2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
38 #include "transaction.h"
39 #include "btrfs_inode.h"
41 #include "print-tree.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
54 #include <asm/cpufeature.h>
57 static const struct extent_io_ops btree_extent_io_ops
;
58 static void end_workqueue_fn(struct btrfs_work
*work
);
59 static void free_fs_root(struct btrfs_root
*root
);
60 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
62 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
64 struct btrfs_root
*root
);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
66 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
67 struct extent_io_tree
*dirty_pages
,
69 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
70 struct extent_io_tree
*pinned_extents
);
71 static int btrfs_cleanup_transaction(struct btrfs_root
*root
);
72 static void btrfs_error_commit_super(struct btrfs_root
*root
);
75 * btrfs_end_io_wq structs are used to do processing in task context when an IO
76 * is complete. This is used during reads to verify checksums, and it is used
77 * by writes to insert metadata for new file extents after IO is complete.
79 struct btrfs_end_io_wq
{
83 struct btrfs_fs_info
*info
;
85 enum btrfs_wq_endio_type metadata
;
86 struct list_head list
;
87 struct btrfs_work work
;
90 static struct kmem_cache
*btrfs_end_io_wq_cache
;
92 int __init
btrfs_end_io_wq_init(void)
94 btrfs_end_io_wq_cache
= kmem_cache_create("btrfs_end_io_wq",
95 sizeof(struct btrfs_end_io_wq
),
97 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
99 if (!btrfs_end_io_wq_cache
)
104 void btrfs_end_io_wq_exit(void)
106 if (btrfs_end_io_wq_cache
)
107 kmem_cache_destroy(btrfs_end_io_wq_cache
);
111 * async submit bios are used to offload expensive checksumming
112 * onto the worker threads. They checksum file and metadata bios
113 * just before they are sent down the IO stack.
115 struct async_submit_bio
{
118 struct list_head list
;
119 extent_submit_bio_hook_t
*submit_bio_start
;
120 extent_submit_bio_hook_t
*submit_bio_done
;
123 unsigned long bio_flags
;
125 * bio_offset is optional, can be used if the pages in the bio
126 * can't tell us where in the file the bio should go
129 struct btrfs_work work
;
134 * Lockdep class keys for extent_buffer->lock's in this root. For a given
135 * eb, the lockdep key is determined by the btrfs_root it belongs to and
136 * the level the eb occupies in the tree.
138 * Different roots are used for different purposes and may nest inside each
139 * other and they require separate keysets. As lockdep keys should be
140 * static, assign keysets according to the purpose of the root as indicated
141 * by btrfs_root->objectid. This ensures that all special purpose roots
142 * have separate keysets.
144 * Lock-nesting across peer nodes is always done with the immediate parent
145 * node locked thus preventing deadlock. As lockdep doesn't know this, use
146 * subclass to avoid triggering lockdep warning in such cases.
148 * The key is set by the readpage_end_io_hook after the buffer has passed
149 * csum validation but before the pages are unlocked. It is also set by
150 * btrfs_init_new_buffer on freshly allocated blocks.
152 * We also add a check to make sure the highest level of the tree is the
153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
154 * needs update as well.
156 #ifdef CONFIG_DEBUG_LOCK_ALLOC
157 # if BTRFS_MAX_LEVEL != 8
161 static struct btrfs_lockdep_keyset
{
162 u64 id
; /* root objectid */
163 const char *name_stem
; /* lock name stem */
164 char names
[BTRFS_MAX_LEVEL
+ 1][20];
165 struct lock_class_key keys
[BTRFS_MAX_LEVEL
+ 1];
166 } btrfs_lockdep_keysets
[] = {
167 { .id
= BTRFS_ROOT_TREE_OBJECTID
, .name_stem
= "root" },
168 { .id
= BTRFS_EXTENT_TREE_OBJECTID
, .name_stem
= "extent" },
169 { .id
= BTRFS_CHUNK_TREE_OBJECTID
, .name_stem
= "chunk" },
170 { .id
= BTRFS_DEV_TREE_OBJECTID
, .name_stem
= "dev" },
171 { .id
= BTRFS_FS_TREE_OBJECTID
, .name_stem
= "fs" },
172 { .id
= BTRFS_CSUM_TREE_OBJECTID
, .name_stem
= "csum" },
173 { .id
= BTRFS_QUOTA_TREE_OBJECTID
, .name_stem
= "quota" },
174 { .id
= BTRFS_TREE_LOG_OBJECTID
, .name_stem
= "log" },
175 { .id
= BTRFS_TREE_RELOC_OBJECTID
, .name_stem
= "treloc" },
176 { .id
= BTRFS_DATA_RELOC_TREE_OBJECTID
, .name_stem
= "dreloc" },
177 { .id
= BTRFS_UUID_TREE_OBJECTID
, .name_stem
= "uuid" },
178 { .id
= 0, .name_stem
= "tree" },
181 void __init
btrfs_init_lockdep(void)
185 /* initialize lockdep class names */
186 for (i
= 0; i
< ARRAY_SIZE(btrfs_lockdep_keysets
); i
++) {
187 struct btrfs_lockdep_keyset
*ks
= &btrfs_lockdep_keysets
[i
];
189 for (j
= 0; j
< ARRAY_SIZE(ks
->names
); j
++)
190 snprintf(ks
->names
[j
], sizeof(ks
->names
[j
]),
191 "btrfs-%s-%02d", ks
->name_stem
, j
);
195 void btrfs_set_buffer_lockdep_class(u64 objectid
, struct extent_buffer
*eb
,
198 struct btrfs_lockdep_keyset
*ks
;
200 BUG_ON(level
>= ARRAY_SIZE(ks
->keys
));
202 /* find the matching keyset, id 0 is the default entry */
203 for (ks
= btrfs_lockdep_keysets
; ks
->id
; ks
++)
204 if (ks
->id
== objectid
)
207 lockdep_set_class_and_name(&eb
->lock
,
208 &ks
->keys
[level
], ks
->names
[level
]);
214 * extents on the btree inode are pretty simple, there's one extent
215 * that covers the entire device
217 static struct extent_map
*btree_get_extent(struct inode
*inode
,
218 struct page
*page
, size_t pg_offset
, u64 start
, u64 len
,
221 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
222 struct extent_map
*em
;
225 read_lock(&em_tree
->lock
);
226 em
= lookup_extent_mapping(em_tree
, start
, len
);
229 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
230 read_unlock(&em_tree
->lock
);
233 read_unlock(&em_tree
->lock
);
235 em
= alloc_extent_map();
237 em
= ERR_PTR(-ENOMEM
);
242 em
->block_len
= (u64
)-1;
244 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
246 write_lock(&em_tree
->lock
);
247 ret
= add_extent_mapping(em_tree
, em
, 0);
248 if (ret
== -EEXIST
) {
250 em
= lookup_extent_mapping(em_tree
, start
, len
);
257 write_unlock(&em_tree
->lock
);
263 u32
btrfs_csum_data(char *data
, u32 seed
, size_t len
)
265 return btrfs_crc32c(seed
, data
, len
);
268 void btrfs_csum_final(u32 crc
, char *result
)
270 put_unaligned_le32(~crc
, result
);
274 * compute the csum for a btree block, and either verify it or write it
275 * into the csum field of the block.
277 static int csum_tree_block(struct btrfs_fs_info
*fs_info
,
278 struct extent_buffer
*buf
,
281 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
284 unsigned long cur_len
;
285 unsigned long offset
= BTRFS_CSUM_SIZE
;
287 unsigned long map_start
;
288 unsigned long map_len
;
291 unsigned long inline_result
;
293 len
= buf
->len
- offset
;
295 err
= map_private_extent_buffer(buf
, offset
, 32,
296 &kaddr
, &map_start
, &map_len
);
299 cur_len
= min(len
, map_len
- (offset
- map_start
));
300 crc
= btrfs_csum_data(kaddr
+ offset
- map_start
,
305 if (csum_size
> sizeof(inline_result
)) {
306 result
= kzalloc(csum_size
, GFP_NOFS
);
310 result
= (char *)&inline_result
;
313 btrfs_csum_final(crc
, result
);
316 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
319 memcpy(&found
, result
, csum_size
);
321 read_extent_buffer(buf
, &val
, 0, csum_size
);
322 printk_ratelimited(KERN_WARNING
323 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
325 fs_info
->sb
->s_id
, buf
->start
,
326 val
, found
, btrfs_header_level(buf
));
327 if (result
!= (char *)&inline_result
)
332 write_extent_buffer(buf
, result
, 0, csum_size
);
334 if (result
!= (char *)&inline_result
)
340 * we can't consider a given block up to date unless the transid of the
341 * block matches the transid in the parent node's pointer. This is how we
342 * detect blocks that either didn't get written at all or got written
343 * in the wrong place.
345 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
346 struct extent_buffer
*eb
, u64 parent_transid
,
349 struct extent_state
*cached_state
= NULL
;
351 bool need_lock
= (current
->journal_info
== BTRFS_SEND_TRANS_STUB
);
353 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
360 btrfs_tree_read_lock(eb
);
361 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
364 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
366 if (extent_buffer_uptodate(eb
) &&
367 btrfs_header_generation(eb
) == parent_transid
) {
371 printk_ratelimited(KERN_ERR
372 "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
373 eb
->fs_info
->sb
->s_id
, eb
->start
,
374 parent_transid
, btrfs_header_generation(eb
));
378 * Things reading via commit roots that don't have normal protection,
379 * like send, can have a really old block in cache that may point at a
380 * block that has been free'd and re-allocated. So don't clear uptodate
381 * if we find an eb that is under IO (dirty/writeback) because we could
382 * end up reading in the stale data and then writing it back out and
383 * making everybody very sad.
385 if (!extent_buffer_under_io(eb
))
386 clear_extent_buffer_uptodate(eb
);
388 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
389 &cached_state
, GFP_NOFS
);
391 btrfs_tree_read_unlock_blocking(eb
);
396 * Return 0 if the superblock checksum type matches the checksum value of that
397 * algorithm. Pass the raw disk superblock data.
399 static int btrfs_check_super_csum(char *raw_disk_sb
)
401 struct btrfs_super_block
*disk_sb
=
402 (struct btrfs_super_block
*)raw_disk_sb
;
403 u16 csum_type
= btrfs_super_csum_type(disk_sb
);
406 if (csum_type
== BTRFS_CSUM_TYPE_CRC32
) {
408 const int csum_size
= sizeof(crc
);
409 char result
[csum_size
];
412 * The super_block structure does not span the whole
413 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
414 * is filled with zeros and is included in the checkum.
416 crc
= btrfs_csum_data(raw_disk_sb
+ BTRFS_CSUM_SIZE
,
417 crc
, BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
);
418 btrfs_csum_final(crc
, result
);
420 if (memcmp(raw_disk_sb
, result
, csum_size
))
424 if (csum_type
>= ARRAY_SIZE(btrfs_csum_sizes
)) {
425 printk(KERN_ERR
"BTRFS: unsupported checksum algorithm %u\n",
434 * helper to read a given tree block, doing retries as required when
435 * the checksums don't match and we have alternate mirrors to try.
437 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
438 struct extent_buffer
*eb
,
439 u64 start
, u64 parent_transid
)
441 struct extent_io_tree
*io_tree
;
446 int failed_mirror
= 0;
448 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
449 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
451 ret
= read_extent_buffer_pages(io_tree
, eb
, start
,
453 btree_get_extent
, mirror_num
);
455 if (!verify_parent_transid(io_tree
, eb
,
463 * This buffer's crc is fine, but its contents are corrupted, so
464 * there is no reason to read the other copies, they won't be
467 if (test_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
))
470 num_copies
= btrfs_num_copies(root
->fs_info
,
475 if (!failed_mirror
) {
477 failed_mirror
= eb
->read_mirror
;
481 if (mirror_num
== failed_mirror
)
484 if (mirror_num
> num_copies
)
488 if (failed
&& !ret
&& failed_mirror
)
489 repair_eb_io_failure(root
, eb
, failed_mirror
);
495 * checksum a dirty tree block before IO. This has extra checks to make sure
496 * we only fill in the checksum field in the first page of a multi-page block
499 static int csum_dirty_buffer(struct btrfs_fs_info
*fs_info
, struct page
*page
)
501 u64 start
= page_offset(page
);
503 struct extent_buffer
*eb
;
505 eb
= (struct extent_buffer
*)page
->private;
506 if (page
!= eb
->pages
[0])
508 found_start
= btrfs_header_bytenr(eb
);
509 if (WARN_ON(found_start
!= start
|| !PageUptodate(page
)))
511 csum_tree_block(fs_info
, eb
, 0);
515 static int check_tree_block_fsid(struct btrfs_fs_info
*fs_info
,
516 struct extent_buffer
*eb
)
518 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
519 u8 fsid
[BTRFS_UUID_SIZE
];
522 read_extent_buffer(eb
, fsid
, btrfs_header_fsid(), BTRFS_FSID_SIZE
);
524 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
528 fs_devices
= fs_devices
->seed
;
533 #define CORRUPT(reason, eb, root, slot) \
534 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
535 "root=%llu, slot=%d", reason, \
536 btrfs_header_bytenr(eb), root->objectid, slot)
538 static noinline
int check_leaf(struct btrfs_root
*root
,
539 struct extent_buffer
*leaf
)
541 struct btrfs_key key
;
542 struct btrfs_key leaf_key
;
543 u32 nritems
= btrfs_header_nritems(leaf
);
549 /* Check the 0 item */
550 if (btrfs_item_offset_nr(leaf
, 0) + btrfs_item_size_nr(leaf
, 0) !=
551 BTRFS_LEAF_DATA_SIZE(root
)) {
552 CORRUPT("invalid item offset size pair", leaf
, root
, 0);
557 * Check to make sure each items keys are in the correct order and their
558 * offsets make sense. We only have to loop through nritems-1 because
559 * we check the current slot against the next slot, which verifies the
560 * next slot's offset+size makes sense and that the current's slot
563 for (slot
= 0; slot
< nritems
- 1; slot
++) {
564 btrfs_item_key_to_cpu(leaf
, &leaf_key
, slot
);
565 btrfs_item_key_to_cpu(leaf
, &key
, slot
+ 1);
567 /* Make sure the keys are in the right order */
568 if (btrfs_comp_cpu_keys(&leaf_key
, &key
) >= 0) {
569 CORRUPT("bad key order", leaf
, root
, slot
);
574 * Make sure the offset and ends are right, remember that the
575 * item data starts at the end of the leaf and grows towards the
578 if (btrfs_item_offset_nr(leaf
, slot
) !=
579 btrfs_item_end_nr(leaf
, slot
+ 1)) {
580 CORRUPT("slot offset bad", leaf
, root
, slot
);
585 * Check to make sure that we don't point outside of the leaf,
586 * just incase all the items are consistent to eachother, but
587 * all point outside of the leaf.
