3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
120 #include <net/sock.h>
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
126 #include <trace/events/kmem.h>
128 #include "internal.h"
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
142 #ifdef CONFIG_DEBUG_SLAB
145 #define FORCED_DEBUG 1
149 #define FORCED_DEBUG 0
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
161 * true if a page was allocated from pfmemalloc reserves for network-based
164 static bool pfmemalloc_active __read_mostly
;
169 * Bufctl's are used for linking objs within a slab
172 * This implementation relies on "struct page" for locating the cache &
173 * slab an object belongs to.
174 * This allows the bufctl structure to be small (one int), but limits
175 * the number of objects a slab (not a cache) can contain when off-slab
176 * bufctls are used. The limit is the size of the largest general cache
177 * that does not use off-slab slabs.
178 * For 32bit archs with 4 kB pages, is this 56.
179 * This is not serious, as it is only for large objects, when it is unwise
180 * to have too many per slab.
181 * Note: This limit can be raised by introducing a general cache whose size
182 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
185 typedef unsigned int kmem_bufctl_t
;
186 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
187 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
188 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
189 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
194 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
195 * arrange for kmem_freepages to be called via RCU. This is useful if
196 * we need to approach a kernel structure obliquely, from its address
197 * obtained without the usual locking. We can lock the structure to
198 * stabilize it and check it's still at the given address, only if we
199 * can be sure that the memory has not been meanwhile reused for some
200 * other kind of object (which our subsystem's lock might corrupt).
202 * rcu_read_lock before reading the address, then rcu_read_unlock after
203 * taking the spinlock within the structure expected at that address.
206 struct rcu_head head
;
207 struct kmem_cache
*cachep
;
214 * Manages the objs in a slab. Placed either at the beginning of mem allocated
215 * for a slab, or allocated from an general cache.
216 * Slabs are chained into three list: fully used, partial, fully free slabs.
221 struct list_head list
;
222 unsigned long colouroff
;
223 void *s_mem
; /* including colour offset */
224 unsigned int inuse
; /* num of objs active in slab */
226 unsigned short nodeid
;
228 struct slab_rcu __slab_cover_slab_rcu
;
236 * - LIFO ordering, to hand out cache-warm objects from _alloc
237 * - reduce the number of linked list operations
238 * - reduce spinlock operations
240 * The limit is stored in the per-cpu structure to reduce the data cache
247 unsigned int batchcount
;
248 unsigned int touched
;
251 * Must have this definition in here for the proper
252 * alignment of array_cache. Also simplifies accessing
255 * Entries should not be directly dereferenced as
256 * entries belonging to slabs marked pfmemalloc will
257 * have the lower bits set SLAB_OBJ_PFMEMALLOC
261 #define SLAB_OBJ_PFMEMALLOC 1
262 static inline bool is_obj_pfmemalloc(void *objp
)
264 return (unsigned long)objp
& SLAB_OBJ_PFMEMALLOC
;
267 static inline void set_obj_pfmemalloc(void **objp
)
269 *objp
= (void *)((unsigned long)*objp
| SLAB_OBJ_PFMEMALLOC
);
273 static inline void clear_obj_pfmemalloc(void **objp
)
275 *objp
= (void *)((unsigned long)*objp
& ~SLAB_OBJ_PFMEMALLOC
);
279 * bootstrap: The caches do not work without cpuarrays anymore, but the
280 * cpuarrays are allocated from the generic caches...
282 #define BOOT_CPUCACHE_ENTRIES 1
283 struct arraycache_init
{
284 struct array_cache cache
;
285 void *entries
[BOOT_CPUCACHE_ENTRIES
];
289 * The slab lists for all objects.
292 struct list_head slabs_partial
; /* partial list first, better asm code */
293 struct list_head slabs_full
;
294 struct list_head slabs_free
;
295 unsigned long free_objects
;
296 unsigned int free_limit
;
297 unsigned int colour_next
; /* Per-node cache coloring */
298 spinlock_t list_lock
;
299 struct array_cache
*shared
; /* shared per node */
300 struct array_cache
**alien
; /* on other nodes */
301 unsigned long next_reap
; /* updated without locking */
302 int free_touched
; /* updated without locking */
306 * Need this for bootstrapping a per node allocator.
308 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
309 static struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
310 #define CACHE_CACHE 0
311 #define SIZE_AC MAX_NUMNODES
312 #define SIZE_L3 (2 * MAX_NUMNODES)
314 static int drain_freelist(struct kmem_cache
*cache
,
315 struct kmem_list3
*l3
, int tofree
);
316 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
318 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
);
319 static void cache_reap(struct work_struct
*unused
);
322 * This function must be completely optimized away if a constant is passed to
323 * it. Mostly the same as what is in linux/slab.h except it returns an index.
325 static __always_inline
int index_of(const size_t size
)
327 extern void __bad_size(void);
329 if (__builtin_constant_p(size
)) {
337 #include <linux/kmalloc_sizes.h>
345 static int slab_early_init
= 1;
347 #define INDEX_AC index_of(sizeof(struct arraycache_init))
348 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
350 static void kmem_list3_init(struct kmem_list3
*parent
)
352 INIT_LIST_HEAD(&parent
->slabs_full
);
353 INIT_LIST_HEAD(&parent
->slabs_partial
);
354 INIT_LIST_HEAD(&parent
->slabs_free
);
355 parent
->shared
= NULL
;
356 parent
->alien
= NULL
;
357 parent
->colour_next
= 0;
358 spin_lock_init(&parent
->list_lock
);
359 parent
->free_objects
= 0;
360 parent
->free_touched
= 0;
363 #define MAKE_LIST(cachep, listp, slab, nodeid) \
365 INIT_LIST_HEAD(listp); \
366 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
369 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
371 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
373 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
376 #define CFLGS_OFF_SLAB (0x80000000UL)
377 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
379 #define BATCHREFILL_LIMIT 16
381 * Optimization question: fewer reaps means less probability for unnessary
382 * cpucache drain/refill cycles.
384 * OTOH the cpuarrays can contain lots of objects,
385 * which could lock up otherwise freeable slabs.
387 #define REAPTIMEOUT_CPUC (2*HZ)
388 #define REAPTIMEOUT_LIST3 (4*HZ)
391 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
392 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
393 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
394 #define STATS_INC_GROWN(x) ((x)->grown++)
395 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
396 #define STATS_SET_HIGH(x) \
398 if ((x)->num_active > (x)->high_mark) \
399 (x)->high_mark = (x)->num_active; \
401 #define STATS_INC_ERR(x) ((x)->errors++)
402 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
403 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
404 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
405 #define STATS_SET_FREEABLE(x, i) \
407 if ((x)->max_freeable < i) \
408 (x)->max_freeable = i; \
410 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
411 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
412 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
413 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
415 #define STATS_INC_ACTIVE(x) do { } while (0)
416 #define STATS_DEC_ACTIVE(x) do { } while (0)
417 #define STATS_INC_ALLOCED(x) do { } while (0)
418 #define STATS_INC_GROWN(x) do { } while (0)
419 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
420 #define STATS_SET_HIGH(x) do { } while (0)
421 #define STATS_INC_ERR(x) do { } while (0)
422 #define STATS_INC_NODEALLOCS(x) do { } while (0)
423 #define STATS_INC_NODEFREES(x) do { } while (0)
424 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
425 #define STATS_SET_FREEABLE(x, i) do { } while (0)
426 #define STATS_INC_ALLOCHIT(x) do { } while (0)
427 #define STATS_INC_ALLOCMISS(x) do { } while (0)
428 #define STATS_INC_FREEHIT(x) do { } while (0)
429 #define STATS_INC_FREEMISS(x) do { } while (0)
435 * memory layout of objects:
437 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
438 * the end of an object is aligned with the end of the real
439 * allocation. Catches writes behind the end of the allocation.
440 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
442 * cachep->obj_offset: The real object.
443 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
444 * cachep->size - 1* BYTES_PER_WORD: last caller address
445 * [BYTES_PER_WORD long]
447 static int obj_offset(struct kmem_cache
*cachep
)
449 return cachep
->obj_offset
;
452 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
454 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
455 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
456 sizeof(unsigned long long));
459 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
461 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
462 if (cachep
->flags
& SLAB_STORE_USER
)
463 return (unsigned long long *)(objp
+ cachep
->size
-
464 sizeof(unsigned long long) -
466 return (unsigned long long *) (objp
+ cachep
->size
-
467 sizeof(unsigned long long));
470 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
472 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
473 return (void **)(objp
+ cachep
->size
- BYTES_PER_WORD
);
478 #define obj_offset(x) 0
479 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
480 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
481 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
486 * Do not go above this order unless 0 objects fit into the slab or
487 * overridden on the command line.
489 #define SLAB_MAX_ORDER_HI 1
490 #define SLAB_MAX_ORDER_LO 0
491 static int slab_max_order
= SLAB_MAX_ORDER_LO
;
492 static bool slab_max_order_set __initdata
;
494 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
496 struct page
*page
= virt_to_head_page(obj
);
497 return page
->slab_cache
;
500 static inline struct slab
*virt_to_slab(const void *obj
)
502 struct page
*page
= virt_to_head_page(obj
);
504 VM_BUG_ON(!PageSlab(page
));
505 return page
->slab_page
;
508 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
511 return slab
->s_mem
+ cache
->size
* idx
;
515 * We want to avoid an expensive divide : (offset / cache->size)
516 * Using the fact that size is a constant for a particular cache,
517 * we can replace (offset / cache->size) by
518 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
520 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
521 const struct slab
*slab
, void *obj
)
523 u32 offset
= (obj
- slab
->s_mem
);
524 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
528 * These are the default caches for kmalloc. Custom caches can have other sizes.
530 struct cache_sizes malloc_sizes
[] = {
531 #define CACHE(x) { .cs_size = (x) },
532 #include <linux/kmalloc_sizes.h>
536 EXPORT_SYMBOL(malloc_sizes
);
538 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
544 static struct cache_names __initdata cache_names
[] = {
545 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
546 #include <linux/kmalloc_sizes.h>
551 static struct arraycache_init initarray_generic
=
552 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
554 /* internal cache of cache description objs */
555 static struct kmem_cache kmem_cache_boot
= {
557 .limit
= BOOT_CPUCACHE_ENTRIES
,
559 .size
= sizeof(struct kmem_cache
),
560 .name
= "kmem_cache",
563 #define BAD_ALIEN_MAGIC 0x01020304ul
565 #ifdef CONFIG_LOCKDEP
568 * Slab sometimes uses the kmalloc slabs to store the slab headers
569 * for other slabs "off slab".
570 * The locking for this is tricky in that it nests within the locks
571 * of all other slabs in a few places; to deal with this special
572 * locking we put on-slab caches into a separate lock-class.
574 * We set lock class for alien array caches which are up during init.
575 * The lock annotation will be lost if all cpus of a node goes down and
576 * then comes back up during hotplug
578 static struct lock_class_key on_slab_l3_key
;
579 static struct lock_class_key on_slab_alc_key
;
581 static struct lock_class_key debugobj_l3_key
;
582 static struct lock_class_key debugobj_alc_key
;
584 static void slab_set_lock_classes(struct kmem_cache
*cachep
,
585 struct lock_class_key
*l3_key
, struct lock_class_key
*alc_key
,
588 struct array_cache
**alc
;
589 struct kmem_list3
*l3
;
592 l3
= cachep
->nodelists
[q
];
596 lockdep_set_class(&l3
->list_lock
, l3_key
);
599 * FIXME: This check for BAD_ALIEN_MAGIC
600 * should go away when common slab code is taught to
601 * work even without alien caches.
602 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
603 * for alloc_alien_cache,
605 if (!alc
|| (unsigned long)alc
== BAD_ALIEN_MAGIC
)
609 lockdep_set_class(&alc
[r
]->lock
, alc_key
);
613 static void slab_set_debugobj_lock_classes_node(struct kmem_cache
*cachep
, int node
)
615 slab_set_lock_classes(cachep
, &debugobj_l3_key
, &debugobj_alc_key
, node
);
618 static void slab_set_debugobj_lock_classes(struct kmem_cache
*cachep
)
622 for_each_online_node(node
)
623 slab_set_debugobj_lock_classes_node(cachep
, node
);
626 static void init_node_lock_keys(int q
)
628 struct cache_sizes
*s
= malloc_sizes
;
633 for (s
= malloc_sizes
; s
->cs_size
!= ULONG_MAX
; s
++) {
634 struct kmem_list3
*l3
;
636 l3
= s
->cs_cachep
->nodelists
[q
];
637 if (!l3
|| OFF_SLAB(s
->cs_cachep
))
640 slab_set_lock_classes(s
->cs_cachep
, &on_slab_l3_key
,
641 &on_slab_alc_key
, q
);
645 static void on_slab_lock_classes_node(struct kmem_cache
*cachep
, int q
)
647 struct kmem_list3
*l3
;
648 l3
= cachep
->nodelists
[q
];
652 slab_set_lock_classes(cachep
, &on_slab_l3_key
,
653 &on_slab_alc_key
, q
);
656 static inline void on_slab_lock_classes(struct kmem_cache
*cachep
)
660 VM_BUG_ON(OFF_SLAB(cachep
));
662 on_slab_lock_classes_node(cachep
, node
);
665 static inline void init_lock_keys(void)
670 init_node_lock_keys(node
);
673 static void init_node_lock_keys(int q
)
677 static inline void init_lock_keys(void)
681 static inline void on_slab_lock_classes(struct kmem_cache
*cachep
)
685 static inline void on_slab_lock_classes_node(struct kmem_cache
*cachep
, int node
)
689 static void slab_set_debugobj_lock_classes_node(struct kmem_cache
*cachep
, int node
)
693 static void slab_set_debugobj_lock_classes(struct kmem_cache
*cachep
)
698 static DEFINE_PER_CPU(struct delayed_work
, slab_reap_work
);
700 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
702 return cachep
->array
[smp_processor_id()];
705 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
708 struct cache_sizes
*csizep
= malloc_sizes
;
711 /* This happens if someone tries to call
712 * kmem_cache_create(), or __kmalloc(), before
713 * the generic caches are initialized.
