1 // SPDX-License-Identifier: GPL-2.0
3 * Implement CPU time clocks for the POSIX clock interface.
6 #include <linux/sched/signal.h>
7 #include <linux/sched/cputime.h>
8 #include <linux/posix-timers.h>
9 #include <linux/errno.h>
10 #include <linux/math64.h>
11 #include <linux/uaccess.h>
12 #include <linux/kernel_stat.h>
13 #include <trace/events/timer.h>
14 #include <linux/tick.h>
15 #include <linux/workqueue.h>
16 #include <linux/compat.h>
18 #include "posix-timers.h"
20 static void posix_cpu_timer_rearm(struct k_itimer
*timer
);
23 * Called after updating RLIMIT_CPU to run cpu timer and update
24 * tsk->signal->cputime_expires expiration cache if necessary. Needs
25 * siglock protection since other code may update expiration cache as
28 void update_rlimit_cpu(struct task_struct
*task
, unsigned long rlim_new
)
30 u64 nsecs
= rlim_new
* NSEC_PER_SEC
;
32 spin_lock_irq(&task
->sighand
->siglock
);
33 set_process_cpu_timer(task
, CPUCLOCK_PROF
, &nsecs
, NULL
);
34 spin_unlock_irq(&task
->sighand
->siglock
);
37 static int check_clock(const clockid_t which_clock
)
40 struct task_struct
*p
;
41 const pid_t pid
= CPUCLOCK_PID(which_clock
);
43 if (CPUCLOCK_WHICH(which_clock
) >= CPUCLOCK_MAX
)
50 p
= find_task_by_vpid(pid
);
51 if (!p
|| !(CPUCLOCK_PERTHREAD(which_clock
) ?
52 same_thread_group(p
, current
) : has_group_leader_pid(p
))) {
61 * Update expiry time from increment, and increase overrun count,
62 * given the current clock sample.
64 static void bump_cpu_timer(struct k_itimer
*timer
, u64 now
)
69 if (timer
->it
.cpu
.incr
== 0)
72 if (now
< timer
->it
.cpu
.expires
)
75 incr
= timer
->it
.cpu
.incr
;
76 delta
= now
+ incr
- timer
->it
.cpu
.expires
;
78 /* Don't use (incr*2 < delta), incr*2 might overflow. */
79 for (i
= 0; incr
< delta
- incr
; i
++)
82 for (; i
>= 0; incr
>>= 1, i
--) {
86 timer
->it
.cpu
.expires
+= incr
;
87 timer
->it_overrun
+= 1 << i
;
93 * task_cputime_zero - Check a task_cputime struct for all zero fields.
95 * @cputime: The struct to compare.
97 * Checks @cputime to see if all fields are zero. Returns true if all fields
98 * are zero, false if any field is nonzero.
100 static inline int task_cputime_zero(const struct task_cputime
*cputime
)
102 if (!cputime
->utime
&& !cputime
->stime
&& !cputime
->sum_exec_runtime
)
107 static inline u64
prof_ticks(struct task_struct
*p
)
111 task_cputime(p
, &utime
, &stime
);
113 return utime
+ stime
;
115 static inline u64
virt_ticks(struct task_struct
*p
)
119 task_cputime(p
, &utime
, &stime
);
125 posix_cpu_clock_getres(const clockid_t which_clock
, struct timespec64
*tp
)
127 int error
= check_clock(which_clock
);
130 tp
->tv_nsec
= ((NSEC_PER_SEC
+ HZ
- 1) / HZ
);
131 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
133 * If sched_clock is using a cycle counter, we
134 * don't have any idea of its true resolution
135 * exported, but it is much more than 1s/HZ.
144 posix_cpu_clock_set(const clockid_t which_clock
, const struct timespec64
*tp
)
147 * You can never reset a CPU clock, but we check for other errors
148 * in the call before failing with EPERM.
150 int error
= check_clock(which_clock
);
159 * Sample a per-thread clock for the given task.
161 static int cpu_clock_sample(const clockid_t which_clock
,
162 struct task_struct
*p
, u64
*sample
)
164 switch (CPUCLOCK_WHICH(which_clock
)) {
168 *sample
= prof_ticks(p
);
171 *sample
= virt_ticks(p
);
174 *sample
= task_sched_runtime(p
);
181 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
182 * to avoid race conditions with concurrent updates to cputime.
184 static inline void __update_gt_cputime(atomic64_t
*cputime
, u64 sum_cputime
)
188 curr_cputime
= atomic64_read(cputime
);
189 if (sum_cputime
> curr_cputime
) {
190 if (atomic64_cmpxchg(cputime
, curr_cputime
, sum_cputime
) != curr_cputime
)
195 static void update_gt_cputime(struct task_cputime_atomic
*cputime_atomic
, struct task_cputime
*sum
)
197 __update_gt_cputime(&cputime_atomic
->utime
, sum
->utime
);
198 __update_gt_cputime(&cputime_atomic
->stime
, sum
->stime
);
199 __update_gt_cputime(&cputime_atomic
->sum_exec_runtime
, sum
->sum_exec_runtime
);
202 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
203 static inline void sample_cputime_atomic(struct task_cputime
*times
,
204 struct task_cputime_atomic
*atomic_times
)
206 times
->utime
= atomic64_read(&atomic_times
->utime
);
207 times
->stime
= atomic64_read(&atomic_times
->stime
);
208 times
->sum_exec_runtime
= atomic64_read(&atomic_times
->sum_exec_runtime
);
211 void thread_group_cputimer(struct task_struct
*tsk
, struct task_cputime
*times
)
213 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
214 struct task_cputime sum
;
216 /* Check if cputimer isn't running. This is accessed without locking. */
217 if (!READ_ONCE(cputimer
->running
)) {
219 * The POSIX timer interface allows for absolute time expiry
220 * values through the TIMER_ABSTIME flag, therefore we have
221 * to synchronize the timer to the clock every time we start it.