589 if (btrfs_item_end_nr(leaf
, slot
) >
590 BTRFS_LEAF_DATA_SIZE(root
)) {
591 CORRUPT("slot end outside of leaf", leaf
, root
, slot
);
599 static int btree_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
600 u64 phy_offset
, struct page
*page
,
601 u64 start
, u64 end
, int mirror
)
605 struct extent_buffer
*eb
;
606 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
613 eb
= (struct extent_buffer
*)page
->private;
615 /* the pending IO might have been the only thing that kept this buffer
616 * in memory. Make sure we have a ref for all this other checks
618 extent_buffer_get(eb
);
620 reads_done
= atomic_dec_and_test(&eb
->io_pages
);
624 eb
->read_mirror
= mirror
;
625 if (test_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
)) {
630 found_start
= btrfs_header_bytenr(eb
);
631 if (found_start
!= eb
->start
) {
632 printk_ratelimited(KERN_ERR
"BTRFS (device %s): bad tree block start "
634 eb
->fs_info
->sb
->s_id
, found_start
, eb
->start
);
638 if (check_tree_block_fsid(root
->fs_info
, eb
)) {
639 printk_ratelimited(KERN_ERR
"BTRFS (device %s): bad fsid on block %llu\n",
640 eb
->fs_info
->sb
->s_id
, eb
->start
);
644 found_level
= btrfs_header_level(eb
);
645 if (found_level
>= BTRFS_MAX_LEVEL
) {
646 btrfs_err(root
->fs_info
, "bad tree block level %d",
647 (int)btrfs_header_level(eb
));
652 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb
),
655 ret
= csum_tree_block(root
->fs_info
, eb
, 1);
662 * If this is a leaf block and it is corrupt, set the corrupt bit so
663 * that we don't try and read the other copies of this block, just
666 if (found_level
== 0 && check_leaf(root
, eb
)) {
667 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
672 set_extent_buffer_uptodate(eb
);
675 test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
676 btree_readahead_hook(root
, eb
, eb
->start
, ret
);
680 * our io error hook is going to dec the io pages
681 * again, we have to make sure it has something
684 atomic_inc(&eb
->io_pages
);
685 clear_extent_buffer_uptodate(eb
);
687 free_extent_buffer(eb
);
692 static int btree_io_failed_hook(struct page
*page
, int failed_mirror
)
694 struct extent_buffer
*eb
;
695 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
697 eb
= (struct extent_buffer
*)page
->private;
698 set_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
);
699 eb
->read_mirror
= failed_mirror
;
700 atomic_dec(&eb
->io_pages
);
701 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
702 btree_readahead_hook(root
, eb
, eb
->start
, -EIO
);
703 return -EIO
; /* we fixed nothing */
706 static void end_workqueue_bio(struct bio
*bio
, int err
)
708 struct btrfs_end_io_wq
*end_io_wq
= bio
->bi_private
;
709 struct btrfs_fs_info
*fs_info
;
710 struct btrfs_workqueue
*wq
;
711 btrfs_work_func_t func
;
713 fs_info
= end_io_wq
->info
;
714 end_io_wq
->error
= err
;
716 if (bio
->bi_rw
& REQ_WRITE
) {
717 if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_METADATA
) {
718 wq
= fs_info
->endio_meta_write_workers
;
719 func
= btrfs_endio_meta_write_helper
;
720 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_FREE_SPACE
) {
721 wq
= fs_info
->endio_freespace_worker
;
722 func
= btrfs_freespace_write_helper
;
723 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
) {
724 wq
= fs_info
->endio_raid56_workers
;
725 func
= btrfs_endio_raid56_helper
;
727 wq
= fs_info
->endio_write_workers
;
728 func
= btrfs_endio_write_helper
;
731 if (unlikely(end_io_wq
->metadata
==
732 BTRFS_WQ_ENDIO_DIO_REPAIR
)) {
733 wq
= fs_info
->endio_repair_workers
;
734 func
= btrfs_endio_repair_helper
;
735 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
) {
736 wq
= fs_info
->endio_raid56_workers
;
737 func
= btrfs_endio_raid56_helper
;
738 } else if (end_io_wq
->metadata
) {
739 wq
= fs_info
->endio_meta_workers
;
740 func
= btrfs_endio_meta_helper
;
742 wq
= fs_info
->endio_workers
;
743 func
= btrfs_endio_helper
;
747 btrfs_init_work(&end_io_wq
->work
, func
, end_workqueue_fn
, NULL
, NULL
);
748 btrfs_queue_work(wq
, &end_io_wq
->work
);
751 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
752 enum btrfs_wq_endio_type metadata
)
754 struct btrfs_end_io_wq
*end_io_wq
;
756 end_io_wq
= kmem_cache_alloc(btrfs_end_io_wq_cache
, GFP_NOFS
);
760 end_io_wq
->private = bio
->bi_private
;
761 end_io_wq
->end_io
= bio
->bi_end_io
;
762 end_io_wq
->info
= info
;
763 end_io_wq
->error
= 0;
764 end_io_wq
->bio
= bio
;
765 end_io_wq
->metadata
= metadata
;
767 bio
->bi_private
= end_io_wq
;
768 bio
->bi_end_io
= end_workqueue_bio
;
772 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
774 unsigned long limit
= min_t(unsigned long,
775 info
->thread_pool_size
,
776 info
->fs_devices
->open_devices
);
780 static void run_one_async_start(struct btrfs_work
*work
)
782 struct async_submit_bio
*async
;
785 async
= container_of(work
, struct async_submit_bio
, work
);
786 ret
= async
->submit_bio_start(async
->inode
, async
->rw
, async
->bio
,
787 async
->mirror_num
, async
->bio_flags
,
793 static void run_one_async_done(struct btrfs_work
*work
)
795 struct btrfs_fs_info
*fs_info
;
796 struct async_submit_bio
*async
;
799 async
= container_of(work
, struct async_submit_bio
, work
);
800 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
802 limit
= btrfs_async_submit_limit(fs_info
);
803 limit
= limit
* 2 / 3;
805 if (atomic_dec_return(&fs_info
->nr_async_submits
) < limit
&&
806 waitqueue_active(&fs_info
->async_submit_wait
))
807 wake_up(&fs_info
->async_submit_wait
);
809 /* If an error occured we just want to clean up the bio and move on */
811 bio_endio(async
->bio
, async
->error
);
815 async
->submit_bio_done(async
->inode
, async
->rw
, async
->bio
,
816 async
->mirror_num
, async
->bio_flags
,
820 static void run_one_async_free(struct btrfs_work
*work
)
822 struct async_submit_bio
*async
;
824 async
= container_of(work
, struct async_submit_bio
, work
);
828 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
829 int rw
, struct bio
*bio
, int mirror_num
,
830 unsigned long bio_flags
,
832 extent_submit_bio_hook_t
*submit_bio_start
,
833 extent_submit_bio_hook_t
*submit_bio_done
)
835 struct async_submit_bio
*async
;
837 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
841 async
->inode
= inode
;
844 async
->mirror_num
= mirror_num
;
845 async
->submit_bio_start
= submit_bio_start
;
846 async
->submit_bio_done
= submit_bio_done
;
848 btrfs_init_work(&async
->work
, btrfs_worker_helper
, run_one_async_start
,
849 run_one_async_done
, run_one_async_free
);
851 async
->bio_flags
= bio_flags
;
852 async
->bio_offset
= bio_offset
;
856 atomic_inc(&fs_info
->nr_async_submits
);
859 btrfs_set_work_high_priority(&async
->work
);
861 btrfs_queue_work(fs_info
->workers
, &async
->work
);
863 while (atomic_read(&fs_info
->async_submit_draining
) &&
864 atomic_read(&fs_info
->nr_async_submits
)) {
865 wait_event(fs_info
->async_submit_wait
,
866 (atomic_read(&fs_info
->nr_async_submits
) == 0));
872 static int btree_csum_one_bio(struct bio
*bio
)
874 struct bio_vec
*bvec
;
875 struct btrfs_root
*root
;
878 bio_for_each_segment_all(bvec
, bio
, i
) {
879 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
880 ret
= csum_dirty_buffer(root
->fs_info
, bvec
->bv_page
);
888 static int __btree_submit_bio_start(struct inode
*inode
, int rw
,
889 struct bio
*bio
, int mirror_num
,
890 unsigned long bio_flags
,
894 * when we're called for a write, we're already in the async
895 * submission context. Just jump into btrfs_map_bio
897 return btree_csum_one_bio(bio
);
900 static int __btree_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
901 int mirror_num
, unsigned long bio_flags
,
907 * when we're called for a write, we're already in the async
908 * submission context. Just jump into btrfs_map_bio
910 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
, mirror_num
, 1);
916 static int check_async_write(struct inode
*inode
, unsigned long bio_flags
)
918 if (bio_flags
& EXTENT_BIO_TREE_LOG
)
927 static int btree_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
928 int mirror_num
, unsigned long bio_flags
,
931 int async
= check_async_write(inode
, bio_flags
);
934 if (!(rw
& REQ_WRITE
)) {
936 * called for a read, do the setup so that checksum validation
937 * can happen in the async kernel threads
939 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
940 bio
, BTRFS_WQ_ENDIO_METADATA
);
943 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
946 ret
= btree_csum_one_bio(bio
);
949 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
953 * kthread helpers are used to submit writes so that
954 * checksumming can happen in parallel across all CPUs
956 ret
= btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
957 inode
, rw
, bio
, mirror_num
, 0,
959 __btree_submit_bio_start
,
960 __btree_submit_bio_done
);
970 #ifdef CONFIG_MIGRATION
971 static int btree_migratepage(struct address_space
*mapping
,
972 struct page
*newpage
, struct page
*page
,
973 enum migrate_mode mode
)
976 * we can't safely write a btree page from here,
977 * we haven't done the locking hook
982 * Buffers may be managed in a filesystem specific way.
983 * We must have no buffers or drop them.
985 if (page_has_private(page
) &&
986 !try_to_release_page(page
, GFP_KERNEL
))
988 return migrate_page(mapping
, newpage
, page
, mode
);
993 static int btree_writepages(struct address_space
*mapping
,
994 struct writeback_control
*wbc
)
996 struct btrfs_fs_info
*fs_info
;
999 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
1001 if (wbc
->for_kupdate
)
1004 fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
1005 /* this is a bit racy, but that's ok */
1006 ret
= percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
1007 BTRFS_DIRTY_METADATA_THRESH
);
1011 return btree_write_cache_pages(mapping
, wbc
);
1014 static int btree_readpage(struct file
*file
, struct page
*page
)
1016 struct extent_io_tree
*tree
;
1017 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1018 return extent_read_full_page(tree
, page
, btree_get_extent
, 0);
1021 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
1023 if (PageWriteback(page
) || PageDirty(page
))
1026 return try_release_extent_buffer(page
);
1029 static void btree_invalidatepage(struct page
*page
, unsigned int offset
,
1030 unsigned int length
)
1032 struct extent_io_tree
*tree
;
1033 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1034 extent_invalidatepage(tree
, page
, offset
);
1035 btree_releasepage(page
, GFP_NOFS
);
1036 if (PagePrivate(page
)) {
1037 btrfs_warn(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
1038 "page private not zero on page %llu",
1039 (unsigned long long)page_offset(page
));
1040 ClearPagePrivate(page
);
1041 set_page_private(page
, 0);
1042 page_cache_release(page
);
1046 static int btree_set_page_dirty(struct page
*page
)
1049 struct extent_buffer
*eb
;
1051 BUG_ON(!PagePrivate(page
));
1052 eb
= (struct extent_buffer
*)page
->private;
1054 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
1055 BUG_ON(!atomic_read(&eb
->refs
));
1056 btrfs_assert_tree_locked(eb
);
1058 return __set_page_dirty_nobuffers(page
);
1061 static const struct address_space_operations btree_aops
= {
1062 .readpage
= btree_readpage
,
1063 .writepages
= btree_writepages
,
1064 .releasepage
= btree_releasepage
,
1065 .invalidatepage
= btree_invalidatepage
,
1066 #ifdef CONFIG_MIGRATION
1067 .migratepage
= btree_migratepage
,
1069 .set_page_dirty
= btree_set_page_dirty
,
1072 void readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
)
1074 struct extent_buffer
*buf
= NULL
;
1075 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1077 buf
= btrfs_find_create_tree_block(root
, bytenr
);
1080 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
1081 buf
, 0, WAIT_NONE
, btree_get_extent
, 0);
1082 free_extent_buffer(buf
);
1085 int reada_tree_block_flagged(struct btrfs_root
*root
, u64 bytenr
,
1086 int mirror_num
, struct extent_buffer
**eb
)
1088 struct extent_buffer
*buf
= NULL
;
1089 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1090 struct extent_io_tree
*io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
1093 buf
= btrfs_find_create_tree_block(root
, bytenr
);
1097 set_bit(EXTENT_BUFFER_READAHEAD
, &buf
->bflags
);
1099 ret
= read_extent_buffer_pages(io_tree
, buf
, 0, WAIT_PAGE_LOCK
,
1100 btree_get_extent
, mirror_num
);
1102 free_extent_buffer(buf
);
1106 if (test_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
)) {
1107 free_extent_buffer(buf
);
1109 } else if (extent_buffer_uptodate(buf
)) {
1112 free_extent_buffer(buf
);
1117 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_fs_info
*fs_info
,
1120 return find_extent_buffer(fs_info
, bytenr
);
1123 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
1126 if (btrfs_test_is_dummy_root(root
))
1127 return alloc_test_extent_buffer(root
->fs_info
, bytenr
);
1128 return alloc_extent_buffer(root
->fs_info
, bytenr
);
1132 int btrfs_write_tree_block(struct extent_buffer
*buf
)
1134 return filemap_fdatawrite_range(buf
->pages
[0]->mapping
, buf
->start
,
1135 buf
->start
+ buf
->len
- 1);
1138 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
1140 return filemap_fdatawait_range(buf
->pages
[0]->mapping
,
1141 buf
->start
, buf
->start
+ buf
->len
- 1);
1144 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
1147 struct extent_buffer
*buf
= NULL
;
1150 buf
= btrfs_find_create_tree_block(root
, bytenr
);
1154 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
1156 free_extent_buffer(buf
);
1163 void clean_tree_block(struct btrfs_trans_handle
*trans
,
1164 struct btrfs_fs_info
*fs_info
,
1165 struct extent_buffer
*buf
)
1167 if (btrfs_header_generation(buf
) ==
1168 fs_info
->running_transaction
->transid
) {
1169 btrfs_assert_tree_locked(buf
);
1171 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
1172 __percpu_counter_add(&fs_info
->dirty_metadata_bytes
,
1174 fs_info
->dirty_metadata_batch
);
1175 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1176 btrfs_set_lock_blocking(buf
);
1177 clear_extent_buffer_dirty(buf
);
1182 static struct btrfs_subvolume_writers
*btrfs_alloc_subvolume_writers(void)
1184 struct btrfs_subvolume_writers
*writers
;
1187 writers
= kmalloc(sizeof(*writers
), GFP_NOFS
);
1189 return ERR_PTR(-ENOMEM
);
1191 ret
= percpu_counter_init(&writers
->counter
, 0, GFP_KERNEL
);
1194 return ERR_PTR(ret
);
1197 init_waitqueue_head(&writers
->wait
);
1202 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers
*writers
)
1204 percpu_counter_destroy(&writers
->counter
);
1208 static void __setup_root(u32 nodesize
, u32 sectorsize
, u32 stripesize
,
1209 struct btrfs_root
*root
, struct btrfs_fs_info
*fs_info
,
1213 root
->commit_root
= NULL
;
1214 root
->sectorsize
= sectorsize
;
1215 root
->nodesize
= nodesize
;
1216 root
->stripesize
= stripesize
;
1218 root
->orphan_cleanup_state
= 0;
1220 root
->objectid
= objectid
;
1221 root
->last_trans
= 0;
1222 root
->highest_objectid
= 0;
1223 root
->nr_delalloc_inodes
= 0;
1224 root
->nr_ordered_extents
= 0;
1226 root
->inode_tree
= RB_ROOT
;
1227 INIT_RADIX_TREE(&root
->delayed_nodes_tree
, GFP_ATOMIC
);
1228 root
->block_rsv
= NULL
;
1229 root
->orphan_block_rsv
= NULL
;
1231 INIT_LIST_HEAD(&root
->dirty_list
);
1232 INIT_LIST_HEAD(&root
->root_list
);
1233 INIT_LIST_HEAD(&root
->delalloc_inodes
);
1234 INIT_LIST_HEAD(&root
->delalloc_root
);
1235 INIT_LIST_HEAD(&root
->ordered_extents
);
1236 INIT_LIST_HEAD(&root
->ordered_root
);
1237 INIT_LIST_HEAD(&root
->logged_list
[0]);
1238 INIT_LIST_HEAD(&root
->logged_list
[1]);
1239 spin_lock_init(&root
->orphan_lock
);
1240 spin_lock_init(&root
->inode_lock
);
1241 spin_lock_init(&root
->delalloc_lock
);
1242 spin_lock_init(&root
->ordered_extent_lock
);
1243 spin_lock_init(&root
->accounting_lock
);
1244 spin_lock_init(&root
