mm: drop migrate type checks from has_unmovable_pages
[linux/fpc-iii.git] / sound / soc / atmel / atmel_ssc_dai.c
bloba1e2c5682dcda82b5c04566f6d773659dcc4bb47
1 /*
2 * atmel_ssc_dai.c -- ALSA SoC ATMEL SSC Audio Layer Platform driver
4 * Copyright (C) 2005 SAN People
5 * Copyright (C) 2008 Atmel
7 * Author: Sedji Gaouaou <sedji.gaouaou@atmel.com>
8 * ATMEL CORP.
10 * Based on at91-ssc.c by
11 * Frank Mandarino <fmandarino@endrelia.com>
12 * Based on pxa2xx Platform drivers by
13 * Liam Girdwood <lrg@slimlogic.co.uk>
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 * GNU General Public License for more details.
25 * You should have received a copy of the GNU General Public License
26 * along with this program; if not, write to the Free Software
27 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
30 #include <linux/init.h>
31 #include <linux/module.h>
32 #include <linux/interrupt.h>
33 #include <linux/device.h>
34 #include <linux/delay.h>
35 #include <linux/clk.h>
36 #include <linux/atmel_pdc.h>
38 #include <linux/atmel-ssc.h>
39 #include <sound/core.h>
40 #include <sound/pcm.h>
41 #include <sound/pcm_params.h>
42 #include <sound/initval.h>
43 #include <sound/soc.h>
45 #include "atmel-pcm.h"
46 #include "atmel_ssc_dai.h"
49 #define NUM_SSC_DEVICES 3
52 * SSC PDC registers required by the PCM DMA engine.
54 static struct atmel_pdc_regs pdc_tx_reg = {
55 .xpr = ATMEL_PDC_TPR,
56 .xcr = ATMEL_PDC_TCR,
57 .xnpr = ATMEL_PDC_TNPR,
58 .xncr = ATMEL_PDC_TNCR,
61 static struct atmel_pdc_regs pdc_rx_reg = {
62 .xpr = ATMEL_PDC_RPR,
63 .xcr = ATMEL_PDC_RCR,
64 .xnpr = ATMEL_PDC_RNPR,
65 .xncr = ATMEL_PDC_RNCR,
69 * SSC & PDC status bits for transmit and receive.
71 static struct atmel_ssc_mask ssc_tx_mask = {
72 .ssc_enable = SSC_BIT(CR_TXEN),
73 .ssc_disable = SSC_BIT(CR_TXDIS),
74 .ssc_endx = SSC_BIT(SR_ENDTX),
75 .ssc_endbuf = SSC_BIT(SR_TXBUFE),
76 .ssc_error = SSC_BIT(SR_OVRUN),
77 .pdc_enable = ATMEL_PDC_TXTEN,
78 .pdc_disable = ATMEL_PDC_TXTDIS,
81 static struct atmel_ssc_mask ssc_rx_mask = {
82 .ssc_enable = SSC_BIT(CR_RXEN),
83 .ssc_disable = SSC_BIT(CR_RXDIS),
84 .ssc_endx = SSC_BIT(SR_ENDRX),
85 .ssc_endbuf = SSC_BIT(SR_RXBUFF),
86 .ssc_error = SSC_BIT(SR_OVRUN),
87 .pdc_enable = ATMEL_PDC_RXTEN,
88 .pdc_disable = ATMEL_PDC_RXTDIS,
93 * DMA parameters.
95 static struct atmel_pcm_dma_params ssc_dma_params[NUM_SSC_DEVICES][2] = {
97 .name = "SSC0 PCM out",
98 .pdc = &pdc_tx_reg,
99 .mask = &ssc_tx_mask,
102 .name = "SSC0 PCM in",
103 .pdc = &pdc_rx_reg,
104 .mask = &ssc_rx_mask,
105 } },
107 .name = "SSC1 PCM out",
108 .pdc = &pdc_tx_reg,
109 .mask = &ssc_tx_mask,
112 .name = "SSC1 PCM in",
113 .pdc = &pdc_rx_reg,
114 .mask = &ssc_rx_mask,
115 } },
117 .name = "SSC2 PCM out",
118 .pdc = &pdc_tx_reg,
119 .mask = &ssc_tx_mask,
122 .name = "SSC2 PCM in",
123 .pdc = &pdc_rx_reg,
124 .mask = &ssc_rx_mask,
125 } },
129 static struct atmel_ssc_info ssc_info[NUM_SSC_DEVICES] = {
131 .name = "ssc0",
132 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[0].lock),
133 .dir_mask = SSC_DIR_MASK_UNUSED,
134 .initialized = 0,
137 .name = "ssc1",
138 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[1].lock),
139 .dir_mask = SSC_DIR_MASK_UNUSED,
140 .initialized = 0,
143 .name = "ssc2",
144 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[2].lock),
145 .dir_mask = SSC_DIR_MASK_UNUSED,
146 .initialized = 0,
152 * SSC interrupt handler. Passes PDC interrupts to the DMA
153 * interrupt handler in the PCM driver.
