2 * srmmu.c: SRMMU specific routines for memory management.
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
11 #include <linux/seq_file.h>
12 #include <linux/spinlock.h>
13 #include <linux/bootmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/kdebug.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/gfp.h>
25 #include <asm/mmu_context.h>
26 #include <asm/cacheflush.h>
27 #include <asm/tlbflush.h>
28 #include <asm/io-unit.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/bitext.h>
32 #include <asm/vaddrs.h>
33 #include <asm/cache.h>
34 #include <asm/traps.h>
35 #include <asm/oplib.h>
43 /* Now the cpu specific definitions. */
44 #include <asm/turbosparc.h>
45 #include <asm/tsunami.h>
46 #include <asm/viking.h>
47 #include <asm/swift.h>
54 enum mbus_module srmmu_modtype
;
55 static unsigned int hwbug_bitmask
;
59 extern struct resource sparc_iomap
;
61 extern unsigned long last_valid_pfn
;
63 static pgd_t
*srmmu_swapper_pg_dir
;
65 const struct sparc32_cachetlb_ops
*sparc32_cachetlb_ops
;
66 EXPORT_SYMBOL(sparc32_cachetlb_ops
);
69 const struct sparc32_cachetlb_ops
*local_ops
;
71 #define FLUSH_BEGIN(mm)
74 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
78 int flush_page_for_dma_global
= 1;
82 ctxd_t
*srmmu_ctx_table_phys
;
83 static ctxd_t
*srmmu_context_table
;
85 int viking_mxcc_present
;
86 static DEFINE_SPINLOCK(srmmu_context_spinlock
);
88 static int is_hypersparc
;
90 static int srmmu_cache_pagetables
;
92 /* these will be initialized in srmmu_nocache_calcsize() */
93 static unsigned long srmmu_nocache_size
;
94 static unsigned long srmmu_nocache_end
;
96 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
97 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
99 /* The context table is a nocache user with the biggest alignment needs. */
100 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
102 void *srmmu_nocache_pool
;
103 static struct bit_map srmmu_nocache_map
;
105 static inline int srmmu_pmd_none(pmd_t pmd
)
106 { return !(pmd_val(pmd
) & 0xFFFFFFF); }
108 /* XXX should we hyper_flush_whole_icache here - Anton */
109 static inline void srmmu_ctxd_set(ctxd_t
*ctxp
, pgd_t
*pgdp
)
110 { set_pte((pte_t
*)ctxp
, (SRMMU_ET_PTD
| (__nocache_pa((unsigned long) pgdp
) >> 4))); }
112 void pmd_set(pmd_t
*pmdp
, pte_t
*ptep
)
114 unsigned long ptp
; /* Physical address, shifted right by 4 */
117 ptp
= __nocache_pa((unsigned long) ptep
) >> 4;
118 for (i
= 0; i
< PTRS_PER_PTE
/SRMMU_REAL_PTRS_PER_PTE
; i
++) {
119 set_pte((pte_t
*)&pmdp
->pmdv
[i
], SRMMU_ET_PTD
| ptp
);
120 ptp
+= (SRMMU_REAL_PTRS_PER_PTE
*sizeof(pte_t
) >> 4);
124 void pmd_populate(struct mm_struct
*mm
, pmd_t
*pmdp
, struct page
*ptep
)
126 unsigned long ptp
; /* Physical address, shifted right by 4 */
129 ptp
= page_to_pfn(ptep
) << (PAGE_SHIFT
-4); /* watch for overflow */
130 for (i
= 0; i
< PTRS_PER_PTE
/SRMMU_REAL_PTRS_PER_PTE
; i
++) {
131 set_pte((pte_t
*)&pmdp
->pmdv
[i
], SRMMU_ET_PTD
| ptp
);
132 ptp
+= (SRMMU_REAL_PTRS_PER_PTE
*sizeof(pte_t
) >> 4);
136 /* Find an entry in the third-level page table.. */
137 pte_t
*pte_offset_kernel(pmd_t
*dir
, unsigned long address
)
141 pte
= __nocache_va((dir
->pmdv
[0] & SRMMU_PTD_PMASK
) << 4);
142 return (pte_t
*) pte
+
143 ((address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1));
147 * size: bytes to allocate in the nocache area.
148 * align: bytes, number to align at.
149 * Returns the virtual address of the allocated area.
151 static void *__srmmu_get_nocache(int size
, int align
)
156 if (size
< SRMMU_NOCACHE_BITMAP_SHIFT
) {
157 printk(KERN_ERR
"Size 0x%x too small for nocache request\n",
159 size
= SRMMU_NOCACHE_BITMAP_SHIFT
;
161 if (size
& (SRMMU_NOCACHE_BITMAP_SHIFT
- 1)) {
162 printk(KERN_ERR
"Size 0x%x unaligned int nocache request\n",
164 size
+= SRMMU_NOCACHE_BITMAP_SHIFT
- 1;
166 BUG_ON(align
> SRMMU_NOCACHE_ALIGN_MAX
);
168 offset
= bit_map_string_get(&srmmu_nocache_map
,
169 size
>> SRMMU_NOCACHE_BITMAP_SHIFT
,
170 align
>> SRMMU_NOCACHE_BITMAP_SHIFT
);
172 printk(KERN_ERR
"srmmu: out of nocache %d: %d/%d\n",
173 size
, (int) srmmu_nocache_size
,
174 srmmu_nocache_map
.used
<< SRMMU_NOCACHE_BITMAP_SHIFT
);
178 addr
= SRMMU_NOCACHE_VADDR
+ (offset
<< SRMMU_NOCACHE_BITMAP_SHIFT
);
182 void *srmmu_get_nocache(int size
, int align
)
186 tmp
= __srmmu_get_nocache(size
, align
);
189 memset(tmp
, 0, size
);
194 void srmmu_free_nocache(void *addr
, int size
)
199 vaddr
= (unsigned long)addr
;
200 if (vaddr
< SRMMU_NOCACHE_VADDR
) {
201 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
202 vaddr
, (unsigned long)SRMMU_NOCACHE_VADDR
);
205 if (vaddr
+ size
> srmmu_nocache_end
) {
206 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
207 vaddr
, srmmu_nocache_end
);
210 if (!is_power_of_2(size
)) {
211 printk("Size 0x%x is not a power of 2\n", size
);
214 if (size
< SRMMU_NOCACHE_BITMAP_SHIFT
) {
215 printk("Size 0x%x is too small\n", size
);
218 if (vaddr
& (size
- 1)) {
219 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr
, size
);
223 offset
= (vaddr
- SRMMU_NOCACHE_VADDR
) >> SRMMU_NOCACHE_BITMAP_SHIFT
;
224 size
= size
>> SRMMU_NOCACHE_BITMAP_SHIFT
;
226 bit_map_clear(&srmmu_nocache_map
, offset
, size
);
229 static void srmmu_early_allocate_ptable_skeleton(unsigned long start
,
232 /* Return how much physical memory we have. */
233 static unsigned long __init
probe_memory(void)
235 unsigned long total
= 0;
238 for (i
= 0; sp_banks
[i
].num_bytes
; i
++)
239 total
+= sp_banks
[i
].num_bytes
;
245 * Reserve nocache dynamically proportionally to the amount of
246 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
248 static void __init
srmmu_nocache_calcsize(void)
250 unsigned long sysmemavail
= probe_memory() / 1024;
251 int srmmu_nocache_npages
;
253 srmmu_nocache_npages
=
254 sysmemavail
/ SRMMU_NOCACHE_ALCRATIO
/ 1024 * 256;
256 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
257 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
258 if (srmmu_nocache_npages
< SRMMU_MIN_NOCACHE_PAGES
)
259 srmmu_nocache_npages