->log_extents_lock
[0]);
1245 spin_lock_init(&root
->log_extents_lock
[1]);
1246 mutex_init(&root
->objectid_mutex
);
1247 mutex_init(&root
->log_mutex
);
1248 mutex_init(&root
->ordered_extent_mutex
);
1249 mutex_init(&root
->delalloc_mutex
);
1250 init_waitqueue_head(&root
->log_writer_wait
);
1251 init_waitqueue_head(&root
->log_commit_wait
[0]);
1252 init_waitqueue_head(&root
->log_commit_wait
[1]);
1253 INIT_LIST_HEAD(&root
->log_ctxs
[0]);
1254 INIT_LIST_HEAD(&root
->log_ctxs
[1]);
1255 atomic_set(&root
->log_commit
[0], 0);
1256 atomic_set(&root
->log_commit
[1], 0);
1257 atomic_set(&root
->log_writers
, 0);
1258 atomic_set(&root
->log_batch
, 0);
1259 atomic_set(&root
->orphan_inodes
, 0);
1260 atomic_set(&root
->refs
, 1);
1261 atomic_set(&root
->will_be_snapshoted
, 0);
1262 root
->log_transid
= 0;
1263 root
->log_transid_committed
= -1;
1264 root
->last_log_commit
= 0;
1266 extent_io_tree_init(&root
->dirty_log_pages
,
1267 fs_info
->btree_inode
->i_mapping
);
1269 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
1270 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
1271 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1273 root
->defrag_trans_start
= fs_info
->generation
;
1275 root
->defrag_trans_start
= 0;
1276 root
->root_key
.objectid
= objectid
;
1279 spin_lock_init(&root
->root_item_lock
);
1282 static struct btrfs_root
*btrfs_alloc_root(struct btrfs_fs_info
*fs_info
)
1284 struct btrfs_root
*root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1286 root
->fs_info
= fs_info
;
1290 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1291 /* Should only be used by the testing infrastructure */
1292 struct btrfs_root
*btrfs_alloc_dummy_root(void)
1294 struct btrfs_root
*root
;
1296 root
= btrfs_alloc_root(NULL
);
1298 return ERR_PTR(-ENOMEM
);
1299 __setup_root(4096, 4096, 4096, root
, NULL
, 1);
1300 set_bit(BTRFS_ROOT_DUMMY_ROOT
, &root
->state
);
1301 root
->alloc_bytenr
= 0;
1307 struct btrfs_root
*btrfs_create_tree(struct btrfs_trans_handle
*trans
,
1308 struct btrfs_fs_info
*fs_info
,
1311 struct extent_buffer
*leaf
;
1312 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1313 struct btrfs_root
*root
;
1314 struct btrfs_key key
;
1318 root
= btrfs_alloc_root(fs_info
);
1320 return ERR_PTR(-ENOMEM
);
1322 __setup_root(tree_root
->nodesize
, tree_root
->sectorsize
,
1323 tree_root
->stripesize
, root
, fs_info
, objectid
);
1324 root
->root_key
.objectid
= objectid
;
1325 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1326 root
->root_key
.offset
= 0;
1328 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, objectid
, NULL
, 0, 0, 0);
1330 ret
= PTR_ERR(leaf
);
1335 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1336 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1337 btrfs_set_header_generation(leaf
, trans
->transid
);
1338 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1339 btrfs_set_header_owner(leaf
, objectid
);
1342 write_extent_buffer(leaf
, fs_info
->fsid
, btrfs_header_fsid(),
1344 write_extent_buffer(leaf
, fs_info
->chunk_tree_uuid
,
1345 btrfs_header_chunk_tree_uuid(leaf
),
1347 btrfs_mark_buffer_dirty(leaf
);
1349 root
->commit_root
= btrfs_root_node(root
);
1350 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
1352 root
->root_item
.flags
= 0;
1353 root
->root_item
.byte_limit
= 0;
1354 btrfs_set_root_bytenr(&root
->root_item
, leaf
->start
);
1355 btrfs_set_root_generation(&root
->root_item
, trans
->transid
);
1356 btrfs_set_root_level(&root
->root_item
, 0);
1357 btrfs_set_root_refs(&root
->root_item
, 1);
1358 btrfs_set_root_used(&root
->root_item
, leaf
->len
);
1359 btrfs_set_root_last_snapshot(&root
->root_item
, 0);
1360 btrfs_set_root_dirid(&root
->root_item
, 0);
1362 memcpy(root
->root_item
.uuid
, uuid
.b
, BTRFS_UUID_SIZE
);
1363 root
->root_item
.drop_level
= 0;
1365 key
.objectid
= objectid
;
1366 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1368 ret
= btrfs_insert_root(trans
, tree_root
, &key
, &root
->root_item
);
1372 btrfs_tree_unlock(leaf
);
1378 btrfs_tree_unlock(leaf
);
1379 free_extent_buffer(root
->commit_root
);
1380 free_extent_buffer(leaf
);
1384 return ERR_PTR(ret
);
1387 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1388 struct btrfs_fs_info
*fs_info
)
1390 struct btrfs_root
*root
;
1391 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1392 struct extent_buffer
*leaf
;
1394 root
= btrfs_alloc_root(fs_info
);
1396 return ERR_PTR(-ENOMEM
);
1398 __setup_root(tree_root
->nodesize
, tree_root
->sectorsize
,
1399 tree_root
->stripesize
, root
, fs_info
,
1400 BTRFS_TREE_LOG_OBJECTID
);
1402 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1403 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1404 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1407 * DON'T set REF_COWS for log trees
1409 * log trees do not get reference counted because they go away
1410 * before a real commit is actually done. They do store pointers
1411 * to file data extents, and those reference counts still get
1412 * updated (along with back refs to the log tree).
1415 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, BTRFS_TREE_LOG_OBJECTID
,
1419 return ERR_CAST(leaf
);
1422 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1423 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1424 btrfs_set_header_generation(leaf
, trans
->transid
);
1425 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1426 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1429 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1430 btrfs_header_fsid(), BTRFS_FSID_SIZE
);
1431 btrfs_mark_buffer_dirty(root
->node
);
1432 btrfs_tree_unlock(root
->node
);
1436 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1437 struct btrfs_fs_info
*fs_info
)
1439 struct btrfs_root
*log_root
;
1441 log_root
= alloc_log_tree(trans
, fs_info
);
1442 if (IS_ERR(log_root
))
1443 return PTR_ERR(log_root
);
1444 WARN_ON(fs_info
->log_root_tree
);
1445 fs_info
->log_root_tree
= log_root
;
1449 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1450 struct btrfs_root
*root
)
1452 struct btrfs_root
*log_root
;
1453 struct btrfs_inode_item
*inode_item
;
1455 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1456 if (IS_ERR(log_root
))
1457 return PTR_ERR(log_root
);
1459 log_root
->last_trans
= trans
->transid
;
1460 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1462 inode_item
= &log_root
->root_item
.inode
;
1463 btrfs_set_stack_inode_generation(inode_item
, 1);
1464 btrfs_set_stack_inode_size(inode_item
, 3);
1465 btrfs_set_stack_inode_nlink(inode_item
, 1);
1466 btrfs_set_stack_inode_nbytes(inode_item
, root
->nodesize
);
1467 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
1469 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1471 WARN_ON(root
->log_root
);
1472 root
->log_root
= log_root
;
1473 root
->log_transid
= 0;
1474 root
->log_transid_committed
= -1;
1475 root
->last_log_commit
= 0;
1479 static struct btrfs_root
*btrfs_read_tree_root(struct btrfs_root
*tree_root
,
1480 struct btrfs_key
*key
)
1482 struct btrfs_root
*root
;
1483 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1484 struct btrfs_path
*path
;
1488 path
= btrfs_alloc_path();
1490 return ERR_PTR(-ENOMEM
);
1492 root
= btrfs_alloc_root(fs_info
);
1498 __setup_root(tree_root
->nodesize
, tree_root
->sectorsize
,
1499 tree_root
->stripesize
, root
, fs_info
, key
->objectid
);
1501 ret
= btrfs_find_root(tree_root
, key
, path
,
1502 &root
->root_item
, &root
->root_key
);
1509 generation
= btrfs_root_generation(&root
->root_item
);
1510 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1515 } else if (!btrfs_buffer_uptodate(root
->node
, generation
, 0)) {
1519 root
->commit_root
= btrfs_root_node(root
);
1521 btrfs_free_path(path
);
1525 free_extent_buffer(root
->node
);
1529 root
= ERR_PTR(ret
);
1533 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_root
*tree_root
,
1534 struct btrfs_key
*location
)
1536 struct btrfs_root
*root
;
1538 root
= btrfs_read_tree_root(tree_root
, location
);
1542 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1543 set_bit(BTRFS_ROOT_REF_COWS
, &root
->state
);
1544 btrfs_check_and_init_root_item(&root
->root_item
);
1550 int btrfs_init_fs_root(struct btrfs_root
*root
)
1553 struct btrfs_subvolume_writers
*writers
;
1555 root
->free_ino_ctl
= kzalloc(sizeof(*root
->free_ino_ctl
), GFP_NOFS
);
1556 root
->free_ino_pinned
= kzalloc(sizeof(*root
->free_ino_pinned
),
1558 if (!root
->free_ino_pinned
|| !root
->free_ino_ctl
) {
1563 writers
= btrfs_alloc_subvolume_writers();
1564 if (IS_ERR(writers
)) {
1565 ret
= PTR_ERR(writers
);
1568 root
->subv_writers
= writers
;
1570 btrfs_init_free_ino_ctl(root
);
1571 spin_lock_init(&root
->ino_cache_lock
);
1572 init_waitqueue_head(&root
->ino_cache_wait
);
1574 ret
= get_anon_bdev(&root
->anon_dev
);
1578 mutex_lock(&root
->objectid_mutex
);
1579 ret
= btrfs_find_highest_objectid(root
,
1580 &root
->highest_objectid
);
1582 mutex_unlock(&root
->objectid_mutex
);
1586 ASSERT(root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
1588 mutex_unlock(&root
->objectid_mutex
);
1593 free_anon_bdev(root
->anon_dev
);
1595 btrfs_free_subvolume_writers(root
->subv_writers
);
1597 kfree(root
->free_ino_ctl
);
1598 kfree(root
->free_ino_pinned
);
1602 static struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1605 struct btrfs_root
*root
;
1607 spin_lock(&fs_info
->fs_roots_radix_lock
);
1608 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1609 (unsigned long)root_id
);
1610 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1614 int btrfs_insert_fs_root(struct btrfs_fs_info
*fs_info
,
1615 struct btrfs_root
*root
)
1619 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
1623 spin_lock(&fs_info
->fs_roots_radix_lock
);
1624 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1625 (unsigned long)root
->root_key
.objectid
,
1628 set_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
);
1629 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1630 radix_tree_preload_end();
1635 struct btrfs_root
*btrfs_get_fs_root(struct btrfs_fs_info
*fs_info
,
1636 struct btrfs_key
*location
,
1639 struct btrfs_root
*root
;
1640 struct btrfs_path
*path
;
1641 struct btrfs_key key
;
1644 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1645 return fs_info
->tree_root
;
1646 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1647 return fs_info
->extent_root
;
1648 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1649 return fs_info
->chunk_root
;
1650 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1651 return fs_info
->dev_root
;
1652 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1653 return fs_info
->csum_root
;
1654 if (location
->objectid
== BTRFS_QUOTA_TREE_OBJECTID
)
1655 return fs_info
->quota_root
? fs_info
->quota_root
:
1657 if (location
->objectid
== BTRFS_UUID_TREE_OBJECTID
)
1658 return fs_info
->uuid_root
? fs_info
->uuid_root
:
1661 root
= btrfs_lookup_fs_root(fs_info
, location
->objectid
);
1663 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0)
1664 return ERR_PTR(-ENOENT
);
1668 root
= btrfs_read_fs_root(fs_info
->tree_root
, location
);
1672 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0) {
1677 ret
= btrfs_init_fs_root(root
);
1681 path
= btrfs_alloc_path();
1686 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
1687 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1688 key
.offset
= location
->objectid
;
1690 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
1691 btrfs_free_path(path
);
1695 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
);
1697 ret
= btrfs_insert_fs_root(fs_info
, root
);
1699 if (ret
== -EEXIST
) {
1708 return ERR_PTR(ret
);
1711 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1713 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1715 struct btrfs_device
*device
;
1716 struct backing_dev_info
*bdi
;
1719 list_for_each_entry_rcu(device
, &info
->fs_devices
->devices
, dev_list
) {
1722 bdi
= blk_get_backing_dev_info(device
->bdev
);
1723 if (bdi_congested(bdi
, bdi_bits
)) {
1732 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1736 err
= bdi_setup_and_register(bdi
, "btrfs");
1740 bdi
->ra_pages
= VM_MAX_READAHEAD
* 1024 / PAGE_CACHE_SIZE
;
1741 bdi
->congested_fn
= btrfs_congested_fn
;
1742 bdi
->congested_data
= info
;
1747 * called by the kthread helper functions to finally call the bio end_io
1748 * functions. This is where read checksum verification actually happens
1750 static void end_workqueue_fn(struct btrfs_work
*work
)
1753 struct btrfs_end_io_wq
*end_io_wq
;
1756 end_io_wq
= container_of(work
, struct btrfs_end_io_wq
, work
);
1757 bio
= end_io_wq
->bio
;
1759 error
= end_io_wq
->error
;
1760 bio
->bi_private
= end_io_wq
->private;
1761 bio
->bi_end_io
= end_io_wq
->end_io
;
1762 kmem_cache_free(btrfs_end_io_wq_cache
, end_io_wq
);
1763 bio_endio_nodec(bio
, error
);
1766 static int cleaner_kthread(void *arg
)
1768 struct btrfs_root
*root
= arg
;
1774 /* Make the cleaner go to sleep early. */
1775 if (btrfs_need_cleaner_sleep(root
))
1778 if (!mutex_trylock(&root
->fs_info
->cleaner_mutex
))
1782 * Avoid the problem that we change the status of the fs
1783 * during the above check and trylock.
1785 if (btrfs_need_cleaner_sleep(root
)) {
1786 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1790 mutex_lock(&root
->fs_info
->cleaner_delayed_iput_mutex
);
1791 btrfs_run_delayed_iputs(root
);
1792 btrfs_delete_unused_bgs(root
->fs_info
);
1793 mutex_unlock(&root
->fs_info
->cleaner_delayed_iput_mutex
);
1795 again
= btrfs_clean_one_deleted_snapshot(root
);
1796 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1799 * The defragger has dealt with the R/O remount and umount,
1800 * needn't do anything special here.
1802 btrfs_run_defrag_inodes(root
->fs_info
);
1804 if (!try_to_freeze() && !again
) {
1805 set_current_state(TASK_INTERRUPTIBLE
);
1806 if (!kthread_should_stop())
1808 __set_current_state(TASK_RUNNING
);
1810 } while (!kthread_should_stop());
1814 static int transaction_kthread(void *arg
)
1816 struct btrfs_root
*root
= arg
;
1817 struct btrfs_trans_handle
*trans
;
1818 struct btrfs_transaction
*cur
;
1821 unsigned long delay
;
1825 cannot_commit
= false;
1826 delay
= HZ
* root
->fs_info
->commit_interval
;
1827 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1829 spin_lock(&root
->fs_info
->trans_lock
);
1830 cur
= root
->fs_info
->running_transaction
;
1832 spin_unlock(&root
->fs_info
->trans_lock
);
1836 now
= get_seconds();
1837 if (cur
->state
< TRANS_STATE_BLOCKED
&&
1838 (now
< cur
->start_time
||
1839 now
- cur
->start_time
< root
->fs_info
->commit_interval
)) {
1840 spin_unlock(&root
->fs_info
->trans_lock
);
1844 transid
= cur
->transid
;
1845 spin_unlock(&root
->fs_info
->trans_lock
);
1847 /* If the file system is aborted, this will always fail. */
1848 trans
= btrfs_attach_transaction(root
);
1849 if (IS_ERR(trans
)) {
1850 if (PTR_ERR(trans
) != -ENOENT
)
1851 cannot_commit
= true;
1854 if (transid
== trans
->transid
) {
1855 btrfs_commit_transaction(trans
, root
);
1857 btrfs_end_transaction(trans
, root
);
1860 wake_up_process(root
->fs_info
->cleaner_kthread
);
1861 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1863 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR
,
1864 &root
->fs_info
->fs_state
)))
1865 btrfs_cleanup_transaction(root
);
1866 if (!try_to_freeze()) {
1867 set_current_state(TASK_INTERRUPTIBLE
);
1868 if (!kthread_should_stop() &&
1869 (!btrfs_transaction_blocked(root
->fs_info
) ||
1871 schedule_timeout(delay
);
1872 __set_current_state(TASK_RUNNING
);
1874 } while (!kthread_should_stop());
1879 * this will find the highest generation in the array of
1880 * root backups. The index of the highest array is returned,
1881 * or -1 if we can't find anything.