155 static irqreturn_t atmel_ssc_interrupt(int irq, void *dev_id)
157 struct atmel_ssc_info *ssc_p = dev_id;
158 struct atmel_pcm_dma_params *dma_params;
159 u32 ssc_sr;
160 u32 ssc_substream_mask;
161 int i;
163 ssc_sr = (unsigned long)ssc_readl(ssc_p->ssc->regs, SR)
164 & (unsigned long)ssc_readl(ssc_p->ssc->regs, IMR);
167 * Loop through the substreams attached to this SSC. If
168 * a DMA-related interrupt occurred on that substream, call
169 * the DMA interrupt handler function, if one has been
170 * registered in the dma_params structure by the PCM driver.
172 for (i = 0; i < ARRAY_SIZE(ssc_p->dma_params); i++) {
173 dma_params = ssc_p->dma_params[i];
175 if ((dma_params != NULL) &&
176 (dma_params->dma_intr_handler != NULL)) {
177 ssc_substream_mask = (dma_params->mask->ssc_endx |
178 dma_params->mask->ssc_endbuf);
179 if (ssc_sr & ssc_substream_mask) {
180 dma_params->dma_intr_handler(ssc_sr,
181 dma_params->
182 substream);
187 return IRQ_HANDLED;
191 * When the bit clock is input, limit the maximum rate according to the
192 * Serial Clock Ratio Considerations section from the SSC documentation:
194 * The Transmitter and the Receiver can be programmed to operate
195 * with the clock signals provided on either the TK or RK pins.
196 * This allows the SSC to support many slave-mode data transfers.
197 * In this case, the maximum clock speed allowed on the RK pin is:
198 * - Peripheral clock divided by 2 if Receiver Frame Synchro is input
199 * - Peripheral clock divided by 3 if Receiver Frame Synchro is output
200 * In addition, the maximum clock speed allowed on the TK pin is:
201 * - Peripheral clock divided by 6 if Transmit Frame Synchro is input
202 * - Peripheral clock divided by 2 if Transmit Frame Synchro is output
204 * When the bit clock is output, limit the rate according to the
205 * SSC divider restrictions.
207 static int atmel_ssc_hw_rule_rate(struct snd_pcm_hw_params *params,
208 struct snd_pcm_hw_rule *rule)
210 struct atmel_ssc_info *ssc_p = rule->private;
211 struct ssc_device *ssc = ssc_p->ssc;
212 struct snd_interval *i = hw_param_interval(params, rule->var);
213 struct snd_interval t;
214 struct snd_ratnum r = {
215 .den_min = 1,
216 .den_max = 4095,
217 .den_step = 1,
219 unsigned int num = 0, den = 0;
220 int frame_size;
221 int mck_div = 2;
222 int ret;
224 frame_size = snd_soc_params_to_frame_size(params);
225 if (frame_size < 0)
226 return frame_size;
228 switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) {
229 case SND_SOC_DAIFMT_CBM_CFS:
230 if ((ssc_p->dir_mask & SSC_DIR_MASK_CAPTURE)
231 && ssc->clk_from_rk_pin)
232 /* Receiver Frame Synchro (i.e. capture)
233 * is output (format is _CFS) and the RK pin
234 * is used for input (format is _CBM_).
236 mck_div = 3;
237 break;
239 case SND_SOC_DAIFMT_CBM_CFM:
240 if ((ssc_p->dir_mask & SSC_DIR_MASK_PLAYBACK)
241 && !ssc->clk_from_rk_pin)
242 /* Transmit Frame Synchro (i.e. playback)
243 * is input (format is _CFM) and the TK pin
244 * is used for input (format _CBM_ but not
245 * using the RK pin).
247 mck_div = 6;
248 break;
251 switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) {
252 case SND_SOC_DAIFMT_CBS_CFS:
253 r.num = ssc_p->mck_rate / mck_div / frame_size;
255 ret = snd_interval_ratnum(i, 1, &r, &num, &den);
256 if (ret >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
257 params->rate_num = num;
258 params->rate_den = den;
260 break;
262 case SND_SOC_DAIFMT_CBM_CFS:
263 case SND_SOC_DAIFMT_CBM_CFM:
264 t.min = 8000;
265 t.max = ssc_p->mck_rate / mck_div / frame_size;
266 t.openmin = t.openmax = 0;
267 t.integer = 0;
268 ret = snd_interval_refine(i, &t);
269 break;
271 default:
272 ret = -EINVAL;
273 break;
276 return ret;
279 /*-------------------------------------------------------------------------*\
280 * DAI functions
281 \*-------------------------------------------------------------------------*/
283 * Startup. Only that one substream allowed in each direction.