223 thread_group_cputime(tsk
, &sum
);
224 update_gt_cputime(&cputimer
->cputime_atomic
, &sum
);
227 * We're setting cputimer->running without a lock. Ensure
228 * this only gets written to in one operation. We set
229 * running after update_gt_cputime() as a small optimization,
230 * but barriers are not required because update_gt_cputime()
231 * can handle concurrent updates.
233 WRITE_ONCE(cputimer
->running
, true);
235 sample_cputime_atomic(times
, &cputimer
->cputime_atomic
);
239 * Sample a process (thread group) clock for the given group_leader task.
240 * Must be called with task sighand lock held for safe while_each_thread()
243 static int cpu_clock_sample_group(const clockid_t which_clock
,
244 struct task_struct
*p
,
247 struct task_cputime cputime
;
249 switch (CPUCLOCK_WHICH(which_clock
)) {
253 thread_group_cputime(p
, &cputime
);
254 *sample
= cputime
.utime
+ cputime
.stime
;
257 thread_group_cputime(p
, &cputime
);
258 *sample
= cputime
.utime
;
261 thread_group_cputime(p
, &cputime
);
262 *sample
= cputime
.sum_exec_runtime
;
268 static int posix_cpu_clock_get_task(struct task_struct
*tsk
,
269 const clockid_t which_clock
,
270 struct timespec64
*tp
)
275 if (CPUCLOCK_PERTHREAD(which_clock
)) {
276 if (same_thread_group(tsk
, current
))
277 err
= cpu_clock_sample(which_clock
, tsk
, &rtn
);
279 if (tsk
== current
|| thread_group_leader(tsk
))
280 err
= cpu_clock_sample_group(which_clock
, tsk
, &rtn
);
284 *tp
= ns_to_timespec64(rtn
);
290 static int posix_cpu_clock_get(const clockid_t which_clock
, struct timespec64
*tp
)
292 const pid_t pid
= CPUCLOCK_PID(which_clock
);
297 * Special case constant value for our own clocks.
298 * We don't have to do any lookup to find ourselves.
300 err
= posix_cpu_clock_get_task(current
, which_clock
, tp
);
303 * Find the given PID, and validate that the caller
304 * should be able to see it.
306 struct task_struct
*p
;
308 p
= find_task_by_vpid(pid
);
310 err
= posix_cpu_clock_get_task(p
, which_clock
, tp
);
318 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
319 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
320 * new timer already all-zeros initialized.
322 static int posix_cpu_timer_create(struct k_itimer
*new_timer
)
325 const pid_t pid
= CPUCLOCK_PID(new_timer
->it_clock
);
326 struct task_struct
*p
;
328 if (CPUCLOCK_WHICH(new_timer
->it_clock
) >= CPUCLOCK_MAX
)
331 new_timer
->kclock
= &clock_posix_cpu
;
333 INIT_LIST_HEAD(&new_timer
->it
.cpu
.entry
);
336 if (CPUCLOCK_PERTHREAD(new_timer
->it_clock
)) {
340 p
= find_task_by_vpid(pid
);
341 if (p
&& !same_thread_group(p
, current
))
346 p
= current
->group_leader
;
348 p
= find_task_by_vpid(pid
);
349 if (p
&& !has_group_leader_pid(p
))
353 new_timer
->it
.cpu
.task
= p
;
365 * Clean up a CPU-clock timer that is about to be destroyed.
366 * This is called from timer deletion with the timer already locked.
367 * If we return TIMER_RETRY, it's necessary to release the timer's lock
368 * and try again. (This happens when the timer is in the middle of firing.)
370 static int posix_cpu_timer_del(struct k_itimer
*timer
)
374 struct sighand_struct
*sighand
;
375 struct task_struct
*p
= timer
->it
.cpu
.task
;
377 WARN_ON_ONCE(p
== NULL
);
380 * Protect against sighand release/switch in exit/exec and process/
381 * thread timer list entry concurrent read/writes.
383 sighand
= lock_task_sighand(p
, &flags
);
384 if (unlikely(sighand
== NULL
)) {
386 * We raced with the reaping of the task.
387 * The deletion should have cleared us off the list.
389 WARN_ON_ONCE(!list_empty(&timer
->it
.cpu
.entry
));
391 if (timer
->it
.cpu
.firing
)
394 list_del(&timer
->it
.cpu
.entry
);
396 unlock_task_sighand(p
, &flags
);
405 static void cleanup_timers_list(struct list_head
*head
)
407 struct cpu_timer_list
*timer
, *next
;
409 list_for_each_entry_safe(timer
, next
, head
, entry
)
410 list_del_init(&timer
->entry
);
414 * Clean out CPU timers still ticking when a thread exited. The task
415 * pointer is cleared, and the expiry time is replaced with the residual
416 * time for later timer_gettime calls to return.
