x86/vdso: Fix 'make bzImage' on older distros
[linux/fpc-iii.git] / arch / sparc / kernel / smp_64.c
blob61139d9924cae4a8fdf5d4d5366a31052ea29616
1 /* smp.c: Sparc64 SMP support.
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 */
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
28 #include <linux/kgdb.h>
30 #include <asm/head.h>
31 #include <asm/ptrace.h>
32 #include <linux/atomic.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mmu_context.h>
35 #include <asm/cpudata.h>
36 #include <asm/hvtramp.h>
37 #include <asm/io.h>
38 #include <asm/timer.h>
39 #include <asm/setup.h>
41 #include <asm/irq.h>
42 #include <asm/irq_regs.h>
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/oplib.h>
46 #include <asm/uaccess.h>
47 #include <asm/starfire.h>
48 #include <asm/tlb.h>
49 #include <asm/sections.h>
50 #include <asm/prom.h>
51 #include <asm/mdesc.h>
52 #include <asm/ldc.h>
53 #include <asm/hypervisor.h>
54 #include <asm/pcr.h>
56 #include "cpumap.h"
57 #include "kernel.h"
59 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
60 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
61 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
63 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
64 EXPORT_SYMBOL(cpu_core_map);
66 static cpumask_t smp_commenced_mask;
68 void smp_info(struct seq_file *m)
70 int i;
72 seq_printf(m, "State:\n");
73 for_each_online_cpu(i)
74 seq_printf(m, "CPU%d:\t\tonline\n", i);
77 void smp_bogo(struct seq_file *m)
79 int i;
81 for_each_online_cpu(i)
82 seq_printf(m,
83 "Cpu%dClkTck\t: %016lx\n",
84 i, cpu_data(i).clock_tick);
87 extern void setup_sparc64_timer(void);
89 static volatile unsigned long callin_flag = 0;
91 void smp_callin(void)
93 int cpuid = hard_smp_processor_id();
95 __local_per_cpu_offset = __per_cpu_offset(cpuid);
97 if (tlb_type == hypervisor)
98 sun4v_ktsb_register();
100 __flush_tlb_all();
102 setup_sparc64_timer();
104 if (cheetah_pcache_forced_on)
105 cheetah_enable_pcache();
107 callin_flag = 1;
108 __asm__ __volatile__("membar #Sync\n\t"
109 "flush %%g6" : : : "memory");
111 /* Clear this or we will die instantly when we
112 * schedule back to this idler...
114 current_thread_info()->new_child = 0;
116 /* Attach to the address space of init_task. */
117 atomic_inc(&init_mm.mm_count);
118 current->active_mm = &init_mm;
120 /* inform the notifiers about the new cpu */
121 notify_cpu_starting(cpuid);
123 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
124 rmb();
126 set_cpu_online(cpuid, true);
128 /* idle thread is expected to have preempt disabled */
129 preempt_disable();
131 local_irq_enable();
133 cpu_startup_entry(CPUHP_ONLINE);
136 void cpu_panic(void)
138 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
139 panic("SMP bolixed\n");
142 /* This tick register synchronization scheme is taken entirely from
143 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
145 * The only change I've made is to rework it so that the master
146 * initiates the synchonization instead of the slave. -DaveM
149 #define MASTER 0
150 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
152 #define NUM_ROUNDS 64 /* magic value */
153 #define NUM_ITERS 5 /* likewise */
155 static DEFINE_RAW_SPINLOCK(itc_sync_lock);
156 static unsigned long go[SLAVE + 1];
158 #define DEBUG_TICK_SYNC 0
160 static inline long get_delta (long *rt, long *master)
162 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
163 unsigned long tcenter, t0, t1, tm;
164 unsigned long i;
166 for (i = 0; i < NUM_ITERS; i++) {
167 t0 = tick_ops->get_tick();
168 go[MASTER] = 1;
169 membar_safe("#StoreLoad");
170 while (!(tm = go[SLAVE]))
171 rmb();
172 go[SLAVE] = 0;
173 wmb();
174 t1 = tick_ops->get_tick();
176 if (t1 - t0 < best_t1 - best_t0)
177 best_t0 = t0, best_t1 = t1, best_tm = tm;
180 *rt = best_t1 - best_t0;
181 *master = best_tm - best_t0;
183 /* average best_t0 and best_t1 without overflow: */
184 tcenter = (best_t0/2 + best_t1/2);
185 if (best_t0 % 2 + best_t1 % 2 == 2)
186 tcenter++;
187 return tcenter - best_tm;
190 void smp_synchronize_tick_client(void)
192 long i, delta, adj, adjust_latency = 0, done = 0;
193 unsigned long flags, rt, master_time_stamp;
194 #if DEBUG_TICK_SYNC
195 struct {
196 long rt; /* roundtrip time */
197 long master; /* master's timestamp */
198 long diff; /* difference between midpoint and master's timestamp */
199 long lat; /* estimate of itc adjustment latency */
200 } t[NUM_ROUNDS];
201 #endif
203 go[MASTER] = 1;
205 while (go[MASTER])
206 rmb();
208 local_irq_save(flags);
