gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / drivers / md / raid5.c
blobe6d689c0a1751fe6ced19c5acacb535e2eea49fc
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * BITMAP UNPLUGGING:
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
74 * Stripe cache
77 #define NR_STRIPES 256
78 #define STRIPE_SIZE PAGE_SIZE
79 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD 1
82 #define BYPASS_THRESHOLD 1
83 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH 8
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 return &conf->stripe_hashtbl[hash];
93 static inline int stripe_hash_locks_hash(sector_t sect)
95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
100 spin_lock_irq(conf->hash_locks + hash);
101 spin_lock(&conf->device_lock);
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
106 spin_unlock(&conf->device_lock);
107 spin_unlock_irq(conf->hash_locks + hash);
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
112 int i;
113 local_irq_disable();
114 spin_lock(conf->hash_locks);
115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 spin_lock(&conf->device_lock);
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
122 int i;
123 spin_unlock(&conf->device_lock);
124 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 spin_unlock(conf->hash_locks + i - 1);
126 local_irq_enable();
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
134 * be valid.
135 * This function is used to determine the 'next' bio in the list, given the sector
136 * of the current stripe+device
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
140 int sectors = bio_sectors(bio);
141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 return bio->bi_next;
143 else
144 return NULL;
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 return (atomic_read(segments) >> 16) & 0xffff;
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 return atomic_sub_return(1, segments) & 0xffff;
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 atomic_inc(segments);
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 unsigned int cnt)
172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 int old, new;
175 do {
176 old = atomic_read(segments);
177 new = (old & 0xffff) | (cnt << 16);
178 } while (atomic_cmpxchg(segments, old, new) != old);
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 atomic_set(segments, cnt);
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
190 if (sh->ddf_layout)
191 /* ddf always start from first device */
192 return 0;
193 /* md starts just after Q block */
194 if (sh->qd_idx == sh->disks - 1)
195 return 0;
196 else
197 return sh->qd_idx + 1;
199 static inline int raid6_next_disk(int disk, int raid_disks)
201 disk++;
202 return (disk < raid_disks) ? disk : 0;
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 int *count, int syndrome_disks)
213 int slot = *count;
215 if (sh->ddf_layout)
216 (*count)++;
217 if (idx == sh->pd_idx)
218 return syndrome_disks;
219 if (idx == sh->qd_idx)
220 return syndrome_disks + 1;
221 if (!sh->ddf_layout)
222 (*count)++;
223 return slot;
226 static void return_io(struct bio *return_bi)
228 struct bio *bi = return_bi;
229 while (bi) {
231 return_bi = bi->bi_next;
232 bi->bi_next = NULL;
233 bi->bi_iter.bi_size = 0;
234 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235 bi, 0);
236 bio_endio(bi, 0);
237 bi = return_bi;
241 static void print_raid5_conf (struct r5conf *conf);
243 static int stripe_operations_active(struct stripe_head *sh)
245 return sh->check_state || sh->reconstruct_state ||
246 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
250 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
252 struct r5conf *conf = sh->raid_conf;
253 struct r5worker_group *group;
254 int thread_cnt;
255 int i, cpu = sh->cpu;
257 if (!cpu_online(cpu)) {
258 cpu = cpumask_any(cpu_online_mask);
259 sh->cpu = cpu;
262 if (list_empty(&sh->lru)) {
263 struct r5worker_group *group;
264 group = conf->worker_groups + cpu_to_group(cpu);
265 list_add_tail(&sh->lru, &group->handle_list);
266 group->stripes_cnt++;
267 sh->group = group;
270 if (conf->worker_cnt_per_group == 0) {
271 md_wakeup_thread(conf->mddev->thread);
272 return;
275 group = conf->worker_groups + cpu_to_group(sh->cpu);
277 group->workers[0].working = true;
278 /* at least one worker should run to avoid race */
279 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
281 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282 /* wakeup more workers */
283 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284 if (group->workers[i].working == false) {
285 group->workers[i].working = true;
286 queue_work_on(sh->cpu, raid5_wq,
287 &group->workers[i].work);
288 thread_cnt--;
293 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294 struct list_head *temp_inactive_list)
296 BUG_ON(!list_empty(&sh->lru));
297 BUG_ON(atomic_read(&conf->active_stripes)==0);
298 if (test_bit(STRIPE_HANDLE, &sh->state)) {
299 if (test_bit(STRIPE_DELAYED, &sh->state) &&
300 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
301 list_add_tail(&sh->lru, &conf->delayed_list);
302 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
303 sh->bm_seq - conf->seq_write > 0)
304 list_add_tail(&sh->lru, &conf->bitmap_list);
305 else {
306 clear_bit(STRIPE_DELAYED, &sh->state);
307 clear_bit(STRIPE_BIT_DELAY, &sh->state);
308 if (conf->worker_cnt_per_group == 0) {
309 list_add_tail(&sh->lru, &conf->handle_list);
310 } else {
311 raid5_wakeup_stripe_thread(sh);
312 return;
315 md_wakeup_thread(conf->mddev->thread);
316 } else {
317 BUG_ON(stripe_operations_active(sh));
318 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319 if (atomic_dec_return(&conf->preread_active_stripes)
320 < IO_THRESHOLD)
321 md_wakeup_thread(conf->mddev->thread);
322 atomic_dec(&conf->active_stripes);
323 if (!test_bit(STRIPE_EXPANDING, &sh->state))
324 list_add_tail(&sh->lru, temp_inactive_list);
328 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329 struct list_head *temp_inactive_list)
331 if (atomic_dec_and_test(&sh->count))
332 do_release_stripe(conf, sh, temp_inactive_list);
336 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
338 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339 * given time. Adding stripes only takes device lock, while deleting stripes
340 * only takes hash lock.
342 static void release_inactive_stripe_list(struct r5conf *conf,
343 struct list_head *temp_inactive_list,
344 int hash)
346 int size;
347 bool do_wakeup = false;
348 unsigned long flags;
350 if (hash == NR_STRIPE_HASH_LOCKS) {
351 size = NR_STRIPE_HASH_LOCKS;
352 hash = NR_STRIPE_HASH_LOCKS - 1;
353 } else
354 size = 1;
355 while (size) {
356 struct list_head *list = &temp_inactive_list[size - 1];
359 * We don't hold any lock here yet, get_active_stripe() might
360 * remove stripes from the list
362 if (!list_empty_careful(list)) {
363 spin_lock_irqsave(conf->hash_locks + hash, flags);
364 if (list_empty(conf->inactive_list + hash) &&
365 !list_empty(list))
366 atomic_dec(&conf->empty_inactive_list_nr);
367 list_splice_tail_init(list, conf->inactive_list + hash);
368 do_wakeup = true;
369 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
371 size--;
372 hash--;
375 if (do_wakeup) {
376 wake_up(&conf->wait_for_stripe);
377 if (conf->retry_read_aligned)
378 md_wakeup_thread(conf->mddev->thread);
382 /* should hold conf->device_lock already */
383 static int release_stripe_list(struct r5conf *conf,
384 struct list_head *temp_inactive_list)
386 struct stripe_head *sh;
387 int count = 0;
388 struct llist_node *head;
390 head = llist_del_all(&conf->released_stripes);
391 head = llist_reverse_order(head);
392 while (head) {
393 int hash;
395 sh = llist_entry(head, struct stripe_head, release_list);
396 head = llist_next(head);
397 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
398 smp_mb();
399 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
401 * Don't worry the bit is set here, because if the bit is set
402 * again, the count is always > 1. This is true for
403 * STRIPE_ON_UNPLUG_LIST bit too.
405 hash = sh->hash_lock_index;
406 __release_stripe(conf, sh, &temp_inactive_list[hash]);
407 count++;
410 return count;
413 static void release_stripe(struct stripe_head *sh)
415 struct r5conf *conf = sh->raid_conf;
416 unsigned long flags;
417 struct list_head list;
418 int hash;
419 bool wakeup;
421 /* Avoid release_list until the last reference.
423 if (atomic_add_unless(&sh->count, -1, 1))
424 return;
426 if (unlikely(!conf->mddev->thread) ||
427 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
428 goto slow_path;
429 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
430 if (wakeup)
431 md_wakeup_thread(conf->mddev->thread);
432 return;
433 slow_path:
434 local_irq_save(flags);
435 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
436 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
437 INIT_LIST_HEAD(&list);
438 hash = sh->hash_lock_index;
439 do_release_stripe(conf, sh, &list);
440 spin_unlock(&conf->device_lock);
441 release_inactive_stripe_list(conf, &list, hash);
443 local_irq_restore(flags);
446 static inline void remove_hash(struct stripe_head *sh)
448 pr_debug("remove_hash(), stripe %llu\n",
449 (unsigned long long)sh->sector);
451 hlist_del_init(&sh->hash);
454 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
456 struct hlist_head *hp = stripe_hash(conf, sh->sector);
458 pr_debug("insert_hash(), stripe %llu\n",
459 (unsigned long long)sh->sector);
461 hlist_add_head(&sh->hash, hp);
464 /* find an idle stripe, make sure it is unhashed, and return it. */
465 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
467 struct stripe_head *sh = NULL;
468 struct list_head *first;
470 if (list_empty(conf->inactive_list + hash))
471 goto out;
472 first = (conf->inactive_list + hash)->next;
473 sh = list_entry(first, struct stripe_head, lru);
474 list_del_init(first);
475 remove_hash(sh);
476 atomic_inc(&conf->active_stripes);
477 BUG_ON(hash != sh->hash_lock_index);
478 if (list_empty(conf->inactive_list + hash))
479 atomic_inc(&conf->empty_inactive_list_nr);
480 out:
481 return sh;
484 static void shrink_buffers(struct stripe_head *sh)
486 struct page *p;
487 int i;
488 int num = sh->raid_conf->pool_size;
490 for (i = 0; i < num ; i++) {
491 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
492 p = sh->dev[i].page;
493 if (!p)
494 continue;
495 sh->dev[i].page = NULL;
496 put_page(p);
500 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
502 int i;
503 int num = sh->raid_conf->pool_size;
505 for (i = 0; i < num; i++) {
506 struct page *page;
508 if (!(page = alloc_page(gfp))) {
509 return 1;
511 sh->dev[i].page = page;
512 sh->dev[i].orig_page = page;
514 return 0;
517 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
518 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
519 struct stripe_head *sh);
521 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
523 struct r5conf *conf = sh->raid_conf;
524 int i, seq;
526 BUG_ON(atomic_read(&sh->count) != 0);
527 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
528 BUG_ON(stripe_operations_active(sh));
529 BUG_ON(sh->batch_head);
531 pr_debug("init_stripe called, stripe %llu\n",
532 (unsigned long long)sector);
533 retry:
534 seq = read_seqcount_begin(&conf->gen_lock);
535 sh->generation = conf->generation - previous;
536 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
537 sh->sector = sector;
538 stripe_set_idx(sector, conf, previous, sh);
539 sh->state = 0;
541 for (i = sh->disks; i--; ) {
542 struct r5dev *dev = &sh->dev[i];
544 if (dev->toread || dev->read || dev->towrite || dev->written ||
545 test_bit(R5_LOCKED, &dev->flags)) {
546 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
547 (unsigned long long)sh->sector, i, dev->toread,
548 dev->read, dev->towrite, dev->written,
549 test_bit(R5_LOCKED, &dev->flags));
550 WARN_ON(1);
552 dev->flags = 0;
553 raid5_build_block(sh, i, previous);
555 if (read_seqcount_retry(&conf->gen_lock, seq))
556 goto retry;
557 sh->overwrite_disks = 0;
558 insert_hash(conf, sh);
559 sh->cpu = smp_processor_id();
560 set_bit(STRIPE_BATCH_READY, &sh->state);
563 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
564 short generation)
566 struct stripe_head *sh;
568 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
569 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
570 if (sh->sector == sector && sh->generation == generation)
571 return sh;
572 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
573 return NULL;
577 * Need to check if array has failed when deciding whether to:
578 * - start an array
579 * - remove non-faulty devices
580 * - add a spare
581 * - allow a reshape
582 * This determination is simple when no reshape is happening.
583 * However if there is a reshape, we need to carefully check
584 * both the before and after sections.
585 * This is because some failed devices may only affect one
586 * of the two sections, and some non-in_sync devices may
587 * be insync in the section most affected by failed devices.
589 static int calc_degraded(struct r5conf *conf)
591 int degraded, degraded2;
592 int i;
594 rcu_read_lock();
595 degraded = 0;
596 for (i = 0; i < conf->previous_raid_disks; i++) {
597 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
598 if (rdev && test_bit(Faulty, &rdev->flags))
599 rdev = rcu_dereference(conf->disks[i].replacement);
600 if (!rdev || test_bit(Faulty, &rdev->flags))
601 degraded++;
602 else if (test_bit(In_sync, &rdev->flags))
604 else
605 /* not in-sync or faulty.
606 * If the reshape increases the number of devices,
607 * this is being recovered by the reshape, so
608 * this 'previous' section is not in_sync.
609 * If the number of devices is being reduced however,
610 * the device can only be part of the array if
611 * we are reverting a reshape, so this section will
612 * be in-sync.
614 if (conf->raid_disks >= conf->previous_raid_disks)
615 degraded++;
617 rcu_read_unlock();
618 if (conf->raid_disks == conf->previous_raid_disks)
619 return degraded;
620 rcu_read_lock();
621 degraded2 = 0;
622 for (i = 0; i < conf->raid_disks; i++) {
623 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
624 if (rdev && test_bit(Faulty, &rdev->flags))
625 rdev = rcu_dereference(conf->disks[i].replacement);
626 if (!rdev || test_bit(Faulty, &rdev->flags))
627 degraded2++;
628 else if (test_bit(In_sync, &rdev->flags))
630 else
631 /* not in-sync or faulty.
632 * If reshape increases the number of devices, this
633 * section has already been recovered, else it
634 * almost certainly hasn't.
636 if (conf->raid_disks <= conf->previous_raid_disks)
637 degraded2++;
639 rcu_read_unlock();
640 if (degraded2 > degraded)
641 return degraded2;
642 return degraded;
645 static int has_failed(struct r5conf *conf)
647 int degraded;
649 if (conf->mddev->reshape_position == MaxSector)
650 return conf->mddev->degraded > conf->max_degraded;
652 degraded = calc_degraded(conf);
653 if (degraded > conf->max_degraded)
654 return 1;
655 return 0;
658 static struct stripe_head *
659 get_active_stripe(struct r5conf *conf, sector_t sector,
660 int previous, int noblock, int noquiesce)
662 struct stripe_head *sh;
663 int hash = stripe_hash_locks_hash(sector);
665 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
667 spin_lock_irq(conf->hash_locks + hash);
669 do {
670 wait_event_lock_irq(conf->wait_for_stripe,
671 conf->quiesce == 0 || noquiesce,
672 *(conf->hash_locks + hash));
673 sh = __find_stripe(conf, sector, conf->generation - previous);
674 if (!sh) {
675 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
676 sh = get_free_stripe(conf, hash);
677 if (!sh && llist_empty(&conf->released_stripes) &&
678 !test_bit(R5_DID_ALLOC, &conf->cache_state))
679 set_bit(R5_ALLOC_MORE,
680 &conf->cache_state);
682 if (noblock && sh == NULL)
683 break;
684 if (!sh) {
685 set_bit(R5_INACTIVE_BLOCKED,
686 &conf->cache_state);
687 wait_event_lock_irq(
688 conf->wait_for_stripe,
689 !list_empty(conf->inactive_list + hash) &&
690 (atomic_read(&conf->active_stripes)
691 < (conf->max_nr_stripes * 3 / 4)
692 || !test_bit(R5_INACTIVE_BLOCKED,
693 &conf->cache_state)),
694 *(conf->hash_locks + hash));
695 clear_bit(R5_INACTIVE_BLOCKED,
696 &conf->cache_state);
697 } else {
698 init_stripe(sh, sector, previous);
699 atomic_inc(&sh->count);
701 } else if (!atomic_inc_not_zero(&sh->count)) {
702 spin_lock(&conf->device_lock);
703 if (!atomic_read(&sh->count)) {
704 if (!test_bit(STRIPE_HANDLE, &sh->state))
705 atomic_inc(&conf->active_stripes);
706 BUG_ON(list_empty(&sh->lru) &&
707 !test_bit(STRIPE_EXPANDING, &sh->state));
708 list_del_init(&sh->lru);
709 if (sh->group) {
710 sh->group->stripes_cnt--;
711 sh->group = NULL;
714 atomic_inc(&sh->count);
715 spin_unlock(&conf->device_lock);
717 } while (sh == NULL);
719 spin_unlock_irq(conf->hash_locks + hash);
720 return sh;
723 static bool is_full_stripe_write(struct stripe_head *sh)
725 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
726 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
729 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
731 local_irq_disable();
732 if (sh1 > sh2) {
733 spin_lock(&sh2->stripe_lock);
734 spin_lock_nested(&sh1->stripe_lock, 1);
735 } else {
736 spin_lock(&sh1->stripe_lock);
737 spin_lock_nested(&sh2->stripe_lock, 1);
741 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
743 spin_unlock(&sh1->stripe_lock);
744 spin_unlock(&sh2->stripe_lock);
745 local_irq_enable();
748 /* Only freshly new full stripe normal write stripe can be added to a batch list */
749 static bool stripe_can_batch(struct stripe_head *sh)
751 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
752 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
753 is_full_stripe_write(sh);
756 /* we only do back search */
757 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
759 struct stripe_head *head;
760 sector_t head_sector, tmp_sec;
761 int hash;
762 int dd_idx;
764 if (!stripe_can_batch(sh))
765 return;
766 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
767 tmp_sec = sh->sector;
768 if (!sector_div(tmp_sec, conf->chunk_sectors))
769 return;
770 head_sector = sh->sector - STRIPE_SECTORS;
772 hash = stripe_hash_locks_hash(head_sector);
773 spin_lock_irq(conf->hash_locks + hash);
774 head = __find_stripe(conf, head_sector, conf->generation);
775 if (head && !atomic_inc_not_zero(&head->count)) {
776 spin_lock(&conf->device_lock);
777 if (!atomic_read(&head->count)) {
778 if (!test_bit(STRIPE_HANDLE, &head->state))
779 atomic_inc(&conf->active_stripes);
780 BUG_ON(list_empty(&head->lru) &&
781 !test_bit(STRIPE_EXPANDING, &head->state));
782 list_del_init(&head->lru);
783 if (head->group) {
784 head->group->stripes_cnt--;
785 head->group = NULL;
788 atomic_inc(&head->count);
789 spin_unlock(&conf->device_lock);
791 spin_unlock_irq(conf->hash_locks + hash);
793 if (!head)
794 return;
795 if (!stripe_can_batch(head))
796 goto out;
798 lock_two_stripes(head, sh);
799 /* clear_batch_ready clear the flag */
800 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
801 goto unlock_out;
803 if (sh->batch_head)
804 goto unlock_out;
806 dd_idx = 0;
807 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
808 dd_idx++;
809 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
810 goto unlock_out;
812 if (head->batch_head) {
813 spin_lock(&head->batch_head->batch_lock);
814 /* This batch list is already running */
815 if (!stripe_can_batch(head)) {
816 spin_unlock(&head->batch_head->batch_lock);
817 goto unlock_out;
821 * at this point, head's BATCH_READY could be cleared, but we
822 * can still add the stripe to batch list
824 list_add(&sh->batch_list, &head->batch_list);
825 spin_unlock(&head->batch_head->batch_lock);
827 sh->batch_head = head->batch_head;
828 } else {
829 head->batch_head = head;
830 sh->batch_head = head->batch_head;
831 spin_lock(&head->batch_lock);
832 list_add_tail(&sh->batch_list, &head->batch_list);
833 spin_unlock(&head->batch_lock);
836 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
837 if (atomic_dec_return(&conf->preread_active_stripes)
838 < IO_THRESHOLD)
839 md_wakeup_thread(conf->mddev->thread);
841 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
842 int seq = sh->bm_seq;
843 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
844 sh->batch_head->bm_seq > seq)
845 seq = sh->batch_head->bm_seq;
846 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
847 sh->batch_head->bm_seq = seq;
850 atomic_inc(&sh->count);
851 unlock_out:
852 unlock_two_stripes(head, sh);
853 out:
854 release_stripe(head);
857 /* Determine if 'data_offset' or 'new_data_offset' should be used
858 * in this stripe_head.
860 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
862 sector_t progress = conf->reshape_progress;
863 /* Need a memory barrier to make sure we see the value
864 * of conf->generation, or ->data_offset that was set before
865 * reshape_progress was updated.
867 smp_rmb();
868 if (progress == MaxSector)
869 return 0;
870 if (sh->generation == conf->generation - 1)
871 return 0;
872 /* We are in a reshape, and this is a new-generation stripe,
873 * so use new_data_offset.
875 return 1;
878 static void
879 raid5_end_read_request(struct bio *bi, int error);
880 static void
881 raid5_end_write_request(struct bio *bi, int error);
883 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
885 struct r5conf *conf = sh->raid_conf;
886 int i, disks = sh->disks;
887 struct stripe_head *head_sh = sh;
889 might_sleep();
891 for (i = disks; i--; ) {
892 int rw;
893 int replace_only = 0;
894 struct bio *bi, *rbi;
895 struct md_rdev *rdev, *rrdev = NULL;
897 sh = head_sh;
898 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
899 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
900 rw = WRITE_FUA;
901 else
902 rw = WRITE;
903 if (test_bit(R5_Discard, &sh->dev[i].flags))
904 rw |= REQ_DISCARD;
905 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
906 rw = READ;
907 else if (test_and_clear_bit(R5_WantReplace,
908 &sh->dev[i].flags)) {
909 rw = WRITE;
910 replace_only = 1;
911 } else
912 continue;
913 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
914 rw |= REQ_SYNC;
916 again:
917 bi = &sh->dev[i].req;
918 rbi = &sh->dev[i].rreq; /* For writing to replacement */
920 rcu_read_lock();
921 rrdev = rcu_dereference(conf->disks[i].replacement);
922 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
923 rdev = rcu_dereference(conf->disks[i].rdev);
924 if (!rdev) {
925 rdev = rrdev;
926 rrdev = NULL;
928 if (rw & WRITE) {
929 if (replace_only)
930 rdev = NULL;
931 if (rdev == rrdev)
932 /* We raced and saw duplicates */
933 rrdev = NULL;
934 } else {
935 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
936 rdev = rrdev;
937 rrdev = NULL;
940 if (rdev && test_bit(Faulty, &rdev->flags))
941 rdev = NULL;
942 if (rdev)
943 atomic_inc(&rdev->nr_pending);
944 if (rrdev && test_bit(Faulty, &rrdev->flags))
945 rrdev = NULL;
946 if (rrdev)
947 atomic_inc(&rrdev->nr_pending);
948 rcu_read_unlock();
950 /* We have already checked bad blocks for reads. Now
951 * need to check for writes. We never accept write errors
952 * on the replacement, so we don't to check rrdev.
954 while ((rw & WRITE) && rdev &&
955 test_bit(WriteErrorSeen, &rdev->flags)) {
956 sector_t first_bad;
957 int bad_sectors;
958 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
959 &first_bad, &bad_sectors);
960 if (!bad)
961 break;
963 if (bad < 0) {
964 set_bit(BlockedBadBlocks, &rdev->flags);
965 if (!conf->mddev->external &&
966 conf->mddev->flags) {
967 /* It is very unlikely, but we might
968 * still need to write out the
969 * bad block log - better give it
970 * a chance*/
971 md_check_recovery(conf->mddev);
974 * Because md_wait_for_blocked_rdev
975 * will dec nr_pending, we must
976 * increment it first.
978 atomic_inc(&rdev->nr_pending);
979 md_wait_for_blocked_rdev(rdev, conf->mddev);
980 } else {
981 /* Acknowledged bad block - skip the write */
982 rdev_dec_pending(rdev, conf->mddev);
983 rdev = NULL;
987 if (rdev) {
988 if (s->syncing || s->expanding || s->expanded
989 || s->replacing)
990 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
992 set_bit(STRIPE_IO_STARTED, &sh->state);
994 bio_reset(bi);
995 bi->bi_bdev = rdev->bdev;
996 bi->bi_rw = rw;
997 bi->bi_end_io = (rw & WRITE)
998 ? raid5_end_write_request
999 : raid5_end_read_request;
1000 bi->bi_private = sh;
1002 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1003 __func__, (unsigned long long)sh->sector,
1004 bi->bi_rw, i);
1005 atomic_inc(&sh->count);
1006 if (sh != head_sh)
1007 atomic_inc(&head_sh->count);
1008 if (use_new_offset(conf, sh))
1009 bi->bi_iter.bi_sector = (sh->sector
1010 + rdev->new_data_offset);
1011 else
1012 bi->bi_iter.bi_sector = (sh->sector
1013 + rdev->data_offset);
1014 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1015 bi->bi_rw |= REQ_NOMERGE;
1017 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1018 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1019 sh->dev[i].vec.bv_page = sh->dev[i].page;
1020 bi->bi_vcnt = 1;
1021 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1022 bi->bi_io_vec[0].bv_offset = 0;
1023 bi->bi_iter.bi_size = STRIPE_SIZE;
1025 * If this is discard request, set bi_vcnt 0. We don't
1026 * want to confuse SCSI because SCSI will replace payload
1028 if (rw & REQ_DISCARD)
1029 bi->bi_vcnt = 0;
1030 if (rrdev)
1031 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1033 if (conf->mddev->gendisk)
1034 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1035 bi, disk_devt(conf->mddev->gendisk),
1036 sh->dev[i].sector);
1037 generic_make_request(bi);
1039 if (rrdev) {
1040 if (s->syncing || s->expanding || s->expanded
1041 || s->replacing)
1042 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1044 set_bit(STRIPE_IO_STARTED, &sh->state);
1046 bio_reset(rbi);
1047 rbi->bi_bdev = rrdev->bdev;
1048 rbi->bi_rw = rw;
1049 BUG_ON(!(rw & WRITE));
1050 rbi->bi_end_io = raid5_end_write_request;
1051 rbi->bi_private = sh;
1053 pr_debug("%s: for %llu schedule op %ld on "
1054 "replacement disc %d\n",
1055 __func__, (unsigned long long)sh->sector,
1056 rbi->bi_rw, i);
1057 atomic_inc(&sh->count);
1058 if (sh != head_sh)
1059 atomic_inc(&head_sh->count);
1060 if (use_new_offset(conf, sh))
1061 rbi->bi_iter.bi_sector = (sh->sector
1062 + rrdev->new_data_offset);
1063 else
1064 rbi->bi_iter.bi_sector = (sh->sector
1065 + rrdev->data_offset);
1066 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1067 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1068 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1069 rbi->bi_vcnt = 1;
1070 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1071 rbi->bi_io_vec[0].bv_offset = 0;
1072 rbi->bi_iter.bi_size = STRIPE_SIZE;
1074 * If this is discard request, set bi_vcnt 0. We don't
1075 * want to confuse SCSI because SCSI will replace payload
1077 if (rw & REQ_DISCARD)
1078 rbi->bi_vcnt = 0;
1079 if (conf->mddev->gendisk)
1080 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1081 rbi, disk_devt(conf->mddev->gendisk),
1082 sh->dev[i].sector);
1083 generic_make_request(rbi);
1085 if (!rdev && !rrdev) {
1086 if (rw & WRITE)
1087 set_bit(STRIPE_DEGRADED, &sh->state);
1088 pr_debug("skip op %ld on disc %d for sector %llu\n",
1089 bi->bi_rw, i, (unsigned long long)sh->sector);
1090 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1091 set_bit(STRIPE_HANDLE, &sh->state);
1094 if (!head_sh->batch_head)
1095 continue;
1096 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1097 batch_list);
1098 if (sh != head_sh)
1099 goto again;
1103 static struct dma_async_tx_descriptor *
1104 async_copy_data(int frombio, struct bio *bio, struct page **page,
1105 sector_t sector, struct dma_async_tx_descriptor *tx,
1106 struct stripe_head *sh)
1108 struct bio_vec bvl;
1109 struct bvec_iter iter;
1110 struct page *bio_page;
1111 int page_offset;
1112 struct async_submit_ctl submit;
1113 enum async_tx_flags flags = 0;
1115 if (bio->bi_iter.bi_sector >= sector)
1116 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1117 else
1118 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1120 if (frombio)
1121 flags |= ASYNC_TX_FENCE;
1122 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1124 bio_for_each_segment(bvl, bio, iter) {
1125 int len = bvl.bv_len;
1126 int clen;
1127 int b_offset = 0;
1129 if (page_offset < 0) {
1130 b_offset = -page_offset;
1131 page_offset += b_offset;
1132 len -= b_offset;
1135 if (len > 0 && page_offset + len > STRIPE_SIZE)
1136 clen = STRIPE_SIZE - page_offset;
1137 else
1138 clen = len;
1140 if (clen > 0) {
1141 b_offset += bvl.bv_offset;
1142 bio_page = bvl.bv_page;
1143 if (frombio) {
1144 if (sh->raid_conf->skip_copy &&
1145 b_offset == 0 && page_offset == 0 &&
1146 clen == STRIPE_SIZE)
1147 *page = bio_page;
1148 else
1149 tx = async_memcpy(*page, bio_page, page_offset,
1150 b_offset, clen, &submit);
1151 } else
1152 tx = async_memcpy(bio_page, *page, b_offset,
1153 page_offset, clen, &submit);
1155 /* chain the operations */
1156 submit.depend_tx = tx;
1158 if (clen < len) /* hit end of page */
1159 break;
1160 page_offset += len;
1163 return tx;
1166 static void ops_complete_biofill(void *stripe_head_ref)
1168 struct stripe_head *sh = stripe_head_ref;
1169 struct bio *return_bi = NULL;
1170 int i;
1172 pr_debug("%s: stripe %llu\n", __func__,
1173 (unsigned long long)sh->sector);
1175 /* clear completed biofills */
1176 for (i = sh->disks; i--; ) {
1177 struct r5dev *dev = &sh->dev[i];
1179 /* acknowledge completion of a biofill operation */
1180 /* and check if we need to reply to a read request,
1181 * new R5_Wantfill requests are held off until
1182 * !STRIPE_BIOFILL_RUN
1184 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1185 struct bio *rbi, *rbi2;
1187 BUG_ON(!dev->read);
1188 rbi = dev->read;
1189 dev->read = NULL;
1190 while (rbi && rbi->bi_iter.bi_sector <
1191 dev->sector + STRIPE_SECTORS) {
1192 rbi2 = r5_next_bio(rbi, dev->sector);
1193 if (!raid5_dec_bi_active_stripes(rbi)) {
1194 rbi->bi_next = return_bi;
1195 return_bi = rbi;
1197 rbi = rbi2;
1201 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1203 return_io(return_bi);
1205 set_bit(STRIPE_HANDLE, &sh->state);
1206 release_stripe(sh);
1209 static void ops_run_biofill(struct stripe_head *sh)
1211 struct dma_async_tx_descriptor *tx = NULL;
1212 struct async_submit_ctl submit;
1213 int i;
1215 BUG_ON(sh->batch_head);
1216 pr_debug("%s: stripe %llu\n", __func__,
1217 (unsigned long long)sh->sector);
1219 for (i = sh->disks; i--; ) {
1220 struct r5dev *dev = &sh->dev[i];
1221 if (test_bit(R5_Wantfill, &dev->flags)) {
1222 struct bio *rbi;
1223 spin_lock_irq(&sh->stripe_lock);
1224 dev->read = rbi = dev->toread;
1225 dev->toread = NULL;
1226 spin_unlock_irq(&sh->stripe_lock);
1227 while (rbi && rbi->bi_iter.bi_sector <
1228 dev->sector + STRIPE_SECTORS) {
1229 tx = async_copy_data(0, rbi, &dev->page,
1230 dev->sector, tx, sh);
1231 rbi = r5_next_bio(rbi, dev->sector);
1236 atomic_inc(&sh->count);
1237 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1238 async_trigger_callback(&submit);
1241 static void mark_target_uptodate(struct stripe_head *sh, int target)
1243 struct r5dev *tgt;
1245 if (target < 0)
1246 return;
1248 tgt = &sh->dev[target];
1249 set_bit(R5_UPTODATE, &tgt->flags);
1250 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1251 clear_bit(R5_Wantcompute, &tgt->flags);
1254 static void ops_complete_compute(void *stripe_head_ref)
1256 struct stripe_head *sh = stripe_head_ref;
1258 pr_debug("%s: stripe %llu\n", __func__,
1259 (unsigned long long)sh->sector);
1261 /* mark the computed target(s) as uptodate */
1262 mark_target_uptodate(sh, sh->ops.target);
1263 mark_target_uptodate(sh, sh->ops.target2);
1265 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1266 if (sh->check_state == check_state_compute_run)
1267 sh->check_state = check_state_compute_result;
1268 set_bit(STRIPE_HANDLE, &sh->state);
1269 release_stripe(sh);
1272 /* return a pointer to the address conversion region of the scribble buffer */
1273 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1274 struct raid5_percpu *percpu, int i)
1276 void *addr;
1278 addr = flex_array_get(percpu->scribble, i);
1279 return addr + sizeof(struct page *) * (sh->disks + 2);
1282 /* return a pointer to the address conversion region of the scribble buffer */
1283 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1285 void *addr;
1287 addr = flex_array_get(percpu->scribble, i);
1288 return addr;
1291 static struct dma_async_tx_descriptor *
1292 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1294 int disks = sh->disks;
1295 struct page **xor_srcs = to_addr_page(percpu, 0);
1296 int target = sh->ops.target;
1297 struct r5dev *tgt = &sh->dev[target];
1298 struct page *xor_dest = tgt->page;
1299 int count = 0;
1300 struct dma_async_tx_descriptor *tx;
1301 struct async_submit_ctl submit;
1302 int i;
1304 BUG_ON(sh->batch_head);
1306 pr_debug("%s: stripe %llu block: %d\n",
1307 __func__, (unsigned long long)sh->sector, target);
1308 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1310 for (i = disks; i--; )
1311 if (i != target)
1312 xor_srcs[count++] = sh->dev[i].page;
1314 atomic_inc(&sh->count);
1316 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1317 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1318 if (unlikely(count == 1))
1319 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1320 else
1321 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1323 return tx;
1326 /* set_syndrome_sources - populate source buffers for gen_syndrome
1327 * @srcs - (struct page *) array of size sh->disks
1328 * @sh - stripe_head to parse
1330 * Populates srcs in proper layout order for the stripe and returns the
1331 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1332 * destination buffer is recorded in srcs[count] and the Q destination
1333 * is recorded in srcs[count+1]].