417 * This must be called with the siglock held.
419 static void cleanup_timers(struct list_head
*head
)
421 cleanup_timers_list(head
);
422 cleanup_timers_list(++head
);
423 cleanup_timers_list(++head
);
427 * These are both called with the siglock held, when the current thread
428 * is being reaped. When the final (leader) thread in the group is reaped,
429 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
431 void posix_cpu_timers_exit(struct task_struct
*tsk
)
433 cleanup_timers(tsk
->cpu_timers
);
435 void posix_cpu_timers_exit_group(struct task_struct
*tsk
)
437 cleanup_timers(tsk
->signal
->cpu_timers
);
440 static inline int expires_gt(u64 expires
, u64 new_exp
)
442 return expires
== 0 || expires
> new_exp
;
446 * Insert the timer on the appropriate list before any timers that
447 * expire later. This must be called with the sighand lock held.
449 static void arm_timer(struct k_itimer
*timer
)
451 struct task_struct
*p
= timer
->it
.cpu
.task
;
452 struct list_head
*head
, *listpos
;
453 struct task_cputime
*cputime_expires
;
454 struct cpu_timer_list
*const nt
= &timer
->it
.cpu
;
455 struct cpu_timer_list
*next
;
457 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
458 head
= p
->cpu_timers
;
459 cputime_expires
= &p
->cputime_expires
;
461 head
= p
->signal
->cpu_timers
;
462 cputime_expires
= &p
->signal
->cputime_expires
;
464 head
+= CPUCLOCK_WHICH(timer
->it_clock
);
467 list_for_each_entry(next
, head
, entry
) {
468 if (nt
->expires
< next
->expires
)
470 listpos
= &next
->entry
;
472 list_add(&nt
->entry
, listpos
);
474 if (listpos
== head
) {
475 u64 exp
= nt
->expires
;
478 * We are the new earliest-expiring POSIX 1.b timer, hence
479 * need to update expiration cache. Take into account that
480 * for process timers we share expiration cache with itimers
481 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
484 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
486 if (expires_gt(cputime_expires
->prof_exp
, exp
))
487 cputime_expires
->prof_exp
= exp
;
490 if (expires_gt(cputime_expires
->virt_exp
, exp
))
491 cputime_expires
->virt_exp
= exp
;
494 if (expires_gt(cputime_expires
->sched_exp
, exp
))
495 cputime_expires
->sched_exp
= exp
;
498 if (CPUCLOCK_PERTHREAD(timer
->it_clock
))
499 tick_dep_set_task(p
, TICK_DEP_BIT_POSIX_TIMER
);
501 tick_dep_set_signal(p
->signal
, TICK_DEP_BIT_POSIX_TIMER
);
506 * The timer is locked, fire it and arrange for its reload.
508 static void cpu_timer_fire(struct k_itimer
*timer
)
510 if ((timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
512 * User don't want any signal.
514 timer
->it
.cpu
.expires
= 0;
515 } else if (unlikely(timer
->sigq
== NULL
)) {
517 * This a special case for clock_nanosleep,
518 * not a normal timer from sys_timer_create.
520 wake_up_process(timer
->it_process
);
521 timer
->it
.cpu
.expires
= 0;
522 } else if (timer
->it
.cpu
.incr
== 0) {
524 * One-shot timer. Clear it as soon as it's fired.
526 posix_timer_event(timer
, 0);
527 timer
->it
.cpu
.expires
= 0;
528 } else if (posix_timer_event(timer
, ++timer
->it_requeue_pending
)) {
530 * The signal did not get queued because the signal
531 * was ignored, so we won't get any callback to
532 * reload the timer. But we need to keep it
533 * ticking in case the signal is deliverable next time.
535 posix_cpu_timer_rearm(timer
);
536 ++timer
->it_requeue_pending
;
541 * Sample a process (thread group) timer for the given group_leader task.
542 * Must be called with task sighand lock held for safe while_each_thread()
545 static int cpu_timer_sample_group(const clockid_t which_clock
,
546 struct task_struct
*p
, u64
*sample
)
548 struct task_cputime cputime
;
550 thread_group_cputimer(p
, &cputime
);
551 switch (CPUCLOCK_WHICH(which_clock
)) {
555 *sample
= cputime
.utime
+ cputime
.stime
;
558 *sample
= cputime
.utime
;
561 *sample
= cputime
.sum_exec_runtime
;
568 * Guts of sys_timer_settime for CPU timers.
569 * This is called with the timer locked and interrupts disabled.
570 * If we return TIMER_RETRY, it's necessary to release the timer's lock
571 * and try again. (This happens when the timer is in the middle of firing.)
573 static int posix_cpu_timer_set(struct k_itimer
*timer
, int timer_flags
,
574 struct itimerspec64
*new, struct itimerspec64
*old
)
577 struct sighand_struct
*sighand
;
578 struct task_struct
*p
= timer
->it
.cpu
.task
;
579 u64 old_expires
, new_expires
, old_incr
, val
;
582 WARN_ON_ONCE(p
== NULL
);
585 * Use the to_ktime conversion because that clamps the maximum
586 * value to KTIME_MAX and avoid multiplication overflows.
