2 * ioport.c: Simple io mapping allocator.
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
7 * 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev.
10 * <rth> zait: as long as pci_alloc_consistent produces something addressable,
12 * <zaitcev> rth: no, it is relevant, because get_free_pages returns you a
13 * pointer into the big page mapping
14 * <rth> zait: so what?
15 * <rth> zait: remap_it_my_way(virt_to_phys(get_free_page()))
17 * <zaitcev> Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())).
19 * <zaitcev> Now, driver calls pci_free_consistent(with result of
21 * <zaitcev> How do you find the address to pass to free_pages()?
22 * <rth> zait: walk the page tables? It's only two or three level after all.
23 * <rth> zait: you have to walk them anyway to remove the mapping.
25 * <zaitcev> Sounds reasonable
28 #include <linux/module.h>
29 #include <linux/sched.h>
30 #include <linux/kernel.h>
31 #include <linux/errno.h>
32 #include <linux/types.h>
33 #include <linux/ioport.h>
35 #include <linux/slab.h>
36 #include <linux/pci.h> /* struct pci_dev */
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/scatterlist.h>
40 #include <linux/of_device.h>
43 #include <asm/vaddrs.h>
44 #include <asm/oplib.h>
47 #include <asm/pgalloc.h>
49 #include <asm/iommu.h>
50 #include <asm/io-unit.h>
53 const struct sparc32_dma_ops
*sparc32_dma_ops
;
55 /* This function must make sure that caches and memory are coherent after DMA
56 * On LEON systems without cache snooping it flushes the entire D-CACHE.
58 static inline void dma_make_coherent(unsigned long pa
, unsigned long len
)
60 if (sparc_cpu_model
== sparc_leon
) {
61 if (!sparc_leon3_snooping_enabled())
62 leon_flush_dcache_all();
66 static void __iomem
*_sparc_ioremap(struct resource
*res
, u32 bus
, u32 pa
, int sz
);
67 static void __iomem
*_sparc_alloc_io(unsigned int busno
, unsigned long phys
,
68 unsigned long size
, char *name
);
69 static void _sparc_free_io(struct resource
*res
);
71 static void register_proc_sparc_ioport(void);
73 /* This points to the next to use virtual memory for DVMA mappings */
74 static struct resource _sparc_dvma
= {
75 .name
= "sparc_dvma", .start
= DVMA_VADDR
, .end
= DVMA_END
- 1
77 /* This points to the start of I/O mappings, cluable from outside. */
78 /*ext*/ struct resource sparc_iomap
= {
79 .name
= "sparc_iomap", .start
= IOBASE_VADDR
, .end
= IOBASE_END
- 1
83 * Our mini-allocator...
84 * Boy this is gross! We need it because we must map I/O for
85 * timers and interrupt controller before the kmalloc is available.
89 #define XNRES 10 /* SS-10 uses 8 */
92 struct resource xres
; /* Must be first */
93 int xflag
; /* 1 == used */
97 static struct xresource xresv
[XNRES
];
99 static struct xresource
*xres_alloc(void) {
100 struct xresource
*xrp
;
104 for (n
= 0; n
< XNRES
; n
++) {
105 if (xrp
->xflag
== 0) {
114 static void xres_free(struct xresource
*xrp
) {
119 * These are typically used in PCI drivers
120 * which are trying to be cross-platform.
122 * Bus type is always zero on IIep.
124 void __iomem
*ioremap(unsigned long offset
, unsigned long size
)
128 sprintf(name
, "phys_%08x", (u32
)offset
);
129 return _sparc_alloc_io(0, offset
, size
, name
);
131 EXPORT_SYMBOL(ioremap
);
134 * Comlimentary to ioremap().
136 void iounmap(volatile void __iomem
*virtual)
138 unsigned long vaddr
= (unsigned long) virtual & PAGE_MASK
;
139 struct resource
*res
;
142 * XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case.
143 * This probably warrants some sort of hashing.