715 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
718 return ZERO_SIZE_PTR
;
720 while (size
> csizep
->cs_size
)
724 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
725 * has cs_{dma,}cachep==NULL. Thus no special case
726 * for large kmalloc calls required.
728 #ifdef CONFIG_ZONE_DMA
729 if (unlikely(gfpflags
& GFP_DMA
))
730 return csizep
->cs_dmacachep
;
732 return csizep
->cs_cachep
;
735 static struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
737 return __find_general_cachep(size
, gfpflags
);
740 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
742 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
746 * Calculate the number of objects and left-over bytes for a given buffer size.
748 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
749 size_t align
, int flags
, size_t *left_over
,
754 size_t slab_size
= PAGE_SIZE
<< gfporder
;
757 * The slab management structure can be either off the slab or
758 * on it. For the latter case, the memory allocated for a
762 * - One kmem_bufctl_t for each object
763 * - Padding to respect alignment of @align
764 * - @buffer_size bytes for each object
766 * If the slab management structure is off the slab, then the
767 * alignment will already be calculated into the size. Because
768 * the slabs are all pages aligned, the objects will be at the
769 * correct alignment when allocated.
771 if (flags
& CFLGS_OFF_SLAB
) {
773 nr_objs
= slab_size
/ buffer_size
;
775 if (nr_objs
> SLAB_LIMIT
)
776 nr_objs
= SLAB_LIMIT
;
779 * Ignore padding for the initial guess. The padding
780 * is at most @align-1 bytes, and @buffer_size is at
781 * least @align. In the worst case, this result will
782 * be one greater than the number of objects that fit
783 * into the memory allocation when taking the padding
786 nr_objs
= (slab_size
- sizeof(struct slab
)) /
787 (buffer_size
+ sizeof(kmem_bufctl_t
));
790 * This calculated number will be either the right
791 * amount, or one greater than what we want.
793 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
797 if (nr_objs
> SLAB_LIMIT
)
798 nr_objs
= SLAB_LIMIT
;
800 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
803 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
807 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
809 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
812 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
813 function
, cachep
->name
, msg
);
815 add_taint(TAINT_BAD_PAGE
);
820 * By default on NUMA we use alien caches to stage the freeing of
821 * objects allocated from other nodes. This causes massive memory
822 * inefficiencies when using fake NUMA setup to split memory into a
823 * large number of small nodes, so it can be disabled on the command
827 static int use_alien_caches __read_mostly
= 1;
828 static int __init
noaliencache_setup(char *s
)
830 use_alien_caches
= 0;
833 __setup("noaliencache", noaliencache_setup
);
835 static int __init
slab_max_order_setup(char *str
)
837 get_option(&str
, &slab_max_order
);
838 slab_max_order
= slab_max_order
< 0 ? 0 :
839 min(slab_max_order
, MAX_ORDER
- 1);
840 slab_max_order_set
= true;
844 __setup("slab_max_order=", slab_max_order_setup
);
848 * Special reaping functions for NUMA systems called from cache_reap().
849 * These take care of doing round robin flushing of alien caches (containing
850 * objects freed on different nodes from which they were allocated) and the
851 * flushing of remote pcps by calling drain_node_pages.
853 static DEFINE_PER_CPU(unsigned long, slab_reap_node
);
855 static void init_reap_node(int cpu
)
859 node
= next_node(cpu_to_mem(cpu
), node_online_map
);
860 if (node
== MAX_NUMNODES
)
861 node
= first_node(node_online_map
);
863 per_cpu(slab_reap_node
, cpu
) = node
;
866 static void next_reap_node(void)
868 int node
= __this_cpu_read(slab_reap_node
);
870 node
= next_node(node
, node_online_map
);
871 if (unlikely(node
>= MAX_NUMNODES
))
872 node
= first_node(node_online_map
);
873 __this_cpu_write(slab_reap_node
, node
);
877 #define init_reap_node(cpu) do { } while (0)
878 #define next_reap_node(void) do { } while (0)
882 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
883 * via the workqueue/eventd.
884 * Add the CPU number into the expiration time to minimize the possibility of
885 * the CPUs getting into lockstep and contending for the global cache chain
888 static void __cpuinit
start_cpu_timer(int cpu
)
890 struct delayed_work
*reap_work
= &per_cpu(slab_reap_work
, cpu
);
893 * When this gets called from do_initcalls via cpucache_init(),
894 * init_workqueues() has already run, so keventd will be setup
897 if (keventd_up() && reap_work
->work
.func
== NULL
) {
899 INIT_DEFERRABLE_WORK(reap_work
, cache_reap
);
900 schedule_delayed_work_on(cpu
, reap_work
,
901 __round_jiffies_relative(HZ
, cpu
));
905 static struct array_cache
*alloc_arraycache(int node
, int entries
,
906 int batchcount
, gfp_t gfp
)
908 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
909 struct array_cache
*nc
= NULL
;
911 nc
= kmalloc_node(memsize
, gfp
, node
);
913 * The array_cache structures contain pointers to free object.
914 * However, when such objects are allocated or transferred to another
915 * cache the pointers are not cleared and they could be counted as
916 * valid references during a kmemleak scan. Therefore, kmemleak must
917 * not scan such objects.
919 kmemleak_no_scan(nc
);
923 nc
->batchcount
= batchcount
;
925 spin_lock_init(&nc
->lock
);
930 static inline bool is_slab_pfmemalloc(struct slab
*slabp
)
932 struct page
*page
= virt_to_page(slabp
->s_mem
);
934 return PageSlabPfmemalloc(page
);
937 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
938 static void recheck_pfmemalloc_active(struct kmem_cache
*cachep
,
939 struct array_cache
*ac
)
941 struct kmem_list3
*l3
= cachep
->nodelists
[numa_mem_id()];
945 if (!pfmemalloc_active
)
948 spin_lock_irqsave(&l3
->list_lock
, flags
);
949 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
950 if (is_slab_pfmemalloc(slabp
))
953 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
954 if (is_slab_pfmemalloc(slabp
))
957 list_for_each_entry(slabp
, &l3
->slabs_free
, list
)
958 if (is_slab_pfmemalloc(slabp
))
961 pfmemalloc_active
= false;
963 spin_unlock_irqrestore(&l3
->list_lock
, flags
);
966 static void *__ac_get_obj(struct kmem_cache
*cachep
, struct array_cache
*ac
,
967 gfp_t flags
, bool force_refill
)
970 void *objp
= ac
->entry
[--ac
->avail
];
972 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
973 if (unlikely(is_obj_pfmemalloc(objp
))) {
974 struct kmem_list3
*l3
;
976 if (gfp_pfmemalloc_allowed(flags
)) {
977 clear_obj_pfmemalloc(&objp
);
981 /* The caller cannot use PFMEMALLOC objects, find another one */
982 for (i
= 0; i
< ac
->avail
; i
++) {
983 /* If a !PFMEMALLOC object is found, swap them */
984 if (!is_obj_pfmemalloc(ac
->entry
[i
])) {
986 ac
->entry
[i
] = ac
->entry
[ac
->avail
];
987 ac
->entry
[ac
->avail
] = objp
;
993 * If there are empty slabs on the slabs_free list and we are
994 * being forced to refill the cache, mark this one !pfmemalloc.
996 l3
= cachep
->nodelists
[numa_mem_id()];
997 if (!list_empty(&l3
->slabs_free
) && force_refill
) {
998 struct slab
*slabp
= virt_to_slab(objp
);
999 ClearPageSlabPfmemalloc(virt_to_head_page(slabp
->s_mem
));
1000 clear_obj_pfmemalloc(&objp
);
1001 recheck_pfmemalloc_active(cachep
, ac
);
1005 /* No !PFMEMALLOC objects available */
1013 static inline void *ac_get_obj(struct kmem_cache
*cachep
,
1014 struct array_cache
*ac
, gfp_t flags
, bool force_refill
)
1018 if (unlikely(sk_memalloc_socks()))
1019 objp
= __ac_get_obj(cachep
, ac
, flags
, force_refill
);
1021 objp
= ac
->entry
[--ac
->avail
];
1026 static void *__ac_put_obj(struct kmem_cache
*cachep
, struct array_cache
*ac
,
1029 if (unlikely(pfmemalloc_active
)) {
1030 /* Some pfmemalloc slabs exist, check if this is one */
1031 struct page
*page
= virt_to_head_page(objp
);
1032 if (PageSlabPfmemalloc(page
))
1033 set_obj_pfmemalloc(&objp
);
1039 static inline void ac_put_obj(struct kmem_cache
*cachep
, struct array_cache
*ac
,
1042 if (unlikely(sk_memalloc_socks()))
1043 objp
= __ac_put_obj(cachep
, ac
, objp
);
1045 ac
->entry
[ac
->avail
++] = objp
;
1049 * Transfer objects in one arraycache to another.
1050 * Locking must be handled by the caller.
1052 * Return the number of entries transferred.
1054 static int transfer_objects(struct array_cache
*to
,
1055 struct array_cache
*from
, unsigned int max
)
1057 /* Figure out how many entries to transfer */
1058 int nr
= min3(from
->avail
, max
, to
->limit
- to
->avail
);
1063 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
1064 sizeof(void *) *nr
);
1073 #define drain_alien_cache(cachep, alien) do { } while (0)
1074 #define reap_alien(cachep, l3) do { } while (0)
1076 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
1078 return (struct array_cache
**)BAD_ALIEN_MAGIC
;
1081 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
1085 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1090 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
1096 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
1097 gfp_t flags
, int nodeid
)
1102 #else /* CONFIG_NUMA */
1104 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
1105 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
1107 static struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
1109 struct array_cache
**ac_ptr
;
1110 int memsize
= sizeof(void *) * nr_node_ids
;
1115 ac_ptr
= kzalloc_node(memsize
, gfp
, node
);
1118 if (i
== node
|| !node_online(i
))
1120 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d, gfp
);
1122 for (i
--; i
>= 0; i
--)
1132 static void free_alien_cache(struct array_cache
**ac_ptr
)
1143 static void __drain_alien_cache(struct kmem_cache
*cachep
,
1144 struct array_cache
*ac
, int node
)
1146 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
1149 spin_lock(&rl3
->list_lock
);
1151 * Stuff objects into the remote nodes shared array first.
1152 * That way we could avoid the overhead of putting the objects
1153 * into the free lists and getting them back later.
1156 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
1158 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
1160 spin_unlock(&rl3
->list_lock
);
1165 * Called from cache_reap() to regularly drain alien caches round robin.
1167 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
1169 int node
= __this_cpu_read(slab_reap_node
);
1172 struct array_cache
*ac
= l3
->alien
[node
];
1174 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1175 __drain_alien_cache(cachep
, ac
, node
);
1176 spin_unlock_irq(&ac
->lock
);
1181 static void drain_alien_cache(struct kmem_cache
*cachep
,
1182 struct array_cache
**alien
)
1185 struct array_cache
*ac
;
1186 unsigned long flags
;
1188 for_each_online_node(i
) {
1191 spin_lock_irqsave(&ac
->lock
, flags
);
1192 __drain_alien_cache(cachep
, ac
, i
);
1193 spin_unlock_irqrestore(&ac
->lock
, flags
);
1198 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1200 struct slab
*slabp
= virt_to_slab(objp
);
1201 int nodeid
= slabp
->nodeid
;
1202 struct kmem_list3
*l3
;
1203 struct array_cache
*alien
= NULL
;
1206 node
= numa_mem_id();
1209 * Make sure we are not freeing a object from another node to the array
1210 * cache on this cpu.
1212 if (likely(slabp
->nodeid
== node
))
1215 l3
= cachep
->nodelists
[node
];
1216 STATS_INC_NODEFREES(cachep
);
1217 if (l3
->alien
&& l3
->alien
[nodeid
]) {
1218 alien
= l3
->alien
[nodeid
];
1219 spin_lock(&alien
->lock
);
1220 if (unlikely(alien
->avail
== alien
->limit
)) {
1221 STATS_INC_ACOVERFLOW(cachep
);
1222 __drain_alien_cache(cachep
, alien
, nodeid
);
1224 ac_put_obj(cachep
, alien
, objp
);
1225 spin_unlock(&alien
->lock
);
1227 spin_lock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1228 free_block(cachep
, &objp
, 1, nodeid
);
1229 spin_unlock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1236 * Allocates and initializes nodelists for a node on each slab cache, used for
1237 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1238 * will be allocated off-node since memory is not yet online for the new node.
1239 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1242 * Must hold slab_mutex.