588 new_expires
= ktime_to_ns(timespec64_to_ktime(new->it_value
));
591 * Protect against sighand release/switch in exit/exec and p->cpu_timers
592 * and p->signal->cpu_timers read/write in arm_timer()
594 sighand
= lock_task_sighand(p
, &flags
);
596 * If p has just been reaped, we can no
597 * longer get any information about it at all.
599 if (unlikely(sighand
== NULL
)) {
604 * Disarm any old timer after extracting its expiry time.
606 lockdep_assert_irqs_disabled();
609 old_incr
= timer
->it
.cpu
.incr
;
610 old_expires
= timer
->it
.cpu
.expires
;
611 if (unlikely(timer
->it
.cpu
.firing
)) {
612 timer
->it
.cpu
.firing
= -1;
615 list_del_init(&timer
->it
.cpu
.entry
);
618 * We need to sample the current value to convert the new
619 * value from to relative and absolute, and to convert the
620 * old value from absolute to relative. To set a process
621 * timer, we need a sample to balance the thread expiry
622 * times (in arm_timer). With an absolute time, we must
623 * check if it's already passed. In short, we need a sample.
625 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
626 cpu_clock_sample(timer
->it_clock
, p
, &val
);
628 cpu_timer_sample_group(timer
->it_clock
, p
, &val
);
632 if (old_expires
== 0) {
633 old
->it_value
.tv_sec
= 0;
634 old
->it_value
.tv_nsec
= 0;
637 * Update the timer in case it has
638 * overrun already. If it has,
639 * we'll report it as having overrun
640 * and with the next reloaded timer
641 * already ticking, though we are
642 * swallowing that pending
643 * notification here to install the
646 bump_cpu_timer(timer
, val
);
647 if (val
< timer
->it
.cpu
.expires
) {
648 old_expires
= timer
->it
.cpu
.expires
- val
;
649 old
->it_value
= ns_to_timespec64(old_expires
);
651 old
->it_value
.tv_nsec
= 1;
652 old
->it_value
.tv_sec
= 0;
659 * We are colliding with the timer actually firing.
660 * Punt after filling in the timer's old value, and
661 * disable this firing since we are already reporting
662 * it as an overrun (thanks to bump_cpu_timer above).
664 unlock_task_sighand(p
, &flags
);
668 if (new_expires
!= 0 && !(timer_flags
& TIMER_ABSTIME
)) {
673 * Install the new expiry time (or zero).
674 * For a timer with no notification action, we don't actually
675 * arm the timer (we'll just fake it for timer_gettime).
677 timer
->it
.cpu
.expires
= new_expires
;
678 if (new_expires
!= 0 && val
< new_expires
) {
682 unlock_task_sighand(p
, &flags
);
684 * Install the new reload setting, and
685 * set up the signal and overrun bookkeeping.
687 timer
->it
.cpu
.incr
= timespec64_to_ns(&new->it_interval
);
690 * This acts as a modification timestamp for the timer,
691 * so any automatic reload attempt will punt on seeing
692 * that we have reset the timer manually.
694 timer
->it_requeue_pending
= (timer
->it_requeue_pending
+ 2) &
696 timer
->it_overrun_last
= 0;
697 timer
->it_overrun
= -1;
699 if (new_expires
!= 0 && !(val
< new_expires
)) {
701 * The designated time already passed, so we notify
702 * immediately, even if the thread never runs to
703 * accumulate more time on this clock.
705 cpu_timer_fire(timer
);
711 old
->it_interval
= ns_to_timespec64(old_incr
);
716 static void posix_cpu_timer_get(struct k_itimer
*timer
, struct itimerspec64
*itp
)
719 struct task_struct
*p
= timer
->it
.cpu
.task
;
721 WARN_ON_ONCE(p
== NULL
);
724 * Easy part: convert the reload time.
726 itp
->it_interval
= ns_to_timespec64(timer
->it
.cpu
.incr
);
728 if (!timer
->it
.cpu
.expires
)
732 * Sample the clock to take the difference with the expiry time.
734 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
735 cpu_clock_sample(timer
->it_clock
, p
, &now
);
737 struct sighand_struct
*sighand
;
741 * Protect against sighand release/switch in exit/exec and
742 * also make timer sampling safe if it ends up calling
743 * thread_group_cputime().
745 sighand
= lock_task_sighand(p
, &flags
);
746 if (unlikely(sighand
== NULL
)) {
748 * The process has been reaped.
749 * We can't even collect a sample any more.
750 * Call the timer disarmed, nothing else to do.
752 timer
->it
.cpu
.expires
= 0;
755 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
756 unlock_task_sighand(p
, &flags
);
760 if (now
< timer
->it
.cpu
.expires
) {
761 itp
->it_value
= ns_to_timespec64(timer
->it
.cpu
.expires
- now
);
764 * The timer should have expired already, but the firing
765 * hasn't taken place yet. Say it's just about to expire.
