1 /* smp.c: Sparc64 SMP support.
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
28 #include <linux/kgdb.h>
31 #include <asm/ptrace.h>
32 #include <linux/atomic.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mmu_context.h>
35 #include <asm/cpudata.h>
36 #include <asm/hvtramp.h>
38 #include <asm/timer.h>
39 #include <asm/setup.h>
42 #include <asm/irq_regs.h>
44 #include <asm/pgtable.h>
45 #include <asm/oplib.h>
46 #include <asm/uaccess.h>
47 #include <asm/starfire.h>
49 #include <asm/sections.h>
51 #include <asm/mdesc.h>
53 #include <asm/hypervisor.h>
59 DEFINE_PER_CPU(cpumask_t
, cpu_sibling_map
) = CPU_MASK_NONE
;
60 cpumask_t cpu_core_map
[NR_CPUS
] __read_mostly
=
61 { [0 ... NR_CPUS
-1] = CPU_MASK_NONE
};
63 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map
);
64 EXPORT_SYMBOL(cpu_core_map
);
66 static cpumask_t smp_commenced_mask
;
68 void smp_info(struct seq_file
*m
)
72 seq_printf(m
, "State:\n");
73 for_each_online_cpu(i
)
74 seq_printf(m
, "CPU%d:\t\tonline\n", i
);
77 void smp_bogo(struct seq_file
*m
)
81 for_each_online_cpu(i
)
83 "Cpu%dClkTck\t: %016lx\n",
84 i
, cpu_data(i
).clock_tick
);
87 extern void setup_sparc64_timer(void);
89 static volatile unsigned long callin_flag
= 0;
93 int cpuid
= hard_smp_processor_id();
95 __local_per_cpu_offset
= __per_cpu_offset(cpuid
);
97 if (tlb_type
== hypervisor
)
98 sun4v_ktsb_register();
102 setup_sparc64_timer();
104 if (cheetah_pcache_forced_on
)
105 cheetah_enable_pcache();
108 __asm__
__volatile__("membar #Sync\n\t"
109 "flush %%g6" : : : "memory");
111 /* Clear this or we will die instantly when we
112 * schedule back to this idler...
114 current_thread_info()->new_child
= 0;
116 /* Attach to the address space of init_task. */
117 atomic_inc(&init_mm
.mm_count
);
118 current
->active_mm
= &init_mm
;
120 /* inform the notifiers about the new cpu */
121 notify_cpu_starting(cpuid
);
123 while (!cpumask_test_cpu(cpuid
, &smp_commenced_mask
))
126 set_cpu_online(cpuid
, true);
128 /* idle thread is expected to have preempt disabled */
133 cpu_startup_entry(CPUHP_ONLINE
);
138 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
139 panic("SMP bolixed\n");
142 /* This tick register synchronization scheme is taken entirely from
143 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
145 * The only change I've made is to rework it so that the master
146 * initiates the synchonization instead of the slave. -DaveM
150 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
152 #define NUM_ROUNDS 64 /* magic value */
153 #define NUM_ITERS 5 /* likewise */
155 static DEFINE_RAW_SPINLOCK(itc_sync_lock
);
156 static unsigned long go
[SLAVE
+ 1];
158 #define DEBUG_TICK_SYNC 0
160 static inline long get_delta (long *rt
, long *master
)
162 unsigned long best_t0
= 0, best_t1
= ~0UL, best_tm
= 0;
163 unsigned long tcenter
, t0
, t1
, tm
;
166 for (i
= 0; i
< NUM_ITERS
; i
++) {
167 t0
= tick_ops
->get_tick();
169 membar_safe("#StoreLoad");
170 while (!(tm
= go
[SLAVE
]))
174 t1
= tick_ops
->get_tick();
176 if (t1
- t0
< best_t1
- best_t0
)
177 best_t0
= t0
, best_t1
= t1
, best_tm
= tm
;
180 *rt
= best_t1
- best_t0
;
181 *master
= best_tm
- best_t0
;
183 /* average best_t0 and best_t1 without overflow: */
184 tcenter
= (best_t0
/2 + best_t1
/2);
185 if (best_t0
% 2 + best_t1
% 2 == 2)
187 return tcenter
- best_tm
;
190 void smp_synchronize_tick_client(void)
192 long i
, delta
, adj
, adjust_latency
= 0, done
= 0;
193 unsigned long flags
, rt
, master_time_stamp
;
196 long rt
; /* roundtrip time */
197 long master
; /* master's timestamp */
198 long diff
; /* difference between midpoint and master's timestamp */
199 long lat
; /* estimate of itc adjustment latency */
208 local_irq_save(flags
);
210 for (i
= 0; i
< NUM_ROUNDS
; i
++) {
211 delta
= get_delta(&rt
, &master_time_stamp
);
213 done
= 1; /* let's lock on to this... */
