gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / fs / btrfs / extent-tree.c
blob2771bc32dbd933e2ed8aec770bd54510a590d783
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
40 #undef SCRAMBLE_DELAYED_REFS
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
63 * Control how reservations are dealt with.
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 u64 bytenr, u64 num_bytes, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
85 struct btrfs_delayed_extent_op *extra_op,
86 int no_quota);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
99 int level, struct btrfs_key *ins,
100 int no_quota);
101 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
102 struct btrfs_root *extent_root, u64 flags,
103 int force);
104 static int find_next_key(struct btrfs_path *path, int level,
105 struct btrfs_key *key);
106 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
107 int dump_block_groups);
108 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
109 u64 num_bytes, int reserve,
110 int delalloc);
111 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
112 u64 num_bytes);
113 int btrfs_pin_extent(struct btrfs_root *root,
114 u64 bytenr, u64 num_bytes, int reserved);
116 static noinline int
117 block_group_cache_done(struct btrfs_block_group_cache *cache)
119 smp_mb();
120 return cache->cached == BTRFS_CACHE_FINISHED ||
121 cache->cached == BTRFS_CACHE_ERROR;
124 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
126 return (cache->flags & bits) == bits;
129 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
131 atomic_inc(&cache->count);
134 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
136 if (atomic_dec_and_test(&cache->count)) {
137 WARN_ON(cache->pinned > 0);
138 WARN_ON(cache->reserved > 0);
139 kfree(cache->free_space_ctl);
140 kfree(cache);
145 * this adds the block group to the fs_info rb tree for the block group
146 * cache
148 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
149 struct btrfs_block_group_cache *block_group)
151 struct rb_node **p;
152 struct rb_node *parent = NULL;
153 struct btrfs_block_group_cache *cache;
155 spin_lock(&info->block_group_cache_lock);
156 p = &info->block_group_cache_tree.rb_node;
158 while (*p) {
159 parent = *p;
160 cache = rb_entry(parent, struct btrfs_block_group_cache,
161 cache_node);
162 if (block_group->key.objectid < cache->key.objectid) {
163 p = &(*p)->rb_left;
164 } else if (block_group->key.objectid > cache->key.objectid) {
165 p = &(*p)->rb_right;
166 } else {
167 spin_unlock(&info->block_group_cache_lock);
168 return -EEXIST;
172 rb_link_node(&block_group->cache_node, parent, p);
173 rb_insert_color(&block_group->cache_node,
174 &info->block_group_cache_tree);
176 if (info->first_logical_byte > block_group->key.objectid)
177 info->first_logical_byte = block_group->key.objectid;
179 spin_unlock(&info->block_group_cache_lock);
181 return 0;
185 * This will return the block group at or after bytenr if contains is 0, else
186 * it will return the block group that contains the bytenr
188 static struct btrfs_block_group_cache *
189 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
190 int contains)
192 struct btrfs_block_group_cache *cache, *ret = NULL;
193 struct rb_node *n;
194 u64 end, start;
196 spin_lock(&info->block_group_cache_lock);
197 n = info->block_group_cache_tree.rb_node;
199 while (n) {
200 cache = rb_entry(n, struct btrfs_block_group_cache,
201 cache_node);
202 end = cache->key.objectid + cache->key.offset - 1;
203 start = cache->key.objectid;
205 if (bytenr < start) {
206 if (!contains && (!ret || start < ret->key.objectid))
207 ret = cache;
208 n = n->rb_left;
209 } else if (bytenr > start) {
210 if (contains && bytenr <= end) {
211 ret = cache;
212 break;
214 n = n->rb_right;
215 } else {
216 ret = cache;
217 break;
220 if (ret) {
221 btrfs_get_block_group(ret);
222 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
223 info->first_logical_byte = ret->key.objectid;
225 spin_unlock(&info->block_group_cache_lock);
227 return ret;
230 static int add_excluded_extent(struct btrfs_root *root,
231 u64 start, u64 num_bytes)
233 u64 end = start + num_bytes - 1;
234 set_extent_bits(&root->fs_info->freed_extents[0],
235 start, end, EXTENT_UPTODATE, GFP_NOFS);
236 set_extent_bits(&root->fs_info->freed_extents[1],
237 start, end, EXTENT_UPTODATE, GFP_NOFS);
238 return 0;
241 static void free_excluded_extents(struct btrfs_root *root,
242 struct btrfs_block_group_cache *cache)
244 u64 start, end;
246 start = cache->key.objectid;
247 end = start + cache->key.offset - 1;
249 clear_extent_bits(&root->fs_info->freed_extents[0],
250 start, end, EXTENT_UPTODATE, GFP_NOFS);
251 clear_extent_bits(&root->fs_info->freed_extents[1],
252 start, end, EXTENT_UPTODATE, GFP_NOFS);
255 static int exclude_super_stripes(struct btrfs_root *root,
256 struct btrfs_block_group_cache *cache)
258 u64 bytenr;
259 u64 *logical;
260 int stripe_len;
261 int i, nr, ret;
263 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
264 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
265 cache->bytes_super += stripe_len;
266 ret = add_excluded_extent(root, cache->key.objectid,
267 stripe_len);
268 if (ret)
269 return ret;
272 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
273 bytenr = btrfs_sb_offset(i);
274 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
275 cache->key.objectid, bytenr,
276 0, &logical, &nr, &stripe_len);
277 if (ret)
278 return ret;
280 while (nr--) {
281 u64 start, len;
283 if (logical[nr] > cache->key.objectid +
284 cache->key.offset)
285 continue;
287 if (logical[nr] + stripe_len <= cache->key.objectid)
288 continue;
290 start = logical[nr];
291 if (start < cache->key.objectid) {
292 start = cache->key.objectid;
293 len = (logical[nr] + stripe_len) - start;
294 } else {
295 len = min_t(u64, stripe_len,
296 cache->key.objectid +
297 cache->key.offset - start);
300 cache->bytes_super += len;
301 ret = add_excluded_extent(root, start, len);
302 if (ret) {
303 kfree(logical);
304 return ret;
308 kfree(logical);
310 return 0;
313 static struct btrfs_caching_control *
314 get_caching_control(struct btrfs_block_group_cache *cache)
316 struct btrfs_caching_control *ctl;
318 spin_lock(&cache->lock);
319 if (!cache->caching_ctl) {
320 spin_unlock(&cache->lock);
321 return NULL;
324 ctl = cache->caching_ctl;
325 atomic_inc(&ctl->count);
326 spin_unlock(&cache->lock);
327 return ctl;
330 static void put_caching_control(struct btrfs_caching_control *ctl)
332 if (atomic_dec_and_test(&ctl->count))
333 kfree(ctl);
337 * this is only called by cache_block_group, since we could have freed extents
338 * we need to check the pinned_extents for any extents that can't be used yet
339 * since their free space will be released as soon as the transaction commits.
341 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
342 struct btrfs_fs_info *info, u64 start, u64 end)
344 u64 extent_start, extent_end, size, total_added = 0;
345 int ret;
347 while (start < end) {
348 ret = find_first_extent_bit(info->pinned_extents, start,
349 &extent_start, &extent_end,
350 EXTENT_DIRTY | EXTENT_UPTODATE,
351 NULL);
352 if (ret)
353 break;
355 if (extent_start <= start) {
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
359 total_added += size;
360 ret = btrfs_add_free_space(block_group, start,
361 size);
362 BUG_ON(ret); /* -ENOMEM or logic error */
363 start = extent_end + 1;
364 } else {
365 break;
369 if (start < end) {
370 size = end - start;
371 total_added += size;
372 ret = btrfs_add_free_space(block_group, start, size);
373 BUG_ON(ret); /* -ENOMEM or logic error */
376 return total_added;
379 static noinline void caching_thread(struct btrfs_work *work)
381 struct btrfs_block_group_cache *block_group;
382 struct btrfs_fs_info *fs_info;
383 struct btrfs_caching_control *caching_ctl;
384 struct btrfs_root *extent_root;
385 struct btrfs_path *path;
386 struct extent_buffer *leaf;
387 struct btrfs_key key;
388 u64 total_found = 0;
389 u64 last = 0;
390 u32 nritems;
391 int ret = -ENOMEM;
393 caching_ctl = container_of(work, struct btrfs_caching_control, work);
394 block_group = caching_ctl->block_group;
395 fs_info = block_group->fs_info;
396 extent_root = fs_info->extent_root;
398 path = btrfs_alloc_path();
399 if (!path)
400 goto out;
402 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
405 * We don't want to deadlock with somebody trying to allocate a new
406 * extent for the extent root while also trying to search the extent
407 * root to add free space. So we skip locking and search the commit
408 * root, since its read-only
410 path->skip_locking = 1;
411 path->search_commit_root = 1;
412 path->reada = 1;
414 key.objectid = last;
415 key.offset = 0;
416 key.type = BTRFS_EXTENT_ITEM_KEY;
417 again:
418 mutex_lock(&caching_ctl->mutex);
419 /* need to make sure the commit_root doesn't disappear */
420 down_read(&fs_info->commit_root_sem);
422 next:
423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
424 if (ret < 0)
425 goto err;
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
430 while (1) {
431 if (btrfs_fs_closing(fs_info) > 1) {
432 last = (u64)-1;
433 break;
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 } else {
439 ret = find_next_key(path, 0, &key);
440 if (ret)
441 break;
443 if (need_resched() ||
444 rwsem_is_contended(&fs_info->commit_root_sem)) {
445 caching_ctl->progress = last;
446 btrfs_release_path(path);
447 up_read(&fs_info->commit_root_sem);
448 mutex_unlock(&caching_ctl->mutex);
449 cond_resched();
450 goto again;
453 ret = btrfs_next_leaf(extent_root, path);
454 if (ret < 0)
455 goto err;
456 if (ret)
457 break;
458 leaf = path->nodes[0];
459 nritems = btrfs_header_nritems(leaf);
460 continue;
463 if (key.objectid < last) {
464 key.objectid = last;
465 key.offset = 0;
466 key.type = BTRFS_EXTENT_ITEM_KEY;
468 caching_ctl->progress = last;
469 btrfs_release_path(path);
470 goto next;
473 if (key.objectid < block_group->key.objectid) {
474 path->slots[0]++;
475 continue;
478 if (key.objectid >= block_group->key.objectid +
479 block_group->key.offset)
480 break;
482 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 key.type == BTRFS_METADATA_ITEM_KEY) {
484 total_found += add_new_free_space(block_group,
485 fs_info, last,
486 key.objectid);
487 if (key.type == BTRFS_METADATA_ITEM_KEY)
488 last = key.objectid +
489 fs_info->tree_root->nodesize;
490 else
491 last = key.objectid + key.offset;
493 if (total_found > (1024 * 1024 * 2)) {
494 total_found = 0;
495 wake_up(&caching_ctl->wait);
498 path->slots[0]++;
500 ret = 0;
502 total_found += add_new_free_space(block_group, fs_info, last,
503 block_group->key.objectid +
504 block_group->key.offset);
505 caching_ctl->progress = (u64)-1;
507 spin_lock(&block_group->lock);
508 block_group->caching_ctl = NULL;
509 block_group->cached = BTRFS_CACHE_FINISHED;
510 spin_unlock(&block_group->lock);
512 err:
513 btrfs_free_path(path);
514 up_read(&fs_info->commit_root_sem);
516 free_excluded_extents(extent_root, block_group);
518 mutex_unlock(&caching_ctl->mutex);
519 out:
520 if (ret) {
521 spin_lock(&block_group->lock);
522 block_group->caching_ctl = NULL;
523 block_group->cached = BTRFS_CACHE_ERROR;
524 spin_unlock(&block_group->lock);
526 wake_up(&caching_ctl->wait);
528 put_caching_control(caching_ctl);
529 btrfs_put_block_group(block_group);
532 static int cache_block_group(struct btrfs_block_group_cache *cache,
533 int load_cache_only)
535 DEFINE_WAIT(wait);
536 struct btrfs_fs_info *fs_info = cache->fs_info;
537 struct btrfs_caching_control *caching_ctl;
538 int ret = 0;
540 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
541 if (!caching_ctl)
542 return -ENOMEM;
544 INIT_LIST_HEAD(&caching_ctl->list);
545 mutex_init(&caching_ctl->mutex);
546 init_waitqueue_head(&caching_ctl->wait);
547 caching_ctl->block_group = cache;
548 caching_ctl->progress = cache->key.objectid;
549 atomic_set(&caching_ctl->count, 1);
550 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
551 caching_thread, NULL, NULL);
553 spin_lock(&cache->lock);
555 * This should be a rare occasion, but this could happen I think in the
556 * case where one thread starts to load the space cache info, and then
557 * some other thread starts a transaction commit which tries to do an
558 * allocation while the other thread is still loading the space cache
559 * info. The previous loop should have kept us from choosing this block
560 * group, but if we've moved to the state where we will wait on caching
561 * block groups we need to first check if we're doing a fast load here,
562 * so we can wait for it to finish, otherwise we could end up allocating
563 * from a block group who's cache gets evicted for one reason or
564 * another.
566 while (cache->cached == BTRFS_CACHE_FAST) {
567 struct btrfs_caching_control *ctl;
569 ctl = cache->caching_ctl;
570 atomic_inc(&ctl->count);
571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 spin_unlock(&cache->lock);
574 schedule();
576 finish_wait(&ctl->wait, &wait);
577 put_caching_control(ctl);
578 spin_lock(&cache->lock);
581 if (cache->cached != BTRFS_CACHE_NO) {
582 spin_unlock(&cache->lock);
583 kfree(caching_ctl);
584 return 0;
586 WARN_ON(cache->caching_ctl);
587 cache->caching_ctl = caching_ctl;
588 cache->cached = BTRFS_CACHE_FAST;
589 spin_unlock(&cache->lock);
591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
592 mutex_lock(&caching_ctl->mutex);
593 ret = load_free_space_cache(fs_info, cache);
595 spin_lock(&cache->lock);
596 if (ret == 1) {
597 cache->caching_ctl = NULL;
598 cache->cached = BTRFS_CACHE_FINISHED;
599 cache->last_byte_to_unpin = (u64)-1;
600 caching_ctl->progress = (u64)-1;
601 } else {
602 if (load_cache_only) {
603 cache->caching_ctl = NULL;
604 cache->cached = BTRFS_CACHE_NO;
605 } else {
606 cache->cached = BTRFS_CACHE_STARTED;
607 cache->has_caching_ctl = 1;
610 spin_unlock(&cache->lock);
611 mutex_unlock(&caching_ctl->mutex);
613 wake_up(&caching_ctl->wait);
614 if (ret == 1) {
615 put_caching_control(caching_ctl);
616 free_excluded_extents(fs_info->extent_root, cache);
617 return 0;
619 } else {
621 * We are not going to do the fast caching, set cached to the
622 * appropriate value and wakeup any waiters.