145 if ((res
= lookup_resource(&sparc_iomap
, vaddr
)) == NULL
) {
146 printk("free_io/iounmap: cannot free %lx\n", vaddr
);
151 if ((char *)res
>= (char*)xresv
&& (char *)res
< (char *)&xresv
[XNRES
]) {
152 xres_free((struct xresource
*)res
);
157 EXPORT_SYMBOL(iounmap
);
159 void __iomem
*of_ioremap(struct resource
*res
, unsigned long offset
,
160 unsigned long size
, char *name
)
162 return _sparc_alloc_io(res
->flags
& 0xF,
166 EXPORT_SYMBOL(of_ioremap
);
168 void of_iounmap(struct resource
*res
, void __iomem
*base
, unsigned long size
)
172 EXPORT_SYMBOL(of_iounmap
);
177 static void __iomem
*_sparc_alloc_io(unsigned int busno
, unsigned long phys
,
178 unsigned long size
, char *name
)
180 static int printed_full
;
181 struct xresource
*xres
;
182 struct resource
*res
;
185 void __iomem
*va
; /* P3 diag */
187 if (name
== NULL
) name
= "???";
189 if ((xres
= xres_alloc()) != NULL
) {
194 printk("ioremap: done with statics, switching to malloc\n");
198 tack
= kmalloc(sizeof (struct resource
) + tlen
+ 1, GFP_KERNEL
);
199 if (tack
== NULL
) return NULL
;
200 memset(tack
, 0, sizeof(struct resource
));
201 res
= (struct resource
*) tack
;
202 tack
+= sizeof (struct resource
);
205 strlcpy(tack
, name
, XNMLN
+1);
208 va
= _sparc_ioremap(res
, busno
, phys
, size
);
209 /* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */
215 static void __iomem
*
216 _sparc_ioremap(struct resource
*res
, u32 bus
, u32 pa
, int sz
)
218 unsigned long offset
= ((unsigned long) pa
) & (~PAGE_MASK
);
220 if (allocate_resource(&sparc_iomap
, res
,
221 (offset
+ sz
+ PAGE_SIZE
-1) & PAGE_MASK
,
222 sparc_iomap
.start
, sparc_iomap
.end
, PAGE_SIZE
, NULL
, NULL
) != 0) {
223 /* Usually we cannot see printks in this case. */
224 prom_printf("alloc_io_res(%s): cannot occupy\n",
225 (res
->name
!= NULL
)? res
->name
: "???");
230 srmmu_mapiorange(bus
, pa
, res
->start
, resource_size(res
));
232 return (void __iomem
*)(unsigned long)(res
->start
+ offset
);
236 * Comlimentary to _sparc_ioremap().
238 static void _sparc_free_io(struct resource
*res
)
242 plen
= resource_size(res
);
243 BUG_ON((plen
& (PAGE_SIZE
-1)) != 0);
244 srmmu_unmapiorange(res
->start
, plen
);
245 release_resource(res
);
250 void sbus_set_sbus64(struct device
*dev
, int x
)
252 printk("sbus_set_sbus64: unsupported\n");
254 EXPORT_SYMBOL(sbus_set_sbus64
);
257 * Allocate a chunk of memory suitable for DMA.
258 * Typically devices use them for control blocks.
259 * CPU may access them without any explicit flushing.
261 static void *sbus_alloc_coherent(struct device
*dev
, size_t len
,
262 dma_addr_t
*dma_addrp
, gfp_t gfp
,
263 struct dma_attrs
*attrs
)
265 struct platform_device
*op
= to_platform_device(dev
);
266 unsigned long len_total
= PAGE_ALIGN(len
);
268 struct resource
*res
;
271 /* XXX why are some lengths signed, others unsigned? */
275 /* XXX So what is maxphys for us and how do drivers know it? */
276 if (len
> 256*1024) { /* __get_free_pages() limit */
280 order
= get_order(len_total
);
281 va
= __get_free_pages(gfp
, order
);
285 if ((res
= kzalloc(sizeof(struct resource
), GFP_KERNEL
)) == NULL
)
288 if (allocate_resource(&_sparc_dvma
, res
, len_total
,
289 _sparc_dvma
.start
, _sparc_dvma
.end
, PAGE_SIZE
, NULL
, NULL
) != 0) {
290 printk("sbus_alloc_consistent: cannot occupy 0x%lx", len_total
);
294 // XXX The sbus_map_dma_area does this for us below, see comments.
295 // srmmu_mapiorange(0, virt_to_phys(va), res->start, len_total);
297 * XXX That's where sdev would be used. Currently we load
298 * all iommu tables with the same translations.
