2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
68 static bool devices_handle_discard_safely
= false;
69 module_param(devices_handle_discard_safely
, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely
,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct
*raid5_wq
;
77 #define NR_STRIPES 256
78 #define STRIPE_SIZE PAGE_SIZE
79 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD 1
82 #define BYPASS_THRESHOLD 1
83 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH 8
87 static inline struct hlist_head
*stripe_hash(struct r5conf
*conf
, sector_t sect
)
89 int hash
= (sect
>> STRIPE_SHIFT
) & HASH_MASK
;
90 return &conf
->stripe_hashtbl
[hash
];
93 static inline int stripe_hash_locks_hash(sector_t sect
)
95 return (sect
>> STRIPE_SHIFT
) & STRIPE_HASH_LOCKS_MASK
;
98 static inline void lock_device_hash_lock(struct r5conf
*conf
, int hash
)
100 spin_lock_irq(conf
->hash_locks
+ hash
);
101 spin_lock(&conf
->device_lock
);
104 static inline void unlock_device_hash_lock(struct r5conf
*conf
, int hash
)
106 spin_unlock(&conf
->device_lock
);
107 spin_unlock_irq(conf
->hash_locks
+ hash
);
110 static inline void lock_all_device_hash_locks_irq(struct r5conf
*conf
)
114 spin_lock(conf
->hash_locks
);
115 for (i
= 1; i
< NR_STRIPE_HASH_LOCKS
; i
++)
116 spin_lock_nest_lock(conf
->hash_locks
+ i
, conf
->hash_locks
);
117 spin_lock(&conf
->device_lock
);
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf
*conf
)
123 spin_unlock(&conf
->device_lock
);
124 for (i
= NR_STRIPE_HASH_LOCKS
; i
; i
--)
125 spin_unlock(conf
->hash_locks
+ i
- 1);
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
135 * This function is used to determine the 'next' bio in the list, given the sector
136 * of the current stripe+device
138 static inline struct bio
*r5_next_bio(struct bio
*bio
, sector_t sector
)
140 int sectors
= bio_sectors(bio
);
141 if (bio
->bi_iter
.bi_sector
+ sectors
< sector
+ STRIPE_SECTORS
)
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
151 static inline int raid5_bi_processed_stripes(struct bio
*bio
)
153 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
154 return (atomic_read(segments
) >> 16) & 0xffff;
157 static inline int raid5_dec_bi_active_stripes(struct bio
*bio
)
159 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
160 return atomic_sub_return(1, segments
) & 0xffff;
163 static inline void raid5_inc_bi_active_stripes(struct bio
*bio
)
165 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
166 atomic_inc(segments
);
169 static inline void raid5_set_bi_processed_stripes(struct bio
*bio
,
172 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
176 old
= atomic_read(segments
);
177 new = (old
& 0xffff) | (cnt
<< 16);
178 } while (atomic_cmpxchg(segments
, old
, new) != old
);
181 static inline void raid5_set_bi_stripes(struct bio
*bio
, unsigned int cnt
)
183 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
184 atomic_set(segments
, cnt
);
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head
*sh
)
191 /* ddf always start from first device */
193 /* md starts just after Q block */
194 if (sh
->qd_idx
== sh
->disks
- 1)
197 return sh
->qd_idx
+ 1;
199 static inline int raid6_next_disk(int disk
, int raid_disks
)
202 return (disk
< raid_disks
) ? disk
: 0;
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
210 static int raid6_idx_to_slot(int idx
, struct stripe_head
*sh
,
211 int *count
, int syndrome_disks
)
217 if (idx
== sh
->pd_idx
)
218 return syndrome_disks
;
219 if (idx
== sh
->qd_idx
)
220 return syndrome_disks
+ 1;
226 static void return_io(struct bio
*return_bi
)
228 struct bio
*bi
= return_bi
;
231 return_bi
= bi
->bi_next
;
233 bi
->bi_iter
.bi_size
= 0;
234 trace_block_bio_complete(bdev_get_queue(bi
->bi_bdev
),
241 static void print_raid5_conf (struct r5conf
*conf
);
243 static int stripe_operations_active(struct stripe_head
*sh
)
245 return sh
->check_state
|| sh
->reconstruct_state
||
246 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
247 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
250 static void raid5_wakeup_stripe_thread(struct stripe_head
*sh
)
252 struct r5conf
*conf
= sh
->raid_conf
;
253 struct r5worker_group
*group
;
255 int i
, cpu
= sh
->cpu
;
257 if (!cpu_online(cpu
)) {
258 cpu
= cpumask_any(cpu_online_mask
);
262 if (list_empty(&sh
->lru
)) {
263 struct r5worker_group
*group
;
264 group
= conf
->worker_groups
+ cpu_to_group(cpu
);
265 list_add_tail(&sh
->lru
, &group
->handle_list
);
266 group
->stripes_cnt
++;
270 if (conf
->worker_cnt_per_group
== 0) {
271 md_wakeup_thread(conf
->mddev
->thread
);
275 group
= conf
->worker_groups
+ cpu_to_group(sh
->cpu
);
277 group
->workers
[0].working
= true;
278 /* at least one worker should run to avoid race */
279 queue_work_on(sh
->cpu
, raid5_wq
, &group
->workers
[0].work
);
281 thread_cnt
= group
->stripes_cnt
/ MAX_STRIPE_BATCH
- 1;
282 /* wakeup more workers */
283 for (i
= 1; i
< conf
->worker_cnt_per_group
&& thread_cnt
> 0; i
++) {
284 if (group
->workers
[i
].working
== false) {
285 group
->workers
[i
].working
= true;
286 queue_work_on(sh
->cpu
, raid5_wq
,
287 &group
->workers
[i
].work
);
293 static void do_release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
294 struct list_head
*temp_inactive_list
)
296 BUG_ON(!list_empty(&sh
->lru
));
297 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
298 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
299 if (test_bit(STRIPE_DELAYED
, &sh
->state
) &&
300 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
301 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
302 else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
303 sh
->bm_seq
- conf
->seq_write
> 0)
304 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
306 clear_bit(STRIPE_DELAYED
, &sh
->state
);
307 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
308 if (conf
->worker_cnt_per_group
== 0) {
309 list_add_tail(&sh
->lru
, &conf
->handle_list
);
311 raid5_wakeup_stripe_thread(sh
);
315 md_wakeup_thread(conf
->mddev
->thread
);
317 BUG_ON(stripe_operations_active(sh
));
318 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
319 if (atomic_dec_return(&conf
->preread_active_stripes
)
321 md_wakeup_thread(conf
->mddev
->thread
);
322 atomic_dec(&conf
->active_stripes
);
323 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
))
324 list_add_tail(&sh
->lru
, temp_inactive_list
);
328 static void __release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
329 struct list_head
*temp_inactive_list
)
331 if (atomic_dec_and_test(&sh
->count
))
332 do_release_stripe(conf
, sh
, temp_inactive_list
);
336 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
338 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339 * given time. Adding stripes only takes device lock, while deleting stripes
340 * only takes hash lock.
342 static void release_inactive_stripe_list(struct r5conf
*conf
,
343 struct list_head
*temp_inactive_list
,
347 bool do_wakeup
= false;
350 if (hash
== NR_STRIPE_HASH_LOCKS
) {
351 size
= NR_STRIPE_HASH_LOCKS
;
352 hash
= NR_STRIPE_HASH_LOCKS
- 1;
356 struct list_head
*list
= &temp_inactive_list
[size
- 1];
359 * We don't hold any lock here yet, get_active_stripe() might
360 * remove stripes from the list
362 if (!list_empty_careful(list
)) {
363 spin_lock_irqsave(conf
->hash_locks
+ hash
, flags
);
364 if (list_empty(conf
->inactive_list
+ hash
) &&
366 atomic_dec(&conf
->empty_inactive_list_nr
);
367 list_splice_tail_init(list
, conf
->inactive_list
+ hash
);
369 spin_unlock_irqrestore(conf
->hash_locks
+ hash
, flags
);
376 wake_up(&conf
->wait_for_stripe
);
377 if (conf
->retry_read_aligned
)
378 md_wakeup_thread(conf
->mddev
->thread
);
382 /* should hold conf->device_lock already */
383 static int release_stripe_list(struct r5conf
*conf
,
384 struct list_head
*temp_inactive_list
)
386 struct stripe_head
*sh
;
388 struct llist_node
*head
;
390 head
= llist_del_all(&conf
->released_stripes
);
391 head
= llist_reverse_order(head
);
395 sh
= llist_entry(head
, struct stripe_head
, release_list
);
396 head
= llist_next(head
);
397 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
399 clear_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
);
401 * Don't worry the bit is set here, because if the bit is set
402 * again, the count is always > 1. This is true for
403 * STRIPE_ON_UNPLUG_LIST bit too.
405 hash
= sh
->hash_lock_index
;
406 __release_stripe(conf
, sh
, &temp_inactive_list
[hash
]);
413 static void release_stripe(struct stripe_head
*sh
)
415 struct r5conf
*conf
= sh
->raid_conf
;
417 struct list_head list
;
421 /* Avoid release_list until the last reference.
423 if (atomic_add_unless(&sh
->count
, -1, 1))
426 if (unlikely(!conf
->mddev
->thread
) ||
427 test_and_set_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
))
429 wakeup
= llist_add(&sh
->release_list
, &conf
->released_stripes
);
431 md_wakeup_thread(conf
->mddev
->thread
);
434 local_irq_save(flags
);
435 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
436 if (atomic_dec_and_lock(&sh
->count
, &conf
->device_lock
)) {
437 INIT_LIST_HEAD(&list
);
438 hash
= sh
->hash_lock_index
;
439 do_release_stripe(conf
, sh
, &list
);
440 spin_unlock(&conf
->device_lock
);
441 release_inactive_stripe_list(conf
, &list
, hash
);
443 local_irq_restore(flags
);
446 static inline void remove_hash(struct stripe_head
*sh
)
448 pr_debug("remove_hash(), stripe %llu\n",
449 (unsigned long long)sh
->sector
);
451 hlist_del_init(&sh
->hash
);
454 static inline void insert_hash(struct r5conf
*conf
, struct stripe_head
*sh
)
456 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
458 pr_debug("insert_hash(), stripe %llu\n",
459 (unsigned long long)sh
->sector
);
461 hlist_add_head(&sh
->hash
, hp
);
464 /* find an idle stripe, make sure it is unhashed, and return it. */
465 static struct stripe_head
*get_free_stripe(struct r5conf
*conf
, int hash
)
467 struct stripe_head
*sh
= NULL
;
468 struct list_head
*first
;
470 if (list_empty(conf
->inactive_list
+ hash
))
472 first
= (conf
->inactive_list
+ hash
)->next
;
473 sh
= list_entry(first
, struct stripe_head
, lru
);
474 list_del_init(first
);
476 atomic_inc(&conf
->active_stripes
);
477 BUG_ON(hash
!= sh
->hash_lock_index
);
478 if (list_empty(conf
->inactive_list
+ hash
))
479 atomic_inc(&conf
->empty_inactive_list_nr
);
484 static void shrink_buffers(struct stripe_head
*sh
)
488 int num
= sh
->raid_conf
->pool_size
;
490 for (i
= 0; i
< num
; i
++) {
491 WARN_ON(sh
->dev
[i
].page
!= sh
->dev
[i
].orig_page
);
495 sh
->dev
[i
].page
= NULL
;
500 static int grow_buffers(struct stripe_head
*sh
, gfp_t gfp
)
503 int num
= sh
->raid_conf
->pool_size
;
505 for (i
= 0; i
< num
; i
++) {
508 if (!(page
= alloc_page(gfp
))) {
511 sh
->dev
[i
].page
= page
;
512 sh
->dev
[i
].orig_page
= page
;
517 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
);
518 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
519 struct stripe_head
*sh
);
521 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int previous
)
523 struct r5conf
*conf
= sh
->raid_conf
;
526 BUG_ON(atomic_read(&sh
->count
) != 0);
527 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
528 BUG_ON(stripe_operations_active(sh
));
529 BUG_ON(sh
->batch_head
);
531 pr_debug("init_stripe called, stripe %llu\n",
532 (unsigned long long)sector
);
534 seq
= read_seqcount_begin(&conf
->gen_lock
);
535 sh
->generation
= conf
->generation
- previous
;
536 sh
->disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
538 stripe_set_idx(sector
, conf
, previous
, sh
);
541 for (i
= sh
->disks
; i
--; ) {
542 struct r5dev
*dev
= &sh
->dev
[i
];
544 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
545 test_bit(R5_LOCKED
, &dev
->flags
)) {
546 printk(KERN_ERR
"sector=%llx i=%d %p %p %p %p %d\n",
547 (unsigned long long)sh
->sector
, i
, dev
->toread
,
548 dev
->read
, dev
->towrite
, dev
->written
,
549 test_bit(R5_LOCKED
, &dev
->flags
));
553 raid5_build_block(sh
, i
, previous
);
555 if (read_seqcount_retry(&conf
->gen_lock
, seq
))
557 sh
->overwrite_disks
= 0;
558 insert_hash(conf
, sh
);
559 sh
->cpu
= smp_processor_id();
560 set_bit(STRIPE_BATCH_READY
, &sh
->state
);
563 static struct stripe_head
*__find_stripe(struct r5conf
*conf
, sector_t sector
,
566 struct stripe_head
*sh
;
568 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
569 hlist_for_each_entry(sh
, stripe_hash(conf
, sector
), hash
)
570 if (sh
->sector
== sector
&& sh
->generation
== generation
)
572 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
577 * Need to check if array has failed when deciding whether to:
579 * - remove non-faulty devices
582 * This determination is simple when no reshape is happening.
583 * However if there is a reshape, we need to carefully check
584 * both the before and after sections.
585 * This is because some failed devices may only affect one
586 * of the two sections, and some non-in_sync devices may
587 * be insync in the section most affected by failed devices.
589 static int calc_degraded(struct r5conf
*conf
)
591 int degraded
, degraded2
;
596 for (i
= 0; i
< conf
->previous_raid_disks
; i
++) {
597 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
598 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
599 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
600 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
602 else if (test_bit(In_sync
, &rdev
->flags
))
605 /* not in-sync or faulty.
606 * If the reshape increases the number of devices,
607 * this is being recovered by the reshape, so
608 * this 'previous' section is not in_sync.
609 * If the number of devices is being reduced however,
610 * the device can only be part of the array if
611 * we are reverting a reshape, so this section will
614 if (conf
->raid_disks
>= conf
->previous_raid_disks
)
618 if (conf
->raid_disks
== conf
->previous_raid_disks
)
622 for (i
= 0; i
< conf
->raid_disks
; i
++) {
623 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
624 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
625 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
626 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
628 else if (test_bit(In_sync
, &rdev
->flags
))
631 /* not in-sync or faulty.
632 * If reshape increases the number of devices, this
633 * section has already been recovered, else it
634 * almost certainly hasn't.
636 if (conf
->raid_disks
<= conf
->previous_raid_disks
)
640 if (degraded2
> degraded
)
645 static int has_failed(struct r5conf
*conf
)
649 if (conf
->mddev
->reshape_position
== MaxSector
)
650 return conf
->mddev
->degraded
> conf
->max_degraded
;
652 degraded
= calc_degraded(conf
);
653 if (degraded
> conf
->max_degraded
)
658 static struct stripe_head
*
659 get_active_stripe(struct r5conf
*conf
, sector_t sector
,
660 int previous
, int noblock
, int noquiesce
)
662 struct stripe_head
*sh
;
663 int hash
= stripe_hash_locks_hash(sector
);
665 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
667 spin_lock_irq(conf
->hash_locks
+ hash
);
670 wait_event_lock_irq(conf
->wait_for_stripe
,
671 conf
->quiesce
== 0 || noquiesce
,
672 *(conf
->hash_locks
+ hash
));
673 sh
= __find_stripe(conf
, sector
, conf
->generation
- previous
);
675 if (!test_bit(R5_INACTIVE_BLOCKED
, &conf
->cache_state
)) {
676 sh
= get_free_stripe(conf
, hash
);
677 if (!sh
&& llist_empty(&conf
->released_stripes
) &&
678 !test_bit(R5_DID_ALLOC
, &conf
->cache_state
))
679 set_bit(R5_ALLOC_MORE
,
682 if (noblock
&& sh
== NULL
)
685 set_bit(R5_INACTIVE_BLOCKED
,
688 conf
->wait_for_stripe
,
689 !list_empty(conf
->inactive_list
+ hash
) &&
690 (atomic_read(&conf
->active_stripes
)
691 < (conf
->max_nr_stripes
* 3 / 4)
692 || !test_bit(R5_INACTIVE_BLOCKED
,
693 &conf
->cache_state
)),
694 *(conf
->hash_locks
+ hash
));
695 clear_bit(R5_INACTIVE_BLOCKED
,
698 init_stripe(sh
, sector
, previous
);
699 atomic_inc(&sh
->count
);
701 } else if (!atomic_inc_not_zero(&sh
->count
)) {
702 spin_lock(&conf
->device_lock
);
703 if (!atomic_read(&sh
->count
)) {
704 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
705 atomic_inc(&conf
->active_stripes
);
706 BUG_ON(list_empty(&sh
->lru
) &&
707 !test_bit(STRIPE_EXPANDING
, &sh
->state
));
708 list_del_init(&sh
->lru
);
710 sh
->group
->stripes_cnt
--;
714 atomic_inc(&sh
->count
);
715 spin_unlock(&conf
->device_lock
);
717 } while (sh
== NULL
);
719 spin_unlock_irq(conf
->hash_locks
+ hash
);
723 static bool is_full_stripe_write(struct stripe_head
*sh
)
725 BUG_ON(sh
->overwrite_disks
> (sh
->disks
- sh
->raid_conf
->max_degraded
));
726 return sh
->overwrite_disks
== (sh
->disks
- sh
->raid_conf
->max_degraded
);
729 static void lock_two_stripes(struct stripe_head
*sh1
, struct stripe_head
*sh2
)
733 spin_lock(&sh2
->stripe_lock
);
734 spin_lock_nested(&sh1
->stripe_lock
, 1);
736 spin_lock(&sh1
->stripe_lock
);
737 spin_lock_nested(&sh2
->stripe_lock
, 1);
741 static void unlock_two_stripes(struct stripe_head
*sh1
, struct stripe_head
*sh2
)
743 spin_unlock(&sh1
->stripe_lock
);
744 spin_unlock(&sh2
->stripe_lock
);
748 /* Only freshly new full stripe normal write stripe can be added to a batch list */
749 static bool stripe_can_batch(struct stripe_head
*sh
)
751 return test_bit(STRIPE_BATCH_READY
, &sh
->state
) &&
752 !test_bit(STRIPE_BITMAP_PENDING
, &sh
->state
) &&
753 is_full_stripe_write(sh
);
756 /* we only do back search */
757 static void stripe_add_to_batch_list(struct r5conf
*conf
, struct stripe_head
*sh
)
759 struct stripe_head
*head
;
760 sector_t head_sector
, tmp_sec
;
764 if (!stripe_can_batch(sh
))
766 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
767 tmp_sec
= sh
->sector
;
768 if (!sector_div(tmp_sec
, conf
->chunk_sectors
))
770 head_sector
= sh
->sector
- STRIPE_SECTORS
;
772 hash
= stripe_hash_locks_hash(head_sector
);
773 spin_lock_irq(conf
->hash_locks
+ hash
);
774 head
= __find_stripe(conf
, head_sector
, conf
->generation
);
775 if (head
&& !atomic_inc_not_zero(&head
->count
)) {
776 spin_lock(&conf
->device_lock
);
777 if (!atomic_read(&head
->count
)) {
778 if (!test_bit(STRIPE_HANDLE
, &head
->state
))
779 atomic_inc(&conf
->active_stripes
);
780 BUG_ON(list_empty(&head
->lru
) &&
781 !test_bit(STRIPE_EXPANDING
, &head
->state
));
782 list_del_init(&head
->lru
);
784 head
->group
->stripes_cnt
--;
788 atomic_inc(&head
->count
);
789 spin_unlock(&conf
->device_lock
);
791 spin_unlock_irq(conf
->hash_locks
+ hash
);
795 if (!stripe_can_batch(head
))
798 lock_two_stripes(head
, sh
);
799 /* clear_batch_ready clear the flag */
800 if (!stripe_can_batch(head
) || !stripe_can_batch(sh
))
807 while (dd_idx
== sh
->pd_idx
|| dd_idx
== sh
->qd_idx
)
809 if (head
->dev
[dd_idx
].towrite
->bi_rw
!= sh
->dev
[dd_idx
].towrite
->bi_rw
)
812 if (head
->batch_head
) {
813 spin_lock(&head
->batch_head
->batch_lock
);
814 /* This batch list is already running */
815 if (!stripe_can_batch(head
)) {
816 spin_unlock(&head
->batch_head
->batch_lock
);
821 * at this point, head's BATCH_READY could be cleared, but we
822 * can still add the stripe to batch list
824 list_add(&sh
->batch_list
, &head
->batch_list
);
825 spin_unlock(&head
->batch_head
->batch_lock
);
827 sh
->batch_head
= head
->batch_head
;
829 head
->batch_head
= head
;
830 sh
->batch_head
= head
->batch_head
;
831 spin_lock(&head
->batch_lock
);
832 list_add_tail(&sh
->batch_list
, &head
->batch_list
);
833 spin_unlock(&head
->batch_lock
);
836 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
837 if (atomic_dec_return(&conf
->preread_active_stripes
)
839 md_wakeup_thread(conf
->mddev
->thread
);
841 if (test_and_clear_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
842 int seq
= sh
->bm_seq
;
843 if (test_bit(STRIPE_BIT_DELAY
, &sh
->batch_head
->state
) &&
844 sh
->batch_head
->bm_seq
> seq
)
845 seq
= sh
->batch_head
->bm_seq
;
846 set_bit(STRIPE_BIT_DELAY
, &sh
->batch_head
->state
);
847 sh
->batch_head
->bm_seq
= seq
;
850 atomic_inc(&sh
->count
);
852 unlock_two_stripes(head
, sh
);
854 release_stripe(head
);
857 /* Determine if 'data_offset' or 'new_data_offset' should be used
858 * in this stripe_head.
860 static int use_new_offset(struct r5conf
*conf
, struct stripe_head
*sh
)
862 sector_t progress
= conf
->reshape_progress
;
863 /* Need a memory barrier to make sure we see the value
864 * of conf->generation, or ->data_offset that was set before
865 * reshape_progress was updated.
868 if (progress
== MaxSector
)
870 if (sh
->generation
== conf
->generation
- 1)
872 /* We are in a reshape, and this is a new-generation stripe,
873 * so use new_data_offset.
879 raid5_end_read_request(struct bio
*bi
, int error
);
881 raid5_end_write_request(struct bio
*bi
, int error
);
883 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
885 struct r5conf
*conf
= sh
->raid_conf
;
886 int i
, disks
= sh
->disks
;
887 struct stripe_head
*head_sh
= sh
;
891 for (i
= disks
; i
--; ) {
893 int replace_only
= 0;
894 struct bio
*bi
, *rbi
;
895 struct md_rdev
*rdev
, *rrdev
= NULL
;
898 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
)) {
899 if (test_and_clear_bit(R5_WantFUA
, &sh
->dev
[i
].flags
))
903 if (test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
905 } else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
907 else if (test_and_clear_bit(R5_WantReplace
,
908 &sh
->dev
[i
].flags
)) {
913 if (test_and_clear_bit(R5_SyncIO
, &sh
->dev
[i
].flags
))
917 bi
= &sh
->dev
[i
].req
;
918 rbi
= &sh
->dev
[i
].rreq
; /* For writing to replacement */
921 rrdev
= rcu_dereference(conf
->disks
[i
].replacement
);
922 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
923 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
932 /* We raced and saw duplicates */
935 if (test_bit(R5_ReadRepl
, &head_sh
->dev
[i
].flags
) && rrdev
)
940 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
943 atomic_inc(&rdev
->nr_pending
);
944 if (rrdev
&& test_bit(Faulty
, &rrdev
->flags
))
947 atomic_inc(&rrdev
->nr_pending
);
950 /* We have already checked bad blocks for reads. Now
951 * need to check for writes. We never accept write errors
952 * on the replacement, so we don't to check rrdev.
954 while ((rw
& WRITE
) && rdev
&&
955 test_bit(WriteErrorSeen
, &rdev
->flags
)) {
958 int bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
959 &first_bad
, &bad_sectors
);
964 set_bit(BlockedBadBlocks
, &rdev
->flags
);
965 if (!conf
->mddev
->external
&&
966 conf
->mddev
->flags
) {
967 /* It is very unlikely, but we might
968 * still need to write out the
969 * bad block log - better give it
971 md_check_recovery(conf
->mddev
);
974 * Because md_wait_for_blocked_rdev
975 * will dec nr_pending, we must
976 * increment it first.