1335 static int set_syndrome_sources(struct page **srcs,
1336 struct stripe_head *sh,
1337 int srctype)
1339 int disks = sh->disks;
1340 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1341 int d0_idx = raid6_d0(sh);
1342 int count;
1343 int i;
1345 for (i = 0; i < disks; i++)
1346 srcs[i] = NULL;
1348 count = 0;
1349 i = d0_idx;
1350 do {
1351 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1352 struct r5dev *dev = &sh->dev[i];
1354 if (i == sh->qd_idx || i == sh->pd_idx ||
1355 (srctype == SYNDROME_SRC_ALL) ||
1356 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1357 test_bit(R5_Wantdrain, &dev->flags)) ||
1358 (srctype == SYNDROME_SRC_WRITTEN &&
1359 dev->written))
1360 srcs[slot] = sh->dev[i].page;
1361 i = raid6_next_disk(i, disks);
1362 } while (i != d0_idx);
1364 return syndrome_disks;
1367 static struct dma_async_tx_descriptor *
1368 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1370 int disks = sh->disks;
1371 struct page **blocks = to_addr_page(percpu, 0);
1372 int target;
1373 int qd_idx = sh->qd_idx;
1374 struct dma_async_tx_descriptor *tx;
1375 struct async_submit_ctl submit;
1376 struct r5dev *tgt;
1377 struct page *dest;
1378 int i;
1379 int count;
1381 BUG_ON(sh->batch_head);
1382 if (sh->ops.target < 0)
1383 target = sh->ops.target2;
1384 else if (sh->ops.target2 < 0)
1385 target = sh->ops.target;
1386 else
1387 /* we should only have one valid target */
1388 BUG();
1389 BUG_ON(target < 0);
1390 pr_debug("%s: stripe %llu block: %d\n",
1391 __func__, (unsigned long long)sh->sector, target);
1393 tgt = &sh->dev[target];
1394 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1395 dest = tgt->page;
1397 atomic_inc(&sh->count);
1399 if (target == qd_idx) {
1400 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1401 blocks[count] = NULL; /* regenerating p is not necessary */
1402 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1403 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1404 ops_complete_compute, sh,
1405 to_addr_conv(sh, percpu, 0));
1406 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1407 } else {
1408 /* Compute any data- or p-drive using XOR */
1409 count = 0;
1410 for (i = disks; i-- ; ) {
1411 if (i == target || i == qd_idx)
1412 continue;
1413 blocks[count++] = sh->dev[i].page;
1416 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1417 NULL, ops_complete_compute, sh,
1418 to_addr_conv(sh, percpu, 0));
1419 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1422 return tx;
1425 static struct dma_async_tx_descriptor *
1426 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1428 int i, count, disks = sh->disks;
1429 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1430 int d0_idx = raid6_d0(sh);
1431 int faila = -1, failb = -1;
1432 int target = sh->ops.target;
1433 int target2 = sh->ops.target2;
1434 struct r5dev *tgt = &sh->dev[target];
1435 struct r5dev *tgt2 = &sh->dev[target2];
1436 struct dma_async_tx_descriptor *tx;
1437 struct page **blocks = to_addr_page(percpu, 0);
1438 struct async_submit_ctl submit;
1440 BUG_ON(sh->batch_head);
1441 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1442 __func__, (unsigned long long)sh->sector, target, target2);
1443 BUG_ON(target < 0 || target2 < 0);
1444 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1445 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1447 /* we need to open-code set_syndrome_sources to handle the
1448 * slot number conversion for 'faila' and 'failb'
1450 for (i = 0; i < disks ; i++)
1451 blocks[i] = NULL;
1452 count = 0;
1453 i = d0_idx;
1454 do {
1455 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1457 blocks[slot] = sh->dev[i].page;
1459 if (i == target)
1460 faila = slot;
1461 if (i == target2)
1462 failb = slot;
1463 i = raid6_next_disk(i, disks);
1464 } while (i != d0_idx);
1466 BUG_ON(faila == failb);
1467 if (failb < faila)
1468 swap(faila, failb);
1469 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1470 __func__, (unsigned long long)sh->sector, faila, failb);
1472 atomic_inc(&sh->count);
1474 if (failb == syndrome_disks+1) {
1475 /* Q disk is one of the missing disks */
1476 if (faila == syndrome_disks) {
1477 /* Missing P+Q, just recompute */
1478 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1479 ops_complete_compute, sh,
1480 to_addr_conv(sh, percpu, 0));
1481 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1482 STRIPE_SIZE, &submit);
1483 } else {
1484 struct page *dest;
1485 int data_target;
1486 int qd_idx = sh->qd_idx;
1488 /* Missing D+Q: recompute D from P, then recompute Q */
1489 if (target == qd_idx)
1490 data_target = target2;
1491 else
1492 data_target = target;
1494 count = 0;
1495 for (i = disks; i-- ; ) {
1496 if (i == data_target || i == qd_idx)
1497 continue;
1498 blocks[count++] = sh->dev[i].page;
1500 dest = sh->dev[data_target].page;
1501 init_async_submit(&submit,
1502 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1503 NULL, NULL, NULL,
1504 to_addr_conv(sh, percpu, 0));
1505 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1506 &submit);
1508 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1509 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1510 ops_complete_compute, sh,
1511 to_addr_conv(sh, percpu, 0));
1512 return async_gen_syndrome(blocks, 0, count+2,
1513 STRIPE_SIZE, &submit);
1515 } else {
1516 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1517 ops_complete_compute, sh,
1518 to_addr_conv(sh, percpu, 0));
1519 if (failb == syndrome_disks) {
1520 /* We're missing D+P. */
1521 return async_raid6_datap_recov(syndrome_disks+2,
1522 STRIPE_SIZE, faila,
1523 blocks, &submit);
1524 } else {
1525 /* We're missing D+D. */
1526 return async_raid6_2data_recov(syndrome_disks+2,
1527 STRIPE_SIZE, faila, failb,
1528 blocks, &submit);
1533 static void ops_complete_prexor(void *stripe_head_ref)
1535 struct stripe_head *sh = stripe_head_ref;
1537 pr_debug("%s: stripe %llu\n", __func__,
1538 (unsigned long long)sh->sector);
1541 static struct dma_async_tx_descriptor *
1542 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1543 struct dma_async_tx_descriptor *tx)
1545 int disks = sh->disks;
1546 struct page **xor_srcs = to_addr_page(percpu, 0);
1547 int count = 0, pd_idx = sh->pd_idx, i;
1548 struct async_submit_ctl submit;
1550 /* existing parity data subtracted */
1551 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1553 BUG_ON(sh->batch_head);
1554 pr_debug("%s: stripe %llu\n", __func__,
1555 (unsigned long long)sh->sector);
1557 for (i = disks; i--; ) {
1558 struct r5dev *dev = &sh->dev[i];
1559 /* Only process blocks that are known to be uptodate */
1560 if (test_bit(R5_Wantdrain, &dev->flags))
1561 xor_srcs[count++] = dev->page;
1564 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1565 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1566 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1568 return tx;
1571 static struct dma_async_tx_descriptor *
1572 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1573 struct dma_async_tx_descriptor *tx)
1575 struct page **blocks = to_addr_page(percpu, 0);
1576 int count;
1577 struct async_submit_ctl submit;
1579 pr_debug("%s: stripe %llu\n", __func__,
1580 (unsigned long long)sh->sector);
1582 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1584 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1585 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1586 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1588 return tx;
1591 static struct dma_async_tx_descriptor *
1592 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1594 int disks = sh->disks;
1595 int i;
1596 struct stripe_head *head_sh = sh;
1598 pr_debug("%s: stripe %llu\n", __func__,
1599 (unsigned long long)sh->sector);
1601 for (i = disks; i--; ) {
1602 struct r5dev *dev;
1603 struct bio *chosen;
1605 sh = head_sh;
1606 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1607 struct bio *wbi;
1609 again:
1610 dev = &sh->dev[i];
1611 spin_lock_irq(&sh->stripe_lock);
1612 chosen = dev->towrite;
1613 dev->towrite = NULL;
1614 sh->overwrite_disks = 0;
1615 BUG_ON(dev->written);
1616 wbi = dev->written = chosen;
1617 spin_unlock_irq(&sh->stripe_lock);
1618 WARN_ON(dev->page != dev->orig_page);
1620 while (wbi && wbi->bi_iter.bi_sector <
1621 dev->sector + STRIPE_SECTORS) {
1622 if (wbi->bi_rw & REQ_FUA)
1623 set_bit(R5_WantFUA, &dev->flags);
1624 if (wbi->bi_rw & REQ_SYNC)
1625 set_bit(R5_SyncIO, &dev->flags);
1626 if (wbi->bi_rw & REQ_DISCARD)
1627 set_bit(R5_Discard, &dev->flags);
1628 else {
1629 tx = async_copy_data(1, wbi, &dev->page,
1630 dev->sector, tx, sh);
1631 if (dev->page != dev->orig_page) {
1632 set_bit(R5_SkipCopy, &dev->flags);
1633 clear_bit(R5_UPTODATE, &dev->flags);
1634 clear_bit(R5_OVERWRITE, &dev->flags);
1637 wbi = r5_next_bio(wbi, dev->sector);
1640 if (head_sh->batch_head) {
1641 sh = list_first_entry(&sh->batch_list,
1642 struct stripe_head,
1643 batch_list);
1644 if (sh == head_sh)
1645 continue;
1646 goto again;
1651 return tx;
1654 static void ops_complete_reconstruct(void *stripe_head_ref)
1656 struct stripe_head *sh = stripe_head_ref;
1657 int disks = sh->disks;
1658 int pd_idx = sh->pd_idx;
1659 int qd_idx = sh->qd_idx;
1660 int i;
1661 bool fua = false, sync = false, discard = false;
1663 pr_debug("%s: stripe %llu\n", __func__,
1664 (unsigned long long)sh->sector);
1666 for (i = disks; i--; ) {
1667 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1668 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1669 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1672 for (i = disks; i--; ) {
1673 struct r5dev *dev = &sh->dev[i];
1675 if (dev->written || i == pd_idx || i == qd_idx) {
1676 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1677 set_bit(R5_UPTODATE, &dev->flags);
1678 if (fua)
1679 set_bit(R5_WantFUA, &dev->flags);
1680 if (sync)
1681 set_bit(R5_SyncIO, &dev->flags);
1685 if (sh->reconstruct_state == reconstruct_state_drain_run)
1686 sh->reconstruct_state = reconstruct_state_drain_result;
1687 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1688 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1689 else {
1690 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1691 sh->reconstruct_state = reconstruct_state_result;
1694 set_bit(STRIPE_HANDLE, &sh->state);
1695 release_stripe(sh);
1698 static void
1699 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1700 struct dma_async_tx_descriptor *tx)
1702 int disks = sh->disks;
1703 struct page **xor_srcs;
1704 struct async_submit_ctl submit;
1705 int count, pd_idx = sh->pd_idx, i;
1706 struct page *xor_dest;
1707 int prexor = 0;
1708 unsigned long flags;
1709 int j = 0;
1710 struct stripe_head *head_sh = sh;
1711 int last_stripe;
1713 pr_debug("%s: stripe %llu\n", __func__,
1714 (unsigned long long)sh->sector);
1716 for (i = 0; i < sh->disks; i++) {
1717 if (pd_idx == i)
1718 continue;
1719 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1720 break;
1722 if (i >= sh->disks) {
1723 atomic_inc(&sh->count);
1724 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1725 ops_complete_reconstruct(sh);
1726 return;
1728 again:
1729 count = 0;
1730 xor_srcs = to_addr_page(percpu, j);
1731 /* check if prexor is active which means only process blocks
1732 * that are part of a read-modify-write (written)
1734 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1735 prexor = 1;
1736 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1737 for (i = disks; i--; ) {
1738 struct r5dev *dev = &sh->dev[i];
1739 if (head_sh->dev[i].written)
1740 xor_srcs[count++] = dev->page;
1742 } else {
1743 xor_dest = sh->dev[pd_idx].page;
1744 for (i = disks; i--; ) {
1745 struct r5dev *dev = &sh->dev[i];
1746 if (i != pd_idx)
1747 xor_srcs[count++] = dev->page;
1751 /* 1/ if we prexor'd then the dest is reused as a source
1752 * 2/ if we did not prexor then we are redoing the parity
1753 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1754 * for the synchronous xor case
1756 last_stripe = !head_sh->batch_head ||
1757 list_first_entry(&sh->batch_list,
1758 struct stripe_head, batch_list) == head_sh;
1759 if (last_stripe) {
1760 flags = ASYNC_TX_ACK |
1761 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1763 atomic_inc(&head_sh->count);
1764 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1765 to_addr_conv(sh, percpu, j));
1766 } else {
1767 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1768 init_async_submit(&submit, flags, tx, NULL, NULL,
1769 to_addr_conv(sh, percpu, j));
1772 if (unlikely(count == 1))
1773 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1774 else
1775 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1776 if (!last_stripe) {
1777 j++;
1778 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1779 batch_list);
1780 goto again;
1784 static void
1785 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1786 struct dma_async_tx_descriptor *tx)
1788 struct async_submit_ctl submit;
1789 struct page **blocks;
1790 int count, i, j = 0;
1791 struct stripe_head *head_sh = sh;
1792 int last_stripe;
1793 int synflags;
1794 unsigned long txflags;
1796 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1798 for (i = 0; i < sh->disks; i++) {
1799 if (sh->pd_idx == i || sh->qd_idx == i)
1800 continue;
1801 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1802 break;
1804 if (i >= sh->disks) {
1805 atomic_inc(&sh->count);
1806 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1807 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1808 ops_complete_reconstruct(sh);
1809 return;
1812 again:
1813 blocks = to_addr_page(percpu, j);
1815 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1816 synflags = SYNDROME_SRC_WRITTEN;
1817 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1818 } else {
1819 synflags = SYNDROME_SRC_ALL;
1820 txflags = ASYNC_TX_ACK;
1823 count = set_syndrome_sources(blocks, sh, synflags);
1824 last_stripe = !head_sh->batch_head ||
1825 list_first_entry(&sh->batch_list,
1826 struct stripe_head, batch_list) == head_sh;
1828 if (last_stripe) {
1829 atomic_inc(&head_sh->count);
1830 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1831 head_sh, to_addr_conv(sh, percpu, j));
1832 } else
1833 init_async_submit(&submit, 0, tx, NULL, NULL,
1834 to_addr_conv(sh, percpu, j));
1835 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1836 if (!last_stripe) {
1837 j++;
1838 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1839 batch_list);
1840 goto again;
1844 static void ops_complete_check(void *stripe_head_ref)
1846 struct stripe_head *sh = stripe_head_ref;
1848 pr_debug("%s: stripe %llu\n", __func__,
1849 (unsigned long long)sh->sector);
1851 sh->check_state = check_state_check_result;
1852 set_bit(STRIPE_HANDLE, &sh->state);
1853 release_stripe(sh);
1856 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1858 int disks = sh->disks;
1859 int pd_idx = sh->pd_idx;
1860 int qd_idx = sh->qd_idx;
1861 struct page *xor_dest;
1862 struct page **xor_srcs = to_addr_page(percpu, 0);
1863 struct dma_async_tx_descriptor *tx;
1864 struct async_submit_ctl submit;
1865 int count;
1866 int i;
1868 pr_debug("%s: stripe %llu\n", __func__,
1869 (unsigned long long)sh->sector);
1871 BUG_ON(sh->batch_head);
1872 count = 0;
1873 xor_dest = sh->dev[pd_idx].page;
1874 xor_srcs[count++] = xor_dest;
1875 for (i = disks; i--; ) {
1876 if (i == pd_idx || i == qd_idx)
1877 continue;
1878 xor_srcs[count++] = sh->dev[i].page;
1881 init_async_submit(&submit, 0, NULL, NULL, NULL,
1882 to_addr_conv(sh, percpu, 0));
1883 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1884 &sh->ops.zero_sum_result, &submit);
1886 atomic_inc(&sh->count);
1887 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1888 tx = async_trigger_callback(&submit);
1891 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1893 struct page **srcs = to_addr_page(percpu, 0);
1894 struct async_submit_ctl submit;
1895 int count;
1897 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1898 (unsigned long long)sh->sector, checkp);
1900 BUG_ON(sh->batch_head);
1901 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1902 if (!checkp)
1903 srcs[count] = NULL;
1905 atomic_inc(&sh->count);
1906 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1907 sh, to_addr_conv(sh, percpu, 0));
1908 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1909 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1912 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1914 int overlap_clear = 0, i, disks = sh->disks;
1915 struct dma_async_tx_descriptor *tx = NULL;
1916 struct r5conf *conf = sh->raid_conf;
1917 int level = conf->level;
1918 struct raid5_percpu *percpu;
1919 unsigned long cpu;
1921 cpu = get_cpu();
1922 percpu = per_cpu_ptr(conf->percpu, cpu);
1923 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1924 ops_run_biofill(sh);
1925 overlap_clear++;
1928 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1929 if (level < 6)
1930 tx = ops_run_compute5(sh, percpu);
1931 else {
1932 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1933 tx = ops_run_compute6_1(sh, percpu);
1934 else
1935 tx = ops_run_compute6_2(sh, percpu);
1937 /* terminate the chain if reconstruct is not set to be run */
1938 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1939 async_tx_ack(tx);
1942 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1943 if (level < 6)
1944 tx = ops_run_prexor5(sh, percpu, tx);
1945 else
1946 tx = ops_run_prexor6(sh, percpu, tx);
1949 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1950 tx = ops_run_biodrain(sh, tx);
1951 overlap_clear++;
1954 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1955 if (level < 6)
1956 ops_run_reconstruct5(sh, percpu, tx);
1957 else
1958 ops_run_reconstruct6(sh, percpu, tx);
1961 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1962 if (sh->check_state == check_state_run)
1963 ops_run_check_p(sh, percpu);
1964 else if (sh->check_state == check_state_run_q)
1965 ops_run_check_pq(sh, percpu, 0);
1966 else if (sh->check_state == check_state_run_pq)
1967 ops_run_check_pq(sh, percpu, 1);
1968 else
1969 BUG();
1972 if (overlap_clear && !sh->batch_head)
1973 for (i = disks; i--; ) {
1974 struct r5dev *dev = &sh->dev[i];
1975 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1976 wake_up(&sh->raid_conf->wait_for_overlap);
1978 put_cpu();
1981 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1983 struct stripe_head *sh;
1985 sh = kmem_cache_zalloc(sc, gfp);
1986 if (sh) {
1987 spin_lock_init(&sh->stripe_lock);
1988 spin_lock_init(&sh->batch_lock);
1989 INIT_LIST_HEAD(&sh->batch_list);
1990 INIT_LIST_HEAD(&sh->lru);
1991 atomic_set(&sh->count, 1);
1993 return sh;
1995 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1997 struct stripe_head *sh;
1999 sh = alloc_stripe(conf->slab_cache, gfp);
2000 if (!sh)
2001 return 0;
2003 sh->raid_conf = conf;
2005 if (grow_buffers(sh, gfp)) {
2006 shrink_buffers(sh);
2007 kmem_cache_free(conf->slab_cache, sh);
2008 return 0;
2010 sh->hash_lock_index =
2011 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2012 /* we just created an active stripe so... */
2013 atomic_inc(&conf->active_stripes);
2015 release_stripe(sh);
2016 conf->max_nr_stripes++;
2017 return 1;
2020 static int grow_stripes(struct r5conf *conf, int num)
2022 struct kmem_cache *sc;
2023 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2025 if (conf->mddev->gendisk)
2026 sprintf(conf->cache_name[0],
2027 "raid%d-%s", conf->level, mdname(conf->mddev));
2028 else
2029 sprintf(conf->cache_name[0],
2030 "raid%d-%p", conf->level, conf->mddev);
2031 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2033 conf->active_name = 0;
2034 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2035 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2036 0, 0, NULL);
2037 if (!sc)
2038 return 1;
2039 conf->slab_cache = sc;
2040 conf->pool_size = devs;
2041 while (num--)
2042 if (!grow_one_stripe(conf, GFP_KERNEL))
2043 return 1;
2045 return 0;
2049 * scribble_len - return the required size of the scribble region
2050 * @num - total number of disks in the array
2052 * The size must be enough to contain:
2053 * 1/ a struct page pointer for each device in the array +2
2054 * 2/ room to convert each entry in (1) to its corresponding dma
2055 * (dma_map_page()) or page (page_address()) address.
2057 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2058 * calculate over all devices (not just the data blocks), using zeros in place
2059 * of the P and Q blocks.
2061 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2063 struct flex_array *ret;
2064 size_t len;
2066 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2067 ret = flex_array_alloc(len, cnt, flags);
2068 if (!ret)
2069 return NULL;
2070 /* always prealloc all elements, so no locking is required */
2071 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2072 flex_array_free(ret);
2073 return NULL;
2075 return ret;
2078 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2080 unsigned long cpu;
2081 int err = 0;
2084 * Never shrink. And mddev_suspend() could deadlock if this is called
2085 * from raid5d. In that case, scribble_disks and scribble_sectors
2086 * should equal to new_disks and new_sectors
2088 if (conf->scribble_disks >= new_disks &&
2089 conf->scribble_sectors >= new_sectors)
2090 return 0;
2091 mddev_suspend(conf->mddev);
2092 get_online_cpus();
2093 for_each_present_cpu(cpu) {
2094 struct raid5_percpu *percpu;
2095 struct flex_array *scribble;
2097 percpu = per_cpu_ptr(conf->percpu, cpu);
2098 scribble = scribble_alloc(new_disks,
2099 new_sectors / STRIPE_SECTORS,
2100 GFP_NOIO);
2102 if (scribble) {
2103 flex_array_free(percpu->scribble);
2104 percpu->scribble = scribble;
2105 } else {
2106 err = -ENOMEM;
2107 break;
2110 put_online_cpus();
2111 mddev_resume(conf->mddev);
2112 if (!err) {
2113 conf->scribble_disks = new_disks;
2114 conf->scribble_sectors = new_sectors;
2116 return err;
2119 static int resize_stripes(struct r5conf *conf, int newsize)
2121 /* Make all the stripes able to hold 'newsize' devices.
2122 * New slots in each stripe get 'page' set to a new page.
2124 * This happens in stages:
2125 * 1/ create a new kmem_cache and allocate the required number of
2126 * stripe_heads.
2127 * 2/ gather all the old stripe_heads and transfer the pages across
2128 * to the new stripe_heads. This will have the side effect of
2129 * freezing the array as once all stripe_heads have been collected,
2130 * no IO will be possible. Old stripe heads are freed once their
2131 * pages have been transferred over, and the old kmem_cache is
2132 * freed when all stripes are done.
2133 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2134 * we simple return a failre status - no need to clean anything up.
2135 * 4/ allocate new pages for the new slots in the new stripe_heads.
2136 * If this fails, we don't bother trying the shrink the
2137 * stripe_heads down again, we just leave them as they are.
2138 * As each stripe_head is processed the new one is released into
2139 * active service.
2141 * Once step2 is started, we cannot afford to wait for a write,
2142 * so we use GFP_NOIO allocations.
2144 struct stripe_head *osh, *nsh;
2145 LIST_HEAD(newstripes);
2146 struct disk_info *ndisks;
2147 int err;
2148 struct kmem_cache *sc;
2149 int i;
2150 int hash, cnt;
2152 if (newsize <= conf->pool_size)
2153 return 0; /* never bother to shrink */
2155 err = md_allow_write(conf->mddev);
2156 if (err)
2157 return err;
2159 /* Step 1 */
2160 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2161 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2162 0, 0, NULL);
2163 if (!sc)
2164 return -ENOMEM;
2166 /* Need to ensure auto-resizing doesn't interfere */
2167 mutex_lock(&conf->cache_size_mutex);
2169 for (i = conf->max_nr_stripes; i; i--) {
2170 nsh = alloc_stripe(sc, GFP_KERNEL);
2171 if (!nsh)
2172 break;
2174 nsh->raid_conf = conf;
2175 list_add(&nsh->lru, &newstripes);
2177 if (i) {
2178 /* didn't get enough, give up */
2179 while (!list_empty(&newstripes)) {
2180 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2181 list_del(&nsh->lru);
2182 kmem_cache_free(sc, nsh);
2184 kmem_cache_destroy(sc);
2185 mutex_unlock(&conf->cache_size_mutex);
2186 return -ENOMEM;
2188 /* Step 2 - Must use GFP_NOIO now.