285 static int atmel_ssc_startup(struct snd_pcm_substream *substream,
286 struct snd_soc_dai *dai)
288 struct platform_device *pdev = to_platform_device(dai->dev);
289 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
290 struct atmel_pcm_dma_params *dma_params;
291 int dir, dir_mask;
292 int ret;
294 pr_debug("atmel_ssc_startup: SSC_SR=0x%x\n",
295 ssc_readl(ssc_p->ssc->regs, SR));
297 /* Enable PMC peripheral clock for this SSC */
298 pr_debug("atmel_ssc_dai: Starting clock\n");
299 clk_enable(ssc_p->ssc->clk);
300 ssc_p->mck_rate = clk_get_rate(ssc_p->ssc->clk);
302 /* Reset the SSC unless initialized to keep it in a clean state */
303 if (!ssc_p->initialized)
304 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
306 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
307 dir = 0;
308 dir_mask = SSC_DIR_MASK_PLAYBACK;
309 } else {
310 dir = 1;
311 dir_mask = SSC_DIR_MASK_CAPTURE;
314 ret = snd_pcm_hw_rule_add(substream->runtime, 0,
315 SNDRV_PCM_HW_PARAM_RATE,
316 atmel_ssc_hw_rule_rate,
317 ssc_p,
318 SNDRV_PCM_HW_PARAM_FRAME_BITS,
319 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
320 if (ret < 0) {
321 dev_err(dai->dev, "Failed to specify rate rule: %d\n", ret);
322 return ret;
325 dma_params = &ssc_dma_params[pdev->id][dir];
326 dma_params->ssc = ssc_p->ssc;
327 dma_params->substream = substream;
329 ssc_p->dma_params[dir] = dma_params;
331 snd_soc_dai_set_dma_data(dai, substream, dma_params);
333 spin_lock_irq(&ssc_p->lock);
334 if (ssc_p->dir_mask & dir_mask) {
335 spin_unlock_irq(&ssc_p->lock);
336 return -EBUSY;
338 ssc_p->dir_mask |= dir_mask;
339 spin_unlock_irq(&ssc_p->lock);
341 return 0;
345 * Shutdown. Clear DMA parameters and shutdown the SSC if there
346 * are no other substreams open.
348 static void atmel_ssc_shutdown(struct snd_pcm_substream *substream,
349 struct snd_soc_dai *dai)
351 struct platform_device *pdev = to_platform_device(dai->dev);
352 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
353 struct atmel_pcm_dma_params *dma_params;
354 int dir, dir_mask;
356 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
357 dir = 0;
358 else
359 dir = 1;
361 dma_params = ssc_p->dma_params[dir];
363 if (dma_params != NULL) {
364 dma_params->ssc = NULL;
365 dma_params->substream = NULL;
366 ssc_p->dma_params[dir] = NULL;
369 dir_mask = 1 << dir;
371 spin_lock_irq(&ssc_p->lock);
372 ssc_p->dir_mask &= ~dir_mask;
373 if (!ssc_p->dir_mask) {
374 if (ssc_p->initialized) {
375 free_irq(ssc_p->ssc->irq, ssc_p);
376 ssc_p->initialized = 0;
379 /* Reset the SSC */
380 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
381 /* Clear the SSC dividers */
382 ssc_p->cmr_div = ssc_p->tcmr_period = ssc_p->rcmr_period = 0;
383 ssc_p->forced_divider = 0;
385 spin_unlock_irq(&ssc_p->lock);
387 /* Shutdown the SSC clock. */
388 pr_debug("atmel_ssc_dai: Stopping clock\n");
389 clk_disable(ssc_p->ssc->clk);
394 * Record the DAI format for use in hw_params().
396 static int atmel_ssc_set_dai_fmt(struct snd_soc_dai *cpu_dai,
397 unsigned int fmt)
399 struct platform_device *pdev = to_platform_device(cpu_dai->dev);
400 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
402 ssc_p->daifmt = fmt;
403 return 0;
407 * Record SSC clock dividers for use in hw_params().
409 static int atmel_ssc_set_dai_clkdiv(struct snd_soc_dai *cpu_dai,
410 int div_id, int div)
412 struct platform_device *pdev = to_platform_device(cpu_dai->dev);
413 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
415 switch (div_id) {
416 case ATMEL_SSC_CMR_DIV:
418 * The same master clock divider is used for both
419 * transmit and receive, so if a value has already
420 * been set, it must match this value.
422 if (ssc_p->dir_mask !=
423 (SSC_DIR_MASK_PLAYBACK | SSC_DIR_MASK_CAPTURE))
424 ssc_p->cmr_div = div;
425 else if (ssc_p->cmr_div == 0)
426 ssc_p->cmr_div = div;
427 else
428 if (div != ssc_p->cmr_div)
429 return -EBUSY;
430 ssc_p->forced_divider |= BIT(ATMEL_SSC_CMR_DIV);
431 break;
433 case ATMEL_SSC_TCMR_PERIOD:
434 ssc_p->tcmr_period = div;
435 ssc_p->forced_divider |= BIT(ATMEL_SSC_TCMR_PERIOD);
436 break;
438 case ATMEL_SSC_RCMR_PERIOD:
439 ssc_p->rcmr_period = div;
440 ssc_p->forced_divider |= BIT(ATMEL_SSC_RCMR_PERIOD);
441 break;
443 default:
444 return -EINVAL;
447 return 0;
450 /* Is the cpu-dai master of the frame clock? */
451 static int atmel_ssc_cfs(struct atmel_ssc_info *ssc_p)
453 switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) {
454 case SND_SOC_DAIFMT_CBM_CFS:
455 case SND_SOC_DAIFMT_CBS_CFS:
456 return 1;
458 return 0;
461 /* Is the cpu-dai master of the bit clock? */
462 static int atmel_ssc_cbs(struct atmel_ssc_info *ssc_p)
464 switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) {
465 case SND_SOC_DAIFMT_CBS_CFM:
466 case SND_SOC_DAIFMT_CBS_CFS:
467 return 1;
469 return 0;
473 * Configure the SSC.