1883 * We check to make sure the array is valid by comparing the
1884 * generation of the latest root in the array with the generation
1885 * in the super block. If they don't match we pitch it.
1887 static int find_newest_super_backup(struct btrfs_fs_info
*info
, u64 newest_gen
)
1890 int newest_index
= -1;
1891 struct btrfs_root_backup
*root_backup
;
1894 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
1895 root_backup
= info
->super_copy
->super_roots
+ i
;
1896 cur
= btrfs_backup_tree_root_gen(root_backup
);
1897 if (cur
== newest_gen
)
1901 /* check to see if we actually wrapped around */
1902 if (newest_index
== BTRFS_NUM_BACKUP_ROOTS
- 1) {
1903 root_backup
= info
->super_copy
->super_roots
;
1904 cur
= btrfs_backup_tree_root_gen(root_backup
);
1905 if (cur
== newest_gen
)
1908 return newest_index
;
1913 * find the oldest backup so we know where to store new entries
1914 * in the backup array. This will set the backup_root_index
1915 * field in the fs_info struct
1917 static void find_oldest_super_backup(struct btrfs_fs_info
*info
,
1920 int newest_index
= -1;
1922 newest_index
= find_newest_super_backup(info
, newest_gen
);
1923 /* if there was garbage in there, just move along */
1924 if (newest_index
== -1) {
1925 info
->backup_root_index
= 0;
1927 info
->backup_root_index
= (newest_index
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1932 * copy all the root pointers into the super backup array.
1933 * this will bump the backup pointer by one when it is
1936 static void backup_super_roots(struct btrfs_fs_info
*info
)
1939 struct btrfs_root_backup
*root_backup
;
1942 next_backup
= info
->backup_root_index
;
1943 last_backup
= (next_backup
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
1944 BTRFS_NUM_BACKUP_ROOTS
;
1947 * just overwrite the last backup if we're at the same generation
1948 * this happens only at umount
1950 root_backup
= info
->super_for_commit
->super_roots
+ last_backup
;
1951 if (btrfs_backup_tree_root_gen(root_backup
) ==
1952 btrfs_header_generation(info
->tree_root
->node
))
1953 next_backup
= last_backup
;
1955 root_backup
= info
->super_for_commit
->super_roots
+ next_backup
;
1958 * make sure all of our padding and empty slots get zero filled
1959 * regardless of which ones we use today
1961 memset(root_backup
, 0, sizeof(*root_backup
));
1963 info
->backup_root_index
= (next_backup
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1965 btrfs_set_backup_tree_root(root_backup
, info
->tree_root
->node
->start
);
1966 btrfs_set_backup_tree_root_gen(root_backup
,
1967 btrfs_header_generation(info
->tree_root
->node
));
1969 btrfs_set_backup_tree_root_level(root_backup
,
1970 btrfs_header_level(info
->tree_root
->node
));
1972 btrfs_set_backup_chunk_root(root_backup
, info
->chunk_root
->node
->start
);
1973 btrfs_set_backup_chunk_root_gen(root_backup
,
1974 btrfs_header_generation(info
->chunk_root
->node
));
1975 btrfs_set_backup_chunk_root_level(root_backup
,
1976 btrfs_header_level(info
->chunk_root
->node
));
1978 btrfs_set_backup_extent_root(root_backup
, info
->extent_root
->node
->start
);
1979 btrfs_set_backup_extent_root_gen(root_backup
,
1980 btrfs_header_generation(info
->extent_root
->node
));
1981 btrfs_set_backup_extent_root_level(root_backup
,
1982 btrfs_header_level(info
->extent_root
->node
));
1985 * we might commit during log recovery, which happens before we set
1986 * the fs_root. Make sure it is valid before we fill it in.
1988 if (info
->fs_root
&& info
->fs_root
->node
) {
1989 btrfs_set_backup_fs_root(root_backup
,
1990 info
->fs_root
->node
->start
);
1991 btrfs_set_backup_fs_root_gen(root_backup
,
1992 btrfs_header_generation(info
->fs_root
->node
));
1993 btrfs_set_backup_fs_root_level(root_backup
,
1994 btrfs_header_level(info
->fs_root
->node
));
1997 btrfs_set_backup_dev_root(root_backup
, info
->dev_root
->node
->start
);
1998 btrfs_set_backup_dev_root_gen(root_backup
,
1999 btrfs_header_generation(info
->dev_root
->node
));
2000 btrfs_set_backup_dev_root_level(root_backup
,
2001 btrfs_header_level(info
->dev_root
->node
));
2003 btrfs_set_backup_csum_root(root_backup
, info
->csum_root
->node
->start
);
2004 btrfs_set_backup_csum_root_gen(root_backup
,
2005 btrfs_header_generation(info
->csum_root
->node
));
2006 btrfs_set_backup_csum_root_level(root_backup
,
2007 btrfs_header_level(info
->csum_root
->node
));
2009 btrfs_set_backup_total_bytes(root_backup
,
2010 btrfs_super_total_bytes(info
->super_copy
));
2011 btrfs_set_backup_bytes_used(root_backup
,
2012 btrfs_super_bytes_used(info
->super_copy
));
2013 btrfs_set_backup_num_devices(root_backup
,
2014 btrfs_super_num_devices(info
->super_copy
));
2017 * if we don't copy this out to the super_copy, it won't get remembered
2018 * for the next commit
2020 memcpy(&info
->super_copy
->super_roots
,
2021 &info
->super_for_commit
->super_roots
,
2022 sizeof(*root_backup
) * BTRFS_NUM_BACKUP_ROOTS
);
2026 * this copies info out of the root backup array and back into
2027 * the in-memory super block. It is meant to help iterate through
2028 * the array, so you send it the number of backups you've already
2029 * tried and the last backup index you used.
2031 * this returns -1 when it has tried all the backups
2033 static noinline
int next_root_backup(struct btrfs_fs_info
*info
,
2034 struct btrfs_super_block
*super
,
2035 int *num_backups_tried
, int *backup_index
)
2037 struct btrfs_root_backup
*root_backup
;
2038 int newest
= *backup_index
;
2040 if (*num_backups_tried
== 0) {
2041 u64 gen
= btrfs_super_generation(super
);
2043 newest
= find_newest_super_backup(info
, gen
);
2047 *backup_index
= newest
;
2048 *num_backups_tried
= 1;
2049 } else if (*num_backups_tried
== BTRFS_NUM_BACKUP_ROOTS
) {
2050 /* we've tried all the backups, all done */
2053 /* jump to the next oldest backup */
2054 newest
= (*backup_index
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
2055 BTRFS_NUM_BACKUP_ROOTS
;
2056 *backup_index
= newest
;
2057 *num_backups_tried
+= 1;
2059 root_backup
= super
->super_roots
+ newest
;
2061 btrfs_set_super_generation(super
,
2062 btrfs_backup_tree_root_gen(root_backup
));
2063 btrfs_set_super_root(super
, btrfs_backup_tree_root(root_backup
));
2064 btrfs_set_super_root_level(super
,
2065 btrfs_backup_tree_root_level(root_backup
));
2066 btrfs_set_super_bytes_used(super
, btrfs_backup_bytes_used(root_backup
));
2069 * fixme: the total bytes and num_devices need to match or we should
2072 btrfs_set_super_total_bytes(super
, btrfs_backup_total_bytes(root_backup
));
2073 btrfs_set_super_num_devices(super
, btrfs_backup_num_devices(root_backup
));
2077 /* helper to cleanup workers */
2078 static void btrfs_stop_all_workers(struct btrfs_fs_info
*fs_info
)
2080 btrfs_destroy_workqueue(fs_info
->fixup_workers
);
2081 btrfs_destroy_workqueue(fs_info
->delalloc_workers
);
2082 btrfs_destroy_workqueue(fs_info
->workers
);
2083 btrfs_destroy_workqueue(fs_info
->endio_workers
);
2084 btrfs_destroy_workqueue(fs_info
->endio_meta_workers
);
2085 btrfs_destroy_workqueue(fs_info
->endio_raid56_workers
);
2086 btrfs_destroy_workqueue(fs_info
->endio_repair_workers
);
2087 btrfs_destroy_workqueue(fs_info
->rmw_workers
);
2088 btrfs_destroy_workqueue(fs_info
->endio_meta_write_workers
);
2089 btrfs_destroy_workqueue(fs_info
->endio_write_workers
);
2090 btrfs_destroy_workqueue(fs_info
->endio_freespace_worker
);
2091 btrfs_destroy_workqueue(fs_info
->submit_workers
);
2092 btrfs_destroy_workqueue(fs_info
->delayed_workers
);
2093 btrfs_destroy_workqueue(fs_info
->caching_workers
);
2094 btrfs_destroy_workqueue(fs_info
->readahead_workers
);
2095 btrfs_destroy_workqueue(fs_info
->flush_workers
);
2096 btrfs_destroy_workqueue(fs_info
->qgroup_rescan_workers
);
2097 btrfs_destroy_workqueue(fs_info
->extent_workers
);
2100 static void free_root_extent_buffers(struct btrfs_root
*root
)
2103 free_extent_buffer(root
->node
);
2104 free_extent_buffer(root
->commit_root
);
2106 root
->commit_root
= NULL
;
2110 /* helper to cleanup tree roots */
2111 static void free_root_pointers(struct btrfs_fs_info
*info
, int chunk_root
)
2113 free_root_extent_buffers(info
->tree_root
);
2115 free_root_extent_buffers(info
->dev_root
);
2116 free_root_extent_buffers(info
->extent_root
);
2117 free_root_extent_buffers(info
->csum_root
);
2118 free_root_extent_buffers(info
->quota_root
);
2119 free_root_extent_buffers(info
->uuid_root
);
2121 free_root_extent_buffers(info
->chunk_root
);
2124 void btrfs_free_fs_roots(struct btrfs_fs_info
*fs_info
)
2127 struct btrfs_root
*gang
[8];
2130 while (!list_empty(&fs_info
->dead_roots
)) {
2131 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2132 struct btrfs_root
, root_list
);
2133 list_del(&gang
[0]->root_list
);
2135 if (test_bit(BTRFS_ROOT_IN_RADIX
, &gang
[0]->state
)) {
2136 btrfs_drop_and_free_fs_root(fs_info
, gang
[0]);
2138 free_extent_buffer(gang
[0]->node
);
2139 free_extent_buffer(gang
[0]->commit_root
);
2140 btrfs_put_fs_root(gang
[0]);
2145 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2150 for (i
= 0; i
< ret
; i
++)
2151 btrfs_drop_and_free_fs_root(fs_info
, gang
[i
]);
2154 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
2155 btrfs_free_log_root_tree(NULL
, fs_info
);
2156 btrfs_destroy_pinned_extent(fs_info
->tree_root
,
2157 fs_info
->pinned_extents
);
2161 static void btrfs_init_scrub(struct btrfs_fs_info
*fs_info
)
2163 mutex_init(&fs_info
->scrub_lock
);
2164 atomic_set(&fs_info
->scrubs_running
, 0);
2165 atomic_set(&fs_info
->scrub_pause_req
, 0);
2166 atomic_set(&fs_info
->scrubs_paused
, 0);
2167 atomic_set(&fs_info
->scrub_cancel_req
, 0);
2168 init_waitqueue_head(&fs_info
->scrub_pause_wait
);
2169 fs_info
->scrub_workers_refcnt
= 0;
2172 static void btrfs_init_balance(struct btrfs_fs_info
*fs_info
)
2174 spin_lock_init(&fs_info
->balance_lock
);
2175 mutex_init(&fs_info
->balance_mutex
);
2176 atomic_set(&fs_info
->balance_running
, 0);
2177 atomic_set(&fs_info
->balance_pause_req
, 0);
2178 atomic_set(&fs_info
->balance_cancel_req
, 0);
2179 fs_info
->balance_ctl
= NULL
;
2180 init_waitqueue_head(&fs_info
->balance_wait_q
);
2183 static void btrfs_init_btree_inode(struct btrfs_fs_info
*fs_info
,
2184 struct btrfs_root
*tree_root
)
2186 fs_info
->btree_inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
2187 set_nlink(fs_info
->btree_inode
, 1);
2189 * we set the i_size on the btree inode to the max possible int.