= SRMMU_MIN_NOCACHE_PAGES
;
261 /* anything above 1280 blows up */
262 if (srmmu_nocache_npages
> SRMMU_MAX_NOCACHE_PAGES
)
263 srmmu_nocache_npages
= SRMMU_MAX_NOCACHE_PAGES
;
265 srmmu_nocache_size
= srmmu_nocache_npages
* PAGE_SIZE
;
266 srmmu_nocache_end
= SRMMU_NOCACHE_VADDR
+ srmmu_nocache_size
;
269 static void __init
srmmu_nocache_init(void)
271 void *srmmu_nocache_bitmap
;
272 unsigned int bitmap_bits
;
276 unsigned long paddr
, vaddr
;
277 unsigned long pteval
;
279 bitmap_bits
= srmmu_nocache_size
>> SRMMU_NOCACHE_BITMAP_SHIFT
;
281 srmmu_nocache_pool
= __alloc_bootmem(srmmu_nocache_size
,
282 SRMMU_NOCACHE_ALIGN_MAX
, 0UL);
283 memset(srmmu_nocache_pool
, 0, srmmu_nocache_size
);
285 srmmu_nocache_bitmap
=
286 __alloc_bootmem(BITS_TO_LONGS(bitmap_bits
) * sizeof(long),
287 SMP_CACHE_BYTES
, 0UL);
288 bit_map_init(&srmmu_nocache_map
, srmmu_nocache_bitmap
, bitmap_bits
);
290 srmmu_swapper_pg_dir
= __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE
, SRMMU_PGD_TABLE_SIZE
);
291 memset(__nocache_fix(srmmu_swapper_pg_dir
), 0, SRMMU_PGD_TABLE_SIZE
);
292 init_mm
.pgd
= srmmu_swapper_pg_dir
;
294 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR
, srmmu_nocache_end
);
296 paddr
= __pa((unsigned long)srmmu_nocache_pool
);
297 vaddr
= SRMMU_NOCACHE_VADDR
;
299 while (vaddr
< srmmu_nocache_end
) {
300 pgd
= pgd_offset_k(vaddr
);
301 pmd
= pmd_offset(__nocache_fix(pgd
), vaddr
);
302 pte
= pte_offset_kernel(__nocache_fix(pmd
), vaddr
);
304 pteval
= ((paddr
>> 4) | SRMMU_ET_PTE
| SRMMU_PRIV
);
306 if (srmmu_cache_pagetables
)
307 pteval
|= SRMMU_CACHE
;
309 set_pte(__nocache_fix(pte
), __pte(pteval
));
319 pgd_t
*get_pgd_fast(void)
323 pgd
= __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE
, SRMMU_PGD_TABLE_SIZE
);
325 pgd_t
*init
= pgd_offset_k(0);
326 memset(pgd
, 0, USER_PTRS_PER_PGD
* sizeof(pgd_t
));
327 memcpy(pgd
+ USER_PTRS_PER_PGD
, init
+ USER_PTRS_PER_PGD
,
328 (PTRS_PER_PGD
- USER_PTRS_PER_PGD
) * sizeof(pgd_t
));
335 * Hardware needs alignment to 256 only, but we align to whole page size
336 * to reduce fragmentation problems due to the buddy principle.
337 * XXX Provide actual fragmentation statistics in /proc.
339 * Alignments up to the page size are the same for physical and virtual
340 * addresses of the nocache area.
342 pgtable_t
pte_alloc_one(struct mm_struct
*mm
, unsigned long address
)
347 if ((pte
= (unsigned long)pte_alloc_one_kernel(mm
, address
)) == 0)
349 page
= pfn_to_page(__nocache_pa(pte
) >> PAGE_SHIFT
);
350 if (!pgtable_page_ctor(page
)) {
357 void pte_free(struct mm_struct
*mm
, pgtable_t pte
)
361 pgtable_page_dtor(pte
);
362 p
= (unsigned long)page_address(pte
); /* Cached address (for test) */
365 p
= page_to_pfn(pte
) << PAGE_SHIFT
; /* Physical address */
367 /* free non cached virtual address*/
368 srmmu_free_nocache(__nocache_va(p
), PTE_SIZE
);
371 /* context handling - a dynamically sized pool is used */
372 #define NO_CONTEXT -1
375 struct ctx_list
*next
;
376 struct ctx_list
*prev
;
377 unsigned int ctx_number
;
378 struct mm_struct
*ctx_mm
;
381 static struct ctx_list
*ctx_list_pool
;
382 static struct ctx_list ctx_free
;
383 static struct ctx_list ctx_used
;
385 /* At boot time we determine the number of contexts */
386 static int num_contexts
;
388 static inline void remove_from_ctx_list(struct ctx_list
*entry
)
390 entry
->next
->prev
= entry
->prev
;
391 entry
->prev
->next
= entry
->next
;
394 static inline void add_to_ctx_list(struct ctx_list
*head
, struct ctx_list
*entry
)
397 (entry
->prev
= head
->prev
)->next
= entry
;
400 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
401 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
404 static inline void alloc_context(struct mm_struct
*old_mm
, struct mm_struct
*mm
)
406 struct ctx_list
*ctxp
;
408 ctxp
= ctx_free
.next
;
409 if (ctxp
!= &ctx_free
) {
410 remove_from_ctx_list(ctxp
);
411 add_to_used_ctxlist(ctxp
);
412 mm
->context
= ctxp
->ctx_number
;
416 ctxp
= ctx_used
.next
;
417 if (ctxp
->ctx_mm
== old_mm
)
419 if (ctxp
== &ctx_used
)
420 panic("out of mmu contexts");
421 flush_cache_mm(ctxp
->ctx_mm
);
422 flush_tlb_mm(ctxp
->ctx_mm
);
423 remove_from_ctx_list(ctxp
);
424 add_to_used_ctxlist(ctxp
);
425 ctxp
->ctx_mm
->context
= NO_CONTEXT
;
427 mm
->context
= ctxp
->ctx_number
;
430 static inline void free_context(int context
)
432 struct ctx_list
*ctx_old
;
434 ctx_old
= ctx_list_pool
+ context
;
435 remove_from_ctx_list(ctx_old
);
436 add_to_free_ctxlist(ctx_old
);
439 static void __init
sparc_context_init(int numctx
)
444 size
= numctx
* sizeof(struct ctx_list
);
445 ctx_list_pool
= __alloc_bootmem(size
, SMP_CACHE_BYTES
, 0UL);
447 for (ctx
= 0; ctx
< numctx
; ctx
++) {
448 struct ctx_list
*clist
;
450 clist
= (ctx_list_pool
+ ctx
);
451 clist
->ctx_number
= ctx
;
452 clist
->ctx_mm
= NULL
;
454 ctx_free
.next
= ctx_free
.prev
= &ctx_free
;
455 ctx_used
.next
= ctx_used
.prev
= &ctx_used
;
456 for (ctx
= 0; ctx
< numctx
; ctx
++)
457 add_to_free_ctxlist(ctx_list_pool
+ ctx
);
460 void switch_mm(struct mm_struct
*old_mm
, struct mm_struct
*mm
,
461 struct task_struct
*tsk
)
465 if (mm
->context
== NO_CONTEXT
) {
466 spin_lock_irqsave(&srmmu_context_spinlock
, flags
);
467 alloc_context(old_mm
, mm
);
468 spin_unlock_irqrestore(&srmmu_context_spinlock
, flags
);
469 srmmu_ctxd_set(&srmmu_context_table
[mm
->context
], mm
->pgd
);
472 if (sparc_cpu_model
== sparc_leon
)
476 hyper_flush_whole_icache();
478 srmmu_set_context(mm
->context
);
481 /* Low level IO area allocation on the SRMMU. */
482 static inline void srmmu_mapioaddr(unsigned long physaddr
,
483 unsigned long virt_addr
, int bus_type
)
490 physaddr
&= PAGE_MASK
;
491 pgdp
= pgd_offset_k(virt_addr
);
492 pmdp
= pmd_offset(pgdp
, virt_addr
);
493 ptep
= pte_offset_kernel(pmdp
, virt_addr
);
494 tmp
= (physaddr
>> 4) | SRMMU_ET_PTE
;
496 /* I need to test whether this is consistent over all
497 * sun4m's. The bus_type represents the upper 4 bits of
498 * 36-bit physical address on the I/O space lines...