300 if (sbus_map_dma_area(dev
, dma_addrp
, va
, res
->start
, len_total
) != 0)
303 res
->name
= op
->dev
.of_node
->name
;
305 return (void *)(unsigned long)res
->start
;
308 release_resource(res
);
312 free_pages(va
, order
);
317 static void sbus_free_coherent(struct device
*dev
, size_t n
, void *p
,
318 dma_addr_t ba
, struct dma_attrs
*attrs
)
320 struct resource
*res
;
323 if ((res
= lookup_resource(&_sparc_dvma
,
324 (unsigned long)p
)) == NULL
) {
325 printk("sbus_free_consistent: cannot free %p\n", p
);
329 if (((unsigned long)p
& (PAGE_SIZE
-1)) != 0) {
330 printk("sbus_free_consistent: unaligned va %p\n", p
);
335 if (resource_size(res
) != n
) {
336 printk("sbus_free_consistent: region 0x%lx asked 0x%zx\n",
337 (long)resource_size(res
), n
);
341 release_resource(res
);
344 pgv
= virt_to_page(p
);
345 sbus_unmap_dma_area(dev
, ba
, n
);
347 __free_pages(pgv
, get_order(n
));
351 * Map a chunk of memory so that devices can see it.
352 * CPU view of this memory may be inconsistent with
353 * a device view and explicit flushing is necessary.
355 static dma_addr_t
sbus_map_page(struct device
*dev
, struct page
*page
,
356 unsigned long offset
, size_t len
,
357 enum dma_data_direction dir
,
358 struct dma_attrs
*attrs
)
360 void *va
= page_address(page
) + offset
;
362 /* XXX why are some lengths signed, others unsigned? */
366 /* XXX So what is maxphys for us and how do drivers know it? */
367 if (len
> 256*1024) { /* __get_free_pages() limit */
370 return mmu_get_scsi_one(dev
, va
, len
);
373 static void sbus_unmap_page(struct device
*dev
, dma_addr_t ba
, size_t n
,
374 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
376 mmu_release_scsi_one(dev
, ba
, n
);
379 static int sbus_map_sg(struct device
*dev
, struct scatterlist
*sg
, int n
,
380 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
382 mmu_get_scsi_sgl(dev
, sg
, n
);
386 static void sbus_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int n
,
387 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
389 mmu_release_scsi_sgl(dev
, sg
, n
);
392 static void sbus_sync_sg_for_cpu(struct device
*dev
, struct scatterlist
*sg
,
393 int n
, enum dma_data_direction dir
)
398 static void sbus_sync_sg_for_device(struct device
*dev
, struct scatterlist
*sg
,
399 int n
, enum dma_data_direction dir
)
404 static struct dma_map_ops sbus_dma_ops
= {
405 .alloc
= sbus_alloc_coherent
,
406 .free
= sbus_free_coherent
,
407 .map_page
= sbus_map_page
,
408 .unmap_page
= sbus_unmap_page
,
409 .map_sg
= sbus_map_sg
,
410 .unmap_sg
= sbus_unmap_sg
,
411 .sync_sg_for_cpu
= sbus_sync_sg_for_cpu
,
412 .sync_sg_for_device
= sbus_sync_sg_for_device
,
415 static int __init
sparc_register_ioport(void)
417 register_proc_sparc_ioport();
422 arch_initcall(sparc_register_ioport
);
424 #endif /* CONFIG_SBUS */
427 /* Allocate and map kernel buffer using consistent mode DMA for a device.
428 * hwdev should be valid struct pci_dev pointer for PCI devices.
430 static void *pci32_alloc_coherent(struct device
*dev
, size_t len
,
431 dma_addr_t
*pba
, gfp_t gfp
,
432 struct dma_attrs
*attrs
)
434 unsigned long len_total
= PAGE_ALIGN(len
);
436 struct resource
*res
;
442 if (len
> 256*1024) { /* __get_free_pages() limit */
446 order
= get_order(len_total
);
447 va
= (void *) __get_free_pages(gfp
, order
);
449 printk("pci_alloc_consistent: no %ld pages\n", len_total
>>PAGE_SHIFT
);
453 if ((res
= kzalloc(sizeof(struct resource
), GFP_KERNEL
)) == NULL
) {
454 printk("pci_alloc_consistent: no core\n");
458 if (allocate_resource(&_sparc_dvma
, res
, len_total
,
459 _sparc_dvma
.start
, _sparc_dvma
.end
, PAGE_SIZE
, NULL
, NULL
) != 0) {
460 printk("pci_alloc_consistent: cannot occupy 0x%lx", len_total
);
463 srmmu_mapiorange(0, virt_to_phys(va
), res
->start
, len_total
);
465 *pba
= virt_to_phys(va
); /* equals virt_to_bus (R.I.P.) for us. */
466 return (void *) res
->start
;
471 free_pages((unsigned long)va
, order
);
476 /* Free and unmap a consistent DMA buffer.