767 itp
->it_value
.tv_nsec
= 1;
768 itp
->it_value
.tv_sec
= 0;
772 static unsigned long long
773 check_timers_list(struct list_head
*timers
,
774 struct list_head
*firing
,
775 unsigned long long curr
)
779 while (!list_empty(timers
)) {
780 struct cpu_timer_list
*t
;
782 t
= list_first_entry(timers
, struct cpu_timer_list
, entry
);
784 if (!--maxfire
|| curr
< t
->expires
)
788 list_move_tail(&t
->entry
, firing
);
795 * Check for any per-thread CPU timers that have fired and move them off
796 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
797 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
799 static void check_thread_timers(struct task_struct
*tsk
,
800 struct list_head
*firing
)
802 struct list_head
*timers
= tsk
->cpu_timers
;
803 struct task_cputime
*tsk_expires
= &tsk
->cputime_expires
;
808 * If cputime_expires is zero, then there are no active
809 * per thread CPU timers.
811 if (task_cputime_zero(&tsk
->cputime_expires
))
814 expires
= check_timers_list(timers
, firing
, prof_ticks(tsk
));
815 tsk_expires
->prof_exp
= expires
;
817 expires
= check_timers_list(++timers
, firing
, virt_ticks(tsk
));
818 tsk_expires
->virt_exp
= expires
;
820 tsk_expires
->sched_exp
= check_timers_list(++timers
, firing
,
821 tsk
->se
.sum_exec_runtime
);
824 * Check for the special case thread timers.
826 soft
= task_rlimit(tsk
, RLIMIT_RTTIME
);
827 if (soft
!= RLIM_INFINITY
) {
828 unsigned long hard
= task_rlimit_max(tsk
, RLIMIT_RTTIME
);
830 if (hard
!= RLIM_INFINITY
&&
831 tsk
->rt
.timeout
> DIV_ROUND_UP(hard
, USEC_PER_SEC
/HZ
)) {
833 * At the hard limit, we just die.
834 * No need to calculate anything else now.
836 if (print_fatal_signals
) {
837 pr_info("CPU Watchdog Timeout (hard): %s[%d]\n",
838 tsk
->comm
, task_pid_nr(tsk
));
840 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
843 if (tsk
->rt
.timeout
> DIV_ROUND_UP(soft
, USEC_PER_SEC
/HZ
)) {
845 * At the soft limit, send a SIGXCPU every second.
848 soft
+= USEC_PER_SEC
;
849 tsk
->signal
->rlim
[RLIMIT_RTTIME
].rlim_cur
=
852 if (print_fatal_signals
) {
853 pr_info("RT Watchdog Timeout (soft): %s[%d]\n",
854 tsk
->comm
, task_pid_nr(tsk
));
856 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
859 if (task_cputime_zero(tsk_expires
))
860 tick_dep_clear_task(tsk
, TICK_DEP_BIT_POSIX_TIMER
);
863 static inline void stop_process_timers(struct signal_struct
*sig
)
865 struct thread_group_cputimer
*cputimer
= &sig
->cputimer
;
867 /* Turn off cputimer->running. This is done without locking. */
868 WRITE_ONCE(cputimer
->running
, false);
869 tick_dep_clear_signal(sig
, TICK_DEP_BIT_POSIX_TIMER
);
872 static void check_cpu_itimer(struct task_struct
*tsk
, struct cpu_itimer
*it
,
873 u64
*expires
, u64 cur_time
, int signo
)
878 if (cur_time
>= it
->expires
) {
880 it
->expires
+= it
->incr
;
884 trace_itimer_expire(signo
== SIGPROF
?
885 ITIMER_PROF
: ITIMER_VIRTUAL
,
886 tsk
->signal
->leader_pid
, cur_time
);
887 __group_send_sig_info(signo
, SEND_SIG_PRIV
, tsk
);
890 if (it
->expires
&& (!*expires
|| it
->expires
< *expires
))
891 *expires
= it
->expires
;
895 * Check for any per-thread CPU timers that have fired and move them
896 * off the tsk->*_timers list onto the firing list. Per-thread timers
897 * have already been taken off.
899 static void check_process_timers(struct task_struct
*tsk
,
900 struct list_head
*firing
)
902 struct signal_struct
*const sig
= tsk
->signal
;
903 u64 utime
, ptime
, virt_expires
, prof_expires
;
904 u64 sum_sched_runtime
, sched_expires
;
905 struct list_head
*timers
= sig
->cpu_timers
;
906 struct task_cputime cputime
;
910 * If cputimer is not running, then there are no active
911 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
913 if (!READ_ONCE(tsk
->signal
->cputimer
.running
))
917 * Signify that a thread is checking for process timers.
918 * Write access to this field is protected by the sighand lock.
920 sig
->cputimer
.checking_timer
= true;
923 * Collect the current process totals.
925 thread_group_cputimer(tsk
, &cputime
);
926 utime
= cputime
.utime
;
927 ptime
= utime
+ cputime
.stime
;
928 sum_sched_runtime
= cputime
.sum_exec_runtime
;
930 prof_expires
= check_timers_list(timers
, firing
, ptime
);
931 virt_expires
= check_timers_list(++timers
, firing
, utime
);
932 sched_expires
= check_timers_list(++timers
, firing
, sum_sched_runtime
);
935 * Check for the special case process timers.