217 adjust_latency
+= -delta
;
218 adj
= -delta
+ adjust_latency
/4;
222 tick_ops
->add_tick(adj
);
226 t
[i
].master
= master_time_stamp
;
228 t
[i
].lat
= adjust_latency
/4;
232 local_irq_restore(flags
);
235 for (i
= 0; i
< NUM_ROUNDS
; i
++)
236 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
237 t
[i
].rt
, t
[i
].master
, t
[i
].diff
, t
[i
].lat
);
240 printk(KERN_INFO
"CPU %d: synchronized TICK with master CPU "
241 "(last diff %ld cycles, maxerr %lu cycles)\n",
242 smp_processor_id(), delta
, rt
);
245 static void smp_start_sync_tick_client(int cpu
);
247 static void smp_synchronize_one_tick(int cpu
)
249 unsigned long flags
, i
;
253 smp_start_sync_tick_client(cpu
);
255 /* wait for client to be ready */
259 /* now let the client proceed into his loop */
261 membar_safe("#StoreLoad");
263 raw_spin_lock_irqsave(&itc_sync_lock
, flags
);
265 for (i
= 0; i
< NUM_ROUNDS
*NUM_ITERS
; i
++) {
270 go
[SLAVE
] = tick_ops
->get_tick();
271 membar_safe("#StoreLoad");
274 raw_spin_unlock_irqrestore(&itc_sync_lock
, flags
);
277 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
278 static void ldom_startcpu_cpuid(unsigned int cpu
, unsigned long thread_reg
,
281 extern unsigned long sparc64_ttable_tl0
;
282 extern unsigned long kern_locked_tte_data
;
283 struct hvtramp_descr
*hdesc
;
284 unsigned long trampoline_ra
;
285 struct trap_per_cpu
*tb
;
286 u64 tte_vaddr
, tte_data
;
287 unsigned long hv_err
;
290 hdesc
= kzalloc(sizeof(*hdesc
) +
291 (sizeof(struct hvtramp_mapping
) *
292 num_kernel_image_mappings
- 1),
295 printk(KERN_ERR
"ldom_startcpu_cpuid: Cannot allocate "
302 hdesc
->num_mappings
= num_kernel_image_mappings
;
304 tb
= &trap_block
[cpu
];
306 hdesc
->fault_info_va
= (unsigned long) &tb
->fault_info
;
307 hdesc
->fault_info_pa
= kimage_addr_to_ra(&tb
->fault_info
);
309 hdesc
->thread_reg
= thread_reg
;
311 tte_vaddr
= (unsigned long) KERNBASE
;
312 tte_data
= kern_locked_tte_data
;
314 for (i
= 0; i
< hdesc
->num_mappings
; i
++) {
315 hdesc
->maps
[i
].vaddr
= tte_vaddr
;
316 hdesc
->maps
[i
].tte
= tte_data
;
317 tte_vaddr
+= 0x400000;
318 tte_data
+= 0x400000;
321 trampoline_ra
= kimage_addr_to_ra(hv_cpu_startup
);
323 hv_err
= sun4v_cpu_start(cpu
, trampoline_ra
,
324 kimage_addr_to_ra(&sparc64_ttable_tl0
),
327 printk(KERN_ERR
"ldom_startcpu_cpuid: sun4v_cpu_start() "
328 "gives error %lu\n", hv_err
);
332 extern unsigned long sparc64_cpu_startup
;
334 /* The OBP cpu startup callback truncates the 3rd arg cookie to
335 * 32-bits (I think) so to be safe we have it read the pointer
336 * contained here so we work on >4GB machines. -DaveM
338 static struct thread_info
*cpu_new_thread
= NULL
;
340 static int smp_boot_one_cpu(unsigned int cpu
, struct task_struct
*idle
)
342 unsigned long entry
=
343 (unsigned long)(&sparc64_cpu_startup
);
344 unsigned long cookie
=
345 (unsigned long)(&cpu_new_thread
);
350 cpu_new_thread
= task_thread_info(idle
);
352 if (tlb_type
== hypervisor
) {
353 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
354 if (ldom_domaining_enabled
)
355 ldom_startcpu_cpuid(cpu
,
356 (unsigned long) cpu_new_thread
,
360 prom_startcpu_cpuid(cpu
, entry
, cookie
);
362 struct device_node
*dp
= of_find_node_by_cpuid(cpu
);
364 prom_startcpu(dp
->phandle
, entry
, cookie
);
367 for (timeout
= 0; timeout
< 50000; timeout
++) {
376 printk("Processor %d is stuck.\n", cpu
);
379 cpu_new_thread
= NULL
;
386 static void spitfire_xcall_helper(u64 data0
, u64 data1
, u64 data2
, u64 pstate
, unsigned long cpu
)
391 if (this_is_starfire
) {
392 /* map to real upaid */
393 cpu
= (((cpu
& 0x3c) << 1) |
394 ((cpu
& 0x40) >> 4) |
398 target
= (cpu
<< 14) | 0x70;
400 /* Ok, this is the real Spitfire Errata #54.
401 * One must read back from a UDB internal register
402 * after writes to the UDB interrupt dispatch, but
403 * before the membar Sync for that write.