475 static int atmel_ssc_hw_params(struct snd_pcm_substream *substream,
476 struct snd_pcm_hw_params *params,
477 struct snd_soc_dai *dai)
479 struct platform_device *pdev = to_platform_device(dai->dev);
480 int id = pdev->id;
481 struct atmel_ssc_info *ssc_p = &ssc_info[id];
482 struct ssc_device *ssc = ssc_p->ssc;
483 struct atmel_pcm_dma_params *dma_params;
484 int dir, channels, bits;
485 u32 tfmr, rfmr, tcmr, rcmr;
486 int ret;
487 int fslen, fslen_ext;
488 u32 cmr_div;
489 u32 tcmr_period;
490 u32 rcmr_period;
493 * Currently, there is only one set of dma params for
494 * each direction. If more are added, this code will
495 * have to be changed to select the proper set.
497 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
498 dir = 0;
499 else
500 dir = 1;
503 * If the cpu dai should provide BCLK, but noone has provided the
504 * divider needed for that to work, fall back to something sensible.
506 cmr_div = ssc_p->cmr_div;
507 if (!(ssc_p->forced_divider & BIT(ATMEL_SSC_CMR_DIV)) &&
508 atmel_ssc_cbs(ssc_p)) {
509 int bclk_rate = snd_soc_params_to_bclk(params);
511 if (bclk_rate < 0) {
512 dev_err(dai->dev, "unable to calculate cmr_div: %d\n",
513 bclk_rate);
514 return bclk_rate;
517 cmr_div = DIV_ROUND_CLOSEST(ssc_p->mck_rate, 2 * bclk_rate);
521 * If the cpu dai should provide LRCLK, but noone has provided the
522 * dividers needed for that to work, fall back to something sensible.
524 tcmr_period = ssc_p->tcmr_period;
525 rcmr_period = ssc_p->rcmr_period;
526 if (atmel_ssc_cfs(ssc_p)) {
527 int frame_size = snd_soc_params_to_frame_size(params);
529 if (frame_size < 0) {
530 dev_err(dai->dev,
531 "unable to calculate tx/rx cmr_period: %d\n",
532 frame_size);
533 return frame_size;
536 if (!(ssc_p->forced_divider & BIT(ATMEL_SSC_TCMR_PERIOD)))
537 tcmr_period = frame_size / 2 - 1;
538 if (!(ssc_p->forced_divider & BIT(ATMEL_SSC_RCMR_PERIOD)))
539 rcmr_period = frame_size / 2 - 1;
542 dma_params = ssc_p->dma_params[dir];
544 channels = params_channels(params);
547 * Determine sample size in bits and the PDC increment.
549 switch (params_format(params)) {
550 case SNDRV_PCM_FORMAT_S8:
551 bits = 8;
552 dma_params->pdc_xfer_size = 1;
553 break;
554 case SNDRV_PCM_FORMAT_S16_LE:
555 bits = 16;
556 dma_params->pdc_xfer_size = 2;
557 break;
558 case SNDRV_PCM_FORMAT_S24_LE:
559 bits = 24;
560 dma_params->pdc_xfer_size = 4;
561 break;
562 case SNDRV_PCM_FORMAT_S32_LE:
563 bits = 32;
564 dma_params->pdc_xfer_size = 4;
565 break;
566 default:
567 printk(KERN_WARNING "atmel_ssc_dai: unsupported PCM format");
568 return -EINVAL;
572 * Compute SSC register settings.
574 switch (ssc_p->daifmt
575 & (SND_SOC_DAIFMT_FORMAT_MASK | SND_SOC_DAIFMT_MASTER_MASK)) {
577 case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBS_CFS:
579 * I2S format, SSC provides BCLK and LRC clocks.
581 * The SSC transmit and receive clocks are generated
582 * from the MCK divider, and the BCLK signal
583 * is output on the SSC TK line.