1244 static int init_cache_nodelists_node(int node
)
1246 struct kmem_cache
*cachep
;
1247 struct kmem_list3
*l3
;
1248 const int memsize
= sizeof(struct kmem_list3
);
1250 list_for_each_entry(cachep
, &slab_caches
, list
) {
1252 * Set up the size64 kmemlist for cpu before we can
1253 * begin anything. Make sure some other cpu on this
1254 * node has not already allocated this
1256 if (!cachep
->nodelists
[node
]) {
1257 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1260 kmem_list3_init(l3
);
1261 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1262 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1265 * The l3s don't come and go as CPUs come and
1266 * go. slab_mutex is sufficient
1269 cachep
->nodelists
[node
] = l3
;
1272 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1273 cachep
->nodelists
[node
]->free_limit
=
1274 (1 + nr_cpus_node(node
)) *
1275 cachep
->batchcount
+ cachep
->num
;
1276 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1281 static void __cpuinit
cpuup_canceled(long cpu
)
1283 struct kmem_cache
*cachep
;
1284 struct kmem_list3
*l3
= NULL
;
1285 int node
= cpu_to_mem(cpu
);
1286 const struct cpumask
*mask
= cpumask_of_node(node
);
1288 list_for_each_entry(cachep
, &slab_caches
, list
) {
1289 struct array_cache
*nc
;
1290 struct array_cache
*shared
;
1291 struct array_cache
**alien
;
1293 /* cpu is dead; no one can alloc from it. */
1294 nc
= cachep
->array
[cpu
];
1295 cachep
->array
[cpu
] = NULL
;
1296 l3
= cachep
->nodelists
[node
];
1299 goto free_array_cache
;
1301 spin_lock_irq(&l3
->list_lock
);
1303 /* Free limit for this kmem_list3 */
1304 l3
->free_limit
-= cachep
->batchcount
;
1306 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1308 if (!cpumask_empty(mask
)) {
1309 spin_unlock_irq(&l3
->list_lock
);
1310 goto free_array_cache
;
1313 shared
= l3
->shared
;
1315 free_block(cachep
, shared
->entry
,
1316 shared
->avail
, node
);
1323 spin_unlock_irq(&l3
->list_lock
);
1327 drain_alien_cache(cachep
, alien
);
1328 free_alien_cache(alien
);
1334 * In the previous loop, all the objects were freed to
1335 * the respective cache's slabs, now we can go ahead and
1336 * shrink each nodelist to its limit.
1338 list_for_each_entry(cachep
, &slab_caches
, list
) {
1339 l3
= cachep
->nodelists
[node
];
1342 drain_freelist(cachep
, l3
, l3
->free_objects
);
1346 static int __cpuinit
cpuup_prepare(long cpu
)
1348 struct kmem_cache
*cachep
;
1349 struct kmem_list3
*l3
= NULL
;
1350 int node
= cpu_to_mem(cpu
);
1354 * We need to do this right in the beginning since
1355 * alloc_arraycache's are going to use this list.
1356 * kmalloc_node allows us to add the slab to the right
1357 * kmem_list3 and not this cpu's kmem_list3
1359 err
= init_cache_nodelists_node(node
);
1364 * Now we can go ahead with allocating the shared arrays and
1367 list_for_each_entry(cachep
, &slab_caches
, list
) {
1368 struct array_cache
*nc
;
1369 struct array_cache
*shared
= NULL
;
1370 struct array_cache
**alien
= NULL
;
1372 nc
= alloc_arraycache(node
, cachep
->limit
,
1373 cachep
->batchcount
, GFP_KERNEL
);
1376 if (cachep
->shared
) {
1377 shared
= alloc_arraycache(node
,
1378 cachep
->shared
* cachep
->batchcount
,
1379 0xbaadf00d, GFP_KERNEL
);
1385 if (use_alien_caches
) {
1386 alien
= alloc_alien_cache(node
, cachep
->limit
, GFP_KERNEL
);
1393 cachep
->array
[cpu
] = nc
;
1394 l3
= cachep
->nodelists
[node
];
1397 spin_lock_irq(&l3
->list_lock
);
1400 * We are serialised from CPU_DEAD or
1401 * CPU_UP_CANCELLED by the cpucontrol lock
1403 l3
->shared
= shared
;
1412 spin_unlock_irq(&l3
->list_lock
);
1414 free_alien_cache(alien
);
1415 if (cachep
->flags
& SLAB_DEBUG_OBJECTS
)
1416 slab_set_debugobj_lock_classes_node(cachep
, node
);
1417 else if (!OFF_SLAB(cachep
) &&
1418 !(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
1419 on_slab_lock_classes_node(cachep
, node
);
1421 init_node_lock_keys(node
);
1425 cpuup_canceled(cpu
);
1429 static int __cpuinit
cpuup_callback(struct notifier_block
*nfb
,
1430 unsigned long action
, void *hcpu
)
1432 long cpu
= (long)hcpu
;
1436 case CPU_UP_PREPARE
:
1437 case CPU_UP_PREPARE_FROZEN
:
1438 mutex_lock(&slab_mutex
);
1439 err
= cpuup_prepare(cpu
);
1440 mutex_unlock(&slab_mutex
);
1443 case CPU_ONLINE_FROZEN
:
1444 start_cpu_timer(cpu
);
1446 #ifdef CONFIG_HOTPLUG_CPU
1447 case CPU_DOWN_PREPARE
:
1448 case CPU_DOWN_PREPARE_FROZEN
:
1450 * Shutdown cache reaper. Note that the slab_mutex is
1451 * held so that if cache_reap() is invoked it cannot do
1452 * anything expensive but will only modify reap_work
1453 * and reschedule the timer.
1455 cancel_delayed_work_sync(&per_cpu(slab_reap_work
, cpu
));
1456 /* Now the cache_reaper is guaranteed to be not running. */
1457 per_cpu(slab_reap_work
, cpu
).work
.func
= NULL
;
1459 case CPU_DOWN_FAILED
:
1460 case CPU_DOWN_FAILED_FROZEN
:
1461 start_cpu_timer(cpu
);
1464 case CPU_DEAD_FROZEN
:
1466 * Even if all the cpus of a node are down, we don't free the
1467 * kmem_list3 of any cache. This to avoid a race between
1468 * cpu_down, and a kmalloc allocation from another cpu for
1469 * memory from the node of the cpu going down. The list3
1470 * structure is usually allocated from kmem_cache_create() and
1471 * gets destroyed at kmem_cache_destroy().
1475 case CPU_UP_CANCELED
:
1476 case CPU_UP_CANCELED_FROZEN
:
1477 mutex_lock(&slab_mutex
);
1478 cpuup_canceled(cpu
);
1479 mutex_unlock(&slab_mutex
);
1482 return notifier_from_errno(err
);
1485 static struct notifier_block __cpuinitdata cpucache_notifier
= {
1486 &cpuup_callback
, NULL
, 0
1489 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1491 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1492 * Returns -EBUSY if all objects cannot be drained so that the node is not
1495 * Must hold slab_mutex.
1497 static int __meminit
drain_cache_nodelists_node(int node
)
1499 struct kmem_cache
*cachep
;
1502 list_for_each_entry(cachep
, &slab_caches
, list
) {
1503 struct kmem_list3
*l3
;
1505 l3
= cachep
->nodelists
[node
];
1509 drain_freelist(cachep
, l3
, l3
->free_objects
);
1511 if (!list_empty(&l3
->slabs_full
) ||
1512 !list_empty(&l3
->slabs_partial
)) {
1520 static int __meminit
slab_memory_callback(struct notifier_block
*self
,
1521 unsigned long action
, void *arg
)
1523 struct memory_notify
*mnb
= arg
;
1527 nid
= mnb
->status_change_nid
;
1532 case MEM_GOING_ONLINE
:
1533 mutex_lock(&slab_mutex
);
1534 ret
= init_cache_nodelists_node(nid
);
1535 mutex_unlock(&slab_mutex
);
1537 case MEM_GOING_OFFLINE
:
1538 mutex_lock(&slab_mutex
);
1539 ret
= drain_cache_nodelists_node(nid
);
1540 mutex_unlock(&slab_mutex
);
1544 case MEM_CANCEL_ONLINE
:
1545 case MEM_CANCEL_OFFLINE
:
1549 return notifier_from_errno(ret
);
1551 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1554 * swap the static kmem_list3 with kmalloced memory
1556 static void __init
init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1559 struct kmem_list3
*ptr
;
1561 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_NOWAIT
, nodeid
);
1564 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1566 * Do not assume that spinlocks can be initialized via memcpy:
1568 spin_lock_init(&ptr
->list_lock
);
1570 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1571 cachep
->nodelists
[nodeid
] = ptr
;
1575 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1576 * size of kmem_list3.
1578 static void __init
set_up_list3s(struct kmem_cache
*cachep
, int index
)
1582 for_each_online_node(node
) {
1583 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1584 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1586 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1591 * The memory after the last cpu cache pointer is used for the
1592 * the nodelists pointer.
1594 static void setup_nodelists_pointer(struct kmem_cache
*cachep
)
1596 cachep
->nodelists
= (struct kmem_list3
**)&cachep
->array
[nr_cpu_ids
];
1600 * Initialisation. Called after the page allocator have been initialised and
1601 * before smp_init().
1603 void __init
kmem_cache_init(void)
1605 struct cache_sizes
*sizes
;
1606 struct cache_names
*names
;
1609 kmem_cache
= &kmem_cache_boot
;
1610 setup_nodelists_pointer(kmem_cache
);
1612 if (num_possible_nodes() == 1)
1613 use_alien_caches
= 0;
1615 for (i
= 0; i
< NUM_INIT_LISTS
; i
++)
1616 kmem_list3_init(&initkmem_list3
[i
]);
1618 set_up_list3s(kmem_cache
, CACHE_CACHE
);
1621 * Fragmentation resistance on low memory - only use bigger
1622 * page orders on machines with more than 32MB of memory if
1623 * not overridden on the command line.
1625 if (!slab_max_order_set
&& totalram_pages
> (32 << 20) >> PAGE_SHIFT
)
1626 slab_max_order
= SLAB_MAX_ORDER_HI
;
1628 /* Bootstrap is tricky, because several objects are allocated
1629 * from caches that do not exist yet:
1630 * 1) initialize the kmem_cache cache: it contains the struct
1631 * kmem_cache structures of all caches, except kmem_cache itself:
1632 * kmem_cache is statically allocated.
1633 * Initially an __init data area is used for the head array and the
1634 * kmem_list3 structures, it's replaced with a kmalloc allocated
1635 * array at the end of the bootstrap.
1636 * 2) Create the first kmalloc cache.
1637 * The struct kmem_cache for the new cache is allocated normally.
1638 * An __init data area is used for the head array.
1639 * 3) Create the remaining kmalloc caches, with minimally sized
1641 * 4) Replace the __init data head arrays for kmem_cache and the first
1642 * kmalloc cache with kmalloc allocated arrays.
1643 * 5) Replace the __init data for kmem_list3 for kmem_cache and
1644 * the other cache's with kmalloc allocated memory.
1645 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1648 /* 1) create the kmem_cache */
1651 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1653 create_boot_cache(kmem_cache
, "kmem_cache",
1654 offsetof(struct kmem_cache
, array
[nr_cpu_ids
]) +
1655 nr_node_ids
* sizeof(struct kmem_list3
*),
1656 SLAB_HWCACHE_ALIGN
);
1657 list_add(&kmem_cache
->list
, &slab_caches
);
1659 /* 2+3) create the kmalloc caches */
1660 sizes
= malloc_sizes
;
1661 names
= cache_names
;
1664 * Initialize the caches that provide memory for the array cache and the
1665 * kmem_list3 structures first. Without this, further allocations will
1669 sizes
[INDEX_AC
].cs_cachep
= create_kmalloc_cache(names
[INDEX_AC
].name
,
1670 sizes
[INDEX_AC
].cs_size
, ARCH_KMALLOC_FLAGS
);
1672 if (INDEX_AC
!= INDEX_L3
)
1673 sizes
[INDEX_L3
].cs_cachep
=
1674 create_kmalloc_cache(names
[INDEX_L3
].name
,
1675 sizes
[INDEX_L3
].cs_size
, ARCH_KMALLOC_FLAGS
);
1677 slab_early_init
= 0;
1679 while (sizes
->cs_size
!= ULONG_MAX
) {
1681 * For performance, all the general caches are L1 aligned.
1682 * This should be particularly beneficial on SMP boxes, as it
1683 * eliminates "false sharing".
1684 * Note for systems short on memory removing the alignment will
1685 * allow tighter packing of the smaller caches.
1687 if (!sizes
->cs_cachep
)
1688 sizes
->cs_cachep
= create_kmalloc_cache(names
->name
,
1689 sizes
->cs_size
, ARCH_KMALLOC_FLAGS
);
1691 #ifdef CONFIG_ZONE_DMA
1692 sizes
->cs_dmacachep
= create_kmalloc_cache(
1693 names
->name_dma
, sizes
->cs_size
,
1694 SLAB_CACHE_DMA
|ARCH_KMALLOC_FLAGS
);
1699 /* 4) Replace the bootstrap head arrays */
1701 struct array_cache
*ptr
;
1703 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1705 memcpy(ptr
, cpu_cache_get(kmem_cache
),
1706 sizeof(struct arraycache_init
));
1708 * Do not assume that spinlocks can be initialized via memcpy:
1710 spin_lock_init(&ptr
->lock
);
1712 kmem_cache
->array
[smp_processor_id()] = ptr
;
1714 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1716 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1717 != &initarray_generic
.cache
);
1718 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1719 sizeof(struct arraycache_init
));
1721 * Do not assume that spinlocks can be initialized via memcpy:
1723 spin_lock_init(&ptr
->lock
);
1725 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1728 /* 5) Replace the bootstrap kmem_list3's */
1732 for_each_online_node(nid
) {
1733 init_list(kmem_cache
, &initkmem_list3
[CACHE_CACHE
+ nid
], nid
);
1735 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1736 &initkmem_list3
[SIZE_AC
+ nid
], nid
);
1738 if (INDEX_AC
!= INDEX_L3
) {
1739 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1740 &initkmem_list3
[SIZE_L3
+ nid
], nid
);
1748 void __init
kmem_cache_init_late(void)
1750 struct kmem_cache
*cachep
;
1754 /* 6) resize the head arrays to their final sizes */
1755 mutex_lock(&slab_mutex
);
1756 list_for_each_entry(cachep
, &slab_caches
, list
)
1757 if (enable_cpucache(cachep
, GFP_NOWAIT
))
1759 mutex_unlock(&slab_mutex
);
1761 /* Annotate slab for lockdep -- annotate the malloc caches */
1768 * Register a cpu startup notifier callback that initializes
1769 * cpu_cache_get for all new cpus
1771 register_cpu_notifier(&cpucache_notifier
);
1775 * Register a memory hotplug callback that initializes and frees
1778 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
1782 * The reap timers are started later, with a module init call: That part
1783 * of the kernel is not yet operational.