210 for (i = 0; i < NUM_ROUNDS; i++) {
211 delta = get_delta(&rt, &master_time_stamp);
212 if (delta == 0)
213 done = 1; /* let's lock on to this... */
215 if (!done) {
216 if (i > 0) {
217 adjust_latency += -delta;
218 adj = -delta + adjust_latency/4;
219 } else
220 adj = -delta;
222 tick_ops->add_tick(adj);
224 #if DEBUG_TICK_SYNC
225 t[i].rt = rt;
226 t[i].master = master_time_stamp;
227 t[i].diff = delta;
228 t[i].lat = adjust_latency/4;
229 #endif
232 local_irq_restore(flags);
234 #if DEBUG_TICK_SYNC
235 for (i = 0; i < NUM_ROUNDS; i++)
236 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
237 t[i].rt, t[i].master, t[i].diff, t[i].lat);
238 #endif
240 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
241 "(last diff %ld cycles, maxerr %lu cycles)\n",
242 smp_processor_id(), delta, rt);
245 static void smp_start_sync_tick_client(int cpu);
247 static void smp_synchronize_one_tick(int cpu)
249 unsigned long flags, i;
251 go[MASTER] = 0;
253 smp_start_sync_tick_client(cpu);
255 /* wait for client to be ready */
256 while (!go[MASTER])
257 rmb();
259 /* now let the client proceed into his loop */
260 go[MASTER] = 0;
261 membar_safe("#StoreLoad");
263 raw_spin_lock_irqsave(&itc_sync_lock, flags);
265 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
266 while (!go[MASTER])
267 rmb();
268 go[MASTER] = 0;
269 wmb();
270 go[SLAVE] = tick_ops->get_tick();
271 membar_safe("#StoreLoad");
274 raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
277 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
278 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
279 void **descrp)
281 extern unsigned long sparc64_ttable_tl0;
282 extern unsigned long kern_locked_tte_data;
283 struct hvtramp_descr *hdesc;
284 unsigned long trampoline_ra;
285 struct trap_per_cpu *tb;
286 u64 tte_vaddr, tte_data;
287 unsigned long hv_err;
288 int i;
290 hdesc = kzalloc(sizeof(*hdesc) +
291 (sizeof(struct hvtramp_mapping) *
292 num_kernel_image_mappings - 1),
293 GFP_KERNEL);
294 if (!hdesc) {
295 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
296 "hvtramp_descr.\n");
297 return;
299 *descrp = hdesc;
301 hdesc->cpu = cpu;
302 hdesc->num_mappings = num_kernel_image_mappings;
304 tb = &trap_block[cpu];
306 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
307 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
309 hdesc->thread_reg = thread_reg;
311 tte_vaddr = (unsigned long) KERNBASE;
312 tte_data = kern_locked_tte_data;
314 for (i = 0; i < hdesc->num_mappings; i++) {
315 hdesc->maps[i].vaddr = tte_vaddr;
316 hdesc->maps[i].tte = tte_data;
317 tte_vaddr += 0x400000;
318 tte_data += 0x400000;
321 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
323 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
324 kimage_addr_to_ra(&sparc64_ttable_tl0),
325 __pa(hdesc));
326 if (hv_err)
327 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
328 "gives error %lu\n", hv_err);
330 #endif
332 extern unsigned long sparc64_cpu_startup;
334 /* The OBP cpu startup callback truncates the 3rd arg cookie to
335 * 32-bits (I think) so to be safe we have it read the pointer
336 * contained here so we work on >4GB machines. -DaveM
338 static struct thread_info *cpu_new_thread = NULL;
340 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
342 unsigned long entry =
343 (unsigned long)(&sparc64_cpu_startup);
344 unsigned long cookie =
345 (unsigned long)(&cpu_new_thread);
346 void *descr = NULL;
347 int timeout, ret;
349 callin_flag = 0;
350 cpu_new_thread = task_thread_info(idle);
352 if (tlb_type == hypervisor) {
353 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
354 if (ldom_domaining_enabled)
355 ldom_startcpu_cpuid(cpu,
356 (unsigned long) cpu_new_thread,
357 &descr);
358 else
359 #endif
360 prom_startcpu_cpuid(cpu, entry, cookie);
361 } else {
362 struct device_node *dp = of_find_node_by_cpuid(cpu);
364 prom_startcpu(dp->phandle, entry, cookie);
367 for (timeout = 0; timeout < 50000; timeout++) {
368 if (callin_flag)
369 break;
370 udelay(100);
373 if (callin_flag) {
374 ret = 0;
375 } else {
376 printk("Processor %d is stuck.\n", cpu);
377 ret = -ENODEV;
379 cpu_new_thread = NULL;
381 kfree(descr);
383 return ret;
386 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
388 u64 result, target;
389 int stuck, tmp;
391 if (this_is_starfire) {
392 /* map to real upaid */
393 cpu = (((cpu & 0x3c) << 1) |
394 ((cpu & 0x40) >> 4) |
395 (cpu & 0x3));
398 target = (cpu << 14) | 0x70;
399 again:
400 /* Ok, this is the real Spitfire Errata #54.