2189 * OK, we have enough stripes, start collecting inactive
2190 * stripes and copying them over
2192 hash = 0;
2193 cnt = 0;
2194 list_for_each_entry(nsh, &newstripes, lru) {
2195 lock_device_hash_lock(conf, hash);
2196 wait_event_cmd(conf->wait_for_stripe,
2197 !list_empty(conf->inactive_list + hash),
2198 unlock_device_hash_lock(conf, hash),
2199 lock_device_hash_lock(conf, hash));
2200 osh = get_free_stripe(conf, hash);
2201 unlock_device_hash_lock(conf, hash);
2203 for(i=0; i<conf->pool_size; i++) {
2204 nsh->dev[i].page = osh->dev[i].page;
2205 nsh->dev[i].orig_page = osh->dev[i].page;
2207 nsh->hash_lock_index = hash;
2208 kmem_cache_free(conf->slab_cache, osh);
2209 cnt++;
2210 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2211 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2212 hash++;
2213 cnt = 0;
2216 kmem_cache_destroy(conf->slab_cache);
2218 /* Step 3.
2219 * At this point, we are holding all the stripes so the array
2220 * is completely stalled, so now is a good time to resize
2221 * conf->disks and the scribble region
2223 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2224 if (ndisks) {
2225 for (i=0; i<conf->raid_disks; i++)
2226 ndisks[i] = conf->disks[i];
2227 kfree(conf->disks);
2228 conf->disks = ndisks;
2229 } else
2230 err = -ENOMEM;
2232 mutex_unlock(&conf->cache_size_mutex);
2233 /* Step 4, return new stripes to service */
2234 while(!list_empty(&newstripes)) {
2235 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2236 list_del_init(&nsh->lru);
2238 for (i=conf->raid_disks; i < newsize; i++)
2239 if (nsh->dev[i].page == NULL) {
2240 struct page *p = alloc_page(GFP_NOIO);
2241 nsh->dev[i].page = p;
2242 nsh->dev[i].orig_page = p;
2243 if (!p)
2244 err = -ENOMEM;
2246 release_stripe(nsh);
2248 /* critical section pass, GFP_NOIO no longer needed */
2250 conf->slab_cache = sc;
2251 conf->active_name = 1-conf->active_name;
2252 if (!err)
2253 conf->pool_size = newsize;
2254 return err;
2257 static int drop_one_stripe(struct r5conf *conf)
2259 struct stripe_head *sh;
2260 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2262 spin_lock_irq(conf->hash_locks + hash);
2263 sh = get_free_stripe(conf, hash);
2264 spin_unlock_irq(conf->hash_locks + hash);
2265 if (!sh)
2266 return 0;
2267 BUG_ON(atomic_read(&sh->count));
2268 shrink_buffers(sh);
2269 kmem_cache_free(conf->slab_cache, sh);
2270 atomic_dec(&conf->active_stripes);
2271 conf->max_nr_stripes--;
2272 return 1;
2275 static void shrink_stripes(struct r5conf *conf)
2277 while (conf->max_nr_stripes &&
2278 drop_one_stripe(conf))
2281 if (conf->slab_cache)
2282 kmem_cache_destroy(conf->slab_cache);
2283 conf->slab_cache = NULL;
2286 static void raid5_end_read_request(struct bio * bi, int error)
2288 struct stripe_head *sh = bi->bi_private;
2289 struct r5conf *conf = sh->raid_conf;
2290 int disks = sh->disks, i;
2291 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2292 char b[BDEVNAME_SIZE];
2293 struct md_rdev *rdev = NULL;
2294 sector_t s;
2296 for (i=0 ; i<disks; i++)
2297 if (bi == &sh->dev[i].req)
2298 break;
2300 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2301 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2302 uptodate);
2303 if (i == disks) {
2304 BUG();
2305 return;
2307 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2308 /* If replacement finished while this request was outstanding,
2309 * 'replacement' might be NULL already.
2310 * In that case it moved down to 'rdev'.
2311 * rdev is not removed until all requests are finished.
2313 rdev = conf->disks[i].replacement;
2314 if (!rdev)
2315 rdev = conf->disks[i].rdev;
2317 if (use_new_offset(conf, sh))
2318 s = sh->sector + rdev->new_data_offset;
2319 else
2320 s = sh->sector + rdev->data_offset;
2321 if (uptodate) {
2322 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2323 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2324 /* Note that this cannot happen on a
2325 * replacement device. We just fail those on
2326 * any error
2328 printk_ratelimited(
2329 KERN_INFO
2330 "md/raid:%s: read error corrected"
2331 " (%lu sectors at %llu on %s)\n",
2332 mdname(conf->mddev), STRIPE_SECTORS,
2333 (unsigned long long)s,
2334 bdevname(rdev->bdev, b));
2335 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2336 clear_bit(R5_ReadError, &sh->dev[i].flags);
2337 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2338 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2339 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2341 if (atomic_read(&rdev->read_errors))
2342 atomic_set(&rdev->read_errors, 0);
2343 } else {
2344 const char *bdn = bdevname(rdev->bdev, b);
2345 int retry = 0;
2346 int set_bad = 0;
2348 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2349 atomic_inc(&rdev->read_errors);
2350 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2351 printk_ratelimited(
2352 KERN_WARNING
2353 "md/raid:%s: read error on replacement device "
2354 "(sector %llu on %s).\n",
2355 mdname(conf->mddev),
2356 (unsigned long long)s,
2357 bdn);
2358 else if (conf->mddev->degraded >= conf->max_degraded) {
2359 set_bad = 1;
2360 printk_ratelimited(
2361 KERN_WARNING
2362 "md/raid:%s: read error not correctable "
2363 "(sector %llu on %s).\n",
2364 mdname(conf->mddev),
2365 (unsigned long long)s,
2366 bdn);
2367 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2368 /* Oh, no!!! */
2369 set_bad = 1;
2370 printk_ratelimited(
2371 KERN_WARNING
2372 "md/raid:%s: read error NOT corrected!! "
2373 "(sector %llu on %s).\n",
2374 mdname(conf->mddev),
2375 (unsigned long long)s,
2376 bdn);
2377 } else if (atomic_read(&rdev->read_errors)
2378 > conf->max_nr_stripes)
2379 printk(KERN_WARNING
2380 "md/raid:%s: Too many read errors, failing device %s.\n",
2381 mdname(conf->mddev), bdn);
2382 else
2383 retry = 1;
2384 if (set_bad && test_bit(In_sync, &rdev->flags)
2385 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2386 retry = 1;
2387 if (retry)
2388 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2389 set_bit(R5_ReadError, &sh->dev[i].flags);
2390 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2391 } else
2392 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2393 else {
2394 clear_bit(R5_ReadError, &sh->dev[i].flags);
2395 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2396 if (!(set_bad
2397 && test_bit(In_sync, &rdev->flags)
2398 && rdev_set_badblocks(
2399 rdev, sh->sector, STRIPE_SECTORS, 0)))
2400 md_error(conf->mddev, rdev);
2403 rdev_dec_pending(rdev, conf->mddev);
2404 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2405 set_bit(STRIPE_HANDLE, &sh->state);
2406 release_stripe(sh);
2409 static void raid5_end_write_request(struct bio *bi, int error)
2411 struct stripe_head *sh = bi->bi_private;
2412 struct r5conf *conf = sh->raid_conf;
2413 int disks = sh->disks, i;
2414 struct md_rdev *uninitialized_var(rdev);
2415 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2416 sector_t first_bad;
2417 int bad_sectors;
2418 int replacement = 0;
2420 for (i = 0 ; i < disks; i++) {
2421 if (bi == &sh->dev[i].req) {
2422 rdev = conf->disks[i].rdev;
2423 break;
2425 if (bi == &sh->dev[i].rreq) {
2426 rdev = conf->disks[i].replacement;
2427 if (rdev)
2428 replacement = 1;
2429 else
2430 /* rdev was removed and 'replacement'
2431 * replaced it. rdev is not removed
2432 * until all requests are finished.
2434 rdev = conf->disks[i].rdev;
2435 break;
2438 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2439 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2440 uptodate);
2441 if (i == disks) {
2442 BUG();
2443 return;
2446 if (replacement) {
2447 if (!uptodate)
2448 md_error(conf->mddev, rdev);
2449 else if (is_badblock(rdev, sh->sector,
2450 STRIPE_SECTORS,
2451 &first_bad, &bad_sectors))
2452 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2453 } else {
2454 if (!uptodate) {
2455 set_bit(STRIPE_DEGRADED, &sh->state);
2456 set_bit(WriteErrorSeen, &rdev->flags);
2457 set_bit(R5_WriteError, &sh->dev[i].flags);
2458 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2459 set_bit(MD_RECOVERY_NEEDED,
2460 &rdev->mddev->recovery);
2461 } else if (is_badblock(rdev, sh->sector,
2462 STRIPE_SECTORS,
2463 &first_bad, &bad_sectors)) {
2464 set_bit(R5_MadeGood, &sh->dev[i].flags);
2465 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2466 /* That was a successful write so make
2467 * sure it looks like we already did
2468 * a re-write.
2470 set_bit(R5_ReWrite, &sh->dev[i].flags);
2473 rdev_dec_pending(rdev, conf->mddev);
2475 if (sh->batch_head && !uptodate && !replacement)
2476 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2478 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2479 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2480 set_bit(STRIPE_HANDLE, &sh->state);
2481 release_stripe(sh);
2483 if (sh->batch_head && sh != sh->batch_head)
2484 release_stripe(sh->batch_head);
2487 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2489 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2491 struct r5dev *dev = &sh->dev[i];
2493 bio_init(&dev->req);
2494 dev->req.bi_io_vec = &dev->vec;
2495 dev->req.bi_max_vecs = 1;
2496 dev->req.bi_private = sh;
2498 bio_init(&dev->rreq);
2499 dev->rreq.bi_io_vec = &dev->rvec;
2500 dev->rreq.bi_max_vecs = 1;
2501 dev->rreq.bi_private = sh;
2503 dev->flags = 0;
2504 dev->sector = compute_blocknr(sh, i, previous);
2507 static void error(struct mddev *mddev, struct md_rdev *rdev)
2509 char b[BDEVNAME_SIZE];
2510 struct r5conf *conf = mddev->private;
2511 unsigned long flags;
2512 pr_debug("raid456: error called\n");
2514 spin_lock_irqsave(&conf->device_lock, flags);
2515 clear_bit(In_sync, &rdev->flags);
2516 mddev->degraded = calc_degraded(conf);
2517 spin_unlock_irqrestore(&conf->device_lock, flags);
2518 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2520 set_bit(Blocked, &rdev->flags);
2521 set_bit(Faulty, &rdev->flags);
2522 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2523 printk(KERN_ALERT
2524 "md/raid:%s: Disk failure on %s, disabling device.\n"
2525 "md/raid:%s: Operation continuing on %d devices.\n",
2526 mdname(mddev),
2527 bdevname(rdev->bdev, b),
2528 mdname(mddev),
2529 conf->raid_disks - mddev->degraded);
2533 * Input: a 'big' sector number,
2534 * Output: index of the data and parity disk, and the sector # in them.
2536 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2537 int previous, int *dd_idx,
2538 struct stripe_head *sh)
2540 sector_t stripe, stripe2;
2541 sector_t chunk_number;
2542 unsigned int chunk_offset;
2543 int pd_idx, qd_idx;
2544 int ddf_layout = 0;
2545 sector_t new_sector;
2546 int algorithm = previous ? conf->prev_algo
2547 : conf->algorithm;
2548 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2549 : conf->chunk_sectors;
2550 int raid_disks = previous ? conf->previous_raid_disks
2551 : conf->raid_disks;
2552 int data_disks = raid_disks - conf->max_degraded;
2554 /* First compute the information on this sector */
2557 * Compute the chunk number and the sector offset inside the chunk
2559 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2560 chunk_number = r_sector;
2563 * Compute the stripe number
2565 stripe = chunk_number;
2566 *dd_idx = sector_div(stripe, data_disks);
2567 stripe2 = stripe;
2569 * Select the parity disk based on the user selected algorithm.
2571 pd_idx = qd_idx = -1;
2572 switch(conf->level) {
2573 case 4:
2574 pd_idx = data_disks;
2575 break;
2576 case 5:
2577 switch (algorithm) {
2578 case ALGORITHM_LEFT_ASYMMETRIC:
2579 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2580 if (*dd_idx >= pd_idx)
2581 (*dd_idx)++;
2582 break;
2583 case ALGORITHM_RIGHT_ASYMMETRIC:
2584 pd_idx = sector_div(stripe2, raid_disks);
2585 if (*dd_idx >= pd_idx)
2586 (*dd_idx)++;
2587 break;
2588 case ALGORITHM_LEFT_SYMMETRIC:
2589 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2590 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2591 break;
2592 case ALGORITHM_RIGHT_SYMMETRIC:
2593 pd_idx = sector_div(stripe2, raid_disks);
2594 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2595 break;
2596 case ALGORITHM_PARITY_0:
2597 pd_idx = 0;
2598 (*dd_idx)++;
2599 break;
2600 case ALGORITHM_PARITY_N:
2601 pd_idx = data_disks;
2602 break;
2603 default:
2604 BUG();
2606 break;
2607 case 6:
2609 switch (algorithm) {
2610 case ALGORITHM_LEFT_ASYMMETRIC:
2611 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2612 qd_idx = pd_idx + 1;
2613 if (pd_idx == raid_disks-1) {
2614 (*dd_idx)++; /* Q D D D P */
2615 qd_idx = 0;
2616 } else if (*dd_idx >= pd_idx)
2617 (*dd_idx) += 2; /* D D P Q D */
2618 break;
2619 case ALGORITHM_RIGHT_ASYMMETRIC:
2620 pd_idx = sector_div(stripe2, raid_disks);
2621 qd_idx = pd_idx + 1;
2622 if (pd_idx == raid_disks-1) {
2623 (*dd_idx)++; /* Q D D D P */
2624 qd_idx = 0;
2625 } else if (*dd_idx >= pd_idx)
2626 (*dd_idx) += 2; /* D D P Q D */
2627 break;
2628 case ALGORITHM_LEFT_SYMMETRIC:
2629 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2630 qd_idx = (pd_idx + 1) % raid_disks;
2631 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2632 break;
2633 case ALGORITHM_RIGHT_SYMMETRIC:
2634 pd_idx = sector_div(stripe2, raid_disks);
2635 qd_idx = (pd_idx + 1) % raid_disks;
2636 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2637 break;
2639 case ALGORITHM_PARITY_0:
2640 pd_idx = 0;
2641 qd_idx = 1;
2642 (*dd_idx) += 2;
2643 break;
2644 case ALGORITHM_PARITY_N:
2645 pd_idx = data_disks;
2646 qd_idx = data_disks + 1;
2647 break;
2649 case ALGORITHM_ROTATING_ZERO_RESTART:
2650 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2651 * of blocks for computing Q is different.
2653 pd_idx = sector_div(stripe2, raid_disks);
2654 qd_idx = pd_idx + 1;
2655 if (pd_idx == raid_disks-1) {
2656 (*dd_idx)++; /* Q D D D P */
2657 qd_idx = 0;
2658 } else if (*dd_idx >= pd_idx)
2659 (*dd_idx) += 2; /* D D P Q D */
2660 ddf_layout = 1;
2661 break;
2663 case ALGORITHM_ROTATING_N_RESTART:
2664 /* Same a left_asymmetric, by first stripe is
2665 * D D D P Q rather than
2666 * Q D D D P
2668 stripe2 += 1;
2669 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2670 qd_idx = pd_idx + 1;
2671 if (pd_idx == raid_disks-1) {
2672 (*dd_idx)++; /* Q D D D P */
2673 qd_idx = 0;
2674 } else if (*dd_idx >= pd_idx)
2675 (*dd_idx) += 2; /* D D P Q D */
2676 ddf_layout = 1;
2677 break;
2679 case ALGORITHM_ROTATING_N_CONTINUE:
2680 /* Same as left_symmetric but Q is before P */
2681 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2682 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2683 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2684 ddf_layout = 1;
2685 break;
2687 case ALGORITHM_LEFT_ASYMMETRIC_6:
2688 /* RAID5 left_asymmetric, with Q on last device */
2689 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2690 if (*dd_idx >= pd_idx)
2691 (*dd_idx)++;
2692 qd_idx = raid_disks - 1;
2693 break;
2695 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2696 pd_idx = sector_div(stripe2, raid_disks-1);
2697 if (*dd_idx >= pd_idx)
2698 (*dd_idx)++;
2699 qd_idx = raid_disks - 1;
2700 break;
2702 case ALGORITHM_LEFT_SYMMETRIC_6:
2703 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2704 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2705 qd_idx = raid_disks - 1;
2706 break;
2708 case ALGORITHM_RIGHT_SYMMETRIC_6:
2709 pd_idx = sector_div(stripe2, raid_disks-1);
2710 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2711 qd_idx = raid_disks - 1;
2712 break;
2714 case ALGORITHM_PARITY_0_6:
2715 pd_idx = 0;
2716 (*dd_idx)++;
2717 qd_idx = raid_disks - 1;
2718 break;
2720 default:
2721 BUG();
2723 break;
2726 if (sh) {
2727 sh->pd_idx = pd_idx;
2728 sh->qd_idx = qd_idx;
2729 sh->ddf_layout = ddf_layout;
2732 * Finally, compute the new sector number
2734 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2735 return new_sector;
2738 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2740 struct r5conf *conf = sh->raid_conf;
2741 int raid_disks = sh->disks;
2742 int data_disks = raid_disks - conf->max_degraded;
2743 sector_t new_sector = sh->sector, check;
2744 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2745 : conf->chunk_sectors;
2746 int algorithm = previous ? conf->prev_algo
2747 : conf->algorithm;
2748 sector_t stripe;
2749 int chunk_offset;
2750 sector_t chunk_number;
2751 int dummy1, dd_idx = i;
2752 sector_t r_sector;
2753 struct stripe_head sh2;
2755 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2756 stripe = new_sector;
2758 if (i == sh->pd_idx)
2759 return 0;
2760 switch(conf->level) {
2761 case 4: break;
2762 case 5:
2763 switch (algorithm) {
2764 case ALGORITHM_LEFT_ASYMMETRIC:
2765 case ALGORITHM_RIGHT_ASYMMETRIC:
2766 if (i > sh->pd_idx)
2767 i--;
2768 break;
2769 case ALGORITHM_LEFT_SYMMETRIC:
2770 case ALGORITHM_RIGHT_SYMMETRIC:
2771 if (i < sh->pd_idx)
2772 i += raid_disks;
2773 i -= (sh->pd_idx + 1);
2774 break;
2775 case ALGORITHM_PARITY_0:
2776 i -= 1;
2777 break;
2778 case ALGORITHM_PARITY_N:
2779 break;
2780 default:
2781 BUG();
2783 break;
2784 case 6:
2785 if (i == sh->qd_idx)
2786 return 0; /* It is the Q disk */
2787 switch (algorithm) {
2788 case ALGORITHM_LEFT_ASYMMETRIC:
2789 case ALGORITHM_RIGHT_ASYMMETRIC:
2790 case ALGORITHM_ROTATING_ZERO_RESTART:
2791 case ALGORITHM_ROTATING_N_RESTART:
2792 if (sh->pd_idx == raid_disks-1)
2793 i--; /* Q D D D P */
2794 else if (i > sh->pd_idx)
2795 i -= 2; /* D D P Q D */
2796 break;
2797 case ALGORITHM_LEFT_SYMMETRIC:
2798 case ALGORITHM_RIGHT_SYMMETRIC:
2799 if (sh->pd_idx == raid_disks-1)
2800 i--; /* Q D D D P */
2801 else {
2802 /* D D P Q D */
2803 if (i < sh->pd_idx)
2804 i += raid_disks;
2805 i -= (sh->pd_idx + 2);
2807 break;
2808 case ALGORITHM_PARITY_0:
2809 i -= 2;
2810 break;
2811 case ALGORITHM_PARITY_N:
2812 break;
2813 case ALGORITHM_ROTATING_N_CONTINUE:
2814 /* Like left_symmetric, but P is before Q */
2815 if (sh->pd_idx == 0)
2816 i--; /* P D D D Q */
2817 else {
2818 /* D D Q P D */
2819 if (i < sh->pd_idx)
2820 i += raid_disks;
2821 i -= (sh->pd_idx + 1);
2823 break;
2824 case ALGORITHM_LEFT_ASYMMETRIC_6:
2825 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2826 if (i > sh->pd_idx)
2827 i--;
2828 break;
2829 case ALGORITHM_LEFT_SYMMETRIC_6:
2830 case ALGORITHM_RIGHT_SYMMETRIC_6:
2831 if (i < sh->pd_idx)
2832 i += data_disks + 1;
2833 i -= (sh->pd_idx + 1);
2834 break;
2835 case ALGORITHM_PARITY_0_6:
2836 i -= 1;
2837 break;
2838 default:
2839 BUG();
2841 break;
2844 chunk_number = stripe * data_disks + i;
2845 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2847 check = raid5_compute_sector(conf, r_sector,
2848 previous, &dummy1, &sh2);
2849 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2850 || sh2.qd_idx != sh->qd_idx) {
2851 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2852 mdname(conf->mddev));
2853 return 0;
2855 return r_sector;
2858 static void
2859 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2860 int rcw, int expand)
2862 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2863 struct r5conf *conf = sh->raid_conf;
2864 int level = conf->level;
2866 if (rcw) {
2868 for (i = disks; i--; ) {
2869 struct r5dev *dev = &sh->dev[i];
2871 if (dev->towrite) {
2872 set_bit(R5_LOCKED, &dev->flags);
2873 set_bit(R5_Wantdrain, &dev->flags);
2874 if (!expand)
2875 clear_bit(R5_UPTODATE, &dev->flags);
2876 s->locked++;
2879 /* if we are not expanding this is a proper write request, and
2880 * there will be bios with new data to be drained into the
2881 * stripe cache
2883 if (!expand) {
2884 if (!s->locked)
2885 /* False alarm, nothing to do */
2886 return;
2887 sh->reconstruct_state = reconstruct_state_drain_run;
2888 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2889 } else
2890 sh->reconstruct_state = reconstruct_state_run;
2892 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2894 if (s->locked + conf->max_degraded == disks)
2895 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2896 atomic_inc(&conf->pending_full_writes);
2897 } else {
2898 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2899 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2900 BUG_ON(level == 6 &&
2901 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2902 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2904 for (i = disks; i--; ) {
2905 struct r5dev *dev = &sh->dev[i];
2906 if (i == pd_idx || i == qd_idx)
2907 continue;
2909 if (dev->towrite &&
2910 (test_bit(R5_UPTODATE, &dev->flags) ||
2911 test_bit(R5_Wantcompute, &dev->flags))) {
2912 set_bit(R5_Wantdrain, &dev->flags);
2913 set_bit(R5_LOCKED, &dev->flags);
2914 clear_bit(R5_UPTODATE, &dev->flags);
2915 s->locked++;
2918 if (!s->locked)
2919 /* False alarm - nothing to do */
2920 return;
2921 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2922 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2923 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2924 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2927 /* keep the parity disk(s) locked while asynchronous operations
2928 * are in flight
2930 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2931 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2932 s->locked++;
2934 if (level == 6) {
2935 int qd_idx = sh->qd_idx;
2936 struct r5dev *dev = &sh->dev[qd_idx];
2938 set_bit(R5_LOCKED, &dev->flags);
2939 clear_bit(R5_UPTODATE, &dev->flags);
2940 s->locked++;
2943 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2944 __func__, (unsigned long long)sh->sector,
2945 s->locked, s->ops_request);
2949 * Each stripe/dev can have one or more bion attached.
2950 * toread/towrite point to the first in a chain.
2951 * The bi_next chain must be in order.
2953 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2954 int forwrite, int previous)
2956 struct bio **bip;
2957 struct r5conf *conf = sh->raid_conf;
2958 int firstwrite=0;
2960 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2961 (unsigned long long)bi->bi_iter.bi_sector,
2962 (unsigned long long)sh->sector);
2965 * If several bio share a stripe. The bio bi_phys_segments acts as a
2966 * reference count to avoid race. The reference count should already be
2967 * increased before this function is called (for example, in
2968 * make_request()), so other bio sharing this stripe will not free the
2969 * stripe. If a stripe is owned by one stripe, the stripe lock will
2970 * protect it.
2972 spin_lock_irq(&sh->stripe_lock);
2973 /* Don't allow new IO added to stripes in batch list */
2974 if (sh->batch_head)
2975 goto overlap;
2976 if (forwrite) {
2977 bip = &sh->dev[dd_idx].towrite;
2978 if (*bip == NULL)
2979 firstwrite = 1;
2980 } else
2981 bip = &sh->dev[dd_idx].toread;
2982 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2983 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2984 goto overlap;
2985 bip = & (*bip)->bi_next;
2987 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2988 goto overlap;
2990 if (!forwrite || previous)
2991 clear_bit(STRIPE_BATCH_READY, &sh->state);
2993 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2994 if (*bip)
2995 bi->bi_next = *bip;
2996 *bip = bi;
2997 raid5_inc_bi_active_stripes(bi);
2999 if (forwrite) {
3000 /* check if page is covered */
3001 sector_t sector = sh->dev[dd_idx].sector;
3002 for (bi=sh->dev[dd_idx].towrite;
3003 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3004 bi && bi->bi_iter.bi_sector <= sector;
3005 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3006 if (bio_end_sector(bi) >= sector)
3007 sector = bio_end_sector(bi);
3009 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3010 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3011 sh->overwrite_disks++;
3014 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3015 (unsigned long long)(*bip)->bi_iter.bi_sector,
3016 (unsigned long long)sh->sector, dd_idx);
3018 if (conf->mddev->bitmap && firstwrite) {
3019 /* Cannot hold spinlock over bitmap_startwrite,
3020 * but must ensure this isn't added to a batch until
3021 * we have added to the bitmap and set bm_seq.
3022 * So set STRIPE_BITMAP_PENDING to prevent
3023 * batching.
3024 * If multiple add_stripe_bio() calls race here they
3025 * much all set STRIPE_BITMAP_PENDING. So only the first one
3026 * to complete "bitmap_startwrite" gets to set
3027 * STRIPE_BIT_DELAY. This is important as once a stripe
3028 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3029 * any more.
3031 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3032 spin_unlock_irq(&sh->stripe_lock);
3033 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3034 STRIPE_SECTORS, 0);
3035 spin_lock_irq(&sh->stripe_lock);
3036 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3037 if (!sh->batch_head) {
3038 sh->bm_seq = conf->seq_flush+1;
3039 set_bit(STRIPE_BIT_DELAY, &sh->state);
3042 spin_unlock_irq(&sh->stripe_lock);
3044 if (stripe_can_batch(sh))
3045 stripe_add_to_batch_list(conf, sh);
3046 return 1;
3048 overlap:
3049 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3050 spin_unlock_irq(&sh->stripe_lock);
3051 return 0;
3054 static void end_reshape(struct r5conf *conf);
3056 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3057 struct stripe_head *sh)
3059 int sectors_per_chunk =
3060 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3061 int dd_idx;
3062 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3063 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3065 raid5_compute_sector(conf,
3066 stripe * (disks - conf->max_degraded)
3067 *sectors_per_chunk + chunk_offset,
3068 previous,
3069 &dd_idx, sh);
3072 static void
3073 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3074 struct stripe_head_state *s, int disks,
3075 struct bio **return_bi)
3077 int i;
3078 BUG_ON(sh->batch_head);
3079 for (i = disks; i--; ) {
3080 struct bio *bi;
3081 int bitmap_end = 0;
3083 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3084 struct md_rdev *rdev;
3085 rcu_read_lock();
3086 rdev = rcu_dereference(conf->disks[i].rdev);
3087 if (rdev && test_bit(In_sync, &rdev->flags))
3088 atomic_inc(&rdev->nr_pending);
3089 else
3090 rdev = NULL;
3091 rcu_read_unlock();
3092 if (rdev) {
3093 if (!rdev_set_badblocks(
3094 rdev,
3095 sh->sector,
3096 STRIPE_SECTORS, 0))
3097 md_error(conf->mddev, rdev);
3098 rdev_dec_pending(rdev, conf->mddev);
3101 spin_lock_irq(&sh->stripe_lock);
3102 /* fail all writes first */
3103 bi = sh->dev[i].towrite;
3104 sh->dev[i].towrite = NULL;
3105 sh->overwrite_disks = 0;
3106 spin_unlock_irq(&sh->stripe_lock);
3107 if (bi)
3108 bitmap_end = 1;
3110 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3111 wake_up(&conf->wait_for_overlap);
3113 while (bi && bi->bi_iter.bi_sector <
3114 sh->dev[i].sector + STRIPE_SECTORS) {
3115 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3116 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3117 if (!raid5_dec_bi_active_stripes(bi)) {
3118 md_write_end(conf->mddev);
3119 bi->bi_next = *return_bi;
3120 *return_bi = bi;
3122 bi = nextbi;
3124 if (bitmap_end)
3125 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3126 STRIPE_SECTORS, 0, 0);
3127 bitmap_end = 0;
3128 /* and fail all 'written' */
3129 bi = sh->dev[i].written;
3130 sh->dev[i].written = NULL;
3131 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3132 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3133 sh->dev[i].page = sh->dev[i].orig_page;
3136 if (bi) bitmap_end = 1;
3137 while (bi && bi->bi_iter.bi_sector <
3138 sh->dev[i].sector + STRIPE_SECTORS) {
3139 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3140 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3141 if (!raid5_dec_bi_active_stripes(bi)) {
3142 md_write_end(conf->mddev);
3143 bi->bi_next = *return_bi;
3144 *return_bi = bi;
3146 bi = bi2;
3149 /* fail any reads if this device is non-operational and
3150 * the data has not reached the cache yet.
