd, zero_page);
712 spin_unlock(vmf->ptl);
713 set = true;
715 } else
716 spin_unlock(vmf->ptl);
717 if (!set)
718 pte_free(vma->vm_mm, pgtable);
719 return ret;
721 gfp = alloc_hugepage_direct_gfpmask(vma);
722 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
723 if (unlikely(!page)) {
724 count_vm_event(THP_FAULT_FALLBACK);
725 return VM_FAULT_FALLBACK;
727 prep_transhuge_page(page);
728 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
731 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
732 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
733 pgtable_t pgtable)
735 struct mm_struct *mm = vma->vm_mm;
736 pmd_t entry;
737 spinlock_t *ptl;
739 ptl = pmd_lock(mm, pmd);
740 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
741 if (pfn_t_devmap(pfn))
742 entry = pmd_mkdevmap(entry);
743 if (write) {
744 entry = pmd_mkyoung(pmd_mkdirty(entry));
745 entry = maybe_pmd_mkwrite(entry, vma);
748 if (pgtable) {
749 pgtable_trans_huge_deposit(mm, pmd, pgtable);
750 mm_inc_nr_ptes(mm);
753 set_pmd_at(mm, addr, pmd, entry);
754 update_mmu_cache_pmd(vma, addr, pmd);
755 spin_unlock(ptl);
758 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
759 pmd_t *pmd, pfn_t pfn, bool write)
761 pgprot_t pgprot = vma->vm_page_prot;
762 pgtable_t pgtable = NULL;
764 * If we had pmd_special, we could avoid all these restrictions,
765 * but we need to be consistent with PTEs and architectures that
766 * can't support a 'special' bit.
768 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
769 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
770 (VM_PFNMAP|VM_MIXEDMAP));
771 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
772 BUG_ON(!pfn_t_devmap(pfn));
774 if (addr < vma->vm_start || addr >= vma->vm_end)
775 return VM_FAULT_SIGBUS;
777 if (arch_needs_pgtable_deposit()) {
778 pgtable = pte_alloc_one(vma->vm_mm, addr);
779 if (!pgtable)
780 return VM_FAULT_OOM;
783 track_pfn_insert(vma, &pgprot, pfn);
785 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
786 return VM_FAULT_NOPAGE;
788 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
790 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
791 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
793 if (likely(vma->vm_flags & VM_WRITE))
794 pud = pud_mkwrite(pud);
795 return pud;
798 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
799 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
801 struct mm_struct *mm = vma->vm_mm;
802 pud_t entry;
803 spinlock_t *ptl;
805 ptl = pud_lock(mm, pud);
806 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
807 if (pfn_t_devmap(pfn))
808 entry = pud_mkdevmap(entry);
809 if (write) {
810 entry = pud_mkyoung(pud_mkdirty(entry));
811 entry = maybe_pud_mkwrite(entry, vma);
813 set_pud_at(mm, addr, pud, entry);
814 update_mmu_cache_pud(vma, addr, pud);
815 spin_unlock(ptl);
818 int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
819 pud_t *pud, pfn_t pfn, bool write)
821 pgprot_t pgprot = vma->vm_page_prot;
823 * If we had pud_special, we could avoid all these restrictions,
824 * but we need to be consistent with PTEs and architectures that
825 * can't support a 'special' bit.
827 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
828 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
829 (VM_PFNMAP|VM_MIXEDMAP));
830 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
831 BUG_ON(!pfn_t_devmap(pfn));
833 if (addr < vma->vm_start || addr >= vma->vm_end)
834 return VM_FAULT_SIGBUS;
836 track_pfn_insert(vma, &pgprot, pfn);
838 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
839 return VM_FAULT_NOPAGE;
841 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
842 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
844 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
845 pmd_t *pmd)
847 pmd_t _pmd;
850 * We should set the dirty bit only for FOLL_WRITE but for now
851 * the dirty bit in the pmd is meaningless. And if the dirty
852 * bit will become meaningful and we'll only set it with
853 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
854 * set the young bit, instead of the current set_pmd_at.
856 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
857 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
858 pmd, _pmd, 1))
859 update_mmu_cache_pmd(vma, addr, pmd);
862 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
863 pmd_t *pmd, int flags)
865 unsigned long pfn = pmd_pfn(*pmd);
866 struct mm_struct *mm = vma->vm_mm;
867 struct dev_pagemap *pgmap;
868 struct page *page;
870 assert_spin_locked(pmd_lockptr(mm, pmd));
873 * When we COW a devmap PMD entry, we split it into PTEs, so we should
874 * not be in this function with `flags & FOLL_COW` set.
876 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
878 if (flags & FOLL_WRITE && !pmd_write(*pmd))
879 return NULL;
881 if (pmd_present(*pmd) && pmd_devmap(*pmd))
882 /* pass */;
883 else
884 return NULL;
886 if (flags & FOLL_TOUCH)
887 touch_pmd(vma, addr, pmd);
890 * device mapped pages can only be returned if the
891 * caller will manage the page reference count.
893 if (!(flags & FOLL_GET))
894 return ERR_PTR(-EEXIST);
896 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
897 pgmap = get_dev_pagemap(pfn, NULL);
898 if (!pgmap)
899 return ERR_PTR(-EFAULT);
900 page = pfn_to_page(pfn);
901 get_page(page);
902 put_dev_pagemap(pgmap);
904 return page;
907 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
908 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
909 struct vm_area_struct *vma)
911 spinlock_t *dst_ptl, *src_ptl;
912 struct page *src_page;
913 pmd_t pmd;
914 pgtable_t pgtable = NULL;
915 int ret = -ENOMEM;
917 /* Skip if can be re-fill on fault */
918 if (!vma_is_anonymous(vma))
919 return 0;
921 pgtable = pte_alloc_one(dst_mm, addr);
922 if (unlikely(!pgtable))
923 goto out;
925 dst_ptl = pmd_lock(dst_mm, dst_pmd);
926 src_ptl = pmd_lockptr(src_mm, src_pmd);
927 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
929 ret = -EAGAIN;
930 pmd = *src_pmd;
932 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
933 if (unlikely(is_swap_pmd(pmd))) {
934 swp_entry_t entry = pmd_to_swp_entry(pmd);
936 VM_BUG_ON(!is_pmd_migration_entry(pmd));
937 if (is_write_migration_entry(entry)) {
938 make_migration_entry_read(&entry);
939 pmd = swp_entry_to_pmd(entry);
940 if (pmd_swp_soft_dirty(*src_pmd))
941 pmd = pmd_swp_mksoft_dirty(pmd);
942 set_pmd_at(src_mm, addr, src_pmd, pmd);
944 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
945 mm_inc_nr_ptes(dst_mm);
946 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
947 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
948 ret = 0;
949 goto out_unlock;
951 #endif
953 if (unlikely(!pmd_trans_huge(pmd))) {
954 pte_free(dst_mm, pgtable);
955 goto out_unlock;
958 * When page table lock is held, the huge zero pmd should not be
959 * under splitting since we don't split the page itself, only pmd to
960 * a page table.
962 if (is_huge_zero_pmd(pmd)) {
963 struct page *zero_page;
965 * get_huge_zero_page() will never allocate a new page here,
966 * since we already have a zero page to copy. It just takes a
967 * reference.
969 zero_page = mm_get_huge_zero_page(dst_mm);
970 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
971 zero_page);
972 ret = 0;
973 goto out_unlock;
976 src_page = pmd_page(pmd);
977 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
978 get_page(src_page);
979 page_dup_rmap(src_page, true);
980 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
981 mm_inc_nr_ptes(dst_mm);
982 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
984 pmdp_set_wrprotect(src_mm, addr, src_pmd);
985 pmd = pmd_mkold(pmd_wrprotect(pmd));
986 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
988 ret = 0;
989 out_unlock:
990 spin_unlock(src_ptl);
991 spin_unlock(dst_ptl);
992 out:
993 return ret;
996 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
997 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
998 pud_t *pud)
1000 pud_t _pud;
1003 * We should set the dirty bit only for FOLL_WRITE but for now
1004 * the dirty bit in the pud is meaningless. And if the dirty
1005 * bit will become meaningful and we'll only set it with
1006 * FOLL_WRITE, an atomic set_bit will be required on the pud to
1007 * set the young bit, instead of the current set_pud_at.