404 * So we use the high UDB control register (ASI 0x7f,
405 * ADDR 0x20) for the dummy read. -DaveM
408 __asm__
__volatile__(
409 "wrpr %1, %2, %%pstate\n\t"
410 "stxa %4, [%0] %3\n\t"
411 "stxa %5, [%0+%8] %3\n\t"
413 "stxa %6, [%0+%8] %3\n\t"
415 "stxa %%g0, [%7] %3\n\t"
418 "ldxa [%%g1] 0x7f, %%g0\n\t"
421 : "r" (pstate
), "i" (PSTATE_IE
), "i" (ASI_INTR_W
),
422 "r" (data0
), "r" (data1
), "r" (data2
), "r" (target
),
423 "r" (0x10), "0" (tmp
)
426 /* NOTE: PSTATE_IE is still clear. */
429 __asm__
__volatile__("ldxa [%%g0] %1, %0"
431 : "i" (ASI_INTR_DISPATCH_STAT
));
433 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
440 } while (result
& 0x1);
441 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
444 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
445 smp_processor_id(), result
);
452 static void spitfire_xcall_deliver(struct trap_per_cpu
*tb
, int cnt
)
454 u64
*mondo
, data0
, data1
, data2
;
459 __asm__
__volatile__("rdpr %%pstate, %0" : "=r" (pstate
));
460 cpu_list
= __va(tb
->cpu_list_pa
);
461 mondo
= __va(tb
->cpu_mondo_block_pa
);
465 for (i
= 0; i
< cnt
; i
++)
466 spitfire_xcall_helper(data0
, data1
, data2
, pstate
, cpu_list
[i
]);
469 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
470 * packet, but we have no use for that. However we do take advantage of
471 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
473 static void cheetah_xcall_deliver(struct trap_per_cpu
*tb
, int cnt
)
475 int nack_busy_id
, is_jbus
, need_more
;
476 u64
*mondo
, pstate
, ver
, busy_mask
;
479 cpu_list
= __va(tb
->cpu_list_pa
);
480 mondo
= __va(tb
->cpu_mondo_block_pa
);
482 /* Unfortunately, someone at Sun had the brilliant idea to make the
483 * busy/nack fields hard-coded by ITID number for this Ultra-III
484 * derivative processor.
486 __asm__ ("rdpr %%ver, %0" : "=r" (ver
));
487 is_jbus
= ((ver
>> 32) == __JALAPENO_ID
||
488 (ver
>> 32) == __SERRANO_ID
);
490 __asm__
__volatile__("rdpr %%pstate, %0" : "=r" (pstate
));
494 __asm__
__volatile__("wrpr %0, %1, %%pstate\n\t"
495 : : "r" (pstate
), "i" (PSTATE_IE
));
497 /* Setup the dispatch data registers. */
498 __asm__
__volatile__("stxa %0, [%3] %6\n\t"
499 "stxa %1, [%4] %6\n\t"
500 "stxa %2, [%5] %6\n\t"
503 : "r" (mondo
[0]), "r" (mondo
[1]), "r" (mondo
[2]),
504 "r" (0x40), "r" (0x50), "r" (0x60),
512 for (i
= 0; i
< cnt
; i
++) {
519 target
= (nr
<< 14) | 0x70;
521 busy_mask
|= (0x1UL
<< (nr
* 2));
523 target
|= (nack_busy_id
<< 24);
524 busy_mask
|= (0x1UL
<<
527 __asm__
__volatile__(
528 "stxa %%g0, [%0] %1\n\t"
531 : "r" (target
), "i" (ASI_INTR_W
));
533 if (nack_busy_id
== 32) {
540 /* Now, poll for completion. */
542 u64 dispatch_stat
, nack_mask
;
545 stuck
= 100000 * nack_busy_id
;
546 nack_mask
= busy_mask
<< 1;
548 __asm__
__volatile__("ldxa [%%g0] %1, %0"
549 : "=r" (dispatch_stat
)
550 : "i" (ASI_INTR_DISPATCH_STAT
));
551 if (!(dispatch_stat
& (busy_mask
| nack_mask
))) {
552 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
554 if (unlikely(need_more
)) {
556 for (i
= 0; i
< cnt
; i
++) {
557 if (cpu_list
[i
] == 0xffff)
559 cpu_list
[i
] = 0xffff;
570 } while (dispatch_stat
& busy_mask
);
572 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
575 if (dispatch_stat
& busy_mask
) {
576 /* Busy bits will not clear, continue instead
577 * of freezing up on this cpu.
579 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
580 smp_processor_id(), dispatch_stat
);
582 int i
, this_busy_nack
= 0;
584 /* Delay some random time with interrupts enabled
585 * to prevent deadlock.
587 udelay(2 * nack_busy_id
);
589 /* Clear out the mask bits for cpus which did not
592 for (i
= 0; i
< cnt
; i
++) {
600 check_mask
= (0x2UL
<< (2*nr
));
602 check_mask
= (0x2UL
<<
604 if ((dispatch_stat
& check_mask
) == 0)
605 cpu_list
[i
] = 0xffff;
607 if (this_busy_nack
== 64)
616 /* Multi-cpu list version. */
617 static void hypervisor_xcall_deliver(struct trap_per_cpu
*tb
, int cnt
)
619 int retries
, this_cpu
, prev_sent
, i
, saw_cpu_error
;
620 unsigned long status
;
623 this_cpu
= smp_processor_id();
625 cpu_list
= __va(tb
->cpu_list_pa
);
631 int forward_progress
, n_sent
;
633 status
= sun4v_cpu_mondo_send(cnt
,
635 tb
->cpu_mondo_block_pa
);
637 /* HV_EOK means all cpus received the xcall, we're done. */
638 if (likely(status
== HV_EOK
))
641 /* First, see if we made any forward progress.