978 atomic_inc(&rdev
->nr_pending
);
979 md_wait_for_blocked_rdev(rdev
, conf
->mddev
);
981 /* Acknowledged bad block - skip the write */
982 rdev_dec_pending(rdev
, conf
->mddev
);
988 if (s
->syncing
|| s
->expanding
|| s
->expanded
990 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
992 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
995 bi
->bi_bdev
= rdev
->bdev
;
997 bi
->bi_end_io
= (rw
& WRITE
)
998 ? raid5_end_write_request
999 : raid5_end_read_request
;
1000 bi
->bi_private
= sh
;
1002 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1003 __func__
, (unsigned long long)sh
->sector
,
1005 atomic_inc(&sh
->count
);
1007 atomic_inc(&head_sh
->count
);
1008 if (use_new_offset(conf
, sh
))
1009 bi
->bi_iter
.bi_sector
= (sh
->sector
1010 + rdev
->new_data_offset
);
1012 bi
->bi_iter
.bi_sector
= (sh
->sector
1013 + rdev
->data_offset
);
1014 if (test_bit(R5_ReadNoMerge
, &head_sh
->dev
[i
].flags
))
1015 bi
->bi_rw
|= REQ_NOMERGE
;
1017 if (test_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
))
1018 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
1019 sh
->dev
[i
].vec
.bv_page
= sh
->dev
[i
].page
;
1021 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
1022 bi
->bi_io_vec
[0].bv_offset
= 0;
1023 bi
->bi_iter
.bi_size
= STRIPE_SIZE
;
1025 * If this is discard request, set bi_vcnt 0. We don't
1026 * want to confuse SCSI because SCSI will replace payload
1028 if (rw
& REQ_DISCARD
)
1031 set_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
);
1033 if (conf
->mddev
->gendisk
)
1034 trace_block_bio_remap(bdev_get_queue(bi
->bi_bdev
),
1035 bi
, disk_devt(conf
->mddev
->gendisk
),
1037 generic_make_request(bi
);
1040 if (s
->syncing
|| s
->expanding
|| s
->expanded
1042 md_sync_acct(rrdev
->bdev
, STRIPE_SECTORS
);
1044 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
1047 rbi
->bi_bdev
= rrdev
->bdev
;
1049 BUG_ON(!(rw
& WRITE
));
1050 rbi
->bi_end_io
= raid5_end_write_request
;
1051 rbi
->bi_private
= sh
;
1053 pr_debug("%s: for %llu schedule op %ld on "
1054 "replacement disc %d\n",
1055 __func__
, (unsigned long long)sh
->sector
,
1057 atomic_inc(&sh
->count
);
1059 atomic_inc(&head_sh
->count
);
1060 if (use_new_offset(conf
, sh
))
1061 rbi
->bi_iter
.bi_sector
= (sh
->sector
1062 + rrdev
->new_data_offset
);
1064 rbi
->bi_iter
.bi_sector
= (sh
->sector
1065 + rrdev
->data_offset
);
1066 if (test_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
))
1067 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
1068 sh
->dev
[i
].rvec
.bv_page
= sh
->dev
[i
].page
;
1070 rbi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
1071 rbi
->bi_io_vec
[0].bv_offset
= 0;
1072 rbi
->bi_iter
.bi_size
= STRIPE_SIZE
;
1074 * If this is discard request, set bi_vcnt 0. We don't
1075 * want to confuse SCSI because SCSI will replace payload
1077 if (rw
& REQ_DISCARD
)
1079 if (conf
->mddev
->gendisk
)
1080 trace_block_bio_remap(bdev_get_queue(rbi
->bi_bdev
),
1081 rbi
, disk_devt(conf
->mddev
->gendisk
),
1083 generic_make_request(rbi
);
1085 if (!rdev
&& !rrdev
) {
1087 set_bit(STRIPE_DEGRADED
, &sh
->state
);
1088 pr_debug("skip op %ld on disc %d for sector %llu\n",
1089 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
1090 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1091 set_bit(STRIPE_HANDLE
, &sh
->state
);
1094 if (!head_sh
->batch_head
)
1096 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1103 static struct dma_async_tx_descriptor
*
1104 async_copy_data(int frombio
, struct bio
*bio
, struct page
**page
,
1105 sector_t sector
, struct dma_async_tx_descriptor
*tx
,
1106 struct stripe_head
*sh
)
1109 struct bvec_iter iter
;
1110 struct page
*bio_page
;
1112 struct async_submit_ctl submit
;
1113 enum async_tx_flags flags
= 0;
1115 if (bio
->bi_iter
.bi_sector
>= sector
)
1116 page_offset
= (signed)(bio
->bi_iter
.bi_sector
- sector
) * 512;
1118 page_offset
= (signed)(sector
- bio
->bi_iter
.bi_sector
) * -512;
1121 flags
|= ASYNC_TX_FENCE
;
1122 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
, NULL
);
1124 bio_for_each_segment(bvl
, bio
, iter
) {
1125 int len
= bvl
.bv_len
;
1129 if (page_offset
< 0) {
1130 b_offset
= -page_offset
;
1131 page_offset
+= b_offset
;
1135 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
1136 clen
= STRIPE_SIZE
- page_offset
;
1141 b_offset
+= bvl
.bv_offset
;
1142 bio_page
= bvl
.bv_page
;
1144 if (sh
->raid_conf
->skip_copy
&&
1145 b_offset
== 0 && page_offset
== 0 &&
1146 clen
== STRIPE_SIZE
)
1149 tx
= async_memcpy(*page
, bio_page
, page_offset
,
1150 b_offset
, clen
, &submit
);
1152 tx
= async_memcpy(bio_page
, *page
, b_offset
,
1153 page_offset
, clen
, &submit
);
1155 /* chain the operations */
1156 submit
.depend_tx
= tx
;
1158 if (clen
< len
) /* hit end of page */
1166 static void ops_complete_biofill(void *stripe_head_ref
)
1168 struct stripe_head
*sh
= stripe_head_ref
;
1169 struct bio
*return_bi
= NULL
;
1172 pr_debug("%s: stripe %llu\n", __func__
,
1173 (unsigned long long)sh
->sector
);
1175 /* clear completed biofills */
1176 for (i
= sh
->disks
; i
--; ) {
1177 struct r5dev
*dev
= &sh
->dev
[i
];
1179 /* acknowledge completion of a biofill operation */
1180 /* and check if we need to reply to a read request,
1181 * new R5_Wantfill requests are held off until
1182 * !STRIPE_BIOFILL_RUN
1184 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
1185 struct bio
*rbi
, *rbi2
;
1190 while (rbi
&& rbi
->bi_iter
.bi_sector
<
1191 dev
->sector
+ STRIPE_SECTORS
) {
1192 rbi2
= r5_next_bio(rbi
, dev
->sector
);
1193 if (!raid5_dec_bi_active_stripes(rbi
)) {
1194 rbi
->bi_next
= return_bi
;
1201 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
1203 return_io(return_bi
);
1205 set_bit(STRIPE_HANDLE
, &sh
->state
);
1209 static void ops_run_biofill(struct stripe_head
*sh
)
1211 struct dma_async_tx_descriptor
*tx
= NULL
;
1212 struct async_submit_ctl submit
;
1215 BUG_ON(sh
->batch_head
);
1216 pr_debug("%s: stripe %llu\n", __func__
,
1217 (unsigned long long)sh
->sector
);
1219 for (i
= sh
->disks
; i
--; ) {
1220 struct r5dev
*dev
= &sh
->dev
[i
];
1221 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
1223 spin_lock_irq(&sh
->stripe_lock
);
1224 dev
->read
= rbi
= dev
->toread
;
1226 spin_unlock_irq(&sh
->stripe_lock
);
1227 while (rbi
&& rbi
->bi_iter
.bi_sector
<
1228 dev
->sector
+ STRIPE_SECTORS
) {
1229 tx
= async_copy_data(0, rbi
, &dev
->page
,
1230 dev
->sector
, tx
, sh
);
1231 rbi
= r5_next_bio(rbi
, dev
->sector
);
1236 atomic_inc(&sh
->count
);
1237 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_biofill
, sh
, NULL
);
1238 async_trigger_callback(&submit
);
1241 static void mark_target_uptodate(struct stripe_head
*sh
, int target
)
1248 tgt
= &sh
->dev
[target
];
1249 set_bit(R5_UPTODATE
, &tgt
->flags
);
1250 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1251 clear_bit(R5_Wantcompute
, &tgt
->flags
);
1254 static void ops_complete_compute(void *stripe_head_ref
)
1256 struct stripe_head
*sh
= stripe_head_ref
;
1258 pr_debug("%s: stripe %llu\n", __func__
,
1259 (unsigned long long)sh
->sector
);
1261 /* mark the computed target(s) as uptodate */
1262 mark_target_uptodate(sh
, sh
->ops
.target
);
1263 mark_target_uptodate(sh
, sh
->ops
.target2
);
1265 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
1266 if (sh
->check_state
== check_state_compute_run
)
1267 sh
->check_state
= check_state_compute_result
;
1268 set_bit(STRIPE_HANDLE
, &sh
->state
);
1272 /* return a pointer to the address conversion region of the scribble buffer */
1273 static addr_conv_t
*to_addr_conv(struct stripe_head
*sh
,
1274 struct raid5_percpu
*percpu
, int i
)
1278 addr
= flex_array_get(percpu
->scribble
, i
);
1279 return addr
+ sizeof(struct page
*) * (sh
->disks
+ 2);
1282 /* return a pointer to the address conversion region of the scribble buffer */
1283 static struct page
**to_addr_page(struct raid5_percpu
*percpu
, int i
)
1287 addr
= flex_array_get(percpu
->scribble
, i
);
1291 static struct dma_async_tx_descriptor
*
1292 ops_run_compute5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1294 int disks
= sh
->disks
;
1295 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1296 int target
= sh
->ops
.target
;
1297 struct r5dev
*tgt
= &sh
->dev
[target
];
1298 struct page
*xor_dest
= tgt
->page
;
1300 struct dma_async_tx_descriptor
*tx
;
1301 struct async_submit_ctl submit
;
1304 BUG_ON(sh
->batch_head
);
1306 pr_debug("%s: stripe %llu block: %d\n",
1307 __func__
, (unsigned long long)sh
->sector
, target
);
1308 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1310 for (i
= disks
; i
--; )
1312 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1314 atomic_inc(&sh
->count
);
1316 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
, NULL
,
1317 ops_complete_compute
, sh
, to_addr_conv(sh
, percpu
, 0));
1318 if (unlikely(count
== 1))
1319 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1321 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1326 /* set_syndrome_sources - populate source buffers for gen_syndrome
1327 * @srcs - (struct page *) array of size sh->disks
1328 * @sh - stripe_head to parse
1330 * Populates srcs in proper layout order for the stripe and returns the
1331 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1332 * destination buffer is recorded in srcs[count] and the Q destination
1333 * is recorded in srcs[count+1]].
1335 static int set_syndrome_sources(struct page
**srcs
,
1336 struct stripe_head
*sh
,
1339 int disks
= sh
->disks
;
1340 int syndrome_disks
= sh
->ddf_layout
? disks
: (disks
- 2);
1341 int d0_idx
= raid6_d0(sh
);
1345 for (i
= 0; i
< disks
; i
++)
1351 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1352 struct r5dev
*dev
= &sh
->dev
[i
];
1354 if (i
== sh
->qd_idx
|| i
== sh
->pd_idx
||
1355 (srctype
== SYNDROME_SRC_ALL
) ||
1356 (srctype
== SYNDROME_SRC_WANT_DRAIN
&&
1357 test_bit(R5_Wantdrain
, &dev
->flags
)) ||
1358 (srctype
== SYNDROME_SRC_WRITTEN
&&
1360 srcs
[slot
] = sh
->dev
[i
].page
;
1361 i
= raid6_next_disk(i
, disks
);
1362 } while (i
!= d0_idx
);
1364 return syndrome_disks
;
1367 static struct dma_async_tx_descriptor
*
1368 ops_run_compute6_1(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1370 int disks
= sh
->disks
;
1371 struct page
**blocks
= to_addr_page(percpu
, 0);
1373 int qd_idx
= sh
->qd_idx
;
1374 struct dma_async_tx_descriptor
*tx
;
1375 struct async_submit_ctl submit
;
1381 BUG_ON(sh
->batch_head
);
1382 if (sh
->ops
.target
< 0)
1383 target
= sh
->ops
.target2
;
1384 else if (sh
->ops
.target2
< 0)
1385 target
= sh
->ops
.target
;
1387 /* we should only have one valid target */
1390 pr_debug("%s: stripe %llu block: %d\n",
1391 __func__
, (unsigned long long)sh
->sector
, target
);
1393 tgt
= &sh
->dev
[target
];
1394 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1397 atomic_inc(&sh
->count
);
1399 if (target
== qd_idx
) {
1400 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_ALL
);
1401 blocks
[count
] = NULL
; /* regenerating p is not necessary */
1402 BUG_ON(blocks
[count
+1] != dest
); /* q should already be set */
1403 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1404 ops_complete_compute
, sh
,
1405 to_addr_conv(sh
, percpu
, 0));
1406 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1408 /* Compute any data- or p-drive using XOR */
1410 for (i
= disks
; i
-- ; ) {
1411 if (i
== target
|| i
== qd_idx
)
1413 blocks
[count
++] = sh
->dev
[i
].page
;
1416 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1417 NULL
, ops_complete_compute
, sh
,
1418 to_addr_conv(sh
, percpu
, 0));
1419 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
, &submit
);
1425 static struct dma_async_tx_descriptor
*
1426 ops_run_compute6_2(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1428 int i
, count
, disks
= sh
->disks
;
1429 int syndrome_disks
= sh
->ddf_layout
? disks
: disks
-2;
1430 int d0_idx
= raid6_d0(sh
);
1431 int faila
= -1, failb
= -1;
1432 int target
= sh
->ops
.target
;
1433 int target2
= sh
->ops
.target2
;
1434 struct r5dev
*tgt
= &sh
->dev
[target
];
1435 struct r5dev
*tgt2
= &sh
->dev
[target2
];
1436 struct dma_async_tx_descriptor
*tx
;
1437 struct page
**blocks
= to_addr_page(percpu
, 0);
1438 struct async_submit_ctl submit
;
1440 BUG_ON(sh
->batch_head
);
1441 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1442 __func__
, (unsigned long long)sh
->sector
, target
, target2
);
1443 BUG_ON(target
< 0 || target2
< 0);
1444 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1445 BUG_ON(!test_bit(R5_Wantcompute
, &tgt2
->flags
));
1447 /* we need to open-code set_syndrome_sources to handle the
1448 * slot number conversion for 'faila' and 'failb'
1450 for (i
= 0; i
< disks
; i
++)
1455 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1457 blocks
[slot
] = sh
->dev
[i
].page
;
1463 i
= raid6_next_disk(i
, disks
);
1464 } while (i
!= d0_idx
);
1466 BUG_ON(faila
== failb
);
1469 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1470 __func__
, (unsigned long long)sh
->sector
, faila
, failb
);
1472 atomic_inc(&sh
->count
);
1474 if (failb
== syndrome_disks
+1) {
1475 /* Q disk is one of the missing disks */
1476 if (faila
== syndrome_disks
) {
1477 /* Missing P+Q, just recompute */
1478 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1479 ops_complete_compute
, sh
,
1480 to_addr_conv(sh
, percpu
, 0));
1481 return async_gen_syndrome(blocks
, 0, syndrome_disks
+2,
1482 STRIPE_SIZE
, &submit
);
1486 int qd_idx
= sh
->qd_idx
;
1488 /* Missing D+Q: recompute D from P, then recompute Q */
1489 if (target
== qd_idx
)
1490 data_target
= target2
;
1492 data_target
= target
;
1495 for (i
= disks
; i
-- ; ) {
1496 if (i
== data_target
|| i
== qd_idx
)
1498 blocks
[count
++] = sh
->dev
[i
].page
;
1500 dest
= sh
->dev
[data_target
].page
;
1501 init_async_submit(&submit
,
1502 ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1504 to_addr_conv(sh
, percpu
, 0));
1505 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
,
1508 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_ALL
);
1509 init_async_submit(&submit
, ASYNC_TX_FENCE
, tx
,
1510 ops_complete_compute
, sh
,
1511 to_addr_conv(sh
, percpu
, 0));
1512 return async_gen_syndrome(blocks
, 0, count
+2,
1513 STRIPE_SIZE
, &submit
);
1516 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1517 ops_complete_compute
, sh
,
1518 to_addr_conv(sh
, percpu
, 0));
1519 if (failb
== syndrome_disks
) {
1520 /* We're missing D+P. */
1521 return async_raid6_datap_recov(syndrome_disks
+2,
1525 /* We're missing D+D. */
1526 return async_raid6_2data_recov(syndrome_disks
+2,
1527 STRIPE_SIZE
, faila
, failb
,
1533 static void ops_complete_prexor(void *stripe_head_ref
)
1535 struct stripe_head
*sh
= stripe_head_ref
;
1537 pr_debug("%s: stripe %llu\n", __func__
,
1538 (unsigned long long)sh
->sector
);
1541 static struct dma_async_tx_descriptor
*
1542 ops_run_prexor5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1543 struct dma_async_tx_descriptor
*tx
)
1545 int disks
= sh
->disks
;
1546 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1547 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1548 struct async_submit_ctl submit
;
1550 /* existing parity data subtracted */
1551 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1553 BUG_ON(sh
->batch_head
);
1554 pr_debug("%s: stripe %llu\n", __func__
,
1555 (unsigned long long)sh
->sector
);
1557 for (i
= disks
; i
--; ) {
1558 struct r5dev
*dev
= &sh
->dev
[i
];
1559 /* Only process blocks that are known to be uptodate */
1560 if (test_bit(R5_Wantdrain
, &dev
->flags
))
1561 xor_srcs
[count
++] = dev
->page
;
1564 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
1565 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
, 0));
1566 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1571 static struct dma_async_tx_descriptor
*
1572 ops_run_prexor6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1573 struct dma_async_tx_descriptor
*tx
)
1575 struct page
**blocks
= to_addr_page(percpu
, 0);
1577 struct async_submit_ctl submit
;
1579 pr_debug("%s: stripe %llu\n", __func__
,
1580 (unsigned long long)sh
->sector
);
1582 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_WANT_DRAIN
);
1584 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_PQ_XOR_DST
, tx
,
1585 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
, 0));
1586 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1591 static struct dma_async_tx_descriptor
*
1592 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
1594 int disks
= sh
->disks
;
1596 struct stripe_head
*head_sh
= sh
;
1598 pr_debug("%s: stripe %llu\n", __func__
,
1599 (unsigned long long)sh
->sector
);
1601 for (i
= disks
; i
--; ) {
1606 if (test_and_clear_bit(R5_Wantdrain
, &head_sh
->dev
[i
].flags
)) {
1611 spin_lock_irq(&sh
->stripe_lock
);
1612 chosen
= dev
->towrite
;
1613 dev
->towrite
= NULL
;
1614 sh
->overwrite_disks
= 0;
1615 BUG_ON(dev
->written
);
1616 wbi
= dev
->written
= chosen
;
1617 spin_unlock_irq(&sh
->stripe_lock
);
1618 WARN_ON(dev
->page
!= dev
->orig_page
);
1620 while (wbi
&& wbi
->bi_iter
.bi_sector
<
1621 dev
->sector
+ STRIPE_SECTORS
) {
1622 if (wbi
->bi_rw
& REQ_FUA
)
1623 set_bit(R5_WantFUA
, &dev
->flags
);
1624 if (wbi
->bi_rw
& REQ_SYNC
)
1625 set_bit(R5_SyncIO
, &dev
->flags
);
1626 if (wbi
->bi_rw
& REQ_DISCARD
)
1627 set_bit(R5_Discard
, &dev
->flags
);
1629 tx
= async_copy_data(1, wbi
, &dev
->page
,
1630 dev
->sector
, tx
, sh
);
1631 if (dev
->page
!= dev
->orig_page
) {
1632 set_bit(R5_SkipCopy
, &dev
->flags
);
1633 clear_bit(R5_UPTODATE
, &dev
->flags
);
1634 clear_bit(R5_OVERWRITE
, &dev
->flags
);
1637 wbi
= r5_next_bio(wbi
, dev
->sector
);
1640 if (head_sh
->batch_head
) {
1641 sh
= list_first_entry(&sh
->batch_list
,
1654 static void ops_complete_reconstruct(void *stripe_head_ref
)
1656 struct stripe_head
*sh
= stripe_head_ref
;
1657 int disks
= sh
->disks
;
1658 int pd_idx
= sh
->pd_idx
;
1659 int qd_idx
= sh
->qd_idx
;
1661 bool fua
= false, sync
= false, discard
= false;
1663 pr_debug("%s: stripe %llu\n", __func__
,
1664 (unsigned long long)sh
->sector
);
1666 for (i
= disks
; i
--; ) {
1667 fua
|= test_bit(R5_WantFUA
, &sh
->dev
[i
].flags
);
1668 sync
|= test_bit(R5_SyncIO
, &sh
->dev
[i
].flags
);
1669 discard
|= test_bit(R5_Discard
, &sh
->dev
[i
].flags
);
1672 for (i
= disks
; i
--; ) {
1673 struct r5dev
*dev
= &sh
->dev
[i
];
1675 if (dev
->written
|| i
== pd_idx
|| i
== qd_idx
) {
1676 if (!discard
&& !test_bit(R5_SkipCopy
, &dev
->flags
))
1677 set_bit(R5_UPTODATE
, &dev
->flags
);
1679 set_bit(R5_WantFUA
, &dev
->flags
);
1681 set_bit(R5_SyncIO
, &dev
->flags
);
1685 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
1686 sh
->reconstruct_state
= reconstruct_state_drain_result
;
1687 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
1688 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
1690 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
1691 sh
->reconstruct_state
= reconstruct_state_result
;
1694 set_bit(STRIPE_HANDLE
, &sh
->state
);
1699 ops_run_reconstruct5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1700 struct dma_async_tx_descriptor
*tx
)
1702 int disks
= sh
->disks
;
1703 struct page
**xor_srcs
;
1704 struct async_submit_ctl submit
;
1705 int count
, pd_idx
= sh
->pd_idx
, i
;
1706 struct page
*xor_dest
;
1708 unsigned long flags
;
1710 struct stripe_head
*head_sh
= sh
;
1713 pr_debug("%s: stripe %llu\n", __func__
,
1714 (unsigned long long)sh
->sector
);
1716 for (i
= 0; i
< sh
->disks
; i
++) {
1719 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1722 if (i
>= sh
->disks
) {
1723 atomic_inc(&sh
->count
);
1724 set_bit(R5_Discard
, &sh
->dev
[pd_idx
].flags
);
1725 ops_complete_reconstruct(sh
);
1730 xor_srcs
= to_addr_page(percpu
, j
);
1731 /* check if prexor is active which means only process blocks
1732 * that are part of a read-modify-write (written)
1734 if (head_sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1736 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1737 for (i
= disks
; i
--; ) {
1738 struct r5dev
*dev
= &sh
->dev
[i
];
1739 if (head_sh
->dev
[i
].written
)
1740 xor_srcs
[count
++] = dev
->page
;
1743 xor_dest
= sh
->dev
[pd_idx
].page
;
1744 for (i
= disks
; i
--; ) {
1745 struct r5dev
*dev
= &sh
->dev
[i
];
1747 xor_srcs
[count
++] = dev
->page
;
1751 /* 1/ if we prexor'd then the dest is reused as a source
1752 * 2/ if we did not prexor then we are redoing the parity
1753 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1754 * for the synchronous xor case
1756 last_stripe
= !head_sh
->batch_head
||
1757 list_first_entry(&sh
->batch_list
,
1758 struct stripe_head
, batch_list
) == head_sh
;
1760 flags
= ASYNC_TX_ACK
|
1761 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
1763 atomic_inc(&head_sh
->count
);
1764 init_async_submit(&submit
, flags
, tx
, ops_complete_reconstruct
, head_sh
,
1765 to_addr_conv(sh
, percpu
, j
));
1767 flags
= prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
;
1768 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
,
1769 to_addr_conv(sh
, percpu
, j
));
1772 if (unlikely(count
== 1))
1773 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1775 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1778 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1785 ops_run_reconstruct6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1786 struct dma_async_tx_descriptor
*tx
)
1788 struct async_submit_ctl submit
;
1789 struct page
**blocks
;
1790 int count
, i
, j
= 0;
1791 struct stripe_head
*head_sh
= sh
;
1794 unsigned long txflags
;
1796 pr_debug("%s: stripe %llu\n", __func__
, (unsigned long long)sh
->sector
);
1798 for (i
= 0; i
< sh
->disks
; i
++) {
1799 if (sh
->pd_idx
== i
|| sh
->qd_idx
== i
)
1801 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1804 if (i
>= sh
->disks
) {
1805 atomic_inc(&sh
->count
);
1806 set_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
1807 set_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
1808 ops_complete_reconstruct(sh
);
1813 blocks
= to_addr_page(percpu
, j
);
1815 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1816 synflags
= SYNDROME_SRC_WRITTEN
;
1817 txflags
= ASYNC_TX_ACK
| ASYNC_TX_PQ_XOR_DST
;
1819 synflags
= SYNDROME_SRC_ALL
;
1820 txflags
= ASYNC_TX_ACK
;
1823 count
= set_syndrome_sources(blocks
, sh
, synflags
);
1824 last_stripe
= !head_sh
->batch_head
||
1825 list_first_entry(&sh
->batch_list
,
1826 struct stripe_head
, batch_list
) == head_sh
;
1829 atomic_inc(&head_sh
->count
);
1830 init_async_submit(&submit
, txflags
, tx
, ops_complete_reconstruct
,
1831 head_sh
, to_addr_conv(sh
, percpu
, j
));
1833 init_async_submit(&submit
, 0, tx
, NULL
, NULL
,
1834 to_addr_conv(sh
, percpu
, j
));
1835 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1838 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1844 static void ops_complete_check(void *stripe_head_ref
)
1846 struct stripe_head
*sh
= stripe_head_ref
;
1848 pr_debug("%s: stripe %llu\n", __func__
,
1849 (unsigned long long)sh
->sector
);
1851 sh
->check_state
= check_state_check_result
;
1852 set_bit(STRIPE_HANDLE
, &sh
->state
);
1856 static void ops_run_check_p(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1858 int disks
= sh
->disks
;
1859 int pd_idx
= sh
->pd_idx
;
1860 int qd_idx
= sh
->qd_idx
;
1861 struct page
*xor_dest
;
1862 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1863 struct dma_async_tx_descriptor
*tx
;
1864 struct async_submit_ctl submit
;
1868 pr_debug("%s: stripe %llu\n", __func__
,
1869 (unsigned long long)sh
->sector
);
1871 BUG_ON(sh
->batch_head
);
1873 xor_dest
= sh
->dev
[pd_idx
].page
;
1874 xor_srcs
[count
++] = xor_dest
;
1875 for (i
= disks
; i
--; ) {
1876 if (i
== pd_idx
|| i
== qd_idx
)
1878 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1881 init_async_submit(&submit
, 0, NULL
, NULL
, NULL
,
1882 to_addr_conv(sh
, percpu
, 0));
1883 tx
= async_xor_val(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
1884 &sh
->ops
.zero_sum_result
, &submit
);
1886 atomic_inc(&sh
->count
);
1887 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_check
, sh
, NULL
);
1888 tx
= async_trigger_callback(&submit
);
1891 static void ops_run_check_pq(struct stripe_head
*sh
, struct raid5_percpu
*percpu
, int checkp
)
1893 struct page
**srcs
= to_addr_page(percpu
, 0);
1894 struct async_submit_ctl submit
;
1897 pr_debug("%s: stripe %llu checkp: %d\n", __func__
,
1898 (unsigned long long)sh
->sector
, checkp
);
1900 BUG_ON(sh
->batch_head
);
1901 count
= set_syndrome_sources(srcs
, sh
, SYNDROME_SRC_ALL
);
1905 atomic_inc(&sh
->count
);
1906 init_async_submit(&submit
, ASYNC_TX_ACK
, NULL
, ops_complete_check
,
1907 sh
, to_addr_conv(sh
, percpu
, 0));
1908 async_syndrome_val(srcs
, 0, count
+2, STRIPE_SIZE
,
1909 &sh
->ops
.zero_sum_result
, percpu
->spare_page
, &submit
);
1912 static void raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
1914 int overlap_clear
= 0, i
, disks
= sh
->disks
;
1915 struct dma_async_tx_descriptor
*tx
= NULL
;
1916 struct r5conf
*conf
= sh
->raid_conf
;
1917 int level
= conf
->level
;
1918 struct raid5_percpu
*percpu
;
1922 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1923 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
1924 ops_run_biofill(sh
);
1928 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
1930 tx
= ops_run_compute5(sh
, percpu
);
1932 if (sh
->ops
.target2
< 0 || sh
->ops
.target
< 0)
1933 tx
= ops_run_compute6_1(sh
, percpu
);
1935 tx
= ops_run_compute6_2(sh
, percpu
);
1937 /* terminate the chain if reconstruct is not set to be run */
1938 if (tx
&& !test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
))
1942 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
)) {
1944 tx
= ops_run_prexor5(sh
, percpu
, tx
);
1946 tx
= ops_run_prexor6(sh
, percpu
, tx
);
1949 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
1950 tx
= ops_run_biodrain(sh
, tx
);
1954 if (test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
)) {
1956 ops_run_reconstruct5(sh
, percpu
, tx
);
1958 ops_run_reconstruct6(sh
, percpu
, tx
);
1961 if (test_bit(STRIPE_OP_CHECK
, &ops_request
)) {
1962 if (sh
->check_state
== check_state_run
)
1963 ops_run_check_p(sh
, percpu
);
1964 else if (sh
->check_state
== check_state_run_q
)
1965 ops_run_check_pq(sh
, percpu
, 0);
1966 else if (sh
->check_state
== check_state_run_pq
)
1967 ops_run_check_pq(sh
, percpu
, 1);
1972 if (overlap_clear
&& !sh
->batch_head
)
1973 for (i
= disks
; i
--; ) {
1974 struct r5dev
*dev
= &sh
->dev
[i
];
1975 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
1976 wake_up(&sh
->raid_conf
->wait_for_overlap
);
1981 static struct stripe_head
*alloc_stripe(struct kmem_cache
*sc
, gfp_t gfp
)
1983 struct stripe_head
*sh
;
1985 sh
= kmem_cache_zalloc(sc
, gfp
);
1987 spin_lock_init(&sh
->stripe_lock
);
1988 spin_lock_init(&sh
->batch_lock
);
1989 INIT_LIST_HEAD(&sh
->batch_list
);
1990 INIT_LIST_HEAD(&sh
->lru
);
1991 atomic_set(&sh
->count
, 1);
1995 static int grow_one_stripe(struct r5conf
*conf
, gfp_t gfp
)
1997 struct stripe_head
*sh
;
1999 sh
= alloc_stripe(conf
->slab_cache
, gfp
);
2003 sh
->raid_conf
= conf
;
2005 if (grow_buffers(sh
, gfp
)) {
2007 kmem_cache_free(conf
->slab_cache
, sh
);
2010 sh
->hash_lock_index
=
2011 conf
->max_nr_stripes
% NR_STRIPE_HASH_LOCKS
;
2012 /* we just created an active stripe so... */
2013 atomic_inc(&conf
->active_stripes
);
2016 conf
->max_nr_stripes
++;
2020 static int grow_stripes(struct r5conf
*conf
, int num
)
2022 struct kmem_cache
*sc
;
2023 int devs
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
2025 if (conf
->mddev
->gendisk
)
2026 sprintf(conf
->cache_name
[0],
2027 "raid%d-%s", conf
->level
, mdname(conf
->mddev
));
2029 sprintf(conf
->cache_name
[0],
2030 "raid%d-%p", conf
->level
, conf
->mddev
);
2031 sprintf(conf
->cache_name
[1], "%s-alt", conf
->cache_name
[0]);
2033 conf
->active_name
= 0;
2034 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
2035 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
2039 conf
->slab_cache
= sc
;
2040 conf
->pool_size
= devs
;
2042 if (!grow_one_stripe(conf
, GFP_KERNEL
))
2049 * scribble_len - return the required size of the scribble region
2050 * @num - total number of disks in the array
2052 * The size must be enough to contain:
2053 * 1/ a struct page pointer for each device in the array +2
2054 * 2/ room to convert each entry in (1) to its corresponding dma
2055 * (dma_map_page()) or page (page_address()) address.
2057 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2058 * calculate over all devices (not just the data blocks), using zeros in place
2059 * of the P and Q blocks.
2061 static struct flex_array
*scribble_alloc(int num
, int cnt
, gfp_t flags
)
2063 struct flex_array
*ret
;
2066 len
= sizeof(struct page
*) * (num
+2) + sizeof(addr_conv_t
) * (num
+2);
2067 ret
= flex_array_alloc(len
, cnt
, flags
);
2070 /* always prealloc all elements, so no locking is required */
2071 if (flex_array_prealloc(ret
, 0, cnt
, flags
)) {
2072 flex_array_free(ret
);
2078 static int resize_chunks(struct r5conf
*conf
, int new_disks
, int new_sectors
)
2084 * Never shrink. And mddev_suspend() could deadlock if this is called
2085 * from raid5d. In that case, scribble_disks and scribble_sectors
2086 * should equal to new_disks and new_sectors
2088 if (conf
->scribble_disks
>= new_disks
&&
2089 conf
->scribble_sectors
>= new_sectors
)
2091 mddev_suspend(conf
->mddev
);
2093 for_each_present_cpu(cpu
) {
2094 struct raid5_percpu
*percpu
;
2095 struct flex_array
*scribble
;
2097 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
2098 scribble
= scribble_alloc(new_disks
,
2099 new_sectors
/ STRIPE_SECTORS
,
2103 flex_array_free(percpu
->scribble
);
2104 percpu
->scribble
= scribble
;
2111 mddev_resume(conf
->mddev
);
2113 conf
->scribble_disks
= new_disks
;
2114 conf
->scribble_sectors
= new_sectors
;
2119 static int resize_stripes(struct r5conf
*conf
, int newsize
)
2121 /* Make all the stripes able to hold 'newsize' devices.
2122 * New slots in each stripe get 'page' set to a new page.
2124 * This happens in stages:
2125 * 1/ create a new kmem_cache and allocate the required number of
2127 * 2/ gather all the old stripe_heads and transfer the pages across
2128 * to the new stripe_heads. This will have the side effect of
2129 * freezing the array as once all stripe_heads have been collected,
2130 * no IO will be possible. Old stripe heads are freed once their
2131 * pages have been transferred over, and the old kmem_cache is
2132 * freed when all stripes are done.
2133 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2134 * we simple return a failre status - no need to clean anything up.
2135 * 4/ allocate new pages for the new slots in the new stripe_heads.