2190 * the real end of the address space is determined by all of
2191 * the devices in the system
2193 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
2194 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
2196 RB_CLEAR_NODE(&BTRFS_I(fs_info
->btree_inode
)->rb_node
);
2197 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
2198 fs_info
->btree_inode
->i_mapping
);
2199 BTRFS_I(fs_info
->btree_inode
)->io_tree
.track_uptodate
= 0;
2200 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
);
2202 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
2204 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
2205 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
2206 sizeof(struct btrfs_key
));
2207 set_bit(BTRFS_INODE_DUMMY
,
2208 &BTRFS_I(fs_info
->btree_inode
)->runtime_flags
);
2209 btrfs_insert_inode_hash(fs_info
->btree_inode
);
2212 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info
*fs_info
)
2214 fs_info
->dev_replace
.lock_owner
= 0;
2215 atomic_set(&fs_info
->dev_replace
.nesting_level
, 0);
2216 mutex_init(&fs_info
->dev_replace
.lock_finishing_cancel_unmount
);
2217 mutex_init(&fs_info
->dev_replace
.lock_management_lock
);
2218 mutex_init(&fs_info
->dev_replace
.lock
);
2219 init_waitqueue_head(&fs_info
->replace_wait
);
2222 static void btrfs_init_qgroup(struct btrfs_fs_info
*fs_info
)
2224 spin_lock_init(&fs_info
->qgroup_lock
);
2225 mutex_init(&fs_info
->qgroup_ioctl_lock
);
2226 fs_info
->qgroup_tree
= RB_ROOT
;
2227 fs_info
->qgroup_op_tree
= RB_ROOT
;
2228 INIT_LIST_HEAD(&fs_info
->dirty_qgroups
);
2229 fs_info
->qgroup_seq
= 1;
2230 fs_info
->quota_enabled
= 0;
2231 fs_info
->pending_quota_state
= 0;
2232 fs_info
->qgroup_ulist
= NULL
;
2233 mutex_init(&fs_info
->qgroup_rescan_lock
);
2236 static int btrfs_init_workqueues(struct btrfs_fs_info
*fs_info
,
2237 struct btrfs_fs_devices
*fs_devices
)
2239 int max_active
= fs_info
->thread_pool_size
;
2240 unsigned int flags
= WQ_MEM_RECLAIM
| WQ_FREEZABLE
| WQ_UNBOUND
;
2243 btrfs_alloc_workqueue("worker", flags
| WQ_HIGHPRI
,
2246 fs_info
->delalloc_workers
=
2247 btrfs_alloc_workqueue("delalloc", flags
, max_active
, 2);
2249 fs_info
->flush_workers
=
2250 btrfs_alloc_workqueue("flush_delalloc", flags
, max_active
, 0);
2252 fs_info
->caching_workers
=
2253 btrfs_alloc_workqueue("cache", flags
, max_active
, 0);
2256 * a higher idle thresh on the submit workers makes it much more
2257 * likely that bios will be send down in a sane order to the
2260 fs_info
->submit_workers
=
2261 btrfs_alloc_workqueue("submit", flags
,
2262 min_t(u64
, fs_devices
->num_devices
,
2265 fs_info
->fixup_workers
=
2266 btrfs_alloc_workqueue("fixup", flags
, 1, 0);
2269 * endios are largely parallel and should have a very
2272 fs_info
->endio_workers
=
2273 btrfs_alloc_workqueue("endio", flags
, max_active
, 4);
2274 fs_info
->endio_meta_workers
=
2275 btrfs_alloc_workqueue("endio-meta", flags
, max_active
, 4);
2276 fs_info
->endio_meta_write_workers
=
2277 btrfs_alloc_workqueue("endio-meta-write", flags
, max_active
, 2);
2278 fs_info
->endio_raid56_workers
=
2279 btrfs_alloc_workqueue("endio-raid56", flags
, max_active
, 4);
2280 fs_info
->endio_repair_workers
=
2281 btrfs_alloc_workqueue("endio-repair", flags
, 1, 0);
2282 fs_info
->rmw_workers
=
2283 btrfs_alloc_workqueue("rmw", flags
, max_active
, 2);
2284 fs_info
->endio_write_workers
=
2285 btrfs_alloc_workqueue("endio-write", flags
, max_active
, 2);
2286 fs_info
->endio_freespace_worker
=
2287 btrfs_alloc_workqueue("freespace-write", flags
, max_active
, 0);
2288 fs_info
->delayed_workers
=
2289 btrfs_alloc_workqueue("delayed-meta", flags
, max_active
, 0);
2290 fs_info
->readahead_workers
=
2291 btrfs_alloc_workqueue("readahead", flags
, max_active
, 2);
2292 fs_info
->qgroup_rescan_workers
=
2293 btrfs_alloc_workqueue("qgroup-rescan", flags
, 1, 0);
2294 fs_info
->extent_workers
=
2295 btrfs_alloc_workqueue("extent-refs", flags
,
2296 min_t(u64
, fs_devices
->num_devices
,
2299 if (!(fs_info
->workers
&& fs_info
->delalloc_workers
&&
2300 fs_info
->submit_workers
&& fs_info
->flush_workers
&&
2301 fs_info
->endio_workers
&& fs_info
->endio_meta_workers
&&
2302 fs_info
->endio_meta_write_workers
&&
2303 fs_info
->endio_repair_workers
&&
2304 fs_info
->endio_write_workers
&& fs_info
->endio_raid56_workers
&&
2305 fs_info
->endio_freespace_worker
&& fs_info
->rmw_workers
&&
2306 fs_info
->caching_workers
&& fs_info
->readahead_workers
&&
2307 fs_info
->fixup_workers
&& fs_info
->delayed_workers
&&
2308 fs_info
->extent_workers
&&
2309 fs_info
->qgroup_rescan_workers
)) {
2316 static int btrfs_replay_log(struct btrfs_fs_info
*fs_info
,
2317 struct btrfs_fs_devices
*fs_devices
)
2320 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
2321 struct btrfs_root
*log_tree_root
;
2322 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2323 u64 bytenr
= btrfs_super_log_root(disk_super
);
2325 if (fs_devices
->rw_devices
== 0) {
2326 printk(KERN_WARNING
"BTRFS: log replay required "
2331 log_tree_root
= btrfs_alloc_root(fs_info
);
2335 __setup_root(tree_root
->nodesize
, tree_root
->sectorsize
,
2336 tree_root
->stripesize
, log_tree_root
, fs_info
,
2337 BTRFS_TREE_LOG_OBJECTID
);
2339 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
2340 fs_info
->generation
+ 1);
2341 if (!log_tree_root
->node
||
2342 !extent_buffer_uptodate(log_tree_root
->node
)) {
2343 printk(KERN_ERR
"BTRFS: failed to read log tree\n");
2344 free_extent_buffer(log_tree_root
->node
);
2345 kfree(log_tree_root
);
2348 /* returns with log_tree_root freed on success */
2349 ret
= btrfs_recover_log_trees(log_tree_root
);
2351 btrfs_error(tree_root
->fs_info
, ret
,
2352 "Failed to recover log tree");
2353 free_extent_buffer(log_tree_root
->node
);
2354 kfree(log_tree_root
);
2358 if (fs_info
->sb
->s_flags
& MS_RDONLY
) {
2359 ret
= btrfs_commit_super(tree_root
);
2367 static int btrfs_read_roots(struct btrfs_fs_info
*fs_info
,
2368 struct btrfs_root
*tree_root
)
2370 struct btrfs_root
*root
;
2371 struct btrfs_key location
;
2374 location
.objectid
= BTRFS_EXTENT_TREE_OBJECTID
;
2375 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2376 location
.offset
= 0;
2378 root
= btrfs_read_tree_root(tree_root
, &location
);
2380 return PTR_ERR(root
);
2381 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2382 fs_info
->extent_root
= root
;
2384 location
.objectid
= BTRFS_DEV_TREE_OBJECTID
;
2385 root
= btrfs_read_tree_root(tree_root
, &location
);
2387 return PTR_ERR(root
);
2388 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2389 fs_info
->dev_root
= root
;
2390 btrfs_init_devices_late(fs_info
);
2392 location
.objectid
= BTRFS_CSUM_TREE_OBJECTID
;
2393 root
= btrfs_read_tree_root(tree_root
, &location
);
2395 return PTR_ERR(root
);
2396 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2397 fs_info
->csum_root
= root
;
2399 location
.objectid
= BTRFS_QUOTA_TREE_OBJECTID
;
2400 root
= btrfs_read_tree_root(tree_root
, &location
);
2401 if (!IS_ERR(root
)) {
2402 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2403 fs_info
->quota_enabled
= 1;
2404 fs_info
->pending_quota_state
= 1;
2405 fs_info
->quota_root
= root
;
2408 location
.objectid
= BTRFS_UUID_TREE_OBJECTID
;
2409 root
= btrfs_read_tree_root(tree_root
, &location
);
2411 ret
= PTR_ERR(root
);
2415 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2416 fs_info
->uuid_root
= root
;
2422 int open_ctree(struct super_block
*sb
,
2423 struct btrfs_fs_devices
*fs_devices
,
2431 struct btrfs_key location
;
2432 struct buffer_head
*bh
;
2433 struct btrfs_super_block
*disk_super
;
2434 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2435 struct btrfs_root
*tree_root
;
2436 struct btrfs_root
*chunk_root
;
2439 int num_backups_tried
= 0;
2440 int backup_index
= 0;
2443 tree_root
= fs_info
->tree_root
= btrfs_alloc_root(fs_info
);
2444 chunk_root
= fs_info
->chunk_root
= btrfs_alloc_root(fs_info
);
2445 if (!tree_root
|| !chunk_root
) {
2450 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
2456 ret
= setup_bdi(fs_info
, &fs_info
->bdi
);
2462 ret
= percpu_counter_init(&fs_info
->dirty_metadata_bytes
, 0, GFP_KERNEL
);
2467 fs_info
->dirty_metadata_batch
= PAGE_CACHE_SIZE
*
2468 (1 + ilog2(nr_cpu_ids
));
2470 ret
= percpu_counter_init(&fs_info
->delalloc_bytes
, 0, GFP_KERNEL
);
2473 goto fail_dirty_metadata_bytes
;
2476 ret
= percpu_counter_init(&fs_info
->bio_counter
, 0, GFP_KERNEL
);
2479 goto fail_delalloc_bytes
;
2482 fs_info
->btree_inode
= new_inode(sb
);
2483 if (!fs_info
->btree_inode
) {
2485 goto fail_bio_counter
;
2488 mapping_set_gfp_mask(fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
2490 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
2491 INIT_RADIX_TREE(&fs_info
->buffer_radix
, GFP_ATOMIC
);
2492 INIT_LIST_HEAD(&fs_info
->trans_list
);
2493 INIT_LIST_HEAD(&fs_info
->dead_roots
);
2494 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
2495 INIT_LIST_HEAD(&fs_info
->delalloc_roots
);
2496 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
2497 spin_lock_init(&fs_info
->delalloc_root_lock
);
2498 spin_lock_init(&fs_info
->trans_lock
);
2499 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
2500 spin_lock_init(&fs_info
->delayed_iput_lock
);
2501 spin_lock_init(&fs_info
->defrag_inodes_lock
);
2502 spin_lock_init(&fs_info
->free_chunk_lock
);
2503 spin_lock_init(&fs_info
->tree_mod_seq_lock
);
2504 spin_lock_init(&fs_info
->super_lock
);
2505 spin_lock_init(&fs_info
->qgroup_op_lock
);
2506 spin_lock_init(&fs_info
->buffer_lock
);
2507 spin_lock_init(&fs_info
->unused_bgs_lock
);
2508 rwlock_init(&fs_info
->tree_mod_log_lock
);
2509 mutex_init(&fs_info
->unused_bg_unpin_mutex
);
2510 mutex_init(&fs_info
->reloc_mutex
);
2511 mutex_init(&fs_info
->delalloc_root_mutex
);
2512 mutex_init(&fs_info
->cleaner_delayed_iput_mutex
);
2513 seqlock_init(&fs_info
->profiles_lock
);
2515 init_completion(&fs_info
->kobj_unregister
);
2516 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
2517 INIT_LIST_HEAD(&fs_info
->space_info
);
2518 INIT_LIST_HEAD(&fs_info
->tree_mod_seq_list
);
2519 INIT_LIST_HEAD(&fs_info
->unused_bgs
);
2520 btrfs_mapping_init(&fs_info
->mapping_tree
);
2521 btrfs_init_block_rsv(&fs_info
->global_block_rsv
,
2522 BTRFS_BLOCK_RSV_GLOBAL
);
2523 btrfs_init_block_rsv(&fs_info
->delalloc_block_rsv
,
2524 BTRFS_BLOCK_RSV_DELALLOC
);
2525 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
, BTRFS_BLOCK_RSV_TRANS
);
2526 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
, BTRFS_BLOCK_RSV_CHUNK
);
2527 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
, BTRFS_BLOCK_RSV_EMPTY
);
2528 btrfs_init_block_rsv(&fs_info
->delayed_block_rsv
,
2529 BTRFS_BLOCK_RSV_DELOPS
);
2530 atomic_set(&fs_info
->nr_async_submits
, 0);
2531 atomic_set(&fs_info
->async_delalloc_pages
, 0);
2532 atomic_set(&fs_info
->async_submit_draining
, 0);
2533 atomic_set(&fs_info
->nr_async_bios
, 0);
2534 atomic_set(&fs_info
->defrag_running
, 0);
2535 atomic_set(&fs_info
->qgroup_op_seq
, 0);
2536 atomic64_set(&fs_info
->tree_mod_seq
, 0);
2538 fs_info
->max_inline
= BTRFS_DEFAULT_MAX_INLINE
;
2539 fs_info
->metadata_ratio
= 0;
2540 fs_info
->defrag_inodes
= RB_ROOT
;
2541 fs_info
->free_chunk_space
= 0;
2542 fs_info
->tree_mod_log
= RB_ROOT
;
2543 fs_info
->commit_interval
= BTRFS_DEFAULT_COMMIT_INTERVAL
;
2544 fs_info
->avg_delayed_ref_runtime
= NSEC_PER_SEC
>> 6; /* div by 64 */
2545 /* readahead state */
2546 INIT_RADIX_TREE(&fs_info
->reada_tree
, GFP_NOFS
& ~__GFP_WAIT
);
2547 spin_lock_init(&fs_info
->reada_lock
);
2549 fs_info
->thread_pool_size
= min_t(unsigned long,
2550 num_online_cpus() + 2, 8);
2552 INIT_LIST_HEAD(&fs_info
->ordered_roots
);
2553 spin_lock_init(&fs_info
->ordered_root_lock
);
2554 fs_info
->delayed_root
= kmalloc(sizeof(struct btrfs_delayed_root
),
2556 if (!fs_info
->delayed_root
) {
2560 btrfs_init_delayed_root(fs_info
->delayed_root
);
2562 btrfs_init_scrub(fs_info
);
2563 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2564 fs_info
->check_integrity_print_mask
= 0;
2566 btrfs_init_balance(fs_info
);
2567 btrfs_init_async_reclaim_work(&fs_info
->async_reclaim_work
);
2569 sb
->s_blocksize
= 4096;
2570 sb
->s_blocksize_bits
= blksize_bits(4096);
2571 sb
->s_bdi
= &fs_info
->bdi
;
2573 btrfs_init_btree_inode(fs_info
, tree_root
);
2575 spin_lock_init(&fs_info
->block_group_cache_lock
);
2576 fs_info
->block_group_cache_tree
= RB_ROOT
;
2577 fs_info
->first_logical_byte
= (u64
)-1;
2579 extent_io_tree_init(&fs_info
->freed_extents
[0],
2580 fs_info
->btree_inode
->i_mapping
);
2581 extent_io_tree_init(&fs_info
->freed_extents
[1],
2582 fs_info
->btree_inode
->i_mapping
);
2583 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
2584 fs_info
->do_barriers
= 1;
2587 mutex_init(&fs_info
->ordered_operations_mutex
);
2588 mutex_init(&fs_info
->ordered_extent_flush_mutex
);
2589 mutex_init(&fs_info
->tree_log_mutex
);
2590 mutex_init(&fs_info
->chunk_mutex
);
2591 mutex_init(&fs_info
->transaction_kthread_mutex
);
2592 mutex_init(&fs_info
->cleaner_mutex
);
2593 mutex_init(&fs_info
->volume_mutex
);
2594 mutex_init(&fs_info
->ro_block_group_mutex
);
2595 init_rwsem(&fs_info
->commit_root_sem
);
2596 init_rwsem(&fs_info
->cleanup_work_sem
);
2597 init_rwsem(&fs_info
->subvol_sem
);
2598 sema_init(&fs_info
->uuid_tree_rescan_sem
, 1);
2600 btrfs_init_dev_replace_locks(fs_info
);
2601 btrfs_init_qgroup(fs_info
);
2603 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
2604 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
2606 init_waitqueue_head(&fs_info
->transaction_throttle
);
2607 init_waitqueue_head(&fs_info
->transaction_wait
);
2608 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
2609 init_waitqueue_head(&fs_info
->async_submit_wait
);
2611 INIT_LIST_HEAD(&fs_info
->pinned_chunks
);
2613 ret
= btrfs_alloc_stripe_hash_table(fs_info
);
2619 __setup_root(4096, 4096, 4096, tree_root
,
2620 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
2622 invalidate_bdev(fs_devices
->latest_bdev
);
2625 * Read super block and check the signature bytes only
2627 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
2634 * We want to check superblock checksum, the type is stored inside.
2635 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2637 if (btrfs_check_super_csum(bh
->b_data
)) {
2638 printk(KERN_ERR
"BTRFS: superblock checksum mismatch\n");
2645 * super_copy is zeroed at allocation time and we never touch the
2646 * following bytes up to INFO_SIZE, the checksum is calculated from
2647 * the whole block of INFO_SIZE
2649 memcpy(fs_info
->super_copy
, bh
->b_data
, sizeof(*fs_info
->super_copy
));
2650 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2651 sizeof(*fs_info
->super_for_commit
));
2654 memcpy(fs_info
->fsid
, fs_info
->super_copy
->fsid
, BTRFS_FSID_SIZE
);
2656 ret
= btrfs_check_super_valid(fs_info
, sb
->s_flags
& MS_RDONLY
);
2658 printk(KERN_ERR
"BTRFS: superblock contains fatal errors\n");
2663 disk_super
= fs_info
->super_copy
;
2664 if (!btrfs_super_root(disk_super
))
2667 /* check FS state, whether FS is broken. */
2668 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_ERROR
)
2669 set_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
);
2672 * run through our array of backup supers and setup
2673 * our ring pointer to the oldest one
2675 generation
= btrfs_super_generation(disk_super
);
2676 find_oldest_super_backup(fs_info
, generation
);
2679 * In the long term, we'll store the compression type in the super
2680 * block, and it'll be used for per file compression control.
2682 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
2684 ret
= btrfs_parse_options(tree_root
, options
);
2690 features
= btrfs_super_incompat_flags(disk_super
) &
2691 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
2693 printk(KERN_ERR
"BTRFS: couldn't mount because of "
2694 "unsupported optional features (%Lx).\n",
2701 * Leafsize and nodesize were always equal, this is only a sanity check.