3152 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3153 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3154 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3155 spin_lock_irq(&sh->stripe_lock);
3156 bi = sh->dev[i].toread;
3157 sh->dev[i].toread = NULL;
3158 spin_unlock_irq(&sh->stripe_lock);
3159 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3160 wake_up(&conf->wait_for_overlap);
3161 while (bi && bi->bi_iter.bi_sector <
3162 sh->dev[i].sector + STRIPE_SECTORS) {
3163 struct bio *nextbi =
3164 r5_next_bio(bi, sh->dev[i].sector);
3165 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3166 if (!raid5_dec_bi_active_stripes(bi)) {
3167 bi->bi_next = *return_bi;
3168 *return_bi = bi;
3170 bi = nextbi;
3173 if (bitmap_end)
3174 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3175 STRIPE_SECTORS, 0, 0);
3176 /* If we were in the middle of a write the parity block might
3177 * still be locked - so just clear all R5_LOCKED flags
3179 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3182 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3183 if (atomic_dec_and_test(&conf->pending_full_writes))
3184 md_wakeup_thread(conf->mddev->thread);
3187 static void
3188 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3189 struct stripe_head_state *s)
3191 int abort = 0;
3192 int i;
3194 BUG_ON(sh->batch_head);
3195 clear_bit(STRIPE_SYNCING, &sh->state);
3196 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3197 wake_up(&conf->wait_for_overlap);
3198 s->syncing = 0;
3199 s->replacing = 0;
3200 /* There is nothing more to do for sync/check/repair.
3201 * Don't even need to abort as that is handled elsewhere
3202 * if needed, and not always wanted e.g. if there is a known
3203 * bad block here.
3204 * For recover/replace we need to record a bad block on all
3205 * non-sync devices, or abort the recovery
3207 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3208 /* During recovery devices cannot be removed, so
3209 * locking and refcounting of rdevs is not needed
3211 for (i = 0; i < conf->raid_disks; i++) {
3212 struct md_rdev *rdev = conf->disks[i].rdev;
3213 if (rdev
3214 && !test_bit(Faulty, &rdev->flags)
3215 && !test_bit(In_sync, &rdev->flags)
3216 && !rdev_set_badblocks(rdev, sh->sector,
3217 STRIPE_SECTORS, 0))
3218 abort = 1;
3219 rdev = conf->disks[i].replacement;
3220 if (rdev
3221 && !test_bit(Faulty, &rdev->flags)
3222 && !test_bit(In_sync, &rdev->flags)
3223 && !rdev_set_badblocks(rdev, sh->sector,
3224 STRIPE_SECTORS, 0))
3225 abort = 1;
3227 if (abort)
3228 conf->recovery_disabled =
3229 conf->mddev->recovery_disabled;
3231 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3234 static int want_replace(struct stripe_head *sh, int disk_idx)
3236 struct md_rdev *rdev;
3237 int rv = 0;
3238 /* Doing recovery so rcu locking not required */
3239 rdev = sh->raid_conf->disks[disk_idx].replacement;
3240 if (rdev
3241 && !test_bit(Faulty, &rdev->flags)
3242 && !test_bit(In_sync, &rdev->flags)
3243 && (rdev->recovery_offset <= sh->sector
3244 || rdev->mddev->recovery_cp <= sh->sector))
3245 rv = 1;
3247 return rv;
3250 /* fetch_block - checks the given member device to see if its data needs
3251 * to be read or computed to satisfy a request.
3253 * Returns 1 when no more member devices need to be checked, otherwise returns
3254 * 0 to tell the loop in handle_stripe_fill to continue
3257 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3258 int disk_idx, int disks)
3260 struct r5dev *dev = &sh->dev[disk_idx];
3261 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3262 &sh->dev[s->failed_num[1]] };
3263 int i;
3266 if (test_bit(R5_LOCKED, &dev->flags) ||
3267 test_bit(R5_UPTODATE, &dev->flags))
3268 /* No point reading this as we already have it or have
3269 * decided to get it.
3271 return 0;
3273 if (dev->toread ||
3274 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3275 /* We need this block to directly satisfy a request */
3276 return 1;
3278 if (s->syncing || s->expanding ||
3279 (s->replacing && want_replace(sh, disk_idx)))
3280 /* When syncing, or expanding we read everything.
3281 * When replacing, we need the replaced block.
3283 return 1;
3285 if ((s->failed >= 1 && fdev[0]->toread) ||
3286 (s->failed >= 2 && fdev[1]->toread))
3287 /* If we want to read from a failed device, then
3288 * we need to actually read every other device.
3290 return 1;
3292 /* Sometimes neither read-modify-write nor reconstruct-write
3293 * cycles can work. In those cases we read every block we
3294 * can. Then the parity-update is certain to have enough to
3295 * work with.
3296 * This can only be a problem when we need to write something,
3297 * and some device has failed. If either of those tests
3298 * fail we need look no further.
3300 if (!s->failed || !s->to_write)
3301 return 0;
3303 if (test_bit(R5_Insync, &dev->flags) &&
3304 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3305 /* Pre-reads at not permitted until after short delay
3306 * to gather multiple requests. However if this
3307 * device is no Insync, the block could only be be computed
3308 * and there is no need to delay that.
3310 return 0;
3312 for (i = 0; i < s->failed; i++) {
3313 if (fdev[i]->towrite &&
3314 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3315 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3316 /* If we have a partial write to a failed
3317 * device, then we will need to reconstruct
3318 * the content of that device, so all other
3319 * devices must be read.
3321 return 1;
3324 /* If we are forced to do a reconstruct-write, either because
3325 * the current RAID6 implementation only supports that, or
3326 * or because parity cannot be trusted and we are currently
3327 * recovering it, there is extra need to be careful.
3328 * If one of the devices that we would need to read, because
3329 * it is not being overwritten (and maybe not written at all)
3330 * is missing/faulty, then we need to read everything we can.
3332 if (sh->raid_conf->level != 6 &&
3333 sh->sector < sh->raid_conf->mddev->recovery_cp)
3334 /* reconstruct-write isn't being forced */
3335 return 0;
3336 for (i = 0; i < s->failed; i++) {
3337 if (s->failed_num[i] != sh->pd_idx &&
3338 s->failed_num[i] != sh->qd_idx &&
3339 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3340 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3341 return 1;
3344 return 0;
3347 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3348 int disk_idx, int disks)
3350 struct r5dev *dev = &sh->dev[disk_idx];
3352 /* is the data in this block needed, and can we get it? */
3353 if (need_this_block(sh, s, disk_idx, disks)) {
3354 /* we would like to get this block, possibly by computing it,
3355 * otherwise read it if the backing disk is insync
3357 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3358 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3359 BUG_ON(sh->batch_head);
3360 if ((s->uptodate == disks - 1) &&
3361 (s->failed && (disk_idx == s->failed_num[0] ||
3362 disk_idx == s->failed_num[1]))) {
3363 /* have disk failed, and we're requested to fetch it;
3364 * do compute it
3366 pr_debug("Computing stripe %llu block %d\n",
3367 (unsigned long long)sh->sector, disk_idx);
3368 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3369 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3370 set_bit(R5_Wantcompute, &dev->flags);
3371 sh->ops.target = disk_idx;
3372 sh->ops.target2 = -1; /* no 2nd target */
3373 s->req_compute = 1;
3374 /* Careful: from this point on 'uptodate' is in the eye
3375 * of raid_run_ops which services 'compute' operations
3376 * before writes. R5_Wantcompute flags a block that will
3377 * be R5_UPTODATE by the time it is needed for a
3378 * subsequent operation.
3380 s->uptodate++;
3381 return 1;
3382 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3383 /* Computing 2-failure is *very* expensive; only
3384 * do it if failed >= 2
3386 int other;
3387 for (other = disks; other--; ) {
3388 if (other == disk_idx)
3389 continue;
3390 if (!test_bit(R5_UPTODATE,
3391 &sh->dev[other].flags))
3392 break;
3394 BUG_ON(other < 0);
3395 pr_debug("Computing stripe %llu blocks %d,%d\n",
3396 (unsigned long long)sh->sector,
3397 disk_idx, other);
3398 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3399 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3400 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3401 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3402 sh->ops.target = disk_idx;
3403 sh->ops.target2 = other;
3404 s->uptodate += 2;
3405 s->req_compute = 1;
3406 return 1;
3407 } else if (test_bit(R5_Insync, &dev->flags)) {
3408 set_bit(R5_LOCKED, &dev->flags);
3409 set_bit(R5_Wantread, &dev->flags);
3410 s->locked++;
3411 pr_debug("Reading block %d (sync=%d)\n",
3412 disk_idx, s->syncing);
3416 return 0;
3420 * handle_stripe_fill - read or compute data to satisfy pending requests.
3422 static void handle_stripe_fill(struct stripe_head *sh,
3423 struct stripe_head_state *s,
3424 int disks)
3426 int i;
3428 /* look for blocks to read/compute, skip this if a compute
3429 * is already in flight, or if the stripe contents are in the
3430 * midst of changing due to a write
3432 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3433 !sh->reconstruct_state)
3434 for (i = disks; i--; )
3435 if (fetch_block(sh, s, i, disks))
3436 break;
3437 set_bit(STRIPE_HANDLE, &sh->state);
3440 static void break_stripe_batch_list(struct stripe_head *head_sh,
3441 unsigned long handle_flags);
3442 /* handle_stripe_clean_event
3443 * any written block on an uptodate or failed drive can be returned.
3444 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3445 * never LOCKED, so we don't need to test 'failed' directly.
3447 static void handle_stripe_clean_event(struct r5conf *conf,
3448 struct stripe_head *sh, int disks, struct bio **return_bi)
3450 int i;
3451 struct r5dev *dev;
3452 int discard_pending = 0;
3453 struct stripe_head *head_sh = sh;
3454 bool do_endio = false;
3456 for (i = disks; i--; )
3457 if (sh->dev[i].written) {
3458 dev = &sh->dev[i];
3459 if (!test_bit(R5_LOCKED, &dev->flags) &&
3460 (test_bit(R5_UPTODATE, &dev->flags) ||
3461 test_bit(R5_Discard, &dev->flags) ||
3462 test_bit(R5_SkipCopy, &dev->flags))) {
3463 /* We can return any write requests */
3464 struct bio *wbi, *wbi2;
3465 pr_debug("Return write for disc %d\n", i);
3466 if (test_and_clear_bit(R5_Discard, &dev->flags))
3467 clear_bit(R5_UPTODATE, &dev->flags);
3468 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3469 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3471 do_endio = true;
3473 returnbi:
3474 dev->page = dev->orig_page;
3475 wbi = dev->written;
3476 dev->written = NULL;
3477 while (wbi && wbi->bi_iter.bi_sector <
3478 dev->sector + STRIPE_SECTORS) {
3479 wbi2 = r5_next_bio(wbi, dev->sector);
3480 if (!raid5_dec_bi_active_stripes(wbi)) {
3481 md_write_end(conf->mddev);
3482 wbi->bi_next = *return_bi;
3483 *return_bi = wbi;
3485 wbi = wbi2;
3487 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3488 STRIPE_SECTORS,
3489 !test_bit(STRIPE_DEGRADED, &sh->state),
3491 if (head_sh->batch_head) {
3492 sh = list_first_entry(&sh->batch_list,
3493 struct stripe_head,
3494 batch_list);
3495 if (sh != head_sh) {
3496 dev = &sh->dev[i];
3497 goto returnbi;
3500 sh = head_sh;
3501 dev = &sh->dev[i];
3502 } else if (test_bit(R5_Discard, &dev->flags))
3503 discard_pending = 1;
3504 WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3505 WARN_ON(dev->page != dev->orig_page);
3507 if (!discard_pending &&
3508 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3509 int hash;
3510 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3511 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3512 if (sh->qd_idx >= 0) {
3513 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3514 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3516 /* now that discard is done we can proceed with any sync */
3517 clear_bit(STRIPE_DISCARD, &sh->state);
3519 * SCSI discard will change some bio fields and the stripe has
3520 * no updated data, so remove it from hash list and the stripe
3521 * will be reinitialized
3523 unhash:
3524 hash = sh->hash_lock_index;
3525 spin_lock_irq(conf->hash_locks + hash);
3526 remove_hash(sh);
3527 spin_unlock_irq(conf->hash_locks + hash);
3528 if (head_sh->batch_head) {
3529 sh = list_first_entry(&sh->batch_list,
3530 struct stripe_head, batch_list);
3531 if (sh != head_sh)
3532 goto unhash;
3534 sh = head_sh;
3536 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3537 set_bit(STRIPE_HANDLE, &sh->state);
3541 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3542 if (atomic_dec_and_test(&conf->pending_full_writes))
3543 md_wakeup_thread(conf->mddev->thread);
3545 if (head_sh->batch_head && do_endio)
3546 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3549 static void handle_stripe_dirtying(struct r5conf *conf,
3550 struct stripe_head *sh,
3551 struct stripe_head_state *s,
3552 int disks)
3554 int rmw = 0, rcw = 0, i;
3555 sector_t recovery_cp = conf->mddev->recovery_cp;
3557 /* Check whether resync is now happening or should start.
3558 * If yes, then the array is dirty (after unclean shutdown or
3559 * initial creation), so parity in some stripes might be inconsistent.
3560 * In this case, we need to always do reconstruct-write, to ensure
3561 * that in case of drive failure or read-error correction, we
3562 * generate correct data from the parity.
3564 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3565 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3566 s->failed == 0)) {
3567 /* Calculate the real rcw later - for now make it
3568 * look like rcw is cheaper
3570 rcw = 1; rmw = 2;
3571 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3572 conf->rmw_level, (unsigned long long)recovery_cp,
3573 (unsigned long long)sh->sector);
3574 } else for (i = disks; i--; ) {
3575 /* would I have to read this buffer for read_modify_write */
3576 struct r5dev *dev = &sh->dev[i];
3577 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3578 !test_bit(R5_LOCKED, &dev->flags) &&
3579 !(test_bit(R5_UPTODATE, &dev->flags) ||
3580 test_bit(R5_Wantcompute, &dev->flags))) {
3581 if (test_bit(R5_Insync, &dev->flags))
3582 rmw++;
3583 else
3584 rmw += 2*disks; /* cannot read it */
3586 /* Would I have to read this buffer for reconstruct_write */
3587 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3588 i != sh->pd_idx && i != sh->qd_idx &&
3589 !test_bit(R5_LOCKED, &dev->flags) &&
3590 !(test_bit(R5_UPTODATE, &dev->flags) ||
3591 test_bit(R5_Wantcompute, &dev->flags))) {
3592 if (test_bit(R5_Insync, &dev->flags))
3593 rcw++;
3594 else
3595 rcw += 2*disks;
3598 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3599 (unsigned long long)sh->sector, rmw, rcw);
3600 set_bit(STRIPE_HANDLE, &sh->state);
3601 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3602 /* prefer read-modify-write, but need to get some data */
3603 if (conf->mddev->queue)
3604 blk_add_trace_msg(conf->mddev->queue,
3605 "raid5 rmw %llu %d",
3606 (unsigned long long)sh->sector, rmw);
3607 for (i = disks; i--; ) {
3608 struct r5dev *dev = &sh->dev[i];
3609 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3610 !test_bit(R5_LOCKED, &dev->flags) &&
3611 !(test_bit(R5_UPTODATE, &dev->flags) ||
3612 test_bit(R5_Wantcompute, &dev->flags)) &&
3613 test_bit(R5_Insync, &dev->flags)) {
3614 if (test_bit(STRIPE_PREREAD_ACTIVE,
3615 &sh->state)) {
3616 pr_debug("Read_old block %d for r-m-w\n",
3618 set_bit(R5_LOCKED, &dev->flags);
3619 set_bit(R5_Wantread, &dev->flags);
3620 s->locked++;
3621 } else {
3622 set_bit(STRIPE_DELAYED, &sh->state);
3623 set_bit(STRIPE_HANDLE, &sh->state);
3628 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3629 /* want reconstruct write, but need to get some data */
3630 int qread =0;
3631 rcw = 0;
3632 for (i = disks; i--; ) {
3633 struct r5dev *dev = &sh->dev[i];
3634 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3635 i != sh->pd_idx && i != sh->qd_idx &&
3636 !test_bit(R5_LOCKED, &dev->flags) &&
3637 !(test_bit(R5_UPTODATE, &dev->flags) ||
3638 test_bit(R5_Wantcompute, &dev->flags))) {
3639 rcw++;
3640 if (test_bit(R5_Insync, &dev->flags) &&
3641 test_bit(STRIPE_PREREAD_ACTIVE,
3642 &sh->state)) {
3643 pr_debug("Read_old block "
3644 "%d for Reconstruct\n", i);
3645 set_bit(R5_LOCKED, &dev->flags);
3646 set_bit(R5_Wantread, &dev->flags);
3647 s->locked++;
3648 qread++;
3649 } else {
3650 set_bit(STRIPE_DELAYED, &sh->state);
3651 set_bit(STRIPE_HANDLE, &sh->state);
3655 if (rcw && conf->mddev->queue)
3656 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3657 (unsigned long long)sh->sector,
3658 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3661 if (rcw > disks && rmw > disks &&
3662 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3663 set_bit(STRIPE_DELAYED, &sh->state);
3665 /* now if nothing is locked, and if we have enough data,
3666 * we can start a write request
3668 /* since handle_stripe can be called at any time we need to handle the
3669 * case where a compute block operation has been submitted and then a
3670 * subsequent call wants to start a write request. raid_run_ops only
3671 * handles the case where compute block and reconstruct are requested
3672 * simultaneously. If this is not the case then new writes need to be
3673 * held off until the compute completes.
3675 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3676 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3677 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3678 schedule_reconstruction(sh, s, rcw == 0, 0);
3681 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3682 struct stripe_head_state *s, int disks)
3684 struct r5dev *dev = NULL;
3686 BUG_ON(sh->batch_head);
3687 set_bit(STRIPE_HANDLE, &sh->state);
3689 switch (sh->check_state) {
3690 case check_state_idle:
3691 /* start a new check operation if there are no failures */
3692 if (s->failed == 0) {
3693 BUG_ON(s->uptodate != disks);
3694 sh->check_state = check_state_run;
3695 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3696 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3697 s->uptodate--;
3698 break;
3700 dev = &sh->dev[s->failed_num[0]];
3701 /* fall through */
3702 case check_state_compute_result:
3703 sh->check_state = check_state_idle;
3704 if (!dev)
3705 dev = &sh->dev[sh->pd_idx];
3707 /* check that a write has not made the stripe insync */
3708 if (test_bit(STRIPE_INSYNC, &sh->state))
3709 break;
3711 /* either failed parity check, or recovery is happening */
3712 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3713 BUG_ON(s->uptodate != disks);
3715 set_bit(R5_LOCKED, &dev->flags);
3716 s->locked++;
3717 set_bit(R5_Wantwrite, &dev->flags);
3719 clear_bit(STRIPE_DEGRADED, &sh->state);
3720 set_bit(STRIPE_INSYNC, &sh->state);
3721 break;
3722 case check_state_run:
3723 break; /* we will be called again upon completion */
3724 case check_state_check_result:
3725 sh->check_state = check_state_idle;
3727 /* if a failure occurred during the check operation, leave
3728 * STRIPE_INSYNC not set and let the stripe be handled again
3730 if (s->failed)
3731 break;
3733 /* handle a successful check operation, if parity is correct
3734 * we are done. Otherwise update the mismatch count and repair
3735 * parity if !MD_RECOVERY_CHECK
3737 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3738 /* parity is correct (on disc,
3739 * not in buffer any more)
3741 set_bit(STRIPE_INSYNC, &sh->state);
3742 else {
3743 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3744 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3745 /* don't try to repair!! */
3746 set_bit(STRIPE_INSYNC, &sh->state);
3747 else {
3748 sh->check_state = check_state_compute_run;
3749 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3750 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3751 set_bit(R5_Wantcompute,
3752 &sh->dev[sh->pd_idx].flags);
3753 sh->ops.target = sh->pd_idx;
3754 sh->ops.target2 = -1;
3755 s->uptodate++;
3758 break;
3759 case check_state_compute_run:
3760 break;
3761 default:
3762 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3763 __func__, sh->check_state,
3764 (unsigned long long) sh->sector);
3765 BUG();
3769 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3770 struct stripe_head_state *s,
3771 int disks)
3773 int pd_idx = sh->pd_idx;
3774 int qd_idx = sh->qd_idx;
3775 struct r5dev *dev;
3777 BUG_ON(sh->batch_head);
3778 set_bit(STRIPE_HANDLE, &sh->state);
3780 BUG_ON(s->failed > 2);
3782 /* Want to check and possibly repair P and Q.
3783 * However there could be one 'failed' device, in which
3784 * case we can only check one of them, possibly using the
3785 * other to generate missing data
3788 switch (sh->check_state) {
3789 case check_state_idle:
3790 /* start a new check operation if there are < 2 failures */
3791 if (s->failed == s->q_failed) {
3792 /* The only possible failed device holds Q, so it
3793 * makes sense to check P (If anything else were failed,
3794 * we would have used P to recreate it).
3796 sh->check_state = check_state_run;
3798 if (!s->q_failed && s->failed < 2) {
3799 /* Q is not failed, and we didn't use it to generate
3800 * anything, so it makes sense to check it
3802 if (sh->check_state == check_state_run)
3803 sh->check_state = check_state_run_pq;
3804 else
3805 sh->check_state = check_state_run_q;
3808 /* discard potentially stale zero_sum_result */
3809 sh->ops.zero_sum_result = 0;
3811 if (sh->check_state == check_state_run) {
3812 /* async_xor_zero_sum destroys the contents of P */
3813 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3814 s->uptodate--;
3816 if (sh->check_state >= check_state_run &&
3817 sh->check_state <= check_state_run_pq) {
3818 /* async_syndrome_zero_sum preserves P and Q, so
3819 * no need to mark them !uptodate here
3821 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3822 break;
3825 /* we have 2-disk failure */
3826 BUG_ON(s->failed != 2);
3827 /* fall through */
3828 case check_state_compute_result:
3829 sh->check_state = check_state_idle;
3831 /* check that a write has not made the stripe insync */
3832 if (test_bit(STRIPE_INSYNC, &sh->state))
3833 break;
3835 /* now write out any block on a failed drive,
3836 * or P or Q if they were recomputed
3838 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3839 if (s->failed == 2) {
3840 dev = &sh->dev[s->failed_num[1]];
3841 s->locked++;
3842 set_bit(R5_LOCKED, &dev->flags);
3843 set_bit(R5_Wantwrite, &dev->flags);
3845 if (s->failed >= 1) {
3846 dev = &sh->dev[s->failed_num[0]];
3847 s->locked++;
3848 set_bit(R5_LOCKED, &dev->flags);
3849 set_bit(R5_Wantwrite, &dev->flags);
3851 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3852 dev = &sh->dev[pd_idx];
3853 s->locked++;
3854 set_bit(R5_LOCKED, &dev->flags);
3855 set_bit(R5_Wantwrite, &dev->flags);
3857 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3858 dev = &sh->dev[qd_idx];
3859 s->locked++;
3860 set_bit(R5_LOCKED, &dev->flags);
3861 set_bit(R5_Wantwrite, &dev->flags);
3863 clear_bit(STRIPE_DEGRADED, &sh->state);
3865 set_bit(STRIPE_INSYNC, &sh->state);
3866 break;
3867 case check_state_run:
3868 case check_state_run_q:
3869 case check_state_run_pq:
3870 break; /* we will be called again upon completion */
3871 case check_state_check_result:
3872 sh->check_state = check_state_idle;
3874 /* handle a successful check operation, if parity is correct
3875 * we are done. Otherwise update the mismatch count and repair
3876 * parity if !MD_RECOVERY_CHECK
3878 if (sh->ops.zero_sum_result == 0) {
3879 /* both parities are correct */
3880 if (!s->failed)
3881 set_bit(STRIPE_INSYNC, &sh->state);
3882 else {
3883 /* in contrast to the raid5 case we can validate
3884 * parity, but still have a failure to write
3885 * back
3887 sh->check_state = check_state_compute_result;
3888 /* Returning at this point means that we may go
3889 * off and bring p and/or q uptodate again so
3890 * we make sure to check zero_sum_result again
3891 * to verify if p or q need writeback
3894 } else {
3895 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3896 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3897 /* don't try to repair!! */
3898 set_bit(STRIPE_INSYNC, &sh->state);
3899 else {
3900 int *target = &sh->ops.target;
3902 sh->ops.target = -1;
3903 sh->ops.target2 = -1;
3904 sh->check_state = check_state_compute_run;
3905 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3906 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3907 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3908 set_bit(R5_Wantcompute,
3909 &sh->dev[pd_idx].flags);
3910 *target = pd_idx;
3911 target = &sh->ops.target2;
3912 s->uptodate++;
3914 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3915 set_bit(R5_Wantcompute,
3916 &sh->dev[qd_idx].flags);
3917 *target = qd_idx;
3918 s->uptodate++;
3922 break;
3923 case check_state_compute_run:
3924 break;
3925 default:
3926 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3927 __func__, sh->check_state,
3928 (unsigned long long) sh->sector);
3929 BUG();
3933 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3935 int i;
3937 /* We have read all the blocks in this stripe and now we need to
3938 * copy some of them into a target stripe for expand.
3940 struct dma_async_tx_descriptor *tx = NULL;
3941 BUG_ON(sh->batch_head);
3942 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3943 for (i = 0; i < sh->disks; i++)
3944 if (i != sh->pd_idx && i != sh->qd_idx) {
3945 int dd_idx, j;
3946 struct stripe_head *sh2;
3947 struct async_submit_ctl submit;
3949 sector_t bn = compute_blocknr(sh, i, 1);
3950 sector_t s = raid5_compute_sector(conf, bn, 0,
3951 &dd_idx, NULL);
3952 sh2 = get_active_stripe(conf, s, 0, 1, 1);
3953 if (sh2 == NULL)
3954 /* so far only the early blocks of this stripe
3955 * have been requested. When later blocks
3956 * get requested, we will try again
3958 continue;
3959 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3960 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3961 /* must have already done this block */
3962 release_stripe(sh2);
3963 continue;
3966 /* place all the copies on one channel */
3967 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3968 tx = async_memcpy(sh2->dev[dd_idx].page,
3969 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3970 &submit);
3972 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3973 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3974 for (j = 0; j < conf->raid_disks; j++)
3975 if (j != sh2->pd_idx &&
3976 j != sh2->qd_idx &&
3977 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3978 break;
3979 if (j == conf->raid_disks) {
3980 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3981 set_bit(STRIPE_HANDLE, &sh2->state);
3983 release_stripe(sh2);
3986 /* done submitting copies, wait for them to complete */
3987 async_tx_quiesce(&tx);
3991 * handle_stripe - do things to a stripe.
3993 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3994 * state of various bits to see what needs to be done.
3995 * Possible results:
3996 * return some read requests which now have data
3997 * return some write requests which are safely on storage
3998 * schedule a read on some buffers
3999 * schedule a write of some buffers
4000 * return confirmation of parity correctness
4004 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4006 struct r5conf *conf = sh->raid_conf;
4007 int disks = sh->disks;
4008 struct r5dev *dev;
4009 int i;
4010 int do_recovery = 0;
4012 memset(s, 0, sizeof(*s));
4014 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4015 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4016 s->failed_num[0] = -1;
4017 s->failed_num[1] = -1;
4019 /* Now to look around and see what can be done */
4020 rcu_read_lock();
4021 for (i=disks; i--; ) {
4022 struct md_rdev *rdev;
4023 sector_t first_bad;
4024 int bad_sectors;
4025 int is_bad = 0;
4027 dev = &sh->dev[i];
4029 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4030 i, dev->flags,
4031 dev->toread, dev->towrite, dev->written);
4032 /* maybe we can reply to a read
4034 * new wantfill requests are only permitted while
4035 * ops_complete_biofill is guaranteed to be inactive
4037 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4038 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4039 set_bit(R5_Wantfill, &dev->flags);
4041 /* now count some things */
4042 if (test_bit(R5_LOCKED, &dev->flags))
4043 s->locked++;
4044 if (test_bit(R5_UPTODATE, &dev->flags))
4045 s->uptodate++;
4046 if (test_bit(R5_Wantcompute, &dev->flags)) {
4047 s->compute++;
4048 BUG_ON(s->compute > 2);
4051 if (test_bit(R5_Wantfill, &dev->flags))
4052 s->to_fill++;
4053 else if (dev->toread)
4054 s->to_read++;
4055 if (dev->towrite) {
4056 s->to_write++;
4057 if (!test_bit(R5_OVERWRITE, &dev->flags))
4058 s->non_overwrite++;
4060 if (dev->written)
4061 s->written++;
4062 /* Prefer to use the replacement for reads, but only
4063 * if it is recovered enough and has no bad blocks.