401 * One must read back from a UDB internal register
402 * after writes to the UDB interrupt dispatch, but
403 * before the membar Sync for that write.
404 * So we use the high UDB control register (ASI 0x7f,
405 * ADDR 0x20) for the dummy read. -DaveM
407 tmp = 0x40;
408 __asm__ __volatile__(
409 "wrpr %1, %2, %%pstate\n\t"
410 "stxa %4, [%0] %3\n\t"
411 "stxa %5, [%0+%8] %3\n\t"
412 "add %0, %8, %0\n\t"
413 "stxa %6, [%0+%8] %3\n\t"
414 "membar #Sync\n\t"
415 "stxa %%g0, [%7] %3\n\t"
416 "membar #Sync\n\t"
417 "mov 0x20, %%g1\n\t"
418 "ldxa [%%g1] 0x7f, %%g0\n\t"
419 "membar #Sync"
420 : "=r" (tmp)
421 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
422 "r" (data0), "r" (data1), "r" (data2), "r" (target),
423 "r" (0x10), "0" (tmp)
424 : "g1");
426 /* NOTE: PSTATE_IE is still clear. */
427 stuck = 100000;
428 do {
429 __asm__ __volatile__("ldxa [%%g0] %1, %0"
430 : "=r" (result)
431 : "i" (ASI_INTR_DISPATCH_STAT));
432 if (result == 0) {
433 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
434 : : "r" (pstate));
435 return;
437 stuck -= 1;
438 if (stuck == 0)
439 break;
440 } while (result & 0x1);
441 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
442 : : "r" (pstate));
443 if (stuck == 0) {
444 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
445 smp_processor_id(), result);
446 } else {
447 udelay(2);
448 goto again;
452 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
454 u64 *mondo, data0, data1, data2;
455 u16 *cpu_list;
456 u64 pstate;
457 int i;
459 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
460 cpu_list = __va(tb->cpu_list_pa);
461 mondo = __va(tb->cpu_mondo_block_pa);
462 data0 = mondo[0];
463 data1 = mondo[1];
464 data2 = mondo[2];
465 for (i = 0; i < cnt; i++)
466 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
469 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
470 * packet, but we have no use for that. However we do take advantage of
471 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
473 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
475 int nack_busy_id, is_jbus, need_more;
476 u64 *mondo, pstate, ver, busy_mask;
477 u16 *cpu_list;
479 cpu_list = __va(tb->cpu_list_pa);
480 mondo = __va(tb->cpu_mondo_block_pa);
482 /* Unfortunately, someone at Sun had the brilliant idea to make the
483 * busy/nack fields hard-coded by ITID number for this Ultra-III
484 * derivative processor.
486 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
487 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
488 (ver >> 32) == __SERRANO_ID);
490 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
492 retry:
493 need_more = 0;
494 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
495 : : "r" (pstate), "i" (PSTATE_IE));
497 /* Setup the dispatch data registers. */
498 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
499 "stxa %1, [%4] %6\n\t"
500 "stxa %2, [%5] %6\n\t"
501 "membar #Sync\n\t"
502 : /* no outputs */
503 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
504 "r" (0x40), "r" (0x50), "r" (0x60),
505 "i" (ASI_INTR_W));
507 nack_busy_id = 0;
508 busy_mask = 0;
510 int i;
512 for (i = 0; i < cnt; i++) {
513 u64 target, nr;
515 nr = cpu_list[i];
516 if (nr == 0xffff)
517 continue;
519 target = (nr << 14) | 0x70;
520 if (is_jbus) {
521 busy_mask |= (0x1UL << (nr * 2));
522 } else {
523 target |= (nack_busy_id << 24);
524 busy_mask |= (0x1UL <<
525 (nack_busy_id * 2));
527 __asm__ __volatile__(
528 "stxa %%g0, [%0] %1\n\t"
529 "membar #Sync\n\t"
530 : /* no outputs */
531 : "r" (target), "i" (ASI_INTR_W));
532 nack_busy_id++;
533 if (nack_busy_id == 32) {
534 need_more = 1;
535 break;
540 /* Now, poll for completion. */
542 u64 dispatch_stat, nack_mask;
543 long stuck;
545 stuck = 100000 * nack_busy_id;
546 nack_mask = busy_mask << 1;
547 do {
548 __asm__ __volatile__("ldxa [%%g0] %1, %0"
549 : "=r" (dispatch_stat)
550 : "i" (ASI_INTR_DISPATCH_STAT));
551 if (!(dispatch_stat & (busy_mask | nack_mask))) {
552 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
553 : : "r" (pstate));
554 if (unlikely(need_more)) {
555 int i, this_cnt = 0;
556 for (i = 0; i < cnt; i++) {
557 if (cpu_list[i] == 0xffff)
558 continue;
559 cpu_list[i] = 0xffff;
560 this_cnt++;
561 if (this_cnt == 32)
562 break;
564 goto retry;
566 return;
568 if (!--stuck)
569 break;
570 } while (dispatch_stat & busy_mask);
572 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
573 : : "r" (pstate));
575 if (dispatch_stat & busy_mask) {
576 /* Busy bits will not clear, continue instead
577 * of freezing up on this cpu.