2703 if (le32_to_cpu(disk_super
->__unused_leafsize
) !=
2704 btrfs_super_nodesize(disk_super
)) {
2705 printk(KERN_ERR
"BTRFS: couldn't mount because metadata "
2706 "blocksizes don't match. node %d leaf %d\n",
2707 btrfs_super_nodesize(disk_super
),
2708 le32_to_cpu(disk_super
->__unused_leafsize
));
2712 if (btrfs_super_nodesize(disk_super
) > BTRFS_MAX_METADATA_BLOCKSIZE
) {
2713 printk(KERN_ERR
"BTRFS: couldn't mount because metadata "
2714 "blocksize (%d) was too large\n",
2715 btrfs_super_nodesize(disk_super
));
2720 features
= btrfs_super_incompat_flags(disk_super
);
2721 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
2722 if (tree_root
->fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
2723 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
2725 if (features
& BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA
)
2726 printk(KERN_INFO
"BTRFS: has skinny extents\n");
2729 * flag our filesystem as having big metadata blocks if
2730 * they are bigger than the page size
2732 if (btrfs_super_nodesize(disk_super
) > PAGE_CACHE_SIZE
) {
2733 if (!(features
& BTRFS_FEATURE_INCOMPAT_BIG_METADATA
))
2734 printk(KERN_INFO
"BTRFS: flagging fs with big metadata feature\n");
2735 features
|= BTRFS_FEATURE_INCOMPAT_BIG_METADATA
;
2738 nodesize
= btrfs_super_nodesize(disk_super
);
2739 sectorsize
= btrfs_super_sectorsize(disk_super
);
2740 stripesize
= btrfs_super_stripesize(disk_super
);
2741 fs_info
->dirty_metadata_batch
= nodesize
* (1 + ilog2(nr_cpu_ids
));
2742 fs_info
->delalloc_batch
= sectorsize
* 512 * (1 + ilog2(nr_cpu_ids
));
2745 * mixed block groups end up with duplicate but slightly offset
2746 * extent buffers for the same range. It leads to corruptions
2748 if ((features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
) &&
2749 (sectorsize
!= nodesize
)) {
2750 printk(KERN_ERR
"BTRFS: unequal leaf/node/sector sizes "
2751 "are not allowed for mixed block groups on %s\n",
2757 * Needn't use the lock because there is no other task which will
2760 btrfs_set_super_incompat_flags(disk_super
, features
);
2762 features
= btrfs_super_compat_ro_flags(disk_super
) &
2763 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
2764 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
2765 printk(KERN_ERR
"BTRFS: couldn't mount RDWR because of "
2766 "unsupported option features (%Lx).\n",
2772 max_active
= fs_info
->thread_pool_size
;
2774 ret
= btrfs_init_workqueues(fs_info
, fs_devices
);
2777 goto fail_sb_buffer
;
2780 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
2781 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
2782 4 * 1024 * 1024 / PAGE_CACHE_SIZE
);
2784 tree_root
->nodesize
= nodesize
;
2785 tree_root
->sectorsize
= sectorsize
;
2786 tree_root
->stripesize
= stripesize
;
2788 sb
->s_blocksize
= sectorsize
;
2789 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
2791 if (btrfs_super_magic(disk_super
) != BTRFS_MAGIC
) {
2792 printk(KERN_ERR
"BTRFS: valid FS not found on %s\n", sb
->s_id
);
2793 goto fail_sb_buffer
;
2796 if (sectorsize
!= PAGE_SIZE
) {
2797 printk(KERN_ERR
"BTRFS: incompatible sector size (%lu) "
2798 "found on %s\n", (unsigned long)sectorsize
, sb
->s_id
);
2799 goto fail_sb_buffer
;
2802 mutex_lock(&fs_info
->chunk_mutex
);
2803 ret
= btrfs_read_sys_array(tree_root
);
2804 mutex_unlock(&fs_info
->chunk_mutex
);
2806 printk(KERN_ERR
"BTRFS: failed to read the system "
2807 "array on %s\n", sb
->s_id
);
2808 goto fail_sb_buffer
;
2811 generation
= btrfs_super_chunk_root_generation(disk_super
);
2813 __setup_root(nodesize
, sectorsize
, stripesize
, chunk_root
,
2814 fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
2816 chunk_root
->node
= read_tree_block(chunk_root
,
2817 btrfs_super_chunk_root(disk_super
),
2819 if (!chunk_root
->node
||
2820 !test_bit(EXTENT_BUFFER_UPTODATE
, &chunk_root
->node
->bflags
)) {
2821 printk(KERN_ERR
"BTRFS: failed to read chunk root on %s\n",
2823 goto fail_tree_roots
;
2825 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
2826 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
2828 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
2829 btrfs_header_chunk_tree_uuid(chunk_root
->node
), BTRFS_UUID_SIZE
);
2831 ret
= btrfs_read_chunk_tree(chunk_root
);
2833 printk(KERN_ERR
"BTRFS: failed to read chunk tree on %s\n",
2835 goto fail_tree_roots
;
2839 * keep the device that is marked to be the target device for the
2840 * dev_replace procedure
2842 btrfs_close_extra_devices(fs_devices
, 0);
2844 if (!fs_devices
->latest_bdev
) {
2845 printk(KERN_ERR
"BTRFS: failed to read devices on %s\n",
2847 goto fail_tree_roots
;
2851 generation
= btrfs_super_generation(disk_super
);
2853 tree_root
->node
= read_tree_block(tree_root
,
2854 btrfs_super_root(disk_super
),
2856 if (!tree_root
->node
||
2857 !test_bit(EXTENT_BUFFER_UPTODATE
, &tree_root
->node
->bflags
)) {
2858 printk(KERN_WARNING
"BTRFS: failed to read tree root on %s\n",
2861 goto recovery_tree_root
;
2864 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
2865 tree_root
->commit_root
= btrfs_root_node(tree_root
);
2866 btrfs_set_root_refs(&tree_root
->root_item
, 1);
2868 mutex_lock(&tree_root
->objectid_mutex
);
2869 ret
= btrfs_find_highest_objectid(tree_root
,
2870 &tree_root
->highest_objectid
);
2872 mutex_unlock(&tree_root
->objectid_mutex
);
2873 goto recovery_tree_root
;
2876 ASSERT(tree_root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
2878 mutex_unlock(&tree_root
->objectid_mutex
);
2880 ret
= btrfs_read_roots(fs_info
, tree_root
);
2882 goto recovery_tree_root
;
2884 fs_info
->generation
= generation
;
2885 fs_info
->last_trans_committed
= generation
;
2887 ret
= btrfs_recover_balance(fs_info
);
2889 printk(KERN_ERR
"BTRFS: failed to recover balance\n");
2890 goto fail_block_groups
;
2893 ret
= btrfs_init_dev_stats(fs_info
);
2895 printk(KERN_ERR
"BTRFS: failed to init dev_stats: %d\n",
2897 goto fail_block_groups
;
2900 ret
= btrfs_init_dev_replace(fs_info
);
2902 pr_err("BTRFS: failed to init dev_replace: %d\n", ret
);
2903 goto fail_block_groups
;
2906 btrfs_close_extra_devices(fs_devices
, 1);
2908 ret
= btrfs_sysfs_add_one(fs_info
);
2910 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret
);
2911 goto fail_block_groups
;
2914 ret
= btrfs_init_space_info(fs_info
);
2916 printk(KERN_ERR
"BTRFS: Failed to initial space info: %d\n", ret
);
2920 ret
= btrfs_read_block_groups(fs_info
->extent_root
);
2922 printk(KERN_ERR
"BTRFS: Failed to read block groups: %d\n", ret
);
2925 fs_info
->num_tolerated_disk_barrier_failures
=
2926 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
2927 if (fs_info
->fs_devices
->missing_devices
>
2928 fs_info
->num_tolerated_disk_barrier_failures
&&
2929 !(sb
->s_flags
& MS_RDONLY
)) {
2930 printk(KERN_WARNING
"BTRFS: "
2931 "too many missing devices, writeable mount is not allowed\n");
2935 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
2937 if (IS_ERR(fs_info
->cleaner_kthread
))
2940 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
2942 "btrfs-transaction");
2943 if (IS_ERR(fs_info
->transaction_kthread
))
2946 if (!btrfs_test_opt(tree_root
, SSD
) &&
2947 !btrfs_test_opt(tree_root
, NOSSD
) &&
2948 !fs_info
->fs_devices
->rotating
) {
2949 printk(KERN_INFO
"BTRFS: detected SSD devices, enabling SSD "
2951 btrfs_set_opt(fs_info
->mount_opt
, SSD
);
2955 * Mount does not set all options immediatelly, we can do it now and do
2956 * not have to wait for transaction commit
2958 btrfs_apply_pending_changes(fs_info
);
2960 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2961 if (btrfs_test_opt(tree_root
, CHECK_INTEGRITY
)) {
2962 ret
= btrfsic_mount(tree_root
, fs_devices
,
2963 btrfs_test_opt(tree_root
,
2964 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
) ?
2966 fs_info
->check_integrity_print_mask
);
2968 printk(KERN_WARNING
"BTRFS: failed to initialize"
2969 " integrity check module %s\n", sb
->s_id
);
2972 ret
= btrfs_read_qgroup_config(fs_info
);
2974 goto fail_trans_kthread
;
2976 /* do not make disk changes in broken FS */
2977 if (btrfs_super_log_root(disk_super
) != 0) {
2978 ret
= btrfs_replay_log(fs_info
, fs_devices
);
2985 ret
= btrfs_find_orphan_roots(tree_root
);
2989 if (!(sb
->s_flags
& MS_RDONLY
)) {
2990 ret
= btrfs_cleanup_fs_roots(fs_info
);
2994 mutex_lock(&fs_info
->cleaner_mutex
);
2995 ret
= btrfs_recover_relocation(tree_root
);
2996 mutex_unlock(&fs_info
->cleaner_mutex
);
2999 "BTRFS: failed to recover relocation\n");
3005 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
3006 location
.type
= BTRFS_ROOT_ITEM_KEY
;
3007 location
.offset
= 0;
3009 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
3010 if (IS_ERR(fs_info
->fs_root
)) {
3011 err
= PTR_ERR(fs_info
->fs_root
);
3015 if (sb
->s_flags
& MS_RDONLY
)
3018 down_read(&fs_info
->cleanup_work_sem
);
3019 if ((ret
= btrfs_orphan_cleanup(fs_info
->fs_root
)) ||
3020 (ret
= btrfs_orphan_cleanup(fs_info
->tree_root
))) {
3021 up_read(&fs_info
->cleanup_work_sem
);
3022 close_ctree(tree_root
);
3025 up_read(&fs_info
->cleanup_work_sem
);
3027 ret
= btrfs_resume_balance_async(fs_info
);
3029 printk(KERN_WARNING
"BTRFS: failed to resume balance\n");
3030 close_ctree(tree_root
);
3034 ret
= btrfs_resume_dev_replace_async(fs_info
);
3036 pr_warn("BTRFS: failed to resume dev_replace\n");
3037 close_ctree(tree_root
);
3041 btrfs_qgroup_rescan_resume(fs_info
);
3043 if (!fs_info
->uuid_root
) {
3044 pr_info("BTRFS: creating UUID tree\n");
3045 ret
= btrfs_create_uuid_tree(fs_info
);
3047 pr_warn("BTRFS: failed to create the UUID tree %d\n",
3049 close_ctree(tree_root
);
3052 } else if (btrfs_test_opt(tree_root
, RESCAN_UUID_TREE
) ||
3053 fs_info
->generation
!=
3054 btrfs_super_uuid_tree_generation(disk_super
)) {
3055 pr_info("BTRFS: checking UUID tree\n");
3056 ret
= btrfs_check_uuid_tree(fs_info
);
3058 pr_warn("BTRFS: failed to check the UUID tree %d\n",
3060 close_ctree(tree_root
);
3064 fs_info
->update_uuid_tree_gen
= 1;
3072 btrfs_free_qgroup_config(fs_info
);
3074 kthread_stop(fs_info
->transaction_kthread
);
3075 btrfs_cleanup_transaction(fs_info
->tree_root
);
3076 btrfs_free_fs_roots(fs_info
);
3078 kthread_stop(fs_info
->cleaner_kthread
);
3081 * make sure we're done with the btree inode before we stop our
3084 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
3087 btrfs_sysfs_remove_one(fs_info
);
3090 btrfs_put_block_group_cache(fs_info
);
3091 btrfs_free_block_groups(fs_info
);
3094 free_root_pointers(fs_info
, 1);
3095 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
3098 btrfs_stop_all_workers(fs_info
);
3101 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3103 iput(fs_info
->btree_inode
);
3105 percpu_counter_destroy(&fs_info
->bio_counter
);
3106 fail_delalloc_bytes
:
3107 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
3108 fail_dirty_metadata_bytes
:
3109 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
3111 bdi_destroy(&fs_info
->bdi
);
3113 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
3115 btrfs_free_stripe_hash_table(fs_info
);
3116 btrfs_close_devices(fs_info
->fs_devices
);
3120 if (!btrfs_test_opt(tree_root
, RECOVERY
))
3121 goto fail_tree_roots
;
3123 free_root_pointers(fs_info
, 0);
3125 /* don't use the log in recovery mode, it won't be valid */
3126 btrfs_set_super_log_root(disk_super
, 0);
3128 /* we can't trust the free space cache either */
3129 btrfs_set_opt(fs_info
->mount_opt
, CLEAR_CACHE
);
3131 ret
= next_root_backup(fs_info
, fs_info
->super_copy
,
3132 &num_backups_tried
, &backup_index
);
3134 goto fail_block_groups
;
3135 goto retry_root_backup
;
3138 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
3141 set_buffer_uptodate(bh
);
3143 struct btrfs_device
*device
= (struct btrfs_device
*)
3146 printk_ratelimited_in_rcu(KERN_WARNING
"BTRFS: lost page write due to "
3147 "I/O error on %s\n",
3148 rcu_str_deref(device
->name
));
3149 /* note, we dont' set_buffer_write_io_error because we have
3150 * our own ways of dealing with the IO errors
3152 clear_buffer_uptodate(bh
);
3153 btrfs_dev_stat_inc_and_print(device
, BTRFS_DEV_STAT_WRITE_ERRS
);
3159 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
3161 struct buffer_head
*bh
;
3162 struct buffer_head
*latest
= NULL
;
3163 struct btrfs_super_block
*super
;
3168 /* we would like to check all the supers, but that would make
3169 * a btrfs mount succeed after a mkfs from a different FS.
3170 * So, we need to add a special mount option to scan for
3171 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3173 for (i
= 0; i
< 1; i
++) {
3174 bytenr
= btrfs_sb_offset(i
);
3175 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3176 i_size_read(bdev
->bd_inode
))
3178 bh
= __bread(bdev
, bytenr
/ 4096,
3179 BTRFS_SUPER_INFO_SIZE
);
3183 super
= (struct btrfs_super_block
*)bh
->b_data
;
3184 if (btrfs_super_bytenr(super
) != bytenr
||
3185 btrfs_super_magic(super
) != BTRFS_MAGIC
) {
3190 if (!latest
|| btrfs_super_generation(super
) > transid
) {
3193 transid
= btrfs_super_generation(super
);
3202 * this should be called twice, once with wait == 0 and
3203 * once with wait == 1. When wait == 0 is done, all the buffer heads
3204 * we write are pinned.
3206 * They are released when wait == 1 is done.
3207 * max_mirrors must be the same for both runs, and it indicates how
3208 * many supers on this one device should be written.
3210 * max_mirrors == 0 means to write them all.