1009 _pud = pud_mkyoung(pud_mkdirty(*pud));
1010 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1011 pud, _pud, 1))
1012 update_mmu_cache_pud(vma, addr, pud);
1015 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1016 pud_t *pud, int flags)
1018 unsigned long pfn = pud_pfn(*pud);
1019 struct mm_struct *mm = vma->vm_mm;
1020 struct dev_pagemap *pgmap;
1021 struct page *page;
1023 assert_spin_locked(pud_lockptr(mm, pud));
1025 if (flags & FOLL_WRITE && !pud_write(*pud))
1026 return NULL;
1028 if (pud_present(*pud) && pud_devmap(*pud))
1029 /* pass */;
1030 else
1031 return NULL;
1033 if (flags & FOLL_TOUCH)
1034 touch_pud(vma, addr, pud);
1037 * device mapped pages can only be returned if the
1038 * caller will manage the page reference count.
1040 if (!(flags & FOLL_GET))
1041 return ERR_PTR(-EEXIST);
1043 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1044 pgmap = get_dev_pagemap(pfn, NULL);
1045 if (!pgmap)
1046 return ERR_PTR(-EFAULT);
1047 page = pfn_to_page(pfn);
1048 get_page(page);
1049 put_dev_pagemap(pgmap);
1051 return page;
1054 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1055 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1056 struct vm_area_struct *vma)
1058 spinlock_t *dst_ptl, *src_ptl;
1059 pud_t pud;
1060 int ret;
1062 dst_ptl = pud_lock(dst_mm, dst_pud);
1063 src_ptl = pud_lockptr(src_mm, src_pud);
1064 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1066 ret = -EAGAIN;
1067 pud = *src_pud;
1068 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1069 goto out_unlock;
1072 * When page table lock is held, the huge zero pud should not be
1073 * under splitting since we don't split the page itself, only pud to
1074 * a page table.
1076 if (is_huge_zero_pud(pud)) {
1077 /* No huge zero pud yet */
1080 pudp_set_wrprotect(src_mm, addr, src_pud);
1081 pud = pud_mkold(pud_wrprotect(pud));
1082 set_pud_at(dst_mm, addr, dst_pud, pud);
1084 ret = 0;
1085 out_unlock:
1086 spin_unlock(src_ptl);
1087 spin_unlock(dst_ptl);
1088 return ret;
1091 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1093 pud_t entry;
1094 unsigned long haddr;
1095 bool write = vmf->flags & FAULT_FLAG_WRITE;
1097 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1098 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1099 goto unlock;
1101 entry = pud_mkyoung(orig_pud);
1102 if (write)
1103 entry = pud_mkdirty(entry);
1104 haddr = vmf->address & HPAGE_PUD_MASK;
1105 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1106 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1108 unlock:
1109 spin_unlock(vmf->ptl);
1111 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1113 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1115 pmd_t entry;
1116 unsigned long haddr;
1117 bool write = vmf->flags & FAULT_FLAG_WRITE;
1119 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1120 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1121 goto unlock;
1123 entry = pmd_mkyoung(orig_pmd);
1124 if (write)
1125 entry = pmd_mkdirty(entry);
1126 haddr = vmf->address & HPAGE_PMD_MASK;
1127 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1128 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1130 unlock:
1131 spin_unlock(vmf->ptl);
1134 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1135 struct page *page)
1137 struct vm_area_struct *vma = vmf->vma;
1138 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1139 struct mem_cgroup *memcg;
1140 pgtable_t pgtable;
1141 pmd_t _pmd;
1142 int ret = 0, i;
1143 struct page **pages;
1144 unsigned long mmun_start; /* For mmu_notifiers */
1145 unsigned long mmun_end; /* For mmu_notifiers */
1147 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1148 GFP_KERNEL);
1149 if (unlikely(!pages)) {
1150 ret |= VM_FAULT_OOM;
1151 goto out;
1154 for (i = 0; i < HPAGE_PMD_NR; i++) {
1155 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1156 vmf->address, page_to_nid(page));
1157 if (unlikely(!pages[i] ||
1158 mem_cgroup_try_charge(pages[i], vma->vm_mm,
1159 GFP_KERNEL, &memcg, false))) {
1160 if (pages[i])
1161 put_page(pages[i]);
1162 while (--i >= 0) {
1163 memcg = (void *)page_private(pages[i]);
1164 set_page_private(pages[i], 0);
1165 mem_cgroup_cancel_charge(pages[i], memcg,
1166 false);
1167 put_page(pages[i]);
1169 kfree(pages);
1170 ret |= VM_FAULT_OOM;
1171 goto out;
1173 set_page_private(pages[i], (unsigned long)memcg);
1176 for (i = 0; i < HPAGE_PMD_NR; i++) {
1177 copy_user_highpage(pages[i], page + i,
1178 haddr + PAGE_SIZE * i, vma);
1179 __SetPageUptodate(pages[i]);
1180 cond_resched();
1183 mmun_start = haddr;
1184 mmun_end = haddr + HPAGE_PMD_SIZE;
1185 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1187 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1188 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1189 goto out_free_pages;
1190 VM_BUG_ON_PAGE(!PageHead(page), page);
1193 * Leave pmd empty until pte is filled note we must notify here as
1194 * concurrent CPU thread might write to new page before the call to
1195 * mmu_notifier_invalidate_range_end() happens which can lead to a
1196 * device seeing memory write in different order than CPU.
1198 * See Documentation/vm/mmu_notifier.txt
1200 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1202 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1203 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1205 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1206 pte_t entry;
1207 entry = mk_pte(pages[i], vma->vm_page_prot);
1208 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1209 memcg = (void *)page_private(pages[i]);
1210 set_page_private(pages[i], 0);
1211 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1212 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1213 lru_cache_add_active_or_unevictable(pages[i], vma);
1214 vmf->pte = pte_offset_map(&_pmd, haddr);
1215 VM_BUG_ON(!pte_none(*vmf->pte));
1216 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1217 pte_unmap(vmf->pte);
1219 kfree(pages);
1221 smp_wmb(); /* make pte visible before pmd */
1222 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1223 page_remove_rmap(page, true);
1224 spin_unlock(vmf->ptl);
1227 * No need to double call mmu_notifier->invalidate_range() callback as
1228 * the above pmdp_huge_clear_flush_notify() did already call it.
1230 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1231 mmun_end);
1233 ret |= VM_FAULT_WRITE;
1234 put_page(page);
1236 out:
1237 return ret;
1239 out_free_pages:
1240 spin_unlock(vmf->ptl);
1241 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1242 for (i = 0; i < HPAGE_PMD_NR; i++) {
1243 memcg = (void *)page_private(pages[i]);
1244 set_page_private(pages[i], 0);
1245 mem_cgroup_cancel_charge(pages[i], memcg, false);
1246 put_page(pages[i]);
1248 kfree(pages);
1249 goto out;
1252 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1254 struct vm_area_struct *vma = vmf->vma;
1255 struct page *page = NULL, *new_page;
1256 struct mem_cgroup *memcg;
1257 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1258 unsigned long mmun_start; /* For mmu_notifiers */
1259 unsigned long mmun_end; /* For mmu_notifiers */
1260 gfp_t huge_gfp; /* for allocation and charge */
1261 int ret = 0;
1263 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1264 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1265 if (is_huge_zero_pmd(orig_pmd))
1266 goto alloc;
1267 spin_lock(vmf->ptl);
1268 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1269 goto out_unlock;
1271 page = pmd_page(orig_pmd);
1272 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1274 * We can only reuse the page if nobody else maps the huge page or it's
1275 * part.