1787 static int __init
cpucache_init(void)
1792 * Register the timers that return unneeded pages to the page allocator
1794 for_each_online_cpu(cpu
)
1795 start_cpu_timer(cpu
);
1801 __initcall(cpucache_init
);
1803 static noinline
void
1804 slab_out_of_memory(struct kmem_cache
*cachep
, gfp_t gfpflags
, int nodeid
)
1806 struct kmem_list3
*l3
;
1808 unsigned long flags
;
1812 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1814 printk(KERN_WARNING
" cache: %s, object size: %d, order: %d\n",
1815 cachep
->name
, cachep
->size
, cachep
->gfporder
);
1817 for_each_online_node(node
) {
1818 unsigned long active_objs
= 0, num_objs
= 0, free_objects
= 0;
1819 unsigned long active_slabs
= 0, num_slabs
= 0;
1821 l3
= cachep
->nodelists
[node
];
1825 spin_lock_irqsave(&l3
->list_lock
, flags
);
1826 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
1827 active_objs
+= cachep
->num
;
1830 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
1831 active_objs
+= slabp
->inuse
;
1834 list_for_each_entry(slabp
, &l3
->slabs_free
, list
)
1837 free_objects
+= l3
->free_objects
;
1838 spin_unlock_irqrestore(&l3
->list_lock
, flags
);
1840 num_slabs
+= active_slabs
;
1841 num_objs
= num_slabs
* cachep
->num
;
1843 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1844 node
, active_slabs
, num_slabs
, active_objs
, num_objs
,
1850 * Interface to system's page allocator. No need to hold the cache-lock.
1852 * If we requested dmaable memory, we will get it. Even if we
1853 * did not request dmaable memory, we might get it, but that
1854 * would be relatively rare and ignorable.
1856 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1864 * Nommu uses slab's for process anonymous memory allocations, and thus
1865 * requires __GFP_COMP to properly refcount higher order allocations
1867 flags
|= __GFP_COMP
;
1870 flags
|= cachep
->allocflags
;
1871 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1872 flags
|= __GFP_RECLAIMABLE
;
1874 page
= alloc_pages_exact_node(nodeid
, flags
| __GFP_NOTRACK
, cachep
->gfporder
);
1876 if (!(flags
& __GFP_NOWARN
) && printk_ratelimit())
1877 slab_out_of_memory(cachep
, flags
, nodeid
);
1881 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1882 if (unlikely(page
->pfmemalloc
))
1883 pfmemalloc_active
= true;
1885 nr_pages
= (1 << cachep
->gfporder
);
1886 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1887 add_zone_page_state(page_zone(page
),
1888 NR_SLAB_RECLAIMABLE
, nr_pages
);
1890 add_zone_page_state(page_zone(page
),
1891 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1892 for (i
= 0; i
< nr_pages
; i
++) {
1893 __SetPageSlab(page
+ i
);
1895 if (page
->pfmemalloc
)
1896 SetPageSlabPfmemalloc(page
+ i
);
1899 if (kmemcheck_enabled
&& !(cachep
->flags
& SLAB_NOTRACK
)) {
1900 kmemcheck_alloc_shadow(page
, cachep
->gfporder
, flags
, nodeid
);
1903 kmemcheck_mark_uninitialized_pages(page
, nr_pages
);
1905 kmemcheck_mark_unallocated_pages(page
, nr_pages
);
1908 return page_address(page
);
1912 * Interface to system's page release.
1914 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1916 unsigned long i
= (1 << cachep
->gfporder
);
1917 struct page
*page
= virt_to_page(addr
);
1918 const unsigned long nr_freed
= i
;
1920 kmemcheck_free_shadow(page
, cachep
->gfporder
);
1922 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1923 sub_zone_page_state(page_zone(page
),
1924 NR_SLAB_RECLAIMABLE
, nr_freed
);
1926 sub_zone_page_state(page_zone(page
),
1927 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1929 BUG_ON(!PageSlab(page
));
1930 __ClearPageSlabPfmemalloc(page
);
1931 __ClearPageSlab(page
);
1934 if (current
->reclaim_state
)
1935 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1936 free_memcg_kmem_pages((unsigned long)addr
, cachep
->gfporder
);
1939 static void kmem_rcu_free(struct rcu_head
*head
)
1941 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1942 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1944 kmem_freepages(cachep
, slab_rcu
->addr
);
1945 if (OFF_SLAB(cachep
))
1946 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1951 #ifdef CONFIG_DEBUG_PAGEALLOC
1952 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1953 unsigned long caller
)
1955 int size
= cachep
->object_size
;
1957 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1959 if (size
< 5 * sizeof(unsigned long))
1962 *addr
++ = 0x12345678;
1964 *addr
++ = smp_processor_id();
1965 size
-= 3 * sizeof(unsigned long);
1967 unsigned long *sptr
= &caller
;
1968 unsigned long svalue
;
1970 while (!kstack_end(sptr
)) {
1972 if (kernel_text_address(svalue
)) {
1974 size
-= sizeof(unsigned long);
1975 if (size
<= sizeof(unsigned long))
1981 *addr
++ = 0x87654321;
1985 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1987 int size
= cachep
->object_size
;
1988 addr
= &((char *)addr
)[obj_offset(cachep
)];
1990 memset(addr
, val
, size
);
1991 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1994 static void dump_line(char *data
, int offset
, int limit
)
1997 unsigned char error
= 0;
2000 printk(KERN_ERR
"%03x: ", offset
);
2001 for (i
= 0; i
< limit
; i
++) {
2002 if (data
[offset
+ i
] != POISON_FREE
) {
2003 error
= data
[offset
+ i
];
2007 print_hex_dump(KERN_CONT
, "", 0, 16, 1,
2008 &data
[offset
], limit
, 1);
2010 if (bad_count
== 1) {
2011 error
^= POISON_FREE
;
2012 if (!(error
& (error
- 1))) {
2013 printk(KERN_ERR
"Single bit error detected. Probably "
2016 printk(KERN_ERR
"Run memtest86+ or a similar memory "
2019 printk(KERN_ERR
"Run a memory test tool.\n");
2028 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
2033 if (cachep
->flags
& SLAB_RED_ZONE
) {
2034 printk(KERN_ERR
"Redzone: 0x%llx/0x%llx.\n",
2035 *dbg_redzone1(cachep
, objp
),
2036 *dbg_redzone2(cachep
, objp
));
2039 if (cachep
->flags
& SLAB_STORE_USER
) {
2040 printk(KERN_ERR
"Last user: [<%p>]",
2041 *dbg_userword(cachep
, objp
));
2042 print_symbol("(%s)",
2043 (unsigned long)*dbg_userword(cachep
, objp
));
2046 realobj
= (char *)objp
+ obj_offset(cachep
);
2047 size
= cachep
->object_size
;
2048 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
2051 if (i
+ limit
> size
)
2053 dump_line(realobj
, i
, limit
);
2057 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
2063 realobj
= (char *)objp
+ obj_offset(cachep
);
2064 size
= cachep
->object_size
;
2066 for (i
= 0; i
< size
; i
++) {
2067 char exp
= POISON_FREE
;
2070 if (realobj
[i
] != exp
) {
2076 "Slab corruption (%s): %s start=%p, len=%d\n",
2077 print_tainted(), cachep
->name
, realobj
, size
);
2078 print_objinfo(cachep
, objp
, 0);
2080 /* Hexdump the affected line */
2083 if (i
+ limit
> size
)
2085 dump_line(realobj
, i
, limit
);
2088 /* Limit to 5 lines */
2094 /* Print some data about the neighboring objects, if they
2097 struct slab
*slabp
= virt_to_slab(objp
);
2100 objnr
= obj_to_index(cachep
, slabp
, objp
);
2102 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
2103 realobj
= (char *)objp
+ obj_offset(cachep
);
2104 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
2106 print_objinfo(cachep
, objp
, 2);
2108 if (objnr
+ 1 < cachep
->num
) {
2109 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
2110 realobj
= (char *)objp
+ obj_offset(cachep
);
2111 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
2113 print_objinfo(cachep
, objp
, 2);
2120 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
2123 for (i
= 0; i
< cachep
->num
; i
++) {
2124 void *objp
= index_to_obj(cachep
, slabp
, i
);
2126 if (cachep
->flags
& SLAB_POISON
) {
2127 #ifdef CONFIG_DEBUG_PAGEALLOC
2128 if (cachep
->size
% PAGE_SIZE
== 0 &&
2130 kernel_map_pages(virt_to_page(objp
),
2131 cachep
->size
/ PAGE_SIZE
, 1);
2133 check_poison_obj(cachep
, objp
);
2135 check_poison_obj(cachep
, objp
);
2138 if (cachep
->flags
& SLAB_RED_ZONE
) {
2139 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2140 slab_error(cachep
, "start of a freed object "
2142 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2143 slab_error(cachep
, "end of a freed object "
2149 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
2155 * slab_destroy - destroy and release all objects in a slab
2156 * @cachep: cache pointer being destroyed
2157 * @slabp: slab pointer being destroyed
2159 * Destroy all the objs in a slab, and release the mem back to the system.
2160 * Before calling the slab must have been unlinked from the cache. The
2161 * cache-lock is not held/needed.
2163 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
2165 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
2167 slab_destroy_debugcheck(cachep
, slabp
);
2168 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
2169 struct slab_rcu
*slab_rcu
;
2171 slab_rcu
= (struct slab_rcu
*)slabp
;
2172 slab_rcu
->cachep
= cachep
;
2173 slab_rcu
->addr
= addr
;
2174 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
2176 kmem_freepages(cachep
, addr
);
2177 if (OFF_SLAB(cachep
))
2178 kmem_cache_free(cachep
->slabp_cache
, slabp
);
2183 * calculate_slab_order - calculate size (page order) of slabs
2184 * @cachep: pointer to the cache that is being created
2185 * @size: size of objects to be created in this cache.
2186 * @align: required alignment for the objects.
2187 * @flags: slab allocation flags
2189 * Also calculates the number of objects per slab.
2191 * This could be made much more intelligent. For now, try to avoid using
2192 * high order pages for slabs. When the gfp() functions are more friendly
2193 * towards high-order requests, this should be changed.
2195 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
2196 size_t size
, size_t align
, unsigned long flags
)
2198 unsigned long offslab_limit
;
2199 size_t left_over
= 0;
2202 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
2206 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
2210 if (flags
& CFLGS_OFF_SLAB
) {
2212 * Max number of objs-per-slab for caches which
2213 * use off-slab slabs. Needed to avoid a possible
2214 * looping condition in cache_grow().
2216 offslab_limit
= size
- sizeof(struct slab
);
2217 offslab_limit
/= sizeof(kmem_bufctl_t
);
2219 if (num
> offslab_limit
)
2223 /* Found something acceptable - save it away */
2225 cachep
->gfporder
= gfporder
;
2226 left_over
= remainder
;
2229 * A VFS-reclaimable slab tends to have most allocations
2230 * as GFP_NOFS and we really don't want to have to be allocating
2231 * higher-order pages when we are unable to shrink dcache.
2233 if (flags
& SLAB_RECLAIM_ACCOUNT
)
2237 * Large number of objects is good, but very large slabs are
2238 * currently bad for the gfp()s.
2240 if (gfporder
>= slab_max_order
)
2244 * Acceptable internal fragmentation?
2246 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
2252 static int __init_refok
setup_cpu_cache(struct kmem_cache
*cachep
, gfp_t gfp
)
2254 if (slab_state
>= FULL
)
2255 return enable_cpucache(cachep
, gfp
);
2257 if (slab_state
== DOWN
) {
2259 * Note: Creation of first cache (kmem_cache).
2260 * The setup_list3s is taken care
2261 * of by the caller of __kmem_cache_create
2263 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2264 slab_state
= PARTIAL
;
2265 } else if (slab_state
== PARTIAL
) {
2267 * Note: the second kmem_cache_create must create the cache
2268 * that's used by kmalloc(24), otherwise the creation of
2269 * further caches will BUG().
2271 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2274 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2275 * the second cache, then we need to set up all its list3s,
2276 * otherwise the creation of further caches will BUG().
2278 set_up_list3s(cachep
, SIZE_AC
);
2279 if (INDEX_AC
== INDEX_L3
)
2280 slab_state
= PARTIAL_L3
;
2282 slab_state
= PARTIAL_ARRAYCACHE
;
2284 /* Remaining boot caches */
2285 cachep
->array
[smp_processor_id()] =
2286 kmalloc(sizeof(struct arraycache_init
), gfp
);
2288 if (slab_state
== PARTIAL_ARRAYCACHE
) {
2289 set_up_list3s(cachep
, SIZE_L3
);
2290 slab_state
= PARTIAL_L3
;
2293 for_each_online_node(node
) {
2294 cachep
->nodelists
[node
] =
2295 kmalloc_node(sizeof(struct kmem_list3
),
2297 BUG_ON(!cachep
->nodelists
[node
]);
2298 kmem_list3_init(cachep
->nodelists
[node
]);
2302 cachep
->nodelists
[numa_mem_id()]->next_reap
=
2303 jiffies
+ REAPTIMEOUT_LIST3
+
2304 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
2306 cpu_cache_get(cachep
)->avail
= 0;
2307 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2308 cpu_cache_get(cachep
)->batchcount
= 1;
2309 cpu_cache_get(cachep
)->touched
= 0;
2310 cachep
->batchcount
= 1;
2311 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2316 * __kmem_cache_create - Create a cache.
2317 * @cachep: cache management descriptor
2318 * @flags: SLAB flags
2320 * Returns a ptr to the cache on success, NULL on failure.
2321 * Cannot be called within a int, but can be interrupted.
2322 * The @ctor is run when new pages are allocated by the cache.
2326 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2327 * to catch references to uninitialised memory.
2329 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2330 * for buffer overruns.