937 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_PROF
], &prof_expires
, ptime
,
939 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_VIRT
], &virt_expires
, utime
,
941 soft
= task_rlimit(tsk
, RLIMIT_CPU
);
942 if (soft
!= RLIM_INFINITY
) {
943 unsigned long psecs
= div_u64(ptime
, NSEC_PER_SEC
);
944 unsigned long hard
= task_rlimit_max(tsk
, RLIMIT_CPU
);
948 * At the hard limit, we just die.
949 * No need to calculate anything else now.
951 if (print_fatal_signals
) {
952 pr_info("RT Watchdog Timeout (hard): %s[%d]\n",
953 tsk
->comm
, task_pid_nr(tsk
));
955 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
960 * At the soft limit, send a SIGXCPU every second.
962 if (print_fatal_signals
) {
963 pr_info("CPU Watchdog Timeout (soft): %s[%d]\n",
964 tsk
->comm
, task_pid_nr(tsk
));
966 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
969 sig
->rlim
[RLIMIT_CPU
].rlim_cur
= soft
;
972 x
= soft
* NSEC_PER_SEC
;
973 if (!prof_expires
|| x
< prof_expires
)
977 sig
->cputime_expires
.prof_exp
= prof_expires
;
978 sig
->cputime_expires
.virt_exp
= virt_expires
;
979 sig
->cputime_expires
.sched_exp
= sched_expires
;
980 if (task_cputime_zero(&sig
->cputime_expires
))
981 stop_process_timers(sig
);
983 sig
->cputimer
.checking_timer
= false;
987 * This is called from the signal code (via posixtimer_rearm)
988 * when the last timer signal was delivered and we have to reload the timer.
990 static void posix_cpu_timer_rearm(struct k_itimer
*timer
)
992 struct sighand_struct
*sighand
;
994 struct task_struct
*p
= timer
->it
.cpu
.task
;
997 WARN_ON_ONCE(p
== NULL
);
1000 * Fetch the current sample and update the timer's expiry time.
1002 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
1003 cpu_clock_sample(timer
->it_clock
, p
, &now
);
1004 bump_cpu_timer(timer
, now
);
1005 if (unlikely(p
->exit_state
))
1008 /* Protect timer list r/w in arm_timer() */
1009 sighand
= lock_task_sighand(p
, &flags
);
1014 * Protect arm_timer() and timer sampling in case of call to
1015 * thread_group_cputime().
1017 sighand
= lock_task_sighand(p
, &flags
);
1018 if (unlikely(sighand
== NULL
)) {
1020 * The process has been reaped.
1021 * We can't even collect a sample any more.
1023 timer
->it
.cpu
.expires
= 0;
1025 } else if (unlikely(p
->exit_state
) && thread_group_empty(p
)) {
1026 /* If the process is dying, no need to rearm */
1029 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
1030 bump_cpu_timer(timer
, now
);
1031 /* Leave the sighand locked for the call below. */
1035 * Now re-arm for the new expiry time.
1037 lockdep_assert_irqs_disabled();
1040 unlock_task_sighand(p
, &flags
);
1044 * task_cputime_expired - Compare two task_cputime entities.
1046 * @sample: The task_cputime structure to be checked for expiration.
1047 * @expires: Expiration times, against which @sample will be checked.
1049 * Checks @sample against @expires to see if any field of @sample has expired.
1050 * Returns true if any field of the former is greater than the corresponding
1051 * field of the latter if the latter field is set. Otherwise returns false.
1053 static inline int task_cputime_expired(const struct task_cputime
*sample
,
1054 const struct task_cputime
*expires
)
1056 if (expires
->utime
&& sample
->utime
>= expires
->utime
)
1058 if (expires
->stime
&& sample
->utime
+ sample
->stime
>= expires
->stime
)
1060 if (expires
->sum_exec_runtime
!= 0 &&
1061 sample
->sum_exec_runtime
>= expires
->sum_exec_runtime
)
1067 * fastpath_timer_check - POSIX CPU timers fast path.
1069 * @tsk: The task (thread) being checked.
1071 * Check the task and thread group timers. If both are zero (there are no
1072 * timers set) return false. Otherwise snapshot the task and thread group
1073 * timers and compare them with the corresponding expiration times. Return
1074 * true if a timer has expired, else return false.
1076 static inline int fastpath_timer_check(struct task_struct
*tsk
)
1078 struct signal_struct
*sig
;
1080 if (!task_cputime_zero(&tsk
->cputime_expires
)) {
1081 struct task_cputime task_sample
;
1083 task_cputime(tsk
, &task_sample
.utime
, &task_sample
.stime
);
1084 task_sample
.sum_exec_runtime
= tsk
->se
.sum_exec_runtime
;
1085 if (task_cputime_expired(&task_sample
, &tsk
->cputime_expires
))
1091 * Check if thread group timers expired when the cputimer is
1092 * running and no other thread in the group is already checking
1093 * for thread group cputimers. These fields are read without the
1094 * sighand lock. However, this is fine because this is meant to
1095 * be a fastpath heuristic to determine whether we should try to
1096 * acquire the sighand lock to check/handle timers.
1098 * In the worst case scenario, if 'running' or 'checking_timer' gets
1099 * set but the current thread doesn't see the change yet, we'll wait
1100 * until the next thread in the group gets a scheduler interrupt to
1101 * handle the timer. This isn't an issue in practice because these
1102 * types of delays with signals actually getting sent are expected.