1277 if (!trylock_page(page)) {
1278 get_page(page);
1279 spin_unlock(vmf->ptl);
1280 lock_page(page);
1281 spin_lock(vmf->ptl);
1282 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1283 unlock_page(page);
1284 put_page(page);
1285 goto out_unlock;
1287 put_page(page);
1289 if (reuse_swap_page(page, NULL)) {
1290 pmd_t entry;
1291 entry = pmd_mkyoung(orig_pmd);
1292 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1293 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1294 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1295 ret |= VM_FAULT_WRITE;
1296 unlock_page(page);
1297 goto out_unlock;
1299 unlock_page(page);
1300 get_page(page);
1301 spin_unlock(vmf->ptl);
1302 alloc:
1303 if (transparent_hugepage_enabled(vma) &&
1304 !transparent_hugepage_debug_cow()) {
1305 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1306 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1307 } else
1308 new_page = NULL;
1310 if (likely(new_page)) {
1311 prep_transhuge_page(new_page);
1312 } else {
1313 if (!page) {
1314 split_huge_pmd(vma, vmf->pmd, vmf->address);
1315 ret |= VM_FAULT_FALLBACK;
1316 } else {
1317 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1318 if (ret & VM_FAULT_OOM) {
1319 split_huge_pmd(vma, vmf->pmd, vmf->address);
1320 ret |= VM_FAULT_FALLBACK;
1322 put_page(page);
1324 count_vm_event(THP_FAULT_FALLBACK);
1325 goto out;
1328 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1329 huge_gfp, &memcg, true))) {
1330 put_page(new_page);
1331 split_huge_pmd(vma, vmf->pmd, vmf->address);
1332 if (page)
1333 put_page(page);
1334 ret |= VM_FAULT_FALLBACK;
1335 count_vm_event(THP_FAULT_FALLBACK);
1336 goto out;
1339 count_vm_event(THP_FAULT_ALLOC);
1341 if (!page)
1342 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1343 else
1344 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1345 __SetPageUptodate(new_page);
1347 mmun_start = haddr;
1348 mmun_end = haddr + HPAGE_PMD_SIZE;
1349 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1351 spin_lock(vmf->ptl);
1352 if (page)
1353 put_page(page);
1354 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1355 spin_unlock(vmf->ptl);
1356 mem_cgroup_cancel_charge(new_page, memcg, true);
1357 put_page(new_page);
1358 goto out_mn;
1359 } else {
1360 pmd_t entry;
1361 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1362 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1363 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1364 page_add_new_anon_rmap(new_page, vma, haddr, true);
1365 mem_cgroup_commit_charge(new_page, memcg, false, true);
1366 lru_cache_add_active_or_unevictable(new_page, vma);
1367 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1368 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1369 if (!page) {
1370 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1371 } else {
1372 VM_BUG_ON_PAGE(!PageHead(page), page);
1373 page_remove_rmap(page, true);
1374 put_page(page);
1376 ret |= VM_FAULT_WRITE;
1378 spin_unlock(vmf->ptl);
1379 out_mn:
1381 * No need to double call mmu_notifier->invalidate_range() callback as
1382 * the above pmdp_huge_clear_flush_notify() did already call it.
1384 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1385 mmun_end);
1386 out:
1387 return ret;
1388 out_unlock:
1389 spin_unlock(vmf->ptl);
1390 return ret;
1394 * FOLL_FORCE can write to even unwritable pmd's, but only
1395 * after we've gone through a COW cycle and they are dirty.
1397 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1399 return pmd_write(pmd) ||
1400 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1403 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1404 unsigned long addr,
1405 pmd_t *pmd,
1406 unsigned int flags)
1408 struct mm_struct *mm = vma->vm_mm;
1409 struct page *page = NULL;
1411 assert_spin_locked(pmd_lockptr(mm, pmd));
1413 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1414 goto out;
1416 /* Avoid dumping huge zero page */
1417 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1418 return ERR_PTR(-EFAULT);
1420 /* Full NUMA hinting faults to serialise migration in fault paths */
1421 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1422 goto out;
1424 page = pmd_page(*pmd);
1425 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1426 if (flags & FOLL_TOUCH)
1427 touch_pmd(vma, addr, pmd);
1428 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1430 * We don't mlock() pte-mapped THPs. This way we can avoid
1431 * leaking mlocked pages into non-VM_LOCKED VMAs.
1433 * For anon THP:
1435 * In most cases the pmd is the only mapping of the page as we
1436 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1437 * writable private mappings in populate_vma_page_range().
1439 * The only scenario when we have the page shared here is if we
1440 * mlocking read-only mapping shared over fork(). We skip
1441 * mlocking such pages.
1443 * For file THP:
1445 * We can expect PageDoubleMap() to be stable under page lock:
1446 * for file pages we set it in page_add_file_rmap(), which
1447 * requires page to be locked.
1450 if (PageAnon(page) && compound_mapcount(page) != 1)
1451 goto skip_mlock;
1452 if (PageDoubleMap(page) || !page->mapping)
1453 goto skip_mlock;
1454 if (!trylock_page(page))
1455 goto skip_mlock;
1456 lru_add_drain();
1457 if (page->mapping && !PageDoubleMap(page))
1458 mlock_vma_page(page);
1459 unlock_page(page);
1461 skip_mlock:
1462 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1463 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1464 if (flags & FOLL_GET)
1465 get_page(page);
1467 out:
1468 return page;
1471 /* NUMA hinting page fault entry point for trans huge pmds */
1472 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1474 struct vm_area_struct *vma = vmf->vma;
1475 struct anon_vma *anon_vma = NULL;
1476 struct page *page;
1477 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1478 int page_nid = -1, this_nid = numa_node_id();
1479 int target_nid, last_cpupid = -1;
1480 bool page_locked;
1481 bool migrated = false;
1482 bool was_writable;
1483 int flags = 0;
1485 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1486 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1487 goto out_unlock;
1490 * If there are potential migrations, wait for completion and retry
1491 * without disrupting NUMA hinting information. Do not relock and
1492 * check_same as the page may no longer be mapped.
1494 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1495 page = pmd_page(*vmf->pmd);
1496 if (!get_page_unless_zero(page))
1497 goto out_unlock;
1498 spin_unlock(vmf->ptl);
1499 wait_on_page_locked(page);
1500 put_page(page);
1501 goto out;
1504 page = pmd_page(pmd);
1505 BUG_ON(is_huge_zero_page(page));
1506 page_nid = page_to_nid(page);
1507 last_cpupid = page_cpupid_last(page);
1508 count_vm_numa_event(NUMA_HINT_FAULTS);
1509 if (page_nid == this_nid) {
1510 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1511 flags |= TNF_FAULT_LOCAL;
1514 /* See similar comment in do_numa_page for explanation */
1515 if (!pmd_savedwrite(pmd))
1516 flags |= TNF_NO_GROUP;
1519 * Acquire the page lock to serialise THP migrations but avoid dropping
1520 * page_table_lock if at all possible
1522 page_locked = trylock_page(page);
1523 target_nid = mpol_misplaced(page, vma, haddr);
1524 if (target_nid == -1) {
1525 /* If the page was locked, there are no parallel migrations */
1526 if (page_locked)
1527 goto clear_pmdnuma;
1530 /* Migration could have started since the pmd_trans_migrating check */
1531 if (!page_locked) {
1532 page_nid = -1;
1533 if (!get_page_unless_zero(page))
1534 goto out_unlock;
1535 spin_unlock(vmf->ptl);
1536 wait_on_page_locked(page);
1537 put_page(page);
1538 goto out;
1542 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1543 * to serialises splits
1545 get_page(page);
1546 spin_unlock(vmf->ptl);
1547 anon_vma = page_lock_anon_vma_read(page);
1549 /* Confirm the PMD did not change while page_table_lock was released */
1550 spin_lock(vmf->ptl);
1551 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1552 unlock_page(page);
1553 put_page(page);
1554 page_nid = -1;
1555 goto out_unlock;
1558 /* Bail if we fail to protect against THP splits for any reason */
1559 if (unlikely(!anon_vma)) {
1560 put_page(page);
1561 page_nid = -1;
1562 goto clear_pmdnuma;
1566 * Since we took the NUMA fault, we must have observed the !accessible
1567 * bit. Make sure all other CPUs agree with that, to avoid them
1568 * modifying the page we're about to migrate.
1570 * Must be done under PTL such that we'll observe the relevant
1571 * inc_tlb_flush_pending().