579 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
580 smp_processor_id(), dispatch_stat);
581 } else {
582 int i, this_busy_nack = 0;
584 /* Delay some random time with interrupts enabled
585 * to prevent deadlock.
587 udelay(2 * nack_busy_id);
589 /* Clear out the mask bits for cpus which did not
590 * NACK us.
592 for (i = 0; i < cnt; i++) {
593 u64 check_mask, nr;
595 nr = cpu_list[i];
596 if (nr == 0xffff)
597 continue;
599 if (is_jbus)
600 check_mask = (0x2UL << (2*nr));
601 else
602 check_mask = (0x2UL <<
603 this_busy_nack);
604 if ((dispatch_stat & check_mask) == 0)
605 cpu_list[i] = 0xffff;
606 this_busy_nack += 2;
607 if (this_busy_nack == 64)
608 break;
611 goto retry;
616 /* Multi-cpu list version. */
617 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
619 int retries, this_cpu, prev_sent, i, saw_cpu_error;
620 unsigned long status;
621 u16 *cpu_list;
623 this_cpu = smp_processor_id();
625 cpu_list = __va(tb->cpu_list_pa);
627 saw_cpu_error = 0;
628 retries = 0;
629 prev_sent = 0;
630 do {
631 int forward_progress, n_sent;
633 status = sun4v_cpu_mondo_send(cnt,
634 tb->cpu_list_pa,
635 tb->cpu_mondo_block_pa);
637 /* HV_EOK means all cpus received the xcall, we're done. */
638 if (likely(status == HV_EOK))
639 break;
641 /* First, see if we made any forward progress.
643 * The hypervisor indicates successful sends by setting
644 * cpu list entries to the value 0xffff.
646 n_sent = 0;
647 for (i = 0; i < cnt; i++) {
648 if (likely(cpu_list[i] == 0xffff))
649 n_sent++;
652 forward_progress = 0;
653 if (n_sent > prev_sent)
654 forward_progress = 1;
656 prev_sent = n_sent;
658 /* If we get a HV_ECPUERROR, then one or more of the cpus
659 * in the list are in error state. Use the cpu_state()
660 * hypervisor call to find out which cpus are in error state.
662 if (unlikely(status == HV_ECPUERROR)) {
663 for (i = 0; i < cnt; i++) {
664 long err;
665 u16 cpu;
667 cpu = cpu_list[i];
668 if (cpu == 0xffff)
669 continue;
671 err = sun4v_cpu_state(cpu);
672 if (err == HV_CPU_STATE_ERROR) {
673 saw_cpu_error = (cpu + 1);
674 cpu_list[i] = 0xffff;
677 } else if (unlikely(status != HV_EWOULDBLOCK))
678 goto fatal_mondo_error;
680 /* Don't bother rewriting the CPU list, just leave the
681 * 0xffff and non-0xffff entries in there and the
682 * hypervisor will do the right thing.
684 * Only advance timeout state if we didn't make any
685 * forward progress.
687 if (unlikely(!forward_progress)) {
688 if (unlikely(++retries > 10000))
689 goto fatal_mondo_timeout;
691 /* Delay a little bit to let other cpus catch up
692 * on their cpu mondo queue work.
694 udelay(2 * cnt);
696 } while (1);
698 if (unlikely(saw_cpu_error))
699 goto fatal_mondo_cpu_error;
701 return;
703 fatal_mondo_cpu_error:
704 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
705 "(including %d) were in error state\n",
706 this_cpu, saw_cpu_error - 1);
707 return;
709 fatal_mondo_timeout:
710 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
711 " progress after %d retries.\n",
712 this_cpu, retries);
713 goto dump_cpu_list_and_out;
715 fatal_mondo_error:
716 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
717 this_cpu, status);
718 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
719 "mondo_block_pa(%lx)\n",
720 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
722 dump_cpu_list_and_out:
723 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
724 for (i = 0; i < cnt; i++)
725 printk("%u ", cpu_list[i]);
726 printk("]\n");
729 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
731 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
733 struct trap_per_cpu *tb;
734 int this_cpu, i, cnt;
735 unsigned long flags;
736 u16 *cpu_list;
737 u64 *mondo;
739 /* We have to do this whole thing with interrupts fully disabled.
740 * Otherwise if we send an xcall from interrupt context it will
741 * corrupt both our mondo block and cpu list state.
743 * One consequence of this is that we cannot use timeout mechanisms
744 * that depend upon interrupts being delivered locally. So, for
745 * example, we cannot sample jiffies and expect it to advance.
747 * Fortunately, udelay() uses %stick/%tick so we can use that.
749 local_irq_save(flags);
751 this_cpu = smp_processor_id();
752 tb = &trap_block[this_cpu];
754 mondo = __va(tb->cpu_mondo_block_pa);
755 mondo[0] = data0;
756 mondo[1] = data1;
757 mondo[2] = data2;
758 wmb();
760 cpu_list = __va(tb->cpu_list_pa);
762 /* Setup the initial cpu list. */
763 cnt = 0;
764 for_each_cpu(i, mask) {
765 if (i == this_cpu || !cpu_online(i))
766 continue;
767 cpu_list[cnt++] = i;
770 if (cnt)
771 xcall_deliver_impl(tb, cnt);
773 local_irq_restore(flags);
776 /* Send cross call to all processors mentioned in MASK_P
777 * except self. Really, there are only two cases currently,
778 * "cpu_online_mask" and "mm_cpumask(mm)".