1104 if (READ_ONCE(sig
->cputimer
.running
) &&
1105 !READ_ONCE(sig
->cputimer
.checking_timer
)) {
1106 struct task_cputime group_sample
;
1108 sample_cputime_atomic(&group_sample
, &sig
->cputimer
.cputime_atomic
);
1110 if (task_cputime_expired(&group_sample
, &sig
->cputime_expires
))
1118 * This is called from the timer interrupt handler. The irq handler has
1119 * already updated our counts. We need to check if any timers fire now.
1120 * Interrupts are disabled.
1122 void run_posix_cpu_timers(struct task_struct
*tsk
)
1125 struct k_itimer
*timer
, *next
;
1126 unsigned long flags
;
1128 lockdep_assert_irqs_disabled();
1131 * The fast path checks that there are no expired thread or thread
1132 * group timers. If that's so, just return.
1134 if (!fastpath_timer_check(tsk
))
1137 if (!lock_task_sighand(tsk
, &flags
))
1140 * Here we take off tsk->signal->cpu_timers[N] and
1141 * tsk->cpu_timers[N] all the timers that are firing, and
1142 * put them on the firing list.
1144 check_thread_timers(tsk
, &firing
);
1146 check_process_timers(tsk
, &firing
);
1149 * We must release these locks before taking any timer's lock.
1150 * There is a potential race with timer deletion here, as the
1151 * siglock now protects our private firing list. We have set
1152 * the firing flag in each timer, so that a deletion attempt
1153 * that gets the timer lock before we do will give it up and
1154 * spin until we've taken care of that timer below.
1156 unlock_task_sighand(tsk
, &flags
);
1159 * Now that all the timers on our list have the firing flag,
1160 * no one will touch their list entries but us. We'll take
1161 * each timer's lock before clearing its firing flag, so no
1162 * timer call will interfere.
1164 list_for_each_entry_safe(timer
, next
, &firing
, it
.cpu
.entry
) {
1167 spin_lock(&timer
->it_lock
);
1168 list_del_init(&timer
->it
.cpu
.entry
);
1169 cpu_firing
= timer
->it
.cpu
.firing
;
1170 timer
->it
.cpu
.firing
= 0;
1172 * The firing flag is -1 if we collided with a reset
1173 * of the timer, which already reported this
1174 * almost-firing as an overrun. So don't generate an event.
1176 if (likely(cpu_firing
>= 0))
1177 cpu_timer_fire(timer
);
1178 spin_unlock(&timer
->it_lock
);
1183 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1184 * The tsk->sighand->siglock must be held by the caller.
1186 void set_process_cpu_timer(struct task_struct
*tsk
, unsigned int clock_idx
,
1187 u64
*newval
, u64
*oldval
)
1191 WARN_ON_ONCE(clock_idx
== CPUCLOCK_SCHED
);
1192 cpu_timer_sample_group(clock_idx
, tsk
, &now
);
1196 * We are setting itimer. The *oldval is absolute and we update
1197 * it to be relative, *newval argument is relative and we update
1198 * it to be absolute.
1201 if (*oldval
<= now
) {
1202 /* Just about to fire. */
1203 *oldval
= TICK_NSEC
;
1215 * Update expiration cache if we are the earliest timer, or eventually
1216 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1218 switch (clock_idx
) {
1220 if (expires_gt(tsk
->signal
->cputime_expires
.prof_exp
, *newval
))
1221 tsk
->signal
->cputime_expires
.prof_exp
= *newval
;
1224 if (expires_gt(tsk
->signal
->cputime_expires
.virt_exp
, *newval
))
1225 tsk
->signal
->cputime_expires
.virt_exp
= *newval
;
1229 tick_dep_set_signal(tsk
->signal
, TICK_DEP_BIT_POSIX_TIMER
);
1232 static int do_cpu_nanosleep(const clockid_t which_clock
, int flags
,
1233 const struct timespec64
*rqtp
)
1235 struct itimerspec64 it
;
1236 struct k_itimer timer
;
1241 * Set up a temporary timer and then wait for it to go off.
1243 memset(&timer
, 0, sizeof timer
);
1244 spin_lock_init(&timer
.it_lock
);
1245 timer
.it_clock
= which_clock
;
1246 timer
.it_overrun
= -1;
1247 error
= posix_cpu_timer_create(&timer
);
1248 timer
.it_process
= current
;
1250 static struct itimerspec64 zero_it
;
1251 struct restart_block
*restart
;
1253 memset(&it
, 0, sizeof(it
));
1254 it
.it_value
= *rqtp
;
1256 spin_lock_irq(&timer
.it_lock
);
1257 error
= posix_cpu_timer_set(&timer
, flags
, &it
, NULL
);
1259 spin_unlock_irq(&timer
.it_lock
);
1263 while (!signal_pending(current
)) {
1264 if (timer
.it
.cpu
.expires
== 0) {
1266 * Our timer fired and was reset, below
1267 * deletion can not fail.
1269 posix_cpu_timer_del(&timer
);
1270 spin_unlock_irq(&timer
.it_lock
);
1275 * Block until cpu_timer_fire (or a signal) wakes us.