1573 * We are not sure a pending tlb flush here is for a huge page
1574 * mapping or not. Hence use the tlb range variant
1576 if (mm_tlb_flush_pending(vma->vm_mm))
1577 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1580 * Migrate the THP to the requested node, returns with page unlocked
1581 * and access rights restored.
1583 spin_unlock(vmf->ptl);
1585 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1586 vmf->pmd, pmd, vmf->address, page, target_nid);
1587 if (migrated) {
1588 flags |= TNF_MIGRATED;
1589 page_nid = target_nid;
1590 } else
1591 flags |= TNF_MIGRATE_FAIL;
1593 goto out;
1594 clear_pmdnuma:
1595 BUG_ON(!PageLocked(page));
1596 was_writable = pmd_savedwrite(pmd);
1597 pmd = pmd_modify(pmd, vma->vm_page_prot);
1598 pmd = pmd_mkyoung(pmd);
1599 if (was_writable)
1600 pmd = pmd_mkwrite(pmd);
1601 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1602 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1603 unlock_page(page);
1604 out_unlock:
1605 spin_unlock(vmf->ptl);
1607 out:
1608 if (anon_vma)
1609 page_unlock_anon_vma_read(anon_vma);
1611 if (page_nid != -1)
1612 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1613 flags);
1615 return 0;
1619 * Return true if we do MADV_FREE successfully on entire pmd page.
1620 * Otherwise, return false.
1622 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1623 pmd_t *pmd, unsigned long addr, unsigned long next)
1625 spinlock_t *ptl;
1626 pmd_t orig_pmd;
1627 struct page *page;
1628 struct mm_struct *mm = tlb->mm;
1629 bool ret = false;
1631 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1633 ptl = pmd_trans_huge_lock(pmd, vma);
1634 if (!ptl)
1635 goto out_unlocked;
1637 orig_pmd = *pmd;
1638 if (is_huge_zero_pmd(orig_pmd))
1639 goto out;
1641 if (unlikely(!pmd_present(orig_pmd))) {
1642 VM_BUG_ON(thp_migration_supported() &&
1643 !is_pmd_migration_entry(orig_pmd));
1644 goto out;
1647 page = pmd_page(orig_pmd);
1649 * If other processes are mapping this page, we couldn't discard
1650 * the page unless they all do MADV_FREE so let's skip the page.
1652 if (page_mapcount(page) != 1)
1653 goto out;
1655 if (!trylock_page(page))
1656 goto out;
1659 * If user want to discard part-pages of THP, split it so MADV_FREE
1660 * will deactivate only them.
1662 if (next - addr != HPAGE_PMD_SIZE) {
1663 get_page(page);
1664 spin_unlock(ptl);
1665 split_huge_page(page);
1666 unlock_page(page);
1667 put_page(page);
1668 goto out_unlocked;
1671 if (PageDirty(page))
1672 ClearPageDirty(page);
1673 unlock_page(page);
1675 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1676 pmdp_invalidate(vma, addr, pmd);
1677 orig_pmd = pmd_mkold(orig_pmd);
1678 orig_pmd = pmd_mkclean(orig_pmd);
1680 set_pmd_at(mm, addr, pmd, orig_pmd);
1681 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1684 mark_page_lazyfree(page);
1685 ret = true;
1686 out:
1687 spin_unlock(ptl);
1688 out_unlocked:
1689 return ret;
1692 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1694 pgtable_t pgtable;
1696 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1697 pte_free(mm, pgtable);
1698 mm_dec_nr_ptes(mm);
1701 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1702 pmd_t *pmd, unsigned long addr)
1704 pmd_t orig_pmd;
1705 spinlock_t *ptl;
1707 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1709 ptl = __pmd_trans_huge_lock(pmd, vma);
1710 if (!ptl)
1711 return 0;
1713 * For architectures like ppc64 we look at deposited pgtable
1714 * when calling pmdp_huge_get_and_clear. So do the
1715 * pgtable_trans_huge_withdraw after finishing pmdp related
1716 * operations.
1718 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1719 tlb->fullmm);
1720 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1721 if (vma_is_dax(vma)) {
1722 if (arch_needs_pgtable_deposit())
1723 zap_deposited_table(tlb->mm, pmd);
1724 spin_unlock(ptl);
1725 if (is_huge_zero_pmd(orig_pmd))
1726 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1727 } else if (is_huge_zero_pmd(orig_pmd)) {
1728 zap_deposited_table(tlb->mm, pmd);
1729 spin_unlock(ptl);
1730 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1731 } else {
1732 struct page *page = NULL;
1733 int flush_needed = 1;
1735 if (pmd_present(orig_pmd)) {
1736 page = pmd_page(orig_pmd);
1737 page_remove_rmap(page, true);
1738 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1739 VM_BUG_ON_PAGE(!PageHead(page), page);
1740 } else if (thp_migration_supported()) {
1741 swp_entry_t entry;
1743 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1744 entry = pmd_to_swp_entry(orig_pmd);
1745 page = pfn_to_page(swp_offset(entry));
1746 flush_needed = 0;
1747 } else
1748 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1750 if (PageAnon(page)) {
1751 zap_deposited_table(tlb->mm, pmd);
1752 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1753 } else {
1754 if (arch_needs_pgtable_deposit())
1755 zap_deposited_table(tlb->mm, pmd);
1756 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1759 spin_unlock(ptl);
1760 if (flush_needed)
1761 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1763 return 1;
1766 #ifndef pmd_move_must_withdraw
1767 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1768 spinlock_t *old_pmd_ptl,
1769 struct vm_area_struct *vma)
1772 * With split pmd lock we also need to move preallocated
1773 * PTE page table if new_pmd is on different PMD page table.
1775 * We also don't deposit and withdraw tables for file pages.
1777 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1779 #endif
1781 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1783 #ifdef CONFIG_MEM_SOFT_DIRTY
1784 if (unlikely(is_pmd_migration_entry(pmd)))
1785 pmd = pmd_swp_mksoft_dirty(pmd);
1786 else if (pmd_present(pmd))
1787 pmd = pmd_mksoft_dirty(pmd);
1788 #endif
1789 return pmd;
1792 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1793 unsigned long new_addr, unsigned long old_end,
1794 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1796 spinlock_t *old_ptl, *new_ptl;
1797 pmd_t pmd;
1798 struct mm_struct *mm = vma->vm_mm;
1799 bool force_flush = false;
1801 if ((old_addr & ~HPAGE_PMD_MASK) ||
1802 (new_addr & ~HPAGE_PMD_MASK) ||
1803 old_end - old_addr < HPAGE_PMD_SIZE)
1804 return false;
1807 * The destination pmd shouldn't be established, free_pgtables()
1808 * should have release it.
1810 if (WARN_ON(!pmd_none(*new_pmd))) {
1811 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1812 return false;
1816 * We don't have to worry about the ordering of src and dst
1817 * ptlocks because exclusive mmap_sem prevents deadlock.
1819 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1820 if (old_ptl) {
1821 new_ptl = pmd_lockptr(mm, new_pmd);
1822 if (new_ptl != old_ptl)
1823 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1824 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1825 if (pmd_present(pmd) && pmd_dirty(pmd))
1826 force_flush = true;
1827 VM_BUG_ON(!pmd_none(*new_pmd));
1829 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1830 pgtable_t pgtable;
1831 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1832 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1834 pmd = move_soft_dirty_pmd(pmd);
1835 set_pmd_at(mm, new_addr, new_pmd, pmd);
1836 if (new_ptl != old_ptl)
1837 spin_unlock(new_ptl);
1838 if (force_flush)
1839 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1840 else
1841 *need_flush = true;
1842 spin_unlock(old_ptl);
1843 return true;
1845 return false;
1849 * Returns
1850 * - 0 if PMD could not be locked
1851 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1852 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1854 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1855 unsigned long addr, pgprot_t newprot, int prot_numa)
1857 struct mm_struct *mm = vma->vm_mm;
1858 spinlock_t *ptl;
1859 pmd_t entry;
1860 bool preserve_write;
1861 int ret;
1863 ptl = __pmd_trans_huge_lock(pmd, vma);
1864 if (!ptl)
1865 return 0;
1867 preserve_write = prot_numa && pmd_write(*pmd);
1868 ret = 1;
1870 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1871 if (is_swap_pmd(*pmd)) {
1872 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1874 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1875 if (is_write_migration_entry(entry)) {
1876 pmd_t newpmd;
1878 * A protection check is difficult so
1879 * just be safe and disable write
1881 make_migration_entry_read(&entry);
1882 newpmd = swp_entry_to_pmd(entry);
1883 if (pmd_swp_soft_dirty(*pmd))
1884 newpmd = pmd_swp_mksoft_dirty(newpmd);
1885 set_pmd_at(mm, addr, pmd, newpmd);
1887 goto unlock;
1889 #endif
1892 * Avoid trapping faults against the zero page. The read-only
1893 * data is likely to be read-cached on the local CPU and
1894 * local/remote hits to the zero page are not interesting.