624 spin_lock(&cache->lock);
625 if (load_cache_only) {
626 cache->caching_ctl = NULL;
627 cache->cached = BTRFS_CACHE_NO;
628 } else {
629 cache->cached = BTRFS_CACHE_STARTED;
630 cache->has_caching_ctl = 1;
632 spin_unlock(&cache->lock);
633 wake_up(&caching_ctl->wait);
636 if (load_cache_only) {
637 put_caching_control(caching_ctl);
638 return 0;
641 down_write(&fs_info->commit_root_sem);
642 atomic_inc(&caching_ctl->count);
643 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
644 up_write(&fs_info->commit_root_sem);
646 btrfs_get_block_group(cache);
648 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
650 return ret;
654 * return the block group that starts at or after bytenr
656 static struct btrfs_block_group_cache *
657 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
659 struct btrfs_block_group_cache *cache;
661 cache = block_group_cache_tree_search(info, bytenr, 0);
663 return cache;
667 * return the block group that contains the given bytenr
669 struct btrfs_block_group_cache *btrfs_lookup_block_group(
670 struct btrfs_fs_info *info,
671 u64 bytenr)
673 struct btrfs_block_group_cache *cache;
675 cache = block_group_cache_tree_search(info, bytenr, 1);
677 return cache;
680 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
681 u64 flags)
683 struct list_head *head = &info->space_info;
684 struct btrfs_space_info *found;
686 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
688 rcu_read_lock();
689 list_for_each_entry_rcu(found, head, list) {
690 if (found->flags & flags) {
691 rcu_read_unlock();
692 return found;
695 rcu_read_unlock();
696 return NULL;
700 * after adding space to the filesystem, we need to clear the full flags
701 * on all the space infos.
703 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
705 struct list_head *head = &info->space_info;
706 struct btrfs_space_info *found;
708 rcu_read_lock();
709 list_for_each_entry_rcu(found, head, list)
710 found->full = 0;
711 rcu_read_unlock();
714 /* simple helper to search for an existing data extent at a given offset */
715 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
717 int ret;
718 struct btrfs_key key;
719 struct btrfs_path *path;
721 path = btrfs_alloc_path();
722 if (!path)
723 return -ENOMEM;
725 key.objectid = start;
726 key.offset = len;
727 key.type = BTRFS_EXTENT_ITEM_KEY;
728 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
729 0, 0);
730 btrfs_free_path(path);
731 return ret;
735 * helper function to lookup reference count and flags of a tree block.
737 * the head node for delayed ref is used to store the sum of all the
738 * reference count modifications queued up in the rbtree. the head
739 * node may also store the extent flags to set. This way you can check
740 * to see what the reference count and extent flags would be if all of
741 * the delayed refs are not processed.
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 struct btrfs_root *root, u64 bytenr,
745 u64 offset, int metadata, u64 *refs, u64 *flags)
747 struct btrfs_delayed_ref_head *head;
748 struct btrfs_delayed_ref_root *delayed_refs;
749 struct btrfs_path *path;
750 struct btrfs_extent_item *ei;
751 struct extent_buffer *leaf;
752 struct btrfs_key key;
753 u32 item_size;
754 u64 num_refs;
755 u64 extent_flags;
756 int ret;
759 * If we don't have skinny metadata, don't bother doing anything
760 * different
762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
763 offset = root->nodesize;
764 metadata = 0;
767 path = btrfs_alloc_path();
768 if (!path)
769 return -ENOMEM;
771 if (!trans) {
772 path->skip_locking = 1;
773 path->search_commit_root = 1;
776 search_again:
777 key.objectid = bytenr;
778 key.offset = offset;
779 if (metadata)
780 key.type = BTRFS_METADATA_ITEM_KEY;
781 else
782 key.type = BTRFS_EXTENT_ITEM_KEY;
784 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
785 &key, path, 0, 0);
786 if (ret < 0)
787 goto out_free;
789 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
790 if (path->slots[0]) {
791 path->slots[0]--;
792 btrfs_item_key_to_cpu(path->nodes[0], &key,
793 path->slots[0]);
794 if (key.objectid == bytenr &&
795 key.type == BTRFS_EXTENT_ITEM_KEY &&
796 key.offset == root->nodesize)
797 ret = 0;
801 if (ret == 0) {
802 leaf = path->nodes[0];
803 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
804 if (item_size >= sizeof(*ei)) {
805 ei = btrfs_item_ptr(leaf, path->slots[0],
806 struct btrfs_extent_item);
807 num_refs = btrfs_extent_refs(leaf, ei);
808 extent_flags = btrfs_extent_flags(leaf, ei);
809 } else {
810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
811 struct btrfs_extent_item_v0 *ei0;
812 BUG_ON(item_size != sizeof(*ei0));
813 ei0 = btrfs_item_ptr(leaf, path->slots[0],
814 struct btrfs_extent_item_v0);
815 num_refs = btrfs_extent_refs_v0(leaf, ei0);
816 /* FIXME: this isn't correct for data */
817 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
818 #else
819 BUG();
820 #endif
822 BUG_ON(num_refs == 0);
823 } else {
824 num_refs = 0;
825 extent_flags = 0;
826 ret = 0;
829 if (!trans)
830 goto out;
832 delayed_refs = &trans->transaction->delayed_refs;
833 spin_lock(&delayed_refs->lock);
834 head = btrfs_find_delayed_ref_head(trans, bytenr);
835 if (head) {
836 if (!mutex_trylock(&head->mutex)) {
837 atomic_inc(&head->node.refs);
838 spin_unlock(&delayed_refs->lock);
840 btrfs_release_path(path);
843 * Mutex was contended, block until it's released and try
844 * again
846 mutex_lock(&head->mutex);
847 mutex_unlock(&head->mutex);
848 btrfs_put_delayed_ref(&head->node);
849 goto search_again;
851 spin_lock(&head->lock);
852 if (head->extent_op && head->extent_op->update_flags)
853 extent_flags |= head->extent_op->flags_to_set;
854 else
855 BUG_ON(num_refs == 0);
857 num_refs += head->node.ref_mod;
858 spin_unlock(&head->lock);
859 mutex_unlock(&head->mutex);
861 spin_unlock(&delayed_refs->lock);
862 out:
863 WARN_ON(num_refs == 0);
864 if (refs)
865 *refs = num_refs;
866 if (flags)
867 *flags = extent_flags;
868 out_free:
869 btrfs_free_path(path);
870 return ret;
874 * Back reference rules. Back refs have three main goals:
876 * 1) differentiate between all holders of references to an extent so that
877 * when a reference is dropped we can make sure it was a valid reference
878 * before freeing the extent.
880 * 2) Provide enough information to quickly find the holders of an extent
881 * if we notice a given block is corrupted or bad.
883 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
884 * maintenance. This is actually the same as #2, but with a slightly
885 * different use case.
887 * There are two kinds of back refs. The implicit back refs is optimized
888 * for pointers in non-shared tree blocks. For a given pointer in a block,
889 * back refs of this kind provide information about the block's owner tree
890 * and the pointer's key. These information allow us to find the block by
891 * b-tree searching. The full back refs is for pointers in tree blocks not
892 * referenced by their owner trees. The location of tree block is recorded
893 * in the back refs. Actually the full back refs is generic, and can be
894 * used in all cases the implicit back refs is used. The major shortcoming
895 * of the full back refs is its overhead. Every time a tree block gets
896 * COWed, we have to update back refs entry for all pointers in it.
898 * For a newly allocated tree block, we use implicit back refs for
899 * pointers in it. This means most tree related operations only involve
900 * implicit back refs. For a tree block created in old transaction, the
901 * only way to drop a reference to it is COW it. So we can detect the
902 * event that tree block loses its owner tree's reference and do the
903 * back refs conversion.
905 * When a tree block is COW'd through a tree, there are four cases:
907 * The reference count of the block is one and the tree is the block's
908 * owner tree. Nothing to do in this case.
910 * The reference count of the block is one and the tree is not the
911 * block's owner tree. In this case, full back refs is used for pointers
912 * in the block. Remove these full back refs, add implicit back refs for
913 * every pointers in the new block.
915 * The reference count of the block is greater than one and the tree is
916 * the block's owner tree. In this case, implicit back refs is used for
917 * pointers in the block. Add full back refs for every pointers in the
918 * block, increase lower level extents' reference counts. The original
919 * implicit back refs are entailed to the new block.
921 * The reference count of the block is greater than one and the tree is
922 * not the block's owner tree. Add implicit back refs for every pointer in
923 * the new block, increase lower level extents' reference count.
925 * Back Reference Key composing:
927 * The key objectid corresponds to the first byte in the extent,
928 * The key type is used to differentiate between types of back refs.
929 * There are different meanings of the key offset for different types
930 * of back refs.
932 * File extents can be referenced by:
934 * - multiple snapshots, subvolumes, or different generations in one subvol
935 * - different files inside a single subvolume
936 * - different offsets inside a file (bookend extents in file.c)
938 * The extent ref structure for the implicit back refs has fields for:
940 * - Objectid of the subvolume root
941 * - objectid of the file holding the reference
942 * - original offset in the file
943 * - how many bookend extents
945 * The key offset for the implicit back refs is hash of the first
946 * three fields.
948 * The extent ref structure for the full back refs has field for:
950 * - number of pointers in the tree leaf
952 * The key offset for the implicit back refs is the first byte of
953 * the tree leaf
955 * When a file extent is allocated, The implicit back refs is used.
956 * the fields are filled in:
958 * (root_key.objectid, inode objectid, offset in file, 1)
960 * When a file extent is removed file truncation, we find the
961 * corresponding implicit back refs and check the following fields:
963 * (btrfs_header_owner(leaf), inode objectid, offset in file)
965 * Btree extents can be referenced by:
967 * - Different subvolumes
969 * Both the implicit back refs and the full back refs for tree blocks
970 * only consist of key. The key offset for the implicit back refs is
971 * objectid of block's owner tree. The key offset for the full back refs
972 * is the first byte of parent block.
974 * When implicit back refs is used, information about the lowest key and
975 * level of the tree block are required. These information are stored in
976 * tree block info structure.
979 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
980 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
981 struct btrfs_root *root,
982 struct btrfs_path *path,
983 u64 owner, u32 extra_size)
985 struct btrfs_extent_item *item;
986 struct btrfs_extent_item_v0 *ei0;
987 struct btrfs_extent_ref_v0 *ref0;
988 struct btrfs_tree_block_info *bi;
989 struct extent_buffer *leaf;
990 struct btrfs_key key;
991 struct btrfs_key found_key;
992 u32 new_size = sizeof(*item);
993 u64 refs;
994 int ret;
996 leaf = path->nodes[0];
997 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
999 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1000 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1001 struct btrfs_extent_item_v0);
1002 refs = btrfs_extent_refs_v0(leaf, ei0);
1004 if (owner == (u64)-1) {
1005 while (1) {
1006 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1007 ret = btrfs_next_leaf(root, path);
1008 if (ret < 0)
1009 return ret;
1010 BUG_ON(ret > 0); /* Corruption */
1011 leaf = path->nodes[0];
1013 btrfs_item_key_to_cpu(leaf, &found_key,
1014 path->slots[0]);
1015 BUG_ON(key.objectid != found_key.objectid);
1016 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1017 path->slots[0]++;
1018 continue;
1020 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1021 struct btrfs_extent_ref_v0);
1022 owner = btrfs_ref_objectid_v0(leaf, ref0);
1023 break;
1026 btrfs_release_path(path);
1028 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1029 new_size += sizeof(*bi);
1031 new_size -= sizeof(*ei0);
1032 ret = btrfs_search_slot(trans, root, &key, path,
1033 new_size + extra_size, 1);
1034 if (ret < 0)
1035 return ret;
1036 BUG_ON(ret); /* Corruption */
1038 btrfs_extend_item(root, path, new_size);
1040 leaf = path->nodes[0];
1041 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1042 btrfs_set_extent_refs(leaf, item, refs);
1043 /* FIXME: get real generation */
1044 btrfs_set_extent_generation(leaf, item, 0);
1045 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1046 btrfs_set_extent_flags(leaf, item,
1047 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1048 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1049 bi = (struct btrfs_tree_block_info *)(item + 1);
1050 /* FIXME: get first key of the block */
1051 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1052 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1053 } else {
1054 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1056 btrfs_mark_buffer_dirty(leaf);
1057 return 0;
1059 #endif
1061 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1063 u32 high_crc = ~(u32)0;
1064 u32 low_crc = ~(u32)0;
1065 __le64 lenum;
1067 lenum = cpu_to_le64(root_objectid);
1068 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1069 lenum = cpu_to_le64(owner);
1070 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1071 lenum = cpu_to_le64(offset);
1072 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1074 return ((u64)high_crc << 31) ^ (u64)low_crc;
1077 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1078 struct btrfs_extent_data_ref *ref)
1080 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1081 btrfs_extent_data_ref_objectid(leaf, ref),
1082 btrfs_extent_data_ref_offset(leaf, ref));
1085 static int match_extent_data_ref(struct extent_buffer *leaf,
1086 struct btrfs_extent_data_ref *ref,
1087 u64 root_objectid, u64 owner, u64 offset)
1089 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1090 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1091 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1092 return 0;
1093 return 1;
1096 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1097 struct btrfs_root *root,