1277 __set_current_state(TASK_INTERRUPTIBLE
);
1278 spin_unlock_irq(&timer
.it_lock
);
1280 spin_lock_irq(&timer
.it_lock
);
1284 * We were interrupted by a signal.
1286 expires
= timer
.it
.cpu
.expires
;
1287 error
= posix_cpu_timer_set(&timer
, 0, &zero_it
, &it
);
1290 * Timer is now unarmed, deletion can not fail.
1292 posix_cpu_timer_del(&timer
);
1294 spin_unlock_irq(&timer
.it_lock
);
1296 while (error
== TIMER_RETRY
) {
1298 * We need to handle case when timer was or is in the
1299 * middle of firing. In other cases we already freed
1302 spin_lock_irq(&timer
.it_lock
);
1303 error
= posix_cpu_timer_del(&timer
);
1304 spin_unlock_irq(&timer
.it_lock
);
1307 if ((it
.it_value
.tv_sec
| it
.it_value
.tv_nsec
) == 0) {
1309 * It actually did fire already.
1314 error
= -ERESTART_RESTARTBLOCK
;
1316 * Report back to the user the time still remaining.
1318 restart
= ¤t
->restart_block
;
1319 restart
->nanosleep
.expires
= expires
;
1320 if (restart
->nanosleep
.type
!= TT_NONE
)
1321 error
= nanosleep_copyout(restart
, &it
.it_value
);
1327 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
);
1329 static int posix_cpu_nsleep(const clockid_t which_clock
, int flags
,
1330 const struct timespec64
*rqtp
)
1332 struct restart_block
*restart_block
= ¤t
->restart_block
;
1336 * Diagnose required errors first.
1338 if (CPUCLOCK_PERTHREAD(which_clock
) &&
1339 (CPUCLOCK_PID(which_clock
) == 0 ||
1340 CPUCLOCK_PID(which_clock
) == task_pid_vnr(current
)))
1343 error
= do_cpu_nanosleep(which_clock
, flags
, rqtp
);
1345 if (error
== -ERESTART_RESTARTBLOCK
) {
1347 if (flags
& TIMER_ABSTIME
)
1348 return -ERESTARTNOHAND
;
1350 restart_block
->fn
= posix_cpu_nsleep_restart
;
1351 restart_block
->nanosleep
.clockid
= which_clock
;
1356 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
)
1358 clockid_t which_clock
= restart_block
->nanosleep
.clockid
;
1359 struct timespec64 t
;
1361 t
= ns_to_timespec64(restart_block
->nanosleep
.expires
);
1363 return do_cpu_nanosleep(which_clock
, TIMER_ABSTIME
, &t
);
1366 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1367 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1369 static int process_cpu_clock_getres(const clockid_t which_clock
,
1370 struct timespec64
*tp
)
1372 return posix_cpu_clock_getres(PROCESS_CLOCK
, tp
);
1374 static int process_cpu_clock_get(const clockid_t which_clock
,
1375 struct timespec64
*tp
)
1377 return posix_cpu_clock_get(PROCESS_CLOCK
, tp
);
1379 static int process_cpu_timer_create(struct k_itimer
*timer
)
1381 timer
->it_clock
= PROCESS_CLOCK
;
1382 return posix_cpu_timer_create(timer
);
1384 static int process_cpu_nsleep(const clockid_t which_clock
, int flags
,
1385 const struct timespec64
*rqtp
)
1387 return posix_cpu_nsleep(PROCESS_CLOCK
, flags
, rqtp
);
1389 static int thread_cpu_clock_getres(const clockid_t which_clock
,
1390 struct timespec64
*tp
)
1392 return posix_cpu_clock_getres(THREAD_CLOCK
, tp
);
1394 static int thread_cpu_clock_get(const clockid_t which_clock
,
1395 struct timespec64
*tp
)
1397 return posix_cpu_clock_get(THREAD_CLOCK
, tp
);
1399 static int thread_cpu_timer_create(struct k_itimer
*timer
)
1401 timer
->it_clock
= THREAD_CLOCK
;
1402 return posix_cpu_timer_create(timer
);
1405 const struct k_clock clock_posix_cpu
= {
1406 .clock_getres
= posix_cpu_clock_getres
,
1407 .clock_set
= posix_cpu_clock_set
,
1408 .clock_get
= posix_cpu_clock_get
,
1409 .timer_create
= posix_cpu_timer_create
,
1410 .nsleep
= posix_cpu_nsleep
,
1411 .timer_set
= posix_cpu_timer_set
,
1412 .timer_del
= posix_cpu_timer_del
,
1413 .timer_get
= posix_cpu_timer_get
,
1414 .timer_rearm
= posix_cpu_timer_rearm
,
1417 const struct k_clock clock_process
= {
1418 .clock_getres
= process_cpu_clock_getres
,
1419 .clock_get
= process_cpu_clock_get
,
1420 .timer_create
= process_cpu_timer_create
,
1421 .nsleep
= process_cpu_nsleep
,
1424 const struct k_clock clock_thread
= {
1425 .clock_getres
= thread_cpu_clock_getres
,
1426 .clock_get
= thread_cpu_clock_get
,
1427 .timer_create
= thread_cpu_timer_create
,