2136 * If this fails, we don't bother trying the shrink the
2137 * stripe_heads down again, we just leave them as they are.
2138 * As each stripe_head is processed the new one is released into
2141 * Once step2 is started, we cannot afford to wait for a write,
2142 * so we use GFP_NOIO allocations.
2144 struct stripe_head
*osh
, *nsh
;
2145 LIST_HEAD(newstripes
);
2146 struct disk_info
*ndisks
;
2148 struct kmem_cache
*sc
;
2152 if (newsize
<= conf
->pool_size
)
2153 return 0; /* never bother to shrink */
2155 err
= md_allow_write(conf
->mddev
);
2160 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
2161 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
2166 /* Need to ensure auto-resizing doesn't interfere */
2167 mutex_lock(&conf
->cache_size_mutex
);
2169 for (i
= conf
->max_nr_stripes
; i
; i
--) {
2170 nsh
= alloc_stripe(sc
, GFP_KERNEL
);
2174 nsh
->raid_conf
= conf
;
2175 list_add(&nsh
->lru
, &newstripes
);
2178 /* didn't get enough, give up */
2179 while (!list_empty(&newstripes
)) {
2180 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
2181 list_del(&nsh
->lru
);
2182 kmem_cache_free(sc
, nsh
);
2184 kmem_cache_destroy(sc
);
2185 mutex_unlock(&conf
->cache_size_mutex
);
2188 /* Step 2 - Must use GFP_NOIO now.
2189 * OK, we have enough stripes, start collecting inactive
2190 * stripes and copying them over
2194 list_for_each_entry(nsh
, &newstripes
, lru
) {
2195 lock_device_hash_lock(conf
, hash
);
2196 wait_event_cmd(conf
->wait_for_stripe
,
2197 !list_empty(conf
->inactive_list
+ hash
),
2198 unlock_device_hash_lock(conf
, hash
),
2199 lock_device_hash_lock(conf
, hash
));
2200 osh
= get_free_stripe(conf
, hash
);
2201 unlock_device_hash_lock(conf
, hash
);
2203 for(i
=0; i
<conf
->pool_size
; i
++) {
2204 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
2205 nsh
->dev
[i
].orig_page
= osh
->dev
[i
].page
;
2207 nsh
->hash_lock_index
= hash
;
2208 kmem_cache_free(conf
->slab_cache
, osh
);
2210 if (cnt
>= conf
->max_nr_stripes
/ NR_STRIPE_HASH_LOCKS
+
2211 !!((conf
->max_nr_stripes
% NR_STRIPE_HASH_LOCKS
) > hash
)) {
2216 kmem_cache_destroy(conf
->slab_cache
);
2219 * At this point, we are holding all the stripes so the array
2220 * is completely stalled, so now is a good time to resize
2221 * conf->disks and the scribble region
2223 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
2225 for (i
=0; i
<conf
->raid_disks
; i
++)
2226 ndisks
[i
] = conf
->disks
[i
];
2228 conf
->disks
= ndisks
;
2232 mutex_unlock(&conf
->cache_size_mutex
);
2233 /* Step 4, return new stripes to service */
2234 while(!list_empty(&newstripes
)) {
2235 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
2236 list_del_init(&nsh
->lru
);
2238 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
2239 if (nsh
->dev
[i
].page
== NULL
) {
2240 struct page
*p
= alloc_page(GFP_NOIO
);
2241 nsh
->dev
[i
].page
= p
;
2242 nsh
->dev
[i
].orig_page
= p
;
2246 release_stripe(nsh
);
2248 /* critical section pass, GFP_NOIO no longer needed */
2250 conf
->slab_cache
= sc
;
2251 conf
->active_name
= 1-conf
->active_name
;
2253 conf
->pool_size
= newsize
;
2257 static int drop_one_stripe(struct r5conf
*conf
)
2259 struct stripe_head
*sh
;
2260 int hash
= (conf
->max_nr_stripes
- 1) & STRIPE_HASH_LOCKS_MASK
;
2262 spin_lock_irq(conf
->hash_locks
+ hash
);
2263 sh
= get_free_stripe(conf
, hash
);
2264 spin_unlock_irq(conf
->hash_locks
+ hash
);
2267 BUG_ON(atomic_read(&sh
->count
));
2269 kmem_cache_free(conf
->slab_cache
, sh
);
2270 atomic_dec(&conf
->active_stripes
);
2271 conf
->max_nr_stripes
--;
2275 static void shrink_stripes(struct r5conf
*conf
)
2277 while (conf
->max_nr_stripes
&&
2278 drop_one_stripe(conf
))
2281 if (conf
->slab_cache
)
2282 kmem_cache_destroy(conf
->slab_cache
);
2283 conf
->slab_cache
= NULL
;
2286 static void raid5_end_read_request(struct bio
* bi
, int error
)
2288 struct stripe_head
*sh
= bi
->bi_private
;
2289 struct r5conf
*conf
= sh
->raid_conf
;
2290 int disks
= sh
->disks
, i
;
2291 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2292 char b
[BDEVNAME_SIZE
];
2293 struct md_rdev
*rdev
= NULL
;
2296 for (i
=0 ; i
<disks
; i
++)
2297 if (bi
== &sh
->dev
[i
].req
)
2300 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2301 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
2307 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
2308 /* If replacement finished while this request was outstanding,
2309 * 'replacement' might be NULL already.
2310 * In that case it moved down to 'rdev'.
2311 * rdev is not removed until all requests are finished.
2313 rdev
= conf
->disks
[i
].replacement
;
2315 rdev
= conf
->disks
[i
].rdev
;
2317 if (use_new_offset(conf
, sh
))
2318 s
= sh
->sector
+ rdev
->new_data_offset
;
2320 s
= sh
->sector
+ rdev
->data_offset
;
2322 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
2323 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2324 /* Note that this cannot happen on a
2325 * replacement device. We just fail those on
2330 "md/raid:%s: read error corrected"
2331 " (%lu sectors at %llu on %s)\n",
2332 mdname(conf
->mddev
), STRIPE_SECTORS
,
2333 (unsigned long long)s
,
2334 bdevname(rdev
->bdev
, b
));
2335 atomic_add(STRIPE_SECTORS
, &rdev
->corrected_errors
);
2336 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2337 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2338 } else if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
2339 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2341 if (atomic_read(&rdev
->read_errors
))
2342 atomic_set(&rdev
->read_errors
, 0);
2344 const char *bdn
= bdevname(rdev
->bdev
, b
);
2348 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
2349 atomic_inc(&rdev
->read_errors
);
2350 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
2353 "md/raid:%s: read error on replacement device "
2354 "(sector %llu on %s).\n",
2355 mdname(conf
->mddev
),
2356 (unsigned long long)s
,
2358 else if (conf
->mddev
->degraded
>= conf
->max_degraded
) {
2362 "md/raid:%s: read error not correctable "
2363 "(sector %llu on %s).\n",
2364 mdname(conf
->mddev
),
2365 (unsigned long long)s
,
2367 } else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
)) {
2372 "md/raid:%s: read error NOT corrected!! "
2373 "(sector %llu on %s).\n",
2374 mdname(conf
->mddev
),
2375 (unsigned long long)s
,
2377 } else if (atomic_read(&rdev
->read_errors
)
2378 > conf
->max_nr_stripes
)
2380 "md/raid:%s: Too many read errors, failing device %s.\n",
2381 mdname(conf
->mddev
), bdn
);
2384 if (set_bad
&& test_bit(In_sync
, &rdev
->flags
)
2385 && !test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
2388 if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
)) {
2389 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2390 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2392 set_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2394 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2395 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2397 && test_bit(In_sync
, &rdev
->flags
)
2398 && rdev_set_badblocks(
2399 rdev
, sh
->sector
, STRIPE_SECTORS
, 0)))
2400 md_error(conf
->mddev
, rdev
);
2403 rdev_dec_pending(rdev
, conf
->mddev
);
2404 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2405 set_bit(STRIPE_HANDLE
, &sh
->state
);
2409 static void raid5_end_write_request(struct bio
*bi
, int error
)
2411 struct stripe_head
*sh
= bi
->bi_private
;
2412 struct r5conf
*conf
= sh
->raid_conf
;
2413 int disks
= sh
->disks
, i
;
2414 struct md_rdev
*uninitialized_var(rdev
);
2415 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2418 int replacement
= 0;
2420 for (i
= 0 ; i
< disks
; i
++) {
2421 if (bi
== &sh
->dev
[i
].req
) {
2422 rdev
= conf
->disks
[i
].rdev
;
2425 if (bi
== &sh
->dev
[i
].rreq
) {
2426 rdev
= conf
->disks
[i
].replacement
;
2430 /* rdev was removed and 'replacement'
2431 * replaced it. rdev is not removed
2432 * until all requests are finished.
2434 rdev
= conf
->disks
[i
].rdev
;
2438 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2439 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
2448 md_error(conf
->mddev
, rdev
);
2449 else if (is_badblock(rdev
, sh
->sector
,
2451 &first_bad
, &bad_sectors
))
2452 set_bit(R5_MadeGoodRepl
, &sh
->dev
[i
].flags
);
2455 set_bit(STRIPE_DEGRADED
, &sh
->state
);
2456 set_bit(WriteErrorSeen
, &rdev
->flags
);
2457 set_bit(R5_WriteError
, &sh
->dev
[i
].flags
);
2458 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2459 set_bit(MD_RECOVERY_NEEDED
,
2460 &rdev
->mddev
->recovery
);
2461 } else if (is_badblock(rdev
, sh
->sector
,
2463 &first_bad
, &bad_sectors
)) {
2464 set_bit(R5_MadeGood
, &sh
->dev
[i
].flags
);
2465 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))
2466 /* That was a successful write so make
2467 * sure it looks like we already did
2470 set_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2473 rdev_dec_pending(rdev
, conf
->mddev
);
2475 if (sh
->batch_head
&& !uptodate
&& !replacement
)
2476 set_bit(STRIPE_BATCH_ERR
, &sh
->batch_head
->state
);
2478 if (!test_and_clear_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
))
2479 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2480 set_bit(STRIPE_HANDLE
, &sh
->state
);
2483 if (sh
->batch_head
&& sh
!= sh
->batch_head
)
2484 release_stripe(sh
->batch_head
);
2487 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
);
2489 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
)
2491 struct r5dev
*dev
= &sh
->dev
[i
];
2493 bio_init(&dev
->req
);
2494 dev
->req
.bi_io_vec
= &dev
->vec
;
2495 dev
->req
.bi_max_vecs
= 1;
2496 dev
->req
.bi_private
= sh
;
2498 bio_init(&dev
->rreq
);
2499 dev
->rreq
.bi_io_vec
= &dev
->rvec
;
2500 dev
->rreq
.bi_max_vecs
= 1;
2501 dev
->rreq
.bi_private
= sh
;
2504 dev
->sector
= compute_blocknr(sh
, i
, previous
);
2507 static void error(struct mddev
*mddev
, struct md_rdev
*rdev
)
2509 char b
[BDEVNAME_SIZE
];
2510 struct r5conf
*conf
= mddev
->private;
2511 unsigned long flags
;
2512 pr_debug("raid456: error called\n");
2514 spin_lock_irqsave(&conf
->device_lock
, flags
);
2515 clear_bit(In_sync
, &rdev
->flags
);
2516 mddev
->degraded
= calc_degraded(conf
);
2517 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2518 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2520 set_bit(Blocked
, &rdev
->flags
);
2521 set_bit(Faulty
, &rdev
->flags
);
2522 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
2524 "md/raid:%s: Disk failure on %s, disabling device.\n"
2525 "md/raid:%s: Operation continuing on %d devices.\n",
2527 bdevname(rdev
->bdev
, b
),
2529 conf
->raid_disks
- mddev
->degraded
);
2533 * Input: a 'big' sector number,
2534 * Output: index of the data and parity disk, and the sector # in them.
2536 static sector_t
raid5_compute_sector(struct r5conf
*conf
, sector_t r_sector
,
2537 int previous
, int *dd_idx
,
2538 struct stripe_head
*sh
)
2540 sector_t stripe
, stripe2
;
2541 sector_t chunk_number
;
2542 unsigned int chunk_offset
;
2545 sector_t new_sector
;
2546 int algorithm
= previous
? conf
->prev_algo
2548 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
2549 : conf
->chunk_sectors
;
2550 int raid_disks
= previous
? conf
->previous_raid_disks
2552 int data_disks
= raid_disks
- conf
->max_degraded
;
2554 /* First compute the information on this sector */
2557 * Compute the chunk number and the sector offset inside the chunk
2559 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
2560 chunk_number
= r_sector
;
2563 * Compute the stripe number
2565 stripe
= chunk_number
;
2566 *dd_idx
= sector_div(stripe
, data_disks
);
2569 * Select the parity disk based on the user selected algorithm.
2571 pd_idx
= qd_idx
= -1;
2572 switch(conf
->level
) {
2574 pd_idx
= data_disks
;
2577 switch (algorithm
) {
2578 case ALGORITHM_LEFT_ASYMMETRIC
:
2579 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
2580 if (*dd_idx
>= pd_idx
)
2583 case ALGORITHM_RIGHT_ASYMMETRIC
:
2584 pd_idx
= sector_div(stripe2
, raid_disks
);
2585 if (*dd_idx
>= pd_idx
)
2588 case ALGORITHM_LEFT_SYMMETRIC
:
2589 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
2590 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2592 case ALGORITHM_RIGHT_SYMMETRIC
:
2593 pd_idx
= sector_div(stripe2
, raid_disks
);
2594 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2596 case ALGORITHM_PARITY_0
:
2600 case ALGORITHM_PARITY_N
:
2601 pd_idx
= data_disks
;
2609 switch (algorithm
) {
2610 case ALGORITHM_LEFT_ASYMMETRIC
:
2611 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2612 qd_idx
= pd_idx
+ 1;
2613 if (pd_idx
== raid_disks
-1) {
2614 (*dd_idx
)++; /* Q D D D P */
2616 } else if (*dd_idx
>= pd_idx
)
2617 (*dd_idx
) += 2; /* D D P Q D */
2619 case ALGORITHM_RIGHT_ASYMMETRIC
:
2620 pd_idx
= sector_div(stripe2
, raid_disks
);
2621 qd_idx
= pd_idx
+ 1;
2622 if (pd_idx
== raid_disks
-1) {
2623 (*dd_idx
)++; /* Q D D D P */
2625 } else if (*dd_idx
>= pd_idx
)
2626 (*dd_idx
) += 2; /* D D P Q D */
2628 case ALGORITHM_LEFT_SYMMETRIC
:
2629 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2630 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2631 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2633 case ALGORITHM_RIGHT_SYMMETRIC
:
2634 pd_idx
= sector_div(stripe2
, raid_disks
);
2635 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2636 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2639 case ALGORITHM_PARITY_0
:
2644 case ALGORITHM_PARITY_N
:
2645 pd_idx
= data_disks
;
2646 qd_idx
= data_disks
+ 1;
2649 case ALGORITHM_ROTATING_ZERO_RESTART
:
2650 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2651 * of blocks for computing Q is different.
2653 pd_idx
= sector_div(stripe2
, raid_disks
);
2654 qd_idx
= pd_idx
+ 1;
2655 if (pd_idx
== raid_disks
-1) {
2656 (*dd_idx
)++; /* Q D D D P */
2658 } else if (*dd_idx
>= pd_idx
)
2659 (*dd_idx
) += 2; /* D D P Q D */
2663 case ALGORITHM_ROTATING_N_RESTART
:
2664 /* Same a left_asymmetric, by first stripe is
2665 * D D D P Q rather than
2669 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2670 qd_idx
= pd_idx
+ 1;
2671 if (pd_idx
== raid_disks
-1) {
2672 (*dd_idx
)++; /* Q D D D P */
2674 } else if (*dd_idx
>= pd_idx
)
2675 (*dd_idx
) += 2; /* D D P Q D */
2679 case ALGORITHM_ROTATING_N_CONTINUE
:
2680 /* Same as left_symmetric but Q is before P */
2681 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2682 qd_idx
= (pd_idx
+ raid_disks
- 1) % raid_disks
;
2683 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2687 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2688 /* RAID5 left_asymmetric, with Q on last device */
2689 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2690 if (*dd_idx
>= pd_idx
)
2692 qd_idx
= raid_disks
- 1;
2695 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2696 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2697 if (*dd_idx
>= pd_idx
)
2699 qd_idx
= raid_disks
- 1;
2702 case ALGORITHM_LEFT_SYMMETRIC_6
:
2703 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2704 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2705 qd_idx
= raid_disks
- 1;
2708 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2709 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2710 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2711 qd_idx
= raid_disks
- 1;
2714 case ALGORITHM_PARITY_0_6
:
2717 qd_idx
= raid_disks
- 1;
2727 sh
->pd_idx
= pd_idx
;
2728 sh
->qd_idx
= qd_idx
;
2729 sh
->ddf_layout
= ddf_layout
;
2732 * Finally, compute the new sector number
2734 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
2738 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
)
2740 struct r5conf
*conf
= sh
->raid_conf
;
2741 int raid_disks
= sh
->disks
;
2742 int data_disks
= raid_disks
- conf
->max_degraded
;
2743 sector_t new_sector
= sh
->sector
, check
;
2744 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
2745 : conf
->chunk_sectors
;
2746 int algorithm
= previous
? conf
->prev_algo
2750 sector_t chunk_number
;
2751 int dummy1
, dd_idx
= i
;
2753 struct stripe_head sh2
;
2755 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
2756 stripe
= new_sector
;
2758 if (i
== sh
->pd_idx
)
2760 switch(conf
->level
) {
2763 switch (algorithm
) {
2764 case ALGORITHM_LEFT_ASYMMETRIC
:
2765 case ALGORITHM_RIGHT_ASYMMETRIC
:
2769 case ALGORITHM_LEFT_SYMMETRIC
:
2770 case ALGORITHM_RIGHT_SYMMETRIC
:
2773 i
-= (sh
->pd_idx
+ 1);
2775 case ALGORITHM_PARITY_0
:
2778 case ALGORITHM_PARITY_N
:
2785 if (i
== sh
->qd_idx
)
2786 return 0; /* It is the Q disk */
2787 switch (algorithm
) {
2788 case ALGORITHM_LEFT_ASYMMETRIC
:
2789 case ALGORITHM_RIGHT_ASYMMETRIC
:
2790 case ALGORITHM_ROTATING_ZERO_RESTART
:
2791 case ALGORITHM_ROTATING_N_RESTART
:
2792 if (sh
->pd_idx
== raid_disks
-1)
2793 i
--; /* Q D D D P */
2794 else if (i
> sh
->pd_idx
)
2795 i
-= 2; /* D D P Q D */
2797 case ALGORITHM_LEFT_SYMMETRIC
:
2798 case ALGORITHM_RIGHT_SYMMETRIC
:
2799 if (sh
->pd_idx
== raid_disks
-1)
2800 i
--; /* Q D D D P */
2805 i
-= (sh
->pd_idx
+ 2);
2808 case ALGORITHM_PARITY_0
:
2811 case ALGORITHM_PARITY_N
:
2813 case ALGORITHM_ROTATING_N_CONTINUE
:
2814 /* Like left_symmetric, but P is before Q */
2815 if (sh
->pd_idx
== 0)
2816 i
--; /* P D D D Q */
2821 i
-= (sh
->pd_idx
+ 1);
2824 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2825 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2829 case ALGORITHM_LEFT_SYMMETRIC_6
:
2830 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2832 i
+= data_disks
+ 1;
2833 i
-= (sh
->pd_idx
+ 1);
2835 case ALGORITHM_PARITY_0_6
:
2844 chunk_number
= stripe
* data_disks
+ i
;
2845 r_sector
= chunk_number
* sectors_per_chunk
+ chunk_offset
;
2847 check
= raid5_compute_sector(conf
, r_sector
,
2848 previous
, &dummy1
, &sh2
);
2849 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| sh2
.pd_idx
!= sh
->pd_idx
2850 || sh2
.qd_idx
!= sh
->qd_idx
) {
2851 printk(KERN_ERR
"md/raid:%s: compute_blocknr: map not correct\n",
2852 mdname(conf
->mddev
));
2859 schedule_reconstruction(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2860 int rcw
, int expand
)
2862 int i
, pd_idx
= sh
->pd_idx
, qd_idx
= sh
->qd_idx
, disks
= sh
->disks
;
2863 struct r5conf
*conf
= sh
->raid_conf
;
2864 int level
= conf
->level
;
2868 for (i
= disks
; i
--; ) {
2869 struct r5dev
*dev
= &sh
->dev
[i
];
2872 set_bit(R5_LOCKED
, &dev
->flags
);
2873 set_bit(R5_Wantdrain
, &dev
->flags
);
2875 clear_bit(R5_UPTODATE
, &dev
->flags
);
2879 /* if we are not expanding this is a proper write request, and
2880 * there will be bios with new data to be drained into the
2885 /* False alarm, nothing to do */
2887 sh
->reconstruct_state
= reconstruct_state_drain_run
;
2888 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2890 sh
->reconstruct_state
= reconstruct_state_run
;
2892 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2894 if (s
->locked
+ conf
->max_degraded
== disks
)
2895 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2896 atomic_inc(&conf
->pending_full_writes
);
2898 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
2899 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
2900 BUG_ON(level
== 6 &&
2901 (!(test_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
) ||
2902 test_bit(R5_Wantcompute
, &sh
->dev
[qd_idx
].flags
))));
2904 for (i
= disks
; i
--; ) {
2905 struct r5dev
*dev
= &sh
->dev
[i
];
2906 if (i
== pd_idx
|| i
== qd_idx
)
2910 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
2911 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2912 set_bit(R5_Wantdrain
, &dev
->flags
);
2913 set_bit(R5_LOCKED
, &dev
->flags
);
2914 clear_bit(R5_UPTODATE
, &dev
->flags
);
2919 /* False alarm - nothing to do */
2921 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
2922 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
2923 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2924 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2927 /* keep the parity disk(s) locked while asynchronous operations
2930 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
2931 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2935 int qd_idx
= sh
->qd_idx
;
2936 struct r5dev
*dev
= &sh
->dev
[qd_idx
];
2938 set_bit(R5_LOCKED
, &dev
->flags
);
2939 clear_bit(R5_UPTODATE
, &dev
->flags
);
2943 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2944 __func__
, (unsigned long long)sh
->sector
,
2945 s
->locked
, s
->ops_request
);
2949 * Each stripe/dev can have one or more bion attached.
2950 * toread/towrite point to the first in a chain.
2951 * The bi_next chain must be in order.
2953 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
,
2954 int forwrite
, int previous
)
2957 struct r5conf
*conf
= sh
->raid_conf
;
2960 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2961 (unsigned long long)bi
->bi_iter
.bi_sector
,
2962 (unsigned long long)sh
->sector
);
2965 * If several bio share a stripe. The bio bi_phys_segments acts as a
2966 * reference count to avoid race. The reference count should already be
2967 * increased before this function is called (for example, in
2968 * make_request()), so other bio sharing this stripe will not free the
2969 * stripe. If a stripe is owned by one stripe, the stripe lock will
2972 spin_lock_irq(&sh
->stripe_lock
);
2973 /* Don't allow new IO added to stripes in batch list */
2977 bip
= &sh
->dev
[dd_idx
].towrite
;
2981 bip
= &sh
->dev
[dd_idx
].toread
;
2982 while (*bip
&& (*bip
)->bi_iter
.bi_sector
< bi
->bi_iter
.bi_sector
) {
2983 if (bio_end_sector(*bip
) > bi
->bi_iter
.bi_sector
)
2985 bip
= & (*bip
)->bi_next
;
2987 if (*bip
&& (*bip
)->bi_iter
.bi_sector
< bio_end_sector(bi
))
2990 if (!forwrite
|| previous
)
2991 clear_bit(STRIPE_BATCH_READY
, &sh
->state
);
2993 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
2997 raid5_inc_bi_active_stripes(bi
);
3000 /* check if page is covered */
3001 sector_t sector
= sh
->dev
[dd_idx
].sector
;
3002 for (bi
=sh
->dev
[dd_idx
].towrite
;
3003 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
3004 bi
&& bi
->bi_iter
.bi_sector
<= sector
;
3005 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
3006 if (bio_end_sector(bi
) >= sector
)
3007 sector
= bio_end_sector(bi
);
3009 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
3010 if (!test_and_set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
))
3011 sh
->overwrite_disks
++;
3014 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3015 (unsigned long long)(*bip
)->bi_iter
.bi_sector
,
3016 (unsigned long long)sh
->sector
, dd_idx
);
3018 if (conf
->mddev
->bitmap
&& firstwrite
) {
3019 /* Cannot hold spinlock over bitmap_startwrite,
3020 * but must ensure this isn't added to a batch until
3021 * we have added to the bitmap and set bm_seq.
3022 * So set STRIPE_BITMAP_PENDING to prevent
3024 * If multiple add_stripe_bio() calls race here they
3025 * much all set STRIPE_BITMAP_PENDING. So only the first one
3026 * to complete "bitmap_startwrite" gets to set
3027 * STRIPE_BIT_DELAY. This is important as once a stripe
3028 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3031 set_bit(STRIPE_BITMAP_PENDING
, &sh
->state
);
3032 spin_unlock_irq(&sh
->stripe_lock
);
3033 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
3035 spin_lock_irq(&sh
->stripe_lock
);
3036 clear_bit(STRIPE_BITMAP_PENDING
, &sh
->state
);
3037 if (!sh
->batch_head
) {
3038 sh
->bm_seq
= conf
->seq_flush
+1;
3039 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
3042 spin_unlock_irq(&sh
->stripe_lock
);
3044 if (stripe_can_batch(sh
))
3045 stripe_add_to_batch_list(conf
, sh
);
3049 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
3050 spin_unlock_irq(&sh
->stripe_lock
);
3054 static void end_reshape(struct r5conf
*conf
);
3056 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
3057 struct stripe_head
*sh
)
3059 int sectors_per_chunk
=
3060 previous
? conf
->prev_chunk_sectors
: conf
->chunk_sectors
;
3062 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
3063 int disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
3065 raid5_compute_sector(conf
,
3066 stripe
* (disks
- conf
->max_degraded
)
3067 *sectors_per_chunk
+ chunk_offset
,
3073 handle_failed_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
3074 struct stripe_head_state
*s
, int disks
,
3075 struct bio
**return_bi
)
3078 BUG_ON(sh
->batch_head
);
3079 for (i
= disks
; i
--; ) {
3083 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
3084 struct md_rdev
*rdev
;
3086 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3087 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
3088 atomic_inc(&rdev
->nr_pending
);
3093 if (!rdev_set_badblocks(
3097 md_error(conf
->mddev
, rdev
);
3098 rdev_dec_pending(rdev
, conf
->mddev
);
3101 spin_lock_irq(&sh
->stripe_lock
);
3102 /* fail all writes first */
3103 bi
= sh
->dev
[i
].towrite
;
3104 sh
->dev
[i
].towrite
= NULL
;
3105 sh
->overwrite_disks
= 0;
3106 spin_unlock_irq(&sh
->stripe_lock
);
3110 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
3111 wake_up(&conf
->wait_for_overlap
);
3113 while (bi
&& bi
->bi_iter
.bi_sector
<
3114 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3115 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
3116 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3117 if (!raid5_dec_bi_active_stripes(bi
)) {
3118 md_write_end(conf
->mddev
);
3119 bi
->bi_next
= *return_bi
;
3125 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3126 STRIPE_SECTORS
, 0, 0);
3128 /* and fail all 'written' */
3129 bi
= sh
->dev
[i
].written
;
3130 sh
->dev
[i
].written
= NULL
;
3131 if (test_and_clear_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
)) {
3132 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
3133 sh
->dev
[i
].page
= sh
->dev
[i
].orig_page
;
3136 if (bi
) bitmap_end
= 1;
3137 while (bi
&& bi
->bi_iter
.bi_sector
<
3138 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3139 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
3140 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3141 if (!raid5_dec_bi_active_stripes(bi
)) {
3142 md_write_end(conf
->mddev
);
3143 bi
->bi_next
= *return_bi
;
3149 /* fail any reads if this device is non-operational and
3150 * the data has not reached the cache yet.
3152 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
3153 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
3154 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
3155 spin_lock_irq(&sh
->stripe_lock
);
3156 bi
= sh
->dev
[i
].toread
;
3157 sh
->dev
[i
].toread
= NULL
;
3158 spin_unlock_irq(&sh
->stripe_lock
);
3159 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
3160 wake_up(&conf
->wait_for_overlap
);
3161 while (bi
&& bi
->bi_iter
.bi_sector
<
3162 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3163 struct bio
*nextbi
=
3164 r5_next_bio(bi
, sh
->dev
[i
].sector
);
3165 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3166 if (!raid5_dec_bi_active_stripes(bi
)) {
3167 bi
->bi_next
= *return_bi
;
3174 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3175 STRIPE_SECTORS
, 0, 0);
3176 /* If we were in the middle of a write the parity block might
3177 * still be locked - so just clear all R5_LOCKED flags
3179 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3182 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
3183 if (atomic_dec_and_test(&conf
->pending_full_writes
))
3184 md_wakeup_thread(conf
->mddev
->thread
);
3188 handle_failed_sync(struct r5conf
*conf
, struct stripe_head
*sh
,
3189 struct stripe_head_state
*s
)
3194 BUG_ON(sh
->batch_head
);
3195 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3196 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
3197 wake_up(&conf
->wait_for_overlap
);
3200 /* There is nothing more to do for sync/check/repair.