2332 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2333 * cacheline. This can be beneficial if you're counting cycles as closely
2337 __kmem_cache_create (struct kmem_cache
*cachep
, unsigned long flags
)
2339 size_t left_over
, slab_size
, ralign
;
2342 size_t size
= cachep
->size
;
2347 * Enable redzoning and last user accounting, except for caches with
2348 * large objects, if the increased size would increase the object size
2349 * above the next power of two: caches with object sizes just above a
2350 * power of two have a significant amount of internal fragmentation.
2352 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
2353 2 * sizeof(unsigned long long)))
2354 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2355 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2356 flags
|= SLAB_POISON
;
2358 if (flags
& SLAB_DESTROY_BY_RCU
)
2359 BUG_ON(flags
& SLAB_POISON
);
2363 * Check that size is in terms of words. This is needed to avoid
2364 * unaligned accesses for some archs when redzoning is used, and makes
2365 * sure any on-slab bufctl's are also correctly aligned.
2367 if (size
& (BYTES_PER_WORD
- 1)) {
2368 size
+= (BYTES_PER_WORD
- 1);
2369 size
&= ~(BYTES_PER_WORD
- 1);
2373 * Redzoning and user store require word alignment or possibly larger.
2374 * Note this will be overridden by architecture or caller mandated
2375 * alignment if either is greater than BYTES_PER_WORD.
2377 if (flags
& SLAB_STORE_USER
)
2378 ralign
= BYTES_PER_WORD
;
2380 if (flags
& SLAB_RED_ZONE
) {
2381 ralign
= REDZONE_ALIGN
;
2382 /* If redzoning, ensure that the second redzone is suitably
2383 * aligned, by adjusting the object size accordingly. */
2384 size
+= REDZONE_ALIGN
- 1;
2385 size
&= ~(REDZONE_ALIGN
- 1);
2388 /* 3) caller mandated alignment */
2389 if (ralign
< cachep
->align
) {
2390 ralign
= cachep
->align
;
2392 /* disable debug if necessary */
2393 if (ralign
> __alignof__(unsigned long long))
2394 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2398 cachep
->align
= ralign
;
2400 if (slab_is_available())
2405 setup_nodelists_pointer(cachep
);
2409 * Both debugging options require word-alignment which is calculated
2412 if (flags
& SLAB_RED_ZONE
) {
2413 /* add space for red zone words */
2414 cachep
->obj_offset
+= sizeof(unsigned long long);
2415 size
+= 2 * sizeof(unsigned long long);
2417 if (flags
& SLAB_STORE_USER
) {
2418 /* user store requires one word storage behind the end of
2419 * the real object. But if the second red zone needs to be
2420 * aligned to 64 bits, we must allow that much space.
2422 if (flags
& SLAB_RED_ZONE
)
2423 size
+= REDZONE_ALIGN
;
2425 size
+= BYTES_PER_WORD
;
2427 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2428 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2429 && cachep
->object_size
> cache_line_size()
2430 && ALIGN(size
, cachep
->align
) < PAGE_SIZE
) {
2431 cachep
->obj_offset
+= PAGE_SIZE
- ALIGN(size
, cachep
->align
);
2438 * Determine if the slab management is 'on' or 'off' slab.
2439 * (bootstrapping cannot cope with offslab caches so don't do
2440 * it too early on. Always use on-slab management when
2441 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2443 if ((size
>= (PAGE_SIZE
>> 3)) && !slab_early_init
&&
2444 !(flags
& SLAB_NOLEAKTRACE
))
2446 * Size is large, assume best to place the slab management obj
2447 * off-slab (should allow better packing of objs).
2449 flags
|= CFLGS_OFF_SLAB
;
2451 size
= ALIGN(size
, cachep
->align
);
2453 left_over
= calculate_slab_order(cachep
, size
, cachep
->align
, flags
);
2458 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2459 + sizeof(struct slab
), cachep
->align
);
2462 * If the slab has been placed off-slab, and we have enough space then
2463 * move it on-slab. This is at the expense of any extra colouring.
2465 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2466 flags
&= ~CFLGS_OFF_SLAB
;
2467 left_over
-= slab_size
;
2470 if (flags
& CFLGS_OFF_SLAB
) {
2471 /* really off slab. No need for manual alignment */
2473 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2475 #ifdef CONFIG_PAGE_POISONING
2476 /* If we're going to use the generic kernel_map_pages()
2477 * poisoning, then it's going to smash the contents of
2478 * the redzone and userword anyhow, so switch them off.
2480 if (size
% PAGE_SIZE
== 0 && flags
& SLAB_POISON
)
2481 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2485 cachep
->colour_off
= cache_line_size();
2486 /* Offset must be a multiple of the alignment. */
2487 if (cachep
->colour_off
< cachep
->align
)
2488 cachep
->colour_off
= cachep
->align
;
2489 cachep
->colour
= left_over
/ cachep
->colour_off
;
2490 cachep
->slab_size
= slab_size
;
2491 cachep
->flags
= flags
;
2492 cachep
->allocflags
= 0;
2493 if (CONFIG_ZONE_DMA_FLAG
&& (flags
& SLAB_CACHE_DMA
))
2494 cachep
->allocflags
|= GFP_DMA
;
2495 cachep
->size
= size
;
2496 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2498 if (flags
& CFLGS_OFF_SLAB
) {
2499 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2501 * This is a possibility for one of the malloc_sizes caches.
2502 * But since we go off slab only for object size greater than
2503 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2504 * this should not happen at all.
2505 * But leave a BUG_ON for some lucky dude.
2507 BUG_ON(ZERO_OR_NULL_PTR(cachep
->slabp_cache
));
2510 err
= setup_cpu_cache(cachep
, gfp
);
2512 __kmem_cache_shutdown(cachep
);
2516 if (flags
& SLAB_DEBUG_OBJECTS
) {
2518 * Would deadlock through slab_destroy()->call_rcu()->
2519 * debug_object_activate()->kmem_cache_alloc().
2521 WARN_ON_ONCE(flags
& SLAB_DESTROY_BY_RCU
);
2523 slab_set_debugobj_lock_classes(cachep
);
2524 } else if (!OFF_SLAB(cachep
) && !(flags
& SLAB_DESTROY_BY_RCU
))
2525 on_slab_lock_classes(cachep
);
2531 static void check_irq_off(void)
2533 BUG_ON(!irqs_disabled());
2536 static void check_irq_on(void)
2538 BUG_ON(irqs_disabled());
2541 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2545 assert_spin_locked(&cachep
->nodelists
[numa_mem_id()]->list_lock
);
2549 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2553 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2558 #define check_irq_off() do { } while(0)
2559 #define check_irq_on() do { } while(0)
2560 #define check_spinlock_acquired(x) do { } while(0)
2561 #define check_spinlock_acquired_node(x, y) do { } while(0)
2564 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2565 struct array_cache
*ac
,
2566 int force
, int node
);
2568 static void do_drain(void *arg
)
2570 struct kmem_cache
*cachep
= arg
;
2571 struct array_cache
*ac
;
2572 int node
= numa_mem_id();
2575 ac
= cpu_cache_get(cachep
);
2576 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2577 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2578 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2582 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2584 struct kmem_list3
*l3
;
2587 on_each_cpu(do_drain
, cachep
, 1);
2589 for_each_online_node(node
) {
2590 l3
= cachep
->nodelists
[node
];
2591 if (l3
&& l3
->alien
)
2592 drain_alien_cache(cachep
, l3
->alien
);
2595 for_each_online_node(node
) {
2596 l3
= cachep
->nodelists
[node
];
2598 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2603 * Remove slabs from the list of free slabs.
2604 * Specify the number of slabs to drain in tofree.
2606 * Returns the actual number of slabs released.
2608 static int drain_freelist(struct kmem_cache
*cache
,
2609 struct kmem_list3
*l3
, int tofree
)
2611 struct list_head
*p
;
2616 while (nr_freed
< tofree
&& !list_empty(&l3
->slabs_free
)) {
2618 spin_lock_irq(&l3
->list_lock
);
2619 p
= l3
->slabs_free
.prev
;
2620 if (p
== &l3
->slabs_free
) {
2621 spin_unlock_irq(&l3
->list_lock
);
2625 slabp
= list_entry(p
, struct slab
, list
);
2627 BUG_ON(slabp
->inuse
);
2629 list_del(&slabp
->list
);
2631 * Safe to drop the lock. The slab is no longer linked
2634 l3
->free_objects
-= cache
->num
;
2635 spin_unlock_irq(&l3
->list_lock
);
2636 slab_destroy(cache
, slabp
);
2643 /* Called with slab_mutex held to protect against cpu hotplug */
2644 static int __cache_shrink(struct kmem_cache
*cachep
)
2647 struct kmem_list3
*l3
;
2649 drain_cpu_caches(cachep
);
2652 for_each_online_node(i
) {
2653 l3
= cachep
->nodelists
[i
];
2657 drain_freelist(cachep
, l3
, l3
->free_objects
);
2659 ret
+= !list_empty(&l3
->slabs_full
) ||
2660 !list_empty(&l3
->slabs_partial
);
2662 return (ret
? 1 : 0);
2666 * kmem_cache_shrink - Shrink a cache.
2667 * @cachep: The cache to shrink.
2669 * Releases as many slabs as possible for a cache.
2670 * To help debugging, a zero exit status indicates all slabs were released.
2672 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2675 BUG_ON(!cachep
|| in_interrupt());
2678 mutex_lock(&slab_mutex
);
2679 ret
= __cache_shrink(cachep
);
2680 mutex_unlock(&slab_mutex
);
2684 EXPORT_SYMBOL(kmem_cache_shrink
);
2686 int __kmem_cache_shutdown(struct kmem_cache
*cachep
)
2689 struct kmem_list3
*l3
;
2690 int rc
= __cache_shrink(cachep
);
2695 for_each_online_cpu(i
)
2696 kfree(cachep
->array
[i
]);
2698 /* NUMA: free the list3 structures */
2699 for_each_online_node(i
) {
2700 l3
= cachep
->nodelists
[i
];
2703 free_alien_cache(l3
->alien
);
2711 * Get the memory for a slab management obj.
2712 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2713 * always come from malloc_sizes caches. The slab descriptor cannot
2714 * come from the same cache which is getting created because,
2715 * when we are searching for an appropriate cache for these
2716 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2717 * If we are creating a malloc_sizes cache here it would not be visible to
2718 * kmem_find_general_cachep till the initialization is complete.
2719 * Hence we cannot have slabp_cache same as the original cache.
2721 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2722 int colour_off
, gfp_t local_flags
,
2727 if (OFF_SLAB(cachep
)) {
2728 /* Slab management obj is off-slab. */
2729 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2730 local_flags
, nodeid
);
2732 * If the first object in the slab is leaked (it's allocated
2733 * but no one has a reference to it), we want to make sure
2734 * kmemleak does not treat the ->s_mem pointer as a reference
2735 * to the object. Otherwise we will not report the leak.
2737 kmemleak_scan_area(&slabp
->list
, sizeof(struct list_head
),
2742 slabp
= objp
+ colour_off
;
2743 colour_off
+= cachep
->slab_size
;
2746 slabp
->colouroff
= colour_off
;
2747 slabp
->s_mem
= objp
+ colour_off
;
2748 slabp
->nodeid
= nodeid
;
2753 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2755 return (kmem_bufctl_t
*) (slabp
+ 1);
2758 static void cache_init_objs(struct kmem_cache
*cachep
,
2763 for (i
= 0; i
< cachep
->num
; i
++) {
2764 void *objp
= index_to_obj(cachep
, slabp
, i
);
2766 /* need to poison the objs? */
2767 if (cachep
->flags
& SLAB_POISON
)
2768 poison_obj(cachep
, objp
, POISON_FREE
);
2769 if (cachep
->flags
& SLAB_STORE_USER
)
2770 *dbg_userword(cachep
, objp
) = NULL
;
2772 if (cachep
->flags
& SLAB_RED_ZONE
) {
2773 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2774 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2777 * Constructors are not allowed to allocate memory from the same
2778 * cache which they are a constructor for. Otherwise, deadlock.
2779 * They must also be threaded.
2781 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2782 cachep
->ctor(objp
+ obj_offset(cachep
));
2784 if (cachep
->flags
& SLAB_RED_ZONE
) {
2785 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2786 slab_error(cachep
, "constructor overwrote the"
2787 " end of an object");
2788 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2789 slab_error(cachep
, "constructor overwrote the"
2790 " start of an object");
2792 if ((cachep
->size
% PAGE_SIZE
) == 0 &&
2793 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2794 kernel_map_pages(virt_to_page(objp
),
2795 cachep
->size
/ PAGE_SIZE
, 0);
2800 slab_bufctl(slabp
)[i
] = i
+ 1;
2802 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2805 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2807 if (CONFIG_ZONE_DMA_FLAG
) {
2808 if (flags
& GFP_DMA
)
2809 BUG_ON(!(cachep
->allocflags
& GFP_DMA
));
2811 BUG_ON(cachep
->allocflags
& GFP_DMA
);
2815 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2818 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2822 next
= slab_bufctl(slabp
)[slabp
->free
];
2824 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2825 WARN_ON(slabp
->nodeid
!= nodeid
);
2832 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2833 void *objp
, int nodeid
)
2835 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2838 /* Verify that the slab belongs to the intended node */
2839 WARN_ON(slabp
->nodeid
!= nodeid
);
2841 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2842 printk(KERN_ERR
"slab: double free detected in cache "
2843 "'%s', objp %p\n", cachep
->name
, objp
);
2847 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2848 slabp
->free
= objnr
;
2853 * Map pages beginning at addr to the given cache and slab. This is required
2854 * for the slab allocator to be able to lookup the cache and slab of a
2855 * virtual address for kfree, ksize, and slab debugging.