4065 rdev = rcu_dereference(conf->disks[i].replacement);
4066 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4067 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4068 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4069 &first_bad, &bad_sectors))
4070 set_bit(R5_ReadRepl, &dev->flags);
4071 else {
4072 if (rdev)
4073 set_bit(R5_NeedReplace, &dev->flags);
4074 rdev = rcu_dereference(conf->disks[i].rdev);
4075 clear_bit(R5_ReadRepl, &dev->flags);
4077 if (rdev && test_bit(Faulty, &rdev->flags))
4078 rdev = NULL;
4079 if (rdev) {
4080 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4081 &first_bad, &bad_sectors);
4082 if (s->blocked_rdev == NULL
4083 && (test_bit(Blocked, &rdev->flags)
4084 || is_bad < 0)) {
4085 if (is_bad < 0)
4086 set_bit(BlockedBadBlocks,
4087 &rdev->flags);
4088 s->blocked_rdev = rdev;
4089 atomic_inc(&rdev->nr_pending);
4092 clear_bit(R5_Insync, &dev->flags);
4093 if (!rdev)
4094 /* Not in-sync */;
4095 else if (is_bad) {
4096 /* also not in-sync */
4097 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4098 test_bit(R5_UPTODATE, &dev->flags)) {
4099 /* treat as in-sync, but with a read error
4100 * which we can now try to correct
4102 set_bit(R5_Insync, &dev->flags);
4103 set_bit(R5_ReadError, &dev->flags);
4105 } else if (test_bit(In_sync, &rdev->flags))
4106 set_bit(R5_Insync, &dev->flags);
4107 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4108 /* in sync if before recovery_offset */
4109 set_bit(R5_Insync, &dev->flags);
4110 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4111 test_bit(R5_Expanded, &dev->flags))
4112 /* If we've reshaped into here, we assume it is Insync.
4113 * We will shortly update recovery_offset to make
4114 * it official.
4116 set_bit(R5_Insync, &dev->flags);
4118 if (test_bit(R5_WriteError, &dev->flags)) {
4119 /* This flag does not apply to '.replacement'
4120 * only to .rdev, so make sure to check that*/
4121 struct md_rdev *rdev2 = rcu_dereference(
4122 conf->disks[i].rdev);
4123 if (rdev2 == rdev)
4124 clear_bit(R5_Insync, &dev->flags);
4125 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4126 s->handle_bad_blocks = 1;
4127 atomic_inc(&rdev2->nr_pending);
4128 } else
4129 clear_bit(R5_WriteError, &dev->flags);
4131 if (test_bit(R5_MadeGood, &dev->flags)) {
4132 /* This flag does not apply to '.replacement'
4133 * only to .rdev, so make sure to check that*/
4134 struct md_rdev *rdev2 = rcu_dereference(
4135 conf->disks[i].rdev);
4136 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4137 s->handle_bad_blocks = 1;
4138 atomic_inc(&rdev2->nr_pending);
4139 } else
4140 clear_bit(R5_MadeGood, &dev->flags);
4142 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4143 struct md_rdev *rdev2 = rcu_dereference(
4144 conf->disks[i].replacement);
4145 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4146 s->handle_bad_blocks = 1;
4147 atomic_inc(&rdev2->nr_pending);
4148 } else
4149 clear_bit(R5_MadeGoodRepl, &dev->flags);
4151 if (!test_bit(R5_Insync, &dev->flags)) {
4152 /* The ReadError flag will just be confusing now */
4153 clear_bit(R5_ReadError, &dev->flags);
4154 clear_bit(R5_ReWrite, &dev->flags);
4156 if (test_bit(R5_ReadError, &dev->flags))
4157 clear_bit(R5_Insync, &dev->flags);
4158 if (!test_bit(R5_Insync, &dev->flags)) {
4159 if (s->failed < 2)
4160 s->failed_num[s->failed] = i;
4161 s->failed++;
4162 if (rdev && !test_bit(Faulty, &rdev->flags))
4163 do_recovery = 1;
4166 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4167 /* If there is a failed device being replaced,
4168 * we must be recovering.
4169 * else if we are after recovery_cp, we must be syncing
4170 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4171 * else we can only be replacing
4172 * sync and recovery both need to read all devices, and so
4173 * use the same flag.
4175 if (do_recovery ||
4176 sh->sector >= conf->mddev->recovery_cp ||
4177 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4178 s->syncing = 1;
4179 else
4180 s->replacing = 1;
4182 rcu_read_unlock();
4185 static int clear_batch_ready(struct stripe_head *sh)
4187 /* Return '1' if this is a member of batch, or
4188 * '0' if it is a lone stripe or a head which can now be
4189 * handled.
4191 struct stripe_head *tmp;
4192 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4193 return (sh->batch_head && sh->batch_head != sh);
4194 spin_lock(&sh->stripe_lock);
4195 if (!sh->batch_head) {
4196 spin_unlock(&sh->stripe_lock);
4197 return 0;
4201 * this stripe could be added to a batch list before we check
4202 * BATCH_READY, skips it
4204 if (sh->batch_head != sh) {
4205 spin_unlock(&sh->stripe_lock);
4206 return 1;
4208 spin_lock(&sh->batch_lock);
4209 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4210 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4211 spin_unlock(&sh->batch_lock);
4212 spin_unlock(&sh->stripe_lock);
4215 * BATCH_READY is cleared, no new stripes can be added.
4216 * batch_list can be accessed without lock
4218 return 0;
4221 static void break_stripe_batch_list(struct stripe_head *head_sh,
4222 unsigned long handle_flags)
4224 struct stripe_head *sh, *next;
4225 int i;
4226 int do_wakeup = 0;
4228 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4230 list_del_init(&sh->batch_list);
4232 WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4233 (1 << STRIPE_SYNCING) |
4234 (1 << STRIPE_REPLACED) |
4235 (1 << STRIPE_DELAYED) |
4236 (1 << STRIPE_BIT_DELAY) |
4237 (1 << STRIPE_FULL_WRITE) |
4238 (1 << STRIPE_BIOFILL_RUN) |
4239 (1 << STRIPE_COMPUTE_RUN) |
4240 (1 << STRIPE_OPS_REQ_PENDING) |
4241 (1 << STRIPE_DISCARD) |
4242 (1 << STRIPE_BATCH_READY) |
4243 (1 << STRIPE_BATCH_ERR) |
4244 (1 << STRIPE_BITMAP_PENDING)));
4245 WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4246 (1 << STRIPE_REPLACED)));
4248 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4249 (1 << STRIPE_PREREAD_ACTIVE) |
4250 (1 << STRIPE_DEGRADED)),
4251 head_sh->state & (1 << STRIPE_INSYNC));
4253 sh->check_state = head_sh->check_state;
4254 sh->reconstruct_state = head_sh->reconstruct_state;
4255 for (i = 0; i < sh->disks; i++) {
4256 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4257 do_wakeup = 1;
4258 sh->dev[i].flags = head_sh->dev[i].flags &
4259 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4261 spin_lock_irq(&sh->stripe_lock);
4262 sh->batch_head = NULL;
4263 spin_unlock_irq(&sh->stripe_lock);
4264 if (handle_flags == 0 ||
4265 sh->state & handle_flags)
4266 set_bit(STRIPE_HANDLE, &sh->state);
4267 release_stripe(sh);
4269 spin_lock_irq(&head_sh->stripe_lock);
4270 head_sh->batch_head = NULL;
4271 spin_unlock_irq(&head_sh->stripe_lock);
4272 for (i = 0; i < head_sh->disks; i++)
4273 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4274 do_wakeup = 1;
4275 if (head_sh->state & handle_flags)
4276 set_bit(STRIPE_HANDLE, &head_sh->state);
4278 if (do_wakeup)
4279 wake_up(&head_sh->raid_conf->wait_for_overlap);
4282 static void handle_stripe(struct stripe_head *sh)
4284 struct stripe_head_state s;
4285 struct r5conf *conf = sh->raid_conf;
4286 int i;
4287 int prexor;
4288 int disks = sh->disks;
4289 struct r5dev *pdev, *qdev;
4291 clear_bit(STRIPE_HANDLE, &sh->state);
4292 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4293 /* already being handled, ensure it gets handled
4294 * again when current action finishes */
4295 set_bit(STRIPE_HANDLE, &sh->state);
4296 return;
4299 if (clear_batch_ready(sh) ) {
4300 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4301 return;
4304 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4305 break_stripe_batch_list(sh, 0);
4307 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4308 spin_lock(&sh->stripe_lock);
4309 /* Cannot process 'sync' concurrently with 'discard' */
4310 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4311 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4312 set_bit(STRIPE_SYNCING, &sh->state);
4313 clear_bit(STRIPE_INSYNC, &sh->state);
4314 clear_bit(STRIPE_REPLACED, &sh->state);
4316 spin_unlock(&sh->stripe_lock);
4318 clear_bit(STRIPE_DELAYED, &sh->state);
4320 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4321 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4322 (unsigned long long)sh->sector, sh->state,
4323 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4324 sh->check_state, sh->reconstruct_state);
4326 analyse_stripe(sh, &s);
4328 if (s.handle_bad_blocks) {
4329 set_bit(STRIPE_HANDLE, &sh->state);
4330 goto finish;
4333 if (unlikely(s.blocked_rdev)) {
4334 if (s.syncing || s.expanding || s.expanded ||
4335 s.replacing || s.to_write || s.written) {
4336 set_bit(STRIPE_HANDLE, &sh->state);
4337 goto finish;
4339 /* There is nothing for the blocked_rdev to block */
4340 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4341 s.blocked_rdev = NULL;
4344 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4345 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4346 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4349 pr_debug("locked=%d uptodate=%d to_read=%d"
4350 " to_write=%d failed=%d failed_num=%d,%d\n",
4351 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4352 s.failed_num[0], s.failed_num[1]);
4353 /* check if the array has lost more than max_degraded devices and,
4354 * if so, some requests might need to be failed.
4356 if (s.failed > conf->max_degraded) {
4357 sh->check_state = 0;
4358 sh->reconstruct_state = 0;
4359 break_stripe_batch_list(sh, 0);
4360 if (s.to_read+s.to_write+s.written)
4361 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4362 if (s.syncing + s.replacing)
4363 handle_failed_sync(conf, sh, &s);
4366 /* Now we check to see if any write operations have recently
4367 * completed
4369 prexor = 0;
4370 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4371 prexor = 1;
4372 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4373 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4374 sh->reconstruct_state = reconstruct_state_idle;
4376 /* All the 'written' buffers and the parity block are ready to
4377 * be written back to disk
4379 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4380 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4381 BUG_ON(sh->qd_idx >= 0 &&
4382 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4383 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4384 for (i = disks; i--; ) {
4385 struct r5dev *dev = &sh->dev[i];
4386 if (test_bit(R5_LOCKED, &dev->flags) &&
4387 (i == sh->pd_idx || i == sh->qd_idx ||
4388 dev->written)) {
4389 pr_debug("Writing block %d\n", i);
4390 set_bit(R5_Wantwrite, &dev->flags);
4391 if (prexor)
4392 continue;
4393 if (s.failed > 1)
4394 continue;
4395 if (!test_bit(R5_Insync, &dev->flags) ||
4396 ((i == sh->pd_idx || i == sh->qd_idx) &&
4397 s.failed == 0))
4398 set_bit(STRIPE_INSYNC, &sh->state);
4401 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4402 s.dec_preread_active = 1;
4406 * might be able to return some write requests if the parity blocks
4407 * are safe, or on a failed drive
4409 pdev = &sh->dev[sh->pd_idx];
4410 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4411 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4412 qdev = &sh->dev[sh->qd_idx];
4413 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4414 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4415 || conf->level < 6;
4417 if (s.written &&
4418 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4419 && !test_bit(R5_LOCKED, &pdev->flags)
4420 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4421 test_bit(R5_Discard, &pdev->flags))))) &&
4422 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4423 && !test_bit(R5_LOCKED, &qdev->flags)
4424 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4425 test_bit(R5_Discard, &qdev->flags))))))
4426 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4428 /* Now we might consider reading some blocks, either to check/generate
4429 * parity, or to satisfy requests
4430 * or to load a block that is being partially written.
4432 if (s.to_read || s.non_overwrite
4433 || (conf->level == 6 && s.to_write && s.failed)
4434 || (s.syncing && (s.uptodate + s.compute < disks))
4435 || s.replacing
4436 || s.expanding)
4437 handle_stripe_fill(sh, &s, disks);
4439 /* Now to consider new write requests and what else, if anything
4440 * should be read. We do not handle new writes when:
4441 * 1/ A 'write' operation (copy+xor) is already in flight.
4442 * 2/ A 'check' operation is in flight, as it may clobber the parity
4443 * block.
4445 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4446 handle_stripe_dirtying(conf, sh, &s, disks);
4448 /* maybe we need to check and possibly fix the parity for this stripe
4449 * Any reads will already have been scheduled, so we just see if enough
4450 * data is available. The parity check is held off while parity
4451 * dependent operations are in flight.
4453 if (sh->check_state ||
4454 (s.syncing && s.locked == 0 &&
4455 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4456 !test_bit(STRIPE_INSYNC, &sh->state))) {
4457 if (conf->level == 6)
4458 handle_parity_checks6(conf, sh, &s, disks);
4459 else
4460 handle_parity_checks5(conf, sh, &s, disks);
4463 if ((s.replacing || s.syncing) && s.locked == 0
4464 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4465 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4466 /* Write out to replacement devices where possible */
4467 for (i = 0; i < conf->raid_disks; i++)
4468 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4469 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4470 set_bit(R5_WantReplace, &sh->dev[i].flags);
4471 set_bit(R5_LOCKED, &sh->dev[i].flags);
4472 s.locked++;
4474 if (s.replacing)
4475 set_bit(STRIPE_INSYNC, &sh->state);
4476 set_bit(STRIPE_REPLACED, &sh->state);
4478 if ((s.syncing || s.replacing) && s.locked == 0 &&
4479 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4480 test_bit(STRIPE_INSYNC, &sh->state)) {
4481 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4482 clear_bit(STRIPE_SYNCING, &sh->state);
4483 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4484 wake_up(&conf->wait_for_overlap);
4487 /* If the failed drives are just a ReadError, then we might need
4488 * to progress the repair/check process
4490 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4491 for (i = 0; i < s.failed; i++) {
4492 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4493 if (test_bit(R5_ReadError, &dev->flags)
4494 && !test_bit(R5_LOCKED, &dev->flags)
4495 && test_bit(R5_UPTODATE, &dev->flags)
4497 if (!test_bit(R5_ReWrite, &dev->flags)) {
4498 set_bit(R5_Wantwrite, &dev->flags);
4499 set_bit(R5_ReWrite, &dev->flags);
4500 set_bit(R5_LOCKED, &dev->flags);
4501 s.locked++;
4502 } else {
4503 /* let's read it back */
4504 set_bit(R5_Wantread, &dev->flags);
4505 set_bit(R5_LOCKED, &dev->flags);
4506 s.locked++;
4511 /* Finish reconstruct operations initiated by the expansion process */
4512 if (sh->reconstruct_state == reconstruct_state_result) {
4513 struct stripe_head *sh_src
4514 = get_active_stripe(conf, sh->sector, 1, 1, 1);
4515 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4516 /* sh cannot be written until sh_src has been read.
4517 * so arrange for sh to be delayed a little
4519 set_bit(STRIPE_DELAYED, &sh->state);
4520 set_bit(STRIPE_HANDLE, &sh->state);
4521 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4522 &sh_src->state))
4523 atomic_inc(&conf->preread_active_stripes);
4524 release_stripe(sh_src);
4525 goto finish;
4527 if (sh_src)
4528 release_stripe(sh_src);
4530 sh->reconstruct_state = reconstruct_state_idle;
4531 clear_bit(STRIPE_EXPANDING, &sh->state);
4532 for (i = conf->raid_disks; i--; ) {
4533 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4534 set_bit(R5_LOCKED, &sh->dev[i].flags);
4535 s.locked++;
4539 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4540 !sh->reconstruct_state) {
4541 /* Need to write out all blocks after computing parity */
4542 sh->disks = conf->raid_disks;
4543 stripe_set_idx(sh->sector, conf, 0, sh);
4544 schedule_reconstruction(sh, &s, 1, 1);
4545 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4546 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4547 atomic_dec(&conf->reshape_stripes);
4548 wake_up(&conf->wait_for_overlap);
4549 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4552 if (s.expanding && s.locked == 0 &&
4553 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4554 handle_stripe_expansion(conf, sh);
4556 finish:
4557 /* wait for this device to become unblocked */
4558 if (unlikely(s.blocked_rdev)) {
4559 if (conf->mddev->external)
4560 md_wait_for_blocked_rdev(s.blocked_rdev,
4561 conf->mddev);
4562 else
4563 /* Internal metadata will immediately
4564 * be written by raid5d, so we don't
4565 * need to wait here.
4567 rdev_dec_pending(s.blocked_rdev,
4568 conf->mddev);
4571 if (s.handle_bad_blocks)
4572 for (i = disks; i--; ) {
4573 struct md_rdev *rdev;
4574 struct r5dev *dev = &sh->dev[i];
4575 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4576 /* We own a safe reference to the rdev */
4577 rdev = conf->disks[i].rdev;
4578 if (!rdev_set_badblocks(rdev, sh->sector,
4579 STRIPE_SECTORS, 0))
4580 md_error(conf->mddev, rdev);
4581 rdev_dec_pending(rdev, conf->mddev);
4583 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4584 rdev = conf->disks[i].rdev;
4585 rdev_clear_badblocks(rdev, sh->sector,
4586 STRIPE_SECTORS, 0);
4587 rdev_dec_pending(rdev, conf->mddev);
4589 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4590 rdev = conf->disks[i].replacement;
4591 if (!rdev)
4592 /* rdev have been moved down */
4593 rdev = conf->disks[i].rdev;
4594 rdev_clear_badblocks(rdev, sh->sector,
4595 STRIPE_SECTORS, 0);
4596 rdev_dec_pending(rdev, conf->mddev);
4600 if (s.ops_request)
4601 raid_run_ops(sh, s.ops_request);
4603 ops_run_io(sh, &s);
4605 if (s.dec_preread_active) {
4606 /* We delay this until after ops_run_io so that if make_request
4607 * is waiting on a flush, it won't continue until the writes
4608 * have actually been submitted.
4610 atomic_dec(&conf->preread_active_stripes);
4611 if (atomic_read(&conf->preread_active_stripes) <
4612 IO_THRESHOLD)
4613 md_wakeup_thread(conf->mddev->thread);
4616 return_io(s.return_bi);
4618 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4621 static void raid5_activate_delayed(struct r5conf *conf)
4623 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4624 while (!list_empty(&conf->delayed_list)) {
4625 struct list_head *l = conf->delayed_list.next;
4626 struct stripe_head *sh;
4627 sh = list_entry(l, struct stripe_head, lru);
4628 list_del_init(l);
4629 clear_bit(STRIPE_DELAYED, &sh->state);
4630 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4631 atomic_inc(&conf->preread_active_stripes);
4632 list_add_tail(&sh->lru, &conf->hold_list);
4633 raid5_wakeup_stripe_thread(sh);
4638 static void activate_bit_delay(struct r5conf *conf,
4639 struct list_head *temp_inactive_list)
4641 /* device_lock is held */
4642 struct list_head head;
4643 list_add(&head, &conf->bitmap_list);
4644 list_del_init(&conf->bitmap_list);
4645 while (!list_empty(&head)) {
4646 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4647 int hash;
4648 list_del_init(&sh->lru);
4649 atomic_inc(&sh->count);
4650 hash = sh->hash_lock_index;
4651 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4655 static int raid5_congested(struct mddev *mddev, int bits)
4657 struct r5conf *conf = mddev->private;
4659 /* No difference between reads and writes. Just check
4660 * how busy the stripe_cache is
4663 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4664 return 1;
4665 if (conf->quiesce)
4666 return 1;
4667 if (atomic_read(&conf->empty_inactive_list_nr))
4668 return 1;
4670 return 0;
4673 /* We want read requests to align with chunks where possible,
4674 * but write requests don't need to.
4676 static int raid5_mergeable_bvec(struct mddev *mddev,
4677 struct bvec_merge_data *bvm,
4678 struct bio_vec *biovec)
4680 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4681 int max;
4682 unsigned int chunk_sectors = mddev->chunk_sectors;
4683 unsigned int bio_sectors = bvm->bi_size >> 9;
4686 * always allow writes to be mergeable, read as well if array
4687 * is degraded as we'll go through stripe cache anyway.
4689 if ((bvm->bi_rw & 1) == WRITE || mddev->degraded)
4690 return biovec->bv_len;
4692 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4693 chunk_sectors = mddev->new_chunk_sectors;
4694 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4695 if (max < 0) max = 0;
4696 if (max <= biovec->bv_len && bio_sectors == 0)
4697 return biovec->bv_len;
4698 else
4699 return max;
4702 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4704 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4705 unsigned int chunk_sectors = mddev->chunk_sectors;
4706 unsigned int bio_sectors = bio_sectors(bio);
4708 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4709 chunk_sectors = mddev->new_chunk_sectors;
4710 return chunk_sectors >=
4711 ((sector & (chunk_sectors - 1)) + bio_sectors);
4715 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4716 * later sampled by raid5d.
4718 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4720 unsigned long flags;
4722 spin_lock_irqsave(&conf->device_lock, flags);
4724 bi->bi_next = conf->retry_read_aligned_list;
4725 conf->retry_read_aligned_list = bi;
4727 spin_unlock_irqrestore(&conf->device_lock, flags);
4728 md_wakeup_thread(conf->mddev->thread);
4731 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4733 struct bio *bi;
4735 bi = conf->retry_read_aligned;
4736 if (bi) {
4737 conf->retry_read_aligned = NULL;
4738 return bi;
4740 bi = conf->retry_read_aligned_list;
4741 if(bi) {
4742 conf->retry_read_aligned_list = bi->bi_next;
4743 bi->bi_next = NULL;
4745 * this sets the active strip count to 1 and the processed
4746 * strip count to zero (upper 8 bits)
4748 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4751 return bi;
4755 * The "raid5_align_endio" should check if the read succeeded and if it
4756 * did, call bio_endio on the original bio (having bio_put the new bio
4757 * first).
4758 * If the read failed..
4760 static void raid5_align_endio(struct bio *bi, int error)
4762 struct bio* raid_bi = bi->bi_private;
4763 struct mddev *mddev;
4764 struct r5conf *conf;
4765 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4766 struct md_rdev *rdev;
4768 bio_put(bi);
4770 rdev = (void*)raid_bi->bi_next;
4771 raid_bi->bi_next = NULL;
4772 mddev = rdev->mddev;
4773 conf = mddev->private;
4775 rdev_dec_pending(rdev, conf->mddev);
4777 if (!error && uptodate) {
4778 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4779 raid_bi, 0);
4780 bio_endio(raid_bi, 0);
4781 if (atomic_dec_and_test(&conf->active_aligned_reads))
4782 wake_up(&conf->wait_for_stripe);
4783 return;
4786 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4788 add_bio_to_retry(raid_bi, conf);
4791 static int bio_fits_rdev(struct bio *bi)
4793 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4795 if (bio_sectors(bi) > queue_max_sectors(q))
4796 return 0;
4797 blk_recount_segments(q, bi);
4798 if (bi->bi_phys_segments > queue_max_segments(q))
4799 return 0;
4801 if (q->merge_bvec_fn)
4802 /* it's too hard to apply the merge_bvec_fn at this stage,
4803 * just just give up
4805 return 0;
4807 return 1;
4810 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4812 struct r5conf *conf = mddev->private;
4813 int dd_idx;
4814 struct bio* align_bi;
4815 struct md_rdev *rdev;
4816 sector_t end_sector;
4818 if (!in_chunk_boundary(mddev, raid_bio)) {
4819 pr_debug("chunk_aligned_read : non aligned\n");
4820 return 0;
4823 * use bio_clone_mddev to make a copy of the bio
4825 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4826 if (!align_bi)
4827 return 0;
4829 * set bi_end_io to a new function, and set bi_private to the
4830 * original bio.
4832 align_bi->bi_end_io = raid5_align_endio;
4833 align_bi->bi_private = raid_bio;
4835 * compute position
4837 align_bi->bi_iter.bi_sector =
4838 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4839 0, &dd_idx, NULL);
4841 end_sector = bio_end_sector(align_bi);
4842 rcu_read_lock();
4843 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4844 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4845 rdev->recovery_offset < end_sector) {
4846 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4847 if (rdev &&
4848 (test_bit(Faulty, &rdev->flags) ||
4849 !(test_bit(In_sync, &rdev->flags) ||
4850 rdev->recovery_offset >= end_sector)))
4851 rdev = NULL;
4853 if (rdev) {
4854 sector_t first_bad;
4855 int bad_sectors;
4857 atomic_inc(&rdev->nr_pending);
4858 rcu_read_unlock();
4859 raid_bio->bi_next = (void*)rdev;
4860 align_bi->bi_bdev = rdev->bdev;
4861 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4863 if (!bio_fits_rdev(align_bi) ||
4864 is_badblock(rdev, align_bi->bi_iter.bi_sector,
4865 bio_sectors(align_bi),
4866 &first_bad, &bad_sectors)) {
4867 /* too big in some way, or has a known bad block */
4868 bio_put(align_bi);
4869 rdev_dec_pending(rdev, mddev);
4870 return 0;
4873 /* No reshape active, so we can trust rdev->data_offset */
4874 align_bi->bi_iter.bi_sector += rdev->data_offset;
4876 spin_lock_irq(&conf->device_lock);
4877 wait_event_lock_irq(conf->wait_for_stripe,
4878 conf->quiesce == 0,
4879 conf->device_lock);
4880 atomic_inc(&conf->active_aligned_reads);
4881 spin_unlock_irq(&conf->device_lock);
4883 if (mddev->gendisk)
4884 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4885 align_bi, disk_devt(mddev->gendisk),
4886 raid_bio->bi_iter.bi_sector);
4887 generic_make_request(align_bi);
4888 return 1;
4889 } else {
4890 rcu_read_unlock();
4891 bio_put(align_bi);
4892 return 0;
4896 /* __get_priority_stripe - get the next stripe to process
4898 * Full stripe writes are allowed to pass preread active stripes up until
4899 * the bypass_threshold is exceeded. In general the bypass_count
4900 * increments when the handle_list is handled before the hold_list; however, it
4901 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4902 * stripe with in flight i/o. The bypass_count will be reset when the
4903 * head of the hold_list has changed, i.e. the head was promoted to the
4904 * handle_list.