780 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
782 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
784 xcall_deliver(data0, data1, data2, mask);
787 /* Send cross call to all processors except self. */
788 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
790 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
793 extern unsigned long xcall_sync_tick;
795 static void smp_start_sync_tick_client(int cpu)
797 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
798 cpumask_of(cpu));
801 extern unsigned long xcall_call_function;
803 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
805 xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
808 extern unsigned long xcall_call_function_single;
810 void arch_send_call_function_single_ipi(int cpu)
812 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
813 cpumask_of(cpu));
816 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
818 clear_softint(1 << irq);
819 irq_enter();
820 generic_smp_call_function_interrupt();
821 irq_exit();
824 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
826 clear_softint(1 << irq);
827 irq_enter();
828 generic_smp_call_function_single_interrupt();
829 irq_exit();
832 static void tsb_sync(void *info)
834 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
835 struct mm_struct *mm = info;
837 /* It is not valid to test "current->active_mm == mm" here.
839 * The value of "current" is not changed atomically with
840 * switch_mm(). But that's OK, we just need to check the
841 * current cpu's trap block PGD physical address.
843 if (tp->pgd_paddr == __pa(mm->pgd))
844 tsb_context_switch(mm);
847 void smp_tsb_sync(struct mm_struct *mm)
849 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
852 extern unsigned long xcall_flush_tlb_mm;
853 extern unsigned long xcall_flush_tlb_page;
854 extern unsigned long xcall_flush_tlb_kernel_range;
855 extern unsigned long xcall_fetch_glob_regs;
856 extern unsigned long xcall_fetch_glob_pmu;
857 extern unsigned long xcall_fetch_glob_pmu_n4;
858 extern unsigned long xcall_receive_signal;
859 extern unsigned long xcall_new_mmu_context_version;
860 #ifdef CONFIG_KGDB
861 extern unsigned long xcall_kgdb_capture;
862 #endif
864 #ifdef DCACHE_ALIASING_POSSIBLE
865 extern unsigned long xcall_flush_dcache_page_cheetah;
866 #endif
867 extern unsigned long xcall_flush_dcache_page_spitfire;
869 static inline void __local_flush_dcache_page(struct page *page)
871 #ifdef DCACHE_ALIASING_POSSIBLE
872 __flush_dcache_page(page_address(page),
873 ((tlb_type == spitfire) &&
874 page_mapping(page) != NULL));
875 #else
876 if (page_mapping(page) != NULL &&
877 tlb_type == spitfire)
878 __flush_icache_page(__pa(page_address(page)));
879 #endif
882 void smp_flush_dcache_page_impl(struct page *page, int cpu)
884 int this_cpu;
886 if (tlb_type == hypervisor)
887 return;
889 #ifdef CONFIG_DEBUG_DCFLUSH
890 atomic_inc(&dcpage_flushes);
891 #endif
893 this_cpu = get_cpu();
895 if (cpu == this_cpu) {
896 __local_flush_dcache_page(page);
897 } else if (cpu_online(cpu)) {
898 void *pg_addr = page_address(page);
899 u64 data0 = 0;
901 if (tlb_type == spitfire) {
902 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
903 if (page_mapping(page) != NULL)
904 data0 |= ((u64)1 << 32);
905 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
906 #ifdef DCACHE_ALIASING_POSSIBLE
907 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
908 #endif
910 if (data0) {
911 xcall_deliver(data0, __pa(pg_addr),
912 (u64) pg_addr, cpumask_of(cpu));
913 #ifdef CONFIG_DEBUG_DCFLUSH
914 atomic_inc(&dcpage_flushes_xcall);
915 #endif
919 put_cpu();
922 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
924 void *pg_addr;
925 u64 data0;
927 if (tlb_type == hypervisor)
928 return;
930 preempt_disable();
932 #ifdef CONFIG_DEBUG_DCFLUSH
933 atomic_inc(&dcpage_flushes);
934 #endif
935 data0 = 0;
936 pg_addr = page_address(page);
937 if (tlb_type == spitfire) {
938 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
939 if (page_mapping(page) != NULL)
940 data0 |= ((u64)1 << 32);
941 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
942 #ifdef DCACHE_ALIASING_POSSIBLE
943 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
944 #endif
946 if (data0) {
947 xcall_deliver(data0, __pa(pg_addr),
948 (u64) pg_addr, cpu_online_mask);
949 #ifdef CONFIG_DEBUG_DCFLUSH
950 atomic_inc(&dcpage_flushes_xcall);
951 #endif
953 __local_flush_dcache_page(page);
955 preempt_enable();
958 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
960 struct mm_struct *mm;
961 unsigned long flags;
963 clear_softint(1 << irq);
965 /* See if we need to allocate a new TLB context because
966 * the version of the one we are using is now out of date.