1896 if (prot_numa && is_huge_zero_pmd(*pmd))
1897 goto unlock;
1899 if (prot_numa && pmd_protnone(*pmd))
1900 goto unlock;
1903 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1904 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1905 * which is also under down_read(mmap_sem):
1907 * CPU0: CPU1:
1908 * change_huge_pmd(prot_numa=1)
1909 * pmdp_huge_get_and_clear_notify()
1910 * madvise_dontneed()
1911 * zap_pmd_range()
1912 * pmd_trans_huge(*pmd) == 0 (without ptl)
1913 * // skip the pmd
1914 * set_pmd_at();
1915 * // pmd is re-established
1917 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1918 * which may break userspace.
1920 * pmdp_invalidate() is required to make sure we don't miss
1921 * dirty/young flags set by hardware.
1923 entry = *pmd;
1924 pmdp_invalidate(vma, addr, pmd);
1927 * Recover dirty/young flags. It relies on pmdp_invalidate to not
1928 * corrupt them.
1930 if (pmd_dirty(*pmd))
1931 entry = pmd_mkdirty(entry);
1932 if (pmd_young(*pmd))
1933 entry = pmd_mkyoung(entry);
1935 entry = pmd_modify(entry, newprot);
1936 if (preserve_write)
1937 entry = pmd_mk_savedwrite(entry);
1938 ret = HPAGE_PMD_NR;
1939 set_pmd_at(mm, addr, pmd, entry);
1940 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1941 unlock:
1942 spin_unlock(ptl);
1943 return ret;
1947 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1949 * Note that if it returns page table lock pointer, this routine returns without
1950 * unlocking page table lock. So callers must unlock it.
1952 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1954 spinlock_t *ptl;
1955 ptl = pmd_lock(vma->vm_mm, pmd);
1956 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1957 pmd_devmap(*pmd)))
1958 return ptl;
1959 spin_unlock(ptl);
1960 return NULL;
1964 * Returns true if a given pud maps a thp, false otherwise.
1966 * Note that if it returns true, this routine returns without unlocking page
1967 * table lock. So callers must unlock it.
1969 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1971 spinlock_t *ptl;
1973 ptl = pud_lock(vma->vm_mm, pud);
1974 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1975 return ptl;
1976 spin_unlock(ptl);
1977 return NULL;
1980 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1981 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1982 pud_t *pud, unsigned long addr)
1984 pud_t orig_pud;
1985 spinlock_t *ptl;
1987 ptl = __pud_trans_huge_lock(pud, vma);
1988 if (!ptl)
1989 return 0;
1991 * For architectures like ppc64 we look at deposited pgtable
1992 * when calling pudp_huge_get_and_clear. So do the
1993 * pgtable_trans_huge_withdraw after finishing pudp related
1994 * operations.
1996 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1997 tlb->fullmm);
1998 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1999 if (vma_is_dax(vma)) {
2000 spin_unlock(ptl);
2001 /* No zero page support yet */
2002 } else {
2003 /* No support for anonymous PUD pages yet */
2004 BUG();
2006 return 1;
2009 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2010 unsigned long haddr)
2012 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2013 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2014 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2015 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2017 count_vm_event(THP_SPLIT_PUD);
2019 pudp_huge_clear_flush_notify(vma, haddr, pud);
2022 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2023 unsigned long address)
2025 spinlock_t *ptl;
2026 struct mm_struct *mm = vma->vm_mm;
2027 unsigned long haddr = address & HPAGE_PUD_MASK;
2029 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2030 ptl = pud_lock(mm, pud);
2031 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2032 goto out;
2033 __split_huge_pud_locked(vma, pud, haddr);
2035 out:
2036 spin_unlock(ptl);
2038 * No need to double call mmu_notifier->invalidate_range() callback as
2039 * the above pudp_huge_clear_flush_notify() did already call it.
2041 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2042 HPAGE_PUD_SIZE);
2044 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2046 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2047 unsigned long haddr, pmd_t *pmd)
2049 struct mm_struct *mm = vma->vm_mm;
2050 pgtable_t pgtable;
2051 pmd_t _pmd;
2052 int i;
2055 * Leave pmd empty until pte is filled note that it is fine to delay
2056 * notification until mmu_notifier_invalidate_range_end() as we are
2057 * replacing a zero pmd write protected page with a zero pte write
2058 * protected page.
2060 * See Documentation/vm/mmu_notifier.txt
2062 pmdp_huge_clear_flush(vma, haddr, pmd);
2064 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2065 pmd_populate(mm, &_pmd, pgtable);
2067 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2068 pte_t *pte, entry;
2069 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2070 entry = pte_mkspecial(entry);
2071 pte = pte_offset_map(&_pmd, haddr);
2072 VM_BUG_ON(!pte_none(*pte));
2073 set_pte_at(mm, haddr, pte, entry);
2074 pte_unmap(pte);
2076 smp_wmb(); /* make pte visible before pmd */
2077 pmd_populate(mm, pmd, pgtable);
2080 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2081 unsigned long haddr, bool freeze)
2083 struct mm_struct *mm = vma->vm_mm;
2084 struct page *page;
2085 pgtable_t pgtable;
2086 pmd_t _pmd;
2087 bool young, write, dirty, soft_dirty, pmd_migration = false;
2088 unsigned long addr;
2089 int i;
2091 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2092 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2093 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2094 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2095 && !pmd_devmap(*pmd));
2097 count_vm_event(THP_SPLIT_PMD);
2099 if (!vma_is_anonymous(vma)) {
2100 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2102 * We are going to unmap this huge page. So
2103 * just go ahead and zap it
2105 if (arch_needs_pgtable_deposit())
2106 zap_deposited_table(mm, pmd);
2107 if (vma_is_dax(vma))
2108 return;
2109 page = pmd_page(_pmd);
2110 if (!PageReferenced(page) && pmd_young(_pmd))
2111 SetPageReferenced(page);
2112 page_remove_rmap(page, true);
2113 put_page(page);
2114 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
2115 return;
2116 } else if (is_huge_zero_pmd(*pmd)) {
2118 * FIXME: Do we want to invalidate secondary mmu by calling
2119 * mmu_notifier_invalidate_range() see comments below inside
2120 * __split_huge_pmd() ?
2122 * We are going from a zero huge page write protected to zero
2123 * small page also write protected so it does not seems useful
2124 * to invalidate secondary mmu at this time.
2126 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2129 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2130 pmd_migration = is_pmd_migration_entry(*pmd);
2131 if (pmd_migration) {
2132 swp_entry_t entry;
2134 entry = pmd_to_swp_entry(*pmd);
2135 page = pfn_to_page(swp_offset(entry));
2136 } else
2137 #endif
2138 page = pmd_page(*pmd);
2139 VM_BUG_ON_PAGE(!page_count(page), page);
2140 page_ref_add(page, HPAGE_PMD_NR - 1);
2141 write = pmd_write(*pmd);
2142 young = pmd_young(*pmd);
2143 dirty = pmd_dirty(*pmd);
2144 soft_dirty = pmd_soft_dirty(*pmd);
2146 pmdp_huge_split_prepare(vma, haddr, pmd);
2147 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2148 pmd_populate(mm, &_pmd, pgtable);
2150 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2151 pte_t entry, *pte;
2153 * Note that NUMA hinting access restrictions are not
2154 * transferred to avoid any possibility of altering
2155 * permissions across VMAs.