1098 struct btrfs_path *path,
1099 u64 bytenr, u64 parent,
1100 u64 root_objectid,
1101 u64 owner, u64 offset)
1103 struct btrfs_key key;
1104 struct btrfs_extent_data_ref *ref;
1105 struct extent_buffer *leaf;
1106 u32 nritems;
1107 int ret;
1108 int recow;
1109 int err = -ENOENT;
1111 key.objectid = bytenr;
1112 if (parent) {
1113 key.type = BTRFS_SHARED_DATA_REF_KEY;
1114 key.offset = parent;
1115 } else {
1116 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1117 key.offset = hash_extent_data_ref(root_objectid,
1118 owner, offset);
1120 again:
1121 recow = 0;
1122 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1123 if (ret < 0) {
1124 err = ret;
1125 goto fail;
1128 if (parent) {
1129 if (!ret)
1130 return 0;
1131 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1132 key.type = BTRFS_EXTENT_REF_V0_KEY;
1133 btrfs_release_path(path);
1134 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1135 if (ret < 0) {
1136 err = ret;
1137 goto fail;
1139 if (!ret)
1140 return 0;
1141 #endif
1142 goto fail;
1145 leaf = path->nodes[0];
1146 nritems = btrfs_header_nritems(leaf);
1147 while (1) {
1148 if (path->slots[0] >= nritems) {
1149 ret = btrfs_next_leaf(root, path);
1150 if (ret < 0)
1151 err = ret;
1152 if (ret)
1153 goto fail;
1155 leaf = path->nodes[0];
1156 nritems = btrfs_header_nritems(leaf);
1157 recow = 1;
1160 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1161 if (key.objectid != bytenr ||
1162 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1163 goto fail;
1165 ref = btrfs_item_ptr(leaf, path->slots[0],
1166 struct btrfs_extent_data_ref);
1168 if (match_extent_data_ref(leaf, ref, root_objectid,
1169 owner, offset)) {
1170 if (recow) {
1171 btrfs_release_path(path);
1172 goto again;
1174 err = 0;
1175 break;
1177 path->slots[0]++;
1179 fail:
1180 return err;
1183 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1184 struct btrfs_root *root,
1185 struct btrfs_path *path,
1186 u64 bytenr, u64 parent,
1187 u64 root_objectid, u64 owner,
1188 u64 offset, int refs_to_add)
1190 struct btrfs_key key;
1191 struct extent_buffer *leaf;
1192 u32 size;
1193 u32 num_refs;
1194 int ret;
1196 key.objectid = bytenr;
1197 if (parent) {
1198 key.type = BTRFS_SHARED_DATA_REF_KEY;
1199 key.offset = parent;
1200 size = sizeof(struct btrfs_shared_data_ref);
1201 } else {
1202 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1203 key.offset = hash_extent_data_ref(root_objectid,
1204 owner, offset);
1205 size = sizeof(struct btrfs_extent_data_ref);
1208 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1209 if (ret && ret != -EEXIST)
1210 goto fail;
1212 leaf = path->nodes[0];
1213 if (parent) {
1214 struct btrfs_shared_data_ref *ref;
1215 ref = btrfs_item_ptr(leaf, path->slots[0],
1216 struct btrfs_shared_data_ref);
1217 if (ret == 0) {
1218 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1219 } else {
1220 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1221 num_refs += refs_to_add;
1222 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1224 } else {
1225 struct btrfs_extent_data_ref *ref;
1226 while (ret == -EEXIST) {
1227 ref = btrfs_item_ptr(leaf, path->slots[0],
1228 struct btrfs_extent_data_ref);
1229 if (match_extent_data_ref(leaf, ref, root_objectid,
1230 owner, offset))
1231 break;
1232 btrfs_release_path(path);
1233 key.offset++;
1234 ret = btrfs_insert_empty_item(trans, root, path, &key,
1235 size);
1236 if (ret && ret != -EEXIST)
1237 goto fail;
1239 leaf = path->nodes[0];
1241 ref = btrfs_item_ptr(leaf, path->slots[0],
1242 struct btrfs_extent_data_ref);
1243 if (ret == 0) {
1244 btrfs_set_extent_data_ref_root(leaf, ref,
1245 root_objectid);
1246 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1247 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1248 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1249 } else {
1250 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1251 num_refs += refs_to_add;
1252 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1255 btrfs_mark_buffer_dirty(leaf);
1256 ret = 0;
1257 fail:
1258 btrfs_release_path(path);
1259 return ret;
1262 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1263 struct btrfs_root *root,
1264 struct btrfs_path *path,
1265 int refs_to_drop, int *last_ref)
1267 struct btrfs_key key;
1268 struct btrfs_extent_data_ref *ref1 = NULL;
1269 struct btrfs_shared_data_ref *ref2 = NULL;
1270 struct extent_buffer *leaf;
1271 u32 num_refs = 0;
1272 int ret = 0;
1274 leaf = path->nodes[0];
1275 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1278 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1279 struct btrfs_extent_data_ref);
1280 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1281 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1282 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1283 struct btrfs_shared_data_ref);
1284 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1285 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1286 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1287 struct btrfs_extent_ref_v0 *ref0;
1288 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1289 struct btrfs_extent_ref_v0);
1290 num_refs = btrfs_ref_count_v0(leaf, ref0);
1291 #endif
1292 } else {
1293 BUG();
1296 BUG_ON(num_refs < refs_to_drop);
1297 num_refs -= refs_to_drop;
1299 if (num_refs == 0) {
1300 ret = btrfs_del_item(trans, root, path);
1301 *last_ref = 1;
1302 } else {
1303 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1304 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1305 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1306 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1308 else {
1309 struct btrfs_extent_ref_v0 *ref0;
1310 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1311 struct btrfs_extent_ref_v0);
1312 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1314 #endif
1315 btrfs_mark_buffer_dirty(leaf);
1317 return ret;
1320 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1321 struct btrfs_path *path,
1322 struct btrfs_extent_inline_ref *iref)
1324 struct btrfs_key key;
1325 struct extent_buffer *leaf;
1326 struct btrfs_extent_data_ref *ref1;
1327 struct btrfs_shared_data_ref *ref2;
1328 u32 num_refs = 0;
1330 leaf = path->nodes[0];
1331 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1332 if (iref) {
1333 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1334 BTRFS_EXTENT_DATA_REF_KEY) {
1335 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1336 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1337 } else {
1338 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1339 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1341 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1342 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1343 struct btrfs_extent_data_ref);
1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1346 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1347 struct btrfs_shared_data_ref);
1348 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1349 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1350 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1351 struct btrfs_extent_ref_v0 *ref0;
1352 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_extent_ref_v0);
1354 num_refs = btrfs_ref_count_v0(leaf, ref0);
1355 #endif
1356 } else {
1357 WARN_ON(1);
1359 return num_refs;
1362 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1363 struct btrfs_root *root,
1364 struct btrfs_path *path,
1365 u64 bytenr, u64 parent,
1366 u64 root_objectid)
1368 struct btrfs_key key;
1369 int ret;
1371 key.objectid = bytenr;
1372 if (parent) {
1373 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1374 key.offset = parent;
1375 } else {
1376 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1377 key.offset = root_objectid;
1380 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1381 if (ret > 0)
1382 ret = -ENOENT;
1383 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1384 if (ret == -ENOENT && parent) {
1385 btrfs_release_path(path);
1386 key.type = BTRFS_EXTENT_REF_V0_KEY;
1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 if (ret > 0)
1389 ret = -ENOENT;
1391 #endif
1392 return ret;
1395 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1396 struct btrfs_root *root,
1397 struct btrfs_path *path,
1398 u64 bytenr, u64 parent,
1399 u64 root_objectid)
1401 struct btrfs_key key;
1402 int ret;
1404 key.objectid = bytenr;
1405 if (parent) {
1406 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1407 key.offset = parent;
1408 } else {
1409 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1410 key.offset = root_objectid;
1413 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1414 btrfs_release_path(path);
1415 return ret;
1418 static inline int extent_ref_type(u64 parent, u64 owner)
1420 int type;
1421 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1422 if (parent > 0)
1423 type = BTRFS_SHARED_BLOCK_REF_KEY;
1424 else
1425 type = BTRFS_TREE_BLOCK_REF_KEY;
1426 } else {
1427 if (parent > 0)
1428 type = BTRFS_SHARED_DATA_REF_KEY;
1429 else
1430 type = BTRFS_EXTENT_DATA_REF_KEY;
1432 return type;
1435 static int find_next_key(struct btrfs_path *path, int level,
1436 struct btrfs_key *key)
1439 for (; level < BTRFS_MAX_LEVEL; level++) {
1440 if (!path->nodes[level])
1441 break;
1442 if (path->slots[level] + 1 >=
1443 btrfs_header_nritems(path->nodes[level]))
1444 continue;
1445 if (level == 0)
1446 btrfs_item_key_to_cpu(path->nodes[level], key,
1447 path->slots[level] + 1);
1448 else
1449 btrfs_node_key_to_cpu(path->nodes[level], key,
1450 path->slots[level] + 1);
1451 return 0;
1453 return 1;
1457 * look for inline back ref. if back ref is found, *ref_ret is set
1458 * to the address of inline back ref, and 0 is returned.
1460 * if back ref isn't found, *ref_ret is set to the address where it
1461 * should be inserted, and -ENOENT is returned.
1463 * if insert is true and there are too many inline back refs, the path
1464 * points to the extent item, and -EAGAIN is returned.
1466 * NOTE: inline back refs are ordered in the same way that back ref
1467 * items in the tree are ordered.
1469 static noinline_for_stack
1470 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1471 struct btrfs_root *root,
1472 struct btrfs_path *path,
1473 struct btrfs_extent_inline_ref **ref_ret,
1474 u64 bytenr, u64 num_bytes,
1475 u64 parent, u64 root_objectid,
1476 u64 owner, u64 offset, int insert)
1478 struct btrfs_key key;
1479 struct extent_buffer *leaf;
1480 struct btrfs_extent_item *ei;
1481 struct btrfs_extent_inline_ref *iref;
1482 u64 flags;
1483 u64 item_size;
1484 unsigned long ptr;
1485 unsigned long end;
1486 int extra_size;
1487 int type;
1488 int want;
1489 int ret;
1490 int err = 0;
1491 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1492 SKINNY_METADATA);
1494 key.objectid = bytenr;
1495 key.type = BTRFS_EXTENT_ITEM_KEY;
1496 key.offset = num_bytes;
1498 want = extent_ref_type(parent, owner);
1499 if (insert) {
1500 extra_size = btrfs_extent_inline_ref_size(want);
1501 path->keep_locks = 1;
1502 } else
1503 extra_size = -1;
1506 * Owner is our parent level, so we can just add one to get the level
1507 * for the block we are interested in.
1509 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1510 key.type = BTRFS_METADATA_ITEM_KEY;
1511 key.offset = owner;
1514 again:
1515 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1516 if (ret < 0) {
1517 err = ret;
1518 goto out;
1522 * We may be a newly converted file system which still has the old fat
1523 * extent entries for metadata, so try and see if we have one of those.
1525 if (ret > 0 && skinny_metadata) {
1526 skinny_metadata = false;
1527 if (path->slots[0]) {
1528 path->slots[0]--;
1529 btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 path->slots[0]);
1531 if (key.objectid == bytenr &&
1532 key.type == BTRFS_EXTENT_ITEM_KEY &&
1533 key.offset == num_bytes)
1534 ret = 0;
1536 if (ret) {
1537 key.objectid = bytenr;
1538 key.type = BTRFS_EXTENT_ITEM_KEY;
1539 key.offset = num_bytes;
1540 btrfs_release_path(path);
1541 goto again;
1545 if (ret && !insert) {
1546 err = -ENOENT;
1547 goto out;
1548 } else if (WARN_ON(ret)) {
1549 err = -EIO;
1550 goto out;
1553 leaf = path->nodes[0];
1554 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1555 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1556 if (item_size < sizeof(*ei)) {
1557 if (!insert) {
1558 err = -ENOENT;
1559 goto out;
1561 ret = convert_extent_item_v0(trans, root, path, owner,
1562 extra_size);
1563 if (ret < 0) {
1564 err = ret;
1565 goto out;
1567 leaf = path->nodes[0];
1568 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1570 #endif
1571 BUG_ON(item_size < sizeof(*ei));
1573 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1574 flags = btrfs_extent_flags(leaf, ei);
1576 ptr = (unsigned long)(ei + 1);
1577 end = (unsigned long)ei + item_size;
1579 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1580 ptr += sizeof(struct btrfs_tree_block_info);
1581 BUG_ON(ptr > end);
1584 err = -ENOENT;
1585 while (1) {
1586 if (ptr >= end) {
1587 WARN_ON(ptr > end);
1588 break;
1590 iref = (struct btrfs_extent_inline_ref *)ptr;
1591 type = btrfs_extent_inline_ref_type(leaf, iref);
1592 if (want < type)
1593 break;
1594 if (want > type) {
1595 ptr += btrfs_extent_inline_ref_size(type);
1596 continue;
1599 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1600 struct btrfs_extent_data_ref *dref;
1601 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1602 if (match_extent_data_ref(leaf, dref, root_objectid,
1603 owner, offset)) {
1604 err = 0;
1605 break;
1607 if (hash_extent_data_ref_item(leaf, dref) <
1608 hash_extent_data_ref(root_objectid, owner, offset))
1609 break;
1610 } else {
1611 u64 ref_offset;
1612 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1613 if (parent > 0) {
1614 if (parent == ref_offset) {
1615 err = 0;
1616 break;
1618 if (ref_offset < parent)
1619 break;
1620 } else {
1621 if (root_objectid == ref_offset) {
1622 err = 0;
1623 break;
1625 if (ref_offset < root_objectid)
1626 break;
1629 ptr += btrfs_extent_inline_ref_size(type);
1631 if (err == -ENOENT && insert) {
1632 if (item_size + extra_size >=
1633 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1634 err = -EAGAIN;
1635 goto out;
1638 * To add new inline back ref, we have to make sure
1639 * there is no corresponding back ref item.