4906 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4908 struct stripe_head *sh = NULL, *tmp;
4909 struct list_head *handle_list = NULL;
4910 struct r5worker_group *wg = NULL;
4912 if (conf->worker_cnt_per_group == 0) {
4913 handle_list = &conf->handle_list;
4914 } else if (group != ANY_GROUP) {
4915 handle_list = &conf->worker_groups[group].handle_list;
4916 wg = &conf->worker_groups[group];
4917 } else {
4918 int i;
4919 for (i = 0; i < conf->group_cnt; i++) {
4920 handle_list = &conf->worker_groups[i].handle_list;
4921 wg = &conf->worker_groups[i];
4922 if (!list_empty(handle_list))
4923 break;
4927 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4928 __func__,
4929 list_empty(handle_list) ? "empty" : "busy",
4930 list_empty(&conf->hold_list) ? "empty" : "busy",
4931 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4933 if (!list_empty(handle_list)) {
4934 sh = list_entry(handle_list->next, typeof(*sh), lru);
4936 if (list_empty(&conf->hold_list))
4937 conf->bypass_count = 0;
4938 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4939 if (conf->hold_list.next == conf->last_hold)
4940 conf->bypass_count++;
4941 else {
4942 conf->last_hold = conf->hold_list.next;
4943 conf->bypass_count -= conf->bypass_threshold;
4944 if (conf->bypass_count < 0)
4945 conf->bypass_count = 0;
4948 } else if (!list_empty(&conf->hold_list) &&
4949 ((conf->bypass_threshold &&
4950 conf->bypass_count > conf->bypass_threshold) ||
4951 atomic_read(&conf->pending_full_writes) == 0)) {
4953 list_for_each_entry(tmp, &conf->hold_list, lru) {
4954 if (conf->worker_cnt_per_group == 0 ||
4955 group == ANY_GROUP ||
4956 !cpu_online(tmp->cpu) ||
4957 cpu_to_group(tmp->cpu) == group) {
4958 sh = tmp;
4959 break;
4963 if (sh) {
4964 conf->bypass_count -= conf->bypass_threshold;
4965 if (conf->bypass_count < 0)
4966 conf->bypass_count = 0;
4968 wg = NULL;
4971 if (!sh)
4972 return NULL;
4974 if (wg) {
4975 wg->stripes_cnt--;
4976 sh->group = NULL;
4978 list_del_init(&sh->lru);
4979 BUG_ON(atomic_inc_return(&sh->count) != 1);
4980 return sh;
4983 struct raid5_plug_cb {
4984 struct blk_plug_cb cb;
4985 struct list_head list;
4986 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4989 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4991 struct raid5_plug_cb *cb = container_of(
4992 blk_cb, struct raid5_plug_cb, cb);
4993 struct stripe_head *sh;
4994 struct mddev *mddev = cb->cb.data;
4995 struct r5conf *conf = mddev->private;
4996 int cnt = 0;
4997 int hash;
4999 if (cb->list.next && !list_empty(&cb->list)) {
5000 spin_lock_irq(&conf->device_lock);
5001 while (!list_empty(&cb->list)) {
5002 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5003 list_del_init(&sh->lru);
5005 * avoid race release_stripe_plug() sees
5006 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5007 * is still in our list
5009 smp_mb__before_atomic();
5010 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5012 * STRIPE_ON_RELEASE_LIST could be set here. In that
5013 * case, the count is always > 1 here
5015 hash = sh->hash_lock_index;
5016 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5017 cnt++;
5019 spin_unlock_irq(&conf->device_lock);
5021 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5022 NR_STRIPE_HASH_LOCKS);
5023 if (mddev->queue)
5024 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5025 kfree(cb);
5028 static void release_stripe_plug(struct mddev *mddev,
5029 struct stripe_head *sh)
5031 struct blk_plug_cb *blk_cb = blk_check_plugged(
5032 raid5_unplug, mddev,
5033 sizeof(struct raid5_plug_cb));
5034 struct raid5_plug_cb *cb;
5036 if (!blk_cb) {
5037 release_stripe(sh);
5038 return;
5041 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5043 if (cb->list.next == NULL) {
5044 int i;
5045 INIT_LIST_HEAD(&cb->list);
5046 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5047 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5050 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5051 list_add_tail(&sh->lru, &cb->list);
5052 else
5053 release_stripe(sh);
5056 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5058 struct r5conf *conf = mddev->private;
5059 sector_t logical_sector, last_sector;
5060 struct stripe_head *sh;
5061 int remaining;
5062 int stripe_sectors;
5064 if (mddev->reshape_position != MaxSector)
5065 /* Skip discard while reshape is happening */
5066 return;
5068 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5069 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5071 bi->bi_next = NULL;
5072 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5074 stripe_sectors = conf->chunk_sectors *
5075 (conf->raid_disks - conf->max_degraded);
5076 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5077 stripe_sectors);
5078 sector_div(last_sector, stripe_sectors);
5080 logical_sector *= conf->chunk_sectors;
5081 last_sector *= conf->chunk_sectors;
5083 for (; logical_sector < last_sector;
5084 logical_sector += STRIPE_SECTORS) {
5085 DEFINE_WAIT(w);
5086 int d;
5087 again:
5088 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5089 prepare_to_wait(&conf->wait_for_overlap, &w,
5090 TASK_UNINTERRUPTIBLE);
5091 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5092 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5093 release_stripe(sh);
5094 schedule();
5095 goto again;
5097 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5098 spin_lock_irq(&sh->stripe_lock);
5099 for (d = 0; d < conf->raid_disks; d++) {
5100 if (d == sh->pd_idx || d == sh->qd_idx)
5101 continue;
5102 if (sh->dev[d].towrite || sh->dev[d].toread) {
5103 set_bit(R5_Overlap, &sh->dev[d].flags);
5104 spin_unlock_irq(&sh->stripe_lock);
5105 release_stripe(sh);
5106 schedule();
5107 goto again;
5110 set_bit(STRIPE_DISCARD, &sh->state);
5111 finish_wait(&conf->wait_for_overlap, &w);
5112 sh->overwrite_disks = 0;
5113 for (d = 0; d < conf->raid_disks; d++) {
5114 if (d == sh->pd_idx || d == sh->qd_idx)
5115 continue;
5116 sh->dev[d].towrite = bi;
5117 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5118 raid5_inc_bi_active_stripes(bi);
5119 sh->overwrite_disks++;
5121 spin_unlock_irq(&sh->stripe_lock);
5122 if (conf->mddev->bitmap) {
5123 for (d = 0;
5124 d < conf->raid_disks - conf->max_degraded;
5125 d++)
5126 bitmap_startwrite(mddev->bitmap,
5127 sh->sector,
5128 STRIPE_SECTORS,
5130 sh->bm_seq = conf->seq_flush + 1;
5131 set_bit(STRIPE_BIT_DELAY, &sh->state);
5134 set_bit(STRIPE_HANDLE, &sh->state);
5135 clear_bit(STRIPE_DELAYED, &sh->state);
5136 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5137 atomic_inc(&conf->preread_active_stripes);
5138 release_stripe_plug(mddev, sh);
5141 remaining = raid5_dec_bi_active_stripes(bi);
5142 if (remaining == 0) {
5143 md_write_end(mddev);
5144 bio_endio(bi, 0);
5148 static void make_request(struct mddev *mddev, struct bio * bi)
5150 struct r5conf *conf = mddev->private;
5151 int dd_idx;
5152 sector_t new_sector;
5153 sector_t logical_sector, last_sector;
5154 struct stripe_head *sh;
5155 const int rw = bio_data_dir(bi);
5156 int remaining;
5157 DEFINE_WAIT(w);
5158 bool do_prepare;
5160 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5161 md_flush_request(mddev, bi);
5162 return;
5165 md_write_start(mddev, bi);
5168 * If array is degraded, better not do chunk aligned read because
5169 * later we might have to read it again in order to reconstruct
5170 * data on failed drives.
5172 if (rw == READ && mddev->degraded == 0 &&
5173 mddev->reshape_position == MaxSector &&
5174 chunk_aligned_read(mddev,bi))
5175 return;
5177 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5178 make_discard_request(mddev, bi);
5179 return;
5182 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5183 last_sector = bio_end_sector(bi);
5184 bi->bi_next = NULL;
5185 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5187 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5188 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5189 int previous;
5190 int seq;
5192 do_prepare = false;
5193 retry:
5194 seq = read_seqcount_begin(&conf->gen_lock);
5195 previous = 0;
5196 if (do_prepare)
5197 prepare_to_wait(&conf->wait_for_overlap, &w,
5198 TASK_UNINTERRUPTIBLE);
5199 if (unlikely(conf->reshape_progress != MaxSector)) {
5200 /* spinlock is needed as reshape_progress may be
5201 * 64bit on a 32bit platform, and so it might be
5202 * possible to see a half-updated value
5203 * Of course reshape_progress could change after
5204 * the lock is dropped, so once we get a reference
5205 * to the stripe that we think it is, we will have
5206 * to check again.
5208 spin_lock_irq(&conf->device_lock);
5209 if (mddev->reshape_backwards
5210 ? logical_sector < conf->reshape_progress
5211 : logical_sector >= conf->reshape_progress) {
5212 previous = 1;
5213 } else {
5214 if (mddev->reshape_backwards
5215 ? logical_sector < conf->reshape_safe
5216 : logical_sector >= conf->reshape_safe) {
5217 spin_unlock_irq(&conf->device_lock);
5218 schedule();
5219 do_prepare = true;
5220 goto retry;
5223 spin_unlock_irq(&conf->device_lock);
5226 new_sector = raid5_compute_sector(conf, logical_sector,
5227 previous,
5228 &dd_idx, NULL);
5229 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5230 (unsigned long long)new_sector,
5231 (unsigned long long)logical_sector);
5233 sh = get_active_stripe(conf, new_sector, previous,
5234 (bi->bi_rw&RWA_MASK), 0);
5235 if (sh) {
5236 if (unlikely(previous)) {
5237 /* expansion might have moved on while waiting for a
5238 * stripe, so we must do the range check again.
5239 * Expansion could still move past after this
5240 * test, but as we are holding a reference to
5241 * 'sh', we know that if that happens,
5242 * STRIPE_EXPANDING will get set and the expansion
5243 * won't proceed until we finish with the stripe.
5245 int must_retry = 0;
5246 spin_lock_irq(&conf->device_lock);
5247 if (mddev->reshape_backwards
5248 ? logical_sector >= conf->reshape_progress
5249 : logical_sector < conf->reshape_progress)
5250 /* mismatch, need to try again */
5251 must_retry = 1;
5252 spin_unlock_irq(&conf->device_lock);
5253 if (must_retry) {
5254 release_stripe(sh);
5255 schedule();
5256 do_prepare = true;
5257 goto retry;
5260 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5261 /* Might have got the wrong stripe_head
5262 * by accident
5264 release_stripe(sh);
5265 goto retry;
5268 if (rw == WRITE &&
5269 logical_sector >= mddev->suspend_lo &&
5270 logical_sector < mddev->suspend_hi) {
5271 release_stripe(sh);
5272 /* As the suspend_* range is controlled by
5273 * userspace, we want an interruptible
5274 * wait.
5276 flush_signals(current);
5277 prepare_to_wait(&conf->wait_for_overlap,
5278 &w, TASK_INTERRUPTIBLE);
5279 if (logical_sector >= mddev->suspend_lo &&
5280 logical_sector < mddev->suspend_hi) {
5281 schedule();
5282 do_prepare = true;
5284 goto retry;
5287 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5288 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5289 /* Stripe is busy expanding or
5290 * add failed due to overlap. Flush everything
5291 * and wait a while
5293 md_wakeup_thread(mddev->thread);
5294 release_stripe(sh);
5295 schedule();
5296 do_prepare = true;
5297 goto retry;
5299 set_bit(STRIPE_HANDLE, &sh->state);
5300 clear_bit(STRIPE_DELAYED, &sh->state);
5301 if ((!sh->batch_head || sh == sh->batch_head) &&
5302 (bi->bi_rw & REQ_SYNC) &&
5303 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5304 atomic_inc(&conf->preread_active_stripes);
5305 release_stripe_plug(mddev, sh);
5306 } else {
5307 /* cannot get stripe for read-ahead, just give-up */
5308 clear_bit(BIO_UPTODATE, &bi->bi_flags);
5309 break;
5312 finish_wait(&conf->wait_for_overlap, &w);
5314 remaining = raid5_dec_bi_active_stripes(bi);
5315 if (remaining == 0) {
5317 if ( rw == WRITE )
5318 md_write_end(mddev);
5320 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5321 bi, 0);
5322 bio_endio(bi, 0);
5326 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5328 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5330 /* reshaping is quite different to recovery/resync so it is
5331 * handled quite separately ... here.
5333 * On each call to sync_request, we gather one chunk worth of
5334 * destination stripes and flag them as expanding.
5335 * Then we find all the source stripes and request reads.
5336 * As the reads complete, handle_stripe will copy the data
5337 * into the destination stripe and release that stripe.
5339 struct r5conf *conf = mddev->private;
5340 struct stripe_head *sh;
5341 sector_t first_sector, last_sector;
5342 int raid_disks = conf->previous_raid_disks;
5343 int data_disks = raid_disks - conf->max_degraded;
5344 int new_data_disks = conf->raid_disks - conf->max_degraded;
5345 int i;
5346 int dd_idx;
5347 sector_t writepos, readpos, safepos;
5348 sector_t stripe_addr;
5349 int reshape_sectors;
5350 struct list_head stripes;
5352 if (sector_nr == 0) {
5353 /* If restarting in the middle, skip the initial sectors */
5354 if (mddev->reshape_backwards &&
5355 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5356 sector_nr = raid5_size(mddev, 0, 0)
5357 - conf->reshape_progress;
5358 } else if (!mddev->reshape_backwards &&
5359 conf->reshape_progress > 0)
5360 sector_nr = conf->reshape_progress;
5361 sector_div(sector_nr, new_data_disks);
5362 if (sector_nr) {
5363 mddev->curr_resync_completed = sector_nr;
5364 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5365 *skipped = 1;
5366 return sector_nr;
5370 /* We need to process a full chunk at a time.
5371 * If old and new chunk sizes differ, we need to process the
5372 * largest of these
5374 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5375 reshape_sectors = mddev->new_chunk_sectors;
5376 else
5377 reshape_sectors = mddev->chunk_sectors;
5379 /* We update the metadata at least every 10 seconds, or when
5380 * the data about to be copied would over-write the source of
5381 * the data at the front of the range. i.e. one new_stripe
5382 * along from reshape_progress new_maps to after where
5383 * reshape_safe old_maps to
5385 writepos = conf->reshape_progress;
5386 sector_div(writepos, new_data_disks);
5387 readpos = conf->reshape_progress;
5388 sector_div(readpos, data_disks);
5389 safepos = conf->reshape_safe;
5390 sector_div(safepos, data_disks);
5391 if (mddev->reshape_backwards) {
5392 writepos -= min_t(sector_t, reshape_sectors, writepos);
5393 readpos += reshape_sectors;
5394 safepos += reshape_sectors;
5395 } else {
5396 writepos += reshape_sectors;
5397 readpos -= min_t(sector_t, reshape_sectors, readpos);
5398 safepos -= min_t(sector_t, reshape_sectors, safepos);
5401 /* Having calculated the 'writepos' possibly use it
5402 * to set 'stripe_addr' which is where we will write to.
5404 if (mddev->reshape_backwards) {
5405 BUG_ON(conf->reshape_progress == 0);
5406 stripe_addr = writepos;
5407 BUG_ON((mddev->dev_sectors &
5408 ~((sector_t)reshape_sectors - 1))
5409 - reshape_sectors - stripe_addr
5410 != sector_nr);
5411 } else {
5412 BUG_ON(writepos != sector_nr + reshape_sectors);
5413 stripe_addr = sector_nr;
5416 /* 'writepos' is the most advanced device address we might write.
5417 * 'readpos' is the least advanced device address we might read.
5418 * 'safepos' is the least address recorded in the metadata as having
5419 * been reshaped.
5420 * If there is a min_offset_diff, these are adjusted either by
5421 * increasing the safepos/readpos if diff is negative, or
5422 * increasing writepos if diff is positive.
5423 * If 'readpos' is then behind 'writepos', there is no way that we can
5424 * ensure safety in the face of a crash - that must be done by userspace
5425 * making a backup of the data. So in that case there is no particular
5426 * rush to update metadata.
5427 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5428 * update the metadata to advance 'safepos' to match 'readpos' so that
5429 * we can be safe in the event of a crash.
5430 * So we insist on updating metadata if safepos is behind writepos and
5431 * readpos is beyond writepos.
5432 * In any case, update the metadata every 10 seconds.
5433 * Maybe that number should be configurable, but I'm not sure it is
5434 * worth it.... maybe it could be a multiple of safemode_delay???
5436 if (conf->min_offset_diff < 0) {
5437 safepos += -conf->min_offset_diff;
5438 readpos += -conf->min_offset_diff;
5439 } else
5440 writepos += conf->min_offset_diff;
5442 if ((mddev->reshape_backwards
5443 ? (safepos > writepos && readpos < writepos)
5444 : (safepos < writepos && readpos > writepos)) ||
5445 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5446 /* Cannot proceed until we've updated the superblock... */
5447 wait_event(conf->wait_for_overlap,
5448 atomic_read(&conf->reshape_stripes)==0
5449 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5450 if (atomic_read(&conf->reshape_stripes) != 0)
5451 return 0;
5452 mddev->reshape_position = conf->reshape_progress;
5453 mddev->curr_resync_completed = sector_nr;
5454 conf->reshape_checkpoint = jiffies;
5455 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5456 md_wakeup_thread(mddev->thread);
5457 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5458 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5459 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5460 return 0;
5461 spin_lock_irq(&conf->device_lock);
5462 conf->reshape_safe = mddev->reshape_position;
5463 spin_unlock_irq(&conf->device_lock);
5464 wake_up(&conf->wait_for_overlap);
5465 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5468 INIT_LIST_HEAD(&stripes);
5469 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5470 int j;
5471 int skipped_disk = 0;
5472 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5473 set_bit(STRIPE_EXPANDING, &sh->state);
5474 atomic_inc(&conf->reshape_stripes);
5475 /* If any of this stripe is beyond the end of the old
5476 * array, then we need to zero those blocks
5478 for (j=sh->disks; j--;) {
5479 sector_t s;
5480 if (j == sh->pd_idx)
5481 continue;
5482 if (conf->level == 6 &&
5483 j == sh->qd_idx)
5484 continue;
5485 s = compute_blocknr(sh, j, 0);
5486 if (s < raid5_size(mddev, 0, 0)) {
5487 skipped_disk = 1;
5488 continue;
5490 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5491 set_bit(R5_Expanded, &sh->dev[j].flags);
5492 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5494 if (!skipped_disk) {
5495 set_bit(STRIPE_EXPAND_READY, &sh->state);
5496 set_bit(STRIPE_HANDLE, &sh->state);
5498 list_add(&sh->lru, &stripes);
5500 spin_lock_irq(&conf->device_lock);
5501 if (mddev->reshape_backwards)
5502 conf->reshape_progress -= reshape_sectors * new_data_disks;
5503 else
5504 conf->reshape_progress += reshape_sectors * new_data_disks;
5505 spin_unlock_irq(&conf->device_lock);
5506 /* Ok, those stripe are ready. We can start scheduling
5507 * reads on the source stripes.
5508 * The source stripes are determined by mapping the first and last
5509 * block on the destination stripes.
5511 first_sector =
5512 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5513 1, &dd_idx, NULL);
5514 last_sector =
5515 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5516 * new_data_disks - 1),
5517 1, &dd_idx, NULL);
5518 if (last_sector >= mddev->dev_sectors)
5519 last_sector = mddev->dev_sectors - 1;
5520 while (first_sector <= last_sector) {
5521 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5522 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5523 set_bit(STRIPE_HANDLE, &sh->state);
5524 release_stripe(sh);
5525 first_sector += STRIPE_SECTORS;
5527 /* Now that the sources are clearly marked, we can release
5528 * the destination stripes
5530 while (!list_empty(&stripes)) {
5531 sh = list_entry(stripes.next, struct stripe_head, lru);
5532 list_del_init(&sh->lru);
5533 release_stripe(sh);
5535 /* If this takes us to the resync_max point where we have to pause,
5536 * then we need to write out the superblock.
5538 sector_nr += reshape_sectors;
5539 if ((sector_nr - mddev->curr_resync_completed) * 2
5540 >= mddev->resync_max - mddev->curr_resync_completed) {
5541 /* Cannot proceed until we've updated the superblock... */
5542 wait_event(conf->wait_for_overlap,
5543 atomic_read(&conf->reshape_stripes) == 0
5544 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5545 if (atomic_read(&conf->reshape_stripes) != 0)
5546 goto ret;
5547 mddev->reshape_position = conf->reshape_progress;
5548 mddev->curr_resync_completed = sector_nr;
5549 conf->reshape_checkpoint = jiffies;
5550 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5551 md_wakeup_thread(mddev->thread);
5552 wait_event(mddev->sb_wait,
5553 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5554 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5555 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5556 goto ret;
5557 spin_lock_irq(&conf->device_lock);
5558 conf->reshape_safe = mddev->reshape_position;
5559 spin_unlock_irq(&conf->device_lock);
5560 wake_up(&conf->wait_for_overlap);
5561 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5563 ret:
5564 return reshape_sectors;
5567 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5569 struct r5conf *conf = mddev->private;
5570 struct stripe_head *sh;
5571 sector_t max_sector = mddev->dev_sectors;
5572 sector_t sync_blocks;
5573 int still_degraded = 0;
5574 int i;
5576 if (sector_nr >= max_sector) {
5577 /* just being told to finish up .. nothing much to do */
5579 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5580 end_reshape(conf);
5581 return 0;
5584 if (mddev->curr_resync < max_sector) /* aborted */
5585 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5586 &sync_blocks, 1);
5587 else /* completed sync */
5588 conf->fullsync = 0;
5589 bitmap_close_sync(mddev->bitmap);
5591 return 0;
5594 /* Allow raid5_quiesce to complete */
5595 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5597 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5598 return reshape_request(mddev, sector_nr, skipped);
5600 /* No need to check resync_max as we never do more than one
5601 * stripe, and as resync_max will always be on a chunk boundary,
5602 * if the check in md_do_sync didn't fire, there is no chance
5603 * of overstepping resync_max here
5606 /* if there is too many failed drives and we are trying
5607 * to resync, then assert that we are finished, because there is
5608 * nothing we can do.
5610 if (mddev->degraded >= conf->max_degraded &&
5611 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5612 sector_t rv = mddev->dev_sectors - sector_nr;
5613 *skipped = 1;
5614 return rv;
5616 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5617 !conf->fullsync &&
5618 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5619 sync_blocks >= STRIPE_SECTORS) {
5620 /* we can skip this block, and probably more */
5621 sync_blocks /= STRIPE_SECTORS;
5622 *skipped = 1;
5623 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5626 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5628 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5629 if (sh == NULL) {
5630 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5631 /* make sure we don't swamp the stripe cache if someone else
5632 * is trying to get access
5634 schedule_timeout_uninterruptible(1);
5636 /* Need to check if array will still be degraded after recovery/resync
5637 * Note in case of > 1 drive failures it's possible we're rebuilding
5638 * one drive while leaving another faulty drive in array.
5640 rcu_read_lock();
5641 for (i = 0; i < conf->raid_disks; i++) {
5642 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5644 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5645 still_degraded = 1;
5647 rcu_read_unlock();
5649 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5651 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5652 set_bit(STRIPE_HANDLE, &sh->state);
5654 release_stripe(sh);
5656 return STRIPE_SECTORS;
5659 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5661 /* We may not be able to submit a whole bio at once as there
5662 * may not be enough stripe_heads available.
5663 * We cannot pre-allocate enough stripe_heads as we may need
5664 * more than exist in the cache (if we allow ever large chunks).
5665 * So we do one stripe head at a time and record in
5666 * ->bi_hw_segments how many have been done.
5668 * We *know* that this entire raid_bio is in one chunk, so
5669 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5671 struct stripe_head *sh;
5672 int dd_idx;
5673 sector_t sector, logical_sector, last_sector;
5674 int scnt = 0;
5675 int remaining;
5676 int handled = 0;
5678 logical_sector = raid_bio->bi_iter.bi_sector &
5679 ~((sector_t)STRIPE_SECTORS-1);
5680 sector = raid5_compute_sector(conf, logical_sector,
5681 0, &dd_idx, NULL);
5682 last_sector = bio_end_sector(raid_bio);
5684 for (; logical_sector < last_sector;
5685 logical_sector += STRIPE_SECTORS,
5686 sector += STRIPE_SECTORS,
5687 scnt++) {
5689 if (scnt < raid5_bi_processed_stripes(raid_bio))
5690 /* already done this stripe */
5691 continue;
5693 sh = get_active_stripe(conf, sector, 0, 1, 1);
5695 if (!sh) {
5696 /* failed to get a stripe - must wait */
5697 raid5_set_bi_processed_stripes(raid_bio, scnt);
5698 conf->retry_read_aligned = raid_bio;
5699 return handled;
5702 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5703 release_stripe(sh);
5704 raid5_set_bi_processed_stripes(raid_bio, scnt);
5705 conf->retry_read_aligned = raid_bio;
5706 return handled;
5709 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5710 handle_stripe(sh);
5711 release_stripe(sh);
5712 handled++;
5714 remaining = raid5_dec_bi_active_stripes(raid_bio);
5715 if (remaining == 0) {
5716 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5717 raid_bio, 0);
5718 bio_endio(raid_bio, 0);
5720 if (atomic_dec_and_test(&conf->active_aligned_reads))
5721 wake_up(&conf->wait_for_stripe);
5722 return handled;
5725 static int handle_active_stripes(struct r5conf *conf, int group,
5726 struct r5worker *worker,
5727 struct list_head *temp_inactive_list)
5729 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5730 int i, batch_size = 0, hash;
5731 bool release_inactive = false;
5733 while (batch_size < MAX_STRIPE_BATCH &&
5734 (sh = __get_priority_stripe(conf, group)) != NULL)
5735 batch[batch_size++] = sh;
5737 if (batch_size == 0) {
5738 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5739 if (!list_empty(temp_inactive_list + i))
5740 break;
5741 if (i == NR_STRIPE_HASH_LOCKS)
5742 return batch_size;
5743 release_inactive = true;
5745 spin_unlock_irq(&conf->device_lock);
5747 release_inactive_stripe_list(conf, temp_inactive_list,
5748 NR_STRIPE_HASH_LOCKS);
5750 if (release_inactive) {
5751 spin_lock_irq(&conf->device_lock);
5752 return 0;
5755 for (i = 0; i < batch_size; i++)
5756 handle_stripe(batch[i]);
5758 cond_resched();
5760 spin_lock_irq(&conf->device_lock);
5761 for (i = 0; i < batch_size; i++) {
5762 hash = batch[i]->hash_lock_index;
5763 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5765 return batch_size;
5768 static void raid5_do_work(struct work_struct *work)
5770 struct r5worker *worker = container_of(work, struct r5worker, work);
5771 struct r5worker_group *group = worker->group;
5772 struct r5conf *conf = group->conf;
5773 int group_id = group - conf->worker_groups;
5774 int handled;
5775 struct blk_plug plug;
5777 pr_debug("+++ raid5worker active\n");
5779 blk_start_plug(&plug);
5780 handled = 0;
5781 spin_lock_irq(&conf->device_lock);
5782 while (1) {
5783 int batch_size, released;
5785 released = release_stripe_list(conf, worker->temp_inactive_list);
5787 batch_size = handle_active_stripes(conf, group_id, worker,
5788 worker->temp_inactive_list);
5789 worker->working = false;
5790 if (!batch_size && !released)
5791 break;
5792 handled += batch_size;
5794 pr_debug("%d stripes handled\n", handled);
5796 spin_unlock_irq(&conf->device_lock);
5797 blk_finish_plug(&plug);
5799 pr_debug("--- raid5worker inactive\n");
5803 * This is our raid5 kernel thread.
5805 * We scan the hash table for stripes which can be handled now.
5806 * During the scan, completed stripes are saved for us by the interrupt
5807 * handler, so that they will not have to wait for our next wakeup.