477 * cpu_addr is what was returned from pci_alloc_consistent,
478 * size must be the same as what as passed into pci_alloc_consistent,
479 * and likewise dma_addr must be the same as what *dma_addrp was set to.
481 * References to the memory and mappings associated with cpu_addr/dma_addr
482 * past this call are illegal.
484 static void pci32_free_coherent(struct device
*dev
, size_t n
, void *p
,
485 dma_addr_t ba
, struct dma_attrs
*attrs
)
487 struct resource
*res
;
489 if ((res
= lookup_resource(&_sparc_dvma
,
490 (unsigned long)p
)) == NULL
) {
491 printk("pci_free_consistent: cannot free %p\n", p
);
495 if (((unsigned long)p
& (PAGE_SIZE
-1)) != 0) {
496 printk("pci_free_consistent: unaligned va %p\n", p
);
501 if (resource_size(res
) != n
) {
502 printk("pci_free_consistent: region 0x%lx asked 0x%lx\n",
503 (long)resource_size(res
), (long)n
);
507 dma_make_coherent(ba
, n
);
508 srmmu_unmapiorange((unsigned long)p
, n
);
510 release_resource(res
);
512 free_pages((unsigned long)phys_to_virt(ba
), get_order(n
));
516 * Same as pci_map_single, but with pages.
518 static dma_addr_t
pci32_map_page(struct device
*dev
, struct page
*page
,
519 unsigned long offset
, size_t size
,
520 enum dma_data_direction dir
,
521 struct dma_attrs
*attrs
)
523 /* IIep is write-through, not flushing. */
524 return page_to_phys(page
) + offset
;
527 static void pci32_unmap_page(struct device
*dev
, dma_addr_t ba
, size_t size
,
528 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
530 if (dir
!= PCI_DMA_TODEVICE
)
531 dma_make_coherent(ba
, PAGE_ALIGN(size
));
534 /* Map a set of buffers described by scatterlist in streaming
535 * mode for DMA. This is the scather-gather version of the
536 * above pci_map_single interface. Here the scatter gather list
537 * elements are each tagged with the appropriate dma address
538 * and length. They are obtained via sg_dma_{address,length}(SG).
540 * NOTE: An implementation may be able to use a smaller number of
541 * DMA address/length pairs than there are SG table elements.
542 * (for example via virtual mapping capabilities)
543 * The routine returns the number of addr/length pairs actually
544 * used, at most nents.
546 * Device ownership issues as mentioned above for pci_map_single are
549 static int pci32_map_sg(struct device
*device
, struct scatterlist
*sgl
,
550 int nents
, enum dma_data_direction dir
,
551 struct dma_attrs
*attrs
)
553 struct scatterlist
*sg
;
556 /* IIep is write-through, not flushing. */
557 for_each_sg(sgl
, sg
, nents
, n
) {
558 sg
->dma_address
= sg_phys(sg
);
559 sg
->dma_length
= sg
->length
;
564 /* Unmap a set of streaming mode DMA translations.
565 * Again, cpu read rules concerning calls here are the same as for
566 * pci_unmap_single() above.
568 static void pci32_unmap_sg(struct device
*dev
, struct scatterlist
*sgl
,
569 int nents
, enum dma_data_direction dir
,
570 struct dma_attrs
*attrs
)
572 struct scatterlist
*sg
;
575 if (dir
!= PCI_DMA_TODEVICE
) {
576 for_each_sg(sgl
, sg
, nents
, n
) {
577 dma_make_coherent(sg_phys(sg
), PAGE_ALIGN(sg
->length
));
582 /* Make physical memory consistent for a single
583 * streaming mode DMA translation before or after a transfer.
585 * If you perform a pci_map_single() but wish to interrogate the
586 * buffer using the cpu, yet do not wish to teardown the PCI dma
587 * mapping, you must call this function before doing so. At the
588 * next point you give the PCI dma address back to the card, you
589 * must first perform a pci_dma_sync_for_device, and then the
590 * device again owns the buffer.