3212 static int write_dev_supers(struct btrfs_device
*device
,
3213 struct btrfs_super_block
*sb
,
3214 int do_barriers
, int wait
, int max_mirrors
)
3216 struct buffer_head
*bh
;
3223 if (max_mirrors
== 0)
3224 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3226 for (i
= 0; i
< max_mirrors
; i
++) {
3227 bytenr
= btrfs_sb_offset(i
);
3228 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3229 device
->commit_total_bytes
)
3233 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
3234 BTRFS_SUPER_INFO_SIZE
);
3240 if (!buffer_uptodate(bh
))
3243 /* drop our reference */
3246 /* drop the reference from the wait == 0 run */
3250 btrfs_set_super_bytenr(sb
, bytenr
);
3253 crc
= btrfs_csum_data((char *)sb
+
3254 BTRFS_CSUM_SIZE
, crc
,
3255 BTRFS_SUPER_INFO_SIZE
-
3257 btrfs_csum_final(crc
, sb
->csum
);
3260 * one reference for us, and we leave it for the
3263 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
3264 BTRFS_SUPER_INFO_SIZE
);
3266 printk(KERN_ERR
"BTRFS: couldn't get super "
3267 "buffer head for bytenr %Lu\n", bytenr
);
3272 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
3274 /* one reference for submit_bh */
3277 set_buffer_uptodate(bh
);
3279 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
3280 bh
->b_private
= device
;
3284 * we fua the first super. The others we allow
3288 ret
= btrfsic_submit_bh(WRITE_FUA
, bh
);
3290 ret
= btrfsic_submit_bh(WRITE_SYNC
, bh
);
3294 return errors
< i
? 0 : -1;
3298 * endio for the write_dev_flush, this will wake anyone waiting
3299 * for the barrier when it is done
3301 static void btrfs_end_empty_barrier(struct bio
*bio
, int err
)
3304 if (err
== -EOPNOTSUPP
)
3305 set_bit(BIO_EOPNOTSUPP
, &bio
->bi_flags
);
3306 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
3308 if (bio
->bi_private
)
3309 complete(bio
->bi_private
);
3314 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3315 * sent down. With wait == 1, it waits for the previous flush.
3317 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3320 static int write_dev_flush(struct btrfs_device
*device
, int wait
)
3325 if (device
->nobarriers
)
3329 bio
= device
->flush_bio
;
3333 wait_for_completion(&device
->flush_wait
);
3335 if (bio_flagged(bio
, BIO_EOPNOTSUPP
)) {
3336 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3337 rcu_str_deref(device
->name
));
3338 device
->nobarriers
= 1;
3339 } else if (!bio_flagged(bio
, BIO_UPTODATE
)) {
3341 btrfs_dev_stat_inc_and_print(device
,
3342 BTRFS_DEV_STAT_FLUSH_ERRS
);
3345 /* drop the reference from the wait == 0 run */
3347 device
->flush_bio
= NULL
;
3353 * one reference for us, and we leave it for the
3356 device
->flush_bio
= NULL
;
3357 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 0);
3361 bio
->bi_end_io
= btrfs_end_empty_barrier
;
3362 bio
->bi_bdev
= device
->bdev
;
3363 init_completion(&device
->flush_wait
);
3364 bio
->bi_private
= &device
->flush_wait
;
3365 device
->flush_bio
= bio
;
3368 btrfsic_submit_bio(WRITE_FLUSH
, bio
);
3374 * send an empty flush down to each device in parallel,
3375 * then wait for them
3377 static int barrier_all_devices(struct btrfs_fs_info
*info
)
3379 struct list_head
*head
;
3380 struct btrfs_device
*dev
;
3381 int errors_send
= 0;
3382 int errors_wait
= 0;
3385 /* send down all the barriers */
3386 head
= &info
->fs_devices
->devices
;
3387 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3394 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3397 ret
= write_dev_flush(dev
, 0);
3402 /* wait for all the barriers */
3403 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3410 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3413 ret
= write_dev_flush(dev
, 1);
3417 if (errors_send
> info
->num_tolerated_disk_barrier_failures
||
3418 errors_wait
> info
->num_tolerated_disk_barrier_failures
)
3423 int btrfs_calc_num_tolerated_disk_barrier_failures(
3424 struct btrfs_fs_info
*fs_info
)
3426 struct btrfs_ioctl_space_info space
;
3427 struct btrfs_space_info
*sinfo
;
3428 u64 types
[] = {BTRFS_BLOCK_GROUP_DATA
,
3429 BTRFS_BLOCK_GROUP_SYSTEM
,
3430 BTRFS_BLOCK_GROUP_METADATA
,
3431 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
};
3435 int num_tolerated_disk_barrier_failures
=
3436 (int)fs_info
->fs_devices
->num_devices
;
3438 for (i
= 0; i
< num_types
; i
++) {
3439 struct btrfs_space_info
*tmp
;
3443 list_for_each_entry_rcu(tmp
, &fs_info
->space_info
, list
) {
3444 if (tmp
->flags
== types
[i
]) {
3454 down_read(&sinfo
->groups_sem
);
3455 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
3456 if (!list_empty(&sinfo
->block_groups
[c
])) {
3459 btrfs_get_block_group_info(
3460 &sinfo
->block_groups
[c
], &space
);
3461 if (space
.total_bytes
== 0 ||
3462 space
.used_bytes
== 0)
3464 flags
= space
.flags
;
3467 * 0: if dup, single or RAID0 is configured for
3468 * any of metadata, system or data, else
3469 * 1: if RAID5 is configured, or if RAID1 or
3470 * RAID10 is configured and only two mirrors
3472 * 2: if RAID6 is configured, else
3473 * num_mirrors - 1: if RAID1 or RAID10 is
3474 * configured and more than
3475 * 2 mirrors are used.
3477 if (num_tolerated_disk_barrier_failures
> 0 &&
3478 ((flags
& (BTRFS_BLOCK_GROUP_DUP
|
3479 BTRFS_BLOCK_GROUP_RAID0
)) ||
3480 ((flags
& BTRFS_BLOCK_GROUP_PROFILE_MASK
)
3482 num_tolerated_disk_barrier_failures
= 0;
3483 else if (num_tolerated_disk_barrier_failures
> 1) {
3484 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
3485 BTRFS_BLOCK_GROUP_RAID5
|
3486 BTRFS_BLOCK_GROUP_RAID10
)) {
3487 num_tolerated_disk_barrier_failures
= 1;
3489 BTRFS_BLOCK_GROUP_RAID6
) {
3490 num_tolerated_disk_barrier_failures
= 2;
3495 up_read(&sinfo
->groups_sem
);
3498 return num_tolerated_disk_barrier_failures
;
3501 static int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
3503 struct list_head
*head
;
3504 struct btrfs_device
*dev
;
3505 struct btrfs_super_block
*sb
;
3506 struct btrfs_dev_item
*dev_item
;
3510 int total_errors
= 0;
3513 do_barriers
= !btrfs_test_opt(root
, NOBARRIER
);
3514 backup_super_roots(root
->fs_info
);
3516 sb
= root
->fs_info
->super_for_commit
;
3517 dev_item
= &sb
->dev_item
;
3519 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3520 head
= &root
->fs_info
->fs_devices
->devices
;
3521 max_errors
= btrfs_super_num_devices(root
->fs_info
->super_copy
) - 1;
3524 ret
= barrier_all_devices(root
->fs_info
);
3527 &root
->fs_info
->fs_devices
->device_list_mutex
);
3528 btrfs_error(root
->fs_info
, ret
,
3529 "errors while submitting device barriers.");
3534 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3539 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3542 btrfs_set_stack_device_generation(dev_item
, 0);
3543 btrfs_set_stack_device_type(dev_item
, dev
->type
);
3544 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
3545 btrfs_set_stack_device_total_bytes(dev_item
,
3546 dev
->commit_total_bytes
);
3547 btrfs_set_stack_device_bytes_used(dev_item
,
3548 dev
->commit_bytes_used
);
3549 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
3550 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
3551 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
3552 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
3553 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
3555 flags
= btrfs_super_flags(sb
);
3556 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
3558 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
3562 if (total_errors
> max_errors
) {
3563 btrfs_err(root
->fs_info
, "%d errors while writing supers",
3565 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3567 /* FUA is masked off if unsupported and can't be the reason */
3568 btrfs_error(root
->fs_info
, -EIO
,
3569 "%d errors while writing supers", total_errors
);
3574 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3577 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3580 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
3584 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3585 if (total_errors
> max_errors
) {
3586 btrfs_error(root
->fs_info
, -EIO
,
3587 "%d errors while writing supers", total_errors
);
3593 int write_ctree_super(struct btrfs_trans_handle
*trans
,
3594 struct btrfs_root
*root
, int max_mirrors
)
3596 return write_all_supers(root
, max_mirrors
);
3599 /* Drop a fs root from the radix tree and free it. */
3600 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info
*fs_info
,
3601 struct btrfs_root
*root
)
3603 spin_lock(&fs_info
->fs_roots_radix_lock
);
3604 radix_tree_delete(&fs_info
->fs_roots_radix
,
3605 (unsigned long)root
->root_key
.objectid
);
3606 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3608 if (btrfs_root_refs(&root
->root_item
) == 0)
3609 synchronize_srcu(&fs_info
->subvol_srcu
);
3611 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
3612 btrfs_free_log(NULL
, root
);
3614 if (root
->free_ino_pinned
)
3615 __btrfs_remove_free_space_cache(root
->free_ino_pinned
);
3616 if (root
->free_ino_ctl
)
3617 __btrfs_remove_free_space_cache(root
->free_ino_ctl
);
3621 static void free_fs_root(struct btrfs_root
*root
)
3623 iput(root
->ino_cache_inode
);
3624 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
3625 btrfs_free_block_rsv(root
, root
->orphan_block_rsv
);
3626 root
->orphan_block_rsv
= NULL
;
3628 free_anon_bdev(root
->anon_dev
);
3629 if (root
->subv_writers
)
3630 btrfs_free_subvolume_writers(root
->subv_writers
);
3631 free_extent_buffer(root
->node
);
3632 free_extent_buffer(root
->commit_root
);
3633 kfree(root
->free_ino_ctl
);
3634 kfree(root
->free_ino_pinned
);
3636 btrfs_put_fs_root(root
);
3639 void btrfs_free_fs_root(struct btrfs_root
*root
)
3644 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
3646 u64 root_objectid
= 0;
3647 struct btrfs_root
*gang
[8];
3650 unsigned int ret
= 0;
3654 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
3655 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
3656 (void **)gang
, root_objectid
,
3659 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
3662 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
3664 for (i
= 0; i
< ret
; i
++) {
3665 /* Avoid to grab roots in dead_roots */
3666 if (btrfs_root_refs(&gang
[i
]->root_item
) == 0) {
3670 /* grab all the search result for later use */
3671 gang
[i
] = btrfs_grab_fs_root(gang
[i
]);
3673 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
3675 for (i
= 0; i
< ret
; i
++) {
3678 root_objectid
= gang
[i
]->root_key
.objectid
;
3679 err
= btrfs_orphan_cleanup(gang
[i
]);
3682 btrfs_put_fs_root(gang
[i
]);
3687 /* release the uncleaned roots due to error */
3688 for (; i
< ret
; i
++) {
3690 btrfs_put_fs_root(gang
[i
]);
3695 int btrfs_commit_super(struct btrfs_root
*root
)
3697 struct btrfs_trans_handle
*trans
;
3699 mutex_lock(&root
->fs_info
->cleaner_mutex
);
3700 btrfs_run_delayed_iputs(root
);
3701 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
3702 wake_up_process(root
->fs_info
->cleaner_kthread
);
3704 /* wait until ongoing cleanup work done */
3705 down_write(&root
->fs_info
->cleanup_work_sem
);
3706 up_write(&root
->fs_info
->cleanup_work_sem
);
3708 trans
= btrfs_join_transaction(root
);
3710 return PTR_ERR(trans
);
3711 return btrfs_commit_transaction(trans
, root
);
3714 void close_ctree(struct btrfs_root
*root
)
3716 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3719 fs_info
->closing
= 1;
3722 /* wait for the uuid_scan task to finish */
3723 down(&fs_info
->uuid_tree_rescan_sem
);
3724 /* avoid complains from lockdep et al., set sem back to initial state */
3725 up(&fs_info
->uuid_tree_rescan_sem
);
3727 /* pause restriper - we want to resume on mount */
3728 btrfs_pause_balance(fs_info
);
3730 btrfs_dev_replace_suspend_for_unmount(fs_info
);
3732 btrfs_scrub_cancel(fs_info
);
3734 /* wait for any defraggers to finish */
3735 wait_event(fs_info
->transaction_wait
,
3736 (atomic_read(&fs_info
->defrag_running
) == 0));
3738 /* clear out the rbtree of defraggable inodes */
3739 btrfs_cleanup_defrag_inodes(fs_info
);
3741 cancel_work_sync(&fs_info
->async_reclaim_work
);
3743 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
3744 ret
= btrfs_commit_super(root
);
3746 btrfs_err(fs_info
, "commit super ret %d", ret
);
3749 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
3750 btrfs_error_commit_super(root
);
3752 kthread_stop(fs_info
->transaction_kthread
);
3753 kthread_stop(fs_info
->cleaner_kthread
);
3755 fs_info
->closing
= 2;
3758 btrfs_free_qgroup_config(fs_info
);
3760 if (percpu_counter_sum(&fs_info
->delalloc_bytes
)) {
3761 btrfs_info(fs_info
, "at unmount delalloc count %lld",
3762 percpu_counter_sum(&fs_info
->delalloc_bytes
));
3765 btrfs_sysfs_remove_one(fs_info
);
3767 btrfs_free_fs_roots(fs_info
);
3769 btrfs_put_block_group_cache(fs_info
);
3771 btrfs_free_block_groups(fs_info
);
3774 * we must make sure there is not any read request to
3775 * submit after we stopping all workers.
3777 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
3778 btrfs_stop_all_workers(fs_info
);
3781 free_root_pointers(fs_info
, 1);
3783 iput(fs_info
->btree_inode
);
3785 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3786 if (btrfs_test_opt(root
, CHECK_INTEGRITY
))
3787 btrfsic_unmount(root
, fs_info
->fs_devices
);
3790 btrfs_close_devices(fs_info
->fs_devices
);
3791 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3793 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
3794 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
3795 percpu_counter_destroy(&fs_info
->bio_counter
);
3796 bdi_destroy(&fs_info
->bdi
);
3797 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
3799 btrfs_free_stripe_hash_table(fs_info
);
3801 __btrfs_free_block_rsv(root
->orphan_block_rsv
);
3802 root
->orphan_block_rsv
= NULL
;
3805 while (!list_empty(&fs_info
->pinned_chunks
)) {
3806 struct extent_map
*em
;
3808 em
= list_first_entry(&fs_info
->pinned_chunks
,
3809 struct extent_map
, list
);
3810 list_del_init(&em
->list
);
3811 free_extent_map(em
);
3813 unlock_chunks(root
);
3816 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
,
3820 struct inode
*btree_inode
= buf
->pages
[0]->mapping
->host
;
3822 ret
= extent_buffer_uptodate(buf
);
3826 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
3827 parent_transid
, atomic
);
3833 int btrfs_set_buffer_uptodate(struct extent_buffer
*buf
)
3835 return set_extent_buffer_uptodate(buf
);
3838 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
3840 struct btrfs_root
*root
;
3841 u64 transid
= btrfs_header_generation(buf
);
3844 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3846 * This is a fast path so only do this check if we have sanity tests
3847 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3848 * outside of the sanity tests.