500 tmp
|= (bus_type
<< 28);
502 __flush_page_to_ram(virt_addr
);
503 set_pte(ptep
, __pte(tmp
));
506 void srmmu_mapiorange(unsigned int bus
, unsigned long xpa
,
507 unsigned long xva
, unsigned int len
)
511 srmmu_mapioaddr(xpa
, xva
, bus
);
518 static inline void srmmu_unmapioaddr(unsigned long virt_addr
)
524 pgdp
= pgd_offset_k(virt_addr
);
525 pmdp
= pmd_offset(pgdp
, virt_addr
);
526 ptep
= pte_offset_kernel(pmdp
, virt_addr
);
528 /* No need to flush uncacheable page. */
532 void srmmu_unmapiorange(unsigned long virt_addr
, unsigned int len
)
536 srmmu_unmapioaddr(virt_addr
);
537 virt_addr
+= PAGE_SIZE
;
543 extern void tsunami_flush_cache_all(void);
544 extern void tsunami_flush_cache_mm(struct mm_struct
*mm
);
545 extern void tsunami_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
546 extern void tsunami_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
547 extern void tsunami_flush_page_to_ram(unsigned long page
);
548 extern void tsunami_flush_page_for_dma(unsigned long page
);
549 extern void tsunami_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
550 extern void tsunami_flush_tlb_all(void);
551 extern void tsunami_flush_tlb_mm(struct mm_struct
*mm
);
552 extern void tsunami_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
553 extern void tsunami_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
554 extern void tsunami_setup_blockops(void);
557 extern void swift_flush_cache_all(void);
558 extern void swift_flush_cache_mm(struct mm_struct
*mm
);
559 extern void swift_flush_cache_range(struct vm_area_struct
*vma
,
560 unsigned long start
, unsigned long end
);
561 extern void swift_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
562 extern void swift_flush_page_to_ram(unsigned long page
);
563 extern void swift_flush_page_for_dma(unsigned long page
);
564 extern void swift_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
565 extern void swift_flush_tlb_all(void);
566 extern void swift_flush_tlb_mm(struct mm_struct
*mm
);
567 extern void swift_flush_tlb_range(struct vm_area_struct
*vma
,
568 unsigned long start
, unsigned long end
);
569 extern void swift_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
571 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
572 void swift_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
577 if ((ctx1
= vma
->vm_mm
->context
) != -1) {
578 cctx
= srmmu_get_context();
579 /* Is context # ever different from current context? P3 */
581 printk("flush ctx %02x curr %02x\n", ctx1
, cctx
);
582 srmmu_set_context(ctx1
);
583 swift_flush_page(page
);
584 __asm__
__volatile__("sta %%g0, [%0] %1\n\t" : :
585 "r" (page
), "i" (ASI_M_FLUSH_PROBE
));
586 srmmu_set_context(cctx
);
588 /* Rm. prot. bits from virt. c. */
589 /* swift_flush_cache_all(); */
590 /* swift_flush_cache_page(vma, page); */
591 swift_flush_page(page
);
593 __asm__
__volatile__("sta %%g0, [%0] %1\n\t" : :
594 "r" (page
), "i" (ASI_M_FLUSH_PROBE
));
595 /* same as above: srmmu_flush_tlb_page() */
602 * The following are all MBUS based SRMMU modules, and therefore could
603 * be found in a multiprocessor configuration. On the whole, these
604 * chips seems to be much more touchy about DVMA and page tables
605 * with respect to cache coherency.
609 extern void viking_flush_cache_all(void);
610 extern void viking_flush_cache_mm(struct mm_struct
*mm
);
611 extern void viking_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
,
613 extern void viking_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
614 extern void viking_flush_page_to_ram(unsigned long page
);
615 extern void viking_flush_page_for_dma(unsigned long page
);
616 extern void viking_flush_sig_insns(struct mm_struct
*mm
, unsigned long addr
);
617 extern void viking_flush_page(unsigned long page
);
618 extern void viking_mxcc_flush_page(unsigned long page
);
619 extern void viking_flush_tlb_all(void);
620 extern void viking_flush_tlb_mm(struct mm_struct
*mm
);
621 extern void viking_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
623 extern void viking_flush_tlb_page(struct vm_area_struct
*vma
,
625 extern void sun4dsmp_flush_tlb_all(void);
626 extern void sun4dsmp_flush_tlb_mm(struct mm_struct
*mm
);
627 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
629 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct
*vma
,
633 extern void hypersparc_flush_cache_all(void);
634 extern void hypersparc_flush_cache_mm(struct mm_struct
*mm
);
635 extern void hypersparc_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
636 extern void hypersparc_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
637 extern void hypersparc_flush_page_to_ram(unsigned long page
);
638 extern void hypersparc_flush_page_for_dma(unsigned long page
);
639 extern void hypersparc_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
640 extern void hypersparc_flush_tlb_all(void);
641 extern void hypersparc_flush_tlb_mm(struct mm_struct
*mm
);
642 extern void hypersparc_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
643 extern void hypersparc_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
644 extern void hypersparc_setup_blockops(void);
647 * NOTE: All of this startup code assumes the low 16mb (approx.) of
648 * kernel mappings are done with one single contiguous chunk of
649 * ram. On small ram machines (classics mainly) we only get
650 * around 8mb mapped for us.