5809 static void raid5d(struct md_thread *thread)
5811 struct mddev *mddev = thread->mddev;
5812 struct r5conf *conf = mddev->private;
5813 int handled;
5814 struct blk_plug plug;
5816 pr_debug("+++ raid5d active\n");
5818 md_check_recovery(mddev);
5820 blk_start_plug(&plug);
5821 handled = 0;
5822 spin_lock_irq(&conf->device_lock);
5823 while (1) {
5824 struct bio *bio;
5825 int batch_size, released;
5827 released = release_stripe_list(conf, conf->temp_inactive_list);
5828 if (released)
5829 clear_bit(R5_DID_ALLOC, &conf->cache_state);
5831 if (
5832 !list_empty(&conf->bitmap_list)) {
5833 /* Now is a good time to flush some bitmap updates */
5834 conf->seq_flush++;
5835 spin_unlock_irq(&conf->device_lock);
5836 bitmap_unplug(mddev->bitmap);
5837 spin_lock_irq(&conf->device_lock);
5838 conf->seq_write = conf->seq_flush;
5839 activate_bit_delay(conf, conf->temp_inactive_list);
5841 raid5_activate_delayed(conf);
5843 while ((bio = remove_bio_from_retry(conf))) {
5844 int ok;
5845 spin_unlock_irq(&conf->device_lock);
5846 ok = retry_aligned_read(conf, bio);
5847 spin_lock_irq(&conf->device_lock);
5848 if (!ok)
5849 break;
5850 handled++;
5853 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5854 conf->temp_inactive_list);
5855 if (!batch_size && !released)
5856 break;
5857 handled += batch_size;
5859 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5860 spin_unlock_irq(&conf->device_lock);
5861 md_check_recovery(mddev);
5862 spin_lock_irq(&conf->device_lock);
5865 pr_debug("%d stripes handled\n", handled);
5867 spin_unlock_irq(&conf->device_lock);
5868 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5869 mutex_trylock(&conf->cache_size_mutex)) {
5870 grow_one_stripe(conf, __GFP_NOWARN);
5871 /* Set flag even if allocation failed. This helps
5872 * slow down allocation requests when mem is short
5874 set_bit(R5_DID_ALLOC, &conf->cache_state);
5875 mutex_unlock(&conf->cache_size_mutex);
5878 async_tx_issue_pending_all();
5879 blk_finish_plug(&plug);
5881 pr_debug("--- raid5d inactive\n");
5884 static ssize_t
5885 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5887 struct r5conf *conf;
5888 int ret = 0;
5889 spin_lock(&mddev->lock);
5890 conf = mddev->private;
5891 if (conf)
5892 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5893 spin_unlock(&mddev->lock);
5894 return ret;
5898 raid5_set_cache_size(struct mddev *mddev, int size)
5900 struct r5conf *conf = mddev->private;
5901 int err;
5903 if (size <= 16 || size > 32768)
5904 return -EINVAL;
5906 conf->min_nr_stripes = size;
5907 mutex_lock(&conf->cache_size_mutex);
5908 while (size < conf->max_nr_stripes &&
5909 drop_one_stripe(conf))
5911 mutex_unlock(&conf->cache_size_mutex);
5914 err = md_allow_write(mddev);
5915 if (err)
5916 return err;
5918 mutex_lock(&conf->cache_size_mutex);
5919 while (size > conf->max_nr_stripes)
5920 if (!grow_one_stripe(conf, GFP_KERNEL))
5921 break;
5922 mutex_unlock(&conf->cache_size_mutex);
5924 return 0;
5926 EXPORT_SYMBOL(raid5_set_cache_size);
5928 static ssize_t
5929 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5931 struct r5conf *conf;
5932 unsigned long new;
5933 int err;
5935 if (len >= PAGE_SIZE)
5936 return -EINVAL;
5937 if (kstrtoul(page, 10, &new))
5938 return -EINVAL;
5939 err = mddev_lock(mddev);
5940 if (err)
5941 return err;
5942 conf = mddev->private;
5943 if (!conf)
5944 err = -ENODEV;
5945 else
5946 err = raid5_set_cache_size(mddev, new);
5947 mddev_unlock(mddev);
5949 return err ?: len;
5952 static struct md_sysfs_entry
5953 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5954 raid5_show_stripe_cache_size,
5955 raid5_store_stripe_cache_size);
5957 static ssize_t
5958 raid5_show_rmw_level(struct mddev *mddev, char *page)
5960 struct r5conf *conf = mddev->private;
5961 if (conf)
5962 return sprintf(page, "%d\n", conf->rmw_level);
5963 else
5964 return 0;
5967 static ssize_t
5968 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
5970 struct r5conf *conf = mddev->private;
5971 unsigned long new;
5973 if (!conf)
5974 return -ENODEV;
5976 if (len >= PAGE_SIZE)
5977 return -EINVAL;
5979 if (kstrtoul(page, 10, &new))
5980 return -EINVAL;
5982 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5983 return -EINVAL;
5985 if (new != PARITY_DISABLE_RMW &&
5986 new != PARITY_ENABLE_RMW &&
5987 new != PARITY_PREFER_RMW)
5988 return -EINVAL;
5990 conf->rmw_level = new;
5991 return len;
5994 static struct md_sysfs_entry
5995 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5996 raid5_show_rmw_level,
5997 raid5_store_rmw_level);
6000 static ssize_t
6001 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6003 struct r5conf *conf;
6004 int ret = 0;
6005 spin_lock(&mddev->lock);
6006 conf = mddev->private;
6007 if (conf)
6008 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6009 spin_unlock(&mddev->lock);
6010 return ret;
6013 static ssize_t
6014 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6016 struct r5conf *conf;
6017 unsigned long new;
6018 int err;
6020 if (len >= PAGE_SIZE)
6021 return -EINVAL;
6022 if (kstrtoul(page, 10, &new))
6023 return -EINVAL;
6025 err = mddev_lock(mddev);
6026 if (err)
6027 return err;
6028 conf = mddev->private;
6029 if (!conf)
6030 err = -ENODEV;
6031 else if (new > conf->min_nr_stripes)
6032 err = -EINVAL;
6033 else
6034 conf->bypass_threshold = new;
6035 mddev_unlock(mddev);
6036 return err ?: len;
6039 static struct md_sysfs_entry
6040 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6041 S_IRUGO | S_IWUSR,
6042 raid5_show_preread_threshold,
6043 raid5_store_preread_threshold);
6045 static ssize_t
6046 raid5_show_skip_copy(struct mddev *mddev, char *page)
6048 struct r5conf *conf;
6049 int ret = 0;
6050 spin_lock(&mddev->lock);
6051 conf = mddev->private;
6052 if (conf)
6053 ret = sprintf(page, "%d\n", conf->skip_copy);
6054 spin_unlock(&mddev->lock);
6055 return ret;
6058 static ssize_t
6059 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6061 struct r5conf *conf;
6062 unsigned long new;
6063 int err;
6065 if (len >= PAGE_SIZE)
6066 return -EINVAL;
6067 if (kstrtoul(page, 10, &new))
6068 return -EINVAL;
6069 new = !!new;
6071 err = mddev_lock(mddev);
6072 if (err)
6073 return err;
6074 conf = mddev->private;
6075 if (!conf)
6076 err = -ENODEV;
6077 else if (new != conf->skip_copy) {
6078 mddev_suspend(mddev);
6079 conf->skip_copy = new;
6080 if (new)
6081 mddev->queue->backing_dev_info.capabilities |=
6082 BDI_CAP_STABLE_WRITES;
6083 else
6084 mddev->queue->backing_dev_info.capabilities &=
6085 ~BDI_CAP_STABLE_WRITES;
6086 mddev_resume(mddev);
6088 mddev_unlock(mddev);
6089 return err ?: len;
6092 static struct md_sysfs_entry
6093 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6094 raid5_show_skip_copy,
6095 raid5_store_skip_copy);
6097 static ssize_t
6098 stripe_cache_active_show(struct mddev *mddev, char *page)
6100 struct r5conf *conf = mddev->private;
6101 if (conf)
6102 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6103 else
6104 return 0;
6107 static struct md_sysfs_entry
6108 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6110 static ssize_t
6111 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6113 struct r5conf *conf;
6114 int ret = 0;
6115 spin_lock(&mddev->lock);
6116 conf = mddev->private;
6117 if (conf)
6118 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6119 spin_unlock(&mddev->lock);
6120 return ret;
6123 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6124 int *group_cnt,
6125 int *worker_cnt_per_group,
6126 struct r5worker_group **worker_groups);
6127 static ssize_t
6128 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6130 struct r5conf *conf;
6131 unsigned long new;
6132 int err;
6133 struct r5worker_group *new_groups, *old_groups;
6134 int group_cnt, worker_cnt_per_group;
6136 if (len >= PAGE_SIZE)
6137 return -EINVAL;
6138 if (kstrtoul(page, 10, &new))
6139 return -EINVAL;
6141 err = mddev_lock(mddev);
6142 if (err)
6143 return err;
6144 conf = mddev->private;
6145 if (!conf)
6146 err = -ENODEV;
6147 else if (new != conf->worker_cnt_per_group) {
6148 mddev_suspend(mddev);
6150 old_groups = conf->worker_groups;
6151 if (old_groups)
6152 flush_workqueue(raid5_wq);
6154 err = alloc_thread_groups(conf, new,
6155 &group_cnt, &worker_cnt_per_group,
6156 &new_groups);
6157 if (!err) {
6158 spin_lock_irq(&conf->device_lock);
6159 conf->group_cnt = group_cnt;
6160 conf->worker_cnt_per_group = worker_cnt_per_group;
6161 conf->worker_groups = new_groups;
6162 spin_unlock_irq(&conf->device_lock);
6164 if (old_groups)
6165 kfree(old_groups[0].workers);
6166 kfree(old_groups);
6168 mddev_resume(mddev);
6170 mddev_unlock(mddev);
6172 return err ?: len;
6175 static struct md_sysfs_entry
6176 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6177 raid5_show_group_thread_cnt,
6178 raid5_store_group_thread_cnt);
6180 static struct attribute *raid5_attrs[] = {
6181 &raid5_stripecache_size.attr,
6182 &raid5_stripecache_active.attr,
6183 &raid5_preread_bypass_threshold.attr,
6184 &raid5_group_thread_cnt.attr,
6185 &raid5_skip_copy.attr,
6186 &raid5_rmw_level.attr,
6187 NULL,
6189 static struct attribute_group raid5_attrs_group = {
6190 .name = NULL,
6191 .attrs = raid5_attrs,
6194 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6195 int *group_cnt,
6196 int *worker_cnt_per_group,
6197 struct r5worker_group **worker_groups)
6199 int i, j, k;
6200 ssize_t size;
6201 struct r5worker *workers;
6203 *worker_cnt_per_group = cnt;
6204 if (cnt == 0) {
6205 *group_cnt = 0;
6206 *worker_groups = NULL;
6207 return 0;
6209 *group_cnt = num_possible_nodes();
6210 size = sizeof(struct r5worker) * cnt;
6211 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6212 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6213 *group_cnt, GFP_NOIO);
6214 if (!*worker_groups || !workers) {
6215 kfree(workers);
6216 kfree(*worker_groups);
6217 return -ENOMEM;
6220 for (i = 0; i < *group_cnt; i++) {
6221 struct r5worker_group *group;
6223 group = &(*worker_groups)[i];
6224 INIT_LIST_HEAD(&group->handle_list);
6225 group->conf = conf;
6226 group->workers = workers + i * cnt;
6228 for (j = 0; j < cnt; j++) {
6229 struct r5worker *worker = group->workers + j;
6230 worker->group = group;
6231 INIT_WORK(&worker->work, raid5_do_work);
6233 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6234 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6238 return 0;
6241 static void free_thread_groups(struct r5conf *conf)
6243 if (conf->worker_groups)
6244 kfree(conf->worker_groups[0].workers);
6245 kfree(conf->worker_groups);
6246 conf->worker_groups = NULL;
6249 static sector_t
6250 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6252 struct r5conf *conf = mddev->private;
6254 if (!sectors)
6255 sectors = mddev->dev_sectors;
6256 if (!raid_disks)
6257 /* size is defined by the smallest of previous and new size */
6258 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6260 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6261 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
6262 return sectors * (raid_disks - conf->max_degraded);
6265 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6267 safe_put_page(percpu->spare_page);
6268 if (percpu->scribble)
6269 flex_array_free(percpu->scribble);
6270 percpu->spare_page = NULL;
6271 percpu->scribble = NULL;
6274 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6276 if (conf->level == 6 && !percpu->spare_page)
6277 percpu->spare_page = alloc_page(GFP_KERNEL);
6278 if (!percpu->scribble)
6279 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6280 conf->previous_raid_disks),
6281 max(conf->chunk_sectors,
6282 conf->prev_chunk_sectors)
6283 / STRIPE_SECTORS,
6284 GFP_KERNEL);
6286 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6287 free_scratch_buffer(conf, percpu);
6288 return -ENOMEM;
6291 return 0;
6294 static void raid5_free_percpu(struct r5conf *conf)
6296 unsigned long cpu;
6298 if (!conf->percpu)
6299 return;
6301 #ifdef CONFIG_HOTPLUG_CPU
6302 unregister_cpu_notifier(&conf->cpu_notify);
6303 #endif
6305 get_online_cpus();
6306 for_each_possible_cpu(cpu)
6307 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6308 put_online_cpus();
6310 free_percpu(conf->percpu);
6313 static void free_conf(struct r5conf *conf)
6315 if (conf->shrinker.seeks)
6316 unregister_shrinker(&conf->shrinker);
6317 free_thread_groups(conf);
6318 shrink_stripes(conf);
6319 raid5_free_percpu(conf);
6320 kfree(conf->disks);
6321 kfree(conf->stripe_hashtbl);
6322 kfree(conf);
6325 #ifdef CONFIG_HOTPLUG_CPU
6326 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6327 void *hcpu)
6329 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6330 long cpu = (long)hcpu;
6331 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6333 switch (action) {
6334 case CPU_UP_PREPARE:
6335 case CPU_UP_PREPARE_FROZEN:
6336 if (alloc_scratch_buffer(conf, percpu)) {
6337 pr_err("%s: failed memory allocation for cpu%ld\n",
6338 __func__, cpu);
6339 return notifier_from_errno(-ENOMEM);
6341 break;
6342 case CPU_DEAD:
6343 case CPU_DEAD_FROZEN:
6344 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6345 break;
6346 default:
6347 break;
6349 return NOTIFY_OK;
6351 #endif
6353 static int raid5_alloc_percpu(struct r5conf *conf)
6355 unsigned long cpu;
6356 int err = 0;
6358 conf->percpu = alloc_percpu(struct raid5_percpu);
6359 if (!conf->percpu)
6360 return -ENOMEM;
6362 #ifdef CONFIG_HOTPLUG_CPU
6363 conf->cpu_notify.notifier_call = raid456_cpu_notify;
6364 conf->cpu_notify.priority = 0;
6365 err = register_cpu_notifier(&conf->cpu_notify);
6366 if (err)
6367 return err;
6368 #endif
6370 get_online_cpus();
6371 for_each_present_cpu(cpu) {
6372 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6373 if (err) {
6374 pr_err("%s: failed memory allocation for cpu%ld\n",
6375 __func__, cpu);
6376 break;
6379 put_online_cpus();
6381 if (!err) {
6382 conf->scribble_disks = max(conf->raid_disks,
6383 conf->previous_raid_disks);
6384 conf->scribble_sectors = max(conf->chunk_sectors,
6385 conf->prev_chunk_sectors);
6387 return err;
6390 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6391 struct shrink_control *sc)
6393 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6394 unsigned long ret = SHRINK_STOP;
6396 if (mutex_trylock(&conf->cache_size_mutex)) {
6397 ret= 0;
6398 while (ret < sc->nr_to_scan &&
6399 conf->max_nr_stripes > conf->min_nr_stripes) {
6400 if (drop_one_stripe(conf) == 0) {
6401 ret = SHRINK_STOP;
6402 break;
6404 ret++;
6406 mutex_unlock(&conf->cache_size_mutex);
6408 return ret;
6411 static unsigned long raid5_cache_count(struct shrinker *shrink,
6412 struct shrink_control *sc)
6414 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6416 if (conf->max_nr_stripes < conf->min_nr_stripes)
6417 /* unlikely, but not impossible */
6418 return 0;
6419 return conf->max_nr_stripes - conf->min_nr_stripes;
6422 static struct r5conf *setup_conf(struct mddev *mddev)
6424 struct r5conf *conf;
6425 int raid_disk, memory, max_disks;
6426 struct md_rdev *rdev;
6427 struct disk_info *disk;
6428 char pers_name[6];
6429 int i;
6430 int group_cnt, worker_cnt_per_group;
6431 struct r5worker_group *new_group;
6433 if (mddev->new_level != 5
6434 && mddev->new_level != 4
6435 && mddev->new_level != 6) {
6436 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6437 mdname(mddev), mddev->new_level);
6438 return ERR_PTR(-EIO);
6440 if ((mddev->new_level == 5
6441 && !algorithm_valid_raid5(mddev->new_layout)) ||
6442 (mddev->new_level == 6
6443 && !algorithm_valid_raid6(mddev->new_layout))) {
6444 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6445 mdname(mddev), mddev->new_layout);
6446 return ERR_PTR(-EIO);
6448 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6449 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6450 mdname(mddev), mddev->raid_disks);
6451 return ERR_PTR(-EINVAL);
6454 if (!mddev->new_chunk_sectors ||
6455 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6456 !is_power_of_2(mddev->new_chunk_sectors)) {
6457 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6458 mdname(mddev), mddev->new_chunk_sectors << 9);
6459 return ERR_PTR(-EINVAL);
6462 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6463 if (conf == NULL)
6464 goto abort;
6465 /* Don't enable multi-threading by default*/
6466 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6467 &new_group)) {
6468 conf->group_cnt = group_cnt;
6469 conf->worker_cnt_per_group = worker_cnt_per_group;
6470 conf->worker_groups = new_group;
6471 } else
6472 goto abort;
6473 spin_lock_init(&conf->device_lock);
6474 seqcount_init(&conf->gen_lock);
6475 mutex_init(&conf->cache_size_mutex);
6476 init_waitqueue_head(&conf->wait_for_stripe);
6477 init_waitqueue_head(&conf->wait_for_overlap);
6478 INIT_LIST_HEAD(&conf->handle_list);
6479 INIT_LIST_HEAD(&conf->hold_list);
6480 INIT_LIST_HEAD(&conf->delayed_list);
6481 INIT_LIST_HEAD(&conf->bitmap_list);
6482 init_llist_head(&conf->released_stripes);
6483 atomic_set(&conf->active_stripes, 0);
6484 atomic_set(&conf->preread_active_stripes, 0);
6485 atomic_set(&conf->active_aligned_reads, 0);
6486 conf->bypass_threshold = BYPASS_THRESHOLD;
6487 conf->recovery_disabled = mddev->recovery_disabled - 1;
6489 conf->raid_disks = mddev->raid_disks;
6490 if (mddev->reshape_position == MaxSector)
6491 conf->previous_raid_disks = mddev->raid_disks;
6492 else
6493 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6494 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6496 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6497 GFP_KERNEL);
6498 if (!conf->disks)
6499 goto abort;
6501 conf->mddev = mddev;
6503 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6504 goto abort;
6506 /* We init hash_locks[0] separately to that it can be used
6507 * as the reference lock in the spin_lock_nest_lock() call
6508 * in lock_all_device_hash_locks_irq in order to convince
6509 * lockdep that we know what we are doing.
6511 spin_lock_init(conf->hash_locks);
6512 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6513 spin_lock_init(conf->hash_locks + i);
6515 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6516 INIT_LIST_HEAD(conf->inactive_list + i);
6518 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6519 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6521 conf->level = mddev->new_level;
6522 conf->chunk_sectors = mddev->new_chunk_sectors;
6523 if (raid5_alloc_percpu(conf) != 0)
6524 goto abort;
6526 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6528 rdev_for_each(rdev, mddev) {
6529 raid_disk = rdev->raid_disk;
6530 if (raid_disk >= max_disks
6531 || raid_disk < 0)
6532 continue;
6533 disk = conf->disks + raid_disk;
6535 if (test_bit(Replacement, &rdev->flags)) {
6536 if (disk->replacement)
6537 goto abort;
6538 disk->replacement = rdev;
6539 } else {
6540 if (disk->rdev)
6541 goto abort;
6542 disk->rdev = rdev;
6545 if (test_bit(In_sync, &rdev->flags)) {
6546 char b[BDEVNAME_SIZE];
6547 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6548 " disk %d\n",
6549 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6550 } else if (rdev->saved_raid_disk != raid_disk)
6551 /* Cannot rely on bitmap to complete recovery */
6552 conf->fullsync = 1;
6555 conf->level = mddev->new_level;
6556 if (conf->level == 6) {
6557 conf->max_degraded = 2;
6558 if (raid6_call.xor_syndrome)
6559 conf->rmw_level = PARITY_ENABLE_RMW;
6560 else
6561 conf->rmw_level = PARITY_DISABLE_RMW;
6562 } else {
6563 conf->max_degraded = 1;
6564 conf->rmw_level = PARITY_ENABLE_RMW;
6566 conf->algorithm = mddev->new_layout;
6567 conf->reshape_progress = mddev->reshape_position;
6568 if (conf->reshape_progress != MaxSector) {
6569 conf->prev_chunk_sectors = mddev->chunk_sectors;
6570 conf->prev_algo = mddev->layout;
6573 conf->min_nr_stripes = NR_STRIPES;
6574 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6575 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6576 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6577 if (grow_stripes(conf, conf->min_nr_stripes)) {
6578 printk(KERN_ERR
6579 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6580 mdname(mddev), memory);
6581 goto abort;
6582 } else
6583 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6584 mdname(mddev), memory);
6586 * Losing a stripe head costs more than the time to refill it,
6587 * it reduces the queue depth and so can hurt throughput.
6588 * So set it rather large, scaled by number of devices.
6590 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6591 conf->shrinker.scan_objects = raid5_cache_scan;
6592 conf->shrinker.count_objects = raid5_cache_count;
6593 conf->shrinker.batch = 128;
6594 conf->shrinker.flags = 0;
6595 register_shrinker(&conf->shrinker);
6597 sprintf(pers_name, "raid%d", mddev->new_level);
6598 conf->thread = md_register_thread(raid5d, mddev, pers_name);
6599 if (!conf->thread) {
6600 printk(KERN_ERR
6601 "md/raid:%s: couldn't allocate thread.\n",
6602 mdname(mddev));
6603 goto abort;
6606 return conf;
6608 abort:
6609 if (conf) {
6610 free_conf(conf);
6611 return ERR_PTR(-EIO);
6612 } else
6613 return ERR_PTR(-ENOMEM);
6616 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6618 switch (algo) {
6619 case ALGORITHM_PARITY_0:
6620 if (raid_disk < max_degraded)
6621 return 1;
6622 break;
6623 case ALGORITHM_PARITY_N:
6624 if (raid_disk >= raid_disks - max_degraded)
6625 return 1;
6626 break;
6627 case ALGORITHM_PARITY_0_6:
6628 if (raid_disk == 0 ||
6629 raid_disk == raid_disks - 1)
6630 return 1;
6631 break;
6632 case ALGORITHM_LEFT_ASYMMETRIC_6:
6633 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6634 case ALGORITHM_LEFT_SYMMETRIC_6:
6635 case ALGORITHM_RIGHT_SYMMETRIC_6:
6636 if (raid_disk == raid_disks - 1)
6637 return 1;
6639 return 0;
6642 static int run(struct mddev *mddev)
6644 struct r5conf *conf;
6645 int working_disks = 0;
6646 int dirty_parity_disks = 0;
6647 struct md_rdev *rdev;
6648 sector_t reshape_offset = 0;
6649 int i;
6650 long long min_offset_diff = 0;
6651 int first = 1;
6653 if (mddev->recovery_cp != MaxSector)
6654 printk(KERN_NOTICE "md/raid:%s: not clean"
6655 " -- starting background reconstruction\n",
6656 mdname(mddev));
6658 rdev_for_each(rdev, mddev) {
6659 long long diff;
6660 if (rdev->raid_disk < 0)
6661 continue;
6662 diff = (rdev->new_data_offset - rdev->data_offset);
6663 if (first) {
6664 min_offset_diff = diff;
6665 first = 0;
6666 } else if (mddev->reshape_backwards &&
6667 diff < min_offset_diff)
6668 min_offset_diff = diff;
6669 else if (!mddev->reshape_backwards &&
6670 diff > min_offset_diff)
6671 min_offset_diff = diff;
6674 if (mddev->reshape_position != MaxSector) {
6675 /* Check that we can continue the reshape.
6676 * Difficulties arise if the stripe we would write to
6677 * next is at or after the stripe we would read from next.
6678 * For a reshape that changes the number of devices, this
6679 * is only possible for a very short time, and mdadm makes
6680 * sure that time appears to have past before assembling
6681 * the array. So we fail if that time hasn't passed.
6682 * For a reshape that keeps the number of devices the same
6683 * mdadm must be monitoring the reshape can keeping the
6684 * critical areas read-only and backed up. It will start
6685 * the array in read-only mode, so we check for that.
6687 sector_t here_new, here_old;
6688 int old_disks;
6689 int max_degraded = (mddev->level == 6 ? 2 : 1);
6691 if (mddev->new_level != mddev->level) {
6692 printk(KERN_ERR "md/raid:%s: unsupported reshape "
6693 "required - aborting.\n",
6694 mdname(mddev));
6695 return -EINVAL;
6697 old_disks = mddev->raid_disks - mddev->delta_disks;
6698 /* reshape_position must be on a new-stripe boundary, and one
6699 * further up in new geometry must map after here in old
6700 * geometry.
6702 here_new = mddev->reshape_position;
6703 if (sector_div(here_new, mddev->new_chunk_sectors *
6704 (mddev->raid_disks - max_degraded))) {
6705 printk(KERN_ERR "md/raid:%s: reshape_position not "
6706 "on a stripe boundary\n", mdname(mddev));
6707 return -EINVAL;
6709 reshape_offset = here_new * mddev->new_chunk_sectors;
6710 /* here_new is the stripe we will write to */
6711 here_old = mddev->reshape_position;
6712 sector_div(here_old, mddev->chunk_sectors *
6713 (old_disks-max_degraded));
6714 /* here_old is the first stripe that we might need to read
6715 * from */
6716 if (mddev->delta_disks == 0) {
6717 if ((here_new * mddev->new_chunk_sectors !=
6718 here_old * mddev->chunk_sectors)) {
6719 printk(KERN_ERR "md/raid:%s: reshape position is"
6720 " confused - aborting\n", mdname(mddev));
6721 return -EINVAL;
6723 /* We cannot be sure it is safe to start an in-place
6724 * reshape. It is only safe if user-space is monitoring
6725 * and taking constant backups.
6726 * mdadm always starts a situation like this in
6727 * readonly mode so it can take control before
6728 * allowing any writes. So just check for that.
6730 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6731 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6732 /* not really in-place - so OK */;
6733 else if (mddev->ro == 0) {
6734 printk(KERN_ERR "md/raid:%s: in-place reshape "
6735 "must be started in read-only mode "
6736 "- aborting\n",
6737 mdname(mddev));
6738 return -EINVAL;
6740 } else if (mddev->reshape_backwards
6741 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6742 here_old * mddev->chunk_sectors)
6743 : (here_new * mddev->new_chunk_sectors >=
6744 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6745 /* Reading from the same stripe as writing to - bad */
6746 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6747 "auto-recovery - aborting.\n",
6748 mdname(mddev));
6749 return -EINVAL;
6751 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6752 mdname(mddev));
6753 /* OK, we should be able to continue; */
6754 } else {
6755 BUG_ON(mddev->level != mddev->new_level);
6756 BUG_ON(mddev->layout != mddev->new_layout);
6757 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6758 BUG_ON(mddev->delta_disks != 0);
6761 if (mddev->private == NULL)
6762 conf = setup_conf(mddev);
6763 else
6764 conf = mddev->private;
6766 if (IS_ERR(conf))
6767 return PTR_ERR(conf);
6769 conf->min_offset_diff = min_offset_diff;
6770 mddev->thread = conf->thread;
6771 conf->thread = NULL;
6772 mddev->private = conf;
6774 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6775 i++) {
6776 rdev = conf->disks[i].rdev;
6777 if (!rdev && conf->disks[i].replacement) {
6778 /* The replacement is all we have yet */
6779 rdev = conf->disks[i].replacement;
6780 conf->disks[i].replacement = NULL;
6781 clear_bit(Replacement, &rdev->flags);
6782 conf->disks[i].rdev = rdev;
6784 if (!rdev)
6785 continue;
6786 if (conf->disks[i].replacement &&
6787 conf->reshape_progress != MaxSector) {
6788 /* replacements and reshape simply do not mix. */
6789 printk(KERN_ERR "md: cannot handle concurrent "
6790 "replacement and reshape.\n");
6791 goto abort;
6793 if (test_bit(In_sync, &rdev->flags)) {
6794 working_disks++;
6795 continue;
6797 /* This disc is not fully in-sync. However if it
6798 * just stored parity (beyond the recovery_offset),
6799 * when we don't need to be concerned about the
6800 * array being dirty.
6801 * When reshape goes 'backwards', we never have
6802 * partially completed devices, so we only need
6803 * to worry about reshape going forwards.
6805 /* Hack because v0.91 doesn't store recovery_offset properly. */
6806 if (mddev->major_version == 0 &&
6807 mddev->minor_version > 90)
6808 rdev->recovery_offset = reshape_offset;
6810 if (rdev->recovery_offset < reshape_offset) {
6811 /* We need to check old and new layout */
6812 if (!only_parity(rdev->raid_disk,
6813 conf->algorithm,
6814 conf->raid_disks,
6815 conf->max_degraded))
6816 continue;
6818 if (!only_parity(rdev->raid_disk,
6819 conf->prev_algo,
6820 conf->previous_raid_disks,
6821 conf->max_degraded))
6822 continue;
6823 dirty_parity_disks++;
6827 * 0 for a fully functional array, 1 or 2 for a degraded array.
6829 mddev->degraded = calc_degraded(conf);
6831 if (has_failed(conf)) {
6832 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6833 " (%d/%d failed)\n",
6834 mdname(mddev), mddev->degraded, conf->raid_disks);
6835 goto abort;
6838 /* device size must be a multiple of chunk size */
6839 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6840 mddev->resync_max_sectors = mddev->dev_sectors;
6842 if (mddev->degraded > dirty_parity_disks &&
6843 mddev->recovery_cp != MaxSector) {
6844 if (mddev->ok_start_degraded)
6845 printk(KERN_WARNING
6846 "md/raid:%s: starting dirty degraded array"
6847 " - data corruption possible.\n",
6848 mdname(mddev));
6849 else {
6850 printk(KERN_ERR
6851 "md/raid:%s: cannot start dirty degraded array.\n",
6852 mdname(mddev));
6853 goto abort;
6857 if (mddev->degraded == 0)
6858 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6859 " devices, algorithm %d\n", mdname(mddev), conf->level,
6860 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6861 mddev->new_layout);
6862 else
6863 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6864 " out of %d devices, algorithm %d\n",
6865 mdname(mddev), conf->level,
6866 mddev->raid_disks - mddev->degraded,
6867 mddev->raid_disks, mddev->new_layout);
6869 print_raid5_conf(conf);
6871 if (conf->reshape_progress != MaxSector) {
6872 conf->reshape_safe = conf->reshape_progress;
6873 atomic_set(&conf->reshape_stripes, 0);
6874 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6875 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6876 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6877 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6878 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6879 "reshape");
6882 /* Ok, everything is just fine now */
6883 if (mddev->to_remove == &raid5_attrs_group)
6884 mddev->to_remove = NULL;
6885 else if (mddev->kobj.sd &&
6886 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6887 printk(KERN_WARNING
6888 "raid5: failed to create sysfs attributes for %s\n",
6889 mdname(mddev));
6890 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6892 if (mddev->queue) {
6893 int chunk_size;
6894 bool discard_supported = true;
6895 /* read-ahead size must cover two whole stripes, which
6896 * is 2 * (datadisks) * chunksize where 'n' is the
6897 * number of raid devices
6899 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6900 int stripe = data_disks *
6901 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6902 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6903 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6905 chunk_size = mddev->chunk_sectors << 9;
6906 blk_queue_io_min(mddev->queue, chunk_size);
6907 blk_queue_io_opt(mddev->queue, chunk_size *
6908 (conf->raid_disks - conf->max_degraded));
6909 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6911 * We can only discard a whole stripe. It doesn't make sense to
6912 * discard data disk but write parity disk
6914 stripe = stripe * PAGE_SIZE;
6915 /* Round up to power of 2, as discard handling
6916 * currently assumes that */
6917 while ((stripe-1) & stripe)
6918 stripe = (stripe | (stripe-1)) + 1;
6919 mddev->queue->limits.discard_alignment = stripe;
6920 mddev->queue->limits.discard_granularity = stripe;
6923 * We use 16-bit counter of active stripes in bi_phys_segments
6924 * (minus one for over-loaded initialization)
6926 blk_queue_max_hw_sectors(mddev->queue, 0xfffe * STRIPE_SECTORS);
6927 blk_queue_max_discard_sectors(mddev->queue,
6928 0xfffe * STRIPE_SECTORS);
6931 * unaligned part of discard request will be ignored, so can't
6932 * guarantee discard_zeroes_data
6934 mddev->queue->limits.discard_zeroes_data = 0;
6936 blk_queue_max_write_same_sectors(mddev->queue, 0);
6938 rdev_for_each(rdev, mddev) {
6939 disk_stack_limits(mddev->gendisk, rdev->bdev,
6940 rdev->data_offset << 9);
6941 disk_stack_limits(mddev->gendisk, rdev->bdev,
6942 rdev->new_data_offset << 9);
6944 * discard_zeroes_data is required, otherwise data
6945 * could be lost. Consider a scenario: discard a stripe
6946 * (the stripe could be inconsistent if
6947 * discard_zeroes_data is 0); write one disk of the
6948 * stripe (the stripe could be inconsistent again
6949 * depending on which disks are used to calculate
6950 * parity); the disk is broken; The stripe data of this
6951 * disk is lost.