3201 * Don't even need to abort as that is handled elsewhere
3202 * if needed, and not always wanted e.g. if there is a known
3204 * For recover/replace we need to record a bad block on all
3205 * non-sync devices, or abort the recovery
3207 if (test_bit(MD_RECOVERY_RECOVER
, &conf
->mddev
->recovery
)) {
3208 /* During recovery devices cannot be removed, so
3209 * locking and refcounting of rdevs is not needed
3211 for (i
= 0; i
< conf
->raid_disks
; i
++) {
3212 struct md_rdev
*rdev
= conf
->disks
[i
].rdev
;
3214 && !test_bit(Faulty
, &rdev
->flags
)
3215 && !test_bit(In_sync
, &rdev
->flags
)
3216 && !rdev_set_badblocks(rdev
, sh
->sector
,
3219 rdev
= conf
->disks
[i
].replacement
;
3221 && !test_bit(Faulty
, &rdev
->flags
)
3222 && !test_bit(In_sync
, &rdev
->flags
)
3223 && !rdev_set_badblocks(rdev
, sh
->sector
,
3228 conf
->recovery_disabled
=
3229 conf
->mddev
->recovery_disabled
;
3231 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, !abort
);
3234 static int want_replace(struct stripe_head
*sh
, int disk_idx
)
3236 struct md_rdev
*rdev
;
3238 /* Doing recovery so rcu locking not required */
3239 rdev
= sh
->raid_conf
->disks
[disk_idx
].replacement
;
3241 && !test_bit(Faulty
, &rdev
->flags
)
3242 && !test_bit(In_sync
, &rdev
->flags
)
3243 && (rdev
->recovery_offset
<= sh
->sector
3244 || rdev
->mddev
->recovery_cp
<= sh
->sector
))
3250 /* fetch_block - checks the given member device to see if its data needs
3251 * to be read or computed to satisfy a request.
3253 * Returns 1 when no more member devices need to be checked, otherwise returns
3254 * 0 to tell the loop in handle_stripe_fill to continue
3257 static int need_this_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
3258 int disk_idx
, int disks
)
3260 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
3261 struct r5dev
*fdev
[2] = { &sh
->dev
[s
->failed_num
[0]],
3262 &sh
->dev
[s
->failed_num
[1]] };
3266 if (test_bit(R5_LOCKED
, &dev
->flags
) ||
3267 test_bit(R5_UPTODATE
, &dev
->flags
))
3268 /* No point reading this as we already have it or have
3269 * decided to get it.
3274 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)))
3275 /* We need this block to directly satisfy a request */
3278 if (s
->syncing
|| s
->expanding
||
3279 (s
->replacing
&& want_replace(sh
, disk_idx
)))
3280 /* When syncing, or expanding we read everything.
3281 * When replacing, we need the replaced block.
3285 if ((s
->failed
>= 1 && fdev
[0]->toread
) ||
3286 (s
->failed
>= 2 && fdev
[1]->toread
))
3287 /* If we want to read from a failed device, then
3288 * we need to actually read every other device.
3292 /* Sometimes neither read-modify-write nor reconstruct-write
3293 * cycles can work. In those cases we read every block we
3294 * can. Then the parity-update is certain to have enough to
3296 * This can only be a problem when we need to write something,
3297 * and some device has failed. If either of those tests
3298 * fail we need look no further.
3300 if (!s
->failed
|| !s
->to_write
)
3303 if (test_bit(R5_Insync
, &dev
->flags
) &&
3304 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3305 /* Pre-reads at not permitted until after short delay
3306 * to gather multiple requests. However if this
3307 * device is no Insync, the block could only be be computed
3308 * and there is no need to delay that.
3312 for (i
= 0; i
< s
->failed
; i
++) {
3313 if (fdev
[i
]->towrite
&&
3314 !test_bit(R5_UPTODATE
, &fdev
[i
]->flags
) &&
3315 !test_bit(R5_OVERWRITE
, &fdev
[i
]->flags
))
3316 /* If we have a partial write to a failed
3317 * device, then we will need to reconstruct
3318 * the content of that device, so all other
3319 * devices must be read.
3324 /* If we are forced to do a reconstruct-write, either because
3325 * the current RAID6 implementation only supports that, or
3326 * or because parity cannot be trusted and we are currently
3327 * recovering it, there is extra need to be careful.
3328 * If one of the devices that we would need to read, because
3329 * it is not being overwritten (and maybe not written at all)
3330 * is missing/faulty, then we need to read everything we can.
3332 if (sh
->raid_conf
->level
!= 6 &&
3333 sh
->sector
< sh
->raid_conf
->mddev
->recovery_cp
)
3334 /* reconstruct-write isn't being forced */
3336 for (i
= 0; i
< s
->failed
; i
++) {
3337 if (s
->failed_num
[i
] != sh
->pd_idx
&&
3338 s
->failed_num
[i
] != sh
->qd_idx
&&
3339 !test_bit(R5_UPTODATE
, &fdev
[i
]->flags
) &&
3340 !test_bit(R5_OVERWRITE
, &fdev
[i
]->flags
))
3347 static int fetch_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
3348 int disk_idx
, int disks
)
3350 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
3352 /* is the data in this block needed, and can we get it? */
3353 if (need_this_block(sh
, s
, disk_idx
, disks
)) {
3354 /* we would like to get this block, possibly by computing it,
3355 * otherwise read it if the backing disk is insync
3357 BUG_ON(test_bit(R5_Wantcompute
, &dev
->flags
));
3358 BUG_ON(test_bit(R5_Wantread
, &dev
->flags
));
3359 BUG_ON(sh
->batch_head
);
3360 if ((s
->uptodate
== disks
- 1) &&
3361 (s
->failed
&& (disk_idx
== s
->failed_num
[0] ||
3362 disk_idx
== s
->failed_num
[1]))) {
3363 /* have disk failed, and we're requested to fetch it;
3366 pr_debug("Computing stripe %llu block %d\n",
3367 (unsigned long long)sh
->sector
, disk_idx
);
3368 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3369 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3370 set_bit(R5_Wantcompute
, &dev
->flags
);
3371 sh
->ops
.target
= disk_idx
;
3372 sh
->ops
.target2
= -1; /* no 2nd target */
3374 /* Careful: from this point on 'uptodate' is in the eye
3375 * of raid_run_ops which services 'compute' operations
3376 * before writes. R5_Wantcompute flags a block that will
3377 * be R5_UPTODATE by the time it is needed for a
3378 * subsequent operation.
3382 } else if (s
->uptodate
== disks
-2 && s
->failed
>= 2) {
3383 /* Computing 2-failure is *very* expensive; only
3384 * do it if failed >= 2
3387 for (other
= disks
; other
--; ) {
3388 if (other
== disk_idx
)
3390 if (!test_bit(R5_UPTODATE
,
3391 &sh
->dev
[other
].flags
))
3395 pr_debug("Computing stripe %llu blocks %d,%d\n",
3396 (unsigned long long)sh
->sector
,
3398 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3399 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3400 set_bit(R5_Wantcompute
, &sh
->dev
[disk_idx
].flags
);
3401 set_bit(R5_Wantcompute
, &sh
->dev
[other
].flags
);
3402 sh
->ops
.target
= disk_idx
;
3403 sh
->ops
.target2
= other
;
3407 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
3408 set_bit(R5_LOCKED
, &dev
->flags
);
3409 set_bit(R5_Wantread
, &dev
->flags
);
3411 pr_debug("Reading block %d (sync=%d)\n",
3412 disk_idx
, s
->syncing
);
3420 * handle_stripe_fill - read or compute data to satisfy pending requests.
3422 static void handle_stripe_fill(struct stripe_head
*sh
,
3423 struct stripe_head_state
*s
,
3428 /* look for blocks to read/compute, skip this if a compute
3429 * is already in flight, or if the stripe contents are in the
3430 * midst of changing due to a write
3432 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
3433 !sh
->reconstruct_state
)
3434 for (i
= disks
; i
--; )
3435 if (fetch_block(sh
, s
, i
, disks
))
3437 set_bit(STRIPE_HANDLE
, &sh
->state
);
3440 static void break_stripe_batch_list(struct stripe_head
*head_sh
,
3441 unsigned long handle_flags
);
3442 /* handle_stripe_clean_event
3443 * any written block on an uptodate or failed drive can be returned.
3444 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3445 * never LOCKED, so we don't need to test 'failed' directly.
3447 static void handle_stripe_clean_event(struct r5conf
*conf
,
3448 struct stripe_head
*sh
, int disks
, struct bio
**return_bi
)
3452 int discard_pending
= 0;
3453 struct stripe_head
*head_sh
= sh
;
3454 bool do_endio
= false;
3456 for (i
= disks
; i
--; )
3457 if (sh
->dev
[i
].written
) {
3459 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
3460 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
3461 test_bit(R5_Discard
, &dev
->flags
) ||
3462 test_bit(R5_SkipCopy
, &dev
->flags
))) {
3463 /* We can return any write requests */
3464 struct bio
*wbi
, *wbi2
;
3465 pr_debug("Return write for disc %d\n", i
);
3466 if (test_and_clear_bit(R5_Discard
, &dev
->flags
))
3467 clear_bit(R5_UPTODATE
, &dev
->flags
);
3468 if (test_and_clear_bit(R5_SkipCopy
, &dev
->flags
)) {
3469 WARN_ON(test_bit(R5_UPTODATE
, &dev
->flags
));
3474 dev
->page
= dev
->orig_page
;
3476 dev
->written
= NULL
;
3477 while (wbi
&& wbi
->bi_iter
.bi_sector
<
3478 dev
->sector
+ STRIPE_SECTORS
) {
3479 wbi2
= r5_next_bio(wbi
, dev
->sector
);
3480 if (!raid5_dec_bi_active_stripes(wbi
)) {
3481 md_write_end(conf
->mddev
);
3482 wbi
->bi_next
= *return_bi
;
3487 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3489 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
3491 if (head_sh
->batch_head
) {
3492 sh
= list_first_entry(&sh
->batch_list
,
3495 if (sh
!= head_sh
) {
3502 } else if (test_bit(R5_Discard
, &dev
->flags
))
3503 discard_pending
= 1;
3504 WARN_ON(test_bit(R5_SkipCopy
, &dev
->flags
));
3505 WARN_ON(dev
->page
!= dev
->orig_page
);
3507 if (!discard_pending
&&
3508 test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
)) {
3510 clear_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
3511 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
3512 if (sh
->qd_idx
>= 0) {
3513 clear_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
3514 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
);
3516 /* now that discard is done we can proceed with any sync */
3517 clear_bit(STRIPE_DISCARD
, &sh
->state
);
3519 * SCSI discard will change some bio fields and the stripe has
3520 * no updated data, so remove it from hash list and the stripe
3521 * will be reinitialized
3524 hash
= sh
->hash_lock_index
;
3525 spin_lock_irq(conf
->hash_locks
+ hash
);
3527 spin_unlock_irq(conf
->hash_locks
+ hash
);
3528 if (head_sh
->batch_head
) {
3529 sh
= list_first_entry(&sh
->batch_list
,
3530 struct stripe_head
, batch_list
);
3536 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
))
3537 set_bit(STRIPE_HANDLE
, &sh
->state
);
3541 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
3542 if (atomic_dec_and_test(&conf
->pending_full_writes
))
3543 md_wakeup_thread(conf
->mddev
->thread
);
3545 if (head_sh
->batch_head
&& do_endio
)
3546 break_stripe_batch_list(head_sh
, STRIPE_EXPAND_SYNC_FLAGS
);
3549 static void handle_stripe_dirtying(struct r5conf
*conf
,
3550 struct stripe_head
*sh
,
3551 struct stripe_head_state
*s
,
3554 int rmw
= 0, rcw
= 0, i
;
3555 sector_t recovery_cp
= conf
->mddev
->recovery_cp
;
3557 /* Check whether resync is now happening or should start.
3558 * If yes, then the array is dirty (after unclean shutdown or
3559 * initial creation), so parity in some stripes might be inconsistent.
3560 * In this case, we need to always do reconstruct-write, to ensure
3561 * that in case of drive failure or read-error correction, we
3562 * generate correct data from the parity.
3564 if (conf
->rmw_level
== PARITY_DISABLE_RMW
||
3565 (recovery_cp
< MaxSector
&& sh
->sector
>= recovery_cp
&&
3567 /* Calculate the real rcw later - for now make it
3568 * look like rcw is cheaper
3571 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3572 conf
->rmw_level
, (unsigned long long)recovery_cp
,
3573 (unsigned long long)sh
->sector
);
3574 } else for (i
= disks
; i
--; ) {
3575 /* would I have to read this buffer for read_modify_write */
3576 struct r5dev
*dev
= &sh
->dev
[i
];
3577 if ((dev
->towrite
|| i
== sh
->pd_idx
|| i
== sh
->qd_idx
) &&
3578 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3579 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3580 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3581 if (test_bit(R5_Insync
, &dev
->flags
))
3584 rmw
+= 2*disks
; /* cannot read it */
3586 /* Would I have to read this buffer for reconstruct_write */
3587 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
3588 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
3589 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3590 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3591 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3592 if (test_bit(R5_Insync
, &dev
->flags
))
3598 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3599 (unsigned long long)sh
->sector
, rmw
, rcw
);
3600 set_bit(STRIPE_HANDLE
, &sh
->state
);
3601 if ((rmw
< rcw
|| (rmw
== rcw
&& conf
->rmw_level
== PARITY_ENABLE_RMW
)) && rmw
> 0) {
3602 /* prefer read-modify-write, but need to get some data */
3603 if (conf
->mddev
->queue
)
3604 blk_add_trace_msg(conf
->mddev
->queue
,
3605 "raid5 rmw %llu %d",
3606 (unsigned long long)sh
->sector
, rmw
);
3607 for (i
= disks
; i
--; ) {
3608 struct r5dev
*dev
= &sh
->dev
[i
];
3609 if ((dev
->towrite
|| i
== sh
->pd_idx
|| i
== sh
->qd_idx
) &&
3610 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3611 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3612 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
3613 test_bit(R5_Insync
, &dev
->flags
)) {
3614 if (test_bit(STRIPE_PREREAD_ACTIVE
,
3616 pr_debug("Read_old block %d for r-m-w\n",
3618 set_bit(R5_LOCKED
, &dev
->flags
);
3619 set_bit(R5_Wantread
, &dev
->flags
);
3622 set_bit(STRIPE_DELAYED
, &sh
->state
);
3623 set_bit(STRIPE_HANDLE
, &sh
->state
);
3628 if ((rcw
< rmw
|| (rcw
== rmw
&& conf
->rmw_level
!= PARITY_ENABLE_RMW
)) && rcw
> 0) {
3629 /* want reconstruct write, but need to get some data */
3632 for (i
= disks
; i
--; ) {
3633 struct r5dev
*dev
= &sh
->dev
[i
];
3634 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
3635 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
3636 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3637 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3638 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3640 if (test_bit(R5_Insync
, &dev
->flags
) &&
3641 test_bit(STRIPE_PREREAD_ACTIVE
,
3643 pr_debug("Read_old block "
3644 "%d for Reconstruct\n", i
);
3645 set_bit(R5_LOCKED
, &dev
->flags
);
3646 set_bit(R5_Wantread
, &dev
->flags
);
3650 set_bit(STRIPE_DELAYED
, &sh
->state
);
3651 set_bit(STRIPE_HANDLE
, &sh
->state
);
3655 if (rcw
&& conf
->mddev
->queue
)
3656 blk_add_trace_msg(conf
->mddev
->queue
, "raid5 rcw %llu %d %d %d",
3657 (unsigned long long)sh
->sector
,
3658 rcw
, qread
, test_bit(STRIPE_DELAYED
, &sh
->state
));
3661 if (rcw
> disks
&& rmw
> disks
&&
3662 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3663 set_bit(STRIPE_DELAYED
, &sh
->state
);
3665 /* now if nothing is locked, and if we have enough data,
3666 * we can start a write request
3668 /* since handle_stripe can be called at any time we need to handle the
3669 * case where a compute block operation has been submitted and then a
3670 * subsequent call wants to start a write request. raid_run_ops only
3671 * handles the case where compute block and reconstruct are requested
3672 * simultaneously. If this is not the case then new writes need to be
3673 * held off until the compute completes.
3675 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
3676 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
3677 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
3678 schedule_reconstruction(sh
, s
, rcw
== 0, 0);
3681 static void handle_parity_checks5(struct r5conf
*conf
, struct stripe_head
*sh
,
3682 struct stripe_head_state
*s
, int disks
)
3684 struct r5dev
*dev
= NULL
;
3686 BUG_ON(sh
->batch_head
);
3687 set_bit(STRIPE_HANDLE
, &sh
->state
);
3689 switch (sh
->check_state
) {
3690 case check_state_idle
:
3691 /* start a new check operation if there are no failures */
3692 if (s
->failed
== 0) {
3693 BUG_ON(s
->uptodate
!= disks
);
3694 sh
->check_state
= check_state_run
;
3695 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
3696 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
3700 dev
= &sh
->dev
[s
->failed_num
[0]];
3702 case check_state_compute_result
:
3703 sh
->check_state
= check_state_idle
;
3705 dev
= &sh
->dev
[sh
->pd_idx
];
3707 /* check that a write has not made the stripe insync */
3708 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
3711 /* either failed parity check, or recovery is happening */
3712 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
3713 BUG_ON(s
->uptodate
!= disks
);
3715 set_bit(R5_LOCKED
, &dev
->flags
);
3717 set_bit(R5_Wantwrite
, &dev
->flags
);
3719 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
3720 set_bit(STRIPE_INSYNC
, &sh
->state
);
3722 case check_state_run
:
3723 break; /* we will be called again upon completion */
3724 case check_state_check_result
:
3725 sh
->check_state
= check_state_idle
;
3727 /* if a failure occurred during the check operation, leave
3728 * STRIPE_INSYNC not set and let the stripe be handled again
3733 /* handle a successful check operation, if parity is correct
3734 * we are done. Otherwise update the mismatch count and repair
3735 * parity if !MD_RECOVERY_CHECK
3737 if ((sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) == 0)
3738 /* parity is correct (on disc,
3739 * not in buffer any more)
3741 set_bit(STRIPE_INSYNC
, &sh
->state
);
3743 atomic64_add(STRIPE_SECTORS
, &conf
->mddev
->resync_mismatches
);
3744 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
3745 /* don't try to repair!! */
3746 set_bit(STRIPE_INSYNC
, &sh
->state
);
3748 sh
->check_state
= check_state_compute_run
;
3749 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3750 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3751 set_bit(R5_Wantcompute
,
3752 &sh
->dev
[sh
->pd_idx
].flags
);
3753 sh
->ops
.target
= sh
->pd_idx
;
3754 sh
->ops
.target2
= -1;
3759 case check_state_compute_run
:
3762 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
3763 __func__
, sh
->check_state
,
3764 (unsigned long long) sh
->sector
);
3769 static void handle_parity_checks6(struct r5conf
*conf
, struct stripe_head
*sh
,
3770 struct stripe_head_state
*s
,
3773 int pd_idx
= sh
->pd_idx
;
3774 int qd_idx
= sh
->qd_idx
;
3777 BUG_ON(sh
->batch_head
);
3778 set_bit(STRIPE_HANDLE
, &sh
->state
);
3780 BUG_ON(s
->failed
> 2);
3782 /* Want to check and possibly repair P and Q.
3783 * However there could be one 'failed' device, in which
3784 * case we can only check one of them, possibly using the
3785 * other to generate missing data
3788 switch (sh
->check_state
) {
3789 case check_state_idle
:
3790 /* start a new check operation if there are < 2 failures */
3791 if (s
->failed
== s
->q_failed
) {
3792 /* The only possible failed device holds Q, so it
3793 * makes sense to check P (If anything else were failed,
3794 * we would have used P to recreate it).
3796 sh
->check_state
= check_state_run
;
3798 if (!s
->q_failed
&& s
->failed
< 2) {
3799 /* Q is not failed, and we didn't use it to generate
3800 * anything, so it makes sense to check it
3802 if (sh
->check_state
== check_state_run
)
3803 sh
->check_state
= check_state_run_pq
;
3805 sh
->check_state
= check_state_run_q
;
3808 /* discard potentially stale zero_sum_result */
3809 sh
->ops
.zero_sum_result
= 0;
3811 if (sh
->check_state
== check_state_run
) {
3812 /* async_xor_zero_sum destroys the contents of P */
3813 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
3816 if (sh
->check_state
>= check_state_run
&&
3817 sh
->check_state
<= check_state_run_pq
) {
3818 /* async_syndrome_zero_sum preserves P and Q, so
3819 * no need to mark them !uptodate here
3821 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
3825 /* we have 2-disk failure */
3826 BUG_ON(s
->failed
!= 2);
3828 case check_state_compute_result
:
3829 sh
->check_state
= check_state_idle
;
3831 /* check that a write has not made the stripe insync */
3832 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
3835 /* now write out any block on a failed drive,
3836 * or P or Q if they were recomputed
3838 BUG_ON(s
->uptodate
< disks
- 1); /* We don't need Q to recover */
3839 if (s
->failed
== 2) {
3840 dev
= &sh
->dev
[s
->failed_num
[1]];
3842 set_bit(R5_LOCKED
, &dev
->flags
);
3843 set_bit(R5_Wantwrite
, &dev
->flags
);
3845 if (s
->failed
>= 1) {
3846 dev
= &sh
->dev
[s
->failed_num
[0]];
3848 set_bit(R5_LOCKED
, &dev
->flags
);
3849 set_bit(R5_Wantwrite
, &dev
->flags
);
3851 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
3852 dev
= &sh
->dev
[pd_idx
];
3854 set_bit(R5_LOCKED
, &dev
->flags
);
3855 set_bit(R5_Wantwrite
, &dev
->flags
);
3857 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
3858 dev
= &sh
->dev
[qd_idx
];
3860 set_bit(R5_LOCKED
, &dev
->flags
);
3861 set_bit(R5_Wantwrite
, &dev
->flags
);
3863 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
3865 set_bit(STRIPE_INSYNC
, &sh
->state
);
3867 case check_state_run
:
3868 case check_state_run_q
:
3869 case check_state_run_pq
:
3870 break; /* we will be called again upon completion */
3871 case check_state_check_result
:
3872 sh
->check_state
= check_state_idle
;
3874 /* handle a successful check operation, if parity is correct
3875 * we are done. Otherwise update the mismatch count and repair
3876 * parity if !MD_RECOVERY_CHECK
3878 if (sh
->ops
.zero_sum_result
== 0) {
3879 /* both parities are correct */
3881 set_bit(STRIPE_INSYNC
, &sh
->state
);
3883 /* in contrast to the raid5 case we can validate
3884 * parity, but still have a failure to write
3887 sh
->check_state
= check_state_compute_result
;
3888 /* Returning at this point means that we may go
3889 * off and bring p and/or q uptodate again so
3890 * we make sure to check zero_sum_result again
3891 * to verify if p or q need writeback
3895 atomic64_add(STRIPE_SECTORS
, &conf
->mddev
->resync_mismatches
);
3896 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
3897 /* don't try to repair!! */
3898 set_bit(STRIPE_INSYNC
, &sh
->state
);
3900 int *target
= &sh
->ops
.target
;
3902 sh
->ops
.target
= -1;
3903 sh
->ops
.target2
= -1;
3904 sh
->check_state
= check_state_compute_run
;
3905 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3906 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3907 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
3908 set_bit(R5_Wantcompute
,
3909 &sh
->dev
[pd_idx
].flags
);
3911 target
= &sh
->ops
.target2
;
3914 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
3915 set_bit(R5_Wantcompute
,
3916 &sh
->dev
[qd_idx
].flags
);
3923 case check_state_compute_run
:
3926 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
3927 __func__
, sh
->check_state
,
3928 (unsigned long long) sh
->sector
);
3933 static void handle_stripe_expansion(struct r5conf
*conf
, struct stripe_head
*sh
)
3937 /* We have read all the blocks in this stripe and now we need to
3938 * copy some of them into a target stripe for expand.
3940 struct dma_async_tx_descriptor
*tx
= NULL
;
3941 BUG_ON(sh
->batch_head
);
3942 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3943 for (i
= 0; i
< sh
->disks
; i
++)
3944 if (i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
) {
3946 struct stripe_head
*sh2
;
3947 struct async_submit_ctl submit
;
3949 sector_t bn
= compute_blocknr(sh
, i
, 1);
3950 sector_t s
= raid5_compute_sector(conf
, bn
, 0,
3952 sh2
= get_active_stripe(conf
, s
, 0, 1, 1);
3954 /* so far only the early blocks of this stripe
3955 * have been requested. When later blocks
3956 * get requested, we will try again
3959 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
3960 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
3961 /* must have already done this block */
3962 release_stripe(sh2
);
3966 /* place all the copies on one channel */
3967 init_async_submit(&submit
, 0, tx
, NULL
, NULL
, NULL
);
3968 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
3969 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
3972 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
3973 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
3974 for (j
= 0; j
< conf
->raid_disks
; j
++)
3975 if (j
!= sh2
->pd_idx
&&
3977 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
3979 if (j
== conf
->raid_disks
) {
3980 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
3981 set_bit(STRIPE_HANDLE
, &sh2
->state
);
3983 release_stripe(sh2
);
3986 /* done submitting copies, wait for them to complete */
3987 async_tx_quiesce(&tx
);
3991 * handle_stripe - do things to a stripe.
3993 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3994 * state of various bits to see what needs to be done.
3996 * return some read requests which now have data
3997 * return some write requests which are safely on storage
3998 * schedule a read on some buffers
3999 * schedule a write of some buffers
4000 * return confirmation of parity correctness
4004 static void analyse_stripe(struct stripe_head
*sh
, struct stripe_head_state
*s
)
4006 struct r5conf
*conf
= sh
->raid_conf
;
4007 int disks
= sh
->disks
;
4010 int do_recovery
= 0;
4012 memset(s
, 0, sizeof(*s
));
4014 s
->expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
) && !sh
->batch_head
;
4015 s
->expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
) && !sh
->batch_head
;
4016 s
->failed_num
[0] = -1;
4017 s
->failed_num
[1] = -1;
4019 /* Now to look around and see what can be done */
4021 for (i
=disks
; i
--; ) {
4022 struct md_rdev
*rdev
;
4029 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4031 dev
->toread
, dev
->towrite
, dev
->written
);
4032 /* maybe we can reply to a read
4034 * new wantfill requests are only permitted while
4035 * ops_complete_biofill is guaranteed to be inactive
4037 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
4038 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
4039 set_bit(R5_Wantfill
, &dev
->flags
);
4041 /* now count some things */
4042 if (test_bit(R5_LOCKED
, &dev
->flags
))
4044 if (test_bit(R5_UPTODATE
, &dev
->flags
))
4046 if (test_bit(R5_Wantcompute
, &dev
->flags
)) {
4048 BUG_ON(s
->compute
> 2);
4051 if (test_bit(R5_Wantfill
, &dev
->flags
))
4053 else if (dev
->toread
)
4057 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
4062 /* Prefer to use the replacement for reads, but only
4063 * if it is recovered enough and has no bad blocks.
4065 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
4066 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) &&
4067 rdev
->recovery_offset
>= sh
->sector
+ STRIPE_SECTORS
&&
4068 !is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
4069 &first_bad
, &bad_sectors
))
4070 set_bit(R5_ReadRepl
, &dev
->flags
);
4073 set_bit(R5_NeedReplace
, &dev
->flags
);
4074 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
4075 clear_bit(R5_ReadRepl
, &dev
->flags
);
4077 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
4080 is_bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
4081 &first_bad
, &bad_sectors
);
4082 if (s
->blocked_rdev
== NULL
4083 && (test_bit(Blocked
, &rdev
->flags
)
4086 set_bit(BlockedBadBlocks
,
4088 s
->blocked_rdev
= rdev
;
4089 atomic_inc(&rdev
->nr_pending
);
4092 clear_bit(R5_Insync
, &dev
->flags
);
4096 /* also not in-sync */
4097 if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
4098 test_bit(R5_UPTODATE
, &dev
->flags
)) {
4099 /* treat as in-sync, but with a read error
4100 * which we can now try to correct
4102 set_bit(R5_Insync
, &dev
->flags
);
4103 set_bit(R5_ReadError
, &dev
->flags
);
4105 } else if (test_bit(In_sync
, &rdev
->flags
))
4106 set_bit(R5_Insync
, &dev
->flags
);
4107 else if (sh
->sector
+ STRIPE_SECTORS
<= rdev
->recovery_offset
)
4108 /* in sync if before recovery_offset */
4109 set_bit(R5_Insync
, &dev
->flags
);
4110 else if (test_bit(R5_UPTODATE
, &dev
->flags
) &&
4111 test_bit(R5_Expanded
, &dev
->flags
))
4112 /* If we've reshaped into here, we assume it is Insync.
4113 * We will shortly update recovery_offset to make
4116 set_bit(R5_Insync
, &dev
->flags
);
4118 if (test_bit(R5_WriteError
, &dev
->flags
)) {
4119 /* This flag does not apply to '.replacement'
4120 * only to .rdev, so make sure to check that*/
4121 struct md_rdev
*rdev2
= rcu_dereference(
4122 conf
->disks
[i
].rdev
);
4124 clear_bit(R5_Insync
, &dev
->flags
);
4125 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4126 s
->handle_bad_blocks
= 1;
4127 atomic_inc(&rdev2
->nr_pending
);
4129 clear_bit(R5_WriteError
, &dev
->flags
);
4131 if (test_bit(R5_MadeGood
, &dev
->flags
)) {
4132 /* This flag does not apply to '.replacement'
4133 * only to .rdev, so make sure to check that*/
4134 struct md_rdev
*rdev2
= rcu_dereference(
4135 conf
->disks
[i
].rdev
);
4136 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4137 s
->handle_bad_blocks
= 1;
4138 atomic_inc(&rdev2
->nr_pending
);
4140 clear_bit(R5_MadeGood
, &dev
->flags
);
4142 if (test_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
4143 struct md_rdev
*rdev2
= rcu_dereference(
4144 conf
->disks
[i
].replacement
);
4145 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4146 s
->handle_bad_blocks
= 1;
4147 atomic_inc(&rdev2
->nr_pending
);
4149 clear_bit(R5_MadeGoodRepl
, &dev
->flags
);
4151 if (!test_bit(R5_Insync
, &dev
->flags
)) {
4152 /* The ReadError flag will just be confusing now */
4153 clear_bit(R5_ReadError
, &dev
->flags
);
4154 clear_bit(R5_ReWrite
, &dev
->flags
);
4156 if (test_bit(R5_ReadError
, &dev
->flags
))
4157 clear_bit(R5_Insync
, &dev
->flags
);
4158 if (!test_bit(R5_Insync
, &dev
->flags
)) {
4160 s
->failed_num
[s
->failed
] = i
;
4162 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
4166 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
4167 /* If there is a failed device being replaced,
4168 * we must be recovering.