653 static void __init
early_pgtable_allocfail(char *type
)
655 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type
);
659 static void __init
srmmu_early_allocate_ptable_skeleton(unsigned long start
,
666 while (start
< end
) {
667 pgdp
= pgd_offset_k(start
);
668 if (pgd_none(*(pgd_t
*)__nocache_fix(pgdp
))) {
669 pmdp
= __srmmu_get_nocache(
670 SRMMU_PMD_TABLE_SIZE
, SRMMU_PMD_TABLE_SIZE
);
672 early_pgtable_allocfail("pmd");
673 memset(__nocache_fix(pmdp
), 0, SRMMU_PMD_TABLE_SIZE
);
674 pgd_set(__nocache_fix(pgdp
), pmdp
);
676 pmdp
= pmd_offset(__nocache_fix(pgdp
), start
);
677 if (srmmu_pmd_none(*(pmd_t
*)__nocache_fix(pmdp
))) {
678 ptep
= __srmmu_get_nocache(PTE_SIZE
, PTE_SIZE
);
680 early_pgtable_allocfail("pte");
681 memset(__nocache_fix(ptep
), 0, PTE_SIZE
);
682 pmd_set(__nocache_fix(pmdp
), ptep
);
684 if (start
> (0xffffffffUL
- PMD_SIZE
))
686 start
= (start
+ PMD_SIZE
) & PMD_MASK
;
690 static void __init
srmmu_allocate_ptable_skeleton(unsigned long start
,
697 while (start
< end
) {
698 pgdp
= pgd_offset_k(start
);
699 if (pgd_none(*pgdp
)) {
700 pmdp
= __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE
, SRMMU_PMD_TABLE_SIZE
);
702 early_pgtable_allocfail("pmd");
703 memset(pmdp
, 0, SRMMU_PMD_TABLE_SIZE
);
706 pmdp
= pmd_offset(pgdp
, start
);
707 if (srmmu_pmd_none(*pmdp
)) {
708 ptep
= __srmmu_get_nocache(PTE_SIZE
,
711 early_pgtable_allocfail("pte");
712 memset(ptep
, 0, PTE_SIZE
);
715 if (start
> (0xffffffffUL
- PMD_SIZE
))
717 start
= (start
+ PMD_SIZE
) & PMD_MASK
;
721 /* These flush types are not available on all chips... */
722 static inline unsigned long srmmu_probe(unsigned long vaddr
)
724 unsigned long retval
;
726 if (sparc_cpu_model
!= sparc_leon
) {
729 __asm__
__volatile__("lda [%1] %2, %0\n\t" :
731 "r" (vaddr
| 0x400), "i" (ASI_M_FLUSH_PROBE
));
733 retval
= leon_swprobe(vaddr
, NULL
);
739 * This is much cleaner than poking around physical address space
740 * looking at the prom's page table directly which is what most
741 * other OS's do. Yuck... this is much better.
743 static void __init
srmmu_inherit_prom_mappings(unsigned long start
,
746 unsigned long probed
;
751 int what
; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
753 while (start
<= end
) {
755 break; /* probably wrap around */
756 if (start
== 0xfef00000)
757 start
= KADB_DEBUGGER_BEGVM
;
758 probed
= srmmu_probe(start
);
760 /* continue probing until we find an entry */
765 /* A red snapper, see what it really is. */
767 addr
= start
- PAGE_SIZE
;
769 if (!(start
& ~(SRMMU_REAL_PMD_MASK
))) {
770 if (srmmu_probe(addr
+ SRMMU_REAL_PMD_SIZE
) == probed
)
774 if (!(start
& ~(SRMMU_PGDIR_MASK
))) {
775 if (srmmu_probe(addr
+ SRMMU_PGDIR_SIZE
) == probed
)
779 pgdp
= pgd_offset_k(start
);
781 *(pgd_t
*)__nocache_fix(pgdp
) = __pgd(probed
);
782 start
+= SRMMU_PGDIR_SIZE
;
785 if (pgd_none(*(pgd_t
*)__nocache_fix(pgdp
))) {
786 pmdp
= __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE
,
787 SRMMU_PMD_TABLE_SIZE
);
789 early_pgtable_allocfail("pmd");
790 memset(__nocache_fix(pmdp
), 0, SRMMU_PMD_TABLE_SIZE
);
791 pgd_set(__nocache_fix(pgdp
), pmdp
);
793 pmdp
= pmd_offset(__nocache_fix(pgdp
), start
);
794 if (srmmu_pmd_none(*(pmd_t
*)__nocache_fix(pmdp
))) {
795 ptep
= __srmmu_get_nocache(PTE_SIZE
, PTE_SIZE
);
797 early_pgtable_allocfail("pte");
798 memset(__nocache_fix(ptep
), 0, PTE_SIZE
);
799 pmd_set(__nocache_fix(pmdp
), ptep
);
802 /* We bend the rule where all 16 PTPs in a pmd_t point
803 * inside the same PTE page, and we leak a perfectly
804 * good hardware PTE piece. Alternatives seem worse.
806 unsigned int x
; /* Index of HW PMD in soft cluster */
808 x
= (start
>> PMD_SHIFT
) & 15;
809 val
= &pmdp
->pmdv
[x
];
810 *(unsigned long *)__nocache_fix(val
) = probed
;
811 start
+= SRMMU_REAL_PMD_SIZE
;
814 ptep
= pte_offset_kernel(__nocache_fix(pmdp
), start
);
815 *(pte_t
*)__nocache_fix(ptep
) = __pte(probed
);
820 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
822 /* Create a third-level SRMMU 16MB page mapping. */
823 static void __init
do_large_mapping(unsigned long vaddr
, unsigned long phys_base
)
825 pgd_t
*pgdp
= pgd_offset_k(vaddr
);
826 unsigned long big_pte
;
828 big_pte
= KERNEL_PTE(phys_base
>> 4);
829 *(pgd_t
*)__nocache_fix(pgdp
) = __pgd(big_pte
);
832 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
833 static unsigned long __init
map_spbank(unsigned long vbase
, int sp_entry
)
835 unsigned long pstart
= (sp_banks
[sp_entry
].base_addr
& SRMMU_PGDIR_MASK
);
836 unsigned long vstart
= (vbase
& SRMMU_PGDIR_MASK
);
837 unsigned long vend
= SRMMU_PGDIR_ALIGN(vbase
+ sp_banks
[sp_entry
].num_bytes
);
838 /* Map "low" memory only */
839 const unsigned long min_vaddr
= PAGE_OFFSET
;
840 const unsigned long max_vaddr
= PAGE_OFFSET
+ SRMMU_MAXMEM
;
842 if (vstart
< min_vaddr
|| vstart
>= max_vaddr
)
845 if (vend
> max_vaddr
|| vend
< min_vaddr
)
848 while (vstart
< vend
) {
849 do_large_mapping(vstart
, pstart
);
850 vstart
+= SRMMU_PGDIR_SIZE
; pstart
+= SRMMU_PGDIR_SIZE
;
855 static void __init
map_kernel(void)
860 do_large_mapping(PAGE_OFFSET
, phys_base
);
863 for (i
= 0; sp_banks
[i
].num_bytes
!= 0; i
++) {
864 map_spbank((unsigned long)__va(sp_banks
[i
].base_addr
), i
);
868 void (*poke_srmmu
)(void) = NULL
;
870 void __init
srmmu_paging_init(void)
878 unsigned long pages_avail
;
880 init_mm
.context
= (unsigned long) NO_CONTEXT
;
881 sparc_iomap
.start
= SUN4M_IOBASE_VADDR
; /* 16MB of IOSPACE on all sun4m's. */
883 if (sparc_cpu_model
== sun4d
)
884 num_contexts
= 65536; /* We know it is Viking */
886 /* Find the number of contexts on the srmmu. */
887 cpunode
= prom_getchild(prom_root_node
);
889 while (cpunode
!= 0) {
890 prom_getstring(cpunode
, "device_type", node_str
, sizeof(node_str
));
891 if (!strcmp(node_str
, "cpu")) {
892 num_contexts