6953 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6954 !bdev_get_queue(rdev->bdev)->
6955 limits.discard_zeroes_data)
6956 discard_supported = false;
6957 /* Unfortunately, discard_zeroes_data is not currently
6958 * a guarantee - just a hint. So we only allow DISCARD
6959 * if the sysadmin has confirmed that only safe devices
6960 * are in use by setting a module parameter.
6962 if (!devices_handle_discard_safely) {
6963 if (discard_supported) {
6964 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6965 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6967 discard_supported = false;
6971 if (discard_supported &&
6972 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
6973 mddev->queue->limits.discard_granularity >= stripe)
6974 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6975 mddev->queue);
6976 else
6977 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6978 mddev->queue);
6981 return 0;
6982 abort:
6983 md_unregister_thread(&mddev->thread);
6984 print_raid5_conf(conf);
6985 free_conf(conf);
6986 mddev->private = NULL;
6987 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6988 return -EIO;
6991 static void raid5_free(struct mddev *mddev, void *priv)
6993 struct r5conf *conf = priv;
6995 free_conf(conf);
6996 mddev->to_remove = &raid5_attrs_group;
6999 static void status(struct seq_file *seq, struct mddev *mddev)
7001 struct r5conf *conf = mddev->private;
7002 int i;
7004 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7005 mddev->chunk_sectors / 2, mddev->layout);
7006 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7007 for (i = 0; i < conf->raid_disks; i++)
7008 seq_printf (seq, "%s",
7009 conf->disks[i].rdev &&
7010 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
7011 seq_printf (seq, "]");
7014 static void print_raid5_conf (struct r5conf *conf)
7016 int i;
7017 struct disk_info *tmp;
7019 printk(KERN_DEBUG "RAID conf printout:\n");
7020 if (!conf) {
7021 printk("(conf==NULL)\n");
7022 return;
7024 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7025 conf->raid_disks,
7026 conf->raid_disks - conf->mddev->degraded);
7028 for (i = 0; i < conf->raid_disks; i++) {
7029 char b[BDEVNAME_SIZE];
7030 tmp = conf->disks + i;
7031 if (tmp->rdev)
7032 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7033 i, !test_bit(Faulty, &tmp->rdev->flags),
7034 bdevname(tmp->rdev->bdev, b));
7038 static int raid5_spare_active(struct mddev *mddev)
7040 int i;
7041 struct r5conf *conf = mddev->private;
7042 struct disk_info *tmp;
7043 int count = 0;
7044 unsigned long flags;
7046 for (i = 0; i < conf->raid_disks; i++) {
7047 tmp = conf->disks + i;
7048 if (tmp->replacement
7049 && tmp->replacement->recovery_offset == MaxSector
7050 && !test_bit(Faulty, &tmp->replacement->flags)
7051 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7052 /* Replacement has just become active. */
7053 if (!tmp->rdev
7054 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7055 count++;
7056 if (tmp->rdev) {
7057 /* Replaced device not technically faulty,
7058 * but we need to be sure it gets removed
7059 * and never re-added.
7061 set_bit(Faulty, &tmp->rdev->flags);
7062 sysfs_notify_dirent_safe(
7063 tmp->rdev->sysfs_state);
7065 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7066 } else if (tmp->rdev
7067 && tmp->rdev->recovery_offset == MaxSector
7068 && !test_bit(Faulty, &tmp->rdev->flags)
7069 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7070 count++;
7071 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7074 spin_lock_irqsave(&conf->device_lock, flags);
7075 mddev->degraded = calc_degraded(conf);
7076 spin_unlock_irqrestore(&conf->device_lock, flags);
7077 print_raid5_conf(conf);
7078 return count;
7081 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7083 struct r5conf *conf = mddev->private;
7084 int err = 0;
7085 int number = rdev->raid_disk;
7086 struct md_rdev **rdevp;
7087 struct disk_info *p = conf->disks + number;
7089 print_raid5_conf(conf);
7090 if (rdev == p->rdev)
7091 rdevp = &p->rdev;
7092 else if (rdev == p->replacement)
7093 rdevp = &p->replacement;
7094 else
7095 return 0;
7097 if (number >= conf->raid_disks &&
7098 conf->reshape_progress == MaxSector)
7099 clear_bit(In_sync, &rdev->flags);
7101 if (test_bit(In_sync, &rdev->flags) ||
7102 atomic_read(&rdev->nr_pending)) {
7103 err = -EBUSY;
7104 goto abort;
7106 /* Only remove non-faulty devices if recovery
7107 * isn't possible.
7109 if (!test_bit(Faulty, &rdev->flags) &&
7110 mddev->recovery_disabled != conf->recovery_disabled &&
7111 !has_failed(conf) &&
7112 (!p->replacement || p->replacement == rdev) &&
7113 number < conf->raid_disks) {
7114 err = -EBUSY;
7115 goto abort;
7117 *rdevp = NULL;
7118 synchronize_rcu();
7119 if (atomic_read(&rdev->nr_pending)) {
7120 /* lost the race, try later */
7121 err = -EBUSY;
7122 *rdevp = rdev;
7123 } else if (p->replacement) {
7124 /* We must have just cleared 'rdev' */
7125 p->rdev = p->replacement;
7126 clear_bit(Replacement, &p->replacement->flags);
7127 smp_mb(); /* Make sure other CPUs may see both as identical
7128 * but will never see neither - if they are careful
7130 p->replacement = NULL;
7131 clear_bit(WantReplacement, &rdev->flags);
7132 } else
7133 /* We might have just removed the Replacement as faulty-
7134 * clear the bit just in case
7136 clear_bit(WantReplacement, &rdev->flags);
7137 abort:
7139 print_raid5_conf(conf);
7140 return err;
7143 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7145 struct r5conf *conf = mddev->private;
7146 int err = -EEXIST;
7147 int disk;
7148 struct disk_info *p;
7149 int first = 0;
7150 int last = conf->raid_disks - 1;
7152 if (mddev->recovery_disabled == conf->recovery_disabled)
7153 return -EBUSY;
7155 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7156 /* no point adding a device */
7157 return -EINVAL;
7159 if (rdev->raid_disk >= 0)
7160 first = last = rdev->raid_disk;
7163 * find the disk ... but prefer rdev->saved_raid_disk
7164 * if possible.
7166 if (rdev->saved_raid_disk >= 0 &&
7167 rdev->saved_raid_disk >= first &&
7168 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7169 first = rdev->saved_raid_disk;
7171 for (disk = first; disk <= last; disk++) {
7172 p = conf->disks + disk;
7173 if (p->rdev == NULL) {
7174 clear_bit(In_sync, &rdev->flags);
7175 rdev->raid_disk = disk;
7176 err = 0;
7177 if (rdev->saved_raid_disk != disk)
7178 conf->fullsync = 1;
7179 rcu_assign_pointer(p->rdev, rdev);
7180 goto out;
7183 for (disk = first; disk <= last; disk++) {
7184 p = conf->disks + disk;
7185 if (test_bit(WantReplacement, &p->rdev->flags) &&
7186 p->replacement == NULL) {
7187 clear_bit(In_sync, &rdev->flags);
7188 set_bit(Replacement, &rdev->flags);
7189 rdev->raid_disk = disk;
7190 err = 0;
7191 conf->fullsync = 1;
7192 rcu_assign_pointer(p->replacement, rdev);
7193 break;
7196 out:
7197 print_raid5_conf(conf);
7198 return err;
7201 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7203 /* no resync is happening, and there is enough space
7204 * on all devices, so we can resize.
7205 * We need to make sure resync covers any new space.
7206 * If the array is shrinking we should possibly wait until
7207 * any io in the removed space completes, but it hardly seems
7208 * worth it.
7210 sector_t newsize;
7211 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7212 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7213 if (mddev->external_size &&
7214 mddev->array_sectors > newsize)
7215 return -EINVAL;
7216 if (mddev->bitmap) {
7217 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7218 if (ret)
7219 return ret;
7221 md_set_array_sectors(mddev, newsize);
7222 set_capacity(mddev->gendisk, mddev->array_sectors);
7223 revalidate_disk(mddev->gendisk);
7224 if (sectors > mddev->dev_sectors &&
7225 mddev->recovery_cp > mddev->dev_sectors) {
7226 mddev->recovery_cp = mddev->dev_sectors;
7227 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7229 mddev->dev_sectors = sectors;
7230 mddev->resync_max_sectors = sectors;
7231 return 0;
7234 static int check_stripe_cache(struct mddev *mddev)
7236 /* Can only proceed if there are plenty of stripe_heads.
7237 * We need a minimum of one full stripe,, and for sensible progress
7238 * it is best to have about 4 times that.
7239 * If we require 4 times, then the default 256 4K stripe_heads will
7240 * allow for chunk sizes up to 256K, which is probably OK.
7241 * If the chunk size is greater, user-space should request more
7242 * stripe_heads first.
7244 struct r5conf *conf = mddev->private;
7245 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7246 > conf->min_nr_stripes ||
7247 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7248 > conf->min_nr_stripes) {
7249 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7250 mdname(mddev),
7251 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7252 / STRIPE_SIZE)*4);
7253 return 0;
7255 return 1;
7258 static int check_reshape(struct mddev *mddev)
7260 struct r5conf *conf = mddev->private;
7262 if (mddev->delta_disks == 0 &&
7263 mddev->new_layout == mddev->layout &&
7264 mddev->new_chunk_sectors == mddev->chunk_sectors)
7265 return 0; /* nothing to do */
7266 if (has_failed(conf))
7267 return -EINVAL;
7268 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7269 /* We might be able to shrink, but the devices must
7270 * be made bigger first.
7271 * For raid6, 4 is the minimum size.
7272 * Otherwise 2 is the minimum
7274 int min = 2;
7275 if (mddev->level == 6)
7276 min = 4;
7277 if (mddev->raid_disks + mddev->delta_disks < min)
7278 return -EINVAL;
7281 if (!check_stripe_cache(mddev))
7282 return -ENOSPC;
7284 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7285 mddev->delta_disks > 0)
7286 if (resize_chunks(conf,
7287 conf->previous_raid_disks
7288 + max(0, mddev->delta_disks),
7289 max(mddev->new_chunk_sectors,
7290 mddev->chunk_sectors)
7291 ) < 0)
7292 return -ENOMEM;
7293 return resize_stripes(conf, (conf->previous_raid_disks
7294 + mddev->delta_disks));
7297 static int raid5_start_reshape(struct mddev *mddev)
7299 struct r5conf *conf = mddev->private;
7300 struct md_rdev *rdev;
7301 int spares = 0;
7302 unsigned long flags;
7304 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7305 return -EBUSY;
7307 if (!check_stripe_cache(mddev))
7308 return -ENOSPC;
7310 if (has_failed(conf))
7311 return -EINVAL;
7313 rdev_for_each(rdev, mddev) {
7314 if (!test_bit(In_sync, &rdev->flags)
7315 && !test_bit(Faulty, &rdev->flags))
7316 spares++;
7319 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7320 /* Not enough devices even to make a degraded array
7321 * of that size
7323 return -EINVAL;
7325 /* Refuse to reduce size of the array. Any reductions in
7326 * array size must be through explicit setting of array_size
7327 * attribute.
7329 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7330 < mddev->array_sectors) {
7331 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7332 "before number of disks\n", mdname(mddev));
7333 return -EINVAL;
7336 atomic_set(&conf->reshape_stripes, 0);
7337 spin_lock_irq(&conf->device_lock);
7338 write_seqcount_begin(&conf->gen_lock);
7339 conf->previous_raid_disks = conf->raid_disks;
7340 conf->raid_disks += mddev->delta_disks;
7341 conf->prev_chunk_sectors = conf->chunk_sectors;
7342 conf->chunk_sectors = mddev->new_chunk_sectors;
7343 conf->prev_algo = conf->algorithm;
7344 conf->algorithm = mddev->new_layout;
7345 conf->generation++;
7346 /* Code that selects data_offset needs to see the generation update
7347 * if reshape_progress has been set - so a memory barrier needed.
7349 smp_mb();
7350 if (mddev->reshape_backwards)
7351 conf->reshape_progress = raid5_size(mddev, 0, 0);
7352 else
7353 conf->reshape_progress = 0;
7354 conf->reshape_safe = conf->reshape_progress;
7355 write_seqcount_end(&conf->gen_lock);
7356 spin_unlock_irq(&conf->device_lock);
7358 /* Now make sure any requests that proceeded on the assumption
7359 * the reshape wasn't running - like Discard or Read - have
7360 * completed.
7362 mddev_suspend(mddev);
7363 mddev_resume(mddev);
7365 /* Add some new drives, as many as will fit.
7366 * We know there are enough to make the newly sized array work.
7367 * Don't add devices if we are reducing the number of
7368 * devices in the array. This is because it is not possible
7369 * to correctly record the "partially reconstructed" state of
7370 * such devices during the reshape and confusion could result.
7372 if (mddev->delta_disks >= 0) {
7373 rdev_for_each(rdev, mddev)
7374 if (rdev->raid_disk < 0 &&
7375 !test_bit(Faulty, &rdev->flags)) {
7376 if (raid5_add_disk(mddev, rdev) == 0) {
7377 if (rdev->raid_disk
7378 >= conf->previous_raid_disks)
7379 set_bit(In_sync, &rdev->flags);
7380 else
7381 rdev->recovery_offset = 0;
7383 if (sysfs_link_rdev(mddev, rdev))
7384 /* Failure here is OK */;
7386 } else if (rdev->raid_disk >= conf->previous_raid_disks
7387 && !test_bit(Faulty, &rdev->flags)) {
7388 /* This is a spare that was manually added */
7389 set_bit(In_sync, &rdev->flags);
7392 /* When a reshape changes the number of devices,
7393 * ->degraded is measured against the larger of the
7394 * pre and post number of devices.
7396 spin_lock_irqsave(&conf->device_lock, flags);
7397 mddev->degraded = calc_degraded(conf);
7398 spin_unlock_irqrestore(&conf->device_lock, flags);
7400 mddev->raid_disks = conf->raid_disks;
7401 mddev->reshape_position = conf->reshape_progress;
7402 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7404 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7405 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7406 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7407 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7408 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7409 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7410 "reshape");
7411 if (!mddev->sync_thread) {
7412 mddev->recovery = 0;
7413 spin_lock_irq(&conf->device_lock);
7414 write_seqcount_begin(&conf->gen_lock);
7415 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7416 mddev->new_chunk_sectors =
7417 conf->chunk_sectors = conf->prev_chunk_sectors;
7418 mddev->new_layout = conf->algorithm = conf->prev_algo;
7419 rdev_for_each(rdev, mddev)
7420 rdev->new_data_offset = rdev->data_offset;
7421 smp_wmb();
7422 conf->generation --;
7423 conf->reshape_progress = MaxSector;
7424 mddev->reshape_position = MaxSector;
7425 write_seqcount_end(&conf->gen_lock);
7426 spin_unlock_irq(&conf->device_lock);
7427 return -EAGAIN;
7429 conf->reshape_checkpoint = jiffies;
7430 md_wakeup_thread(mddev->sync_thread);
7431 md_new_event(mddev);
7432 return 0;
7435 /* This is called from the reshape thread and should make any
7436 * changes needed in 'conf'
7438 static void end_reshape(struct r5conf *conf)
7441 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7442 struct md_rdev *rdev;
7444 spin_lock_irq(&conf->device_lock);
7445 conf->previous_raid_disks = conf->raid_disks;
7446 rdev_for_each(rdev, conf->mddev)
7447 rdev->data_offset = rdev->new_data_offset;
7448 smp_wmb();
7449 conf->reshape_progress = MaxSector;
7450 spin_unlock_irq(&conf->device_lock);
7451 wake_up(&conf->wait_for_overlap);
7453 /* read-ahead size must cover two whole stripes, which is
7454 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7456 if (conf->mddev->queue) {
7457 int data_disks = conf->raid_disks - conf->max_degraded;
7458 int stripe = data_disks * ((conf->chunk_sectors << 9)
7459 / PAGE_SIZE);
7460 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7461 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7466 /* This is called from the raid5d thread with mddev_lock held.
7467 * It makes config changes to the device.
7469 static void raid5_finish_reshape(struct mddev *mddev)
7471 struct r5conf *conf = mddev->private;
7473 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7475 if (mddev->delta_disks > 0) {
7476 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7477 set_capacity(mddev->gendisk, mddev->array_sectors);
7478 revalidate_disk(mddev->gendisk);
7479 } else {
7480 int d;
7481 spin_lock_irq(&conf->device_lock);
7482 mddev->degraded = calc_degraded(conf);
7483 spin_unlock_irq(&conf->device_lock);
7484 for (d = conf->raid_disks ;
7485 d < conf->raid_disks - mddev->delta_disks;
7486 d++) {
7487 struct md_rdev *rdev = conf->disks[d].rdev;
7488 if (rdev)
7489 clear_bit(In_sync, &rdev->flags);
7490 rdev = conf->disks[d].replacement;
7491 if (rdev)
7492 clear_bit(In_sync, &rdev->flags);
7495 mddev->layout = conf->algorithm;
7496 mddev->chunk_sectors = conf->chunk_sectors;
7497 mddev->reshape_position = MaxSector;
7498 mddev->delta_disks = 0;
7499 mddev->reshape_backwards = 0;
7503 static void raid5_quiesce(struct mddev *mddev, int state)
7505 struct r5conf *conf = mddev->private;
7507 switch(state) {
7508 case 2: /* resume for a suspend */
7509 wake_up(&conf->wait_for_overlap);
7510 break;
7512 case 1: /* stop all writes */
7513 lock_all_device_hash_locks_irq(conf);
7514 /* '2' tells resync/reshape to pause so that all
7515 * active stripes can drain
7517 conf->quiesce = 2;
7518 wait_event_cmd(conf->wait_for_stripe,
7519 atomic_read(&conf->active_stripes) == 0 &&
7520 atomic_read(&conf->active_aligned_reads) == 0,
7521 unlock_all_device_hash_locks_irq(conf),
7522 lock_all_device_hash_locks_irq(conf));
7523 conf->quiesce = 1;
7524 unlock_all_device_hash_locks_irq(conf);
7525 /* allow reshape to continue */
7526 wake_up(&conf->wait_for_overlap);
7527 break;
7529 case 0: /* re-enable writes */
7530 lock_all_device_hash_locks_irq(conf);
7531 conf->quiesce = 0;
7532 wake_up(&conf->wait_for_stripe);
7533 wake_up(&conf->wait_for_overlap);
7534 unlock_all_device_hash_locks_irq(conf);
7535 break;
7539 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7541 struct r0conf *raid0_conf = mddev->private;
7542 sector_t sectors;
7544 /* for raid0 takeover only one zone is supported */
7545 if (raid0_conf->nr_strip_zones > 1) {
7546 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7547 mdname(mddev));
7548 return ERR_PTR(-EINVAL);
7551 sectors = raid0_conf->strip_zone[0].zone_end;
7552 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7553 mddev->dev_sectors = sectors;
7554 mddev->new_level = level;
7555 mddev->new_layout = ALGORITHM_PARITY_N;
7556 mddev->new_chunk_sectors = mddev->chunk_sectors;
7557 mddev->raid_disks += 1;
7558 mddev->delta_disks = 1;
7559 /* make sure it will be not marked as dirty */
7560 mddev->recovery_cp = MaxSector;
7562 return setup_conf(mddev);
7565 static void *raid5_takeover_raid1(struct mddev *mddev)
7567 int chunksect;
7569 if (mddev->raid_disks != 2 ||
7570 mddev->degraded > 1)
7571 return ERR_PTR(-EINVAL);
7573 /* Should check if there are write-behind devices? */
7575 chunksect = 64*2; /* 64K by default */
7577 /* The array must be an exact multiple of chunksize */
7578 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7579 chunksect >>= 1;
7581 if ((chunksect<<9) < STRIPE_SIZE)
7582 /* array size does not allow a suitable chunk size */
7583 return ERR_PTR(-EINVAL);
7585 mddev->new_level = 5;
7586 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7587 mddev->new_chunk_sectors = chunksect;
7589 return setup_conf(mddev);
7592 static void *raid5_takeover_raid6(struct mddev *mddev)
7594 int new_layout;
7596 switch (mddev->layout) {
7597 case ALGORITHM_LEFT_ASYMMETRIC_6:
7598 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7599 break;
7600 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7601 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7602 break;
7603 case ALGORITHM_LEFT_SYMMETRIC_6:
7604 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7605 break;
7606 case ALGORITHM_RIGHT_SYMMETRIC_6:
7607 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7608 break;
7609 case ALGORITHM_PARITY_0_6:
7610 new_layout = ALGORITHM_PARITY_0;
7611 break;
7612 case ALGORITHM_PARITY_N:
7613 new_layout = ALGORITHM_PARITY_N;
7614 break;
7615 default:
7616 return ERR_PTR(-EINVAL);
7618 mddev->new_level = 5;
7619 mddev->new_layout = new_layout;
7620 mddev->delta_disks = -1;
7621 mddev->raid_disks -= 1;
7622 return setup_conf(mddev);
7625 static int raid5_check_reshape(struct mddev *mddev)
7627 /* For a 2-drive array, the layout and chunk size can be changed
7628 * immediately as not restriping is needed.
7629 * For larger arrays we record the new value - after validation
7630 * to be used by a reshape pass.
7632 struct r5conf *conf = mddev->private;
7633 int new_chunk = mddev->new_chunk_sectors;
7635 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7636 return -EINVAL;
7637 if (new_chunk > 0) {
7638 if (!is_power_of_2(new_chunk))
7639 return -EINVAL;
7640 if (new_chunk < (PAGE_SIZE>>9))
7641 return -EINVAL;
7642 if (mddev->array_sectors & (new_chunk-1))
7643 /* not factor of array size */
7644 return -EINVAL;
7647 /* They look valid */
7649 if (mddev->raid_disks == 2) {
7650 /* can make the change immediately */
7651 if (mddev->new_layout >= 0) {
7652 conf->algorithm = mddev->new_layout;
7653 mddev->layout = mddev->new_layout;
7655 if (new_chunk > 0) {
7656 conf->chunk_sectors = new_chunk ;
7657 mddev->chunk_sectors = new_chunk;
7659 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7660 md_wakeup_thread(mddev->thread);
7662 return check_reshape(mddev);
7665 static int raid6_check_reshape(struct mddev *mddev)
7667 int new_chunk = mddev->new_chunk_sectors;
7669 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7670 return -EINVAL;
7671 if (new_chunk > 0) {
7672 if (!is_power_of_2(new_chunk))
7673 return -EINVAL;
7674 if (new_chunk < (PAGE_SIZE >> 9))
7675 return -EINVAL;
7676 if (mddev->array_sectors & (new_chunk-1))
7677 /* not factor of array size */
7678 return -EINVAL;
7681 /* They look valid */
7682 return check_reshape(mddev);
7685 static void *raid5_takeover(struct mddev *mddev)
7687 /* raid5 can take over:
7688 * raid0 - if there is only one strip zone - make it a raid4 layout
7689 * raid1 - if there are two drives. We need to know the chunk size
7690 * raid4 - trivial - just use a raid4 layout.
7691 * raid6 - Providing it is a *_6 layout
7693 if (mddev->level == 0)
7694 return raid45_takeover_raid0(mddev, 5);
7695 if (mddev->level == 1)
7696 return raid5_takeover_raid1(mddev);
7697 if (mddev->level == 4) {
7698 mddev->new_layout = ALGORITHM_PARITY_N;
7699 mddev->new_level = 5;
7700 return setup_conf(mddev);
7702 if (mddev->level == 6)
7703 return raid5_takeover_raid6(mddev);
7705 return ERR_PTR(-EINVAL);
7708 static void *raid4_takeover(struct mddev *mddev)
7710 /* raid4 can take over:
7711 * raid0 - if there is only one strip zone
7712 * raid5 - if layout is right
7714 if (mddev->level == 0)
7715 return raid45_takeover_raid0(mddev, 4);
7716 if (mddev->level == 5 &&
7717 mddev->layout == ALGORITHM_PARITY_N) {
7718 mddev->new_layout = 0;
7719 mddev->new_level = 4;
7720 return setup_conf(mddev);
7722 return ERR_PTR(-EINVAL);
7725 static struct md_personality raid5_personality;
7727 static void *raid6_takeover(struct mddev *mddev)
7729 /* Currently can only take over a raid5. We map the
7730 * personality to an equivalent raid6 personality
7731 * with the Q block at the end.
7733 int new_layout;
7735 if (mddev->pers != &raid5_personality)
7736 return ERR_PTR(-EINVAL);
7737 if (mddev->degraded > 1)
7738 return ERR_PTR(-EINVAL);
7739 if (mddev->raid_disks > 253)
7740 return ERR_PTR(-EINVAL);
7741 if (mddev->raid_disks < 3)
7742 return ERR_PTR(-EINVAL);
7744 switch (mddev->layout) {
7745 case ALGORITHM_LEFT_ASYMMETRIC:
7746 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7747 break;
7748 case ALGORITHM_RIGHT_ASYMMETRIC:
7749 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7750 break;
7751 case ALGORITHM_LEFT_SYMMETRIC:
7752 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7753 break;
7754 case ALGORITHM_RIGHT_SYMMETRIC:
7755 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7756 break;
7757 case ALGORITHM_PARITY_0:
7758 new_layout = ALGORITHM_PARITY_0_6;
7759 break;
7760 case ALGORITHM_PARITY_N:
7761 new_layout = ALGORITHM_PARITY_N;
7762 break;
7763 default:
7764 return ERR_PTR(-EINVAL);
7766 mddev->new_level = 6;
7767 mddev->new_layout = new_layout;
7768 mddev->delta_disks = 1;
7769 mddev->raid_disks += 1;
7770 return setup_conf(mddev);
7773 static struct md_personality raid6_personality =
7775 .name = "raid6",
7776 .level = 6,
7777 .owner = THIS_MODULE,
7778 .make_request = make_request,
7779 .run = run,
7780 .free = raid5_free,
7781 .status = status,
7782 .error_handler = error,
7783 .hot_add_disk = raid5_add_disk,
7784 .hot_remove_disk= raid5_remove_disk,
7785 .spare_active = raid5_spare_active,
7786 .sync_request = sync_request,
7787 .resize = raid5_resize,
7788 .size = raid5_size,
7789 .check_reshape = raid6_check_reshape,
7790 .start_reshape = raid5_start_reshape,
7791 .finish_reshape = raid5_finish_reshape,
7792 .quiesce = raid5_quiesce,
7793 .takeover = raid6_takeover,
7794 .congested = raid5_congested,
7795 .mergeable_bvec = raid5_mergeable_bvec,
7797 static struct md_personality raid5_personality =
7799 .name = "raid5",
7800 .level = 5,
7801 .owner = THIS_MODULE,
7802 .make_request = make_request,
7803 .run = run,
7804 .free = raid5_free,
7805 .status = status,
7806 .error_handler = error,
7807 .hot_add_disk = raid5_add_disk,
7808 .hot_remove_disk= raid5_remove_disk,
7809 .spare_active = raid5_spare_active,
7810 .sync_request = sync_request,
7811 .resize = raid5_resize,
7812 .size = raid5_size,
7813 .check_reshape = raid5_check_reshape,
7814 .start_reshape = raid5_start_reshape,
7815 .finish_reshape = raid5_finish_reshape,
7816 .quiesce = raid5_quiesce,
7817 .takeover = raid5_takeover,
7818 .congested = raid5_congested,
7819 .mergeable_bvec = raid5_mergeable_bvec,
7822 static struct md_personality raid4_personality =
7824 .name = "raid4",
7825 .level = 4,
7826 .owner = THIS_MODULE,
7827 .make_request = make_request,
7828 .run = run,
7829 .free = raid5_free,
7830 .status = status,
7831 .error_handler = error,
7832 .hot_add_disk = raid5_add_disk,
7833 .hot_remove_disk= raid5_remove_disk,
7834 .spare_active = raid5_spare_active,
7835 .sync_request = sync_request,
7836 .resize = raid5_resize,
7837 .size = raid5_size,
7838 .check_reshape = raid5_check_reshape,
7839 .start_reshape = raid5_start_reshape,
7840 .finish_reshape = raid5_finish_reshape,
7841 .quiesce = raid5_quiesce,
7842 .takeover = raid4_takeover,
7843 .congested = raid5_congested,
7844 .mergeable_bvec = raid5_mergeable_bvec,
7847 static int __init raid5_init(void)
7849 raid5_wq = alloc_workqueue("raid5wq",
7850 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7851 if (!raid5_wq)
7852 return -ENOMEM;
7853 register_md_personality(&raid6_personality);
7854 register_md_personality(&raid5_personality);
7855 register_md_personality(&raid4_personality);
7856 return 0;
7859 static void raid5_exit(void)
7861 unregister_md_personality(&raid6_personality);
7862 unregister_md_personality(&raid5_personality);
7863 unregister_md_personality(&raid4_personality);
7864 destroy_workqueue(raid5_wq);
7867 module_init(raid5_init);
7868 module_exit(raid5_exit);
7869 MODULE_LICENSE("GPL");
7870 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7871 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7872 MODULE_ALIAS("md-raid5");
7873 MODULE_ALIAS("md-raid4");
7874 MODULE_ALIAS("md-level-5");
7875 MODULE_ALIAS("md-level-4");
7876 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7877 MODULE_ALIAS("md-raid6");
7878 MODULE_ALIAS("md-level-6");
7880 /* This used to be two separate modules, they were: */
7881 MODULE_ALIAS("raid5");
7882 MODULE_ALIAS("raid6");