1640 * For simplicity, we just do not add new inline back
1641 * ref if there is any kind of item for this block
1643 if (find_next_key(path, 0, &key) == 0 &&
1644 key.objectid == bytenr &&
1645 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1646 err = -EAGAIN;
1647 goto out;
1650 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1651 out:
1652 if (insert) {
1653 path->keep_locks = 0;
1654 btrfs_unlock_up_safe(path, 1);
1656 return err;
1660 * helper to add new inline back ref
1662 static noinline_for_stack
1663 void setup_inline_extent_backref(struct btrfs_root *root,
1664 struct btrfs_path *path,
1665 struct btrfs_extent_inline_ref *iref,
1666 u64 parent, u64 root_objectid,
1667 u64 owner, u64 offset, int refs_to_add,
1668 struct btrfs_delayed_extent_op *extent_op)
1670 struct extent_buffer *leaf;
1671 struct btrfs_extent_item *ei;
1672 unsigned long ptr;
1673 unsigned long end;
1674 unsigned long item_offset;
1675 u64 refs;
1676 int size;
1677 int type;
1679 leaf = path->nodes[0];
1680 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1681 item_offset = (unsigned long)iref - (unsigned long)ei;
1683 type = extent_ref_type(parent, owner);
1684 size = btrfs_extent_inline_ref_size(type);
1686 btrfs_extend_item(root, path, size);
1688 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 refs = btrfs_extent_refs(leaf, ei);
1690 refs += refs_to_add;
1691 btrfs_set_extent_refs(leaf, ei, refs);
1692 if (extent_op)
1693 __run_delayed_extent_op(extent_op, leaf, ei);
1695 ptr = (unsigned long)ei + item_offset;
1696 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1697 if (ptr < end - size)
1698 memmove_extent_buffer(leaf, ptr + size, ptr,
1699 end - size - ptr);
1701 iref = (struct btrfs_extent_inline_ref *)ptr;
1702 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1703 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1704 struct btrfs_extent_data_ref *dref;
1705 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1706 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1707 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1708 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1709 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1710 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1711 struct btrfs_shared_data_ref *sref;
1712 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1713 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1717 } else {
1718 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1720 btrfs_mark_buffer_dirty(leaf);
1723 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1724 struct btrfs_root *root,
1725 struct btrfs_path *path,
1726 struct btrfs_extent_inline_ref **ref_ret,
1727 u64 bytenr, u64 num_bytes, u64 parent,
1728 u64 root_objectid, u64 owner, u64 offset)
1730 int ret;
1732 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1733 bytenr, num_bytes, parent,
1734 root_objectid, owner, offset, 0);
1735 if (ret != -ENOENT)
1736 return ret;
1738 btrfs_release_path(path);
1739 *ref_ret = NULL;
1741 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1742 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1743 root_objectid);
1744 } else {
1745 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1746 root_objectid, owner, offset);
1748 return ret;
1752 * helper to update/remove inline back ref
1754 static noinline_for_stack
1755 void update_inline_extent_backref(struct btrfs_root *root,
1756 struct btrfs_path *path,
1757 struct btrfs_extent_inline_ref *iref,
1758 int refs_to_mod,
1759 struct btrfs_delayed_extent_op *extent_op,
1760 int *last_ref)
1762 struct extent_buffer *leaf;
1763 struct btrfs_extent_item *ei;
1764 struct btrfs_extent_data_ref *dref = NULL;
1765 struct btrfs_shared_data_ref *sref = NULL;
1766 unsigned long ptr;
1767 unsigned long end;
1768 u32 item_size;
1769 int size;
1770 int type;
1771 u64 refs;
1773 leaf = path->nodes[0];
1774 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1775 refs = btrfs_extent_refs(leaf, ei);
1776 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1777 refs += refs_to_mod;
1778 btrfs_set_extent_refs(leaf, ei, refs);
1779 if (extent_op)
1780 __run_delayed_extent_op(extent_op, leaf, ei);
1782 type = btrfs_extent_inline_ref_type(leaf, iref);
1784 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1785 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1786 refs = btrfs_extent_data_ref_count(leaf, dref);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1789 refs = btrfs_shared_data_ref_count(leaf, sref);
1790 } else {
1791 refs = 1;
1792 BUG_ON(refs_to_mod != -1);
1795 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1796 refs += refs_to_mod;
1798 if (refs > 0) {
1799 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1800 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1801 else
1802 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1803 } else {
1804 *last_ref = 1;
1805 size = btrfs_extent_inline_ref_size(type);
1806 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1807 ptr = (unsigned long)iref;
1808 end = (unsigned long)ei + item_size;
1809 if (ptr + size < end)
1810 memmove_extent_buffer(leaf, ptr, ptr + size,
1811 end - ptr - size);
1812 item_size -= size;
1813 btrfs_truncate_item(root, path, item_size, 1);
1815 btrfs_mark_buffer_dirty(leaf);
1818 static noinline_for_stack
1819 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1820 struct btrfs_root *root,
1821 struct btrfs_path *path,
1822 u64 bytenr, u64 num_bytes, u64 parent,
1823 u64 root_objectid, u64 owner,
1824 u64 offset, int refs_to_add,
1825 struct btrfs_delayed_extent_op *extent_op)
1827 struct btrfs_extent_inline_ref *iref;
1828 int ret;
1830 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1831 bytenr, num_bytes, parent,
1832 root_objectid, owner, offset, 1);
1833 if (ret == 0) {
1834 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1835 update_inline_extent_backref(root, path, iref,
1836 refs_to_add, extent_op, NULL);
1837 } else if (ret == -ENOENT) {
1838 setup_inline_extent_backref(root, path, iref, parent,
1839 root_objectid, owner, offset,
1840 refs_to_add, extent_op);
1841 ret = 0;
1843 return ret;
1846 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1847 struct btrfs_root *root,
1848 struct btrfs_path *path,
1849 u64 bytenr, u64 parent, u64 root_objectid,
1850 u64 owner, u64 offset, int refs_to_add)
1852 int ret;
1853 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1854 BUG_ON(refs_to_add != 1);
1855 ret = insert_tree_block_ref(trans, root, path, bytenr,
1856 parent, root_objectid);
1857 } else {
1858 ret = insert_extent_data_ref(trans, root, path, bytenr,
1859 parent, root_objectid,
1860 owner, offset, refs_to_add);
1862 return ret;
1865 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1866 struct btrfs_root *root,
1867 struct btrfs_path *path,
1868 struct btrfs_extent_inline_ref *iref,
1869 int refs_to_drop, int is_data, int *last_ref)
1871 int ret = 0;
1873 BUG_ON(!is_data && refs_to_drop != 1);
1874 if (iref) {
1875 update_inline_extent_backref(root, path, iref,
1876 -refs_to_drop, NULL, last_ref);
1877 } else if (is_data) {
1878 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1879 last_ref);
1880 } else {
1881 *last_ref = 1;
1882 ret = btrfs_del_item(trans, root, path);
1884 return ret;
1887 static int btrfs_issue_discard(struct block_device *bdev,
1888 u64 start, u64 len)
1890 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1893 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1894 u64 num_bytes, u64 *actual_bytes)
1896 int ret;
1897 u64 discarded_bytes = 0;
1898 struct btrfs_bio *bbio = NULL;
1901 /* Tell the block device(s) that the sectors can be discarded */
1902 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1903 bytenr, &num_bytes, &bbio, 0);
1904 /* Error condition is -ENOMEM */
1905 if (!ret) {
1906 struct btrfs_bio_stripe *stripe = bbio->stripes;
1907 int i;
1910 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1911 if (!stripe->dev->can_discard)
1912 continue;
1914 ret = btrfs_issue_discard(stripe->dev->bdev,
1915 stripe->physical,
1916 stripe->length);
1917 if (!ret)
1918 discarded_bytes += stripe->length;
1919 else if (ret != -EOPNOTSUPP)
1920 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1923 * Just in case we get back EOPNOTSUPP for some reason,
1924 * just ignore the return value so we don't screw up
1925 * people calling discard_extent.
1927 ret = 0;
1929 btrfs_put_bbio(bbio);
1932 if (actual_bytes)
1933 *actual_bytes = discarded_bytes;
1936 if (ret == -EOPNOTSUPP)
1937 ret = 0;
1938 return ret;
1941 /* Can return -ENOMEM */
1942 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 u64 bytenr, u64 num_bytes, u64 parent,
1945 u64 root_objectid, u64 owner, u64 offset,
1946 int no_quota)
1948 int ret;
1949 struct btrfs_fs_info *fs_info = root->fs_info;
1951 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1952 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1954 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1955 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1956 num_bytes,
1957 parent, root_objectid, (int)owner,
1958 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1959 } else {
1960 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1961 num_bytes,
1962 parent, root_objectid, owner, offset,
1963 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1965 return ret;
1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1969 struct btrfs_root *root,
1970 u64 bytenr, u64 num_bytes,
1971 u64 parent, u64 root_objectid,
1972 u64 owner, u64 offset, int refs_to_add,
1973 int no_quota,
1974 struct btrfs_delayed_extent_op *extent_op)
1976 struct btrfs_fs_info *fs_info = root->fs_info;
1977 struct btrfs_path *path;
1978 struct extent_buffer *leaf;
1979 struct btrfs_extent_item *item;
1980 struct btrfs_key key;
1981 u64 refs;
1982 int ret;
1983 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1985 path = btrfs_alloc_path();
1986 if (!path)
1987 return -ENOMEM;
1989 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 no_quota = 1;
1992 path->reada = 1;
1993 path->leave_spinning = 1;
1994 /* this will setup the path even if it fails to insert the back ref */
1995 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 bytenr, num_bytes, parent,
1997 root_objectid, owner, offset,
1998 refs_to_add, extent_op);
1999 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2000 goto out;
2002 * Ok we were able to insert an inline extent and it appears to be a new
2003 * reference, deal with the qgroup accounting.
2005 if (!ret && !no_quota) {
2006 ASSERT(root->fs_info->quota_enabled);
2007 leaf = path->nodes[0];
2008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009 item = btrfs_item_ptr(leaf, path->slots[0],
2010 struct btrfs_extent_item);
2011 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2012 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2013 btrfs_release_path(path);
2015 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2016 bytenr, num_bytes, type, 0);
2017 goto out;
2021 * Ok we had -EAGAIN which means we didn't have space to insert and
2022 * inline extent ref, so just update the reference count and add a
2023 * normal backref.
2025 leaf = path->nodes[0];
2026 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2027 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2028 refs = btrfs_extent_refs(leaf, item);
2029 if (refs)
2030 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2031 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2032 if (extent_op)
2033 __run_delayed_extent_op(extent_op, leaf, item);
2035 btrfs_mark_buffer_dirty(leaf);
2036 btrfs_release_path(path);
2038 if (!no_quota) {
2039 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2040 bytenr, num_bytes, type, 0);
2041 if (ret)
2042 goto out;
2045 path->reada = 1;
2046 path->leave_spinning = 1;
2047 /* now insert the actual backref */
2048 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2049 path, bytenr, parent, root_objectid,
2050 owner, offset, refs_to_add);
2051 if (ret)
2052 btrfs_abort_transaction(trans, root, ret);
2053 out:
2054 btrfs_free_path(path);
2055 return ret;
2058 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2059 struct btrfs_root *root,
2060 struct btrfs_delayed_ref_node *node,
2061 struct btrfs_delayed_extent_op *extent_op,
2062 int insert_reserved)
2064 int ret = 0;
2065 struct btrfs_delayed_data_ref *ref;
2066 struct btrfs_key ins;
2067 u64 parent = 0;
2068 u64 ref_root = 0;
2069 u64 flags = 0;
2071 ins.objectid = node->bytenr;
2072 ins.offset = node->num_bytes;
2073 ins.type = BTRFS_EXTENT_ITEM_KEY;
2075 ref = btrfs_delayed_node_to_data_ref(node);
2076 trace_run_delayed_data_ref(node, ref, node->action);
2078 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2079 parent = ref->parent;
2080 ref_root = ref->root;
2082 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2083 if (extent_op)
2084 flags |= extent_op->flags_to_set;
2085 ret = alloc_reserved_file_extent(trans, root,
2086 parent, ref_root, flags,
2087 ref->objectid, ref->offset,
2088 &ins, node->ref_mod);
2089 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2090 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2091 node->num_bytes, parent,
2092 ref_root, ref->objectid,
2093 ref->offset, node->ref_mod,
2094 node->no_quota, extent_op);
2095 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2096 ret = __btrfs_free_extent(trans, root, node->bytenr,
2097 node->num_bytes, parent,
2098 ref_root, ref->objectid,
2099 ref->offset, node->ref_mod,
2100 extent_op, node->no_quota);
2101 } else {
2102 BUG();
2104 return ret;
2107 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2108 struct extent_buffer *leaf,
2109 struct btrfs_extent_item *ei)
2111 u64 flags = btrfs_extent_flags(leaf, ei);
2112 if (extent_op->update_flags) {
2113 flags |= extent_op->flags_to_set;
2114 btrfs_set_extent_flags(leaf, ei, flags);
2117 if (extent_op->update_key) {
2118 struct btrfs_tree_block_info *bi;
2119 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2120 bi = (struct btrfs_tree_block_info *)(ei + 1);
2121 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2125 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2126 struct btrfs_root *root,
2127 struct btrfs_delayed_ref_node *node,
2128 struct btrfs_delayed_extent_op *extent_op)
2130 struct btrfs_key key;
2131 struct btrfs_path *path;
2132 struct btrfs_extent_item *ei;
2133 struct extent_buffer *leaf;
2134 u32 item_size;
2135 int ret;
2136 int err = 0;
2137 int metadata = !extent_op->is_data;
2139 if (trans->aborted)
2140 return 0;
2142 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2143 metadata = 0;
2145 path = btrfs_alloc_path();
2146 if (!path)
2147 return -ENOMEM;
2149 key.objectid = node->bytenr;
2151 if (metadata) {
2152 key.type = BTRFS_METADATA_ITEM_KEY;
2153 key.offset = extent_op->level;
2154 } else {
2155 key.type = BTRFS_EXTENT_ITEM_KEY;
2156 key.offset = node->num_bytes;
2159 again:
2160 path->reada = 1;
2161 path->leave_spinning = 1;
2162 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2163 path, 0, 1);
2164 if (ret < 0) {
2165 err = ret;
2166 goto out;
2168 if (ret > 0) {
2169 if (metadata) {
2170 if (path->slots[0] > 0) {
2171 path->slots[0]--;
2172 btrfs_item_key_to_cpu(path->nodes[0], &key,
2173 path->slots[0]);
2174 if (key.objectid == node->bytenr &&
2175 key.type == BTRFS_EXTENT_ITEM_KEY &&
2176 key.offset == node->num_bytes)
2177 ret = 0;
2179 if (ret > 0) {
2180 btrfs_release_path(path);
2181 metadata = 0;
2183 key.objectid = node->bytenr;
2184 key.offset = node->num_bytes;
2185 key.type = BTRFS_EXTENT_ITEM_KEY;
2186 goto again;
2188 } else {
2189 err = -EIO;
2190 goto out;
2194 leaf = path->nodes[0];
2195 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2196 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2197 if (item_size < sizeof(*ei)) {
2198 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2199 path, (u64)-1, 0);
2200 if (ret < 0) {
2201 err = ret;
2202 goto out;
2204 leaf = path->nodes[0];
2205 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2207 #endif
2208 BUG_ON(item_size < sizeof(*ei));
2209 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2210 __run_delayed_extent_op(extent_op, leaf, ei);
2212 btrfs_mark_buffer_dirty(leaf);
2213 out:
2214 btrfs_free_path(path);
2215 return err;
2218 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2219 struct btrfs_root *root,
2220 struct btrfs_delayed_ref_node *node,
2221 struct btrfs_delayed_extent_op *extent_op,
2222 int insert_reserved)
2224 int ret = 0;
2225 struct btrfs_delayed_tree_ref *ref;
2226 struct btrfs_key ins;
2227 u64 parent = 0;
2228 u64 ref_root = 0;
2229 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2230 SKINNY_METADATA);
2232 ref = btrfs_delayed_node_to_tree_ref(node);
2233 trace_run_delayed_tree_ref(node, ref, node->action);
2235 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2236 parent = ref->parent;
2237 ref_root = ref->root;
2239 ins.objectid = node->bytenr;
2240 if (skinny_metadata) {
2241 ins.offset = ref->level;
2242 ins.type = BTRFS_METADATA_ITEM_KEY;
2243 } else {
2244 ins.offset = node->num_bytes;
2245 ins.type = BTRFS_EXTENT_ITEM_KEY;
2248 BUG_ON(node->ref_mod != 1);
2249 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2250 BUG_ON(!extent_op || !extent_op->update_flags);
2251 ret = alloc_reserved_tree_block(trans, root,
2252 parent, ref_root,
2253 extent_op->flags_to_set,
2254 &extent_op->key,
2255 ref->level, &ins,
2256 node->no_quota);
2257 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2258 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2259 node->num_bytes, parent, ref_root,
2260 ref->level, 0, 1, node->no_quota,
2261 extent_op);
2262 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2263 ret = __btrfs_free_extent(trans, root, node->bytenr,
2264 node->num_bytes, parent, ref_root,
2265 ref->level, 0, 1, extent_op,
2266 node->no_quota);
2267 } else {
2268 BUG();
2270 return ret;
2273 /* helper function to actually process a single delayed ref entry */
2274 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2275 struct btrfs_root *root,
2276 struct btrfs_delayed_ref_node *node,
2277 struct btrfs_delayed_extent_op *extent_op,
2278 int insert_reserved)
2280 int ret = 0;
2282 if (trans->aborted) {
2283 if (insert_reserved)
2284 btrfs_pin_extent(root, node->bytenr,
2285 node->num_bytes, 1);
2286 return 0;
2289 if (btrfs_delayed_ref_is_head(node)) {
2290 struct btrfs_delayed_ref_head *head;
2292 * we've hit the end of the chain and we were supposed
2293 * to insert this extent into the tree. But, it got
2294 * deleted before we ever needed to insert it, so all
2295 * we have to do is clean up the accounting
2297 BUG_ON(extent_op);
2298 head = btrfs_delayed_node_to_head(node);
2299 trace_run_delayed_ref_head(node, head, node->action);
2301 if (insert_reserved) {
2302 btrfs_pin_extent(root, node->bytenr,
2303 node->num_bytes, 1);
2304 if (head->is_data) {
2305 ret = btrfs_del_csums(trans, root,
2306 node->bytenr,
2307 node->num_bytes);
2310 return ret;
2313 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2314 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2315 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2316 insert_reserved);
2317 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2318 node->type == BTRFS_SHARED_DATA_REF_KEY)
2319 ret = run_delayed_data_ref(trans, root, node, extent_op,
2320 insert_reserved);
2321 else
2322 BUG();
2323 return ret;
2326 static noinline struct btrfs_delayed_ref_node *
2327 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2329 struct rb_node *node;
2330 struct btrfs_delayed_ref_node *ref, *last = NULL;;
2333 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2334 * this prevents ref count from going down to zero when
2335 * there still are pending delayed ref.