= prom_getintdefault(cpunode
, "mmu-nctx", 0x8);
895 cpunode
= prom_getsibling(cpunode
);
900 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
905 last_valid_pfn
= bootmem_init(&pages_avail
);
907 srmmu_nocache_calcsize();
908 srmmu_nocache_init();
909 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM
- PAGE_SIZE
));
912 /* ctx table has to be physically aligned to its size */
913 srmmu_context_table
= __srmmu_get_nocache(num_contexts
* sizeof(ctxd_t
), num_contexts
* sizeof(ctxd_t
));
914 srmmu_ctx_table_phys
= (ctxd_t
*)__nocache_pa((unsigned long)srmmu_context_table
);
916 for (i
= 0; i
< num_contexts
; i
++)
917 srmmu_ctxd_set((ctxd_t
*)__nocache_fix(&srmmu_context_table
[i
]), srmmu_swapper_pg_dir
);
920 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys
);
922 /* Stop from hanging here... */
923 local_ops
->tlb_all();
929 srmmu_allocate_ptable_skeleton(sparc_iomap
.start
, IOBASE_END
);
930 srmmu_allocate_ptable_skeleton(DVMA_VADDR
, DVMA_END
);
932 srmmu_allocate_ptable_skeleton(
933 __fix_to_virt(__end_of_fixed_addresses
- 1), FIXADDR_TOP
);
934 srmmu_allocate_ptable_skeleton(PKMAP_BASE
, PKMAP_END
);
936 pgd
= pgd_offset_k(PKMAP_BASE
);
937 pmd
= pmd_offset(pgd
, PKMAP_BASE
);
938 pte
= pte_offset_kernel(pmd
, PKMAP_BASE
);
939 pkmap_page_table
= pte
;
944 sparc_context_init(num_contexts
);
949 unsigned long zones_size
[MAX_NR_ZONES
];
950 unsigned long zholes_size
[MAX_NR_ZONES
];
951 unsigned long npages
;
954 for (znum
= 0; znum
< MAX_NR_ZONES
; znum
++)
955 zones_size
[znum
] = zholes_size
[znum
] = 0;
957 npages
= max_low_pfn
- pfn_base
;
959 zones_size
[ZONE_DMA
] = npages
;
960 zholes_size
[ZONE_DMA
] = npages
- pages_avail
;
962 npages
= highend_pfn
- max_low_pfn
;
963 zones_size
[ZONE_HIGHMEM
] = npages
;
964 zholes_size
[ZONE_HIGHMEM
] = npages
- calc_highpages();
966 free_area_init_node(0, zones_size
, pfn_base
, zholes_size
);
970 void mmu_info(struct seq_file
*m
)
975 "nocache total\t: %ld\n"
976 "nocache used\t: %d\n",
980 srmmu_nocache_map
.used
<< SRMMU_NOCACHE_BITMAP_SHIFT
);
983 int init_new_context(struct task_struct
*tsk
, struct mm_struct
*mm
)
985 mm
->context
= NO_CONTEXT
;
989 void destroy_context(struct mm_struct
*mm
)
993 if (mm
->context
!= NO_CONTEXT
) {
995 srmmu_ctxd_set(&srmmu_context_table
[mm
->context
], srmmu_swapper_pg_dir
);
997 spin_lock_irqsave(&srmmu_context_spinlock
, flags
);
998 free_context(mm
->context
);
999 spin_unlock_irqrestore(&srmmu_context_spinlock
, flags
);
1000 mm
->context
= NO_CONTEXT
;
1004 /* Init various srmmu chip types. */
1005 static void __init
srmmu_is_bad(void)
1007 prom_printf("Could not determine SRMMU chip type.\n");
1011 static void __init
init_vac_layout(void)
1018 unsigned long max_size
= 0;
1019 unsigned long min_line_size
= 0x10000000;
1022 nd
= prom_getchild(prom_root_node
);
1023 while ((nd
= prom_getsibling(nd
)) != 0) {
1024 prom_getstring(nd
, "device_type", node_str
, sizeof(node_str
));
1025 if (!strcmp(node_str
, "cpu")) {
1026 vac_line_size
= prom_getint(nd
, "cache-line-size");
1027 if (vac_line_size
== -1) {
1028 prom_printf("can't determine cache-line-size, halting.\n");
1031 cache_lines
= prom_getint(nd
, "cache-nlines");
1032 if (cache_lines
== -1) {
1033 prom_printf("can't determine cache-nlines, halting.\n");
1037 vac_cache_size
= cache_lines
* vac_line_size
;
1039 if (vac_cache_size
> max_size
)
1040 max_size
= vac_cache_size
;
1041 if (vac_line_size
< min_line_size
)
1042 min_line_size
= vac_line_size
;
1043 //FIXME: cpus not contiguous!!
1045 if (cpu
>= nr_cpu_ids
|| !cpu_online(cpu
))
1053 prom_printf("No CPU nodes found, halting.\n");
1057 vac_cache_size
= max_size
;
1058 vac_line_size
= min_line_size
;
1060 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1061 (int)vac_cache_size
, (int)vac_line_size
);
1064 static void poke_hypersparc(void)
1066 volatile unsigned long clear
;
1067 unsigned long mreg
= srmmu_get_mmureg();
1069 hyper_flush_unconditional_combined();
1071 mreg
&= ~(HYPERSPARC_CWENABLE
);
1072 mreg
|= (HYPERSPARC_CENABLE
| HYPERSPARC_WBENABLE
);
1073 mreg
|= (HYPERSPARC_CMODE
);
1075 srmmu_set_mmureg(mreg
);
1077 #if 0 /* XXX I think this is bad news... -DaveM */
1078 hyper_clear_all_tags();
1081 put_ross_icr(HYPERSPARC_ICCR_FTD
| HYPERSPARC_ICCR_ICE
);
1082 hyper_flush_whole_icache();
1083 clear
= srmmu_get_faddr();
1084 clear
= srmmu_get_fstatus();
1087 static const struct sparc32_cachetlb_ops hypersparc_ops
= {
1088 .cache_all
= hypersparc_flush_cache_all
,
1089 .cache_mm
= hypersparc_flush_cache_mm
,
1090 .cache_page
= hypersparc_flush_cache_page
,
1091 .cache_range
= hypersparc_flush_cache_range
,
1092 .tlb_all
= hypersparc_flush_tlb_all
,
1093 .tlb_mm
= hypersparc_flush_tlb_mm
,
1094 .tlb_page
= hypersparc_flush_tlb_page
,
1095 .tlb_range
= hypersparc_flush_tlb_range
,
1096 .page_to_ram
= hypersparc_flush_page_to_ram
,
1097 .sig_insns
= hypersparc_flush_sig_insns
,
1098 .page_for_dma
= hypersparc_flush_page_for_dma
,
1101 static void __init
init_hypersparc(void)
1103 srmmu_name
= "ROSS HyperSparc";
1104 srmmu_modtype
= HyperSparc
;
1109 sparc32_cachetlb_ops
= &hypersparc_ops
;
1111 poke_srmmu
= poke_hypersparc
;
1113 hypersparc_setup_blockops();
1116 static void poke_swift(void)
1120 /* Clear any crap from the cache or else... */
1121 swift_flush_cache_all();
1123 /* Enable I & D caches */
1124 mreg
= srmmu_get_mmureg();
1125 mreg
|= (SWIFT_IE
| SWIFT_DE
);
1127 * The Swift branch folding logic is completely broken. At
1128 * trap time, if things are just right, if can mistakenly
1129 * think that a trap is coming from kernel mode when in fact
1130 * it is coming from user mode (it mis-executes the branch in
1131 * the trap code). So you see things like crashme completely
1132 * hosing your machine which is completely unacceptable. Turn
1133 * this shit off... nice job Fujitsu.