2157 if (freeze || pmd_migration) {
2158 swp_entry_t swp_entry;
2159 swp_entry = make_migration_entry(page + i, write);
2160 entry = swp_entry_to_pte(swp_entry);
2161 if (soft_dirty)
2162 entry = pte_swp_mksoft_dirty(entry);
2163 } else {
2164 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2165 entry = maybe_mkwrite(entry, vma);
2166 if (!write)
2167 entry = pte_wrprotect(entry);
2168 if (!young)
2169 entry = pte_mkold(entry);
2170 if (soft_dirty)
2171 entry = pte_mksoft_dirty(entry);
2173 if (dirty)
2174 SetPageDirty(page + i);
2175 pte = pte_offset_map(&_pmd, addr);
2176 BUG_ON(!pte_none(*pte));
2177 set_pte_at(mm, addr, pte, entry);
2178 atomic_inc(&page[i]._mapcount);
2179 pte_unmap(pte);
2183 * Set PG_double_map before dropping compound_mapcount to avoid
2184 * false-negative page_mapped().
2186 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2187 for (i = 0; i < HPAGE_PMD_NR; i++)
2188 atomic_inc(&page[i]._mapcount);
2191 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2192 /* Last compound_mapcount is gone. */
2193 __dec_node_page_state(page, NR_ANON_THPS);
2194 if (TestClearPageDoubleMap(page)) {
2195 /* No need in mapcount reference anymore */
2196 for (i = 0; i < HPAGE_PMD_NR; i++)
2197 atomic_dec(&page[i]._mapcount);
2201 smp_wmb(); /* make pte visible before pmd */
2203 * Up to this point the pmd is present and huge and userland has the
2204 * whole access to the hugepage during the split (which happens in
2205 * place). If we overwrite the pmd with the not-huge version pointing
2206 * to the pte here (which of course we could if all CPUs were bug
2207 * free), userland could trigger a small page size TLB miss on the
2208 * small sized TLB while the hugepage TLB entry is still established in
2209 * the huge TLB. Some CPU doesn't like that.
2210 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2211 * 383 on page 93. Intel should be safe but is also warns that it's
2212 * only safe if the permission and cache attributes of the two entries
2213 * loaded in the two TLB is identical (which should be the case here).
2214 * But it is generally safer to never allow small and huge TLB entries
2215 * for the same virtual address to be loaded simultaneously. So instead
2216 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2217 * current pmd notpresent (atomically because here the pmd_trans_huge
2218 * and pmd_trans_splitting must remain set at all times on the pmd
2219 * until the split is complete for this pmd), then we flush the SMP TLB
2220 * and finally we write the non-huge version of the pmd entry with
2221 * pmd_populate.
2223 pmdp_invalidate(vma, haddr, pmd);
2224 pmd_populate(mm, pmd, pgtable);
2226 if (freeze) {
2227 for (i = 0; i < HPAGE_PMD_NR; i++) {
2228 page_remove_rmap(page + i, false);
2229 put_page(page + i);
2234 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2235 unsigned long address, bool freeze, struct page *page)
2237 spinlock_t *ptl;
2238 struct mm_struct *mm = vma->vm_mm;
2239 unsigned long haddr = address & HPAGE_PMD_MASK;
2241 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2242 ptl = pmd_lock(mm, pmd);
2245 * If caller asks to setup a migration entries, we need a page to check
2246 * pmd against. Otherwise we can end up replacing wrong page.
2248 VM_BUG_ON(freeze && !page);
2249 if (page && page != pmd_page(*pmd))
2250 goto out;
2252 if (pmd_trans_huge(*pmd)) {
2253 page = pmd_page(*pmd);
2254 if (PageMlocked(page))
2255 clear_page_mlock(page);
2256 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2257 goto out;
2258 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
2259 out:
2260 spin_unlock(ptl);
2262 * No need to double call mmu_notifier->invalidate_range() callback.
2263 * They are 3 cases to consider inside __split_huge_pmd_locked():
2264 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2265 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2266 * fault will trigger a flush_notify before pointing to a new page
2267 * (it is fine if the secondary mmu keeps pointing to the old zero
2268 * page in the meantime)
2269 * 3) Split a huge pmd into pte pointing to the same page. No need
2270 * to invalidate secondary tlb entry they are all still valid.
2271 * any further changes to individual pte will notify. So no need
2272 * to call mmu_notifier->invalidate_range()
2274 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2275 HPAGE_PMD_SIZE);
2278 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2279 bool freeze, struct page *page)
2281 pgd_t *pgd;
2282 p4d_t *p4d;
2283 pud_t *pud;
2284 pmd_t *pmd;
2286 pgd = pgd_offset(vma->vm_mm, address);
2287 if (!pgd_present(*pgd))
2288 return;
2290 p4d = p4d_offset(pgd, address);
2291 if (!p4d_present(*p4d))
2292 return;
2294 pud = pud_offset(p4d, address);
2295 if (!pud_present(*pud))
2296 return;
2298 pmd = pmd_offset(pud, address);
2300 __split_huge_pmd(vma, pmd, address, freeze, page);
2303 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2304 unsigned long start,
2305 unsigned long end,
2306 long adjust_next)
2309 * If the new start address isn't hpage aligned and it could
2310 * previously contain an hugepage: check if we need to split
2311 * an huge pmd.
2313 if (start & ~HPAGE_PMD_MASK &&
2314 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2315 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2316 split_huge_pmd_address(vma, start, false, NULL);
2319 * If the new end address isn't hpage aligned and it could
2320 * previously contain an hugepage: check if we need to split
2321 * an huge pmd.
2323 if (end & ~HPAGE_PMD_MASK &&
2324 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2325 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2326 split_huge_pmd_address(vma, end, false, NULL);
2329 * If we're also updating the vma->vm_next->vm_start, if the new
2330 * vm_next->vm_start isn't page aligned and it could previously
2331 * contain an hugepage: check if we need to split an huge pmd.
2333 if (adjust_next > 0) {
2334 struct vm_area_struct *next = vma->vm_next;
2335 unsigned long nstart = next->vm_start;
2336 nstart += adjust_next << PAGE_SHIFT;
2337 if (nstart & ~HPAGE_PMD_MASK &&
2338 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2339 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2340 split_huge_pmd_address(next, nstart, false, NULL);
2344 static void freeze_page(struct page *page)
2346 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2347 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2348 bool unmap_success;
2350 VM_BUG_ON_PAGE(!PageHead(page), page);
2352 if (PageAnon(page))
2353 ttu_flags |= TTU_SPLIT_FREEZE;
2355 unmap_success = try_to_unmap(page, ttu_flags);
2356 VM_BUG_ON_PAGE(!unmap_success, page);
2359 static void unfreeze_page(struct page *page)
2361 int i;
2362 if (PageTransHuge(page)) {
2363 remove_migration_ptes(page, page, true);
2364 } else {
2365 for (i = 0; i < HPAGE_PMD_NR; i++)
2366 remove_migration_ptes(page + i, page + i, true);
2370 static void __split_huge_page_tail(struct page *head, int tail,
2371 struct lruvec *lruvec, struct list_head *list)
2373 struct page *page_tail = head + tail;
2375 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2376 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
2379 * tail_page->_refcount is zero and not changing from under us. But
2380 * get_page_unless_zero() may be running from under us on the
2381 * tail_page. If we used atomic_set() below instead of atomic_inc() or
2382 * atomic_add(), we would then run atomic_set() concurrently with
2383 * get_page_unless_zero(), and atomic_set() is implemented in C not
2384 * using locked ops. spin_unlock on x86 sometime uses locked ops
2385 * because of PPro errata 66, 92, so unless somebody can guarantee
2386 * atomic_set() here would be safe on all archs (and not only on x86),
2387 * it's safer to use atomic_inc()/atomic_add().