643 * The hypervisor indicates successful sends by setting
644 * cpu list entries to the value 0xffff.
647 for (i
= 0; i
< cnt
; i
++) {
648 if (likely(cpu_list
[i
] == 0xffff))
652 forward_progress
= 0;
653 if (n_sent
> prev_sent
)
654 forward_progress
= 1;
658 /* If we get a HV_ECPUERROR, then one or more of the cpus
659 * in the list are in error state. Use the cpu_state()
660 * hypervisor call to find out which cpus are in error state.
662 if (unlikely(status
== HV_ECPUERROR
)) {
663 for (i
= 0; i
< cnt
; i
++) {
671 err
= sun4v_cpu_state(cpu
);
672 if (err
== HV_CPU_STATE_ERROR
) {
673 saw_cpu_error
= (cpu
+ 1);
674 cpu_list
[i
] = 0xffff;
677 } else if (unlikely(status
!= HV_EWOULDBLOCK
))
678 goto fatal_mondo_error
;
680 /* Don't bother rewriting the CPU list, just leave the
681 * 0xffff and non-0xffff entries in there and the
682 * hypervisor will do the right thing.
684 * Only advance timeout state if we didn't make any
687 if (unlikely(!forward_progress
)) {
688 if (unlikely(++retries
> 10000))
689 goto fatal_mondo_timeout
;
691 /* Delay a little bit to let other cpus catch up
692 * on their cpu mondo queue work.
698 if (unlikely(saw_cpu_error
))
699 goto fatal_mondo_cpu_error
;
703 fatal_mondo_cpu_error
:
704 printk(KERN_CRIT
"CPU[%d]: SUN4V mondo cpu error, some target cpus "
705 "(including %d) were in error state\n",
706 this_cpu
, saw_cpu_error
- 1);
710 printk(KERN_CRIT
"CPU[%d]: SUN4V mondo timeout, no forward "
711 " progress after %d retries.\n",
713 goto dump_cpu_list_and_out
;
716 printk(KERN_CRIT
"CPU[%d]: Unexpected SUN4V mondo error %lu\n",
718 printk(KERN_CRIT
"CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
719 "mondo_block_pa(%lx)\n",
720 this_cpu
, cnt
, tb
->cpu_list_pa
, tb
->cpu_mondo_block_pa
);
722 dump_cpu_list_and_out
:
723 printk(KERN_CRIT
"CPU[%d]: CPU list [ ", this_cpu
);
724 for (i
= 0; i
< cnt
; i
++)
725 printk("%u ", cpu_list
[i
]);
729 static void (*xcall_deliver_impl
)(struct trap_per_cpu
*, int);
731 static void xcall_deliver(u64 data0
, u64 data1
, u64 data2
, const cpumask_t
*mask
)
733 struct trap_per_cpu
*tb
;
734 int this_cpu
, i
, cnt
;
739 /* We have to do this whole thing with interrupts fully disabled.
740 * Otherwise if we send an xcall from interrupt context it will
741 * corrupt both our mondo block and cpu list state.
743 * One consequence of this is that we cannot use timeout mechanisms
744 * that depend upon interrupts being delivered locally. So, for
745 * example, we cannot sample jiffies and expect it to advance.
747 * Fortunately, udelay() uses %stick/%tick so we can use that.
749 local_irq_save(flags
);
751 this_cpu
= smp_processor_id();
752 tb
= &trap_block
[this_cpu
];
754 mondo
= __va(tb
->cpu_mondo_block_pa
);
760 cpu_list
= __va(tb
->cpu_list_pa
);
762 /* Setup the initial cpu list. */
764 for_each_cpu(i
, mask
) {
765 if (i
== this_cpu
|| !cpu_online(i
))
771 xcall_deliver_impl(tb
, cnt
);
773 local_irq_restore(flags
);
776 /* Send cross call to all processors mentioned in MASK_P
777 * except self. Really, there are only two cases currently,
778 * "cpu_online_mask" and "mm_cpumask(mm)".
780 static void smp_cross_call_masked(unsigned long *func
, u32 ctx
, u64 data1
, u64 data2
, const cpumask_t
*mask
)
782 u64 data0
= (((u64
)ctx
)<<32 | (((u64
)func
) & 0xffffffff));
784 xcall_deliver(data0
, data1
, data2
, mask
);
787 /* Send cross call to all processors except self. */
788 static void smp_cross_call(unsigned long *func
, u32 ctx
, u64 data1
, u64 data2
)
790 smp_cross_call_masked(func
, ctx
, data1
, data2
, cpu_online_mask
);
793 extern unsigned long xcall_sync_tick
;
795 static void smp_start_sync_tick_client(int cpu
)
797 xcall_deliver((u64
) &xcall_sync_tick
, 0, 0,
801 extern unsigned long xcall_call_function
;
803 void arch_send_call_function_ipi_mask(const struct cpumask
*mask
)
805 xcall_deliver((u64
) &xcall_call_function
, 0, 0, mask
);
808 extern unsigned long xcall_call_function_single
;
810 void arch_send_call_function_single_ipi(int cpu
)
812 xcall_deliver((u64
) &xcall_call_function_single
, 0, 0,
816 void __irq_entry
smp_call_function_client(int irq
, struct pt_regs
*regs
)
818 clear_softint(1 << irq
);
820 generic_smp_call_function_interrupt();
824 void __irq_entry
smp_call_function_single_client(int irq
, struct pt_regs
*regs
)
826 clear_softint(1 << irq
);
828 generic_smp_call_function_single_interrupt();
832 static void tsb_sync(void *info
)
834 struct trap_per_cpu
*tp
= &trap_block
[raw_smp_processor_id()];
835 struct mm_struct
*mm
= info
;
837 /* It is not valid to test "current->active_mm == mm" here.