1135 mreg
&= ~(SWIFT_BF
);
1136 srmmu_set_mmureg(mreg
);
1139 static const struct sparc32_cachetlb_ops swift_ops
= {
1140 .cache_all
= swift_flush_cache_all
,
1141 .cache_mm
= swift_flush_cache_mm
,
1142 .cache_page
= swift_flush_cache_page
,
1143 .cache_range
= swift_flush_cache_range
,
1144 .tlb_all
= swift_flush_tlb_all
,
1145 .tlb_mm
= swift_flush_tlb_mm
,
1146 .tlb_page
= swift_flush_tlb_page
,
1147 .tlb_range
= swift_flush_tlb_range
,
1148 .page_to_ram
= swift_flush_page_to_ram
,
1149 .sig_insns
= swift_flush_sig_insns
,
1150 .page_for_dma
= swift_flush_page_for_dma
,
1153 #define SWIFT_MASKID_ADDR 0x10003018
1154 static void __init
init_swift(void)
1156 unsigned long swift_rev
;
1158 __asm__
__volatile__("lda [%1] %2, %0\n\t"
1159 "srl %0, 0x18, %0\n\t" :
1161 "r" (SWIFT_MASKID_ADDR
), "i" (ASI_M_BYPASS
));
1162 srmmu_name
= "Fujitsu Swift";
1163 switch (swift_rev
) {
1168 srmmu_modtype
= Swift_lots_o_bugs
;
1169 hwbug_bitmask
|= (HWBUG_KERN_ACCBROKEN
| HWBUG_KERN_CBITBROKEN
);
1171 * Gee george, I wonder why Sun is so hush hush about
1172 * this hardware bug... really braindamage stuff going
1173 * on here. However I think we can find a way to avoid
1174 * all of the workaround overhead under Linux. Basically,
1175 * any page fault can cause kernel pages to become user
1176 * accessible (the mmu gets confused and clears some of
1177 * the ACC bits in kernel ptes). Aha, sounds pretty
1178 * horrible eh? But wait, after extensive testing it appears
1179 * that if you use pgd_t level large kernel pte's (like the
1180 * 4MB pages on the Pentium) the bug does not get tripped
1181 * at all. This avoids almost all of the major overhead.
1182 * Welcome to a world where your vendor tells you to,
1183 * "apply this kernel patch" instead of "sorry for the
1184 * broken hardware, send it back and we'll give you
1185 * properly functioning parts"
1190 srmmu_modtype
= Swift_bad_c
;
1191 hwbug_bitmask
|= HWBUG_KERN_CBITBROKEN
;
1193 * You see Sun allude to this hardware bug but never
1194 * admit things directly, they'll say things like,
1195 * "the Swift chip cache problems" or similar.
1199 srmmu_modtype
= Swift_ok
;
1203 sparc32_cachetlb_ops
= &swift_ops
;
1204 flush_page_for_dma_global
= 0;
1207 * Are you now convinced that the Swift is one of the
1208 * biggest VLSI abortions of all time? Bravo Fujitsu!
1209 * Fujitsu, the !#?!%$'d up processor people. I bet if
1210 * you examined the microcode of the Swift you'd find
1211 * XXX's all over the place.
1213 poke_srmmu
= poke_swift
;
1216 static void turbosparc_flush_cache_all(void)
1218 flush_user_windows();
1219 turbosparc_idflash_clear();
1222 static void turbosparc_flush_cache_mm(struct mm_struct
*mm
)
1225 flush_user_windows();
1226 turbosparc_idflash_clear();
1230 static void turbosparc_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1232 FLUSH_BEGIN(vma
->vm_mm
)
1233 flush_user_windows();
1234 turbosparc_idflash_clear();
1238 static void turbosparc_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
)
1240 FLUSH_BEGIN(vma
->vm_mm
)
1241 flush_user_windows();
1242 if (vma
->vm_flags
& VM_EXEC
)
1243 turbosparc_flush_icache();
1244 turbosparc_flush_dcache();
1248 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1249 static void turbosparc_flush_page_to_ram(unsigned long page
)
1251 #ifdef TURBOSPARC_WRITEBACK
1252 volatile unsigned long clear
;
1254 if (srmmu_probe(page
))
1255 turbosparc_flush_page_cache(page
);
1256 clear
= srmmu_get_fstatus();
1260 static void turbosparc_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
)
1264 static void turbosparc_flush_page_for_dma(unsigned long page
)
1266 turbosparc_flush_dcache();
1269 static void turbosparc_flush_tlb_all(void)
1271 srmmu_flush_whole_tlb();
1274 static void turbosparc_flush_tlb_mm(struct mm_struct
*mm
)
1277 srmmu_flush_whole_tlb();
1281 static void turbosparc_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1283 FLUSH_BEGIN(vma
->vm_mm
)
1284 srmmu_flush_whole_tlb();
1288 static void turbosparc_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
1290 FLUSH_BEGIN(vma
->vm_mm
)
1291 srmmu_flush_whole_tlb();
1296 static void poke_turbosparc(void)
1298 unsigned long mreg
= srmmu_get_mmureg();
1299 unsigned long ccreg
;
1301 /* Clear any crap from the cache or else... */
1302 turbosparc_flush_cache_all();
1303 /* Temporarily disable I & D caches */
1304 mreg
&= ~(TURBOSPARC_ICENABLE
| TURBOSPARC_DCENABLE
);
1305 mreg
&= ~(TURBOSPARC_PCENABLE
); /* Don't check parity */
1306 srmmu_set_mmureg(mreg
);
1308 ccreg
= turbosparc_get_ccreg();
1310 #ifdef TURBOSPARC_WRITEBACK
1311 ccreg
|= (TURBOSPARC_SNENABLE
); /* Do DVMA snooping in Dcache */
1312 ccreg
&= ~(TURBOSPARC_uS2
| TURBOSPARC_WTENABLE
);
1313 /* Write-back D-cache, emulate VLSI
1314 * abortion number three, not number one */
1316 /* For now let's play safe, optimize later */
1317 ccreg
|= (TURBOSPARC_SNENABLE
| TURBOSPARC_WTENABLE
);
1318 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1319 ccreg
&= ~(TURBOSPARC_uS2
);
1320 /* Emulate VLSI abortion number three, not number one */
1323 switch (ccreg
& 7) {
1324 case 0: /* No SE cache */
1325 case 7: /* Test mode */
1328 ccreg
|= (TURBOSPARC_SCENABLE
);
1330 turbosparc_set_ccreg(ccreg
);
1332 mreg
|= (TURBOSPARC_ICENABLE
| TURBOSPARC_DCENABLE
); /* I & D caches on */
1333 mreg
|= (TURBOSPARC_ICSNOOP
); /* Icache snooping on */
1334 srmmu_set_mmureg(mreg
);
1337 static const struct sparc32_cachetlb_ops turbosparc_ops
= {
1338 .cache_all
= turbosparc_flush_cache_all
,
1339 .cache_mm
= turbosparc_flush_cache_mm
,
1340 .cache_page
= turbosparc_flush_cache_page
,
1341 .cache_range
= turbosparc_flush_cache_range
,
1342 .tlb_all
= turbosparc_flush_tlb_all
,
1343 .tlb_mm
= turbosparc_flush_tlb_mm
,
1344 .tlb_page
= turbosparc_flush_tlb_page
,
1345 .tlb_range
= turbosparc_flush_tlb_range
,
1346 .page_to_ram
= turbosparc_flush_page_to_ram
,
1347 .sig_insns
= turbosparc_flush_sig_insns
,
1348 .page_for_dma
= turbosparc_flush_page_for_dma
,
1351 static void __init
init_turbosparc(void)
1353 srmmu_name
= "Fujitsu TurboSparc";
1354 srmmu_modtype
= TurboSparc
;
1355 sparc32_cachetlb_ops
= &turbosparc_ops
;
1356 poke_srmmu
= poke_turbosparc
;
1359 static void poke_tsunami(void)
1361 unsigned long mreg
= srmmu_get_mmureg();
1363 tsunami_flush_icache();
1364 tsunami_flush_dcache();
1365 mreg
&= ~TSUNAMI_ITD
;
1366 mreg
|= (TSUNAMI_IENAB
| TSUNAMI_DENAB
);
1367 srmmu_set_mmureg(mreg
);
1370 static const struct sparc32_cachetlb_ops tsunami_ops
= {
1371 .cache_all
= tsunami_flush_cache_all
,
1372 .cache_mm
= tsunami_flush_cache_mm
,
1373 .cache_page
= tsunami_flush_cache_page
,
1374 .cache_range
= tsunami_flush_cache_range
,
1375 .tlb_all
= tsunami_flush_tlb_all
,
1376 .tlb_mm
= tsunami_flush_tlb_mm
,
1377 .tlb_page
= tsunami_flush_tlb_page
,
1378 .tlb_range
= tsunami_flush_tlb_range
,
1379 .page_to_ram
= tsunami_flush_page_to_ram
,
1380 .sig_insns
= tsunami_flush_sig_insns
,
1381 .page_for_dma
= tsunami_flush_page_for_dma
,
1384 static void __init
init_tsunami(void)
1387 * Tsunami's pretty sane, Sun and TI actually got it
1388 * somewhat right this time. Fujitsu should have
1389 * taken some lessons from them.