592 static void pci32_sync_single_for_cpu(struct device
*dev
, dma_addr_t ba
,
593 size_t size
, enum dma_data_direction dir
)
595 if (dir
!= PCI_DMA_TODEVICE
) {
596 dma_make_coherent(ba
, PAGE_ALIGN(size
));
600 static void pci32_sync_single_for_device(struct device
*dev
, dma_addr_t ba
,
601 size_t size
, enum dma_data_direction dir
)
603 if (dir
!= PCI_DMA_TODEVICE
) {
604 dma_make_coherent(ba
, PAGE_ALIGN(size
));
608 /* Make physical memory consistent for a set of streaming
609 * mode DMA translations after a transfer.
611 * The same as pci_dma_sync_single_* but for a scatter-gather list,
612 * same rules and usage.
614 static void pci32_sync_sg_for_cpu(struct device
*dev
, struct scatterlist
*sgl
,
615 int nents
, enum dma_data_direction dir
)
617 struct scatterlist
*sg
;
620 if (dir
!= PCI_DMA_TODEVICE
) {
621 for_each_sg(sgl
, sg
, nents
, n
) {
622 dma_make_coherent(sg_phys(sg
), PAGE_ALIGN(sg
->length
));
627 static void pci32_sync_sg_for_device(struct device
*device
, struct scatterlist
*sgl
,
628 int nents
, enum dma_data_direction dir
)
630 struct scatterlist
*sg
;
633 if (dir
!= PCI_DMA_TODEVICE
) {
634 for_each_sg(sgl
, sg
, nents
, n
) {
635 dma_make_coherent(sg_phys(sg
), PAGE_ALIGN(sg
->length
));
640 struct dma_map_ops pci32_dma_ops
= {
641 .alloc
= pci32_alloc_coherent
,
642 .free
= pci32_free_coherent
,
643 .map_page
= pci32_map_page
,
644 .unmap_page
= pci32_unmap_page
,
645 .map_sg
= pci32_map_sg
,
646 .unmap_sg
= pci32_unmap_sg
,
647 .sync_single_for_cpu
= pci32_sync_single_for_cpu
,
648 .sync_single_for_device
= pci32_sync_single_for_device
,
649 .sync_sg_for_cpu
= pci32_sync_sg_for_cpu
,
650 .sync_sg_for_device
= pci32_sync_sg_for_device
,
652 EXPORT_SYMBOL(pci32_dma_ops
);
654 /* leon re-uses pci32_dma_ops */
655 struct dma_map_ops
*leon_dma_ops
= &pci32_dma_ops
;
656 EXPORT_SYMBOL(leon_dma_ops
);
658 struct dma_map_ops
*dma_ops
= &sbus_dma_ops
;
659 EXPORT_SYMBOL(dma_ops
);
663 * Return whether the given PCI device DMA address mask can be
664 * supported properly. For example, if your device can only drive the
665 * low 24-bits during PCI bus mastering, then you would pass
666 * 0x00ffffff as the mask to this function.
668 int dma_supported(struct device
*dev
, u64 mask
)
675 EXPORT_SYMBOL(dma_supported
);
677 #ifdef CONFIG_PROC_FS
679 static int sparc_io_proc_show(struct seq_file
*m
, void *v
)
681 struct resource
*root
= m
->private, *r
;
684 for (r
= root
->child
; r
!= NULL
; r
= r
->sibling
) {
685 if ((nm
= r
->name
) == NULL
) nm
= "???";
686 seq_printf(m
, "%016llx-%016llx: %s\n",
687 (unsigned long long)r
->start
,
688 (unsigned long long)r
->end
, nm
);
694 static int sparc_io_proc_open(struct inode
*inode
, struct file
*file
)
696 return single_open(file
, sparc_io_proc_show
, PDE_DATA(inode
));
699 static const struct file_operations sparc_io_proc_fops
= {
700 .owner
= THIS_MODULE
,
701 .open
= sparc_io_proc_open
,
704 .release
= single_release
,
706 #endif /* CONFIG_PROC_FS */
708 static void register_proc_sparc_ioport(void)
710 #ifdef CONFIG_PROC_FS
711 proc_create_data("io_map", 0, NULL
, &sparc_io_proc_fops
, &sparc_iomap
);
712 proc_create_data("dvma_map", 0, NULL
, &sparc_io_proc_fops
, &_sparc_dvma
);