2337 node = rb_first(&head->ref_root);
2338 while (node) {
2339 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2340 rb_node);
2341 if (ref->action == BTRFS_ADD_DELAYED_REF)
2342 return ref;
2343 else if (last == NULL)
2344 last = ref;
2345 node = rb_next(node);
2347 return last;
2351 * Returns 0 on success or if called with an already aborted transaction.
2352 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2354 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2355 struct btrfs_root *root,
2356 unsigned long nr)
2358 struct btrfs_delayed_ref_root *delayed_refs;
2359 struct btrfs_delayed_ref_node *ref;
2360 struct btrfs_delayed_ref_head *locked_ref = NULL;
2361 struct btrfs_delayed_extent_op *extent_op;
2362 struct btrfs_fs_info *fs_info = root->fs_info;
2363 ktime_t start = ktime_get();
2364 int ret;
2365 unsigned long count = 0;
2366 unsigned long actual_count = 0;
2367 int must_insert_reserved = 0;
2369 delayed_refs = &trans->transaction->delayed_refs;
2370 while (1) {
2371 if (!locked_ref) {
2372 if (count >= nr)
2373 break;
2375 spin_lock(&delayed_refs->lock);
2376 locked_ref = btrfs_select_ref_head(trans);
2377 if (!locked_ref) {
2378 spin_unlock(&delayed_refs->lock);
2379 break;
2382 /* grab the lock that says we are going to process
2383 * all the refs for this head */
2384 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2385 spin_unlock(&delayed_refs->lock);
2387 * we may have dropped the spin lock to get the head
2388 * mutex lock, and that might have given someone else
2389 * time to free the head. If that's true, it has been
2390 * removed from our list and we can move on.
2392 if (ret == -EAGAIN) {
2393 locked_ref = NULL;
2394 count++;
2395 continue;
2400 * We need to try and merge add/drops of the same ref since we
2401 * can run into issues with relocate dropping the implicit ref
2402 * and then it being added back again before the drop can
2403 * finish. If we merged anything we need to re-loop so we can
2404 * get a good ref.
2406 spin_lock(&locked_ref->lock);
2407 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2408 locked_ref);
2411 * locked_ref is the head node, so we have to go one
2412 * node back for any delayed ref updates
2414 ref = select_delayed_ref(locked_ref);
2416 if (ref && ref->seq &&
2417 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2418 spin_unlock(&locked_ref->lock);
2419 btrfs_delayed_ref_unlock(locked_ref);
2420 spin_lock(&delayed_refs->lock);
2421 locked_ref->processing = 0;
2422 delayed_refs->num_heads_ready++;
2423 spin_unlock(&delayed_refs->lock);
2424 locked_ref = NULL;
2425 cond_resched();
2426 count++;
2427 continue;
2431 * record the must insert reserved flag before we
2432 * drop the spin lock.
2434 must_insert_reserved = locked_ref->must_insert_reserved;
2435 locked_ref->must_insert_reserved = 0;
2437 extent_op = locked_ref->extent_op;
2438 locked_ref->extent_op = NULL;
2440 if (!ref) {
2443 /* All delayed refs have been processed, Go ahead
2444 * and send the head node to run_one_delayed_ref,
2445 * so that any accounting fixes can happen
2447 ref = &locked_ref->node;
2449 if (extent_op && must_insert_reserved) {
2450 btrfs_free_delayed_extent_op(extent_op);
2451 extent_op = NULL;
2454 if (extent_op) {
2455 spin_unlock(&locked_ref->lock);
2456 ret = run_delayed_extent_op(trans, root,
2457 ref, extent_op);
2458 btrfs_free_delayed_extent_op(extent_op);
2460 if (ret) {
2462 * Need to reset must_insert_reserved if
2463 * there was an error so the abort stuff
2464 * can cleanup the reserved space
2465 * properly.
2467 if (must_insert_reserved)
2468 locked_ref->must_insert_reserved = 1;
2469 locked_ref->processing = 0;
2470 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2471 btrfs_delayed_ref_unlock(locked_ref);
2472 return ret;
2474 continue;
2478 * Need to drop our head ref lock and re-aqcuire the
2479 * delayed ref lock and then re-check to make sure
2480 * nobody got added.
2482 spin_unlock(&locked_ref->lock);
2483 spin_lock(&delayed_refs->lock);
2484 spin_lock(&locked_ref->lock);
2485 if (rb_first(&locked_ref->ref_root) ||
2486 locked_ref->extent_op) {
2487 spin_unlock(&locked_ref->lock);
2488 spin_unlock(&delayed_refs->lock);
2489 continue;
2491 ref->in_tree = 0;
2492 delayed_refs->num_heads--;
2493 rb_erase(&locked_ref->href_node,
2494 &delayed_refs->href_root);
2495 spin_unlock(&delayed_refs->lock);
2496 } else {
2497 actual_count++;
2498 ref->in_tree = 0;
2499 rb_erase(&ref->rb_node, &locked_ref->ref_root);
2501 atomic_dec(&delayed_refs->num_entries);
2503 if (!btrfs_delayed_ref_is_head(ref)) {
2505 * when we play the delayed ref, also correct the
2506 * ref_mod on head
2508 switch (ref->action) {
2509 case BTRFS_ADD_DELAYED_REF:
2510 case BTRFS_ADD_DELAYED_EXTENT:
2511 locked_ref->node.ref_mod -= ref->ref_mod;
2512 break;
2513 case BTRFS_DROP_DELAYED_REF:
2514 locked_ref->node.ref_mod += ref->ref_mod;
2515 break;
2516 default:
2517 WARN_ON(1);
2520 spin_unlock(&locked_ref->lock);
2522 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2523 must_insert_reserved);
2525 btrfs_free_delayed_extent_op(extent_op);
2526 if (ret) {
2527 locked_ref->processing = 0;
2528 btrfs_delayed_ref_unlock(locked_ref);
2529 btrfs_put_delayed_ref(ref);
2530 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2531 return ret;
2535 * If this node is a head, that means all the refs in this head
2536 * have been dealt with, and we will pick the next head to deal
2537 * with, so we must unlock the head and drop it from the cluster
2538 * list before we release it.
2540 if (btrfs_delayed_ref_is_head(ref)) {
2541 if (locked_ref->is_data &&
2542 locked_ref->total_ref_mod < 0) {
2543 spin_lock(&delayed_refs->lock);
2544 delayed_refs->pending_csums -= ref->num_bytes;
2545 spin_unlock(&delayed_refs->lock);
2547 btrfs_delayed_ref_unlock(locked_ref);
2548 locked_ref = NULL;
2550 btrfs_put_delayed_ref(ref);
2551 count++;
2552 cond_resched();
2556 * We don't want to include ref heads since we can have empty ref heads
2557 * and those will drastically skew our runtime down since we just do
2558 * accounting, no actual extent tree updates.
2560 if (actual_count > 0) {
2561 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2562 u64 avg;
2565 * We weigh the current average higher than our current runtime
2566 * to avoid large swings in the average.
2568 spin_lock(&delayed_refs->lock);
2569 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2570 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2571 spin_unlock(&delayed_refs->lock);
2573 return 0;
2576 #ifdef SCRAMBLE_DELAYED_REFS
2578 * Normally delayed refs get processed in ascending bytenr order. This
2579 * correlates in most cases to the order added. To expose dependencies on this
2580 * order, we start to process the tree in the middle instead of the beginning
2582 static u64 find_middle(struct rb_root *root)
2584 struct rb_node *n = root->rb_node;
2585 struct btrfs_delayed_ref_node *entry;
2586 int alt = 1;
2587 u64 middle;
2588 u64 first = 0, last = 0;
2590 n = rb_first(root);
2591 if (n) {
2592 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2593 first = entry->bytenr;
2595 n = rb_last(root);
2596 if (n) {
2597 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2598 last = entry->bytenr;
2600 n = root->rb_node;
2602 while (n) {
2603 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2604 WARN_ON(!entry->in_tree);
2606 middle = entry->bytenr;
2608 if (alt)
2609 n = n->rb_left;
2610 else
2611 n = n->rb_right;
2613 alt = 1 - alt;
2615 return middle;
2617 #endif
2619 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2621 u64 num_bytes;
2623 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2624 sizeof(struct btrfs_extent_inline_ref));
2625 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2626 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2629 * We don't ever fill up leaves all the way so multiply by 2 just to be
2630 * closer to what we're really going to want to ouse.
2632 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2636 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2637 * would require to store the csums for that many bytes.
2639 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2641 u64 csum_size;
2642 u64 num_csums_per_leaf;
2643 u64 num_csums;
2645 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2646 num_csums_per_leaf = div64_u64(csum_size,
2647 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2648 num_csums = div64_u64(csum_bytes, root->sectorsize);
2649 num_csums += num_csums_per_leaf - 1;
2650 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2651 return num_csums;
2654 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2655 struct btrfs_root *root)
2657 struct btrfs_block_rsv *global_rsv;
2658 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2659 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2660 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2661 u64 num_bytes, num_dirty_bgs_bytes;
2662 int ret = 0;
2664 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2665 num_heads = heads_to_leaves(root, num_heads);
2666 if (num_heads > 1)
2667 num_bytes += (num_heads - 1) * root->nodesize;
2668 num_bytes <<= 1;
2669 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2670 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2671 num_dirty_bgs);
2672 global_rsv = &root->fs_info->global_block_rsv;
2675 * If we can't allocate any more chunks lets make sure we have _lots_ of
2676 * wiggle room since running delayed refs can create more delayed refs.
2678 if (global_rsv->space_info->full) {
2679 num_dirty_bgs_bytes <<= 1;
2680 num_bytes <<= 1;
2683 spin_lock(&global_rsv->lock);
2684 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2685 ret = 1;
2686 spin_unlock(&global_rsv->lock);
2687 return ret;
2690 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2691 struct btrfs_root *root)
2693 struct btrfs_fs_info *fs_info = root->fs_info;
2694 u64 num_entries =
2695 atomic_read(&trans->transaction->delayed_refs.num_entries);
2696 u64 avg_runtime;
2697 u64 val;
2699 smp_mb();
2700 avg_runtime = fs_info->avg_delayed_ref_runtime;
2701 val = num_entries * avg_runtime;
2702 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2703 return 1;
2704 if (val >= NSEC_PER_SEC / 2)
2705 return 2;
2707 return btrfs_check_space_for_delayed_refs(trans, root);
2710 struct async_delayed_refs {
2711 struct btrfs_root *root;
2712 int count;
2713 int error;
2714 int sync;
2715 struct completion wait;
2716 struct btrfs_work work;
2719 static void delayed_ref_async_start(struct btrfs_work *work)
2721 struct async_delayed_refs *async;
2722 struct btrfs_trans_handle *trans;
2723 int ret;
2725 async = container_of(work, struct async_delayed_refs, work);
2727 trans = btrfs_join_transaction(async->root);
2728 if (IS_ERR(trans)) {
2729 async->error = PTR_ERR(trans);
2730 goto done;
2734 * trans->sync means that when we call end_transaciton, we won't
2735 * wait on delayed refs
2737 trans->sync = true;
2738 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2739 if (ret)
2740 async->error = ret;
2742 ret = btrfs_end_transaction(trans, async->root);
2743 if (ret && !async->error)
2744 async->error = ret;
2745 done:
2746 if (async->sync)
2747 complete(&async->wait);
2748 else
2749 kfree(async);
2752 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2753 unsigned long count, int wait)
2755 struct async_delayed_refs *async;
2756 int ret;
2758 async = kmalloc(sizeof(*async), GFP_NOFS);
2759 if (!async)
2760 return -ENOMEM;
2762 async->root = root->fs_info->tree_root;
2763 async->count = count;
2764 async->error = 0;
2765 if (wait)
2766 async->sync = 1;
2767 else
2768 async->sync = 0;
2769 init_completion(&async->wait);
2771 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2772 delayed_ref_async_start, NULL, NULL);
2774 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2776 if (wait) {
2777 wait_for_completion(&async->wait);
2778 ret = async->error;
2779 kfree(async);
2780 return ret;
2782 return 0;
2786 * this starts processing the delayed reference count updates and
2787 * extent insertions we have queued up so far. count can be
2788 * 0, which means to process everything in the tree at the start
2789 * of the run (but not newly added entries), or it can be some target
2790 * number you'd like to process.