4169 * else if we are after recovery_cp, we must be syncing
4170 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4171 * else we can only be replacing
4172 * sync and recovery both need to read all devices, and so
4173 * use the same flag.
4176 sh
->sector
>= conf
->mddev
->recovery_cp
||
4177 test_bit(MD_RECOVERY_REQUESTED
, &(conf
->mddev
->recovery
)))
4185 static int clear_batch_ready(struct stripe_head
*sh
)
4187 /* Return '1' if this is a member of batch, or
4188 * '0' if it is a lone stripe or a head which can now be
4191 struct stripe_head
*tmp
;
4192 if (!test_and_clear_bit(STRIPE_BATCH_READY
, &sh
->state
))
4193 return (sh
->batch_head
&& sh
->batch_head
!= sh
);
4194 spin_lock(&sh
->stripe_lock
);
4195 if (!sh
->batch_head
) {
4196 spin_unlock(&sh
->stripe_lock
);
4201 * this stripe could be added to a batch list before we check
4202 * BATCH_READY, skips it
4204 if (sh
->batch_head
!= sh
) {
4205 spin_unlock(&sh
->stripe_lock
);
4208 spin_lock(&sh
->batch_lock
);
4209 list_for_each_entry(tmp
, &sh
->batch_list
, batch_list
)
4210 clear_bit(STRIPE_BATCH_READY
, &tmp
->state
);
4211 spin_unlock(&sh
->batch_lock
);
4212 spin_unlock(&sh
->stripe_lock
);
4215 * BATCH_READY is cleared, no new stripes can be added.
4216 * batch_list can be accessed without lock
4221 static void break_stripe_batch_list(struct stripe_head
*head_sh
,
4222 unsigned long handle_flags
)
4224 struct stripe_head
*sh
, *next
;
4228 list_for_each_entry_safe(sh
, next
, &head_sh
->batch_list
, batch_list
) {
4230 list_del_init(&sh
->batch_list
);
4232 WARN_ON_ONCE(sh
->state
& ((1 << STRIPE_ACTIVE
) |
4233 (1 << STRIPE_SYNCING
) |
4234 (1 << STRIPE_REPLACED
) |
4235 (1 << STRIPE_DELAYED
) |
4236 (1 << STRIPE_BIT_DELAY
) |
4237 (1 << STRIPE_FULL_WRITE
) |
4238 (1 << STRIPE_BIOFILL_RUN
) |
4239 (1 << STRIPE_COMPUTE_RUN
) |
4240 (1 << STRIPE_OPS_REQ_PENDING
) |
4241 (1 << STRIPE_DISCARD
) |
4242 (1 << STRIPE_BATCH_READY
) |
4243 (1 << STRIPE_BATCH_ERR
) |
4244 (1 << STRIPE_BITMAP_PENDING
)));
4245 WARN_ON_ONCE(head_sh
->state
& ((1 << STRIPE_DISCARD
) |
4246 (1 << STRIPE_REPLACED
)));
4248 set_mask_bits(&sh
->state
, ~(STRIPE_EXPAND_SYNC_FLAGS
|
4249 (1 << STRIPE_PREREAD_ACTIVE
) |
4250 (1 << STRIPE_DEGRADED
)),
4251 head_sh
->state
& (1 << STRIPE_INSYNC
));
4253 sh
->check_state
= head_sh
->check_state
;
4254 sh
->reconstruct_state
= head_sh
->reconstruct_state
;
4255 for (i
= 0; i
< sh
->disks
; i
++) {
4256 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
4258 sh
->dev
[i
].flags
= head_sh
->dev
[i
].flags
&
4259 (~((1 << R5_WriteError
) | (1 << R5_Overlap
)));
4261 spin_lock_irq(&sh
->stripe_lock
);
4262 sh
->batch_head
= NULL
;
4263 spin_unlock_irq(&sh
->stripe_lock
);
4264 if (handle_flags
== 0 ||
4265 sh
->state
& handle_flags
)
4266 set_bit(STRIPE_HANDLE
, &sh
->state
);
4269 spin_lock_irq(&head_sh
->stripe_lock
);
4270 head_sh
->batch_head
= NULL
;
4271 spin_unlock_irq(&head_sh
->stripe_lock
);
4272 for (i
= 0; i
< head_sh
->disks
; i
++)
4273 if (test_and_clear_bit(R5_Overlap
, &head_sh
->dev
[i
].flags
))
4275 if (head_sh
->state
& handle_flags
)
4276 set_bit(STRIPE_HANDLE
, &head_sh
->state
);
4279 wake_up(&head_sh
->raid_conf
->wait_for_overlap
);
4282 static void handle_stripe(struct stripe_head
*sh
)
4284 struct stripe_head_state s
;
4285 struct r5conf
*conf
= sh
->raid_conf
;
4288 int disks
= sh
->disks
;
4289 struct r5dev
*pdev
, *qdev
;
4291 clear_bit(STRIPE_HANDLE
, &sh
->state
);
4292 if (test_and_set_bit_lock(STRIPE_ACTIVE
, &sh
->state
)) {
4293 /* already being handled, ensure it gets handled
4294 * again when current action finishes */
4295 set_bit(STRIPE_HANDLE
, &sh
->state
);
4299 if (clear_batch_ready(sh
) ) {
4300 clear_bit_unlock(STRIPE_ACTIVE
, &sh
->state
);
4304 if (test_and_clear_bit(STRIPE_BATCH_ERR
, &sh
->state
))
4305 break_stripe_batch_list(sh
, 0);
4307 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
) && !sh
->batch_head
) {
4308 spin_lock(&sh
->stripe_lock
);
4309 /* Cannot process 'sync' concurrently with 'discard' */
4310 if (!test_bit(STRIPE_DISCARD
, &sh
->state
) &&
4311 test_and_clear_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
)) {
4312 set_bit(STRIPE_SYNCING
, &sh
->state
);
4313 clear_bit(STRIPE_INSYNC
, &sh
->state
);
4314 clear_bit(STRIPE_REPLACED
, &sh
->state
);
4316 spin_unlock(&sh
->stripe_lock
);
4318 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4320 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4321 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4322 (unsigned long long)sh
->sector
, sh
->state
,
4323 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->qd_idx
,
4324 sh
->check_state
, sh
->reconstruct_state
);
4326 analyse_stripe(sh
, &s
);
4328 if (s
.handle_bad_blocks
) {
4329 set_bit(STRIPE_HANDLE
, &sh
->state
);
4333 if (unlikely(s
.blocked_rdev
)) {
4334 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
4335 s
.replacing
|| s
.to_write
|| s
.written
) {
4336 set_bit(STRIPE_HANDLE
, &sh
->state
);
4339 /* There is nothing for the blocked_rdev to block */
4340 rdev_dec_pending(s
.blocked_rdev
, conf
->mddev
);
4341 s
.blocked_rdev
= NULL
;
4344 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
4345 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
4346 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
4349 pr_debug("locked=%d uptodate=%d to_read=%d"
4350 " to_write=%d failed=%d failed_num=%d,%d\n",
4351 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
4352 s
.failed_num
[0], s
.failed_num
[1]);
4353 /* check if the array has lost more than max_degraded devices and,
4354 * if so, some requests might need to be failed.
4356 if (s
.failed
> conf
->max_degraded
) {
4357 sh
->check_state
= 0;
4358 sh
->reconstruct_state
= 0;
4359 break_stripe_batch_list(sh
, 0);
4360 if (s
.to_read
+s
.to_write
+s
.written
)
4361 handle_failed_stripe(conf
, sh
, &s
, disks
, &s
.return_bi
);
4362 if (s
.syncing
+ s
.replacing
)
4363 handle_failed_sync(conf
, sh
, &s
);
4366 /* Now we check to see if any write operations have recently
4370 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
4372 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
4373 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
4374 sh
->reconstruct_state
= reconstruct_state_idle
;
4376 /* All the 'written' buffers and the parity block are ready to
4377 * be written back to disk
4379 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
) &&
4380 !test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
));
4381 BUG_ON(sh
->qd_idx
>= 0 &&
4382 !test_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
) &&
4383 !test_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
));
4384 for (i
= disks
; i
--; ) {
4385 struct r5dev
*dev
= &sh
->dev
[i
];
4386 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
4387 (i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
4389 pr_debug("Writing block %d\n", i
);
4390 set_bit(R5_Wantwrite
, &dev
->flags
);
4395 if (!test_bit(R5_Insync
, &dev
->flags
) ||
4396 ((i
== sh
->pd_idx
|| i
== sh
->qd_idx
) &&
4398 set_bit(STRIPE_INSYNC
, &sh
->state
);
4401 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4402 s
.dec_preread_active
= 1;
4406 * might be able to return some write requests if the parity blocks
4407 * are safe, or on a failed drive
4409 pdev
= &sh
->dev
[sh
->pd_idx
];
4410 s
.p_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->pd_idx
)
4411 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->pd_idx
);
4412 qdev
= &sh
->dev
[sh
->qd_idx
];
4413 s
.q_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->qd_idx
)
4414 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->qd_idx
)
4418 (s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
4419 && !test_bit(R5_LOCKED
, &pdev
->flags
)
4420 && (test_bit(R5_UPTODATE
, &pdev
->flags
) ||
4421 test_bit(R5_Discard
, &pdev
->flags
))))) &&
4422 (s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
4423 && !test_bit(R5_LOCKED
, &qdev
->flags
)
4424 && (test_bit(R5_UPTODATE
, &qdev
->flags
) ||
4425 test_bit(R5_Discard
, &qdev
->flags
))))))
4426 handle_stripe_clean_event(conf
, sh
, disks
, &s
.return_bi
);
4428 /* Now we might consider reading some blocks, either to check/generate
4429 * parity, or to satisfy requests
4430 * or to load a block that is being partially written.
4432 if (s
.to_read
|| s
.non_overwrite
4433 || (conf
->level
== 6 && s
.to_write
&& s
.failed
)
4434 || (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
))
4437 handle_stripe_fill(sh
, &s
, disks
);
4439 /* Now to consider new write requests and what else, if anything
4440 * should be read. We do not handle new writes when:
4441 * 1/ A 'write' operation (copy+xor) is already in flight.
4442 * 2/ A 'check' operation is in flight, as it may clobber the parity
4445 if (s
.to_write
&& !sh
->reconstruct_state
&& !sh
->check_state
)
4446 handle_stripe_dirtying(conf
, sh
, &s
, disks
);
4448 /* maybe we need to check and possibly fix the parity for this stripe
4449 * Any reads will already have been scheduled, so we just see if enough
4450 * data is available. The parity check is held off while parity
4451 * dependent operations are in flight.
4453 if (sh
->check_state
||
4454 (s
.syncing
&& s
.locked
== 0 &&
4455 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
4456 !test_bit(STRIPE_INSYNC
, &sh
->state
))) {
4457 if (conf
->level
== 6)
4458 handle_parity_checks6(conf
, sh
, &s
, disks
);
4460 handle_parity_checks5(conf
, sh
, &s
, disks
);
4463 if ((s
.replacing
|| s
.syncing
) && s
.locked
== 0
4464 && !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)
4465 && !test_bit(STRIPE_REPLACED
, &sh
->state
)) {
4466 /* Write out to replacement devices where possible */
4467 for (i
= 0; i
< conf
->raid_disks
; i
++)
4468 if (test_bit(R5_NeedReplace
, &sh
->dev
[i
].flags
)) {
4469 WARN_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
4470 set_bit(R5_WantReplace
, &sh
->dev
[i
].flags
);
4471 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
4475 set_bit(STRIPE_INSYNC
, &sh
->state
);
4476 set_bit(STRIPE_REPLACED
, &sh
->state
);
4478 if ((s
.syncing
|| s
.replacing
) && s
.locked
== 0 &&
4479 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
4480 test_bit(STRIPE_INSYNC
, &sh
->state
)) {
4481 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
4482 clear_bit(STRIPE_SYNCING
, &sh
->state
);
4483 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
4484 wake_up(&conf
->wait_for_overlap
);
4487 /* If the failed drives are just a ReadError, then we might need
4488 * to progress the repair/check process
4490 if (s
.failed
<= conf
->max_degraded
&& !conf
->mddev
->ro
)
4491 for (i
= 0; i
< s
.failed
; i
++) {
4492 struct r5dev
*dev
= &sh
->dev
[s
.failed_num
[i
]];
4493 if (test_bit(R5_ReadError
, &dev
->flags
)
4494 && !test_bit(R5_LOCKED
, &dev
->flags
)
4495 && test_bit(R5_UPTODATE
, &dev
->flags
)
4497 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
4498 set_bit(R5_Wantwrite
, &dev
->flags
);
4499 set_bit(R5_ReWrite
, &dev
->flags
);
4500 set_bit(R5_LOCKED
, &dev
->flags
);
4503 /* let's read it back */
4504 set_bit(R5_Wantread
, &dev
->flags
);
4505 set_bit(R5_LOCKED
, &dev
->flags
);
4511 /* Finish reconstruct operations initiated by the expansion process */
4512 if (sh
->reconstruct_state
== reconstruct_state_result
) {
4513 struct stripe_head
*sh_src
4514 = get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
4515 if (sh_src
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh_src
->state
)) {
4516 /* sh cannot be written until sh_src has been read.
4517 * so arrange for sh to be delayed a little
4519 set_bit(STRIPE_DELAYED
, &sh
->state
);
4520 set_bit(STRIPE_HANDLE
, &sh
->state
);
4521 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
4523 atomic_inc(&conf
->preread_active_stripes
);
4524 release_stripe(sh_src
);
4528 release_stripe(sh_src
);
4530 sh
->reconstruct_state
= reconstruct_state_idle
;
4531 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
4532 for (i
= conf
->raid_disks
; i
--; ) {
4533 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
4534 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
4539 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
4540 !sh
->reconstruct_state
) {
4541 /* Need to write out all blocks after computing parity */
4542 sh
->disks
= conf
->raid_disks
;
4543 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
4544 schedule_reconstruction(sh
, &s
, 1, 1);
4545 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
4546 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
4547 atomic_dec(&conf
->reshape_stripes
);
4548 wake_up(&conf
->wait_for_overlap
);
4549 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
4552 if (s
.expanding
&& s
.locked
== 0 &&
4553 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
4554 handle_stripe_expansion(conf
, sh
);
4557 /* wait for this device to become unblocked */
4558 if (unlikely(s
.blocked_rdev
)) {
4559 if (conf
->mddev
->external
)
4560 md_wait_for_blocked_rdev(s
.blocked_rdev
,
4563 /* Internal metadata will immediately
4564 * be written by raid5d, so we don't
4565 * need to wait here.
4567 rdev_dec_pending(s
.blocked_rdev
,
4571 if (s
.handle_bad_blocks
)
4572 for (i
= disks
; i
--; ) {
4573 struct md_rdev
*rdev
;
4574 struct r5dev
*dev
= &sh
->dev
[i
];
4575 if (test_and_clear_bit(R5_WriteError
, &dev
->flags
)) {
4576 /* We own a safe reference to the rdev */
4577 rdev
= conf
->disks
[i
].rdev
;
4578 if (!rdev_set_badblocks(rdev
, sh
->sector
,
4580 md_error(conf
->mddev
, rdev
);
4581 rdev_dec_pending(rdev
, conf
->mddev
);
4583 if (test_and_clear_bit(R5_MadeGood
, &dev
->flags
)) {
4584 rdev
= conf
->disks
[i
].rdev
;
4585 rdev_clear_badblocks(rdev
, sh
->sector
,
4587 rdev_dec_pending(rdev
, conf
->mddev
);
4589 if (test_and_clear_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
4590 rdev
= conf
->disks
[i
].replacement
;
4592 /* rdev have been moved down */
4593 rdev
= conf
->disks
[i
].rdev
;
4594 rdev_clear_badblocks(rdev
, sh
->sector
,
4596 rdev_dec_pending(rdev
, conf
->mddev
);
4601 raid_run_ops(sh
, s
.ops_request
);
4605 if (s
.dec_preread_active
) {
4606 /* We delay this until after ops_run_io so that if make_request
4607 * is waiting on a flush, it won't continue until the writes
4608 * have actually been submitted.
4610 atomic_dec(&conf
->preread_active_stripes
);
4611 if (atomic_read(&conf
->preread_active_stripes
) <
4613 md_wakeup_thread(conf
->mddev
->thread
);
4616 return_io(s
.return_bi
);
4618 clear_bit_unlock(STRIPE_ACTIVE
, &sh
->state
);
4621 static void raid5_activate_delayed(struct r5conf
*conf
)
4623 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
4624 while (!list_empty(&conf
->delayed_list
)) {
4625 struct list_head
*l
= conf
->delayed_list
.next
;
4626 struct stripe_head
*sh
;
4627 sh
= list_entry(l
, struct stripe_head
, lru
);
4629 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4630 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4631 atomic_inc(&conf
->preread_active_stripes
);
4632 list_add_tail(&sh
->lru
, &conf
->hold_list
);
4633 raid5_wakeup_stripe_thread(sh
);
4638 static void activate_bit_delay(struct r5conf
*conf
,
4639 struct list_head
*temp_inactive_list
)
4641 /* device_lock is held */
4642 struct list_head head
;
4643 list_add(&head
, &conf
->bitmap_list
);
4644 list_del_init(&conf
->bitmap_list
);
4645 while (!list_empty(&head
)) {
4646 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
4648 list_del_init(&sh
->lru
);
4649 atomic_inc(&sh
->count
);
4650 hash
= sh
->hash_lock_index
;
4651 __release_stripe(conf
, sh
, &temp_inactive_list
[hash
]);
4655 static int raid5_congested(struct mddev
*mddev
, int bits
)
4657 struct r5conf
*conf
= mddev
->private;
4659 /* No difference between reads and writes. Just check
4660 * how busy the stripe_cache is
4663 if (test_bit(R5_INACTIVE_BLOCKED
, &conf
->cache_state
))
4667 if (atomic_read(&conf
->empty_inactive_list_nr
))
4673 /* We want read requests to align with chunks where possible,
4674 * but write requests don't need to.
4676 static int raid5_mergeable_bvec(struct mddev
*mddev
,
4677 struct bvec_merge_data
*bvm
,
4678 struct bio_vec
*biovec
)
4680 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
4682 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
4683 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
4686 * always allow writes to be mergeable, read as well if array
4687 * is degraded as we'll go through stripe cache anyway.
4689 if ((bvm
->bi_rw
& 1) == WRITE
|| mddev
->degraded
)
4690 return biovec
->bv_len
;
4692 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
4693 chunk_sectors
= mddev
->new_chunk_sectors
;
4694 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
4695 if (max
< 0) max
= 0;
4696 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
4697 return biovec
->bv_len
;
4702 static int in_chunk_boundary(struct mddev
*mddev
, struct bio
*bio
)
4704 sector_t sector
= bio
->bi_iter
.bi_sector
+ get_start_sect(bio
->bi_bdev
);
4705 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
4706 unsigned int bio_sectors
= bio_sectors(bio
);
4708 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
4709 chunk_sectors
= mddev
->new_chunk_sectors
;
4710 return chunk_sectors
>=
4711 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
4715 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4716 * later sampled by raid5d.
4718 static void add_bio_to_retry(struct bio
*bi
,struct r5conf
*conf
)
4720 unsigned long flags
;
4722 spin_lock_irqsave(&conf
->device_lock
, flags
);
4724 bi
->bi_next
= conf
->retry_read_aligned_list
;
4725 conf
->retry_read_aligned_list
= bi
;
4727 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
4728 md_wakeup_thread(conf
->mddev
->thread
);
4731 static struct bio
*remove_bio_from_retry(struct r5conf
*conf
)
4735 bi
= conf
->retry_read_aligned
;
4737 conf
->retry_read_aligned
= NULL
;
4740 bi
= conf
->retry_read_aligned_list
;
4742 conf
->retry_read_aligned_list
= bi
->bi_next
;
4745 * this sets the active strip count to 1 and the processed
4746 * strip count to zero (upper 8 bits)
4748 raid5_set_bi_stripes(bi
, 1); /* biased count of active stripes */
4755 * The "raid5_align_endio" should check if the read succeeded and if it
4756 * did, call bio_endio on the original bio (having bio_put the new bio
4758 * If the read failed..
4760 static void raid5_align_endio(struct bio
*bi
, int error
)
4762 struct bio
* raid_bi
= bi
->bi_private
;
4763 struct mddev
*mddev
;
4764 struct r5conf
*conf
;
4765 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
4766 struct md_rdev
*rdev
;
4770 rdev
= (void*)raid_bi
->bi_next
;
4771 raid_bi
->bi_next
= NULL
;
4772 mddev
= rdev
->mddev
;
4773 conf
= mddev
->private;
4775 rdev_dec_pending(rdev
, conf
->mddev
);
4777 if (!error
&& uptodate
) {
4778 trace_block_bio_complete(bdev_get_queue(raid_bi
->bi_bdev
),
4780 bio_endio(raid_bi
, 0);
4781 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
4782 wake_up(&conf
->wait_for_stripe
);
4786 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4788 add_bio_to_retry(raid_bi
, conf
);
4791 static int bio_fits_rdev(struct bio
*bi
)
4793 struct request_queue
*q
= bdev_get_queue(bi
->bi_bdev
);
4795 if (bio_sectors(bi
) > queue_max_sectors(q
))
4797 blk_recount_segments(q
, bi
);
4798 if (bi
->bi_phys_segments
> queue_max_segments(q
))
4801 if (q
->merge_bvec_fn
)
4802 /* it's too hard to apply the merge_bvec_fn at this stage,
4810 static int chunk_aligned_read(struct mddev
*mddev
, struct bio
* raid_bio
)
4812 struct r5conf
*conf
= mddev
->private;
4814 struct bio
* align_bi
;
4815 struct md_rdev
*rdev
;
4816 sector_t end_sector
;
4818 if (!in_chunk_boundary(mddev
, raid_bio
)) {
4819 pr_debug("chunk_aligned_read : non aligned\n");
4823 * use bio_clone_mddev to make a copy of the bio
4825 align_bi
= bio_clone_mddev(raid_bio
, GFP_NOIO
, mddev
);
4829 * set bi_end_io to a new function, and set bi_private to the
4832 align_bi
->bi_end_io
= raid5_align_endio
;
4833 align_bi
->bi_private
= raid_bio
;
4837 align_bi
->bi_iter
.bi_sector
=
4838 raid5_compute_sector(conf
, raid_bio
->bi_iter
.bi_sector
,
4841 end_sector
= bio_end_sector(align_bi
);
4843 rdev
= rcu_dereference(conf
->disks
[dd_idx
].replacement
);
4844 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
) ||
4845 rdev
->recovery_offset
< end_sector
) {
4846 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
4848 (test_bit(Faulty
, &rdev
->flags
) ||
4849 !(test_bit(In_sync
, &rdev
->flags
) ||
4850 rdev
->recovery_offset
>= end_sector
)))
4857 atomic_inc(&rdev
->nr_pending
);
4859 raid_bio
->bi_next
= (void*)rdev
;
4860 align_bi
->bi_bdev
= rdev
->bdev
;
4861 __clear_bit(BIO_SEG_VALID
, &align_bi
->bi_flags
);
4863 if (!bio_fits_rdev(align_bi
) ||
4864 is_badblock(rdev
, align_bi
->bi_iter
.bi_sector
,
4865 bio_sectors(align_bi
),
4866 &first_bad
, &bad_sectors
)) {
4867 /* too big in some way, or has a known bad block */
4869 rdev_dec_pending(rdev
, mddev
);
4873 /* No reshape active, so we can trust rdev->data_offset */
4874 align_bi
->bi_iter
.bi_sector
+= rdev
->data_offset
;
4876 spin_lock_irq(&conf
->device_lock
);
4877 wait_event_lock_irq(conf
->wait_for_stripe
,
4880 atomic_inc(&conf
->active_aligned_reads
);
4881 spin_unlock_irq(&conf
->device_lock
);
4884 trace_block_bio_remap(bdev_get_queue(align_bi
->bi_bdev
),
4885 align_bi
, disk_devt(mddev
->gendisk
),
4886 raid_bio
->bi_iter
.bi_sector
);
4887 generic_make_request(align_bi
);
4896 /* __get_priority_stripe - get the next stripe to process
4898 * Full stripe writes are allowed to pass preread active stripes up until
4899 * the bypass_threshold is exceeded. In general the bypass_count
4900 * increments when the handle_list is handled before the hold_list; however, it
4901 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4902 * stripe with in flight i/o. The bypass_count will be reset when the
4903 * head of the hold_list has changed, i.e. the head was promoted to the
4906 static struct stripe_head
*__get_priority_stripe(struct r5conf
*conf
, int group
)
4908 struct stripe_head
*sh
= NULL
, *tmp
;
4909 struct list_head
*handle_list
= NULL
;
4910 struct r5worker_group
*wg
= NULL
;
4912 if (conf
->worker_cnt_per_group
== 0) {
4913 handle_list
= &conf
->handle_list
;
4914 } else if (group
!= ANY_GROUP
) {
4915 handle_list
= &conf
->worker_groups
[group
].handle_list
;
4916 wg
= &conf
->worker_groups
[group
];
4919 for (i
= 0; i
< conf
->group_cnt
; i
++) {
4920 handle_list
= &conf
->worker_groups
[i
].handle_list
;
4921 wg
= &conf
->worker_groups
[i
];
4922 if (!list_empty(handle_list
))
4927 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4929 list_empty(handle_list
) ? "empty" : "busy",
4930 list_empty(&conf
->hold_list
) ? "empty" : "busy",
4931 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
4933 if (!list_empty(handle_list
)) {
4934 sh
= list_entry(handle_list
->next
, typeof(*sh
), lru
);
4936 if (list_empty(&conf
->hold_list
))
4937 conf
->bypass_count
= 0;
4938 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
4939 if (conf
->hold_list
.next
== conf
->last_hold
)
4940 conf
->bypass_count
++;
4942 conf
->last_hold
= conf
->hold_list
.next
;
4943 conf
->bypass_count
-= conf
->bypass_threshold
;
4944 if (conf
->bypass_count
< 0)
4945 conf
->bypass_count
= 0;
4948 } else if (!list_empty(&conf
->hold_list
) &&
4949 ((conf
->bypass_threshold
&&
4950 conf
->bypass_count
> conf
->bypass_threshold
) ||
4951 atomic_read(&conf
->pending_full_writes
) == 0)) {
4953 list_for_each_entry(tmp
, &conf
->hold_list
, lru
) {
4954 if (conf
->worker_cnt_per_group
== 0 ||
4955 group
== ANY_GROUP
||
4956 !cpu_online(tmp
->cpu
) ||
4957 cpu_to_group(tmp
->cpu
) == group
) {
4964 conf
->bypass_count
-= conf
->bypass_threshold
;
4965 if (conf
->bypass_count
< 0)
4966 conf
->bypass_count
= 0;
4978 list_del_init(&sh
->lru
);
4979 BUG_ON(atomic_inc_return(&sh
->count
) != 1);
4983 struct raid5_plug_cb
{
4984 struct blk_plug_cb cb
;
4985 struct list_head list
;
4986 struct list_head temp_inactive_list
[NR_STRIPE_HASH_LOCKS
];
4989 static void raid5_unplug(struct blk_plug_cb
*blk_cb
, bool from_schedule
)
4991 struct raid5_plug_cb
*cb
= container_of(
4992 blk_cb
, struct raid5_plug_cb
, cb
);
4993 struct stripe_head
*sh
;
4994 struct mddev
*mddev
= cb
->cb
.data
;
4995 struct r5conf
*conf
= mddev
->private;
4999 if (cb
->list
.next
&& !list_empty(&cb
->list
)) {
5000 spin_lock_irq(&conf
->device_lock
);
5001 while (!list_empty(&cb
->list
)) {
5002 sh
= list_first_entry(&cb
->list
, struct stripe_head
, lru
);
5003 list_del_init(&sh
->lru
);
5005 * avoid race release_stripe_plug() sees
5006 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5007 * is still in our list
5009 smp_mb__before_atomic();
5010 clear_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
);
5012 * STRIPE_ON_RELEASE_LIST could be set here. In that
5013 * case, the count is always > 1 here
5015 hash
= sh
->hash_lock_index
;
5016 __release_stripe(conf
, sh
, &cb
->temp_inactive_list
[hash
]);
5019 spin_unlock_irq(&conf
->device_lock
);
5021 release_inactive_stripe_list(conf
, cb
->temp_inactive_list
,
5022 NR_STRIPE_HASH_LOCKS
);
5024 trace_block_unplug(mddev
->queue
, cnt
, !from_schedule
);
5028 static void release_stripe_plug(struct mddev
*mddev
,
5029 struct stripe_head
*sh
)
5031 struct blk_plug_cb
*blk_cb
= blk_check_plugged(
5032 raid5_unplug
, mddev
,
5033 sizeof(struct raid5_plug_cb
));
5034 struct raid5_plug_cb
*cb
;
5041 cb
= container_of(blk_cb
, struct raid5_plug_cb
, cb
);
5043 if (cb
->list
.next
== NULL
) {
5045 INIT_LIST_HEAD(&cb
->list
);
5046 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
5047 INIT_LIST_HEAD(cb
->temp_inactive_list
+ i
);
5050 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
))
5051 list_add_tail(&sh
->lru
, &cb
->list
);
5056 static void make_discard_request(struct mddev
*mddev
, struct bio
*bi
)
5058 struct r5conf
*conf
= mddev
->private;
5059 sector_t logical_sector
, last_sector
;
5060 struct stripe_head
*sh
;
5064 if (mddev
->reshape_position
!= MaxSector
)
5065 /* Skip discard while reshape is happening */
5068 logical_sector
= bi
->bi_iter
.bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
5069 last_sector
= bi
->bi_iter
.bi_sector
+ (bi
->bi_iter
.bi_size
>>9);
5072 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
5074 stripe_sectors
= conf
->chunk_sectors
*
5075 (conf
->raid_disks
- conf
->max_degraded
);
5076 logical_sector
= DIV_ROUND_UP_SECTOR_T(logical_sector
,
5078 sector_div(last_sector
, stripe_sectors
);
5080 logical_sector
*= conf
->chunk_sectors
;
5081 last_sector
*= conf
->chunk_sectors
;
5083 for (; logical_sector
< last_sector
;
5084 logical_sector
+= STRIPE_SECTORS
) {
5088 sh
= get_active_stripe(conf
, logical_sector
, 0, 0, 0);
5089 prepare_to_wait(&conf
->wait_for_overlap
, &w
,
5090 TASK_UNINTERRUPTIBLE
);
5091 set_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
5092 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
5097 clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
5098 spin_lock_irq(&sh
->stripe_lock
);
5099 for (d
= 0; d
< conf
->raid_disks
; d
++) {
5100 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
5102 if (sh
->dev
[d
].towrite
|| sh
->dev
[d
].toread
) {
5103 set_bit(R5_Overlap
, &sh
->dev
[d
].flags
);
5104 spin_unlock_irq(&sh
->stripe_lock
);
5110 set_bit(STRIPE_DISCARD
, &sh
->state
);
5111 finish_wait(&conf
->wait_for_overlap
, &w
);
5112 sh
->overwrite_disks
= 0;
5113 for (d
= 0; d
< conf
->raid_disks
; d
++) {
5114 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
5116 sh
->dev
[d
].towrite
= bi
;
5117 set_bit(R5_OVERWRITE
, &sh
->dev
[d
].flags
);
5118 raid5_inc_bi_active_stripes(bi
);
5119 sh
->overwrite_disks
++;
5121 spin_unlock_irq(&sh
->stripe_lock
);
5122 if (conf
->mddev
->bitmap
) {
5124 d
< conf
->raid_disks
- conf
->max_degraded
;
5126 bitmap_startwrite(mddev
->bitmap
,
5130 sh
->bm_seq
= conf
->seq_flush
+ 1;
5131 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
5134 set_bit(STRIPE_HANDLE
, &sh
->state
);
5135 clear_bit(STRIPE_DELAYED
, &sh
->state
);
5136 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
5137 atomic_inc(&conf
->preread_active_stripes
);
5138 release_stripe_plug(mddev
, sh
);
5141 remaining
= raid5_dec_bi_active_stripes(bi
);
5142 if (remaining
== 0) {
5143 md_write_end(mddev
);
5148 static void make_request(struct mddev
*mddev
, struct bio
* bi
)
5150 struct r5conf
*conf
= mddev
->private;
5152 sector_t new_sector
;
5153 sector_t logical_sector
, last_sector
;
5154 struct stripe_head
*sh
;
5155 const int rw
= bio_data_dir(bi
);
5160 if (unlikely(bi
->bi_rw
& REQ_FLUSH
)) {
5161 md_flush_request(mddev
, bi
);
5165 md_write_start(mddev
, bi
);
5168 * If array is degraded, better not do chunk aligned read because
5169 * later we might have to read it again in order to reconstruct
5170 * data on failed drives.