586 if (bits > 16 && !ssc->pdata->has_fslen_ext) {
587 dev_err(dai->dev,
588 "sample size %d is too large for SSC device\n",
589 bits);
590 return -EINVAL;
593 fslen_ext = (bits - 1) / 16;
594 fslen = (bits - 1) % 16;
596 rcmr = SSC_BF(RCMR_PERIOD, rcmr_period)
597 | SSC_BF(RCMR_STTDLY, START_DELAY)
598 | SSC_BF(RCMR_START, SSC_START_FALLING_RF)
599 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
600 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
601 | SSC_BF(RCMR_CKS, SSC_CKS_DIV);
603 rfmr = SSC_BF(RFMR_FSLEN_EXT, fslen_ext)
604 | SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
605 | SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE)
606 | SSC_BF(RFMR_FSLEN, fslen)
607 | SSC_BF(RFMR_DATNB, (channels - 1))
608 | SSC_BIT(RFMR_MSBF)
609 | SSC_BF(RFMR_LOOP, 0)
610 | SSC_BF(RFMR_DATLEN, (bits - 1));
612 tcmr = SSC_BF(TCMR_PERIOD, tcmr_period)
613 | SSC_BF(TCMR_STTDLY, START_DELAY)
614 | SSC_BF(TCMR_START, SSC_START_FALLING_RF)
615 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
616 | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
617 | SSC_BF(TCMR_CKS, SSC_CKS_DIV);
619 tfmr = SSC_BF(TFMR_FSLEN_EXT, fslen_ext)
620 | SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
621 | SSC_BF(TFMR_FSDEN, 0)
622 | SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE)
623 | SSC_BF(TFMR_FSLEN, fslen)
624 | SSC_BF(TFMR_DATNB, (channels - 1))
625 | SSC_BIT(TFMR_MSBF)
626 | SSC_BF(TFMR_DATDEF, 0)
627 | SSC_BF(TFMR_DATLEN, (bits - 1));
628 break;
630 case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFM:
631 /* I2S format, CODEC supplies BCLK and LRC clocks. */
632 rcmr = SSC_BF(RCMR_PERIOD, 0)
633 | SSC_BF(RCMR_STTDLY, START_DELAY)
634 | SSC_BF(RCMR_START, SSC_START_FALLING_RF)
635 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
636 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
637 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
638 SSC_CKS_PIN : SSC_CKS_CLOCK);
640 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
641 | SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
642 | SSC_BF(RFMR_FSLEN, 0)
643 | SSC_BF(RFMR_DATNB, (channels - 1))
644 | SSC_BIT(RFMR_MSBF)
645 | SSC_BF(RFMR_LOOP, 0)
646 | SSC_BF(RFMR_DATLEN, (bits - 1));
648 tcmr = SSC_BF(TCMR_PERIOD, 0)
649 | SSC_BF(TCMR_STTDLY, START_DELAY)
650 | SSC_BF(TCMR_START, SSC_START_FALLING_RF)
651 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
652 | SSC_BF(TCMR_CKO, SSC_CKO_NONE)
653 | SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ?
654 SSC_CKS_CLOCK : SSC_CKS_PIN);
656 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
657 | SSC_BF(TFMR_FSDEN, 0)
658 | SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
659 | SSC_BF(TFMR_FSLEN, 0)
660 | SSC_BF(TFMR_DATNB, (channels - 1))
661 | SSC_BIT(TFMR_MSBF)
662 | SSC_BF(TFMR_DATDEF, 0)
663 | SSC_BF(TFMR_DATLEN, (bits - 1));
664 break;
666 case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFS:
667 /* I2S format, CODEC supplies BCLK, SSC supplies LRCLK. */
668 if (bits > 16 && !ssc->pdata->has_fslen_ext) {
669 dev_err(dai->dev,
670 "sample size %d is too large for SSC device\n",
671 bits);
672 return -EINVAL;
675 fslen_ext = (bits - 1) / 16;
676 fslen = (bits - 1) % 16;
678 rcmr = SSC_BF(RCMR_PERIOD, rcmr_period)
679 | SSC_BF(RCMR_STTDLY, START_DELAY)
680 | SSC_BF(RCMR_START, SSC_START_FALLING_RF)
681 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
682 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
683 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
684 SSC_CKS_PIN : SSC_CKS_CLOCK);
686 rfmr = SSC_BF(RFMR_FSLEN_EXT, fslen_ext)
687 | SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
688 | SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE)
689 | SSC_BF(RFMR_FSLEN, fslen)
690 | SSC_BF(RFMR_DATNB, (channels - 1))
691 | SSC_BIT(RFMR_MSBF)
692 | SSC_BF(RFMR_LOOP, 0)
693 | SSC_BF(RFMR_DATLEN, (bits - 1));
695 tcmr = SSC_BF(TCMR_PERIOD, tcmr_period)
696 | SSC_BF(TCMR_STTDLY, START_DELAY)
697 | SSC_BF(TCMR_START, SSC_START_FALLING_RF)
698 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
699 | SSC_BF(TCMR_CKO, SSC_CKO_NONE)
700 | SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ?