2389 if (PageAnon(head) && !PageSwapCache(head)) {
2390 page_ref_inc(page_tail);
2391 } else {
2392 /* Additional pin to radix tree */
2393 page_ref_add(page_tail, 2);
2396 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2397 page_tail->flags |= (head->flags &
2398 ((1L << PG_referenced) |
2399 (1L << PG_swapbacked) |
2400 (1L << PG_swapcache) |
2401 (1L << PG_mlocked) |
2402 (1L << PG_uptodate) |
2403 (1L << PG_active) |
2404 (1L << PG_locked) |
2405 (1L << PG_unevictable) |
2406 (1L << PG_dirty)));
2409 * After clearing PageTail the gup refcount can be released.
2410 * Page flags also must be visible before we make the page non-compound.
2412 smp_wmb();
2414 clear_compound_head(page_tail);
2416 if (page_is_young(head))
2417 set_page_young(page_tail);
2418 if (page_is_idle(head))
2419 set_page_idle(page_tail);
2421 /* ->mapping in first tail page is compound_mapcount */
2422 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2423 page_tail);
2424 page_tail->mapping = head->mapping;
2426 page_tail->index = head->index + tail;
2427 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2428 lru_add_page_tail(head, page_tail, lruvec, list);
2431 static void __split_huge_page(struct page *page, struct list_head *list,
2432 unsigned long flags)
2434 struct page *head = compound_head(page);
2435 struct zone *zone = page_zone(head);
2436 struct lruvec *lruvec;
2437 pgoff_t end = -1;
2438 int i;
2440 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2442 /* complete memcg works before add pages to LRU */
2443 mem_cgroup_split_huge_fixup(head);
2445 if (!PageAnon(page))
2446 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2448 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2449 __split_huge_page_tail(head, i, lruvec, list);
2450 /* Some pages can be beyond i_size: drop them from page cache */
2451 if (head[i].index >= end) {
2452 __ClearPageDirty(head + i);
2453 __delete_from_page_cache(head + i, NULL);
2454 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2455 shmem_uncharge(head->mapping->host, 1);
2456 put_page(head + i);
2460 ClearPageCompound(head);
2461 /* See comment in __split_huge_page_tail() */
2462 if (PageAnon(head)) {
2463 /* Additional pin to radix tree of swap cache */
2464 if (PageSwapCache(head))
2465 page_ref_add(head, 2);
2466 else
2467 page_ref_inc(head);
2468 } else {
2469 /* Additional pin to radix tree */
2470 page_ref_add(head, 2);
2471 spin_unlock(&head->mapping->tree_lock);
2474 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2476 unfreeze_page(head);
2478 for (i = 0; i < HPAGE_PMD_NR; i++) {
2479 struct page *subpage = head + i;
2480 if (subpage == page)
2481 continue;
2482 unlock_page(subpage);
2485 * Subpages may be freed if there wasn't any mapping
2486 * like if add_to_swap() is running on a lru page that
2487 * had its mapping zapped. And freeing these pages
2488 * requires taking the lru_lock so we do the put_page
2489 * of the tail pages after the split is complete.
2491 put_page(subpage);
2495 int total_mapcount(struct page *page)
2497 int i, compound, ret;
2499 VM_BUG_ON_PAGE(PageTail(page), page);
2501 if (likely(!PageCompound(page)))
2502 return atomic_read(&page->_mapcount) + 1;
2504 compound = compound_mapcount(page);
2505 if (PageHuge(page))
2506 return compound;
2507 ret = compound;
2508 for (i = 0; i < HPAGE_PMD_NR; i++)
2509 ret += atomic_read(&page[i]._mapcount) + 1;
2510 /* File pages has compound_mapcount included in _mapcount */
2511 if (!PageAnon(page))
2512 return ret - compound * HPAGE_PMD_NR;
2513 if (PageDoubleMap(page))
2514 ret -= HPAGE_PMD_NR;
2515 return ret;
2519 * This calculates accurately how many mappings a transparent hugepage
2520 * has (unlike page_mapcount() which isn't fully accurate). This full
2521 * accuracy is primarily needed to know if copy-on-write faults can
2522 * reuse the page and change the mapping to read-write instead of
2523 * copying them. At the same time this returns the total_mapcount too.
2525 * The function returns the highest mapcount any one of the subpages
2526 * has. If the return value is one, even if different processes are
2527 * mapping different subpages of the transparent hugepage, they can
2528 * all reuse it, because each process is reusing a different subpage.
2530 * The total_mapcount is instead counting all virtual mappings of the
2531 * subpages. If the total_mapcount is equal to "one", it tells the
2532 * caller all mappings belong to the same "mm" and in turn the
2533 * anon_vma of the transparent hugepage can become the vma->anon_vma
2534 * local one as no other process may be mapping any of the subpages.
2536 * It would be more accurate to replace page_mapcount() with
2537 * page_trans_huge_mapcount(), however we only use
2538 * page_trans_huge_mapcount() in the copy-on-write faults where we
2539 * need full accuracy to avoid breaking page pinning, because
2540 * page_trans_huge_mapcount() is slower than page_mapcount().
2542 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2544 int i, ret, _total_mapcount, mapcount;
2546 /* hugetlbfs shouldn't call it */
2547 VM_BUG_ON_PAGE(PageHuge(page), page);
2549 if (likely(!PageTransCompound(page))) {
2550 mapcount = atomic_read(&page->_mapcount) + 1;
2551 if (total_mapcount)
2552 *total_mapcount = mapcount;
2553 return mapcount;
2556 page = compound_head(page);
2558 _total_mapcount = ret = 0;
2559 for (i = 0; i < HPAGE_PMD_NR; i++) {
2560 mapcount = atomic_read(&page[i]._mapcount) + 1;
2561 ret = max(ret, mapcount);
2562 _total_mapcount += mapcount;
2564 if (PageDoubleMap(page)) {
2565 ret -= 1;
2566 _total_mapcount -= HPAGE_PMD_NR;
2568 mapcount = compound_mapcount(page);
2569 ret += mapcount;
2570 _total_mapcount += mapcount;
2571 if (total_mapcount)
2572 *total_mapcount = _total_mapcount;
2573 return ret;
2576 /* Racy check whether the huge page can be split */
2577 bool can_split_huge_page(struct page *page, int *pextra_pins)
2579 int extra_pins;
2581 /* Additional pins from radix tree */
2582 if (PageAnon(page))
2583 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2584 else
2585 extra_pins = HPAGE_PMD_NR;
2586 if (pextra_pins)
2587 *pextra_pins = extra_pins;
2588 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2592 * This function splits huge page into normal pages. @page can point to any
2593 * subpage of huge page to split. Split doesn't change the position of @page.
2595 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2596 * The huge page must be locked.
2598 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2600 * Both head page and tail pages will inherit mapping, flags, and so on from
2601 * the hugepage.
2603 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2604 * they are not mapped.
2606 * Returns 0 if the hugepage is split successfully.
2607 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2608 * us.
2610 int split_huge_page_to_list(struct page *page, struct list_head *list)
2612 struct page *head = compound_head(page);
2613 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2614 struct anon_vma *anon_vma = NULL;
2615 struct address_space *mapping = NULL;
2616 int count, mapcount, extra_pins, ret;
2617 bool mlocked;
2618 unsigned long flags;
2620 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2621 VM_BUG_ON_PAGE(!PageLocked(page), page);
2622 VM_BUG_ON_PAGE(!PageCompound(page), page);
2624 if (PageWriteback(page))
2625 return -EBUSY;
2627 if (PageAnon(head)) {
2629 * The caller does not necessarily hold an mmap_sem that would
2630 * prevent the anon_vma disappearing so we first we take a
2631 * reference to it and then lock the anon_vma for write. This
2632 * is similar to page_lock_anon_vma_read except the write lock
2633 * is taken to serialise against parallel split or collapse
2634 * operations.