839 * The value of "current" is not changed atomically with
840 * switch_mm(). But that's OK, we just need to check the
841 * current cpu's trap block PGD physical address.
843 if (tp
->pgd_paddr
== __pa(mm
->pgd
))
844 tsb_context_switch(mm
);
847 void smp_tsb_sync(struct mm_struct
*mm
)
849 smp_call_function_many(mm_cpumask(mm
), tsb_sync
, mm
, 1);
852 extern unsigned long xcall_flush_tlb_mm
;
853 extern unsigned long xcall_flush_tlb_page
;
854 extern unsigned long xcall_flush_tlb_kernel_range
;
855 extern unsigned long xcall_fetch_glob_regs
;
856 extern unsigned long xcall_fetch_glob_pmu
;
857 extern unsigned long xcall_fetch_glob_pmu_n4
;
858 extern unsigned long xcall_receive_signal
;
859 extern unsigned long xcall_new_mmu_context_version
;
861 extern unsigned long xcall_kgdb_capture
;
864 #ifdef DCACHE_ALIASING_POSSIBLE
865 extern unsigned long xcall_flush_dcache_page_cheetah
;
867 extern unsigned long xcall_flush_dcache_page_spitfire
;
869 static inline void __local_flush_dcache_page(struct page
*page
)
871 #ifdef DCACHE_ALIASING_POSSIBLE
872 __flush_dcache_page(page_address(page
),
873 ((tlb_type
== spitfire
) &&
874 page_mapping(page
) != NULL
));
876 if (page_mapping(page
) != NULL
&&
877 tlb_type
== spitfire
)
878 __flush_icache_page(__pa(page_address(page
)));
882 void smp_flush_dcache_page_impl(struct page
*page
, int cpu
)
886 if (tlb_type
== hypervisor
)
889 #ifdef CONFIG_DEBUG_DCFLUSH
890 atomic_inc(&dcpage_flushes
);
893 this_cpu
= get_cpu();
895 if (cpu
== this_cpu
) {
896 __local_flush_dcache_page(page
);
897 } else if (cpu_online(cpu
)) {
898 void *pg_addr
= page_address(page
);
901 if (tlb_type
== spitfire
) {
902 data0
= ((u64
)&xcall_flush_dcache_page_spitfire
);
903 if (page_mapping(page
) != NULL
)
904 data0
|= ((u64
)1 << 32);
905 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
906 #ifdef DCACHE_ALIASING_POSSIBLE
907 data0
= ((u64
)&xcall_flush_dcache_page_cheetah
);
911 xcall_deliver(data0
, __pa(pg_addr
),
912 (u64
) pg_addr
, cpumask_of(cpu
));
913 #ifdef CONFIG_DEBUG_DCFLUSH
914 atomic_inc(&dcpage_flushes_xcall
);
922 void flush_dcache_page_all(struct mm_struct
*mm
, struct page
*page
)
927 if (tlb_type
== hypervisor
)
932 #ifdef CONFIG_DEBUG_DCFLUSH
933 atomic_inc(&dcpage_flushes
);
936 pg_addr
= page_address(page
);
937 if (tlb_type
== spitfire
) {
938 data0
= ((u64
)&xcall_flush_dcache_page_spitfire
);
939 if (page_mapping(page
) != NULL
)
940 data0
|= ((u64
)1 << 32);
941 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
942 #ifdef DCACHE_ALIASING_POSSIBLE
943 data0
= ((u64
)&xcall_flush_dcache_page_cheetah
);
947 xcall_deliver(data0
, __pa(pg_addr
),
948 (u64
) pg_addr
, cpu_online_mask
);
949 #ifdef CONFIG_DEBUG_DCFLUSH
950 atomic_inc(&dcpage_flushes_xcall
);
953 __local_flush_dcache_page(page
);
958 void __irq_entry
smp_new_mmu_context_version_client(int irq
, struct pt_regs
*regs
)
960 struct mm_struct
*mm
;
963 clear_softint(1 << irq
);
965 /* See if we need to allocate a new TLB context because
966 * the version of the one we are using is now out of date.