5172 if (rw
== READ
&& mddev
->degraded
== 0 &&
5173 mddev
->reshape_position
== MaxSector
&&
5174 chunk_aligned_read(mddev
,bi
))
5177 if (unlikely(bi
->bi_rw
& REQ_DISCARD
)) {
5178 make_discard_request(mddev
, bi
);
5182 logical_sector
= bi
->bi_iter
.bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
5183 last_sector
= bio_end_sector(bi
);
5185 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
5187 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
5188 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
5194 seq
= read_seqcount_begin(&conf
->gen_lock
);
5197 prepare_to_wait(&conf
->wait_for_overlap
, &w
,
5198 TASK_UNINTERRUPTIBLE
);
5199 if (unlikely(conf
->reshape_progress
!= MaxSector
)) {
5200 /* spinlock is needed as reshape_progress may be
5201 * 64bit on a 32bit platform, and so it might be
5202 * possible to see a half-updated value
5203 * Of course reshape_progress could change after
5204 * the lock is dropped, so once we get a reference
5205 * to the stripe that we think it is, we will have
5208 spin_lock_irq(&conf
->device_lock
);
5209 if (mddev
->reshape_backwards
5210 ? logical_sector
< conf
->reshape_progress
5211 : logical_sector
>= conf
->reshape_progress
) {
5214 if (mddev
->reshape_backwards
5215 ? logical_sector
< conf
->reshape_safe
5216 : logical_sector
>= conf
->reshape_safe
) {
5217 spin_unlock_irq(&conf
->device_lock
);
5223 spin_unlock_irq(&conf
->device_lock
);
5226 new_sector
= raid5_compute_sector(conf
, logical_sector
,
5229 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5230 (unsigned long long)new_sector
,
5231 (unsigned long long)logical_sector
);
5233 sh
= get_active_stripe(conf
, new_sector
, previous
,
5234 (bi
->bi_rw
&RWA_MASK
), 0);
5236 if (unlikely(previous
)) {
5237 /* expansion might have moved on while waiting for a
5238 * stripe, so we must do the range check again.
5239 * Expansion could still move past after this
5240 * test, but as we are holding a reference to
5241 * 'sh', we know that if that happens,
5242 * STRIPE_EXPANDING will get set and the expansion
5243 * won't proceed until we finish with the stripe.
5246 spin_lock_irq(&conf
->device_lock
);
5247 if (mddev
->reshape_backwards
5248 ? logical_sector
>= conf
->reshape_progress
5249 : logical_sector
< conf
->reshape_progress
)
5250 /* mismatch, need to try again */
5252 spin_unlock_irq(&conf
->device_lock
);
5260 if (read_seqcount_retry(&conf
->gen_lock
, seq
)) {
5261 /* Might have got the wrong stripe_head
5269 logical_sector
>= mddev
->suspend_lo
&&
5270 logical_sector
< mddev
->suspend_hi
) {
5272 /* As the suspend_* range is controlled by
5273 * userspace, we want an interruptible
5276 flush_signals(current
);
5277 prepare_to_wait(&conf
->wait_for_overlap
,
5278 &w
, TASK_INTERRUPTIBLE
);
5279 if (logical_sector
>= mddev
->suspend_lo
&&
5280 logical_sector
< mddev
->suspend_hi
) {
5287 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
5288 !add_stripe_bio(sh
, bi
, dd_idx
, rw
, previous
)) {
5289 /* Stripe is busy expanding or
5290 * add failed due to overlap. Flush everything
5293 md_wakeup_thread(mddev
->thread
);
5299 set_bit(STRIPE_HANDLE
, &sh
->state
);
5300 clear_bit(STRIPE_DELAYED
, &sh
->state
);
5301 if ((!sh
->batch_head
|| sh
== sh
->batch_head
) &&
5302 (bi
->bi_rw
& REQ_SYNC
) &&
5303 !test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
5304 atomic_inc(&conf
->preread_active_stripes
);
5305 release_stripe_plug(mddev
, sh
);
5307 /* cannot get stripe for read-ahead, just give-up */
5308 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
5312 finish_wait(&conf
->wait_for_overlap
, &w
);
5314 remaining
= raid5_dec_bi_active_stripes(bi
);
5315 if (remaining
== 0) {
5318 md_write_end(mddev
);
5320 trace_block_bio_complete(bdev_get_queue(bi
->bi_bdev
),
5326 static sector_t
raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
);
5328 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
)
5330 /* reshaping is quite different to recovery/resync so it is
5331 * handled quite separately ... here.
5333 * On each call to sync_request, we gather one chunk worth of
5334 * destination stripes and flag them as expanding.
5335 * Then we find all the source stripes and request reads.
5336 * As the reads complete, handle_stripe will copy the data
5337 * into the destination stripe and release that stripe.
5339 struct r5conf
*conf
= mddev
->private;
5340 struct stripe_head
*sh
;
5341 sector_t first_sector
, last_sector
;
5342 int raid_disks
= conf
->previous_raid_disks
;
5343 int data_disks
= raid_disks
- conf
->max_degraded
;
5344 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
5347 sector_t writepos
, readpos
, safepos
;
5348 sector_t stripe_addr
;
5349 int reshape_sectors
;
5350 struct list_head stripes
;
5352 if (sector_nr
== 0) {
5353 /* If restarting in the middle, skip the initial sectors */
5354 if (mddev
->reshape_backwards
&&
5355 conf
->reshape_progress
< raid5_size(mddev
, 0, 0)) {
5356 sector_nr
= raid5_size(mddev
, 0, 0)
5357 - conf
->reshape_progress
;
5358 } else if (!mddev
->reshape_backwards
&&
5359 conf
->reshape_progress
> 0)
5360 sector_nr
= conf
->reshape_progress
;
5361 sector_div(sector_nr
, new_data_disks
);
5363 mddev
->curr_resync_completed
= sector_nr
;
5364 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5370 /* We need to process a full chunk at a time.
5371 * If old and new chunk sizes differ, we need to process the
5374 if (mddev
->new_chunk_sectors
> mddev
->chunk_sectors
)
5375 reshape_sectors
= mddev
->new_chunk_sectors
;
5377 reshape_sectors
= mddev
->chunk_sectors
;
5379 /* We update the metadata at least every 10 seconds, or when
5380 * the data about to be copied would over-write the source of
5381 * the data at the front of the range. i.e. one new_stripe
5382 * along from reshape_progress new_maps to after where
5383 * reshape_safe old_maps to
5385 writepos
= conf
->reshape_progress
;
5386 sector_div(writepos
, new_data_disks
);
5387 readpos
= conf
->reshape_progress
;
5388 sector_div(readpos
, data_disks
);
5389 safepos
= conf
->reshape_safe
;
5390 sector_div(safepos
, data_disks
);
5391 if (mddev
->reshape_backwards
) {
5392 writepos
-= min_t(sector_t
, reshape_sectors
, writepos
);
5393 readpos
+= reshape_sectors
;
5394 safepos
+= reshape_sectors
;
5396 writepos
+= reshape_sectors
;
5397 readpos
-= min_t(sector_t
, reshape_sectors
, readpos
);
5398 safepos
-= min_t(sector_t
, reshape_sectors
, safepos
);
5401 /* Having calculated the 'writepos' possibly use it
5402 * to set 'stripe_addr' which is where we will write to.
5404 if (mddev
->reshape_backwards
) {
5405 BUG_ON(conf
->reshape_progress
== 0);
5406 stripe_addr
= writepos
;
5407 BUG_ON((mddev
->dev_sectors
&
5408 ~((sector_t
)reshape_sectors
- 1))
5409 - reshape_sectors
- stripe_addr
5412 BUG_ON(writepos
!= sector_nr
+ reshape_sectors
);
5413 stripe_addr
= sector_nr
;
5416 /* 'writepos' is the most advanced device address we might write.
5417 * 'readpos' is the least advanced device address we might read.
5418 * 'safepos' is the least address recorded in the metadata as having
5420 * If there is a min_offset_diff, these are adjusted either by
5421 * increasing the safepos/readpos if diff is negative, or
5422 * increasing writepos if diff is positive.
5423 * If 'readpos' is then behind 'writepos', there is no way that we can
5424 * ensure safety in the face of a crash - that must be done by userspace
5425 * making a backup of the data. So in that case there is no particular
5426 * rush to update metadata.
5427 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5428 * update the metadata to advance 'safepos' to match 'readpos' so that
5429 * we can be safe in the event of a crash.
5430 * So we insist on updating metadata if safepos is behind writepos and
5431 * readpos is beyond writepos.
5432 * In any case, update the metadata every 10 seconds.
5433 * Maybe that number should be configurable, but I'm not sure it is
5434 * worth it.... maybe it could be a multiple of safemode_delay???
5436 if (conf
->min_offset_diff
< 0) {
5437 safepos
+= -conf
->min_offset_diff
;
5438 readpos
+= -conf
->min_offset_diff
;
5440 writepos
+= conf
->min_offset_diff
;
5442 if ((mddev
->reshape_backwards
5443 ? (safepos
> writepos
&& readpos
< writepos
)
5444 : (safepos
< writepos
&& readpos
> writepos
)) ||
5445 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
5446 /* Cannot proceed until we've updated the superblock... */
5447 wait_event(conf
->wait_for_overlap
,
5448 atomic_read(&conf
->reshape_stripes
)==0
5449 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5450 if (atomic_read(&conf
->reshape_stripes
) != 0)
5452 mddev
->reshape_position
= conf
->reshape_progress
;
5453 mddev
->curr_resync_completed
= sector_nr
;
5454 conf
->reshape_checkpoint
= jiffies
;
5455 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5456 md_wakeup_thread(mddev
->thread
);
5457 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
5458 test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5459 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
5461 spin_lock_irq(&conf
->device_lock
);
5462 conf
->reshape_safe
= mddev
->reshape_position
;
5463 spin_unlock_irq(&conf
->device_lock
);
5464 wake_up(&conf
->wait_for_overlap
);
5465 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5468 INIT_LIST_HEAD(&stripes
);
5469 for (i
= 0; i
< reshape_sectors
; i
+= STRIPE_SECTORS
) {
5471 int skipped_disk
= 0;
5472 sh
= get_active_stripe(conf
, stripe_addr
+i
, 0, 0, 1);
5473 set_bit(STRIPE_EXPANDING
, &sh
->state
);
5474 atomic_inc(&conf
->reshape_stripes
);
5475 /* If any of this stripe is beyond the end of the old
5476 * array, then we need to zero those blocks
5478 for (j
=sh
->disks
; j
--;) {
5480 if (j
== sh
->pd_idx
)
5482 if (conf
->level
== 6 &&
5485 s
= compute_blocknr(sh
, j
, 0);
5486 if (s
< raid5_size(mddev
, 0, 0)) {
5490 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
5491 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
5492 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
5494 if (!skipped_disk
) {
5495 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
5496 set_bit(STRIPE_HANDLE
, &sh
->state
);
5498 list_add(&sh
->lru
, &stripes
);
5500 spin_lock_irq(&conf
->device_lock
);
5501 if (mddev
->reshape_backwards
)
5502 conf
->reshape_progress
-= reshape_sectors
* new_data_disks
;
5504 conf
->reshape_progress
+= reshape_sectors
* new_data_disks
;
5505 spin_unlock_irq(&conf
->device_lock
);
5506 /* Ok, those stripe are ready. We can start scheduling
5507 * reads on the source stripes.
5508 * The source stripes are determined by mapping the first and last
5509 * block on the destination stripes.
5512 raid5_compute_sector(conf
, stripe_addr
*(new_data_disks
),
5515 raid5_compute_sector(conf
, ((stripe_addr
+reshape_sectors
)
5516 * new_data_disks
- 1),
5518 if (last_sector
>= mddev
->dev_sectors
)
5519 last_sector
= mddev
->dev_sectors
- 1;
5520 while (first_sector
<= last_sector
) {
5521 sh
= get_active_stripe(conf
, first_sector
, 1, 0, 1);
5522 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
5523 set_bit(STRIPE_HANDLE
, &sh
->state
);
5525 first_sector
+= STRIPE_SECTORS
;
5527 /* Now that the sources are clearly marked, we can release
5528 * the destination stripes
5530 while (!list_empty(&stripes
)) {
5531 sh
= list_entry(stripes
.next
, struct stripe_head
, lru
);
5532 list_del_init(&sh
->lru
);
5535 /* If this takes us to the resync_max point where we have to pause,
5536 * then we need to write out the superblock.
5538 sector_nr
+= reshape_sectors
;
5539 if ((sector_nr
- mddev
->curr_resync_completed
) * 2
5540 >= mddev
->resync_max
- mddev
->curr_resync_completed
) {
5541 /* Cannot proceed until we've updated the superblock... */
5542 wait_event(conf
->wait_for_overlap
,
5543 atomic_read(&conf
->reshape_stripes
) == 0
5544 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5545 if (atomic_read(&conf
->reshape_stripes
) != 0)
5547 mddev
->reshape_position
= conf
->reshape_progress
;
5548 mddev
->curr_resync_completed
= sector_nr
;
5549 conf
->reshape_checkpoint
= jiffies
;
5550 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5551 md_wakeup_thread(mddev
->thread
);
5552 wait_event(mddev
->sb_wait
,
5553 !test_bit(MD_CHANGE_DEVS
, &mddev
->flags
)
5554 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5555 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
5557 spin_lock_irq(&conf
->device_lock
);
5558 conf
->reshape_safe
= mddev
->reshape_position
;
5559 spin_unlock_irq(&conf
->device_lock
);
5560 wake_up(&conf
->wait_for_overlap
);
5561 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5564 return reshape_sectors
;
5567 static inline sector_t
sync_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
)
5569 struct r5conf
*conf
= mddev
->private;
5570 struct stripe_head
*sh
;
5571 sector_t max_sector
= mddev
->dev_sectors
;
5572 sector_t sync_blocks
;
5573 int still_degraded
= 0;
5576 if (sector_nr
>= max_sector
) {
5577 /* just being told to finish up .. nothing much to do */
5579 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
5584 if (mddev
->curr_resync
< max_sector
) /* aborted */
5585 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
5587 else /* completed sync */
5589 bitmap_close_sync(mddev
->bitmap
);
5594 /* Allow raid5_quiesce to complete */
5595 wait_event(conf
->wait_for_overlap
, conf
->quiesce
!= 2);
5597 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
5598 return reshape_request(mddev
, sector_nr
, skipped
);
5600 /* No need to check resync_max as we never do more than one
5601 * stripe, and as resync_max will always be on a chunk boundary,
5602 * if the check in md_do_sync didn't fire, there is no chance
5603 * of overstepping resync_max here
5606 /* if there is too many failed drives and we are trying
5607 * to resync, then assert that we are finished, because there is
5608 * nothing we can do.
5610 if (mddev
->degraded
>= conf
->max_degraded
&&
5611 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
5612 sector_t rv
= mddev
->dev_sectors
- sector_nr
;
5616 if (!test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
5618 !bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
5619 sync_blocks
>= STRIPE_SECTORS
) {
5620 /* we can skip this block, and probably more */
5621 sync_blocks
/= STRIPE_SECTORS
;
5623 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
5626 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
5628 sh
= get_active_stripe(conf
, sector_nr
, 0, 1, 0);
5630 sh
= get_active_stripe(conf
, sector_nr
, 0, 0, 0);
5631 /* make sure we don't swamp the stripe cache if someone else
5632 * is trying to get access
5634 schedule_timeout_uninterruptible(1);
5636 /* Need to check if array will still be degraded after recovery/resync
5637 * Note in case of > 1 drive failures it's possible we're rebuilding
5638 * one drive while leaving another faulty drive in array.
5641 for (i
= 0; i
< conf
->raid_disks
; i
++) {
5642 struct md_rdev
*rdev
= ACCESS_ONCE(conf
->disks
[i
].rdev
);
5644 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
))
5649 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
5651 set_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
);
5652 set_bit(STRIPE_HANDLE
, &sh
->state
);
5656 return STRIPE_SECTORS
;
5659 static int retry_aligned_read(struct r5conf
*conf
, struct bio
*raid_bio
)
5661 /* We may not be able to submit a whole bio at once as there
5662 * may not be enough stripe_heads available.
5663 * We cannot pre-allocate enough stripe_heads as we may need
5664 * more than exist in the cache (if we allow ever large chunks).
5665 * So we do one stripe head at a time and record in
5666 * ->bi_hw_segments how many have been done.
5668 * We *know* that this entire raid_bio is in one chunk, so
5669 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5671 struct stripe_head
*sh
;
5673 sector_t sector
, logical_sector
, last_sector
;
5678 logical_sector
= raid_bio
->bi_iter
.bi_sector
&
5679 ~((sector_t
)STRIPE_SECTORS
-1);
5680 sector
= raid5_compute_sector(conf
, logical_sector
,
5682 last_sector
= bio_end_sector(raid_bio
);
5684 for (; logical_sector
< last_sector
;
5685 logical_sector
+= STRIPE_SECTORS
,
5686 sector
+= STRIPE_SECTORS
,
5689 if (scnt
< raid5_bi_processed_stripes(raid_bio
))
5690 /* already done this stripe */
5693 sh
= get_active_stripe(conf
, sector
, 0, 1, 1);
5696 /* failed to get a stripe - must wait */
5697 raid5_set_bi_processed_stripes(raid_bio
, scnt
);
5698 conf
->retry_read_aligned
= raid_bio
;
5702 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0, 0)) {
5704 raid5_set_bi_processed_stripes(raid_bio
, scnt
);
5705 conf
->retry_read_aligned
= raid_bio
;
5709 set_bit(R5_ReadNoMerge
, &sh
->dev
[dd_idx
].flags
);
5714 remaining
= raid5_dec_bi_active_stripes(raid_bio
);
5715 if (remaining
== 0) {
5716 trace_block_bio_complete(bdev_get_queue(raid_bio
->bi_bdev
),
5718 bio_endio(raid_bio
, 0);
5720 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
5721 wake_up(&conf
->wait_for_stripe
);
5725 static int handle_active_stripes(struct r5conf
*conf
, int group
,
5726 struct r5worker
*worker
,
5727 struct list_head
*temp_inactive_list
)
5729 struct stripe_head
*batch
[MAX_STRIPE_BATCH
], *sh
;
5730 int i
, batch_size
= 0, hash
;
5731 bool release_inactive
= false;
5733 while (batch_size
< MAX_STRIPE_BATCH
&&
5734 (sh
= __get_priority_stripe(conf
, group
)) != NULL
)
5735 batch
[batch_size
++] = sh
;
5737 if (batch_size
== 0) {
5738 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
5739 if (!list_empty(temp_inactive_list
+ i
))
5741 if (i
== NR_STRIPE_HASH_LOCKS
)
5743 release_inactive
= true;
5745 spin_unlock_irq(&conf
->device_lock
);
5747 release_inactive_stripe_list(conf
, temp_inactive_list
,
5748 NR_STRIPE_HASH_LOCKS
);
5750 if (release_inactive
) {
5751 spin_lock_irq(&conf
->device_lock
);
5755 for (i
= 0; i
< batch_size
; i
++)
5756 handle_stripe(batch
[i
]);
5760 spin_lock_irq(&conf
->device_lock
);
5761 for (i
= 0; i
< batch_size
; i
++) {
5762 hash
= batch
[i
]->hash_lock_index
;
5763 __release_stripe(conf
, batch
[i
], &temp_inactive_list
[hash
]);
5768 static void raid5_do_work(struct work_struct
*work
)
5770 struct r5worker
*worker
= container_of(work
, struct r5worker
, work
);
5771 struct r5worker_group
*group
= worker
->group
;
5772 struct r5conf
*conf
= group
->conf
;
5773 int group_id
= group
- conf
->worker_groups
;
5775 struct blk_plug plug
;
5777 pr_debug("+++ raid5worker active\n");
5779 blk_start_plug(&plug
);
5781 spin_lock_irq(&conf
->device_lock
);
5783 int batch_size
, released
;
5785 released
= release_stripe_list(conf
, worker
->temp_inactive_list
);
5787 batch_size
= handle_active_stripes(conf
, group_id
, worker
,
5788 worker
->temp_inactive_list
);
5789 worker
->working
= false;
5790 if (!batch_size
&& !released
)
5792 handled
+= batch_size
;
5794 pr_debug("%d stripes handled\n", handled
);
5796 spin_unlock_irq(&conf
->device_lock
);
5797 blk_finish_plug(&plug
);
5799 pr_debug("--- raid5worker inactive\n");
5803 * This is our raid5 kernel thread.
5805 * We scan the hash table for stripes which can be handled now.
5806 * During the scan, completed stripes are saved for us by the interrupt
5807 * handler, so that they will not have to wait for our next wakeup.