2636 anon_vma = page_get_anon_vma(head);
2637 if (!anon_vma) {
2638 ret = -EBUSY;
2639 goto out;
2641 mapping = NULL;
2642 anon_vma_lock_write(anon_vma);
2643 } else {
2644 mapping = head->mapping;
2646 /* Truncated ? */
2647 if (!mapping) {
2648 ret = -EBUSY;
2649 goto out;
2652 anon_vma = NULL;
2653 i_mmap_lock_read(mapping);
2657 * Racy check if we can split the page, before freeze_page() will
2658 * split PMDs
2660 if (!can_split_huge_page(head, &extra_pins)) {
2661 ret = -EBUSY;
2662 goto out_unlock;
2665 mlocked = PageMlocked(page);
2666 freeze_page(head);
2667 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2669 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2670 if (mlocked)
2671 lru_add_drain();
2673 /* prevent PageLRU to go away from under us, and freeze lru stats */
2674 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2676 if (mapping) {
2677 void **pslot;
2679 spin_lock(&mapping->tree_lock);
2680 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2681 page_index(head));
2683 * Check if the head page is present in radix tree.
2684 * We assume all tail are present too, if head is there.
2686 if (radix_tree_deref_slot_protected(pslot,
2687 &mapping->tree_lock) != head)
2688 goto fail;
2691 /* Prevent deferred_split_scan() touching ->_refcount */
2692 spin_lock(&pgdata->split_queue_lock);
2693 count = page_count(head);
2694 mapcount = total_mapcount(head);
2695 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2696 if (!list_empty(page_deferred_list(head))) {
2697 pgdata->split_queue_len--;
2698 list_del(page_deferred_list(head));
2700 if (mapping)
2701 __dec_node_page_state(page, NR_SHMEM_THPS);
2702 spin_unlock(&pgdata->split_queue_lock);
2703 __split_huge_page(page, list, flags);
2704 if (PageSwapCache(head)) {
2705 swp_entry_t entry = { .val = page_private(head) };
2707 ret = split_swap_cluster(entry);
2708 } else
2709 ret = 0;
2710 } else {
2711 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2712 pr_alert("total_mapcount: %u, page_count(): %u\n",
2713 mapcount, count);
2714 if (PageTail(page))
2715 dump_page(head, NULL);
2716 dump_page(page, "total_mapcount(head) > 0");
2717 BUG();
2719 spin_unlock(&pgdata->split_queue_lock);
2720 fail: if (mapping)
2721 spin_unlock(&mapping->tree_lock);
2722 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2723 unfreeze_page(head);
2724 ret = -EBUSY;
2727 out_unlock:
2728 if (anon_vma) {
2729 anon_vma_unlock_write(anon_vma);
2730 put_anon_vma(anon_vma);
2732 if (mapping)
2733 i_mmap_unlock_read(mapping);
2734 out:
2735 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2736 return ret;
2739 void free_transhuge_page(struct page *page)
2741 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2742 unsigned long flags;
2744 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2745 if (!list_empty(page_deferred_list(page))) {
2746 pgdata->split_queue_len--;
2747 list_del(page_deferred_list(page));
2749 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2750 free_compound_page(page);
2753 void deferred_split_huge_page(struct page *page)
2755 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2756 unsigned long flags;
2758 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2760 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2761 if (list_empty(page_deferred_list(page))) {
2762 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2763 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2764 pgdata->split_queue_len++;
2766 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2769 static unsigned long deferred_split_count(struct shrinker *shrink,
2770 struct shrink_control *sc)
2772 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2773 return READ_ONCE(pgdata->split_queue_len);
2776 static unsigned long deferred_split_scan(struct shrinker *shrink,
2777 struct shrink_control *sc)
2779 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2780 unsigned long flags;
2781 LIST_HEAD(list), *pos, *next;
2782 struct page *page;
2783 int split = 0;
2785 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2786 /* Take pin on all head pages to avoid freeing them under us */
2787 list_for_each_safe(pos, next, &pgdata->split_queue) {
2788 page = list_entry((void *)pos, struct page, mapping);
2789 page = compound_head(page);
2790 if (get_page_unless_zero(page)) {
2791 list_move(page_deferred_list(page), &list);
2792 } else {
2793 /* We lost race with put_compound_page() */
2794 list_del_init(page_deferred_list(page));
2795 pgdata->split_queue_len--;
2797 if (!--sc->nr_to_scan)
2798 break;
2800 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2802 list_for_each_safe(pos, next, &list) {
2803 page = list_entry((void *)pos, struct page, mapping);
2804 lock_page(page);
2805 /* split_huge_page() removes page from list on success */
2806 if (!split_huge_page(page))
2807 split++;
2808 unlock_page(page);
2809 put_page(page);
2812 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2813 list_splice_tail(&list, &pgdata->split_queue);
2814 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2817 * Stop shrinker if we didn't split any page, but the queue is empty.
2818 * This can happen if pages were freed under us.
2820 if (!split && list_empty(&pgdata->split_queue))
2821 return SHRINK_STOP;
2822 return split;
2825 static struct shrinker deferred_split_shrinker = {
2826 .count_objects = deferred_split_count,
2827 .scan_objects = deferred_split_scan,
2828 .seeks = DEFAULT_SEEKS,
2829 .flags = SHRINKER_NUMA_AWARE,
2832 #ifdef CONFIG_DEBUG_FS
2833 static int split_huge_pages_set(void *data, u64 val)
2835 struct zone *zone;
2836 struct page *page;
2837 unsigned long pfn, max_zone_pfn;
2838 unsigned long total = 0, split = 0;
2840 if (val != 1)
2841 return -EINVAL;
2843 for_each_populated_zone(zone) {
2844 max_zone_pfn = zone_end_pfn(zone);
2845 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2846 if (!pfn_valid(pfn))
2847 continue;
2849 page = pfn_to_page(pfn);
2850 if (!get_page_unless_zero(page))
2851 continue;
2853 if (zone != page_zone(page))
2854 goto next;
2856 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2857 goto next;
2859 total++;
2860 lock_page(page);
2861 if (!split_huge_page(page))
2862 split++;
2863 unlock_page(page);
2864 next:
2865 put_page(page);
2869 pr_info("%lu of %lu THP split\n", split, total);
2871 return 0;
2873 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2874 "%llu\n");
2876 static int __init split_huge_pages_debugfs(void)
2878 void *ret;
2880 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2881 &split_huge_pages_fops);
2882 if (!ret)
2883 pr_warn("Failed to create split_huge_pages in debugfs");
2884 return 0;
2886 late_initcall(split_huge_pages_debugfs);
2887 #endif
2889 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2890 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2891 struct page *page)
2893 struct vm_area_struct *vma = pvmw->vma;
2894 struct mm_struct *mm = vma->vm_mm;
2895 unsigned long address = pvmw->address;
2896 pmd_t pmdval;
2897 swp_entry_t entry;
2898 pmd_t pmdswp;
2900 if (!(pvmw->pmd && !pvmw->pte))
2901 return;
2903 mmu_notifier_invalidate_range_start(mm, address,
2904 address + HPAGE_PMD_SIZE);
2906 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2907 pmdval = *pvmw->pmd;
2908 pmdp_invalidate(vma, address, pvmw->pmd);
2909 if (pmd_dirty(pmdval))
2910 set_page_dirty(page);
2911 entry = make_migration_entry(page, pmd_write(pmdval));
2912 pmdswp = swp_entry_to_pmd(entry);
2913 if (pmd_soft_dirty(pmdval))
2914 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2915 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2916 page_remove_rmap(page, true);
2917 put_page(page);
2919 mmu_notifier_invalidate_range_end(mm, address,
2920 address + HPAGE_PMD_SIZE);
2923 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2925 struct vm_area_struct *vma = pvmw->vma;
2926 struct mm_struct *mm = vma->vm_mm;
2927 unsigned long address = pvmw->address;
2928 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2929 pmd_t pmde;
2930 swp_entry_t entry;
2932 if (!(pvmw->pmd && !pvmw->pte))
2933 return;
2935 entry = pmd_to_swp_entry(*pvmw->pmd);
2936 get_page(new);
2937 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2938 if (pmd_swp_soft_dirty(*pvmw->pmd))
2939 pmde = pmd_mksoft_dirty(pmde);
2940 if (is_write_migration_entry(entry))
2941 pmde = maybe_pmd_mkwrite(pmde, vma);
2943 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2944 page_add_anon_rmap(new, vma, mmun_start, true);
2945 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2946 if (vma->vm_flags & VM_LOCKED)
2947 mlock_vma_page(new);
2948 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2950 #endif