968 mm
= current
->active_mm
;
969 if (unlikely(!mm
|| (mm
== &init_mm
)))
972 spin_lock_irqsave(&mm
->context
.lock
, flags
);
974 if (unlikely(!CTX_VALID(mm
->context
)))
975 get_new_mmu_context(mm
);
977 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
979 load_secondary_context(mm
);
980 __flush_tlb_mm(CTX_HWBITS(mm
->context
),
984 void smp_new_mmu_context_version(void)
986 smp_cross_call(&xcall_new_mmu_context_version
, 0, 0, 0);
990 void kgdb_roundup_cpus(unsigned long flags
)
992 smp_cross_call(&xcall_kgdb_capture
, 0, 0, 0);
996 void smp_fetch_global_regs(void)
998 smp_cross_call(&xcall_fetch_glob_regs
, 0, 0, 0);
1001 void smp_fetch_global_pmu(void)
1003 if (tlb_type
== hypervisor
&&
1004 sun4v_chip_type
>= SUN4V_CHIP_NIAGARA4
)
1005 smp_cross_call(&xcall_fetch_glob_pmu_n4
, 0, 0, 0);
1007 smp_cross_call(&xcall_fetch_glob_pmu
, 0, 0, 0);
1010 /* We know that the window frames of the user have been flushed
1011 * to the stack before we get here because all callers of us
1012 * are flush_tlb_*() routines, and these run after flush_cache_*()
1013 * which performs the flushw.
1015 * The SMP TLB coherency scheme we use works as follows:
1017 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1018 * space has (potentially) executed on, this is the heuristic
1019 * we use to avoid doing cross calls.
1021 * Also, for flushing from kswapd and also for clones, we
1022 * use cpu_vm_mask as the list of cpus to make run the TLB.
1024 * 2) TLB context numbers are shared globally across all processors
1025 * in the system, this allows us to play several games to avoid
1028 * One invariant is that when a cpu switches to a process, and
1029 * that processes tsk->active_mm->cpu_vm_mask does not have the
1030 * current cpu's bit set, that tlb context is flushed locally.
1032 * If the address space is non-shared (ie. mm->count == 1) we avoid
1033 * cross calls when we want to flush the currently running process's
1034 * tlb state. This is done by clearing all cpu bits except the current
1035 * processor's in current->mm->cpu_vm_mask and performing the
1036 * flush locally only. This will force any subsequent cpus which run
1037 * this task to flush the context from the local tlb if the process
1038 * migrates to another cpu (again).
1040 * 3) For shared address spaces (threads) and swapping we bite the
1041 * bullet for most cases and perform the cross call (but only to
1042 * the cpus listed in cpu_vm_mask).
1044 * The performance gain from "optimizing" away the cross call for threads is
1045 * questionable (in theory the big win for threads is the massive sharing of
1046 * address space state across processors).
1049 /* This currently is only used by the hugetlb arch pre-fault
1050 * hook on UltraSPARC-III+ and later when changing the pagesize
1051 * bits of the context register for an address space.
1053 void smp_flush_tlb_mm(struct mm_struct
*mm
)
1055 u32 ctx
= CTX_HWBITS(mm
->context
);
1056 int cpu
= get_cpu();
1058 if (atomic_read(&mm
->mm_users
) == 1) {
1059 cpumask_copy(mm_cpumask(mm
), cpumask_of(cpu
));
1060 goto local_flush_and_out
;
1063 smp_cross_call_masked(&xcall_flush_tlb_mm
,
1067 local_flush_and_out
:
1068 __flush_tlb_mm(ctx
, SECONDARY_CONTEXT
);
1073 struct tlb_pending_info
{
1076 unsigned long *vaddrs
;
1079 static void tlb_pending_func(void *info
)
1081 struct tlb_pending_info
*t
= info
;
1083 __flush_tlb_pending(t
->ctx
, t
->nr
, t
->vaddrs
);
1086 void smp_flush_tlb_pending(struct mm_struct
*mm
, unsigned long nr
, unsigned long *vaddrs
)
1088 u32 ctx
= CTX_HWBITS(mm
->context
);
1089 struct tlb_pending_info info
;
1090 int cpu
= get_cpu();
1094 info
.vaddrs
= vaddrs
;
1096 if (mm
== current
->mm
&& atomic_read(&mm
->mm_users
) == 1)
1097 cpumask_copy(mm_cpumask(mm
), cpumask_of(cpu
));
1099 smp_call_function_many(mm_cpumask(mm
), tlb_pending_func
,
1102 __flush_tlb_pending(ctx
, nr
, vaddrs
);
1107 void smp_flush_tlb_page(struct mm_struct
*mm
, unsigned long vaddr
)
1109 unsigned long context
= CTX_HWBITS(mm
->context
);
1110 int cpu
= get_cpu();
1112 if (mm
== current
->mm
&& atomic_read(&mm
->mm_users
) == 1)
1113 cpumask_copy(mm_cpumask(mm
), cpumask_of(cpu
));
1115 smp_cross_call_masked(&xcall_flush_tlb_page
,
1118 __flush_tlb_page(context
, vaddr
);
1123 void smp_flush_tlb_kernel_range(unsigned long start
, unsigned long end
)
1126 end
= PAGE_ALIGN(end
);
1128 smp_cross_call(&xcall_flush_tlb_kernel_range
,
1131 __flush_tlb_kernel_range(start
, end
);
1136 /* #define CAPTURE_DEBUG */
1137 extern unsigned long xcall_capture
;
1139 static atomic_t smp_capture_depth
= ATOMIC_INIT(0);
1140 static atomic_t smp_capture_registry
= ATOMIC_INIT(0);
1141 static unsigned long penguins_are_doing_time
;
1143 void smp_capture(void)
1145 int result
= atomic_add_return(1, &smp_capture_depth
);
1148 int ncpus
= num_online_cpus();
1150 #ifdef CAPTURE_DEBUG
1151 printk("CPU[%d]: Sending penguins to jail...",
1152 smp_processor_id());
1154 penguins_are_doing_time
= 1;
1155 atomic_inc(&smp_capture_registry
);
1156 smp_cross_call(&xcall_capture
, 0, 0, 0);
1157 while (atomic_read(&smp_capture_registry
) != ncpus
)
1159 #ifdef CAPTURE_DEBUG
1165 void smp_release(void)
1167 if (atomic_dec_and_test(&smp_capture_depth
)) {
1168 #ifdef CAPTURE_DEBUG
1169 printk("CPU[%d]: Giving pardon to "
1170 "imprisoned penguins\n",
1171 smp_processor_id());
1173 penguins_are_doing_time
= 0;
1174 membar_safe("#StoreLoad");
1175 atomic_dec(&smp_capture_registry
);
1179 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1180 * set, so they can service tlb flush xcalls...