2857 static void slab_map_pages(struct kmem_cache
*cache
, struct slab
*slab
,
2863 page
= virt_to_page(addr
);
2866 if (likely(!PageCompound(page
)))
2867 nr_pages
<<= cache
->gfporder
;
2870 page
->slab_cache
= cache
;
2871 page
->slab_page
= slab
;
2873 } while (--nr_pages
);
2877 * Grow (by 1) the number of slabs within a cache. This is called by
2878 * kmem_cache_alloc() when there are no active objs left in a cache.
2880 static int cache_grow(struct kmem_cache
*cachep
,
2881 gfp_t flags
, int nodeid
, void *objp
)
2886 struct kmem_list3
*l3
;
2889 * Be lazy and only check for valid flags here, keeping it out of the
2890 * critical path in kmem_cache_alloc().
2892 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
2893 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
2895 /* Take the l3 list lock to change the colour_next on this node */
2897 l3
= cachep
->nodelists
[nodeid
];
2898 spin_lock(&l3
->list_lock
);
2900 /* Get colour for the slab, and cal the next value. */
2901 offset
= l3
->colour_next
;
2903 if (l3
->colour_next
>= cachep
->colour
)
2904 l3
->colour_next
= 0;
2905 spin_unlock(&l3
->list_lock
);
2907 offset
*= cachep
->colour_off
;
2909 if (local_flags
& __GFP_WAIT
)
2913 * The test for missing atomic flag is performed here, rather than
2914 * the more obvious place, simply to reduce the critical path length
2915 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2916 * will eventually be caught here (where it matters).
2918 kmem_flagcheck(cachep
, flags
);
2921 * Get mem for the objs. Attempt to allocate a physical page from
2925 objp
= kmem_getpages(cachep
, local_flags
, nodeid
);
2929 /* Get slab management. */
2930 slabp
= alloc_slabmgmt(cachep
, objp
, offset
,
2931 local_flags
& ~GFP_CONSTRAINT_MASK
, nodeid
);
2935 slab_map_pages(cachep
, slabp
, objp
);
2937 cache_init_objs(cachep
, slabp
);
2939 if (local_flags
& __GFP_WAIT
)
2940 local_irq_disable();
2942 spin_lock(&l3
->list_lock
);
2944 /* Make slab active. */
2945 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2946 STATS_INC_GROWN(cachep
);
2947 l3
->free_objects
+= cachep
->num
;
2948 spin_unlock(&l3
->list_lock
);
2951 kmem_freepages(cachep
, objp
);
2953 if (local_flags
& __GFP_WAIT
)
2954 local_irq_disable();
2961 * Perform extra freeing checks:
2962 * - detect bad pointers.
2963 * - POISON/RED_ZONE checking
2965 static void kfree_debugcheck(const void *objp
)
2967 if (!virt_addr_valid(objp
)) {
2968 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2969 (unsigned long)objp
);
2974 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2976 unsigned long long redzone1
, redzone2
;
2978 redzone1
= *dbg_redzone1(cache
, obj
);
2979 redzone2
= *dbg_redzone2(cache
, obj
);
2984 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2987 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2988 slab_error(cache
, "double free detected");
2990 slab_error(cache
, "memory outside object was overwritten");
2992 printk(KERN_ERR
"%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2993 obj
, redzone1
, redzone2
);
2996 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2997 unsigned long caller
)
3003 BUG_ON(virt_to_cache(objp
) != cachep
);
3005 objp
-= obj_offset(cachep
);
3006 kfree_debugcheck(objp
);
3007 page
= virt_to_head_page(objp
);
3009 slabp
= page
->slab_page
;
3011 if (cachep
->flags
& SLAB_RED_ZONE
) {
3012 verify_redzone_free(cachep
, objp
);
3013 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
3014 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
3016 if (cachep
->flags
& SLAB_STORE_USER
)
3017 *dbg_userword(cachep
, objp
) = (void *)caller
;
3019 objnr
= obj_to_index(cachep
, slabp
, objp
);
3021 BUG_ON(objnr
>= cachep
->num
);
3022 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
3024 #ifdef CONFIG_DEBUG_SLAB_LEAK
3025 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
3027 if (cachep
->flags
& SLAB_POISON
) {
3028 #ifdef CONFIG_DEBUG_PAGEALLOC
3029 if ((cachep
->size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
3030 store_stackinfo(cachep
, objp
, caller
);
3031 kernel_map_pages(virt_to_page(objp
),
3032 cachep
->size
/ PAGE_SIZE
, 0);
3034 poison_obj(cachep
, objp
, POISON_FREE
);
3037 poison_obj(cachep
, objp
, POISON_FREE
);
3043 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
3048 /* Check slab's freelist to see if this obj is there. */
3049 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
3051 if (entries
> cachep
->num
|| i
>= cachep
->num
)
3054 if (entries
!= cachep
->num
- slabp
->inuse
) {
3056 printk(KERN_ERR
"slab: Internal list corruption detected in "
3057 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3058 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
,
3060 print_hex_dump(KERN_ERR
, "", DUMP_PREFIX_OFFSET
, 16, 1, slabp
,
3061 sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
),
3067 #define kfree_debugcheck(x) do { } while(0)
3068 #define cache_free_debugcheck(x,objp,z) (objp)
3069 #define check_slabp(x,y) do { } while(0)
3072 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
,
3076 struct kmem_list3
*l3
;
3077 struct array_cache
*ac
;
3081 node
= numa_mem_id();
3082 if (unlikely(force_refill
))
3085 ac
= cpu_cache_get(cachep
);
3086 batchcount
= ac
->batchcount
;
3087 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
3089 * If there was little recent activity on this cache, then
3090 * perform only a partial refill. Otherwise we could generate
3093 batchcount
= BATCHREFILL_LIMIT
;
3095 l3
= cachep
->nodelists
[node
];
3097 BUG_ON(ac
->avail
> 0 || !l3
);
3098 spin_lock(&l3
->list_lock
);
3100 /* See if we can refill from the shared array */
3101 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
)) {
3102 l3
->shared
->touched
= 1;
3106 while (batchcount
> 0) {
3107 struct list_head
*entry
;
3109 /* Get slab alloc is to come from. */
3110 entry
= l3
->slabs_partial
.next
;
3111 if (entry
== &l3
->slabs_partial
) {
3112 l3
->free_touched
= 1;
3113 entry
= l3
->slabs_free
.next
;
3114 if (entry
== &l3
->slabs_free
)
3118 slabp
= list_entry(entry
, struct slab
, list
);
3119 check_slabp(cachep
, slabp
);
3120 check_spinlock_acquired(cachep
);
3123 * The slab was either on partial or free list so
3124 * there must be at least one object available for
3127 BUG_ON(slabp
->inuse
>= cachep
->num
);
3129 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
3130 STATS_INC_ALLOCED(cachep
);
3131 STATS_INC_ACTIVE(cachep
);
3132 STATS_SET_HIGH(cachep
);
3134 ac_put_obj(cachep
, ac
, slab_get_obj(cachep
, slabp
,
3137 check_slabp(cachep
, slabp
);
3139 /* move slabp to correct slabp list: */
3140 list_del(&slabp
->list
);
3141 if (slabp
->free
== BUFCTL_END
)
3142 list_add(&slabp
->list
, &l3
->slabs_full
);
3144 list_add(&slabp
->list
, &l3
->slabs_partial
);
3148 l3
->free_objects
-= ac
->avail
;
3150 spin_unlock(&l3
->list_lock
);
3152 if (unlikely(!ac
->avail
)) {
3155 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, node
, NULL
);
3157 /* cache_grow can reenable interrupts, then ac could change. */
3158 ac
= cpu_cache_get(cachep
);
3159 node
= numa_mem_id();
3161 /* no objects in sight? abort */
3162 if (!x
&& (ac
->avail
== 0 || force_refill
))
3165 if (!ac
->avail
) /* objects refilled by interrupt? */
3170 return ac_get_obj(cachep
, ac
, flags
, force_refill
);
3173 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3176 might_sleep_if(flags
& __GFP_WAIT
);
3178 kmem_flagcheck(cachep
, flags
);
3183 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3184 gfp_t flags
, void *objp
, unsigned long caller
)
3188 if (cachep
->flags
& SLAB_POISON
) {
3189 #ifdef CONFIG_DEBUG_PAGEALLOC
3190 if ((cachep
->size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
3191 kernel_map_pages(virt_to_page(objp
),
3192 cachep
->size
/ PAGE_SIZE
, 1);
3194 check_poison_obj(cachep
, objp
);
3196 check_poison_obj(cachep
, objp
);
3198 poison_obj(cachep
, objp
, POISON_INUSE
);
3200 if (cachep
->flags
& SLAB_STORE_USER
)
3201 *dbg_userword(cachep
, objp
) = (void *)caller
;
3203 if (cachep
->flags
& SLAB_RED_ZONE
) {
3204 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3205 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3206 slab_error(cachep
, "double free, or memory outside"
3207 " object was overwritten");
3209 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3210 objp
, *dbg_redzone1(cachep
, objp
),
3211 *dbg_redzone2(cachep
, objp
));
3213 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3214 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3216 #ifdef CONFIG_DEBUG_SLAB_LEAK
3221 slabp
= virt_to_head_page(objp
)->slab_page
;
3222 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->size
;
3223 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
3226 objp
+= obj_offset(cachep
);
3227 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
3229 if (ARCH_SLAB_MINALIGN
&&
3230 ((unsigned long)objp
& (ARCH_SLAB_MINALIGN
-1))) {
3231 printk(KERN_ERR
"0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3232 objp
, (int)ARCH_SLAB_MINALIGN
);
3237 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3240 static bool slab_should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3242 if (cachep
== kmem_cache
)
3245 return should_failslab(cachep
->object_size
, flags
, cachep
->flags
);
3248 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3251 struct array_cache
*ac
;
3252 bool force_refill
= false;
3256 ac
= cpu_cache_get(cachep
);
3257 if (likely(ac
->avail
)) {
3259 objp
= ac_get_obj(cachep
, ac
, flags
, false);
3262 * Allow for the possibility all avail objects are not allowed
3263 * by the current flags
3266 STATS_INC_ALLOCHIT(cachep
);
3269 force_refill
= true;
3272 STATS_INC_ALLOCMISS(cachep
);
3273 objp
= cache_alloc_refill(cachep
, flags
, force_refill
);
3275 * the 'ac' may be updated by cache_alloc_refill(),
3276 * and kmemleak_erase() requires its correct value.
3278 ac
= cpu_cache_get(cachep
);
3282 * To avoid a false negative, if an object that is in one of the
3283 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3284 * treat the array pointers as a reference to the object.
3287 kmemleak_erase(&ac
->entry
[ac
->avail
]);
3293 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3295 * If we are in_interrupt, then process context, including cpusets and
3296 * mempolicy, may not apply and should not be used for allocation policy.
3298 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3300 int nid_alloc
, nid_here
;
3302 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3304 nid_alloc
= nid_here
= numa_mem_id();
3305 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3306 nid_alloc
= cpuset_slab_spread_node();
3307 else if (current
->mempolicy
)
3308 nid_alloc
= slab_node();
3309 if (nid_alloc
!= nid_here
)
3310 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3315 * Fallback function if there was no memory available and no objects on a
3316 * certain node and fall back is permitted. First we scan all the
3317 * available nodelists for available objects. If that fails then we
3318 * perform an allocation without specifying a node. This allows the page
3319 * allocator to do its reclaim / fallback magic. We then insert the
3320 * slab into the proper nodelist and then allocate from it.
3322 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3324 struct zonelist
*zonelist
;
3328 enum zone_type high_zoneidx
= gfp_zone(flags
);
3331 unsigned int cpuset_mems_cookie
;
3333 if (flags
& __GFP_THISNODE
)
3336 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
3339 cpuset_mems_cookie
= get_mems_allowed();
3340 zonelist
= node_zonelist(slab_node(), flags
);
3344 * Look through allowed nodes for objects available
3345 * from existing per node queues.
3347 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
3348 nid
= zone_to_nid(zone
);
3350 if (cpuset_zone_allowed_hardwall(zone
, flags
) &&
3351 cache
->nodelists
[nid
] &&
3352 cache
->nodelists
[nid
]->free_objects
) {
3353 obj
= ____cache_alloc_node(cache
,
3354 flags
| GFP_THISNODE
, nid
);
3362 * This allocation will be performed within the constraints
3363 * of the current cpuset / memory policy requirements.
3364 * We may trigger various forms of reclaim on the allowed
3365 * set and go into memory reserves if necessary.
3367 if (local_flags
& __GFP_WAIT
)
3369 kmem_flagcheck(cache
, flags
);
3370 obj
= kmem_getpages(cache
, local_flags
, numa_mem_id());
3371 if (local_flags
& __GFP_WAIT
)
3372 local_irq_disable();
3375 * Insert into the appropriate per node queues
3377 nid
= page_to_nid(virt_to_page(obj
));
3378 if (cache_grow(cache
, flags
, nid
, obj
)) {
3379 obj
= ____cache_alloc_node(cache
,
3380 flags
| GFP_THISNODE
, nid
);
3383 * Another processor may allocate the
3384 * objects in the slab since we are
3385 * not holding any locks.