5809 static void raid5d(struct md_thread
*thread
)
5811 struct mddev
*mddev
= thread
->mddev
;
5812 struct r5conf
*conf
= mddev
->private;
5814 struct blk_plug plug
;
5816 pr_debug("+++ raid5d active\n");
5818 md_check_recovery(mddev
);
5820 blk_start_plug(&plug
);
5822 spin_lock_irq(&conf
->device_lock
);
5825 int batch_size
, released
;
5827 released
= release_stripe_list(conf
, conf
->temp_inactive_list
);
5829 clear_bit(R5_DID_ALLOC
, &conf
->cache_state
);
5832 !list_empty(&conf
->bitmap_list
)) {
5833 /* Now is a good time to flush some bitmap updates */
5835 spin_unlock_irq(&conf
->device_lock
);
5836 bitmap_unplug(mddev
->bitmap
);
5837 spin_lock_irq(&conf
->device_lock
);
5838 conf
->seq_write
= conf
->seq_flush
;
5839 activate_bit_delay(conf
, conf
->temp_inactive_list
);
5841 raid5_activate_delayed(conf
);
5843 while ((bio
= remove_bio_from_retry(conf
))) {
5845 spin_unlock_irq(&conf
->device_lock
);
5846 ok
= retry_aligned_read(conf
, bio
);
5847 spin_lock_irq(&conf
->device_lock
);
5853 batch_size
= handle_active_stripes(conf
, ANY_GROUP
, NULL
,
5854 conf
->temp_inactive_list
);
5855 if (!batch_size
&& !released
)
5857 handled
+= batch_size
;
5859 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
)) {
5860 spin_unlock_irq(&conf
->device_lock
);
5861 md_check_recovery(mddev
);
5862 spin_lock_irq(&conf
->device_lock
);
5865 pr_debug("%d stripes handled\n", handled
);
5867 spin_unlock_irq(&conf
->device_lock
);
5868 if (test_and_clear_bit(R5_ALLOC_MORE
, &conf
->cache_state
) &&
5869 mutex_trylock(&conf
->cache_size_mutex
)) {
5870 grow_one_stripe(conf
, __GFP_NOWARN
);
5871 /* Set flag even if allocation failed. This helps
5872 * slow down allocation requests when mem is short
5874 set_bit(R5_DID_ALLOC
, &conf
->cache_state
);
5875 mutex_unlock(&conf
->cache_size_mutex
);
5878 async_tx_issue_pending_all();
5879 blk_finish_plug(&plug
);
5881 pr_debug("--- raid5d inactive\n");
5885 raid5_show_stripe_cache_size(struct mddev
*mddev
, char *page
)
5887 struct r5conf
*conf
;
5889 spin_lock(&mddev
->lock
);
5890 conf
= mddev
->private;
5892 ret
= sprintf(page
, "%d\n", conf
->min_nr_stripes
);
5893 spin_unlock(&mddev
->lock
);
5898 raid5_set_cache_size(struct mddev
*mddev
, int size
)
5900 struct r5conf
*conf
= mddev
->private;
5903 if (size
<= 16 || size
> 32768)
5906 conf
->min_nr_stripes
= size
;
5907 mutex_lock(&conf
->cache_size_mutex
);
5908 while (size
< conf
->max_nr_stripes
&&
5909 drop_one_stripe(conf
))
5911 mutex_unlock(&conf
->cache_size_mutex
);
5914 err
= md_allow_write(mddev
);
5918 mutex_lock(&conf
->cache_size_mutex
);
5919 while (size
> conf
->max_nr_stripes
)
5920 if (!grow_one_stripe(conf
, GFP_KERNEL
))
5922 mutex_unlock(&conf
->cache_size_mutex
);
5926 EXPORT_SYMBOL(raid5_set_cache_size
);
5929 raid5_store_stripe_cache_size(struct mddev
*mddev
, const char *page
, size_t len
)
5931 struct r5conf
*conf
;
5935 if (len
>= PAGE_SIZE
)
5937 if (kstrtoul(page
, 10, &new))
5939 err
= mddev_lock(mddev
);
5942 conf
= mddev
->private;
5946 err
= raid5_set_cache_size(mddev
, new);
5947 mddev_unlock(mddev
);
5952 static struct md_sysfs_entry
5953 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
5954 raid5_show_stripe_cache_size
,
5955 raid5_store_stripe_cache_size
);
5958 raid5_show_rmw_level(struct mddev
*mddev
, char *page
)
5960 struct r5conf
*conf
= mddev
->private;
5962 return sprintf(page
, "%d\n", conf
->rmw_level
);
5968 raid5_store_rmw_level(struct mddev
*mddev
, const char *page
, size_t len
)
5970 struct r5conf
*conf
= mddev
->private;
5976 if (len
>= PAGE_SIZE
)
5979 if (kstrtoul(page
, 10, &new))
5982 if (new != PARITY_DISABLE_RMW
&& !raid6_call
.xor_syndrome
)
5985 if (new != PARITY_DISABLE_RMW
&&
5986 new != PARITY_ENABLE_RMW
&&
5987 new != PARITY_PREFER_RMW
)
5990 conf
->rmw_level
= new;
5994 static struct md_sysfs_entry
5995 raid5_rmw_level
= __ATTR(rmw_level
, S_IRUGO
| S_IWUSR
,
5996 raid5_show_rmw_level
,
5997 raid5_store_rmw_level
);
6001 raid5_show_preread_threshold(struct mddev
*mddev
, char *page
)
6003 struct r5conf
*conf
;
6005 spin_lock(&mddev
->lock
);
6006 conf
= mddev
->private;
6008 ret
= sprintf(page
, "%d\n", conf
->bypass_threshold
);
6009 spin_unlock(&mddev
->lock
);
6014 raid5_store_preread_threshold(struct mddev
*mddev
, const char *page
, size_t len
)
6016 struct r5conf
*conf
;
6020 if (len
>= PAGE_SIZE
)
6022 if (kstrtoul(page
, 10, &new))
6025 err
= mddev_lock(mddev
);
6028 conf
= mddev
->private;
6031 else if (new > conf
->min_nr_stripes
)
6034 conf
->bypass_threshold
= new;
6035 mddev_unlock(mddev
);
6039 static struct md_sysfs_entry
6040 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
6042 raid5_show_preread_threshold
,
6043 raid5_store_preread_threshold
);
6046 raid5_show_skip_copy(struct mddev
*mddev
, char *page
)
6048 struct r5conf
*conf
;
6050 spin_lock(&mddev
->lock
);
6051 conf
= mddev
->private;
6053 ret
= sprintf(page
, "%d\n", conf
->skip_copy
);
6054 spin_unlock(&mddev
->lock
);
6059 raid5_store_skip_copy(struct mddev
*mddev
, const char *page
, size_t len
)
6061 struct r5conf
*conf
;
6065 if (len
>= PAGE_SIZE
)
6067 if (kstrtoul(page
, 10, &new))
6071 err
= mddev_lock(mddev
);
6074 conf
= mddev
->private;
6077 else if (new != conf
->skip_copy
) {
6078 mddev_suspend(mddev
);
6079 conf
->skip_copy
= new;
6081 mddev
->queue
->backing_dev_info
.capabilities
|=
6082 BDI_CAP_STABLE_WRITES
;
6084 mddev
->queue
->backing_dev_info
.capabilities
&=
6085 ~BDI_CAP_STABLE_WRITES
;
6086 mddev_resume(mddev
);
6088 mddev_unlock(mddev
);
6092 static struct md_sysfs_entry
6093 raid5_skip_copy
= __ATTR(skip_copy
, S_IRUGO
| S_IWUSR
,
6094 raid5_show_skip_copy
,
6095 raid5_store_skip_copy
);
6098 stripe_cache_active_show(struct mddev
*mddev
, char *page
)
6100 struct r5conf
*conf
= mddev
->private;
6102 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
6107 static struct md_sysfs_entry
6108 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
6111 raid5_show_group_thread_cnt(struct mddev
*mddev
, char *page
)
6113 struct r5conf
*conf
;
6115 spin_lock(&mddev
->lock
);
6116 conf
= mddev
->private;
6118 ret
= sprintf(page
, "%d\n", conf
->worker_cnt_per_group
);
6119 spin_unlock(&mddev
->lock
);
6123 static int alloc_thread_groups(struct r5conf
*conf
, int cnt
,
6125 int *worker_cnt_per_group
,
6126 struct r5worker_group
**worker_groups
);
6128 raid5_store_group_thread_cnt(struct mddev
*mddev
, const char *page
, size_t len
)
6130 struct r5conf
*conf
;
6133 struct r5worker_group
*new_groups
, *old_groups
;
6134 int group_cnt
, worker_cnt_per_group
;
6136 if (len
>= PAGE_SIZE
)
6138 if (kstrtoul(page
, 10, &new))
6141 err
= mddev_lock(mddev
);
6144 conf
= mddev
->private;
6147 else if (new != conf
->worker_cnt_per_group
) {
6148 mddev_suspend(mddev
);
6150 old_groups
= conf
->worker_groups
;
6152 flush_workqueue(raid5_wq
);
6154 err
= alloc_thread_groups(conf
, new,
6155 &group_cnt
, &worker_cnt_per_group
,
6158 spin_lock_irq(&conf
->device_lock
);
6159 conf
->group_cnt
= group_cnt
;
6160 conf
->worker_cnt_per_group
= worker_cnt_per_group
;
6161 conf
->worker_groups
= new_groups
;
6162 spin_unlock_irq(&conf
->device_lock
);
6165 kfree(old_groups
[0].workers
);
6168 mddev_resume(mddev
);
6170 mddev_unlock(mddev
);
6175 static struct md_sysfs_entry
6176 raid5_group_thread_cnt
= __ATTR(group_thread_cnt
, S_IRUGO
| S_IWUSR
,
6177 raid5_show_group_thread_cnt
,
6178 raid5_store_group_thread_cnt
);
6180 static struct attribute
*raid5_attrs
[] = {
6181 &raid5_stripecache_size
.attr
,
6182 &raid5_stripecache_active
.attr
,
6183 &raid5_preread_bypass_threshold
.attr
,
6184 &raid5_group_thread_cnt
.attr
,
6185 &raid5_skip_copy
.attr
,
6186 &raid5_rmw_level
.attr
,
6189 static struct attribute_group raid5_attrs_group
= {
6191 .attrs
= raid5_attrs
,
6194 static int alloc_thread_groups(struct r5conf
*conf
, int cnt
,
6196 int *worker_cnt_per_group
,
6197 struct r5worker_group
**worker_groups
)
6201 struct r5worker
*workers
;
6203 *worker_cnt_per_group
= cnt
;
6206 *worker_groups
= NULL
;
6209 *group_cnt
= num_possible_nodes();
6210 size
= sizeof(struct r5worker
) * cnt
;
6211 workers
= kzalloc(size
* *group_cnt
, GFP_NOIO
);
6212 *worker_groups
= kzalloc(sizeof(struct r5worker_group
) *
6213 *group_cnt
, GFP_NOIO
);
6214 if (!*worker_groups
|| !workers
) {
6216 kfree(*worker_groups
);
6220 for (i
= 0; i
< *group_cnt
; i
++) {
6221 struct r5worker_group
*group
;
6223 group
= &(*worker_groups
)[i
];
6224 INIT_LIST_HEAD(&group
->handle_list
);
6226 group
->workers
= workers
+ i
* cnt
;
6228 for (j
= 0; j
< cnt
; j
++) {
6229 struct r5worker
*worker
= group
->workers
+ j
;
6230 worker
->group
= group
;
6231 INIT_WORK(&worker
->work
, raid5_do_work
);
6233 for (k
= 0; k
< NR_STRIPE_HASH_LOCKS
; k
++)
6234 INIT_LIST_HEAD(worker
->temp_inactive_list
+ k
);
6241 static void free_thread_groups(struct r5conf
*conf
)
6243 if (conf
->worker_groups
)
6244 kfree(conf
->worker_groups
[0].workers
);
6245 kfree(conf
->worker_groups
);
6246 conf
->worker_groups
= NULL
;
6250 raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
6252 struct r5conf
*conf
= mddev
->private;
6255 sectors
= mddev
->dev_sectors
;
6257 /* size is defined by the smallest of previous and new size */
6258 raid_disks
= min(conf
->raid_disks
, conf
->previous_raid_disks
);
6260 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
6261 sectors
&= ~((sector_t
)mddev
->new_chunk_sectors
- 1);
6262 return sectors
* (raid_disks
- conf
->max_degraded
);
6265 static void free_scratch_buffer(struct r5conf
*conf
, struct raid5_percpu
*percpu
)
6267 safe_put_page(percpu
->spare_page
);
6268 if (percpu
->scribble
)
6269 flex_array_free(percpu
->scribble
);
6270 percpu
->spare_page
= NULL
;
6271 percpu
->scribble
= NULL
;
6274 static int alloc_scratch_buffer(struct r5conf
*conf
, struct raid5_percpu
*percpu
)
6276 if (conf
->level
== 6 && !percpu
->spare_page
)
6277 percpu
->spare_page
= alloc_page(GFP_KERNEL
);
6278 if (!percpu
->scribble
)
6279 percpu
->scribble
= scribble_alloc(max(conf
->raid_disks
,
6280 conf
->previous_raid_disks
),
6281 max(conf
->chunk_sectors
,
6282 conf
->prev_chunk_sectors
)
6286 if (!percpu
->scribble
|| (conf
->level
== 6 && !percpu
->spare_page
)) {
6287 free_scratch_buffer(conf
, percpu
);
6294 static void raid5_free_percpu(struct r5conf
*conf
)
6301 #ifdef CONFIG_HOTPLUG_CPU
6302 unregister_cpu_notifier(&conf
->cpu_notify
);
6306 for_each_possible_cpu(cpu
)
6307 free_scratch_buffer(conf
, per_cpu_ptr(conf
->percpu
, cpu
));
6310 free_percpu(conf
->percpu
);
6313 static void free_conf(struct r5conf
*conf
)
6315 if (conf
->shrinker
.seeks
)
6316 unregister_shrinker(&conf
->shrinker
);
6317 free_thread_groups(conf
);
6318 shrink_stripes(conf
);
6319 raid5_free_percpu(conf
);
6321 kfree(conf
->stripe_hashtbl
);
6325 #ifdef CONFIG_HOTPLUG_CPU
6326 static int raid456_cpu_notify(struct notifier_block
*nfb
, unsigned long action
,
6329 struct r5conf
*conf
= container_of(nfb
, struct r5conf
, cpu_notify
);
6330 long cpu
= (long)hcpu
;
6331 struct raid5_percpu
*percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
6334 case CPU_UP_PREPARE
:
6335 case CPU_UP_PREPARE_FROZEN
:
6336 if (alloc_scratch_buffer(conf
, percpu
)) {
6337 pr_err("%s: failed memory allocation for cpu%ld\n",
6339 return notifier_from_errno(-ENOMEM
);
6343 case CPU_DEAD_FROZEN
:
6344 free_scratch_buffer(conf
, per_cpu_ptr(conf
->percpu
, cpu
));
6353 static int raid5_alloc_percpu(struct r5conf
*conf
)
6358 conf
->percpu
= alloc_percpu(struct raid5_percpu
);
6362 #ifdef CONFIG_HOTPLUG_CPU
6363 conf
->cpu_notify
.notifier_call
= raid456_cpu_notify
;
6364 conf
->cpu_notify
.priority
= 0;
6365 err
= register_cpu_notifier(&conf
->cpu_notify
);
6371 for_each_present_cpu(cpu
) {
6372 err
= alloc_scratch_buffer(conf
, per_cpu_ptr(conf
->percpu
, cpu
));
6374 pr_err("%s: failed memory allocation for cpu%ld\n",
6382 conf
->scribble_disks
= max(conf
->raid_disks
,
6383 conf
->previous_raid_disks
);
6384 conf
->scribble_sectors
= max(conf
->chunk_sectors
,
6385 conf
->prev_chunk_sectors
);
6390 static unsigned long raid5_cache_scan(struct shrinker
*shrink
,
6391 struct shrink_control
*sc
)
6393 struct r5conf
*conf
= container_of(shrink
, struct r5conf
, shrinker
);
6394 unsigned long ret
= SHRINK_STOP
;
6396 if (mutex_trylock(&conf
->cache_size_mutex
)) {
6398 while (ret
< sc
->nr_to_scan
&&
6399 conf
->max_nr_stripes
> conf
->min_nr_stripes
) {
6400 if (drop_one_stripe(conf
) == 0) {
6406 mutex_unlock(&conf
->cache_size_mutex
);
6411 static unsigned long raid5_cache_count(struct shrinker
*shrink
,
6412 struct shrink_control
*sc
)
6414 struct r5conf
*conf
= container_of(shrink
, struct r5conf
, shrinker
);
6416 if (conf
->max_nr_stripes
< conf
->min_nr_stripes
)
6417 /* unlikely, but not impossible */
6419 return conf
->max_nr_stripes
- conf
->min_nr_stripes
;
6422 static struct r5conf
*setup_conf(struct mddev
*mddev
)
6424 struct r5conf
*conf
;
6425 int raid_disk
, memory
, max_disks
;
6426 struct md_rdev
*rdev
;
6427 struct disk_info
*disk
;
6430 int group_cnt
, worker_cnt_per_group
;
6431 struct r5worker_group
*new_group
;
6433 if (mddev
->new_level
!= 5
6434 && mddev
->new_level
!= 4
6435 && mddev
->new_level
!= 6) {
6436 printk(KERN_ERR
"md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6437 mdname(mddev
), mddev
->new_level
);
6438 return ERR_PTR(-EIO
);
6440 if ((mddev
->new_level
== 5
6441 && !algorithm_valid_raid5(mddev
->new_layout
)) ||
6442 (mddev
->new_level
== 6
6443 && !algorithm_valid_raid6(mddev
->new_layout
))) {
6444 printk(KERN_ERR
"md/raid:%s: layout %d not supported\n",
6445 mdname(mddev
), mddev
->new_layout
);
6446 return ERR_PTR(-EIO
);
6448 if (mddev
->new_level
== 6 && mddev
->raid_disks
< 4) {
6449 printk(KERN_ERR
"md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6450 mdname(mddev
), mddev
->raid_disks
);
6451 return ERR_PTR(-EINVAL
);
6454 if (!mddev
->new_chunk_sectors
||
6455 (mddev
->new_chunk_sectors
<< 9) % PAGE_SIZE
||
6456 !is_power_of_2(mddev
->new_chunk_sectors
)) {
6457 printk(KERN_ERR
"md/raid:%s: invalid chunk size %d\n",
6458 mdname(mddev
), mddev
->new_chunk_sectors
<< 9);
6459 return ERR_PTR(-EINVAL
);
6462 conf
= kzalloc(sizeof(struct r5conf
), GFP_KERNEL
);
6465 /* Don't enable multi-threading by default*/
6466 if (!alloc_thread_groups(conf
, 0, &group_cnt
, &worker_cnt_per_group
,
6468 conf
->group_cnt
= group_cnt
;
6469 conf
->worker_cnt_per_group
= worker_cnt_per_group
;
6470 conf
->worker_groups
= new_group
;
6473 spin_lock_init(&conf
->device_lock
);
6474 seqcount_init(&conf
->gen_lock
);
6475 mutex_init(&conf
->cache_size_mutex
);
6476 init_waitqueue_head(&conf
->wait_for_stripe
);
6477 init_waitqueue_head(&conf
->wait_for_overlap
);
6478 INIT_LIST_HEAD(&conf
->handle_list
);
6479 INIT_LIST_HEAD(&conf
->hold_list
);
6480 INIT_LIST_HEAD(&conf
->delayed_list
);
6481 INIT_LIST_HEAD(&conf
->bitmap_list
);
6482 init_llist_head(&conf
->released_stripes
);
6483 atomic_set(&conf
->active_stripes
, 0);
6484 atomic_set(&conf
->preread_active_stripes
, 0);
6485 atomic_set(&conf
->active_aligned_reads
, 0);
6486 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
6487 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
6489 conf
->raid_disks
= mddev
->raid_disks
;
6490 if (mddev
->reshape_position
== MaxSector
)
6491 conf
->previous_raid_disks
= mddev
->raid_disks
;
6493 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
6494 max_disks
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
6496 conf
->disks
= kzalloc(max_disks
* sizeof(struct disk_info
),
6501 conf
->mddev
= mddev
;
6503 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
6506 /* We init hash_locks[0] separately to that it can be used
6507 * as the reference lock in the spin_lock_nest_lock() call
6508 * in lock_all_device_hash_locks_irq in order to convince
6509 * lockdep that we know what we are doing.
6511 spin_lock_init(conf
->hash_locks
);
6512 for (i
= 1; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6513 spin_lock_init(conf
->hash_locks
+ i
);
6515 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6516 INIT_LIST_HEAD(conf
->inactive_list
+ i
);
6518 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6519 INIT_LIST_HEAD(conf
->temp_inactive_list
+ i
);
6521 conf
->level
= mddev
->new_level
;
6522 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
6523 if (raid5_alloc_percpu(conf
) != 0)
6526 pr_debug("raid456: run(%s) called.\n", mdname(mddev
));
6528 rdev_for_each(rdev
, mddev
) {
6529 raid_disk
= rdev
->raid_disk
;
6530 if (raid_disk
>= max_disks
6533 disk
= conf
->disks
+ raid_disk
;
6535 if (test_bit(Replacement
, &rdev
->flags
)) {
6536 if (disk
->replacement
)
6538 disk
->replacement
= rdev
;
6545 if (test_bit(In_sync
, &rdev
->flags
)) {
6546 char b
[BDEVNAME_SIZE
];
6547 printk(KERN_INFO
"md/raid:%s: device %s operational as raid"
6549 mdname(mddev
), bdevname(rdev
->bdev
, b
), raid_disk
);
6550 } else if (rdev
->saved_raid_disk
!= raid_disk
)
6551 /* Cannot rely on bitmap to complete recovery */
6555 conf
->level
= mddev
->new_level
;
6556 if (conf
->level
== 6) {
6557 conf
->max_degraded
= 2;
6558 if (raid6_call
.xor_syndrome
)
6559 conf
->rmw_level
= PARITY_ENABLE_RMW
;
6561 conf
->rmw_level
= PARITY_DISABLE_RMW
;
6563 conf
->max_degraded
= 1;
6564 conf
->rmw_level
= PARITY_ENABLE_RMW
;
6566 conf
->algorithm
= mddev
->new_layout
;
6567 conf
->reshape_progress
= mddev
->reshape_position
;
6568 if (conf
->reshape_progress
!= MaxSector
) {
6569 conf
->prev_chunk_sectors
= mddev
->chunk_sectors
;
6570 conf
->prev_algo
= mddev
->layout
;
6573 conf
->min_nr_stripes
= NR_STRIPES
;
6574 memory
= conf
->min_nr_stripes
* (sizeof(struct stripe_head
) +
6575 max_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
6576 atomic_set(&conf
->empty_inactive_list_nr
, NR_STRIPE_HASH_LOCKS
);
6577 if (grow_stripes(conf
, conf
->min_nr_stripes
)) {
6579 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6580 mdname(mddev
), memory
);
6583 printk(KERN_INFO
"md/raid:%s: allocated %dkB\n",
6584 mdname(mddev
), memory
);
6586 * Losing a stripe head costs more than the time to refill it,
6587 * it reduces the queue depth and so can hurt throughput.
6588 * So set it rather large, scaled by number of devices.
6590 conf
->shrinker
.seeks
= DEFAULT_SEEKS
* conf
->raid_disks
* 4;
6591 conf
->shrinker
.scan_objects
= raid5_cache_scan
;
6592 conf
->shrinker
.count_objects
= raid5_cache_count
;
6593 conf
->shrinker
.batch
= 128;
6594 conf
->shrinker
.flags
= 0;
6595 register_shrinker(&conf
->shrinker
);
6597 sprintf(pers_name
, "raid%d", mddev
->new_level
);
6598 conf
->thread
= md_register_thread(raid5d
, mddev
, pers_name
);
6599 if (!conf
->thread
) {
6601 "md/raid:%s: couldn't allocate thread.\n",
6611 return ERR_PTR(-EIO
);
6613 return ERR_PTR(-ENOMEM
);
6616 static int only_parity(int raid_disk
, int algo
, int raid_disks
, int max_degraded
)
6619 case ALGORITHM_PARITY_0
:
6620 if (raid_disk
< max_degraded
)
6623 case ALGORITHM_PARITY_N
:
6624 if (raid_disk
>= raid_disks
- max_degraded
)
6627 case ALGORITHM_PARITY_0_6
:
6628 if (raid_disk
== 0 ||
6629 raid_disk
== raid_disks
- 1)
6632 case ALGORITHM_LEFT_ASYMMETRIC_6
:
6633 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
6634 case ALGORITHM_LEFT_SYMMETRIC_6
:
6635 case ALGORITHM_RIGHT_SYMMETRIC_6
:
6636 if (raid_disk
== raid_disks
- 1)
6642 static int run(struct mddev
*mddev
)
6644 struct r5conf
*conf
;
6645 int working_disks
= 0;
6646 int dirty_parity_disks
= 0;
6647 struct md_rdev
*rdev
;
6648 sector_t reshape_offset
= 0;
6650 long long min_offset_diff
= 0;
6653 if (mddev
->recovery_cp
!= MaxSector
)
6654 printk(KERN_NOTICE
"md/raid:%s: not clean"
6655 " -- starting background reconstruction\n",
6658 rdev_for_each(rdev
, mddev
) {
6660 if (rdev
->raid_disk
< 0)
6662 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
6664 min_offset_diff
= diff
;
6666 } else if (mddev
->reshape_backwards
&&
6667 diff
< min_offset_diff
)
6668 min_offset_diff
= diff
;
6669 else if (!mddev
->reshape_backwards
&&
6670 diff
> min_offset_diff
)
6671 min_offset_diff
= diff
;
6674 if (mddev
->reshape_position
!= MaxSector
) {
6675 /* Check that we can continue the reshape.
6676 * Difficulties arise if the stripe we would write to
6677 * next is at or after the stripe we would read from next.
6678 * For a reshape that changes the number of devices, this
6679 * is only possible for a very short time, and mdadm makes
6680 * sure that time appears to have past before assembling
6681 * the array. So we fail if that time hasn't passed.
6682 * For a reshape that keeps the number of devices the same
6683 * mdadm must be monitoring the reshape can keeping the
6684 * critical areas read-only and backed up. It will start
6685 * the array in read-only mode, so we check for that.
6687 sector_t here_new
, here_old
;
6689 int max_degraded
= (mddev
->level
== 6 ? 2 : 1);
6691 if (mddev
->new_level
!= mddev
->level
) {
6692 printk(KERN_ERR
"md/raid:%s: unsupported reshape "
6693 "required - aborting.\n",
6697 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
6698 /* reshape_position must be on a new-stripe boundary, and one
6699 * further up in new geometry must map after here in old
6702 here_new
= mddev
->reshape_position
;
6703 if (sector_div(here_new
, mddev
->new_chunk_sectors
*
6704 (mddev
->raid_disks
- max_degraded
))) {
6705 printk(KERN_ERR
"md/raid:%s: reshape_position not "
6706 "on a stripe boundary\n", mdname(mddev
));
6709 reshape_offset
= here_new
* mddev
->new_chunk_sectors
;
6710 /* here_new is the stripe we will write to */
6711 here_old
= mddev
->reshape_position
;
6712 sector_div(here_old
, mddev
->chunk_sectors
*
6713 (old_disks
-max_degraded
));
6714 /* here_old is the first stripe that we might need to read
6716 if (mddev
->delta_disks
== 0) {
6717 if ((here_new
* mddev
->new_chunk_sectors
!=
6718 here_old
* mddev
->chunk_sectors
)) {
6719 printk(KERN_ERR
"md/raid:%s: reshape position is"
6720 " confused - aborting\n", mdname(mddev
));
6723 /* We cannot be sure it is safe to start an in-place
6724 * reshape. It is only safe if user-space is monitoring
6725 * and taking constant backups.
6726 * mdadm always starts a situation like this in
6727 * readonly mode so it can take control before
6728 * allowing any writes. So just check for that.
6730 if (abs(min_offset_diff
) >= mddev
->chunk_sectors
&&
6731 abs(min_offset_diff
) >= mddev
->new_chunk_sectors
)
6732 /* not really in-place - so OK */;
6733 else if (mddev
->ro
== 0) {
6734 printk(KERN_ERR
"md/raid:%s: in-place reshape "
6735 "must be started in read-only mode "
6740 } else if (mddev
->reshape_backwards
6741 ? (here_new
* mddev
->new_chunk_sectors
+ min_offset_diff
<=
6742 here_old
* mddev
->chunk_sectors
)
6743 : (here_new
* mddev
->new_chunk_sectors
>=
6744 here_old
* mddev
->chunk_sectors
+ (-min_offset_diff
))) {
6745 /* Reading from the same stripe as writing to - bad */
6746 printk(KERN_ERR
"md/raid:%s: reshape_position too early for "
6747 "auto-recovery - aborting.\n",
6751 printk(KERN_INFO
"md/raid:%s: reshape will continue\n",
6753 /* OK, we should be able to continue; */
6755 BUG_ON(mddev
->level
!= mddev
->new_level
);
6756 BUG_ON(mddev
->layout
!= mddev
->new_layout
);
6757 BUG_ON(mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
);
6758 BUG_ON(mddev
->delta_disks
!= 0);
6761 if (mddev
->private == NULL
)
6762 conf
= setup_conf(mddev
);
6764 conf
= mddev
->private;
6767 return PTR_ERR(conf
);
6769 conf
->min_offset_diff
= min_offset_diff
;
6770 mddev
->thread
= conf
->thread
;
6771 conf
->thread
= NULL
;
6772 mddev
->private = conf
;
6774 for (i
= 0; i
< conf
->raid_disks
&& conf
->previous_raid_disks
;
6776 rdev
= conf
->disks
[i
].rdev
;
6777 if (!rdev
&& conf
->disks
[i
].replacement
) {
6778 /* The replacement is all we have yet */
6779 rdev
= conf
->disks
[i
].replacement
;
6780 conf
->disks
[i
].replacement
= NULL
;
6781 clear_bit(Replacement
, &rdev
->flags
);
6782 conf
->disks
[i
].rdev
= rdev
;
6786 if (conf
->disks
[i
].replacement
&&
6787 conf
->reshape_progress
!= MaxSector
) {
6788 /* replacements and reshape simply do not mix. */
6789 printk(KERN_ERR
"md: cannot handle concurrent "
6790 "replacement and reshape.\n");
6793 if (test_bit(In_sync
, &rdev
->flags
)) {
6797 /* This disc is not fully in-sync. However if it
6798 * just stored parity (beyond the recovery_offset),
6799 * when we don't need to be concerned about the
6800 * array being dirty.
6801 * When reshape goes 'backwards', we never have
6802 * partially completed devices, so we only need
6803 * to worry about reshape going forwards.
6805 /* Hack because v0.91 doesn't store recovery_offset properly. */
6806 if (mddev
->major_version
== 0 &&
6807 mddev
->minor_version
> 90)
6808 rdev
->recovery_offset
= reshape_offset
;
6810 if (rdev
->recovery_offset
< reshape_offset
) {
6811 /* We need to check old and new layout */
6812 if (!only_parity(rdev
->raid_disk
,
6815 conf
->max_degraded
))
6818 if (!only_parity(rdev
->raid_disk
,
6820 conf
->previous_raid_disks
,
6821 conf
->max_degraded
))
6823 dirty_parity_disks
++;
6827 * 0 for a fully functional array, 1 or 2 for a degraded array.
6829 mddev
->degraded
= calc_degraded(conf
);
6831 if (has_failed(conf
)) {
6832 printk(KERN_ERR
"md/raid:%s: not enough operational devices"
6833 " (%d/%d failed)\n",
6834 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
6838 /* device size must be a multiple of chunk size */
6839 mddev
->dev_sectors
&= ~(mddev
->chunk_sectors
- 1);
6840 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
6842 if (mddev
->degraded
> dirty_parity_disks
&&
6843 mddev
->recovery_cp
!= MaxSector
) {
6844 if (mddev
->ok_start_degraded
)
6846 "md/raid:%s: starting dirty degraded array"
6847 " - data corruption possible.\n",
6851 "md/raid:%s: cannot start dirty degraded array.\n",
6857 if (mddev
->degraded
== 0)
6858 printk(KERN_INFO
"md/raid:%s: raid level %d active with %d out of %d"
6859 " devices, algorithm %d\n", mdname(mddev
), conf
->level
,
6860 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
6863 printk(KERN_ALERT
"md/raid:%s: raid level %d active with %d"
6864 " out of %d devices, algorithm %d\n",
6865 mdname(mddev
), conf
->level
,
6866 mddev
->raid_disks
- mddev
->degraded
,
6867 mddev
->raid_disks
, mddev
->new_layout
);
6869 print_raid5_conf(conf
);
6871 if (conf
->reshape_progress
!= MaxSector
) {
6872 conf
->reshape_safe
= conf
->reshape_progress
;
6873 atomic_set(&conf
->reshape_stripes
, 0);
6874 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
6875 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
6876 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
6877 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
6878 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
6882 /* Ok, everything is just fine now */
6883 if (mddev
->to_remove
== &raid5_attrs_group
)
6884 mddev
->to_remove
= NULL
;
6885 else if (mddev
->kobj
.sd
&&
6886 sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
6888 "raid5: failed to create sysfs attributes for %s\n",
6890 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
6894 bool discard_supported
= true;
6895 /* read-ahead size must cover two whole stripes, which
6896 * is 2 * (datadisks) * chunksize where 'n' is the
6897 * number of raid devices
6899 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
6900 int stripe
= data_disks
*
6901 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
6902 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
6903 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
6905 chunk_size
= mddev
->chunk_sectors
<< 9;
6906 blk_queue_io_min(mddev
->queue
, chunk_size
);
6907 blk_queue_io_opt(mddev
->queue
, chunk_size
*
6908 (conf
->raid_disks
- conf
->max_degraded
));
6909 mddev
->queue
->limits
.raid_partial_stripes_expensive
= 1;
6911 * We can only discard a whole stripe. It doesn't make sense to
6912 * discard data disk but write parity disk
6914 stripe
= stripe
* PAGE_SIZE
;
6915 /* Round up to power of 2, as discard handling
6916 * currently assumes that */
6917 while ((stripe
-1) & stripe
)
6918 stripe
= (stripe
| (stripe
-1)) + 1;
6919 mddev
->queue
->limits
.discard_alignment
= stripe
;
6920 mddev
->queue
->limits
.discard_granularity
= stripe
;
6923 * We use 16-bit counter of active stripes in bi_phys_segments
6924 * (minus one for over-loaded initialization)
6926 blk_queue_max_hw_sectors(mddev
->queue
, 0xfffe * STRIPE_SECTORS
);
6927 blk_queue_max_discard_sectors(mddev
->queue
,
6928 0xfffe * STRIPE_SECTORS
);
6931 * unaligned part of discard request will be ignored, so can't
6932 * guarantee discard_zeroes_data
6934 mddev
->queue
->limits
.discard_zeroes_data
= 0;
6936 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
6938 rdev_for_each(rdev
, mddev
) {
6939 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
6940 rdev
->data_offset
<< 9);
6941 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
6942 rdev
->new_data_offset
<< 9);
6944 * discard_zeroes_data is required, otherwise data
6945 * could be lost. Consider a scenario: discard a stripe
6946 * (the stripe could be inconsistent if
6947 * discard_zeroes_data is 0); write one disk of the
6948 * stripe (the stripe could be inconsistent again
6949 * depending on which disks are used to calculate
6950 * parity); the disk is broken; The stripe data of this
6953 if (!blk_queue_discard(bdev_get_queue(rdev
->bdev
)) ||
6954 !bdev_get_queue(rdev
->bdev
)->
6955 limits
.discard_zeroes_data
)
6956 discard_supported
= false;
6957 /* Unfortunately, discard_zeroes_data is not currently
6958 * a guarantee - just a hint. So we only allow DISCARD
6959 * if the sysadmin has confirmed that only safe devices
6960 * are in use by setting a module parameter.