1182 extern void prom_world(int);
1184 void __irq_entry
smp_penguin_jailcell(int irq
, struct pt_regs
*regs
)
1186 clear_softint(1 << irq
);
1190 __asm__
__volatile__("flushw");
1192 atomic_inc(&smp_capture_registry
);
1193 membar_safe("#StoreLoad");
1194 while (penguins_are_doing_time
)
1196 atomic_dec(&smp_capture_registry
);
1202 /* /proc/profile writes can call this, don't __init it please. */
1203 int setup_profiling_timer(unsigned int multiplier
)
1208 void __init
smp_prepare_cpus(unsigned int max_cpus
)
1212 void smp_prepare_boot_cpu(void)
1216 void __init
smp_setup_processor_id(void)
1218 if (tlb_type
== spitfire
)
1219 xcall_deliver_impl
= spitfire_xcall_deliver
;
1220 else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
)
1221 xcall_deliver_impl
= cheetah_xcall_deliver
;
1223 xcall_deliver_impl
= hypervisor_xcall_deliver
;
1226 void smp_fill_in_sib_core_maps(void)
1230 for_each_present_cpu(i
) {
1233 cpumask_clear(&cpu_core_map
[i
]);
1234 if (cpu_data(i
).core_id
== 0) {
1235 cpumask_set_cpu(i
, &cpu_core_map
[i
]);
1239 for_each_present_cpu(j
) {
1240 if (cpu_data(i
).core_id
==
1241 cpu_data(j
).core_id
)
1242 cpumask_set_cpu(j
, &cpu_core_map
[i
]);
1246 for_each_present_cpu(i
) {
1249 cpumask_clear(&per_cpu(cpu_sibling_map
, i
));
1250 if (cpu_data(i
).proc_id
== -1) {
1251 cpumask_set_cpu(i
, &per_cpu(cpu_sibling_map
, i
));
1255 for_each_present_cpu(j
) {
1256 if (cpu_data(i
).proc_id
==
1257 cpu_data(j
).proc_id
)
1258 cpumask_set_cpu(j
, &per_cpu(cpu_sibling_map
, i
));
1263 int __cpu_up(unsigned int cpu
, struct task_struct
*tidle
)
1265 int ret
= smp_boot_one_cpu(cpu
, tidle
);
1268 cpumask_set_cpu(cpu
, &smp_commenced_mask
);
1269 while (!cpu_online(cpu
))
1271 if (!cpu_online(cpu
)) {
1274 /* On SUN4V, writes to %tick and %stick are
1277 if (tlb_type
!= hypervisor
)
1278 smp_synchronize_one_tick(cpu
);
1284 #ifdef CONFIG_HOTPLUG_CPU
1285 void cpu_play_dead(void)
1287 int cpu
= smp_processor_id();
1288 unsigned long pstate
;
1292 if (tlb_type
== hypervisor
) {
1293 struct trap_per_cpu
*tb
= &trap_block
[cpu
];
1295 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO
,
1296 tb
->cpu_mondo_pa
, 0);
1297 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO
,
1298 tb
->dev_mondo_pa
, 0);
1299 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR
,
1300 tb
->resum_mondo_pa
, 0);
1301 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR
,
1302 tb
->nonresum_mondo_pa
, 0);
1305 cpumask_clear_cpu(cpu
, &smp_commenced_mask
);
1306 membar_safe("#Sync");
1308 local_irq_disable();
1310 __asm__
__volatile__(
1311 "rdpr %%pstate, %0\n\t"
1312 "wrpr %0, %1, %%pstate"
1320 int __cpu_disable(void)
1322 int cpu
= smp_processor_id();
1326 for_each_cpu(i
, &cpu_core_map
[cpu
])
1327 cpumask_clear_cpu(cpu
, &cpu_core_map
[i
]);
1328 cpumask_clear(&cpu_core_map
[cpu
]);
1330 for_each_cpu(i
, &per_cpu(cpu_sibling_map
, cpu
))
1331 cpumask_clear_cpu(cpu
, &per_cpu(cpu_sibling_map
, i
));
1332 cpumask_clear(&per_cpu(cpu_sibling_map
, cpu
));
1341 /* Make sure no interrupts point to this cpu. */
1346 local_irq_disable();
1348 set_cpu_online(cpu
, false);
1355 void __cpu_die(unsigned int cpu
)
1359 for (i
= 0; i
< 100; i
++) {
1361 if (!cpumask_test_cpu(cpu
, &smp_commenced_mask
))
1365 if (cpumask_test_cpu(cpu
, &smp_commenced_mask
)) {
1366 printk(KERN_ERR
"CPU %u didn't die...\n", cpu
);
1368 #if defined(CONFIG_SUN_LDOMS)
1369 unsigned long hv_err
;
1373 hv_err
= sun4v_cpu_stop(cpu
);
1374 if (hv_err
== HV_EOK
) {
1375 set_cpu_present(cpu
, false);
1378 } while (--limit
> 0);
1380 printk(KERN_ERR
"sun4v_cpu_stop() fails err=%lu\n",