3850 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY
, &buf
->bflags
)))
3853 root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
3854 btrfs_assert_tree_locked(buf
);
3855 if (transid
!= root
->fs_info
->generation
)
3856 WARN(1, KERN_CRIT
"btrfs transid mismatch buffer %llu, "
3857 "found %llu running %llu\n",
3858 buf
->start
, transid
, root
->fs_info
->generation
);
3859 was_dirty
= set_extent_buffer_dirty(buf
);
3861 __percpu_counter_add(&root
->fs_info
->dirty_metadata_bytes
,
3863 root
->fs_info
->dirty_metadata_batch
);
3864 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3865 if (btrfs_header_level(buf
) == 0 && check_leaf(root
, buf
)) {
3866 btrfs_print_leaf(root
, buf
);
3872 static void __btrfs_btree_balance_dirty(struct btrfs_root
*root
,
3876 * looks as though older kernels can get into trouble with
3877 * this code, they end up stuck in balance_dirty_pages forever
3881 if (current
->flags
& PF_MEMALLOC
)
3885 btrfs_balance_delayed_items(root
);
3887 ret
= percpu_counter_compare(&root
->fs_info
->dirty_metadata_bytes
,
3888 BTRFS_DIRTY_METADATA_THRESH
);
3890 balance_dirty_pages_ratelimited(
3891 root
->fs_info
->btree_inode
->i_mapping
);
3896 void btrfs_btree_balance_dirty(struct btrfs_root
*root
)
3898 __btrfs_btree_balance_dirty(root
, 1);
3901 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root
*root
)
3903 __btrfs_btree_balance_dirty(root
, 0);
3906 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
3908 struct btrfs_root
*root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
3909 return btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
3912 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
3915 struct btrfs_super_block
*sb
= fs_info
->super_copy
;
3918 if (btrfs_super_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
3919 printk(KERN_ERR
"BTRFS: tree_root level too big: %d >= %d\n",
3920 btrfs_super_root_level(sb
), BTRFS_MAX_LEVEL
);
3923 if (btrfs_super_chunk_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
3924 printk(KERN_ERR
"BTRFS: chunk_root level too big: %d >= %d\n",
3925 btrfs_super_chunk_root_level(sb
), BTRFS_MAX_LEVEL
);
3928 if (btrfs_super_log_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
3929 printk(KERN_ERR
"BTRFS: log_root level too big: %d >= %d\n",
3930 btrfs_super_log_root_level(sb
), BTRFS_MAX_LEVEL
);
3935 * The common minimum, we don't know if we can trust the nodesize/sectorsize
3936 * items yet, they'll be verified later. Issue just a warning.
3938 if (!IS_ALIGNED(btrfs_super_root(sb
), 4096))
3939 printk(KERN_WARNING
"BTRFS: tree_root block unaligned: %llu\n",
3940 btrfs_super_root(sb
));
3941 if (!IS_ALIGNED(btrfs_super_chunk_root(sb
), 4096))
3942 printk(KERN_WARNING
"BTRFS: chunk_root block unaligned: %llu\n",
3943 btrfs_super_chunk_root(sb
));
3944 if (!IS_ALIGNED(btrfs_super_log_root(sb
), 4096))
3945 printk(KERN_WARNING
"BTRFS: log_root block unaligned: %llu\n",
3946 btrfs_super_log_root(sb
));
3949 * Check the lower bound, the alignment and other constraints are
3952 if (btrfs_super_nodesize(sb
) < 4096) {
3953 printk(KERN_ERR
"BTRFS: nodesize too small: %u < 4096\n",
3954 btrfs_super_nodesize(sb
));
3957 if (btrfs_super_sectorsize(sb
) < 4096) {
3958 printk(KERN_ERR
"BTRFS: sectorsize too small: %u < 4096\n",
3959 btrfs_super_sectorsize(sb
));
3963 if (memcmp(fs_info
->fsid
, sb
->dev_item
.fsid
, BTRFS_UUID_SIZE
) != 0) {
3964 printk(KERN_ERR
"BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
3965 fs_info
->fsid
, sb
->dev_item
.fsid
);
3970 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3973 if (btrfs_super_num_devices(sb
) > (1UL << 31))
3974 printk(KERN_WARNING
"BTRFS: suspicious number of devices: %llu\n",
3975 btrfs_super_num_devices(sb
));
3976 if (btrfs_super_num_devices(sb
) == 0) {
3977 printk(KERN_ERR
"BTRFS: number of devices is 0\n");
3981 if (btrfs_super_bytenr(sb
) != BTRFS_SUPER_INFO_OFFSET
) {
3982 printk(KERN_ERR
"BTRFS: super offset mismatch %llu != %u\n",
3983 btrfs_super_bytenr(sb
), BTRFS_SUPER_INFO_OFFSET
);
3988 * Obvious sys_chunk_array corruptions, it must hold at least one key
3991 if (btrfs_super_sys_array_size(sb
) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
3992 printk(KERN_ERR
"BTRFS: system chunk array too big %u > %u\n",
3993 btrfs_super_sys_array_size(sb
),
3994 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
);
3997 if (btrfs_super_sys_array_size(sb
) < sizeof(struct btrfs_disk_key
)
3998 + sizeof(struct btrfs_chunk
)) {
3999 printk(KERN_ERR
"BTRFS: system chunk array too small %u < %zu\n",
4000 btrfs_super_sys_array_size(sb
),
4001 sizeof(struct btrfs_disk_key
)
4002 + sizeof(struct btrfs_chunk
));
4007 * The generation is a global counter, we'll trust it more than the others
4008 * but it's still possible that it's the one that's wrong.
4010 if (btrfs_super_generation(sb
) < btrfs_super_chunk_root_generation(sb
))
4012 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4013 btrfs_super_generation(sb
), btrfs_super_chunk_root_generation(sb
));
4014 if (btrfs_super_generation(sb
) < btrfs_super_cache_generation(sb
)
4015 && btrfs_super_cache_generation(sb
) != (u64
)-1)
4017 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4018 btrfs_super_generation(sb
), btrfs_super_cache_generation(sb
));
4023 static void btrfs_error_commit_super(struct btrfs_root
*root
)
4025 mutex_lock(&root
->fs_info
->cleaner_mutex
);
4026 btrfs_run_delayed_iputs(root
);
4027 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
4029 down_write(&root
->fs_info
->cleanup_work_sem
);
4030 up_write(&root
->fs_info
->cleanup_work_sem
);
4032 /* cleanup FS via transaction */
4033 btrfs_cleanup_transaction(root
);
4036 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
4038 struct btrfs_ordered_extent
*ordered
;
4040 spin_lock(&root
->ordered_extent_lock
);
4042 * This will just short circuit the ordered completion stuff which will
4043 * make sure the ordered extent gets properly cleaned up.
4045 list_for_each_entry(ordered
, &root
->ordered_extents
,
4047 set_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
);
4048 spin_unlock(&root
->ordered_extent_lock
);
4051 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info
*fs_info
)
4053 struct btrfs_root
*root
;
4054 struct list_head splice
;
4056 INIT_LIST_HEAD(&splice
);
4058 spin_lock(&fs_info
->ordered_root_lock
);
4059 list_splice_init(&fs_info
->ordered_roots
, &splice
);
4060 while (!list_empty(&splice
)) {
4061 root
= list_first_entry(&splice
, struct btrfs_root
,
4063 list_move_tail(&root
->ordered_root
,
4064 &fs_info
->ordered_roots
);
4066 spin_unlock(&fs_info
->ordered_root_lock
);
4067 btrfs_destroy_ordered_extents(root
);
4070 spin_lock(&fs_info
->ordered_root_lock
);
4072 spin_unlock(&fs_info
->ordered_root_lock
);
4075 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
4076 struct btrfs_root
*root
)
4078 struct rb_node
*node
;
4079 struct btrfs_delayed_ref_root
*delayed_refs
;
4080 struct btrfs_delayed_ref_node
*ref
;
4083 delayed_refs
= &trans
->delayed_refs
;
4085 spin_lock(&delayed_refs
->lock
);
4086 if (atomic_read(&delayed_refs
->num_entries
) == 0) {
4087 spin_unlock(&delayed_refs
->lock
);
4088 btrfs_info(root
->fs_info
, "delayed_refs has NO entry");
4092 while ((node
= rb_first(&delayed_refs
->href_root
)) != NULL
) {
4093 struct btrfs_delayed_ref_head
*head
;
4094 bool pin_bytes
= false;
4096 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
4098 if (!mutex_trylock(&head
->mutex
)) {
4099 atomic_inc(&head
->node
.refs
);
4100 spin_unlock(&delayed_refs
->lock
);
4102 mutex_lock(&head
->mutex
);
4103 mutex_unlock(&head
->mutex
);
4104 btrfs_put_delayed_ref(&head
->node
);
4105 spin_lock(&delayed_refs
->lock
);
4108 spin_lock(&head
->lock
);
4109 while ((node
= rb_first(&head
->ref_root
)) != NULL
) {
4110 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
4113 rb_erase(&ref
->rb_node
, &head
->ref_root
);
4114 atomic_dec(&delayed_refs
->num_entries
);
4115 btrfs_put_delayed_ref(ref
);
4117 if (head
->must_insert_reserved
)
4119 btrfs_free_delayed_extent_op(head
->extent_op
);
4120 delayed_refs
->num_heads
--;
4121 if (head
->processing
== 0)
4122 delayed_refs
->num_heads_ready
--;
4123 atomic_dec(&delayed_refs
->num_entries
);
4124 head
->node
.in_tree
= 0;
4125 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
4126 spin_unlock(&head
->lock
);
4127 spin_unlock(&delayed_refs
->lock
);
4128 mutex_unlock(&head
->mutex
);
4131 btrfs_pin_extent(root
, head
->node
.bytenr
,
4132 head
->node
.num_bytes
, 1);
4133 btrfs_put_delayed_ref(&head
->node
);
4135 spin_lock(&delayed_refs
->lock
);
4138 spin_unlock(&delayed_refs
->lock
);
4143 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
4145 struct btrfs_inode
*btrfs_inode
;
4146 struct list_head splice
;
4148 INIT_LIST_HEAD(&splice
);
4150 spin_lock(&root
->delalloc_lock
);
4151 list_splice_init(&root
->delalloc_inodes
, &splice
);
4153 while (!list_empty(&splice
)) {
4154 btrfs_inode
= list_first_entry(&splice
, struct btrfs_inode
,
4157 list_del_init(&btrfs_inode
->delalloc_inodes
);
4158 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
4159 &btrfs_inode
->runtime_flags
);
4160 spin_unlock(&root
->delalloc_lock
);
4162 btrfs_invalidate_inodes(btrfs_inode
->root
);
4164 spin_lock(&root
->delalloc_lock
);
4167 spin_unlock(&root
->delalloc_lock
);
4170 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info
*fs_info
)
4172 struct btrfs_root
*root
;
4173 struct list_head splice
;
4175 INIT_LIST_HEAD(&splice
);
4177 spin_lock(&fs_info
->delalloc_root_lock
);
4178 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
4179 while (!list_empty(&splice
)) {
4180 root
= list_first_entry(&splice
, struct btrfs_root
,
4182 list_del_init(&root
->delalloc_root
);
4183 root
= btrfs_grab_fs_root(root
);
4185 spin_unlock(&fs_info
->delalloc_root_lock
);
4187 btrfs_destroy_delalloc_inodes(root
);
4188 btrfs_put_fs_root(root
);
4190 spin_lock(&fs_info
->delalloc_root_lock
);
4192 spin_unlock(&fs_info
->delalloc_root_lock
);
4195 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
4196 struct extent_io_tree
*dirty_pages
,
4200 struct extent_buffer
*eb
;
4205 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
4210 clear_extent_bits(dirty_pages
, start
, end
, mark
, GFP_NOFS
);
4211 while (start
<= end
) {
4212 eb
= btrfs_find_tree_block(root
->fs_info
, start
);
4213 start
+= root
->nodesize
;
4216 wait_on_extent_buffer_writeback(eb
);
4218 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
4220 clear_extent_buffer_dirty(eb
);
4221 free_extent_buffer_stale(eb
);
4228 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
4229 struct extent_io_tree
*pinned_extents
)
4231 struct extent_io_tree
*unpin
;
4237 unpin
= pinned_extents
;
4240 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
4241 EXTENT_DIRTY
, NULL
);
4245 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
4246 btrfs_error_unpin_extent_range(root
, start
, end
);
4251 if (unpin
== &root
->fs_info
->freed_extents
[0])
4252 unpin
= &root
->fs_info
->freed_extents
[1];
4254 unpin
= &root
->fs_info
->freed_extents
[0];
4262 static void btrfs_free_pending_ordered(struct btrfs_transaction
*cur_trans
,
4263 struct btrfs_fs_info
*fs_info
)
4265 struct btrfs_ordered_extent
*ordered
;
4267 spin_lock(&fs_info
->trans_lock
);
4268 while (!list_empty(&cur_trans
->pending_ordered
)) {
4269 ordered
= list_first_entry(&cur_trans
->pending_ordered
,
4270 struct btrfs_ordered_extent
,
4272 list_del_init(&ordered
->trans_list
);
4273 spin_unlock(&fs_info
->trans_lock
);
4275 btrfs_put_ordered_extent(ordered
);
4276 spin_lock(&fs_info
->trans_lock
);
4278 spin_unlock(&fs_info
->trans_lock
);
4281 void btrfs_cleanup_one_transaction(struct btrfs_transaction
*cur_trans
,
4282 struct btrfs_root
*root
)
4284 btrfs_destroy_delayed_refs(cur_trans
, root
);
4286 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
4287 wake_up(&root
->fs_info
->transaction_blocked_wait
);
4289 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
4290 wake_up(&root
->fs_info
->transaction_wait
);
4292 btrfs_free_pending_ordered(cur_trans
, root
->fs_info
);
4293 btrfs_destroy_delayed_inodes(root
);
4294 btrfs_assert_delayed_root_empty(root
);
4296 btrfs_destroy_marked_extents(root
, &cur_trans
->dirty_pages
,
4298 btrfs_destroy_pinned_extent(root
,
4299 root
->fs_info
->pinned_extents
);
4301 cur_trans
->state
=TRANS_STATE_COMPLETED
;
4302 wake_up(&cur_trans
->commit_wait
);
4305 memset(cur_trans, 0, sizeof(*cur_trans));
4306 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4310 static int btrfs_cleanup_transaction(struct btrfs_root
*root
)
4312 struct btrfs_transaction
*t
;
4314 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
4316 spin_lock(&root
->fs_info
->trans_lock
);
4317 while (!list_empty(&root
->fs_info
->trans_list
)) {
4318 t
= list_first_entry(&root
->fs_info
->trans_list
,
4319 struct btrfs_transaction
, list
);
4320 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
4321 atomic_inc(&t
->use_count
);
4322 spin_unlock(&root
->fs_info
->trans_lock
);
4323 btrfs_wait_for_commit(root
, t
->transid
);
4324 btrfs_put_transaction(t
);
4325 spin_lock(&root
->fs_info
->trans_lock
);
4328 if (t
== root
->fs_info
->running_transaction
) {
4329 t
->state
= TRANS_STATE_COMMIT_DOING
;
4330 spin_unlock(&root
->fs_info
->trans_lock
);
4332 * We wait for 0 num_writers since we don't hold a trans
4333 * handle open currently for this transaction.
4335 wait_event(t
->writer_wait
,
4336 atomic_read(&t
->num_writers
) == 0);
4338 spin_unlock(&root
->fs_info
->trans_lock
);
4340 btrfs_cleanup_one_transaction(t
, root
);
4342 spin_lock(&root
->fs_info
->trans_lock
);
4343 if (t
== root
->fs_info
->running_transaction
)
4344 root
->fs_info
->running_transaction
= NULL
;
4345 list_del_init(&t
->list
);
4346 spin_unlock(&root
->fs_info
->trans_lock
);
4348 btrfs_put_transaction(t
);
4349 trace_btrfs_transaction_commit(root
);
4350 spin_lock(&root
->fs_info
->trans_lock
);
4352 spin_unlock(&root
->fs_info
->trans_lock
);
4353 btrfs_destroy_all_ordered_extents(root
->fs_info
);
4354 btrfs_destroy_delayed_inodes(root
);
4355 btrfs_assert_delayed_root_empty(root
);
4356 btrfs_destroy_pinned_extent(root
, root
->fs_info
->pinned_extents
);
4357 btrfs_destroy_all_delalloc_inodes(root
->fs_info
);
4358 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
4363 static const struct extent_io_ops btree_extent_io_ops
= {
4364 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
4365 .readpage_io_failed_hook
= btree_io_failed_hook
,
4366 .submit_bio_hook
= btree_submit_bio_hook
,
4367 /* note we're sharing with inode.c for the merge bio hook */
4368 .merge_bio_hook
= btrfs_merge_bio_hook
,