968 mm = current->active_mm;
969 if (unlikely(!mm || (mm == &init_mm)))
970 return;
972 spin_lock_irqsave(&mm->context.lock, flags);
974 if (unlikely(!CTX_VALID(mm->context)))
975 get_new_mmu_context(mm);
977 spin_unlock_irqrestore(&mm->context.lock, flags);
979 load_secondary_context(mm);
980 __flush_tlb_mm(CTX_HWBITS(mm->context),
981 SECONDARY_CONTEXT);
984 void smp_new_mmu_context_version(void)
986 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
989 #ifdef CONFIG_KGDB
990 void kgdb_roundup_cpus(unsigned long flags)
992 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
994 #endif
996 void smp_fetch_global_regs(void)
998 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1001 void smp_fetch_global_pmu(void)
1003 if (tlb_type == hypervisor &&
1004 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1005 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1006 else
1007 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1010 /* We know that the window frames of the user have been flushed
1011 * to the stack before we get here because all callers of us
1012 * are flush_tlb_*() routines, and these run after flush_cache_*()
1013 * which performs the flushw.
1015 * The SMP TLB coherency scheme we use works as follows:
1017 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1018 * space has (potentially) executed on, this is the heuristic
1019 * we use to avoid doing cross calls.
1021 * Also, for flushing from kswapd and also for clones, we
1022 * use cpu_vm_mask as the list of cpus to make run the TLB.
1024 * 2) TLB context numbers are shared globally across all processors
1025 * in the system, this allows us to play several games to avoid
1026 * cross calls.
1028 * One invariant is that when a cpu switches to a process, and
1029 * that processes tsk->active_mm->cpu_vm_mask does not have the
1030 * current cpu's bit set, that tlb context is flushed locally.
1032 * If the address space is non-shared (ie. mm->count == 1) we avoid
1033 * cross calls when we want to flush the currently running process's
1034 * tlb state. This is done by clearing all cpu bits except the current
1035 * processor's in current->mm->cpu_vm_mask and performing the
1036 * flush locally only. This will force any subsequent cpus which run
1037 * this task to flush the context from the local tlb if the process
1038 * migrates to another cpu (again).
1040 * 3) For shared address spaces (threads) and swapping we bite the
1041 * bullet for most cases and perform the cross call (but only to
1042 * the cpus listed in cpu_vm_mask).
1044 * The performance gain from "optimizing" away the cross call for threads is
1045 * questionable (in theory the big win for threads is the massive sharing of
1046 * address space state across processors).
1049 /* This currently is only used by the hugetlb arch pre-fault
1050 * hook on UltraSPARC-III+ and later when changing the pagesize
1051 * bits of the context register for an address space.
1053 void smp_flush_tlb_mm(struct mm_struct *mm)
1055 u32 ctx = CTX_HWBITS(mm->context);
1056 int cpu = get_cpu();
1058 if (atomic_read(&mm->mm_users) == 1) {
1059 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1060 goto local_flush_and_out;
1063 smp_cross_call_masked(&xcall_flush_tlb_mm,
1064 ctx, 0, 0,
1065 mm_cpumask(mm));
1067 local_flush_and_out:
1068 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1070 put_cpu();
1073 struct tlb_pending_info {
1074 unsigned long ctx;
1075 unsigned long nr;
1076 unsigned long *vaddrs;
1079 static void tlb_pending_func(void *info)
1081 struct tlb_pending_info *t = info;
1083 __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1086 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1088 u32 ctx = CTX_HWBITS(mm->context);
1089 struct tlb_pending_info info;
1090 int cpu = get_cpu();
1092 info.ctx = ctx;
1093 info.nr = nr;
1094 info.vaddrs = vaddrs;
1096 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1097 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1098 else
1099 smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1100 &info, 1);
1102 __flush_tlb_pending(ctx, nr, vaddrs);
1104 put_cpu();
1107 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1109 unsigned long context = CTX_HWBITS(mm->context);
1110 int cpu = get_cpu();
1112 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1113 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1114 else
1115 smp_cross_call_masked(&xcall_flush_tlb_page,
1116 context, vaddr, 0,
1117 mm_cpumask(mm));
1118 __flush_tlb_page(context, vaddr);
1120 put_cpu();
1123 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1125 start &= PAGE_MASK;
1126 end = PAGE_ALIGN(end);
1127 if (start != end) {
1128 smp_cross_call(&xcall_flush_tlb_kernel_range,
1129 0, start, end);
1131 __flush_tlb_kernel_range(start, end);
1135 /* CPU capture. */
1136 /* #define CAPTURE_DEBUG */
1137 extern unsigned long xcall_capture;
1139 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1140 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1141 static unsigned long penguins_are_doing_time;
1143 void smp_capture(void)
1145 int result = atomic_add_return(1, &smp_capture_depth);
1147 if (result == 1) {
1148 int ncpus = num_online_cpus();
1150 #ifdef CAPTURE_DEBUG
1151 printk("CPU[%d]: Sending penguins to jail...",
1152 smp_processor_id());
1153 #endif
1154 penguins_are_doing_time = 1;
1155 atomic_inc(&smp_capture_registry);
1156 smp_cross_call(&xcall_capture, 0, 0, 0);
1157 while (atomic_read(&smp_capture_registry) != ncpus)
1158 rmb();
1159 #ifdef CAPTURE_DEBUG
1160 printk("done\n");
1161 #endif
1165 void smp_release(void)
1167 if (atomic_dec_and_test(&smp_capture_depth)) {
1168 #ifdef CAPTURE_DEBUG
1169 printk("CPU[%d]: Giving pardon to "
1170 "imprisoned penguins\n",
1171 smp_processor_id());
1172 #endif
1173 penguins_are_doing_time = 0;
1174 membar_safe("#StoreLoad");
1175 atomic_dec(&smp_capture_registry);
1179 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1180 * set, so they can service tlb flush xcalls...