701 SSC_CKS_CLOCK : SSC_CKS_PIN);
703 tfmr = SSC_BF(TFMR_FSLEN_EXT, fslen_ext)
704 | SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_NEGATIVE)
705 | SSC_BF(TFMR_FSDEN, 0)
706 | SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE)
707 | SSC_BF(TFMR_FSLEN, fslen)
708 | SSC_BF(TFMR_DATNB, (channels - 1))
709 | SSC_BIT(TFMR_MSBF)
710 | SSC_BF(TFMR_DATDEF, 0)
711 | SSC_BF(TFMR_DATLEN, (bits - 1));
712 break;
714 case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBS_CFS:
716 * DSP/PCM Mode A format, SSC provides BCLK and LRC clocks.
718 * The SSC transmit and receive clocks are generated from the
719 * MCK divider, and the BCLK signal is output
720 * on the SSC TK line.
722 rcmr = SSC_BF(RCMR_PERIOD, rcmr_period)
723 | SSC_BF(RCMR_STTDLY, 1)
724 | SSC_BF(RCMR_START, SSC_START_RISING_RF)
725 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
726 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
727 | SSC_BF(RCMR_CKS, SSC_CKS_DIV);
729 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
730 | SSC_BF(RFMR_FSOS, SSC_FSOS_POSITIVE)
731 | SSC_BF(RFMR_FSLEN, 0)
732 | SSC_BF(RFMR_DATNB, (channels - 1))
733 | SSC_BIT(RFMR_MSBF)
734 | SSC_BF(RFMR_LOOP, 0)
735 | SSC_BF(RFMR_DATLEN, (bits - 1));
737 tcmr = SSC_BF(TCMR_PERIOD, tcmr_period)
738 | SSC_BF(TCMR_STTDLY, 1)
739 | SSC_BF(TCMR_START, SSC_START_RISING_RF)
740 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
741 | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
742 | SSC_BF(TCMR_CKS, SSC_CKS_DIV);
744 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
745 | SSC_BF(TFMR_FSDEN, 0)
746 | SSC_BF(TFMR_FSOS, SSC_FSOS_POSITIVE)
747 | SSC_BF(TFMR_FSLEN, 0)
748 | SSC_BF(TFMR_DATNB, (channels - 1))
749 | SSC_BIT(TFMR_MSBF)
750 | SSC_BF(TFMR_DATDEF, 0)
751 | SSC_BF(TFMR_DATLEN, (bits - 1));
752 break;
754 case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBM_CFM:
756 * DSP/PCM Mode A format, CODEC supplies BCLK and LRC clocks.
758 * Data is transferred on first BCLK after LRC pulse rising
759 * edge.If stereo, the right channel data is contiguous with
760 * the left channel data.
762 rcmr = SSC_BF(RCMR_PERIOD, 0)
763 | SSC_BF(RCMR_STTDLY, START_DELAY)
764 | SSC_BF(RCMR_START, SSC_START_RISING_RF)
765 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
766 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
767 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
768 SSC_CKS_PIN : SSC_CKS_CLOCK);
770 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
771 | SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
772 | SSC_BF(RFMR_FSLEN, 0)
773 | SSC_BF(RFMR_DATNB, (channels - 1))
774 | SSC_BIT(RFMR_MSBF)
775 | SSC_BF(RFMR_LOOP, 0)
776 | SSC_BF(RFMR_DATLEN, (bits - 1));
778 tcmr = SSC_BF(TCMR_PERIOD, 0)
779 | SSC_BF(TCMR_STTDLY, START_DELAY)
780 | SSC_BF(TCMR_START, SSC_START_RISING_RF)
781 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
782 | SSC_BF(TCMR_CKO, SSC_CKO_NONE)
783 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
784 SSC_CKS_CLOCK : SSC_CKS_PIN);
786 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
787 | SSC_BF(TFMR_FSDEN, 0)
788 | SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
789 | SSC_BF(TFMR_FSLEN, 0)
790 | SSC_BF(TFMR_DATNB, (channels - 1))
791 | SSC_BIT(TFMR_MSBF)
792 | SSC_BF(TFMR_DATDEF, 0)
793 | SSC_BF(TFMR_DATLEN, (bits - 1));
794 break;
796 default:
797 printk(KERN_WARNING "atmel_ssc_dai: unsupported DAI format 0x%x\n",
798 ssc_p->daifmt);
799 return -EINVAL;
801 pr_debug("atmel_ssc_hw_params: "
802 "RCMR=%08x RFMR=%08x TCMR=%08x TFMR=%08x\n",
803 rcmr, rfmr, tcmr, tfmr);
805 if (!ssc_p->initialized) {
806 if (!ssc_p->ssc->pdata->use_dma) {
807 ssc_writel(ssc_p->ssc->regs, PDC_RPR, 0);
808 ssc_writel(ssc_p->ssc->regs, PDC_RCR, 0);
809 ssc_writel(ssc_p->ssc->regs, PDC_RNPR, 0);
810 ssc_writel(ssc_p->ssc->regs, PDC_RNCR, 0);