3389 /* cache_grow already freed obj */
3395 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !obj
))
3401 * A interface to enable slab creation on nodeid
3403 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3406 struct list_head
*entry
;
3408 struct kmem_list3
*l3
;
3412 l3
= cachep
->nodelists
[nodeid
];
3417 spin_lock(&l3
->list_lock
);
3418 entry
= l3
->slabs_partial
.next
;
3419 if (entry
== &l3
->slabs_partial
) {
3420 l3
->free_touched
= 1;
3421 entry
= l3
->slabs_free
.next
;
3422 if (entry
== &l3
->slabs_free
)
3426 slabp
= list_entry(entry
, struct slab
, list
);
3427 check_spinlock_acquired_node(cachep
, nodeid
);
3428 check_slabp(cachep
, slabp
);
3430 STATS_INC_NODEALLOCS(cachep
);
3431 STATS_INC_ACTIVE(cachep
);
3432 STATS_SET_HIGH(cachep
);
3434 BUG_ON(slabp
->inuse
== cachep
->num
);
3436 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
3437 check_slabp(cachep
, slabp
);
3439 /* move slabp to correct slabp list: */
3440 list_del(&slabp
->list
);
3442 if (slabp
->free
== BUFCTL_END
)
3443 list_add(&slabp
->list
, &l3
->slabs_full
);
3445 list_add(&slabp
->list
, &l3
->slabs_partial
);
3447 spin_unlock(&l3
->list_lock
);
3451 spin_unlock(&l3
->list_lock
);
3452 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, nodeid
, NULL
);
3456 return fallback_alloc(cachep
, flags
);
3463 * kmem_cache_alloc_node - Allocate an object on the specified node
3464 * @cachep: The cache to allocate from.
3465 * @flags: See kmalloc().
3466 * @nodeid: node number of the target node.
3467 * @caller: return address of caller, used for debug information
3469 * Identical to kmem_cache_alloc but it will allocate memory on the given
3470 * node, which can improve the performance for cpu bound structures.
3472 * Fallback to other node is possible if __GFP_THISNODE is not set.
3474 static __always_inline
void *
3475 slab_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3476 unsigned long caller
)
3478 unsigned long save_flags
;
3480 int slab_node
= numa_mem_id();
3482 flags
&= gfp_allowed_mask
;
3484 lockdep_trace_alloc(flags
);
3486 if (slab_should_failslab(cachep
, flags
))
3489 cachep
= memcg_kmem_get_cache(cachep
, flags
);
3491 cache_alloc_debugcheck_before(cachep
, flags
);
3492 local_irq_save(save_flags
);
3494 if (nodeid
== NUMA_NO_NODE
)
3497 if (unlikely(!cachep
->nodelists
[nodeid
])) {
3498 /* Node not bootstrapped yet */
3499 ptr
= fallback_alloc(cachep
, flags
);
3503 if (nodeid
== slab_node
) {
3505 * Use the locally cached objects if possible.
3506 * However ____cache_alloc does not allow fallback
3507 * to other nodes. It may fail while we still have
3508 * objects on other nodes available.
3510 ptr
= ____cache_alloc(cachep
, flags
);
3514 /* ___cache_alloc_node can fall back to other nodes */
3515 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3517 local_irq_restore(save_flags
);
3518 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3519 kmemleak_alloc_recursive(ptr
, cachep
->object_size
, 1, cachep
->flags
,
3523 kmemcheck_slab_alloc(cachep
, flags
, ptr
, cachep
->object_size
);
3525 if (unlikely((flags
& __GFP_ZERO
) && ptr
))
3526 memset(ptr
, 0, cachep
->object_size
);
3531 static __always_inline
void *
3532 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3536 if (unlikely(current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
))) {
3537 objp
= alternate_node_alloc(cache
, flags
);
3541 objp
= ____cache_alloc(cache
, flags
);
3544 * We may just have run out of memory on the local node.
3545 * ____cache_alloc_node() knows how to locate memory on other nodes
3548 objp
= ____cache_alloc_node(cache
, flags
, numa_mem_id());
3555 static __always_inline
void *
3556 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3558 return ____cache_alloc(cachep
, flags
);
3561 #endif /* CONFIG_NUMA */
3563 static __always_inline
void *
3564 slab_alloc(struct kmem_cache
*cachep
, gfp_t flags
, unsigned long caller
)
3566 unsigned long save_flags
;
3569 flags
&= gfp_allowed_mask
;
3571 lockdep_trace_alloc(flags
);
3573 if (slab_should_failslab(cachep
, flags
))
3576 cachep
= memcg_kmem_get_cache(cachep
, flags
);
3578 cache_alloc_debugcheck_before(cachep
, flags
);
3579 local_irq_save(save_flags
);
3580 objp
= __do_cache_alloc(cachep
, flags
);
3581 local_irq_restore(save_flags
);
3582 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3583 kmemleak_alloc_recursive(objp
, cachep
->object_size
, 1, cachep
->flags
,
3588 kmemcheck_slab_alloc(cachep
, flags
, objp
, cachep
->object_size
);
3590 if (unlikely((flags
& __GFP_ZERO
) && objp
))
3591 memset(objp
, 0, cachep
->object_size
);
3597 * Caller needs to acquire correct kmem_list's list_lock
3599 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3603 struct kmem_list3
*l3
;
3605 for (i
= 0; i
< nr_objects
; i
++) {
3609 clear_obj_pfmemalloc(&objpp
[i
]);
3612 slabp
= virt_to_slab(objp
);
3613 l3
= cachep
->nodelists
[node
];
3614 list_del(&slabp
->list
);
3615 check_spinlock_acquired_node(cachep
, node
);
3616 check_slabp(cachep
, slabp
);
3617 slab_put_obj(cachep
, slabp
, objp
, node
);
3618 STATS_DEC_ACTIVE(cachep
);
3620 check_slabp(cachep
, slabp
);
3622 /* fixup slab chains */
3623 if (slabp
->inuse
== 0) {
3624 if (l3
->free_objects
> l3
->free_limit
) {
3625 l3
->free_objects
-= cachep
->num
;
3626 /* No need to drop any previously held
3627 * lock here, even if we have a off-slab slab
3628 * descriptor it is guaranteed to come from
3629 * a different cache, refer to comments before
3632 slab_destroy(cachep
, slabp
);
3634 list_add(&slabp
->list
, &l3
->slabs_free
);
3637 /* Unconditionally move a slab to the end of the
3638 * partial list on free - maximum time for the
3639 * other objects to be freed, too.
3641 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3646 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3649 struct kmem_list3
*l3
;
3650 int node
= numa_mem_id();
3652 batchcount
= ac
->batchcount
;
3654 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3657 l3
= cachep
->nodelists
[node
];
3658 spin_lock(&l3
->list_lock
);
3660 struct array_cache
*shared_array
= l3
->shared
;
3661 int max
= shared_array
->limit
- shared_array
->avail
;
3663 if (batchcount
> max
)
3665 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3666 ac
->entry
, sizeof(void *) * batchcount
);
3667 shared_array
->avail
+= batchcount
;
3672 free_block(cachep
, ac
->entry
, batchcount
, node
);
3677 struct list_head
*p
;
3679 p
= l3
->slabs_free
.next
;
3680 while (p
!= &(l3
->slabs_free
)) {
3683 slabp
= list_entry(p
, struct slab
, list
);
3684 BUG_ON(slabp
->inuse
);
3689 STATS_SET_FREEABLE(cachep
, i
);
3692 spin_unlock(&l3
->list_lock
);
3693 ac
->avail
-= batchcount
;
3694 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3698 * Release an obj back to its cache. If the obj has a constructed state, it must
3699 * be in this state _before_ it is released. Called with disabled ints.
3701 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
,
3702 unsigned long caller
)
3704 struct array_cache
*ac
= cpu_cache_get(cachep
);
3707 kmemleak_free_recursive(objp
, cachep
->flags
);
3708 objp
= cache_free_debugcheck(cachep
, objp
, caller
);
3710 kmemcheck_slab_free(cachep
, objp
, cachep
->object_size
);
3713 * Skip calling cache_free_alien() when the platform is not numa.
3714 * This will avoid cache misses that happen while accessing slabp (which
3715 * is per page memory reference) to get nodeid. Instead use a global
3716 * variable to skip the call, which is mostly likely to be present in
3719 if (nr_online_nodes
> 1 && cache_free_alien(cachep
, objp
))
3722 if (likely(ac
->avail
< ac
->limit
)) {
3723 STATS_INC_FREEHIT(cachep
);
3725 STATS_INC_FREEMISS(cachep
);
3726 cache_flusharray(cachep
, ac
);
3729 ac_put_obj(cachep
, ac
, objp
);
3733 * kmem_cache_alloc - Allocate an object
3734 * @cachep: The cache to allocate from.
3735 * @flags: See kmalloc().
3737 * Allocate an object from this cache. The flags are only relevant
3738 * if the cache has no available objects.
3740 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3742 void *ret
= slab_alloc(cachep
, flags
, _RET_IP_
);
3744 trace_kmem_cache_alloc(_RET_IP_
, ret
,
3745 cachep
->object_size
, cachep
->size
, flags
);
3749 EXPORT_SYMBOL(kmem_cache_alloc
);
3751 #ifdef CONFIG_TRACING
3753 kmem_cache_alloc_trace(struct kmem_cache
*cachep
, gfp_t flags
, size_t size
)
3757 ret
= slab_alloc(cachep
, flags
, _RET_IP_
);
3759 trace_kmalloc(_RET_IP_
, ret
,
3760 size
, cachep
->size
, flags
);
3763 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
3767 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3769 void *ret
= slab_alloc_node(cachep
, flags
, nodeid
, _RET_IP_
);
3771 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
3772 cachep
->object_size
, cachep
->size
,
3777 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3779 #ifdef CONFIG_TRACING
3780 void *kmem_cache_alloc_node_trace(struct kmem_cache
*cachep
,
3787 ret
= slab_alloc_node(cachep
, flags
, nodeid
, _RET_IP_
);
3789 trace_kmalloc_node(_RET_IP_
, ret
,
3794 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
3797 static __always_inline
void *
3798 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, unsigned long caller
)
3800 struct kmem_cache
*cachep
;
3802 cachep
= kmem_find_general_cachep(size
, flags
);
3803 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3805 return kmem_cache_alloc_node_trace(cachep
, flags
, node
, size
);
3808 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3809 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3811 return __do_kmalloc_node(size
, flags
, node
, _RET_IP_
);
3813 EXPORT_SYMBOL(__kmalloc_node
);
3815 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3816 int node
, unsigned long caller
)
3818 return __do_kmalloc_node(size
, flags
, node
, caller
);
3820 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3822 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3824 return __do_kmalloc_node(size
, flags
, node
, 0);
3826 EXPORT_SYMBOL(__kmalloc_node
);
3827 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3828 #endif /* CONFIG_NUMA */
3831 * __do_kmalloc - allocate memory
3832 * @size: how many bytes of memory are required.
3833 * @flags: the type of memory to allocate (see kmalloc).
3834 * @caller: function caller for debug tracking of the caller
3836 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3837 unsigned long caller
)
3839 struct kmem_cache
*cachep
;
3842 /* If you want to save a few bytes .text space: replace
3844 * Then kmalloc uses the uninlined functions instead of the inline
3847 cachep
= __find_general_cachep(size
, flags
);
3848 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3850 ret
= slab_alloc(cachep
, flags
, caller
);
3852 trace_kmalloc(caller
, ret
,
3853 size
, cachep
->size
, flags
);
3859 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3860 void *__kmalloc(size_t size
, gfp_t flags
)
3862 return __do_kmalloc(size
, flags
, _RET_IP_
);
3864 EXPORT_SYMBOL(__kmalloc
);
3866 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, unsigned long caller
)
3868 return __do_kmalloc(size
, flags
, caller
);
3870 EXPORT_SYMBOL(__kmalloc_track_caller
);
3873 void *__kmalloc(size_t size
, gfp_t flags
)
3875 return __do_kmalloc(size
, flags
, 0);
3877 EXPORT_SYMBOL(__kmalloc
);
3881 * kmem_cache_free - Deallocate an object
3882 * @cachep: The cache the allocation was from.
3883 * @objp: The previously allocated object.
3885 * Free an object which was previously allocated from this
3888 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3890 unsigned long flags
;
3891 cachep
= cache_from_obj(cachep
, objp
);
3895 local_irq_save(flags
);
3896 debug_check_no_locks_freed(objp
, cachep
->object_size
);
3897 if (!(cachep
->flags
& SLAB_DEBUG_OBJECTS
))
3898 debug_check_no_obj_freed(objp
, cachep
->object_size
);
3899 __cache_free(cachep
, objp
, _RET_IP_
);
3900 local_irq_restore(flags
);
3902 trace_kmem_cache_free(_RET_IP_
, objp
);
3904 EXPORT_SYMBOL(kmem_cache_free
);
3907 * kfree - free previously allocated memory
3908 * @objp: pointer returned by kmalloc.
3910 * If @objp is NULL, no operation is performed.
3912 * Don't free memory not originally allocated by kmalloc()
3913 * or you will run into trouble.
3915 void kfree(const void *objp
)
3917 struct kmem_cache
*c
;
3918 unsigned long flags
;
3920 trace_kfree(_RET_IP_
, objp
);
3922 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3924 local_irq_save(flags
);
3925 kfree_debugcheck(objp
);
3926 c
= virt_to_cache(objp
);
3927 debug_check_no_locks_freed(objp
, c
->object_size
);
3929 debug_check_no_obj_freed(objp
, c
->object_size
);
3930 __cache_free(c
, (void *)objp
, _RET_IP_
);
3931 local_irq_restore(flags
);
3933 EXPORT_SYMBOL(kfree
);
3936 * This initializes kmem_list3 or resizes various caches for all nodes.