1388 void __init
smp_cpus_done(unsigned int max_cpus
)
1392 void smp_send_reschedule(int cpu
)
1394 if (cpu
== smp_processor_id()) {
1395 WARN_ON_ONCE(preemptible());
1396 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL
);
1398 xcall_deliver((u64
) &xcall_receive_signal
,
1399 0, 0, cpumask_of(cpu
));
1403 void __irq_entry
smp_receive_signal_client(int irq
, struct pt_regs
*regs
)
1405 clear_softint(1 << irq
);
1409 static void stop_this_cpu(void *dummy
)
1414 void smp_send_stop(void)
1418 if (tlb_type
== hypervisor
) {
1419 for_each_online_cpu(cpu
) {
1420 if (cpu
== smp_processor_id())
1422 #ifdef CONFIG_SUN_LDOMS
1423 if (ldom_domaining_enabled
) {
1424 unsigned long hv_err
;
1425 hv_err
= sun4v_cpu_stop(cpu
);
1427 printk(KERN_ERR
"sun4v_cpu_stop() "
1428 "failed err=%lu\n", hv_err
);
1431 prom_stopcpu_cpuid(cpu
);
1434 smp_call_function(stop_this_cpu
, NULL
, 0);
1438 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1439 * @cpu: cpu to allocate for
1440 * @size: size allocation in bytes
1443 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
1444 * does the right thing for NUMA regardless of the current
1448 * Pointer to the allocated area on success, NULL on failure.
1450 static void * __init
pcpu_alloc_bootmem(unsigned int cpu
, size_t size
,
1453 const unsigned long goal
= __pa(MAX_DMA_ADDRESS
);
1454 #ifdef CONFIG_NEED_MULTIPLE_NODES
1455 int node
= cpu_to_node(cpu
);
1458 if (!node_online(node
) || !NODE_DATA(node
)) {
1459 ptr
= __alloc_bootmem(size
, align
, goal
);
1460 pr_info("cpu %d has no node %d or node-local memory\n",
1462 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1463 cpu
, size
, __pa(ptr
));
1465 ptr
= __alloc_bootmem_node(NODE_DATA(node
),
1467 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1468 "%016lx\n", cpu
, size
, node
, __pa(ptr
));
1472 return __alloc_bootmem(size
, align
, goal
);
1476 static void __init
pcpu_free_bootmem(void *ptr
, size_t size
)
1478 free_bootmem(__pa(ptr
), size
);
1481 static int __init
pcpu_cpu_distance(unsigned int from
, unsigned int to
)
1483 if (cpu_to_node(from
) == cpu_to_node(to
))
1484 return LOCAL_DISTANCE
;
1486 return REMOTE_DISTANCE
;
1489 static void __init
pcpu_populate_pte(unsigned long addr
)
1491 pgd_t
*pgd
= pgd_offset_k(addr
);
1495 if (pgd_none(*pgd
)) {
1498 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1499 pgd_populate(&init_mm
, pgd
, new);
1502 pud
= pud_offset(pgd
, addr
);
1503 if (pud_none(*pud
)) {
1506 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1507 pud_populate(&init_mm
, pud
, new);
1510 pmd
= pmd_offset(pud
, addr
);
1511 if (!pmd_present(*pmd
)) {
1514 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1515 pmd_populate_kernel(&init_mm
, pmd
, new);
1519 void __init
setup_per_cpu_areas(void)
1521 unsigned long delta
;
1525 if (pcpu_chosen_fc
!= PCPU_FC_PAGE
) {
1526 rc
= pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE
,
1527 PERCPU_DYNAMIC_RESERVE
, 4 << 20,
1532 pr_warning("PERCPU: %s allocator failed (%d), "
1533 "falling back to page size\n",
1534 pcpu_fc_names
[pcpu_chosen_fc
], rc
);
1537 rc
= pcpu_page_first_chunk(PERCPU_MODULE_RESERVE
,
1542 panic("cannot initialize percpu area (err=%d)", rc
);
1544 delta
= (unsigned long)pcpu_base_addr
- (unsigned long)__per_cpu_start
;
1545 for_each_possible_cpu(cpu
)
1546 __per_cpu_offset(cpu
) = delta
+ pcpu_unit_offsets
[cpu
];
1548 /* Setup %g5 for the boot cpu. */
1549 __local_per_cpu_offset
= __per_cpu_offset(smp_processor_id());
1551 of_fill_in_cpu_data();
1552 if (tlb_type
== hypervisor
)
1553 mdesc_fill_in_cpu_data(cpu_all_mask
);