812 ssc_writel(ssc_p->ssc->regs, PDC_TPR, 0);
813 ssc_writel(ssc_p->ssc->regs, PDC_TCR, 0);
814 ssc_writel(ssc_p->ssc->regs, PDC_TNPR, 0);
815 ssc_writel(ssc_p->ssc->regs, PDC_TNCR, 0);
818 ret = request_irq(ssc_p->ssc->irq, atmel_ssc_interrupt, 0,
819 ssc_p->name, ssc_p);
820 if (ret < 0) {
821 printk(KERN_WARNING
822 "atmel_ssc_dai: request_irq failure\n");
823 pr_debug("Atmel_ssc_dai: Stoping clock\n");
824 clk_disable(ssc_p->ssc->clk);
825 return ret;
828 ssc_p->initialized = 1;
831 /* set SSC clock mode register */
832 ssc_writel(ssc_p->ssc->regs, CMR, cmr_div);
834 /* set receive clock mode and format */
835 ssc_writel(ssc_p->ssc->regs, RCMR, rcmr);
836 ssc_writel(ssc_p->ssc->regs, RFMR, rfmr);
838 /* set transmit clock mode and format */
839 ssc_writel(ssc_p->ssc->regs, TCMR, tcmr);
840 ssc_writel(ssc_p->ssc->regs, TFMR, tfmr);
842 pr_debug("atmel_ssc_dai,hw_params: SSC initialized\n");
843 return 0;
847 static int atmel_ssc_prepare(struct snd_pcm_substream *substream,
848 struct snd_soc_dai *dai)
850 struct platform_device *pdev = to_platform_device(dai->dev);
851 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
852 struct atmel_pcm_dma_params *dma_params;
853 int dir;
855 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
856 dir = 0;
857 else
858 dir = 1;
860 dma_params = ssc_p->dma_params[dir];
862 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
863 ssc_writel(ssc_p->ssc->regs, IDR, dma_params->mask->ssc_error);
865 pr_debug("%s enabled SSC_SR=0x%08x\n",
866 dir ? "receive" : "transmit",
867 ssc_readl(ssc_p->ssc->regs, SR));
868 return 0;
871 static int atmel_ssc_trigger(struct snd_pcm_substream *substream,
872 int cmd, struct snd_soc_dai *dai)
874 struct platform_device *pdev = to_platform_device(dai->dev);
875 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
876 struct atmel_pcm_dma_params *dma_params;
877 int dir;
879 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
880 dir = 0;
881 else
882 dir = 1;
884 dma_params = ssc_p->dma_params[dir];
886 switch (cmd) {
887 case SNDRV_PCM_TRIGGER_START:
888 case SNDRV_PCM_TRIGGER_RESUME:
889 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
890 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_enable);
891 break;
892 default:
893 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
894 break;
897 return 0;
900 #ifdef CONFIG_PM
901 static int atmel_ssc_suspend(struct snd_soc_dai *cpu_dai)
903 struct atmel_ssc_info *ssc_p;
904 struct platform_device *pdev = to_platform_device(cpu_dai->dev);
906 if (!cpu_dai->active)
907 return 0;
909 ssc_p = &ssc_info[pdev->id];
911 /* Save the status register before disabling transmit and receive */
912 ssc_p->ssc_state.ssc_sr = ssc_readl(ssc_p->ssc->regs, SR);
913 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_TXDIS) | SSC_BIT(CR_RXDIS));
915 /* Save the current interrupt mask, then disable unmasked interrupts */
916 ssc_p->ssc_state.ssc_imr = ssc_readl(ssc_p->ssc->regs, IMR);
917 ssc_writel(ssc_p->ssc->regs, IDR, ssc_p->ssc_state.ssc_imr);
919 ssc_p->ssc_state.ssc_cmr = ssc_readl(ssc_p->ssc->regs, CMR);
920 ssc_p->ssc_state.ssc_rcmr = ssc_readl(ssc_p->ssc->regs, RCMR);
921 ssc_p->ssc_state.ssc_rfmr = ssc_readl(ssc_p->ssc->regs, RFMR);
922 ssc_p->ssc_state.ssc_tcmr = ssc_readl(ssc_p->ssc->regs, TCMR);
923 ssc_p->ssc_state.ssc_tfmr = ssc_readl(ssc_p->ssc->regs, TFMR);
925 return 0;
930 static int atmel_ssc_resume(struct snd_soc_dai *cpu_dai)
932 struct atmel_ssc_info *ssc_p;
933 struct platform_device *pdev = to_platform_device(cpu_dai->dev);
934 u32 cr;
936 if (!cpu_dai->active)
937 return 0;
939 ssc_p = &ssc_info[pdev->id];
941 /* restore SSC register settings */
942 ssc_writel(ssc_p->ssc->regs, TFMR, ssc_p->ssc_state.ssc_tfmr);
943 ssc_writel(ssc_p->ssc->regs, TCMR, ssc_p->ssc_state.ssc_tcmr);