1182 extern void prom_world(int);
1184 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1186 clear_softint(1 << irq);
1188 preempt_disable();
1190 __asm__ __volatile__("flushw");
1191 prom_world(1);
1192 atomic_inc(&smp_capture_registry);
1193 membar_safe("#StoreLoad");
1194 while (penguins_are_doing_time)
1195 rmb();
1196 atomic_dec(&smp_capture_registry);
1197 prom_world(0);
1199 preempt_enable();
1202 /* /proc/profile writes can call this, don't __init it please. */
1203 int setup_profiling_timer(unsigned int multiplier)
1205 return -EINVAL;
1208 void __init smp_prepare_cpus(unsigned int max_cpus)
1212 void smp_prepare_boot_cpu(void)
1216 void __init smp_setup_processor_id(void)
1218 if (tlb_type == spitfire)
1219 xcall_deliver_impl = spitfire_xcall_deliver;
1220 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1221 xcall_deliver_impl = cheetah_xcall_deliver;
1222 else
1223 xcall_deliver_impl = hypervisor_xcall_deliver;
1226 void smp_fill_in_sib_core_maps(void)
1228 unsigned int i;
1230 for_each_present_cpu(i) {
1231 unsigned int j;
1233 cpumask_clear(&cpu_core_map[i]);
1234 if (cpu_data(i).core_id == 0) {
1235 cpumask_set_cpu(i, &cpu_core_map[i]);
1236 continue;
1239 for_each_present_cpu(j) {
1240 if (cpu_data(i).core_id ==
1241 cpu_data(j).core_id)
1242 cpumask_set_cpu(j, &cpu_core_map[i]);
1246 for_each_present_cpu(i) {
1247 unsigned int j;
1249 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1250 if (cpu_data(i).proc_id == -1) {
1251 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1252 continue;
1255 for_each_present_cpu(j) {
1256 if (cpu_data(i).proc_id ==
1257 cpu_data(j).proc_id)
1258 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1263 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1265 int ret = smp_boot_one_cpu(cpu, tidle);
1267 if (!ret) {
1268 cpumask_set_cpu(cpu, &smp_commenced_mask);
1269 while (!cpu_online(cpu))
1270 mb();
1271 if (!cpu_online(cpu)) {
1272 ret = -ENODEV;
1273 } else {
1274 /* On SUN4V, writes to %tick and %stick are
1275 * not allowed.
1277 if (tlb_type != hypervisor)
1278 smp_synchronize_one_tick(cpu);
1281 return ret;
1284 #ifdef CONFIG_HOTPLUG_CPU
1285 void cpu_play_dead(void)
1287 int cpu = smp_processor_id();
1288 unsigned long pstate;
1290 idle_task_exit();
1292 if (tlb_type == hypervisor) {
1293 struct trap_per_cpu *tb = &trap_block[cpu];
1295 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1296 tb->cpu_mondo_pa, 0);
1297 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1298 tb->dev_mondo_pa, 0);
1299 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1300 tb->resum_mondo_pa, 0);
1301 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1302 tb->nonresum_mondo_pa, 0);
1305 cpumask_clear_cpu(cpu, &smp_commenced_mask);
1306 membar_safe("#Sync");
1308 local_irq_disable();
1310 __asm__ __volatile__(
1311 "rdpr %%pstate, %0\n\t"
1312 "wrpr %0, %1, %%pstate"
1313 : "=r" (pstate)
1314 : "i" (PSTATE_IE));
1316 while (1)
1317 barrier();
1320 int __cpu_disable(void)
1322 int cpu = smp_processor_id();
1323 cpuinfo_sparc *c;
1324 int i;
1326 for_each_cpu(i, &cpu_core_map[cpu])
1327 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1328 cpumask_clear(&cpu_core_map[cpu]);
1330 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1331 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1332 cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1334 c = &cpu_data(cpu);
1336 c->core_id = 0;
1337 c->proc_id = -1;
1339 smp_wmb();
1341 /* Make sure no interrupts point to this cpu. */
1342 fixup_irqs();
1344 local_irq_enable();
1345 mdelay(1);
1346 local_irq_disable();
1348 set_cpu_online(cpu, false);
1350 cpu_map_rebuild();
1352 return 0;
1355 void __cpu_die(unsigned int cpu)
1357 int i;
1359 for (i = 0; i < 100; i++) {
1360 smp_rmb();
1361 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1362 break;
1363 msleep(100);
1365 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1366 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1367 } else {
1368 #if defined(CONFIG_SUN_LDOMS)
1369 unsigned long hv_err;
1370 int limit = 100;
1372 do {
1373 hv_err = sun4v_cpu_stop(cpu);
1374 if (hv_err == HV_EOK) {
1375 set_cpu_present(cpu, false);
1376 break;
1378 } while (--limit > 0);