1392 srmmu_name
= "TI Tsunami";
1393 srmmu_modtype
= Tsunami
;
1394 sparc32_cachetlb_ops
= &tsunami_ops
;
1395 poke_srmmu
= poke_tsunami
;
1397 tsunami_setup_blockops();
1400 static void poke_viking(void)
1402 unsigned long mreg
= srmmu_get_mmureg();
1403 static int smp_catch
;
1405 if (viking_mxcc_present
) {
1406 unsigned long mxcc_control
= mxcc_get_creg();
1408 mxcc_control
|= (MXCC_CTL_ECE
| MXCC_CTL_PRE
| MXCC_CTL_MCE
);
1409 mxcc_control
&= ~(MXCC_CTL_RRC
);
1410 mxcc_set_creg(mxcc_control
);
1413 * We don't need memory parity checks.
1414 * XXX This is a mess, have to dig out later. ecd.
1415 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1418 /* We do cache ptables on MXCC. */
1419 mreg
|= VIKING_TCENABLE
;
1421 unsigned long bpreg
;
1423 mreg
&= ~(VIKING_TCENABLE
);
1425 /* Must disable mixed-cmd mode here for other cpu's. */
1426 bpreg
= viking_get_bpreg();
1427 bpreg
&= ~(VIKING_ACTION_MIX
);
1428 viking_set_bpreg(bpreg
);
1430 /* Just in case PROM does something funny. */
1435 mreg
|= VIKING_SPENABLE
;
1436 mreg
|= (VIKING_ICENABLE
| VIKING_DCENABLE
);
1437 mreg
|= VIKING_SBENABLE
;
1438 mreg
&= ~(VIKING_ACENABLE
);
1439 srmmu_set_mmureg(mreg
);
1442 static struct sparc32_cachetlb_ops viking_ops
= {
1443 .cache_all
= viking_flush_cache_all
,
1444 .cache_mm
= viking_flush_cache_mm
,
1445 .cache_page
= viking_flush_cache_page
,
1446 .cache_range
= viking_flush_cache_range
,
1447 .tlb_all
= viking_flush_tlb_all
,
1448 .tlb_mm
= viking_flush_tlb_mm
,
1449 .tlb_page
= viking_flush_tlb_page
,
1450 .tlb_range
= viking_flush_tlb_range
,
1451 .page_to_ram
= viking_flush_page_to_ram
,
1452 .sig_insns
= viking_flush_sig_insns
,
1453 .page_for_dma
= viking_flush_page_for_dma
,
1457 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1458 * perform the local TLB flush and all the other cpus will see it.
1459 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1460 * that requires that we add some synchronization to these flushes.
1462 * The bug is that the fifo which keeps track of all the pending TLB
1463 * broadcasts in the system is an entry or two too small, so if we
1464 * have too many going at once we'll overflow that fifo and lose a TLB
1465 * flush resulting in corruption.
1467 * Our workaround is to take a global spinlock around the TLB flushes,
1468 * which guarentees we won't ever have too many pending. It's a big
1469 * hammer, but a semaphore like system to make sure we only have N TLB
1470 * flushes going at once will require SMP locking anyways so there's
1471 * no real value in trying any harder than this.
1473 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops
= {
1474 .cache_all
= viking_flush_cache_all
,
1475 .cache_mm
= viking_flush_cache_mm
,
1476 .cache_page
= viking_flush_cache_page
,
1477 .cache_range
= viking_flush_cache_range
,
1478 .tlb_all
= sun4dsmp_flush_tlb_all
,
1479 .tlb_mm
= sun4dsmp_flush_tlb_mm
,
1480 .tlb_page
= sun4dsmp_flush_tlb_page
,
1481 .tlb_range
= sun4dsmp_flush_tlb_range
,
1482 .page_to_ram
= viking_flush_page_to_ram
,
1483 .sig_insns
= viking_flush_sig_insns
,
1484 .page_for_dma
= viking_flush_page_for_dma
,
1488 static void __init
init_viking(void)
1490 unsigned long mreg
= srmmu_get_mmureg();
1492 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1493 if (mreg
& VIKING_MMODE
) {
1494 srmmu_name
= "TI Viking";
1495 viking_mxcc_present
= 0;
1499 * We need this to make sure old viking takes no hits
1500 * on it's cache for dma snoops to workaround the
1501 * "load from non-cacheable memory" interrupt bug.
1502 * This is only necessary because of the new way in
1503 * which we use the IOMMU.
1505 viking_ops
.page_for_dma
= viking_flush_page
;
1507 viking_sun4d_smp_ops
.page_for_dma
= viking_flush_page
;
1509 flush_page_for_dma_global
= 0;
1511 srmmu_name
= "TI Viking/MXCC";
1512 viking_mxcc_present
= 1;
1513 srmmu_cache_pagetables
= 1;
1516 sparc32_cachetlb_ops
= (const struct sparc32_cachetlb_ops
*)
1519 if (sparc_cpu_model
== sun4d
)
1520 sparc32_cachetlb_ops
= (const struct sparc32_cachetlb_ops
*)
1521 &viking_sun4d_smp_ops
;
1524 poke_srmmu
= poke_viking
;
1527 /* Probe for the srmmu chip version. */
1528 static void __init
get_srmmu_type(void)
1530 unsigned long mreg
, psr
;
1531 unsigned long mod_typ
, mod_rev
, psr_typ
, psr_vers
;
1533 srmmu_modtype
= SRMMU_INVAL_MOD
;
1536 mreg
= srmmu_get_mmureg(); psr
= get_psr();
1537 mod_typ
= (mreg
& 0xf0000000) >> 28;
1538 mod_rev
= (mreg
& 0x0f000000) >> 24;
1539 psr_typ
= (psr
>> 28) & 0xf;
1540 psr_vers
= (psr
>> 24) & 0xf;
1542 /* First, check for sparc-leon. */
1543 if (sparc_cpu_model
== sparc_leon
) {
1548 /* Second, check for HyperSparc or Cypress. */
1552 /* UP or MP Hypersparc */
1564 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1571 /* Now Fujitsu TurboSparc. It might happen that it is
1572 * in Swift emulation mode, so we will check later...