2792 * Returns 0 on success or if called with an aborted transaction
2793 * Returns <0 on error and aborts the transaction
2795 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2796 struct btrfs_root *root, unsigned long count)
2798 struct rb_node *node;
2799 struct btrfs_delayed_ref_root *delayed_refs;
2800 struct btrfs_delayed_ref_head *head;
2801 int ret;
2802 int run_all = count == (unsigned long)-1;
2804 /* We'll clean this up in btrfs_cleanup_transaction */
2805 if (trans->aborted)
2806 return 0;
2808 if (root == root->fs_info->extent_root)
2809 root = root->fs_info->tree_root;
2811 delayed_refs = &trans->transaction->delayed_refs;
2812 if (count == 0)
2813 count = atomic_read(&delayed_refs->num_entries) * 2;
2815 again:
2816 #ifdef SCRAMBLE_DELAYED_REFS
2817 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2818 #endif
2819 ret = __btrfs_run_delayed_refs(trans, root, count);
2820 if (ret < 0) {
2821 btrfs_abort_transaction(trans, root, ret);
2822 return ret;
2825 if (run_all) {
2826 if (!list_empty(&trans->new_bgs))
2827 btrfs_create_pending_block_groups(trans, root);
2829 spin_lock(&delayed_refs->lock);
2830 node = rb_first(&delayed_refs->href_root);
2831 if (!node) {
2832 spin_unlock(&delayed_refs->lock);
2833 goto out;
2835 count = (unsigned long)-1;
2837 while (node) {
2838 head = rb_entry(node, struct btrfs_delayed_ref_head,
2839 href_node);
2840 if (btrfs_delayed_ref_is_head(&head->node)) {
2841 struct btrfs_delayed_ref_node *ref;
2843 ref = &head->node;
2844 atomic_inc(&ref->refs);
2846 spin_unlock(&delayed_refs->lock);
2848 * Mutex was contended, block until it's
2849 * released and try again
2851 mutex_lock(&head->mutex);
2852 mutex_unlock(&head->mutex);
2854 btrfs_put_delayed_ref(ref);
2855 cond_resched();
2856 goto again;
2857 } else {
2858 WARN_ON(1);
2860 node = rb_next(node);
2862 spin_unlock(&delayed_refs->lock);
2863 cond_resched();
2864 goto again;
2866 out:
2867 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2868 if (ret)
2869 return ret;
2870 assert_qgroups_uptodate(trans);
2871 return 0;
2874 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2875 struct btrfs_root *root,
2876 u64 bytenr, u64 num_bytes, u64 flags,
2877 int level, int is_data)
2879 struct btrfs_delayed_extent_op *extent_op;
2880 int ret;
2882 extent_op = btrfs_alloc_delayed_extent_op();
2883 if (!extent_op)
2884 return -ENOMEM;
2886 extent_op->flags_to_set = flags;
2887 extent_op->update_flags = 1;
2888 extent_op->update_key = 0;
2889 extent_op->is_data = is_data ? 1 : 0;
2890 extent_op->level = level;
2892 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2893 num_bytes, extent_op);
2894 if (ret)
2895 btrfs_free_delayed_extent_op(extent_op);
2896 return ret;
2899 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2900 struct btrfs_root *root,
2901 struct btrfs_path *path,
2902 u64 objectid, u64 offset, u64 bytenr)
2904 struct btrfs_delayed_ref_head *head;
2905 struct btrfs_delayed_ref_node *ref;
2906 struct btrfs_delayed_data_ref *data_ref;
2907 struct btrfs_delayed_ref_root *delayed_refs;
2908 struct rb_node *node;
2909 int ret = 0;
2911 delayed_refs = &trans->transaction->delayed_refs;
2912 spin_lock(&delayed_refs->lock);
2913 head = btrfs_find_delayed_ref_head(trans, bytenr);
2914 if (!head) {
2915 spin_unlock(&delayed_refs->lock);
2916 return 0;
2919 if (!mutex_trylock(&head->mutex)) {
2920 atomic_inc(&head->node.refs);
2921 spin_unlock(&delayed_refs->lock);
2923 btrfs_release_path(path);
2926 * Mutex was contended, block until it's released and let
2927 * caller try again
2929 mutex_lock(&head->mutex);
2930 mutex_unlock(&head->mutex);
2931 btrfs_put_delayed_ref(&head->node);
2932 return -EAGAIN;
2934 spin_unlock(&delayed_refs->lock);
2936 spin_lock(&head->lock);
2937 node = rb_first(&head->ref_root);
2938 while (node) {
2939 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2940 node = rb_next(node);
2942 /* If it's a shared ref we know a cross reference exists */
2943 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2944 ret = 1;
2945 break;
2948 data_ref = btrfs_delayed_node_to_data_ref(ref);
2951 * If our ref doesn't match the one we're currently looking at
2952 * then we have a cross reference.
2954 if (data_ref->root != root->root_key.objectid ||
2955 data_ref->objectid != objectid ||
2956 data_ref->offset != offset) {
2957 ret = 1;
2958 break;
2961 spin_unlock(&head->lock);
2962 mutex_unlock(&head->mutex);
2963 return ret;
2966 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2967 struct btrfs_root *root,
2968 struct btrfs_path *path,
2969 u64 objectid, u64 offset, u64 bytenr)
2971 struct btrfs_root *extent_root = root->fs_info->extent_root;
2972 struct extent_buffer *leaf;
2973 struct btrfs_extent_data_ref *ref;
2974 struct btrfs_extent_inline_ref *iref;
2975 struct btrfs_extent_item *ei;
2976 struct btrfs_key key;
2977 u32 item_size;
2978 int ret;
2980 key.objectid = bytenr;
2981 key.offset = (u64)-1;
2982 key.type = BTRFS_EXTENT_ITEM_KEY;
2984 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2985 if (ret < 0)
2986 goto out;
2987 BUG_ON(ret == 0); /* Corruption */
2989 ret = -ENOENT;
2990 if (path->slots[0] == 0)
2991 goto out;
2993 path->slots[0]--;
2994 leaf = path->nodes[0];
2995 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2997 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2998 goto out;
3000 ret = 1;
3001 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3002 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3003 if (item_size < sizeof(*ei)) {
3004 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3005 goto out;
3007 #endif
3008 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3010 if (item_size != sizeof(*ei) +
3011 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3012 goto out;
3014 if (btrfs_extent_generation(leaf, ei) <=
3015 btrfs_root_last_snapshot(&root->root_item))
3016 goto out;
3018 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3019 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3020 BTRFS_EXTENT_DATA_REF_KEY)
3021 goto out;
3023 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3024 if (btrfs_extent_refs(leaf, ei) !=
3025 btrfs_extent_data_ref_count(leaf, ref) ||
3026 btrfs_extent_data_ref_root(leaf, ref) !=
3027 root->root_key.objectid ||
3028 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3029 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3030 goto out;
3032 ret = 0;
3033 out:
3034 return ret;
3037 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3038 struct btrfs_root *root,
3039 u64 objectid, u64 offset, u64 bytenr)
3041 struct btrfs_path *path;
3042 int ret;
3043 int ret2;
3045 path = btrfs_alloc_path();
3046 if (!path)
3047 return -ENOENT;
3049 do {
3050 ret = check_committed_ref(trans, root, path, objectid,
3051 offset, bytenr);
3052 if (ret && ret != -ENOENT)
3053 goto out;
3055 ret2 = check_delayed_ref(trans, root, path, objectid,
3056 offset, bytenr);
3057 } while (ret2 == -EAGAIN);
3059 if (ret2 && ret2 != -ENOENT) {
3060 ret = ret2;
3061 goto out;
3064 if (ret != -ENOENT || ret2 != -ENOENT)
3065 ret = 0;
3066 out:
3067 btrfs_free_path(path);
3068 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3069 WARN_ON(ret > 0);
3070 return ret;
3073 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3074 struct btrfs_root *root,
3075 struct extent_buffer *buf,
3076 int full_backref, int inc)
3078 u64 bytenr;
3079 u64 num_bytes;
3080 u64 parent;
3081 u64 ref_root;
3082 u32 nritems;
3083 struct btrfs_key key;
3084 struct btrfs_file_extent_item *fi;
3085 int i;
3086 int level;
3087 int ret = 0;
3088 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3089 u64, u64, u64, u64, u64, u64, int);
3092 if (btrfs_test_is_dummy_root(root))
3093 return 0;
3095 ref_root = btrfs_header_owner(buf);
3096 nritems = btrfs_header_nritems(buf);
3097 level = btrfs_header_level(buf);
3099 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3100 return 0;
3102 if (inc)
3103 process_func = btrfs_inc_extent_ref;
3104 else
3105 process_func = btrfs_free_extent;
3107 if (full_backref)
3108 parent = buf->start;
3109 else
3110 parent = 0;
3112 for (i = 0; i < nritems; i++) {
3113 if (level == 0) {
3114 btrfs_item_key_to_cpu(buf, &key, i);
3115 if (key.type != BTRFS_EXTENT_DATA_KEY)
3116 continue;
3117 fi = btrfs_item_ptr(buf, i,
3118 struct btrfs_file_extent_item);
3119 if (btrfs_file_extent_type(buf, fi) ==
3120 BTRFS_FILE_EXTENT_INLINE)
3121 continue;
3122 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3123 if (bytenr == 0)
3124 continue;
3126 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3127 key.offset -= btrfs_file_extent_offset(buf, fi);
3128 ret = process_func(trans, root, bytenr, num_bytes,
3129 parent, ref_root, key.objectid,
3130 key.offset, 1);
3131 if (ret)
3132 goto fail;
3133 } else {
3134 bytenr = btrfs_node_blockptr(buf, i);
3135 num_bytes = root->nodesize;
3136 ret = process_func(trans, root, bytenr, num_bytes,
3137 parent, ref_root, level - 1, 0,
3139 if (ret)
3140 goto fail;
3143 return 0;
3144 fail:
3145 return ret;
3148 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3149 struct extent_buffer *buf, int full_backref)
3151 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3154 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3155 struct extent_buffer *buf, int full_backref)
3157 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3160 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3161 struct btrfs_root *root,
3162 struct btrfs_path *path,
3163 struct btrfs_block_group_cache *cache)
3165 int ret;
3166 struct btrfs_root *extent_root = root->fs_info->extent_root;
3167 unsigned long bi;
3168 struct extent_buffer *leaf;
3170 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3171 if (ret) {
3172 if (ret > 0)
3173 ret = -ENOENT;
3174 goto fail;
3177 leaf = path->nodes[0];
3178 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3179 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3180 btrfs_mark_buffer_dirty(leaf);
3181 fail:
3182 btrfs_release_path(path);
3183 return ret;
3187 static struct btrfs_block_group_cache *
3188 next_block_group(struct btrfs_root *root,
3189 struct btrfs_block_group_cache *cache)
3191 struct rb_node *node;
3193 spin_lock(&root->fs_info->block_group_cache_lock);
3195 /* If our block group was removed, we need a full search. */
3196 if (RB_EMPTY_NODE(&cache->cache_node)) {
3197 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3199 spin_unlock(&root->fs_info->block_group_cache_lock);
3200 btrfs_put_block_group(cache);
3201 cache = btrfs_lookup_first_block_group(root->fs_info,
3202 next_bytenr);
3203 return cache;
3205 node = rb_next(&cache->cache_node);
3206 btrfs_put_block_group(cache);
3207 if (node) {
3208 cache = rb_entry(node, struct btrfs_block_group_cache,
3209 cache_node);
3210 btrfs_get_block_group(cache);
3211 } else
3212 cache = NULL;
3213 spin_unlock(&root->fs_info->block_group_cache_lock);
3214 return cache;
3217 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3218 struct btrfs_trans_handle *trans,
3219 struct btrfs_path *path)
3221 struct btrfs_root *root = block_group->fs_info->tree_root;
3222 struct inode *inode = NULL;
3223 u64 alloc_hint = 0;
3224 int dcs = BTRFS_DC_ERROR;
3225 u64 num_pages = 0;
3226 int retries = 0;
3227 int ret = 0;
3230 * If this block group is smaller than 100 megs don't bother caching the
3231 * block group.
3233 if (block_group->key.offset < (100 * 1024 * 1024)) {
3234 spin_lock(&block_group->lock);
3235 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3236 spin_unlock(&block_group->lock);
3237 return 0;
3240 if (trans->aborted)
3241 return 0;
3242 again:
3243 inode = lookup_free_space_inode(root, block_group, path);
3244 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3245 ret = PTR_ERR(inode);
3246 btrfs_release_path(path);
3247 goto out;
3250 if (IS_ERR(inode)) {
3251 BUG_ON(retries);
3252 retries++;
3254 if (block_group->ro)
3255 goto out_free;
3257 ret = create_free_space_inode(root, trans, block_group, path);
3258 if (ret)
3259 goto out_free;
3260 goto again;
3263 /* We've already setup this transaction, go ahead and exit */
3264 if (block_group->cache_generation == trans->transid &&
3265 i_size_read(inode)) {
3266 dcs = BTRFS_DC_SETUP;
3267 goto out_put;
3271 * We want to set the generation to 0, that way if anything goes wrong
3272 * from here on out we know not to trust this cache when we load up next
3273 * time.
3275 BTRFS_I(inode)->generation = 0;
3276 ret = btrfs_update_inode(trans, root, inode);
3277 if (ret) {
3279 * So theoretically we could recover from this, simply set the
3280 * super cache generation to 0 so we know to invalidate the
3281 * cache, but then we'd have to keep track of the block groups
3282 * that fail this way so we know we _have_ to reset this cache
3283 * before the next commit or risk reading stale cache. So to
3284 * limit our exposure to horrible edge cases lets just abort the
3285 * transaction, this only happens in really bad situations
3286 * anyway.
3288 btrfs_abort_transaction(trans, root, ret);
3289 goto out_put;
3291 WARN_ON(ret);
3293 if (i_size_read(inode) > 0) {
3294 ret = btrfs_check_trunc_cache_free_space(root,
3295 &root->fs_info->global_block_rsv);
3296 if (ret)
3297 goto out_put;
3299 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3300 if (ret)
3301 goto out_put;
3304 spin_lock(&block_group->lock);
3305 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3306 !btrfs_test_opt(root, SPACE_CACHE)) {
3308 * don't bother trying to write stuff out _if_
3309 * a) we're not cached,
3310 * b) we're with nospace_cache mount option.
3312 dcs = BTRFS_DC_WRITTEN;
3313 spin_unlock(&block_group->lock);
3314 goto out_put;
3316 spin_unlock(&block_group->lock);
3319 * Try to preallocate enough space based on how big the block group is.
3320 * Keep in mind this has to include any pinned space which could end up
3321 * taking up quite a bit since it's not folded into the other space
3322 * cache.
3324 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3325 if (!num_pages)
3326 num_pages = 1;
3328 num_pages *= 16;
3329 num_pages *= PAGE_CACHE_SIZE;
3331 ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
3332 if (ret)
3333 goto out_put;
3335 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3336 num_pages, num_pages,
3337 &alloc_hint);
3338 if (!ret)
3339 dcs = BTRFS_DC_SETUP;
3340 btrfs_free_reserved_data_space(inode, num_pages);
3342 out_put:
3343 iput(inode);
3344 out_free:
3345 btrfs_release_path(path);
3346 out:
3347 spin_lock(&block_group->lock);
3348 if (!ret && dcs == BTRFS_DC_SETUP)
3349 block_group->cache_generation = trans->transid;
3350 block_group->disk_cache_state = dcs;
3351 spin_unlock(&block_group->lock);
3353 return ret;
3356 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3357 struct btrfs_root *root)
3359 struct btrfs_block_group_cache *cache, *tmp;
3360 struct btrfs_transaction *cur_trans = trans->transaction;
3361 struct btrfs_path *path;
3363 if (list_empty(&cur_trans->dirty_bgs) ||
3364 !btrfs_test_opt(root, SPACE_CACHE))
3365 return 0;
3367 path = btrfs_alloc_path();
3368 if (!path)
3369 return -ENOMEM;
3371 /* Could add new block groups, use _safe just in case */
3372 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3373 dirty_list) {
3374 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3375 cache_save_setup(cache, trans, path);
3378 btrfs_free_path(path);
3379 return 0;
3383 * transaction commit does final block group cache writeback during a
3384 * critical section where nothing is allowed to change the FS. This is
3385 * required in order for the cache to actually match the block group,
3386 * but can introduce a lot of latency into the commit.
3388 * So, btrfs_start_dirty_block_groups is here to kick off block group
3389 * cache IO. There's a chance we'll have to redo some of it if the
3390 * block group changes again during the commit, but it greatly reduces
3391 * the commit latency by getting rid of the easy block groups while
3392 * we're still allowing others to join the commit.