3938 static int alloc_kmemlist(struct kmem_cache
*cachep
, gfp_t gfp
)
3941 struct kmem_list3
*l3
;
3942 struct array_cache
*new_shared
;
3943 struct array_cache
**new_alien
= NULL
;
3945 for_each_online_node(node
) {
3947 if (use_alien_caches
) {
3948 new_alien
= alloc_alien_cache(node
, cachep
->limit
, gfp
);
3954 if (cachep
->shared
) {
3955 new_shared
= alloc_arraycache(node
,
3956 cachep
->shared
*cachep
->batchcount
,
3959 free_alien_cache(new_alien
);
3964 l3
= cachep
->nodelists
[node
];
3966 struct array_cache
*shared
= l3
->shared
;
3968 spin_lock_irq(&l3
->list_lock
);
3971 free_block(cachep
, shared
->entry
,
3972 shared
->avail
, node
);
3974 l3
->shared
= new_shared
;
3976 l3
->alien
= new_alien
;
3979 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3980 cachep
->batchcount
+ cachep
->num
;
3981 spin_unlock_irq(&l3
->list_lock
);
3983 free_alien_cache(new_alien
);
3986 l3
= kmalloc_node(sizeof(struct kmem_list3
), gfp
, node
);
3988 free_alien_cache(new_alien
);
3993 kmem_list3_init(l3
);
3994 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3995 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3996 l3
->shared
= new_shared
;
3997 l3
->alien
= new_alien
;
3998 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3999 cachep
->batchcount
+ cachep
->num
;
4000 cachep
->nodelists
[node
] = l3
;
4005 if (!cachep
->list
.next
) {
4006 /* Cache is not active yet. Roll back what we did */
4009 if (cachep
->nodelists
[node
]) {
4010 l3
= cachep
->nodelists
[node
];
4013 free_alien_cache(l3
->alien
);
4015 cachep
->nodelists
[node
] = NULL
;
4023 struct ccupdate_struct
{
4024 struct kmem_cache
*cachep
;
4025 struct array_cache
*new[0];
4028 static void do_ccupdate_local(void *info
)
4030 struct ccupdate_struct
*new = info
;
4031 struct array_cache
*old
;
4034 old
= cpu_cache_get(new->cachep
);
4036 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
4037 new->new[smp_processor_id()] = old
;
4040 /* Always called with the slab_mutex held */
4041 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
4042 int batchcount
, int shared
, gfp_t gfp
)
4044 struct ccupdate_struct
*new;
4047 new = kzalloc(sizeof(*new) + nr_cpu_ids
* sizeof(struct array_cache
*),
4052 for_each_online_cpu(i
) {
4053 new->new[i
] = alloc_arraycache(cpu_to_mem(i
), limit
,
4056 for (i
--; i
>= 0; i
--)
4062 new->cachep
= cachep
;
4064 on_each_cpu(do_ccupdate_local
, (void *)new, 1);
4067 cachep
->batchcount
= batchcount
;
4068 cachep
->limit
= limit
;
4069 cachep
->shared
= shared
;
4071 for_each_online_cpu(i
) {
4072 struct array_cache
*ccold
= new->new[i
];
4075 spin_lock_irq(&cachep
->nodelists
[cpu_to_mem(i
)]->list_lock
);
4076 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_mem(i
));
4077 spin_unlock_irq(&cachep
->nodelists
[cpu_to_mem(i
)]->list_lock
);
4081 return alloc_kmemlist(cachep
, gfp
);
4084 /* Called with slab_mutex held always */
4085 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
)
4091 * The head array serves three purposes:
4092 * - create a LIFO ordering, i.e. return objects that are cache-warm
4093 * - reduce the number of spinlock operations.
4094 * - reduce the number of linked list operations on the slab and
4095 * bufctl chains: array operations are cheaper.
4096 * The numbers are guessed, we should auto-tune as described by
4099 if (cachep
->size
> 131072)
4101 else if (cachep
->size
> PAGE_SIZE
)
4103 else if (cachep
->size
> 1024)
4105 else if (cachep
->size
> 256)
4111 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4112 * allocation behaviour: Most allocs on one cpu, most free operations
4113 * on another cpu. For these cases, an efficient object passing between
4114 * cpus is necessary. This is provided by a shared array. The array
4115 * replaces Bonwick's magazine layer.
4116 * On uniprocessor, it's functionally equivalent (but less efficient)
4117 * to a larger limit. Thus disabled by default.
4120 if (cachep
->size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
4125 * With debugging enabled, large batchcount lead to excessively long
4126 * periods with disabled local interrupts. Limit the batchcount
4131 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
, gfp
);
4133 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
4134 cachep
->name
, -err
);
4139 * Drain an array if it contains any elements taking the l3 lock only if
4140 * necessary. Note that the l3 listlock also protects the array_cache
4141 * if drain_array() is used on the shared array.
4143 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
4144 struct array_cache
*ac
, int force
, int node
)
4148 if (!ac
|| !ac
->avail
)
4150 if (ac
->touched
&& !force
) {
4153 spin_lock_irq(&l3
->list_lock
);
4155 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
4156 if (tofree
> ac
->avail
)
4157 tofree
= (ac
->avail
+ 1) / 2;
4158 free_block(cachep
, ac
->entry
, tofree
, node
);
4159 ac
->avail
-= tofree
;
4160 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
4161 sizeof(void *) * ac
->avail
);
4163 spin_unlock_irq(&l3
->list_lock
);
4168 * cache_reap - Reclaim memory from caches.
4169 * @w: work descriptor
4171 * Called from workqueue/eventd every few seconds.
4173 * - clear the per-cpu caches for this CPU.
4174 * - return freeable pages to the main free memory pool.
4176 * If we cannot acquire the cache chain mutex then just give up - we'll try
4177 * again on the next iteration.
4179 static void cache_reap(struct work_struct
*w
)
4181 struct kmem_cache
*searchp
;
4182 struct kmem_list3
*l3
;
4183 int node
= numa_mem_id();
4184 struct delayed_work
*work
= to_delayed_work(w
);
4186 if (!mutex_trylock(&slab_mutex
))
4187 /* Give up. Setup the next iteration. */
4190 list_for_each_entry(searchp
, &slab_caches
, list
) {
4194 * We only take the l3 lock if absolutely necessary and we
4195 * have established with reasonable certainty that
4196 * we can do some work if the lock was obtained.
4198 l3
= searchp
->nodelists
[node
];
4200 reap_alien(searchp
, l3
);
4202 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
4205 * These are racy checks but it does not matter
4206 * if we skip one check or scan twice.
4208 if (time_after(l3
->next_reap
, jiffies
))
4211 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
4213 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
4215 if (l3
->free_touched
)
4216 l3
->free_touched
= 0;
4220 freed
= drain_freelist(searchp
, l3
, (l3
->free_limit
+
4221 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4222 STATS_ADD_REAPED(searchp
, freed
);
4228 mutex_unlock(&slab_mutex
);
4231 /* Set up the next iteration */
4232 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_CPUC
));
4235 #ifdef CONFIG_SLABINFO
4236 void get_slabinfo(struct kmem_cache
*cachep
, struct slabinfo
*sinfo
)
4239 unsigned long active_objs
;
4240 unsigned long num_objs
;
4241 unsigned long active_slabs
= 0;
4242 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
4246 struct kmem_list3
*l3
;
4250 for_each_online_node(node
) {
4251 l3
= cachep
->nodelists
[node
];
4256 spin_lock_irq(&l3
->list_lock
);
4258 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
4259 if (slabp
->inuse
!= cachep
->num
&& !error
)
4260 error
= "slabs_full accounting error";
4261 active_objs
+= cachep
->num
;
4264 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
4265 if (slabp
->inuse
== cachep
->num
&& !error
)
4266 error
= "slabs_partial inuse accounting error";
4267 if (!slabp
->inuse
&& !error
)
4268 error
= "slabs_partial/inuse accounting error";
4269 active_objs
+= slabp
->inuse
;
4272 list_for_each_entry(slabp
, &l3
->slabs_free
, list
) {
4273 if (slabp
->inuse
&& !error
)
4274 error
= "slabs_free/inuse accounting error";
4277 free_objects
+= l3
->free_objects
;
4279 shared_avail
+= l3
->shared
->avail
;
4281 spin_unlock_irq(&l3
->list_lock
);
4283 num_slabs
+= active_slabs
;
4284 num_objs
= num_slabs
* cachep
->num
;
4285 if (num_objs
- active_objs
!= free_objects
&& !error
)
4286 error
= "free_objects accounting error";
4288 name
= cachep
->name
;
4290 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
4292 sinfo
->active_objs
= active_objs
;
4293 sinfo
->num_objs
= num_objs
;
4294 sinfo
->active_slabs
= active_slabs
;
4295 sinfo
->num_slabs
= num_slabs
;
4296 sinfo
->shared_avail
= shared_avail
;
4297 sinfo
->limit
= cachep
->limit
;
4298 sinfo
->batchcount
= cachep
->batchcount
;
4299 sinfo
->shared
= cachep
->shared
;
4300 sinfo
->objects_per_slab
= cachep
->num
;
4301 sinfo
->cache_order
= cachep
->gfporder
;
4304 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*cachep
)
4308 unsigned long high
= cachep
->high_mark
;
4309 unsigned long allocs
= cachep
->num_allocations
;
4310 unsigned long grown
= cachep
->grown
;
4311 unsigned long reaped
= cachep
->reaped
;
4312 unsigned long errors
= cachep
->errors
;
4313 unsigned long max_freeable
= cachep
->max_freeable
;
4314 unsigned long node_allocs
= cachep
->node_allocs
;
4315 unsigned long node_frees
= cachep
->node_frees
;
4316 unsigned long overflows
= cachep
->node_overflow
;
4318 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu "
4319 "%4lu %4lu %4lu %4lu %4lu",
4320 allocs
, high
, grown
,
4321 reaped
, errors
, max_freeable
, node_allocs
,
4322 node_frees
, overflows
);
4326 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4327 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4328 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4329 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4331 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4332 allochit
, allocmiss
, freehit
, freemiss
);
4337 #define MAX_SLABINFO_WRITE 128
4339 * slabinfo_write - Tuning for the slab allocator
4341 * @buffer: user buffer
4342 * @count: data length
4345 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
4346 size_t count
, loff_t
*ppos
)
4348 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4349 int limit
, batchcount
, shared
, res
;
4350 struct kmem_cache
*cachep
;
4352 if (count
> MAX_SLABINFO_WRITE
)
4354 if (copy_from_user(&kbuf
, buffer
, count
))
4356 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4358 tmp
= strchr(kbuf
, ' ');
4363 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4366 /* Find the cache in the chain of caches. */
4367 mutex_lock(&slab_mutex
);
4369 list_for_each_entry(cachep
, &slab_caches
, list
) {
4370 if (!strcmp(cachep
->name
, kbuf
)) {
4371 if (limit
< 1 || batchcount
< 1 ||
4372 batchcount
> limit
|| shared
< 0) {
4375 res
= do_tune_cpucache(cachep
, limit
,
4382 mutex_unlock(&slab_mutex
);
4388 #ifdef CONFIG_DEBUG_SLAB_LEAK
4390 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4392 mutex_lock(&slab_mutex
);
4393 return seq_list_start(&slab_caches
, *pos
);
4396 static inline int add_caller(unsigned long *n
, unsigned long v
)
4406 unsigned long *q
= p
+ 2 * i
;
4420 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4426 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4432 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->size
) {
4433 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4435 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4440 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4442 #ifdef CONFIG_KALLSYMS
4443 unsigned long offset
, size
;
4444 char modname
[MODULE_NAME_LEN
], name
[KSYM_NAME_LEN
];
4446 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4447 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4449 seq_printf(m
, " [%s]", modname
);
4453 seq_printf(m
, "%p", (void *)address
);
4456 static int leaks_show(struct seq_file
*m
, void *p
)
4458 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, list
);
4460 struct kmem_list3
*l3
;
4462 unsigned long *n
= m
->private;
4466 if (!(cachep
->flags
& SLAB_STORE_USER
))
4468 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4471 /* OK, we can do it */
4475 for_each_online_node(node
) {
4476 l3
= cachep
->nodelists
[node
];
4481 spin_lock_irq(&l3
->list_lock
);
4483 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
4484 handle_slab(n
, cachep
, slabp
);
4485 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
4486 handle_slab(n
, cachep
, slabp
);
4487 spin_unlock_irq(&l3
->list_lock
);
4489 name
= cachep
->name
;
4491 /* Increase the buffer size */
4492 mutex_unlock(&slab_mutex
);
4493 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4495 /* Too bad, we are really out */
4497 mutex_lock(&slab_mutex
);
4500 *(unsigned long *)m
->private = n
[0] * 2;
4502 mutex_lock(&slab_mutex
);
4503 /* Now make sure this entry will be retried */
4507 for (i
= 0; i
< n
[1]; i
++) {
4508 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4509 show_symbol(m
, n
[2*i
+2]);
4516 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4518 return seq_list_next(p
, &slab_caches
, pos
);
4521 static void s_stop(struct seq_file
*m
, void *p
)
4523 mutex_unlock(&slab_mutex
);
4526 static const struct seq_operations slabstats_op
= {
4527 .start
= leaks_start
,
4533 static int slabstats_open(struct inode
*inode
, struct file
*file
)
4535 unsigned long *n
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
4538 ret
= seq_open(file
, &slabstats_op
);
4540 struct seq_file
*m
= file
->private_data
;
4541 *n
= PAGE_SIZE
/ (2 * sizeof(unsigned long));
4550 static const struct file_operations proc_slabstats_operations
= {
4551 .open
= slabstats_open
,
4553 .llseek
= seq_lseek
,
4554 .release
= seq_release_private
,
4558 static int __init
slab_proc_init(void)
4560 #ifdef CONFIG_DEBUG_SLAB_LEAK
4561 proc_create("slab_allocators", 0, NULL
, &proc_slabstats_operations
);
4565 module_init(slab_proc_init
);
4569 * ksize - get the actual amount of memory allocated for a given object
4570 * @objp: Pointer to the object
4572 * kmalloc may internally round up allocations and return more memory
4573 * than requested. ksize() can be used to determine the actual amount of
4574 * memory allocated. The caller may use this additional memory, even though
4575 * a smaller amount of memory was initially specified with the kmalloc call.
4576 * The caller must guarantee that objp points to a valid object previously
4577 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4578 * must not be freed during the duration of the call.
4580 size_t ksize(const void *objp
)
4583 if (unlikely(objp
== ZERO_SIZE_PTR
))
4586 return virt_to_cache(objp
)->object_size
;
4588 EXPORT_SYMBOL(ksize
);