1574 if (psr_typ
== 0 && psr_vers
== 5) {
1579 /* Next check for Fujitsu Swift. */
1580 if (psr_typ
== 0 && psr_vers
== 4) {
1584 /* Look if it is not a TurboSparc emulating Swift... */
1585 cpunode
= prom_getchild(prom_root_node
);
1586 while ((cpunode
= prom_getsibling(cpunode
)) != 0) {
1587 prom_getstring(cpunode
, "device_type", node_str
, sizeof(node_str
));
1588 if (!strcmp(node_str
, "cpu")) {
1589 if (!prom_getintdefault(cpunode
, "psr-implementation", 1) &&
1590 prom_getintdefault(cpunode
, "psr-version", 1) == 5) {
1602 /* Now the Viking family of srmmu. */
1605 ((psr_vers
== 1) && (mod_typ
== 0) && (mod_rev
== 0)))) {
1610 /* Finally the Tsunami. */
1611 if (psr_typ
== 4 && psr_vers
== 1 && (mod_typ
|| mod_rev
)) {
1621 /* Local cross-calls. */
1622 static void smp_flush_page_for_dma(unsigned long page
)
1624 xc1((smpfunc_t
) local_ops
->page_for_dma
, page
);
1625 local_ops
->page_for_dma(page
);
1628 static void smp_flush_cache_all(void)
1630 xc0((smpfunc_t
) local_ops
->cache_all
);
1631 local_ops
->cache_all();
1634 static void smp_flush_tlb_all(void)
1636 xc0((smpfunc_t
) local_ops
->tlb_all
);
1637 local_ops
->tlb_all();
1640 static void smp_flush_cache_mm(struct mm_struct
*mm
)
1642 if (mm
->context
!= NO_CONTEXT
) {
1644 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1645 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1646 if (!cpumask_empty(&cpu_mask
))
1647 xc1((smpfunc_t
) local_ops
->cache_mm
, (unsigned long) mm
);
1648 local_ops
->cache_mm(mm
);
1652 static void smp_flush_tlb_mm(struct mm_struct
*mm
)
1654 if (mm
->context
!= NO_CONTEXT
) {
1656 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1657 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1658 if (!cpumask_empty(&cpu_mask
)) {
1659 xc1((smpfunc_t
) local_ops
->tlb_mm
, (unsigned long) mm
);
1660 if (atomic_read(&mm
->mm_users
) == 1 && current
->active_mm
== mm
)
1661 cpumask_copy(mm_cpumask(mm
),
1662 cpumask_of(smp_processor_id()));
1664 local_ops
->tlb_mm(mm
);
1668 static void smp_flush_cache_range(struct vm_area_struct
*vma
,
1669 unsigned long start
,
1672 struct mm_struct
*mm
= vma
->vm_mm
;
1674 if (mm
->context
!= NO_CONTEXT
) {
1676 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1677 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1678 if (!cpumask_empty(&cpu_mask
))
1679 xc3((smpfunc_t
) local_ops
->cache_range
,
1680 (unsigned long) vma
, start
, end
);
1681 local_ops
->cache_range(vma
, start
, end
);
1685 static void smp_flush_tlb_range(struct vm_area_struct
*vma
,
1686 unsigned long start
,
1689 struct mm_struct
*mm
= vma
->vm_mm
;
1691 if (mm
->context
!= NO_CONTEXT
) {
1693 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1694 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1695 if (!cpumask_empty(&cpu_mask
))
1696 xc3((smpfunc_t
) local_ops
->tlb_range
,
1697 (unsigned long) vma
, start
, end
);
1698 local_ops
->tlb_range(vma
, start
, end
);
1702 static void smp_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
)
1704 struct mm_struct
*mm
= vma
->vm_mm
;
1706 if (mm
->context
!= NO_CONTEXT
) {
1708 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1709 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1710 if (!cpumask_empty(&cpu_mask
))
1711 xc2((smpfunc_t
) local_ops
->cache_page
,
1712 (unsigned long) vma
, page
);
1713 local_ops
->cache_page(vma
, page
);
1717 static void smp_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
1719 struct mm_struct
*mm
= vma
->vm_mm
;
1721 if (mm
->context
!= NO_CONTEXT
) {
1723 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1724 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1725 if (!cpumask_empty(&cpu_mask
))
1726 xc2((smpfunc_t
) local_ops
->tlb_page
,
1727 (unsigned long) vma
, page
);
1728 local_ops
->tlb_page(vma
, page
);
1732 static void smp_flush_page_to_ram(unsigned long page
)
1734 /* Current theory is that those who call this are the one's
1735 * who have just dirtied their cache with the pages contents
1736 * in kernel space, therefore we only run this on local cpu.
1738 * XXX This experiment failed, research further... -DaveM
1741 xc1((smpfunc_t
) local_ops
->page_to_ram
, page
);
1743 local_ops
->page_to_ram(page
);
1746 static void smp_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
)
1749 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1750 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1751 if (!cpumask_empty(&cpu_mask
))
1752 xc2((smpfunc_t
) local_ops
->sig_insns
,
1753 (unsigned long) mm
, insn_addr
);
1754 local_ops
->sig_insns(mm
, insn_addr
);
1757 static struct sparc32_cachetlb_ops smp_cachetlb_ops
= {
1758 .cache_all
= smp_flush_cache_all
,
1759 .cache_mm
= smp_flush_cache_mm
,
1760 .cache_page
= smp_flush_cache_page
,
1761 .cache_range
= smp_flush_cache_range
,
1762 .tlb_all
= smp_flush_tlb_all
,
1763 .tlb_mm
= smp_flush_tlb_mm
,
1764 .tlb_page
= smp_flush_tlb_page
,
1765 .tlb_range
= smp_flush_tlb_range
,
1766 .page_to_ram
= smp_flush_page_to_ram
,
1767 .sig_insns
= smp_flush_sig_insns
,
1768 .page_for_dma
= smp_flush_page_for_dma
,
1772 /* Load up routines and constants for sun4m and sun4d mmu */
1773 void __init
load_mmu(void)
1779 /* El switcheroo... */
1780 local_ops
= sparc32_cachetlb_ops
;
1782 if (sparc_cpu_model
== sun4d
|| sparc_cpu_model
== sparc_leon
) {
1783 smp_cachetlb_ops
.tlb_all
= local_ops
->tlb_all
;
1784 smp_cachetlb_ops
.tlb_mm
= local_ops
->tlb_mm
;
1785 smp_cachetlb_ops
.tlb_range
= local_ops
->tlb_range
;
1786 smp_cachetlb_ops
.tlb_page
= local_ops
->tlb_page
;
1789 if (poke_srmmu
== poke_viking
) {
1790 /* Avoid unnecessary cross calls. */
1791 smp_cachetlb_ops
.cache_all
= local_ops
->cache_all
;
1792 smp_cachetlb_ops
.cache_mm
= local_ops
->cache_mm
;
1793 smp_cachetlb_ops
.cache_range
= local_ops
->cache_range
;
1794 smp_cachetlb_ops
.cache_page
= local_ops
->cache_page
;
1796 smp_cachetlb_ops
.page_to_ram
= local_ops
->page_to_ram
;
1797 smp_cachetlb_ops
.sig_insns
= local_ops
->sig_insns
;
1798 smp_cachetlb_ops
.page_for_dma
= local_ops
->page_for_dma
;
1801 /* It really is const after this point. */
1802 sparc32_cachetlb_ops
= (const struct sparc32_cachetlb_ops
*)
1806 if (sparc_cpu_model
== sun4d
)
1811 if (sparc_cpu_model
== sun4d
)
1813 else if (sparc_cpu_model
== sparc_leon
)