3394 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3395 struct btrfs_root *root)
3397 struct btrfs_block_group_cache *cache;
3398 struct btrfs_transaction *cur_trans = trans->transaction;
3399 int ret = 0;
3400 int should_put;
3401 struct btrfs_path *path = NULL;
3402 LIST_HEAD(dirty);
3403 struct list_head *io = &cur_trans->io_bgs;
3404 int num_started = 0;
3405 int loops = 0;
3407 spin_lock(&cur_trans->dirty_bgs_lock);
3408 if (list_empty(&cur_trans->dirty_bgs)) {
3409 spin_unlock(&cur_trans->dirty_bgs_lock);
3410 return 0;
3412 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3413 spin_unlock(&cur_trans->dirty_bgs_lock);
3415 again:
3417 * make sure all the block groups on our dirty list actually
3418 * exist
3420 btrfs_create_pending_block_groups(trans, root);
3422 if (!path) {
3423 path = btrfs_alloc_path();
3424 if (!path)
3425 return -ENOMEM;
3429 * cache_write_mutex is here only to save us from balance or automatic
3430 * removal of empty block groups deleting this block group while we are
3431 * writing out the cache
3433 mutex_lock(&trans->transaction->cache_write_mutex);
3434 while (!list_empty(&dirty)) {
3435 cache = list_first_entry(&dirty,
3436 struct btrfs_block_group_cache,
3437 dirty_list);
3439 * this can happen if something re-dirties a block
3440 * group that is already under IO. Just wait for it to
3441 * finish and then do it all again
3443 if (!list_empty(&cache->io_list)) {
3444 list_del_init(&cache->io_list);
3445 btrfs_wait_cache_io(root, trans, cache,
3446 &cache->io_ctl, path,
3447 cache->key.objectid);
3448 btrfs_put_block_group(cache);
3453 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3454 * if it should update the cache_state. Don't delete
3455 * until after we wait.
3457 * Since we're not running in the commit critical section
3458 * we need the dirty_bgs_lock to protect from update_block_group
3460 spin_lock(&cur_trans->dirty_bgs_lock);
3461 list_del_init(&cache->dirty_list);
3462 spin_unlock(&cur_trans->dirty_bgs_lock);
3464 should_put = 1;
3466 cache_save_setup(cache, trans, path);
3468 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3469 cache->io_ctl.inode = NULL;
3470 ret = btrfs_write_out_cache(root, trans, cache, path);
3471 if (ret == 0 && cache->io_ctl.inode) {
3472 num_started++;
3473 should_put = 0;
3476 * the cache_write_mutex is protecting
3477 * the io_list
3479 list_add_tail(&cache->io_list, io);
3480 } else {
3482 * if we failed to write the cache, the
3483 * generation will be bad and life goes on
3485 ret = 0;
3488 if (!ret) {
3489 ret = write_one_cache_group(trans, root, path, cache);
3491 * Our block group might still be attached to the list
3492 * of new block groups in the transaction handle of some
3493 * other task (struct btrfs_trans_handle->new_bgs). This
3494 * means its block group item isn't yet in the extent
3495 * tree. If this happens ignore the error, as we will
3496 * try again later in the critical section of the
3497 * transaction commit.
3499 if (ret == -ENOENT) {
3500 ret = 0;
3501 spin_lock(&cur_trans->dirty_bgs_lock);
3502 if (list_empty(&cache->dirty_list)) {
3503 list_add_tail(&cache->dirty_list,
3504 &cur_trans->dirty_bgs);
3505 btrfs_get_block_group(cache);
3507 spin_unlock(&cur_trans->dirty_bgs_lock);
3508 } else if (ret) {
3509 btrfs_abort_transaction(trans, root, ret);
3513 /* if its not on the io list, we need to put the block group */
3514 if (should_put)
3515 btrfs_put_block_group(cache);
3517 if (ret)
3518 break;
3521 * Avoid blocking other tasks for too long. It might even save
3522 * us from writing caches for block groups that are going to be
3523 * removed.
3525 mutex_unlock(&trans->transaction->cache_write_mutex);
3526 mutex_lock(&trans->transaction->cache_write_mutex);
3528 mutex_unlock(&trans->transaction->cache_write_mutex);
3531 * go through delayed refs for all the stuff we've just kicked off
3532 * and then loop back (just once)
3534 ret = btrfs_run_delayed_refs(trans, root, 0);
3535 if (!ret && loops == 0) {
3536 loops++;
3537 spin_lock(&cur_trans->dirty_bgs_lock);
3538 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3540 * dirty_bgs_lock protects us from concurrent block group
3541 * deletes too (not just cache_write_mutex).
3543 if (!list_empty(&dirty)) {
3544 spin_unlock(&cur_trans->dirty_bgs_lock);
3545 goto again;
3547 spin_unlock(&cur_trans->dirty_bgs_lock);
3550 btrfs_free_path(path);
3551 return ret;
3554 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3555 struct btrfs_root *root)
3557 struct btrfs_block_group_cache *cache;
3558 struct btrfs_transaction *cur_trans = trans->transaction;
3559 int ret = 0;
3560 int should_put;
3561 struct btrfs_path *path;
3562 struct list_head *io = &cur_trans->io_bgs;
3563 int num_started = 0;
3565 path = btrfs_alloc_path();
3566 if (!path)
3567 return -ENOMEM;
3570 * We don't need the lock here since we are protected by the transaction
3571 * commit. We want to do the cache_save_setup first and then run the
3572 * delayed refs to make sure we have the best chance at doing this all
3573 * in one shot.
3575 while (!list_empty(&cur_trans->dirty_bgs)) {
3576 cache = list_first_entry(&cur_trans->dirty_bgs,
3577 struct btrfs_block_group_cache,
3578 dirty_list);
3581 * this can happen if cache_save_setup re-dirties a block
3582 * group that is already under IO. Just wait for it to
3583 * finish and then do it all again
3585 if (!list_empty(&cache->io_list)) {
3586 list_del_init(&cache->io_list);
3587 btrfs_wait_cache_io(root, trans, cache,
3588 &cache->io_ctl, path,
3589 cache->key.objectid);
3590 btrfs_put_block_group(cache);
3594 * don't remove from the dirty list until after we've waited
3595 * on any pending IO
3597 list_del_init(&cache->dirty_list);
3598 should_put = 1;
3600 cache_save_setup(cache, trans, path);
3602 if (!ret)
3603 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3605 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3606 cache->io_ctl.inode = NULL;
3607 ret = btrfs_write_out_cache(root, trans, cache, path);
3608 if (ret == 0 && cache->io_ctl.inode) {
3609 num_started++;
3610 should_put = 0;
3611 list_add_tail(&cache->io_list, io);
3612 } else {
3614 * if we failed to write the cache, the
3615 * generation will be bad and life goes on
3617 ret = 0;
3620 if (!ret) {
3621 ret = write_one_cache_group(trans, root, path, cache);
3622 if (ret)
3623 btrfs_abort_transaction(trans, root, ret);
3626 /* if its not on the io list, we need to put the block group */
3627 if (should_put)
3628 btrfs_put_block_group(cache);
3631 while (!list_empty(io)) {
3632 cache = list_first_entry(io, struct btrfs_block_group_cache,
3633 io_list);
3634 list_del_init(&cache->io_list);
3635 btrfs_wait_cache_io(root, trans, cache,
3636 &cache->io_ctl, path, cache->key.objectid);
3637 btrfs_put_block_group(cache);
3640 btrfs_free_path(path);
3641 return ret;
3644 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3646 struct btrfs_block_group_cache *block_group;
3647 int readonly = 0;
3649 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3650 if (!block_group || block_group->ro)
3651 readonly = 1;
3652 if (block_group)
3653 btrfs_put_block_group(block_group);
3654 return readonly;
3657 static const char *alloc_name(u64 flags)
3659 switch (flags) {
3660 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3661 return "mixed";
3662 case BTRFS_BLOCK_GROUP_METADATA:
3663 return "metadata";
3664 case BTRFS_BLOCK_GROUP_DATA:
3665 return "data";
3666 case BTRFS_BLOCK_GROUP_SYSTEM:
3667 return "system";
3668 default:
3669 WARN_ON(1);
3670 return "invalid-combination";
3674 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3675 u64 total_bytes, u64 bytes_used,
3676 struct btrfs_space_info **space_info)
3678 struct btrfs_space_info *found;
3679 int i;
3680 int factor;
3681 int ret;
3683 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3684 BTRFS_BLOCK_GROUP_RAID10))
3685 factor = 2;
3686 else
3687 factor = 1;
3689 found = __find_space_info(info, flags);
3690 if (found) {
3691 spin_lock(&found->lock);
3692 found->total_bytes += total_bytes;
3693 found->disk_total += total_bytes * factor;
3694 found->bytes_used += bytes_used;
3695 found->disk_used += bytes_used * factor;
3696 found->full = 0;
3697 spin_unlock(&found->lock);
3698 *space_info = found;
3699 return 0;
3701 found = kzalloc(sizeof(*found), GFP_NOFS);
3702 if (!found)
3703 return -ENOMEM;
3705 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3706 if (ret) {
3707 kfree(found);
3708 return ret;
3711 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3712 INIT_LIST_HEAD(&found->block_groups[i]);
3713 init_rwsem(&found->groups_sem);
3714 spin_lock_init(&found->lock);
3715 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3716 found->total_bytes = total_bytes;
3717 found->disk_total = total_bytes * factor;
3718 found->bytes_used = bytes_used;
3719 found->disk_used = bytes_used * factor;
3720 found->bytes_pinned = 0;
3721 found->bytes_reserved = 0;
3722 found->bytes_readonly = 0;
3723 found->bytes_may_use = 0;
3724 found->full = 0;
3725 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3726 found->chunk_alloc = 0;
3727 found->flush = 0;
3728 init_waitqueue_head(&found->wait);
3729 INIT_LIST_HEAD(&found->ro_bgs);
3731 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3732 info->space_info_kobj, "%s",
3733 alloc_name(found->flags));
3734 if (ret) {
3735 kfree(found);
3736 return ret;
3739 *space_info = found;
3740 list_add_rcu(&found->list, &info->space_info);
3741 if (flags & BTRFS_BLOCK_GROUP_DATA)
3742 info->data_sinfo = found;
3744 return ret;
3747 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3749 u64 extra_flags = chunk_to_extended(flags) &
3750 BTRFS_EXTENDED_PROFILE_MASK;
3752 write_seqlock(&fs_info->profiles_lock);
3753 if (flags & BTRFS_BLOCK_GROUP_DATA)
3754 fs_info->avail_data_alloc_bits |= extra_flags;
3755 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3756 fs_info->avail_metadata_alloc_bits |= extra_flags;
3757 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3758 fs_info->avail_system_alloc_bits |= extra_flags;
3759 write_sequnlock(&fs_info->profiles_lock);
3763 * returns target flags in extended format or 0 if restripe for this
3764 * chunk_type is not in progress
3766 * should be called with either volume_mutex or balance_lock held
3768 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3770 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3771 u64 target = 0;
3773 if (!bctl)
3774 return 0;
3776 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3777 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3778 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3779 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3780 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3781 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3782 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3783 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3784 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3787 return target;
3791 * @flags: available profiles in extended format (see ctree.h)
3793 * Returns reduced profile in chunk format. If profile changing is in
3794 * progress (either running or paused) picks the target profile (if it's
3795 * already available), otherwise falls back to plain reducing.
3797 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3799 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3800 u64 target;
3801 u64 tmp;
3804 * see if restripe for this chunk_type is in progress, if so
3805 * try to reduce to the target profile
3807 spin_lock(&root->fs_info->balance_lock);
3808 target = get_restripe_target(root->fs_info, flags);
3809 if (target) {
3810 /* pick target profile only if it's already available */
3811 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3812 spin_unlock(&root->fs_info->balance_lock);
3813 return extended_to_chunk(target);
3816 spin_unlock(&root->fs_info->balance_lock);
3818 /* First, mask out the RAID levels which aren't possible */
3819 if (num_devices == 1)
3820 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3821 BTRFS_BLOCK_GROUP_RAID5);
3822 if (num_devices < 3)
3823 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3824 if (num_devices < 4)
3825 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3827 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3828 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3829 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3830 flags &= ~tmp;
3832 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3833 tmp = BTRFS_BLOCK_GROUP_RAID6;
3834 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3835 tmp = BTRFS_BLOCK_GROUP_RAID5;
3836 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3837 tmp = BTRFS_BLOCK_GROUP_RAID10;
3838 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3839 tmp = BTRFS_BLOCK_GROUP_RAID1;
3840 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3841 tmp = BTRFS_BLOCK_GROUP_RAID0;
3843 return extended_to_chunk(flags | tmp);
3846 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3848 unsigned seq;
3849 u64 flags;
3851 do {
3852 flags = orig_flags;
3853 seq = read_seqbegin(&root->fs_info->profiles_lock);
3855 if (flags & BTRFS_BLOCK_GROUP_DATA)
3856 flags |= root->fs_info->avail_data_alloc_bits;
3857 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3858 flags |= root->fs_info->avail_system_alloc_bits;
3859 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3860 flags |= root->fs_info->avail_metadata_alloc_bits;
3861 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3863 return btrfs_reduce_alloc_profile(root, flags);
3866 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3868 u64 flags;
3869 u64 ret;
3871 if (data)
3872 flags = BTRFS_BLOCK_GROUP_DATA;
3873 else if (root == root->fs_info->chunk_root)
3874 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3875 else
3876 flags = BTRFS_BLOCK_GROUP_METADATA;
3878 ret = get_alloc_profile(root, flags);
3879 return ret;
3883 * This will check the space that the inode allocates from to make sure we have
3884 * enough space for bytes.
3886 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
3888 struct btrfs_space_info *data_sinfo;
3889 struct btrfs_root *root = BTRFS_I(inode)->root;
3890 struct btrfs_fs_info *fs_info = root->fs_info;
3891 u64 used;
3892 int ret = 0;
3893 int need_commit = 2;
3894 int have_pinned_space;
3896 /* make sure bytes are sectorsize aligned */
3897 bytes = ALIGN(bytes, root->sectorsize);
3899 if (btrfs_is_free_space_inode(inode)) {
3900 need_commit = 0;
3901 ASSERT(current->journal_info);
3904 data_sinfo = fs_info->data_sinfo;
3905 if (!data_sinfo)
3906 goto alloc;
3908 again:
3909 /* make sure we have enough space to handle the data first */
3910 spin_lock(&data_sinfo->lock);
3911 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3912 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3913 data_sinfo->bytes_may_use;
3915 if (used + bytes > data_sinfo->total_bytes) {
3916 struct btrfs_trans_handle *trans;
3919 * if we don't have enough free bytes in this space then we need
3920 * to alloc a new chunk.
3922 if (!data_sinfo->full) {
3923 u64 alloc_target;
3925 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3926 spin_unlock(&data_sinfo->lock);
3927 alloc:
3928 alloc_target = btrfs_get_alloc_profile(root, 1);
3930 * It is ugly that we don't call nolock join
3931 * transaction for the free space inode case here.
3932 * But it is safe because we only do the data space
3933 * reservation for the free space cache in the
3934 * transaction context, the common join transaction
3935 * just increase the counter of the current transaction
3936 * handler, doesn't try to acquire the trans_lock of
3937 * the fs.