1379 if (limit <= 0) {
1380 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1381 hv_err);
1383 #endif
1386 #endif
1388 void __init smp_cpus_done(unsigned int max_cpus)
1392 void smp_send_reschedule(int cpu)
1394 if (cpu == smp_processor_id()) {
1395 WARN_ON_ONCE(preemptible());
1396 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1397 } else {
1398 xcall_deliver((u64) &xcall_receive_signal,
1399 0, 0, cpumask_of(cpu));
1403 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1405 clear_softint(1 << irq);
1406 scheduler_ipi();
1409 static void stop_this_cpu(void *dummy)
1411 prom_stopself();
1414 void smp_send_stop(void)
1416 int cpu;
1418 if (tlb_type == hypervisor) {
1419 for_each_online_cpu(cpu) {
1420 if (cpu == smp_processor_id())
1421 continue;
1422 #ifdef CONFIG_SUN_LDOMS
1423 if (ldom_domaining_enabled) {
1424 unsigned long hv_err;
1425 hv_err = sun4v_cpu_stop(cpu);
1426 if (hv_err)
1427 printk(KERN_ERR "sun4v_cpu_stop() "
1428 "failed err=%lu\n", hv_err);
1429 } else
1430 #endif
1431 prom_stopcpu_cpuid(cpu);
1433 } else
1434 smp_call_function(stop_this_cpu, NULL, 0);
1438 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1439 * @cpu: cpu to allocate for
1440 * @size: size allocation in bytes
1441 * @align: alignment
1443 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
1444 * does the right thing for NUMA regardless of the current
1445 * configuration.
1447 * RETURNS:
1448 * Pointer to the allocated area on success, NULL on failure.
1450 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1451 size_t align)
1453 const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1454 #ifdef CONFIG_NEED_MULTIPLE_NODES
1455 int node = cpu_to_node(cpu);
1456 void *ptr;
1458 if (!node_online(node) || !NODE_DATA(node)) {
1459 ptr = __alloc_bootmem(size, align, goal);
1460 pr_info("cpu %d has no node %d or node-local memory\n",
1461 cpu, node);
1462 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1463 cpu, size, __pa(ptr));
1464 } else {
1465 ptr = __alloc_bootmem_node(NODE_DATA(node),
1466 size, align, goal);
1467 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1468 "%016lx\n", cpu, size, node, __pa(ptr));
1470 return ptr;
1471 #else
1472 return __alloc_bootmem(size, align, goal);
1473 #endif
1476 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1478 free_bootmem(__pa(ptr), size);
1481 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1483 if (cpu_to_node(from) == cpu_to_node(to))
1484 return LOCAL_DISTANCE;
1485 else
1486 return REMOTE_DISTANCE;
1489 static void __init pcpu_populate_pte(unsigned long addr)
1491 pgd_t *pgd = pgd_offset_k(addr);
1492 pud_t *pud;
1493 pmd_t *pmd;
1495 if (pgd_none(*pgd)) {
1496 pud_t *new;
1498 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1499 pgd_populate(&init_mm, pgd, new);
1502 pud = pud_offset(pgd, addr);
1503 if (pud_none(*pud)) {
1504 pmd_t *new;
1506 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1507 pud_populate(&init_mm, pud, new);
1510 pmd = pmd_offset(pud, addr);
1511 if (!pmd_present(*pmd)) {
1512 pte_t *new;
1514 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1515 pmd_populate_kernel(&init_mm, pmd, new);
1519 void __init setup_per_cpu_areas(void)
1521 unsigned long delta;
1522 unsigned int cpu;
1523 int rc = -EINVAL;
1525 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1526 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1527 PERCPU_DYNAMIC_RESERVE, 4 << 20,
1528 pcpu_cpu_distance,
1529 pcpu_alloc_bootmem,
1530 pcpu_free_bootmem);
1531 if (rc)
1532 pr_warning("PERCPU: %s allocator failed (%d), "
1533 "falling back to page size\n",
1534 pcpu_fc_names[pcpu_chosen_fc], rc);
1536 if (rc < 0)
1537 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1538 pcpu_alloc_bootmem,
1539 pcpu_free_bootmem,
1540 pcpu_populate_pte);
1541 if (rc < 0)
1542 panic("cannot initialize percpu area (err=%d)", rc);
1544 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1545 for_each_possible_cpu(cpu)
1546 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1548 /* Setup %g5 for the boot cpu. */
1549 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1551 of_fill_in_cpu_data();
1552 if (tlb_type == hypervisor)
1553 mdesc_fill_in_cpu_data(cpu_all_mask);