6962 if (!devices_handle_discard_safely
) {
6963 if (discard_supported
) {
6964 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6965 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6967 discard_supported
= false;
6971 if (discard_supported
&&
6972 mddev
->queue
->limits
.max_discard_sectors
>= (stripe
>> 9) &&
6973 mddev
->queue
->limits
.discard_granularity
>= stripe
)
6974 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
6977 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
6983 md_unregister_thread(&mddev
->thread
);
6984 print_raid5_conf(conf
);
6986 mddev
->private = NULL
;
6987 printk(KERN_ALERT
"md/raid:%s: failed to run raid set.\n", mdname(mddev
));
6991 static void raid5_free(struct mddev
*mddev
, void *priv
)
6993 struct r5conf
*conf
= priv
;
6996 mddev
->to_remove
= &raid5_attrs_group
;
6999 static void status(struct seq_file
*seq
, struct mddev
*mddev
)
7001 struct r5conf
*conf
= mddev
->private;
7004 seq_printf(seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
,
7005 mddev
->chunk_sectors
/ 2, mddev
->layout
);
7006 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
7007 for (i
= 0; i
< conf
->raid_disks
; i
++)
7008 seq_printf (seq
, "%s",
7009 conf
->disks
[i
].rdev
&&
7010 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
7011 seq_printf (seq
, "]");
7014 static void print_raid5_conf (struct r5conf
*conf
)
7017 struct disk_info
*tmp
;
7019 printk(KERN_DEBUG
"RAID conf printout:\n");
7021 printk("(conf==NULL)\n");
7024 printk(KERN_DEBUG
" --- level:%d rd:%d wd:%d\n", conf
->level
,
7026 conf
->raid_disks
- conf
->mddev
->degraded
);
7028 for (i
= 0; i
< conf
->raid_disks
; i
++) {
7029 char b
[BDEVNAME_SIZE
];
7030 tmp
= conf
->disks
+ i
;
7032 printk(KERN_DEBUG
" disk %d, o:%d, dev:%s\n",
7033 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
7034 bdevname(tmp
->rdev
->bdev
, b
));
7038 static int raid5_spare_active(struct mddev
*mddev
)
7041 struct r5conf
*conf
= mddev
->private;
7042 struct disk_info
*tmp
;
7044 unsigned long flags
;
7046 for (i
= 0; i
< conf
->raid_disks
; i
++) {
7047 tmp
= conf
->disks
+ i
;
7048 if (tmp
->replacement
7049 && tmp
->replacement
->recovery_offset
== MaxSector
7050 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
7051 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
7052 /* Replacement has just become active. */
7054 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
7057 /* Replaced device not technically faulty,
7058 * but we need to be sure it gets removed
7059 * and never re-added.
7061 set_bit(Faulty
, &tmp
->rdev
->flags
);
7062 sysfs_notify_dirent_safe(
7063 tmp
->rdev
->sysfs_state
);
7065 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
7066 } else if (tmp
->rdev
7067 && tmp
->rdev
->recovery_offset
== MaxSector
7068 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
7069 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
7071 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
7074 spin_lock_irqsave(&conf
->device_lock
, flags
);
7075 mddev
->degraded
= calc_degraded(conf
);
7076 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
7077 print_raid5_conf(conf
);
7081 static int raid5_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
7083 struct r5conf
*conf
= mddev
->private;
7085 int number
= rdev
->raid_disk
;
7086 struct md_rdev
**rdevp
;
7087 struct disk_info
*p
= conf
->disks
+ number
;
7089 print_raid5_conf(conf
);
7090 if (rdev
== p
->rdev
)
7092 else if (rdev
== p
->replacement
)
7093 rdevp
= &p
->replacement
;
7097 if (number
>= conf
->raid_disks
&&
7098 conf
->reshape_progress
== MaxSector
)
7099 clear_bit(In_sync
, &rdev
->flags
);
7101 if (test_bit(In_sync
, &rdev
->flags
) ||
7102 atomic_read(&rdev
->nr_pending
)) {
7106 /* Only remove non-faulty devices if recovery
7109 if (!test_bit(Faulty
, &rdev
->flags
) &&
7110 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
7111 !has_failed(conf
) &&
7112 (!p
->replacement
|| p
->replacement
== rdev
) &&
7113 number
< conf
->raid_disks
) {
7119 if (atomic_read(&rdev
->nr_pending
)) {
7120 /* lost the race, try later */
7123 } else if (p
->replacement
) {
7124 /* We must have just cleared 'rdev' */
7125 p
->rdev
= p
->replacement
;
7126 clear_bit(Replacement
, &p
->replacement
->flags
);
7127 smp_mb(); /* Make sure other CPUs may see both as identical
7128 * but will never see neither - if they are careful
7130 p
->replacement
= NULL
;
7131 clear_bit(WantReplacement
, &rdev
->flags
);
7133 /* We might have just removed the Replacement as faulty-
7134 * clear the bit just in case
7136 clear_bit(WantReplacement
, &rdev
->flags
);
7139 print_raid5_conf(conf
);
7143 static int raid5_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
7145 struct r5conf
*conf
= mddev
->private;
7148 struct disk_info
*p
;
7150 int last
= conf
->raid_disks
- 1;
7152 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
7155 if (rdev
->saved_raid_disk
< 0 && has_failed(conf
))
7156 /* no point adding a device */
7159 if (rdev
->raid_disk
>= 0)
7160 first
= last
= rdev
->raid_disk
;
7163 * find the disk ... but prefer rdev->saved_raid_disk
7166 if (rdev
->saved_raid_disk
>= 0 &&
7167 rdev
->saved_raid_disk
>= first
&&
7168 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
7169 first
= rdev
->saved_raid_disk
;
7171 for (disk
= first
; disk
<= last
; disk
++) {
7172 p
= conf
->disks
+ disk
;
7173 if (p
->rdev
== NULL
) {
7174 clear_bit(In_sync
, &rdev
->flags
);
7175 rdev
->raid_disk
= disk
;
7177 if (rdev
->saved_raid_disk
!= disk
)
7179 rcu_assign_pointer(p
->rdev
, rdev
);
7183 for (disk
= first
; disk
<= last
; disk
++) {
7184 p
= conf
->disks
+ disk
;
7185 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
7186 p
->replacement
== NULL
) {
7187 clear_bit(In_sync
, &rdev
->flags
);
7188 set_bit(Replacement
, &rdev
->flags
);
7189 rdev
->raid_disk
= disk
;
7192 rcu_assign_pointer(p
->replacement
, rdev
);
7197 print_raid5_conf(conf
);
7201 static int raid5_resize(struct mddev
*mddev
, sector_t sectors
)
7203 /* no resync is happening, and there is enough space
7204 * on all devices, so we can resize.
7205 * We need to make sure resync covers any new space.
7206 * If the array is shrinking we should possibly wait until
7207 * any io in the removed space completes, but it hardly seems
7211 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
7212 newsize
= raid5_size(mddev
, sectors
, mddev
->raid_disks
);
7213 if (mddev
->external_size
&&
7214 mddev
->array_sectors
> newsize
)
7216 if (mddev
->bitmap
) {
7217 int ret
= bitmap_resize(mddev
->bitmap
, sectors
, 0, 0);
7221 md_set_array_sectors(mddev
, newsize
);
7222 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
7223 revalidate_disk(mddev
->gendisk
);
7224 if (sectors
> mddev
->dev_sectors
&&
7225 mddev
->recovery_cp
> mddev
->dev_sectors
) {
7226 mddev
->recovery_cp
= mddev
->dev_sectors
;
7227 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
7229 mddev
->dev_sectors
= sectors
;
7230 mddev
->resync_max_sectors
= sectors
;
7234 static int check_stripe_cache(struct mddev
*mddev
)
7236 /* Can only proceed if there are plenty of stripe_heads.
7237 * We need a minimum of one full stripe,, and for sensible progress
7238 * it is best to have about 4 times that.
7239 * If we require 4 times, then the default 256 4K stripe_heads will
7240 * allow for chunk sizes up to 256K, which is probably OK.
7241 * If the chunk size is greater, user-space should request more
7242 * stripe_heads first.
7244 struct r5conf
*conf
= mddev
->private;
7245 if (((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
7246 > conf
->min_nr_stripes
||
7247 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
7248 > conf
->min_nr_stripes
) {
7249 printk(KERN_WARNING
"md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7251 ((max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
) << 9)
7258 static int check_reshape(struct mddev
*mddev
)
7260 struct r5conf
*conf
= mddev
->private;
7262 if (mddev
->delta_disks
== 0 &&
7263 mddev
->new_layout
== mddev
->layout
&&
7264 mddev
->new_chunk_sectors
== mddev
->chunk_sectors
)
7265 return 0; /* nothing to do */
7266 if (has_failed(conf
))
7268 if (mddev
->delta_disks
< 0 && mddev
->reshape_position
== MaxSector
) {
7269 /* We might be able to shrink, but the devices must
7270 * be made bigger first.
7271 * For raid6, 4 is the minimum size.
7272 * Otherwise 2 is the minimum
7275 if (mddev
->level
== 6)
7277 if (mddev
->raid_disks
+ mddev
->delta_disks
< min
)
7281 if (!check_stripe_cache(mddev
))
7284 if (mddev
->new_chunk_sectors
> mddev
->chunk_sectors
||
7285 mddev
->delta_disks
> 0)
7286 if (resize_chunks(conf
,
7287 conf
->previous_raid_disks
7288 + max(0, mddev
->delta_disks
),
7289 max(mddev
->new_chunk_sectors
,
7290 mddev
->chunk_sectors
)
7293 return resize_stripes(conf
, (conf
->previous_raid_disks
7294 + mddev
->delta_disks
));
7297 static int raid5_start_reshape(struct mddev
*mddev
)
7299 struct r5conf
*conf
= mddev
->private;
7300 struct md_rdev
*rdev
;
7302 unsigned long flags
;
7304 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
7307 if (!check_stripe_cache(mddev
))
7310 if (has_failed(conf
))
7313 rdev_for_each(rdev
, mddev
) {
7314 if (!test_bit(In_sync
, &rdev
->flags
)
7315 && !test_bit(Faulty
, &rdev
->flags
))
7319 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
7320 /* Not enough devices even to make a degraded array
7325 /* Refuse to reduce size of the array. Any reductions in
7326 * array size must be through explicit setting of array_size
7329 if (raid5_size(mddev
, 0, conf
->raid_disks
+ mddev
->delta_disks
)
7330 < mddev
->array_sectors
) {
7331 printk(KERN_ERR
"md/raid:%s: array size must be reduced "
7332 "before number of disks\n", mdname(mddev
));
7336 atomic_set(&conf
->reshape_stripes
, 0);
7337 spin_lock_irq(&conf
->device_lock
);
7338 write_seqcount_begin(&conf
->gen_lock
);
7339 conf
->previous_raid_disks
= conf
->raid_disks
;
7340 conf
->raid_disks
+= mddev
->delta_disks
;
7341 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
7342 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
7343 conf
->prev_algo
= conf
->algorithm
;
7344 conf
->algorithm
= mddev
->new_layout
;
7346 /* Code that selects data_offset needs to see the generation update
7347 * if reshape_progress has been set - so a memory barrier needed.
7350 if (mddev
->reshape_backwards
)
7351 conf
->reshape_progress
= raid5_size(mddev
, 0, 0);
7353 conf
->reshape_progress
= 0;
7354 conf
->reshape_safe
= conf
->reshape_progress
;
7355 write_seqcount_end(&conf
->gen_lock
);
7356 spin_unlock_irq(&conf
->device_lock
);
7358 /* Now make sure any requests that proceeded on the assumption
7359 * the reshape wasn't running - like Discard or Read - have
7362 mddev_suspend(mddev
);
7363 mddev_resume(mddev
);
7365 /* Add some new drives, as many as will fit.
7366 * We know there are enough to make the newly sized array work.
7367 * Don't add devices if we are reducing the number of
7368 * devices in the array. This is because it is not possible
7369 * to correctly record the "partially reconstructed" state of
7370 * such devices during the reshape and confusion could result.
7372 if (mddev
->delta_disks
>= 0) {
7373 rdev_for_each(rdev
, mddev
)
7374 if (rdev
->raid_disk
< 0 &&
7375 !test_bit(Faulty
, &rdev
->flags
)) {
7376 if (raid5_add_disk(mddev
, rdev
) == 0) {
7378 >= conf
->previous_raid_disks
)
7379 set_bit(In_sync
, &rdev
->flags
);
7381 rdev
->recovery_offset
= 0;
7383 if (sysfs_link_rdev(mddev
, rdev
))
7384 /* Failure here is OK */;
7386 } else if (rdev
->raid_disk
>= conf
->previous_raid_disks
7387 && !test_bit(Faulty
, &rdev
->flags
)) {
7388 /* This is a spare that was manually added */
7389 set_bit(In_sync
, &rdev
->flags
);
7392 /* When a reshape changes the number of devices,
7393 * ->degraded is measured against the larger of the
7394 * pre and post number of devices.
7396 spin_lock_irqsave(&conf
->device_lock
, flags
);
7397 mddev
->degraded
= calc_degraded(conf
);
7398 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
7400 mddev
->raid_disks
= conf
->raid_disks
;
7401 mddev
->reshape_position
= conf
->reshape_progress
;
7402 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
7404 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
7405 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
7406 clear_bit(MD_RECOVERY_DONE
, &mddev
->recovery
);
7407 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
7408 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
7409 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
7411 if (!mddev
->sync_thread
) {
7412 mddev
->recovery
= 0;
7413 spin_lock_irq(&conf
->device_lock
);
7414 write_seqcount_begin(&conf
->gen_lock
);
7415 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
7416 mddev
->new_chunk_sectors
=
7417 conf
->chunk_sectors
= conf
->prev_chunk_sectors
;
7418 mddev
->new_layout
= conf
->algorithm
= conf
->prev_algo
;
7419 rdev_for_each(rdev
, mddev
)
7420 rdev
->new_data_offset
= rdev
->data_offset
;
7422 conf
->generation
--;
7423 conf
->reshape_progress
= MaxSector
;
7424 mddev
->reshape_position
= MaxSector
;
7425 write_seqcount_end(&conf
->gen_lock
);
7426 spin_unlock_irq(&conf
->device_lock
);
7429 conf
->reshape_checkpoint
= jiffies
;
7430 md_wakeup_thread(mddev
->sync_thread
);
7431 md_new_event(mddev
);
7435 /* This is called from the reshape thread and should make any
7436 * changes needed in 'conf'
7438 static void end_reshape(struct r5conf
*conf
)
7441 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
7442 struct md_rdev
*rdev
;
7444 spin_lock_irq(&conf
->device_lock
);
7445 conf
->previous_raid_disks
= conf
->raid_disks
;
7446 rdev_for_each(rdev
, conf
->mddev
)
7447 rdev
->data_offset
= rdev
->new_data_offset
;
7449 conf
->reshape_progress
= MaxSector
;
7450 spin_unlock_irq(&conf
->device_lock
);
7451 wake_up(&conf
->wait_for_overlap
);
7453 /* read-ahead size must cover two whole stripes, which is
7454 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7456 if (conf
->mddev
->queue
) {
7457 int data_disks
= conf
->raid_disks
- conf
->max_degraded
;
7458 int stripe
= data_disks
* ((conf
->chunk_sectors
<< 9)
7460 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
7461 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
7466 /* This is called from the raid5d thread with mddev_lock held.
7467 * It makes config changes to the device.
7469 static void raid5_finish_reshape(struct mddev
*mddev
)
7471 struct r5conf
*conf
= mddev
->private;
7473 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
7475 if (mddev
->delta_disks
> 0) {
7476 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
7477 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
7478 revalidate_disk(mddev
->gendisk
);
7481 spin_lock_irq(&conf
->device_lock
);
7482 mddev
->degraded
= calc_degraded(conf
);
7483 spin_unlock_irq(&conf
->device_lock
);
7484 for (d
= conf
->raid_disks
;
7485 d
< conf
->raid_disks
- mddev
->delta_disks
;
7487 struct md_rdev
*rdev
= conf
->disks
[d
].rdev
;
7489 clear_bit(In_sync
, &rdev
->flags
);
7490 rdev
= conf
->disks
[d
].replacement
;
7492 clear_bit(In_sync
, &rdev
->flags
);
7495 mddev
->layout
= conf
->algorithm
;
7496 mddev
->chunk_sectors
= conf
->chunk_sectors
;
7497 mddev
->reshape_position
= MaxSector
;
7498 mddev
->delta_disks
= 0;
7499 mddev
->reshape_backwards
= 0;
7503 static void raid5_quiesce(struct mddev
*mddev
, int state
)
7505 struct r5conf
*conf
= mddev
->private;
7508 case 2: /* resume for a suspend */
7509 wake_up(&conf
->wait_for_overlap
);
7512 case 1: /* stop all writes */
7513 lock_all_device_hash_locks_irq(conf
);
7514 /* '2' tells resync/reshape to pause so that all
7515 * active stripes can drain
7518 wait_event_cmd(conf
->wait_for_stripe
,
7519 atomic_read(&conf
->active_stripes
) == 0 &&
7520 atomic_read(&conf
->active_aligned_reads
) == 0,
7521 unlock_all_device_hash_locks_irq(conf
),
7522 lock_all_device_hash_locks_irq(conf
));
7524 unlock_all_device_hash_locks_irq(conf
);
7525 /* allow reshape to continue */
7526 wake_up(&conf
->wait_for_overlap
);
7529 case 0: /* re-enable writes */
7530 lock_all_device_hash_locks_irq(conf
);
7532 wake_up(&conf
->wait_for_stripe
);
7533 wake_up(&conf
->wait_for_overlap
);
7534 unlock_all_device_hash_locks_irq(conf
);
7539 static void *raid45_takeover_raid0(struct mddev
*mddev
, int level
)
7541 struct r0conf
*raid0_conf
= mddev
->private;
7544 /* for raid0 takeover only one zone is supported */
7545 if (raid0_conf
->nr_strip_zones
> 1) {
7546 printk(KERN_ERR
"md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7548 return ERR_PTR(-EINVAL
);
7551 sectors
= raid0_conf
->strip_zone
[0].zone_end
;
7552 sector_div(sectors
, raid0_conf
->strip_zone
[0].nb_dev
);
7553 mddev
->dev_sectors
= sectors
;
7554 mddev
->new_level
= level
;
7555 mddev
->new_layout
= ALGORITHM_PARITY_N
;
7556 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
7557 mddev
->raid_disks
+= 1;
7558 mddev
->delta_disks
= 1;
7559 /* make sure it will be not marked as dirty */
7560 mddev
->recovery_cp
= MaxSector
;
7562 return setup_conf(mddev
);
7565 static void *raid5_takeover_raid1(struct mddev
*mddev
)
7569 if (mddev
->raid_disks
!= 2 ||
7570 mddev
->degraded
> 1)
7571 return ERR_PTR(-EINVAL
);
7573 /* Should check if there are write-behind devices? */
7575 chunksect
= 64*2; /* 64K by default */
7577 /* The array must be an exact multiple of chunksize */
7578 while (chunksect
&& (mddev
->array_sectors
& (chunksect
-1)))
7581 if ((chunksect
<<9) < STRIPE_SIZE
)
7582 /* array size does not allow a suitable chunk size */
7583 return ERR_PTR(-EINVAL
);
7585 mddev
->new_level
= 5;
7586 mddev
->new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
7587 mddev
->new_chunk_sectors
= chunksect
;
7589 return setup_conf(mddev
);
7592 static void *raid5_takeover_raid6(struct mddev
*mddev
)
7596 switch (mddev
->layout
) {
7597 case ALGORITHM_LEFT_ASYMMETRIC_6
:
7598 new_layout
= ALGORITHM_LEFT_ASYMMETRIC
;
7600 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
7601 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC
;
7603 case ALGORITHM_LEFT_SYMMETRIC_6
:
7604 new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
7606 case ALGORITHM_RIGHT_SYMMETRIC_6
:
7607 new_layout
= ALGORITHM_RIGHT_SYMMETRIC
;
7609 case ALGORITHM_PARITY_0_6
:
7610 new_layout
= ALGORITHM_PARITY_0
;
7612 case ALGORITHM_PARITY_N
:
7613 new_layout
= ALGORITHM_PARITY_N
;
7616 return ERR_PTR(-EINVAL
);
7618 mddev
->new_level
= 5;
7619 mddev
->new_layout
= new_layout
;
7620 mddev
->delta_disks
= -1;
7621 mddev
->raid_disks
-= 1;
7622 return setup_conf(mddev
);
7625 static int raid5_check_reshape(struct mddev
*mddev
)
7627 /* For a 2-drive array, the layout and chunk size can be changed
7628 * immediately as not restriping is needed.
7629 * For larger arrays we record the new value - after validation
7630 * to be used by a reshape pass.
7632 struct r5conf
*conf
= mddev
->private;
7633 int new_chunk
= mddev
->new_chunk_sectors
;
7635 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid5(mddev
->new_layout
))
7637 if (new_chunk
> 0) {
7638 if (!is_power_of_2(new_chunk
))
7640 if (new_chunk
< (PAGE_SIZE
>>9))
7642 if (mddev
->array_sectors
& (new_chunk
-1))
7643 /* not factor of array size */
7647 /* They look valid */
7649 if (mddev
->raid_disks
== 2) {
7650 /* can make the change immediately */
7651 if (mddev
->new_layout
>= 0) {
7652 conf
->algorithm
= mddev
->new_layout
;
7653 mddev
->layout
= mddev
->new_layout
;
7655 if (new_chunk
> 0) {
7656 conf
->chunk_sectors
= new_chunk
;
7657 mddev
->chunk_sectors
= new_chunk
;
7659 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
7660 md_wakeup_thread(mddev
->thread
);
7662 return check_reshape(mddev
);
7665 static int raid6_check_reshape(struct mddev
*mddev
)
7667 int new_chunk
= mddev
->new_chunk_sectors
;
7669 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid6(mddev
->new_layout
))
7671 if (new_chunk
> 0) {
7672 if (!is_power_of_2(new_chunk
))
7674 if (new_chunk
< (PAGE_SIZE
>> 9))
7676 if (mddev
->array_sectors
& (new_chunk
-1))
7677 /* not factor of array size */
7681 /* They look valid */
7682 return check_reshape(mddev
);
7685 static void *raid5_takeover(struct mddev
*mddev
)
7687 /* raid5 can take over:
7688 * raid0 - if there is only one strip zone - make it a raid4 layout
7689 * raid1 - if there are two drives. We need to know the chunk size
7690 * raid4 - trivial - just use a raid4 layout.
7691 * raid6 - Providing it is a *_6 layout
7693 if (mddev
->level
== 0)
7694 return raid45_takeover_raid0(mddev
, 5);
7695 if (mddev
->level
== 1)
7696 return raid5_takeover_raid1(mddev
);
7697 if (mddev
->level
== 4) {
7698 mddev
->new_layout
= ALGORITHM_PARITY_N
;
7699 mddev
->new_level
= 5;
7700 return setup_conf(mddev
);
7702 if (mddev
->level
== 6)
7703 return raid5_takeover_raid6(mddev
);
7705 return ERR_PTR(-EINVAL
);
7708 static void *raid4_takeover(struct mddev
*mddev
)
7710 /* raid4 can take over:
7711 * raid0 - if there is only one strip zone
7712 * raid5 - if layout is right
7714 if (mddev
->level
== 0)
7715 return raid45_takeover_raid0(mddev
, 4);
7716 if (mddev
->level
== 5 &&
7717 mddev
->layout
== ALGORITHM_PARITY_N
) {
7718 mddev
->new_layout
= 0;
7719 mddev
->new_level
= 4;
7720 return setup_conf(mddev
);
7722 return ERR_PTR(-EINVAL
);
7725 static struct md_personality raid5_personality
;
7727 static void *raid6_takeover(struct mddev
*mddev
)
7729 /* Currently can only take over a raid5. We map the
7730 * personality to an equivalent raid6 personality
7731 * with the Q block at the end.
7735 if (mddev
->pers
!= &raid5_personality
)
7736 return ERR_PTR(-EINVAL
);
7737 if (mddev
->degraded
> 1)
7738 return ERR_PTR(-EINVAL
);
7739 if (mddev
->raid_disks
> 253)
7740 return ERR_PTR(-EINVAL
);
7741 if (mddev
->raid_disks
< 3)
7742 return ERR_PTR(-EINVAL
);
7744 switch (mddev
->layout
) {
7745 case ALGORITHM_LEFT_ASYMMETRIC
:
7746 new_layout
= ALGORITHM_LEFT_ASYMMETRIC_6
;
7748 case ALGORITHM_RIGHT_ASYMMETRIC
:
7749 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC_6
;
7751 case ALGORITHM_LEFT_SYMMETRIC
:
7752 new_layout
= ALGORITHM_LEFT_SYMMETRIC_6
;
7754 case ALGORITHM_RIGHT_SYMMETRIC
:
7755 new_layout
= ALGORITHM_RIGHT_SYMMETRIC_6
;
7757 case ALGORITHM_PARITY_0
:
7758 new_layout
= ALGORITHM_PARITY_0_6
;
7760 case ALGORITHM_PARITY_N
:
7761 new_layout
= ALGORITHM_PARITY_N
;
7764 return ERR_PTR(-EINVAL
);
7766 mddev
->new_level
= 6;
7767 mddev
->new_layout
= new_layout
;
7768 mddev
->delta_disks
= 1;
7769 mddev
->raid_disks
+= 1;
7770 return setup_conf(mddev
);
7773 static struct md_personality raid6_personality
=
7777 .owner
= THIS_MODULE
,
7778 .make_request
= make_request
,
7782 .error_handler
= error
,
7783 .hot_add_disk
= raid5_add_disk
,
7784 .hot_remove_disk
= raid5_remove_disk
,
7785 .spare_active
= raid5_spare_active
,
7786 .sync_request
= sync_request
,
7787 .resize
= raid5_resize
,
7789 .check_reshape
= raid6_check_reshape
,
7790 .start_reshape
= raid5_start_reshape
,
7791 .finish_reshape
= raid5_finish_reshape
,
7792 .quiesce
= raid5_quiesce
,
7793 .takeover
= raid6_takeover
,
7794 .congested
= raid5_congested
,
7795 .mergeable_bvec
= raid5_mergeable_bvec
,
7797 static struct md_personality raid5_personality
=
7801 .owner
= THIS_MODULE
,
7802 .make_request
= make_request
,
7806 .error_handler
= error
,
7807 .hot_add_disk
= raid5_add_disk
,
7808 .hot_remove_disk
= raid5_remove_disk
,
7809 .spare_active
= raid5_spare_active
,
7810 .sync_request
= sync_request
,
7811 .resize
= raid5_resize
,
7813 .check_reshape
= raid5_check_reshape
,
7814 .start_reshape
= raid5_start_reshape
,
7815 .finish_reshape
= raid5_finish_reshape
,
7816 .quiesce
= raid5_quiesce
,
7817 .takeover
= raid5_takeover
,
7818 .congested
= raid5_congested
,
7819 .mergeable_bvec
= raid5_mergeable_bvec
,
7822 static struct md_personality raid4_personality
=
7826 .owner
= THIS_MODULE
,
7827 .make_request
= make_request
,
7831 .error_handler
= error
,
7832 .hot_add_disk
= raid5_add_disk
,
7833 .hot_remove_disk
= raid5_remove_disk
,
7834 .spare_active
= raid5_spare_active
,
7835 .sync_request
= sync_request
,
7836 .resize
= raid5_resize
,
7838 .check_reshape
= raid5_check_reshape
,
7839 .start_reshape
= raid5_start_reshape
,
7840 .finish_reshape
= raid5_finish_reshape
,
7841 .quiesce
= raid5_quiesce
,
7842 .takeover
= raid4_takeover
,
7843 .congested
= raid5_congested
,
7844 .mergeable_bvec
= raid5_mergeable_bvec
,
7847 static int __init
raid5_init(void)
7849 raid5_wq
= alloc_workqueue("raid5wq",
7850 WQ_UNBOUND
|WQ_MEM_RECLAIM
|WQ_CPU_INTENSIVE
|WQ_SYSFS
, 0);
7853 register_md_personality(&raid6_personality
);
7854 register_md_personality(&raid5_personality
);
7855 register_md_personality(&raid4_personality
);
7859 static void raid5_exit(void)
7861 unregister_md_personality(&raid6_personality
);
7862 unregister_md_personality(&raid5_personality
);
7863 unregister_md_personality(&raid4_personality
);
7864 destroy_workqueue(raid5_wq
);
7867 module_init(raid5_init
);
7868 module_exit(raid5_exit
);
7869 MODULE_LICENSE("GPL");
7870 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7871 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7872 MODULE_ALIAS("md-raid5");
7873 MODULE_ALIAS("md-raid4");
7874 MODULE_ALIAS("md-level-5");
7875 MODULE_ALIAS("md-level-4");
7876 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7877 MODULE_ALIAS("md-raid6");
7878 MODULE_ALIAS("md-level-6");
7880 /* This used to be two separate modules, they were: */
7881 MODULE_ALIAS("raid5");
7882 MODULE_ALIAS("raid6");