944 ssc_writel(ssc_p->ssc->regs, RFMR, ssc_p->ssc_state.ssc_rfmr);
945 ssc_writel(ssc_p->ssc->regs, RCMR, ssc_p->ssc_state.ssc_rcmr);
946 ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->ssc_state.ssc_cmr);
948 /* re-enable interrupts */
949 ssc_writel(ssc_p->ssc->regs, IER, ssc_p->ssc_state.ssc_imr);
951 /* Re-enable receive and transmit as appropriate */
952 cr = 0;
953 cr |=
954 (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_RXEN)) ? SSC_BIT(CR_RXEN) : 0;
955 cr |=
956 (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_TXEN)) ? SSC_BIT(CR_TXEN) : 0;
957 ssc_writel(ssc_p->ssc->regs, CR, cr);
959 return 0;
961 #else /* CONFIG_PM */
962 # define atmel_ssc_suspend NULL
963 # define atmel_ssc_resume NULL
964 #endif /* CONFIG_PM */
966 #define ATMEL_SSC_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE |\
967 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
969 static const struct snd_soc_dai_ops atmel_ssc_dai_ops = {
970 .startup = atmel_ssc_startup,
971 .shutdown = atmel_ssc_shutdown,
972 .prepare = atmel_ssc_prepare,
973 .trigger = atmel_ssc_trigger,
974 .hw_params = atmel_ssc_hw_params,
975 .set_fmt = atmel_ssc_set_dai_fmt,
976 .set_clkdiv = atmel_ssc_set_dai_clkdiv,
979 static struct snd_soc_dai_driver atmel_ssc_dai = {
980 .suspend = atmel_ssc_suspend,
981 .resume = atmel_ssc_resume,
982 .playback = {
983 .channels_min = 1,
984 .channels_max = 2,
985 .rates = SNDRV_PCM_RATE_CONTINUOUS,
986 .rate_min = 8000,
987 .rate_max = 384000,
988 .formats = ATMEL_SSC_FORMATS,},
989 .capture = {
990 .channels_min = 1,
991 .channels_max = 2,
992 .rates = SNDRV_PCM_RATE_CONTINUOUS,
993 .rate_min = 8000,
994 .rate_max = 384000,
995 .formats = ATMEL_SSC_FORMATS,},
996 .ops = &atmel_ssc_dai_ops,
999 static const struct snd_soc_component_driver atmel_ssc_component = {
1000 .name = "atmel-ssc",
1003 static int asoc_ssc_init(struct device *dev)
1005 struct platform_device *pdev = to_platform_device(dev);
1006 struct ssc_device *ssc = platform_get_drvdata(pdev);
1007 int ret;
1009 ret = snd_soc_register_component(dev, &atmel_ssc_component,
1010 &atmel_ssc_dai, 1);
1011 if (ret) {
1012 dev_err(dev, "Could not register DAI: %d\n", ret);
1013 goto err;
1016 if (ssc->pdata->use_dma)
1017 ret = atmel_pcm_dma_platform_register(dev);
1018 else
1019 ret = atmel_pcm_pdc_platform_register(dev);
1021 if (ret) {
1022 dev_err(dev, "Could not register PCM: %d\n", ret);
1023 goto err_unregister_dai;
1026 return 0;
1028 err_unregister_dai:
1029 snd_soc_unregister_component(dev);
1030 err:
1031 return ret;
1034 static void asoc_ssc_exit(struct device *dev)
1036 struct platform_device *pdev = to_platform_device(dev);
1037 struct ssc_device *ssc = platform_get_drvdata(pdev);
1039 if (ssc->pdata->use_dma)
1040 atmel_pcm_dma_platform_unregister(dev);
1041 else
1042 atmel_pcm_pdc_platform_unregister(dev);
1044 snd_soc_unregister_component(dev);
1048 * atmel_ssc_set_audio - Allocate the specified SSC for audio use.
1050 int atmel_ssc_set_audio(int ssc_id)
1052 struct ssc_device *ssc;
1053 int ret;
1055 /* If we can grab the SSC briefly to parent the DAI device off it */
1056 ssc = ssc_request(ssc_id);
1057 if (IS_ERR(ssc)) {
1058 pr_err("Unable to parent ASoC SSC DAI on SSC: %ld\n",
1059 PTR_ERR(ssc));
1060 return PTR_ERR(ssc);
1061 } else {
1062 ssc_info[ssc_id].ssc = ssc;
1065 ret = asoc_ssc_init(&ssc->pdev->dev);
1067 return ret;
1069 EXPORT_SYMBOL_GPL(atmel_ssc_set_audio);
1071 void atmel_ssc_put_audio(int ssc_id)
1073 struct ssc_device *ssc = ssc_info[ssc_id].ssc;
1075 asoc_ssc_exit(&ssc->pdev->dev);
1076 ssc_free(ssc);
1078 EXPORT_SYMBOL_GPL(atmel_ssc_put_audio);
1080 /* Module information */
1081 MODULE_AUTHOR("Sedji Gaouaou, sedji.gaouaou@atmel.com, www.atmel.com");
1082 MODULE_DESCRIPTION("ATMEL SSC ASoC Interface");
1083 MODULE_LICENSE("GPL");