3939 trans = btrfs_join_transaction(root);
3940 if (IS_ERR(trans))
3941 return PTR_ERR(trans);
3943 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3944 alloc_target,
3945 CHUNK_ALLOC_NO_FORCE);
3946 btrfs_end_transaction(trans, root);
3947 if (ret < 0) {
3948 if (ret != -ENOSPC)
3949 return ret;
3950 else {
3951 have_pinned_space = 1;
3952 goto commit_trans;
3956 if (!data_sinfo)
3957 data_sinfo = fs_info->data_sinfo;
3959 goto again;
3963 * If we don't have enough pinned space to deal with this
3964 * allocation, and no removed chunk in current transaction,
3965 * don't bother committing the transaction.
3967 have_pinned_space = percpu_counter_compare(
3968 &data_sinfo->total_bytes_pinned,
3969 used + bytes - data_sinfo->total_bytes);
3970 spin_unlock(&data_sinfo->lock);
3972 /* commit the current transaction and try again */
3973 commit_trans:
3974 if (need_commit &&
3975 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3976 need_commit--;
3978 if (need_commit > 0) {
3979 btrfs_start_delalloc_roots(fs_info, 0, -1);
3980 btrfs_wait_ordered_roots(fs_info, -1);
3983 trans = btrfs_join_transaction(root);
3984 if (IS_ERR(trans))
3985 return PTR_ERR(trans);
3986 if (have_pinned_space >= 0 ||
3987 trans->transaction->have_free_bgs ||
3988 need_commit > 0) {
3989 ret = btrfs_commit_transaction(trans, root);
3990 if (ret)
3991 return ret;
3993 * The cleaner kthread might still be doing iput
3994 * operations. Wait for it to finish so that
3995 * more space is released.
3997 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
3998 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
3999 goto again;
4000 } else {
4001 btrfs_end_transaction(trans, root);
4005 trace_btrfs_space_reservation(root->fs_info,
4006 "space_info:enospc",
4007 data_sinfo->flags, bytes, 1);
4008 return -ENOSPC;
4010 ret = btrfs_qgroup_reserve(root, write_bytes);
4011 if (ret)
4012 goto out;
4013 data_sinfo->bytes_may_use += bytes;
4014 trace_btrfs_space_reservation(root->fs_info, "space_info",
4015 data_sinfo->flags, bytes, 1);
4016 out:
4017 spin_unlock(&data_sinfo->lock);
4019 return ret;
4023 * Called if we need to clear a data reservation for this inode.
4025 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
4027 struct btrfs_root *root = BTRFS_I(inode)->root;
4028 struct btrfs_space_info *data_sinfo;
4030 /* make sure bytes are sectorsize aligned */
4031 bytes = ALIGN(bytes, root->sectorsize);
4033 data_sinfo = root->fs_info->data_sinfo;
4034 spin_lock(&data_sinfo->lock);
4035 WARN_ON(data_sinfo->bytes_may_use < bytes);
4036 data_sinfo->bytes_may_use -= bytes;
4037 trace_btrfs_space_reservation(root->fs_info, "space_info",
4038 data_sinfo->flags, bytes, 0);
4039 spin_unlock(&data_sinfo->lock);
4042 static void force_metadata_allocation(struct btrfs_fs_info *info)
4044 struct list_head *head = &info->space_info;
4045 struct btrfs_space_info *found;
4047 rcu_read_lock();
4048 list_for_each_entry_rcu(found, head, list) {
4049 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4050 found->force_alloc = CHUNK_ALLOC_FORCE;
4052 rcu_read_unlock();
4055 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4057 return (global->size << 1);
4060 static int should_alloc_chunk(struct btrfs_root *root,
4061 struct btrfs_space_info *sinfo, int force)
4063 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4064 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4065 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4066 u64 thresh;
4068 if (force == CHUNK_ALLOC_FORCE)
4069 return 1;
4072 * We need to take into account the global rsv because for all intents
4073 * and purposes it's used space. Don't worry about locking the
4074 * global_rsv, it doesn't change except when the transaction commits.
4076 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4077 num_allocated += calc_global_rsv_need_space(global_rsv);
4080 * in limited mode, we want to have some free space up to
4081 * about 1% of the FS size.
4083 if (force == CHUNK_ALLOC_LIMITED) {
4084 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4085 thresh = max_t(u64, 64 * 1024 * 1024,
4086 div_factor_fine(thresh, 1));
4088 if (num_bytes - num_allocated < thresh)
4089 return 1;
4092 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4093 return 0;
4094 return 1;
4097 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
4099 u64 num_dev;
4101 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4102 BTRFS_BLOCK_GROUP_RAID0 |
4103 BTRFS_BLOCK_GROUP_RAID5 |
4104 BTRFS_BLOCK_GROUP_RAID6))
4105 num_dev = root->fs_info->fs_devices->rw_devices;
4106 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4107 num_dev = 2;
4108 else
4109 num_dev = 1; /* DUP or single */
4111 /* metadata for updaing devices and chunk tree */
4112 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
4115 static void check_system_chunk(struct btrfs_trans_handle *trans,
4116 struct btrfs_root *root, u64 type)
4118 struct btrfs_space_info *info;
4119 u64 left;
4120 u64 thresh;
4122 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4123 spin_lock(&info->lock);
4124 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4125 info->bytes_reserved - info->bytes_readonly;
4126 spin_unlock(&info->lock);
4128 thresh = get_system_chunk_thresh(root, type);
4129 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4130 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4131 left, thresh, type);
4132 dump_space_info(info, 0, 0);
4135 if (left < thresh) {
4136 u64 flags;
4138 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4139 btrfs_alloc_chunk(trans, root, flags);
4143 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4144 struct btrfs_root *extent_root, u64 flags, int force)
4146 struct btrfs_space_info *space_info;
4147 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4148 int wait_for_alloc = 0;
4149 int ret = 0;
4151 /* Don't re-enter if we're already allocating a chunk */
4152 if (trans->allocating_chunk)
4153 return -ENOSPC;
4155 space_info = __find_space_info(extent_root->fs_info, flags);
4156 if (!space_info) {
4157 ret = update_space_info(extent_root->fs_info, flags,
4158 0, 0, &space_info);
4159 BUG_ON(ret); /* -ENOMEM */
4161 BUG_ON(!space_info); /* Logic error */
4163 again:
4164 spin_lock(&space_info->lock);
4165 if (force < space_info->force_alloc)
4166 force = space_info->force_alloc;
4167 if (space_info->full) {
4168 if (should_alloc_chunk(extent_root, space_info, force))
4169 ret = -ENOSPC;
4170 else
4171 ret = 0;
4172 spin_unlock(&space_info->lock);
4173 return ret;
4176 if (!should_alloc_chunk(extent_root, space_info, force)) {
4177 spin_unlock(&space_info->lock);
4178 return 0;
4179 } else if (space_info->chunk_alloc) {
4180 wait_for_alloc = 1;
4181 } else {
4182 space_info->chunk_alloc = 1;
4185 spin_unlock(&space_info->lock);
4187 mutex_lock(&fs_info->chunk_mutex);
4190 * The chunk_mutex is held throughout the entirety of a chunk
4191 * allocation, so once we've acquired the chunk_mutex we know that the
4192 * other guy is done and we need to recheck and see if we should
4193 * allocate.
4195 if (wait_for_alloc) {
4196 mutex_unlock(&fs_info->chunk_mutex);
4197 wait_for_alloc = 0;
4198 goto again;
4201 trans->allocating_chunk = true;
4204 * If we have mixed data/metadata chunks we want to make sure we keep
4205 * allocating mixed chunks instead of individual chunks.
4207 if (btrfs_mixed_space_info(space_info))
4208 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4211 * if we're doing a data chunk, go ahead and make sure that
4212 * we keep a reasonable number of metadata chunks allocated in the
4213 * FS as well.
4215 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4216 fs_info->data_chunk_allocations++;
4217 if (!(fs_info->data_chunk_allocations %
4218 fs_info->metadata_ratio))
4219 force_metadata_allocation(fs_info);
4223 * Check if we have enough space in SYSTEM chunk because we may need
4224 * to update devices.
4226 check_system_chunk(trans, extent_root, flags);
4228 ret = btrfs_alloc_chunk(trans, extent_root, flags);
4229 trans->allocating_chunk = false;
4231 spin_lock(&space_info->lock);
4232 if (ret < 0 && ret != -ENOSPC)
4233 goto out;
4234 if (ret)
4235 space_info->full = 1;
4236 else
4237 ret = 1;
4239 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4240 out:
4241 space_info->chunk_alloc = 0;
4242 spin_unlock(&space_info->lock);
4243 mutex_unlock(&fs_info->chunk_mutex);
4244 return ret;
4247 static int can_overcommit(struct btrfs_root *root,
4248 struct btrfs_space_info *space_info, u64 bytes,
4249 enum btrfs_reserve_flush_enum flush)
4251 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4252 u64 profile = btrfs_get_alloc_profile(root, 0);
4253 u64 space_size;
4254 u64 avail;
4255 u64 used;
4257 used = space_info->bytes_used + space_info->bytes_reserved +
4258 space_info->bytes_pinned + space_info->bytes_readonly;
4261 * We only want to allow over committing if we have lots of actual space
4262 * free, but if we don't have enough space to handle the global reserve
4263 * space then we could end up having a real enospc problem when trying
4264 * to allocate a chunk or some other such important allocation.
4266 spin_lock(&global_rsv->lock);
4267 space_size = calc_global_rsv_need_space(global_rsv);
4268 spin_unlock(&global_rsv->lock);
4269 if (used + space_size >= space_info->total_bytes)
4270 return 0;
4272 used += space_info->bytes_may_use;
4274 spin_lock(&root->fs_info->free_chunk_lock);
4275 avail = root->fs_info->free_chunk_space;
4276 spin_unlock(&root->fs_info->free_chunk_lock);
4279 * If we have dup, raid1 or raid10 then only half of the free
4280 * space is actually useable. For raid56, the space info used
4281 * doesn't include the parity drive, so we don't have to
4282 * change the math
4284 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4285 BTRFS_BLOCK_GROUP_RAID1 |
4286 BTRFS_BLOCK_GROUP_RAID10))
4287 avail >>= 1;
4290 * If we aren't flushing all things, let us overcommit up to
4291 * 1/2th of the space. If we can flush, don't let us overcommit
4292 * too much, let it overcommit up to 1/8 of the space.
4294 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4295 avail >>= 3;
4296 else
4297 avail >>= 1;
4299 if (used + bytes < space_info->total_bytes + avail)
4300 return 1;
4301 return 0;
4304 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4305 unsigned long nr_pages, int nr_items)
4307 struct super_block *sb = root->fs_info->sb;
4309 if (down_read_trylock(&sb->s_umount)) {
4310 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4311 up_read(&sb->s_umount);
4312 } else {
4314 * We needn't worry the filesystem going from r/w to r/o though
4315 * we don't acquire ->s_umount mutex, because the filesystem
4316 * should guarantee the delalloc inodes list be empty after
4317 * the filesystem is readonly(all dirty pages are written to
4318 * the disk).
4320 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4321 if (!current->journal_info)
4322 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4326 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4328 u64 bytes;
4329 int nr;
4331 bytes = btrfs_calc_trans_metadata_size(root, 1);
4332 nr = (int)div64_u64(to_reclaim, bytes);
4333 if (!nr)
4334 nr = 1;
4335 return nr;
4338 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4341 * shrink metadata reservation for delalloc
4343 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4344 bool wait_ordered)
4346 struct btrfs_block_rsv *block_rsv;
4347 struct btrfs_space_info *space_info;
4348 struct btrfs_trans_handle *trans;
4349 u64 delalloc_bytes;
4350 u64 max_reclaim;
4351 long time_left;
4352 unsigned long nr_pages;
4353 int loops;
4354 int items;
4355 enum btrfs_reserve_flush_enum flush;
4357 /* Calc the number of the pages we need flush for space reservation */
4358 items = calc_reclaim_items_nr(root, to_reclaim);
4359 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4361 trans = (struct btrfs_trans_handle *)current->journal_info;
4362 block_rsv = &root->fs_info->delalloc_block_rsv;
4363 space_info = block_rsv->space_info;
4365 delalloc_bytes = percpu_counter_sum_positive(
4366 &root->fs_info->delalloc_bytes);
4367 if (delalloc_bytes == 0) {
4368 if (trans)
4369 return;
4370 if (wait_ordered)
4371 btrfs_wait_ordered_roots(root->fs_info, items);
4372 return;
4375 loops = 0;
4376 while (delalloc_bytes && loops < 3) {
4377 max_reclaim = min(delalloc_bytes, to_reclaim);
4378 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4379 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4381 * We need to wait for the async pages to actually start before
4382 * we do anything.
4384 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4385 if (!max_reclaim)
4386 goto skip_async;
4388 if (max_reclaim <= nr_pages)
4389 max_reclaim = 0;
4390 else
4391 max_reclaim -= nr_pages;
4393 wait_event(root->fs_info->async_submit_wait,
4394 atomic_read(&root->fs_info->async_delalloc_pages) <=
4395 (int)max_reclaim);
4396 skip_async:
4397 if (!trans)
4398 flush = BTRFS_RESERVE_FLUSH_ALL;
4399 else
4400 flush = BTRFS_RESERVE_NO_FLUSH;
4401 spin_lock(&space_info->lock);
4402 if (can_overcommit(root, space_info, orig, flush)) {
4403 spin_unlock(&space_info->lock);
4404 break;
4406 spin_unlock(&space_info->lock);
4408 loops++;
4409 if (wait_ordered && !trans) {
4410 btrfs_wait_ordered_roots(root->fs_info, items);
4411 } else {
4412 time_left = schedule_timeout_killable(1);
4413 if (time_left)
4414 break;
4416 delalloc_bytes = percpu_counter_sum_positive(
4417 &root->fs_info->delalloc_bytes);
4422 * maybe_commit_transaction - possibly commit the transaction if its ok to
4423 * @root - the root we're allocating for
4424 * @bytes - the number of bytes we want to reserve
4425 * @force - force the commit
4427 * This will check to make sure that committing the transaction will actually
4428 * get us somewhere and then commit the transaction if it does. Otherwise it
4429 * will return -ENOSPC.
4431 static int may_commit_transaction(struct btrfs_root *root,
4432 struct btrfs_space_info *space_info,
4433 u64 bytes, int force)
4435 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4436 struct btrfs_trans_handle *trans;
4438 trans = (struct btrfs_trans_handle *)current->journal_info;
4439 if (trans)
4440 return -EAGAIN;
4442 if (force)
4443 goto commit;
4445 /* See if there is enough pinned space to make this reservation */
4446 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4447 bytes) >= 0)
4448 goto commit;
4451 * See if there is some space in the delayed insertion reservation for
4452 * this reservation.
4454 if (space_info != delayed_rsv->space_info)
4455 return -ENOSPC;
4457 spin_lock(&delayed_rsv->lock);
4458 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4459 bytes - delayed_rsv->size) >= 0) {
4460 spin_unlock(&delayed_rsv->lock);
4461 return -ENOSPC;
4463 spin_unlock(&delayed_rsv->lock);
4465 commit:
4466 trans = btrfs_join_transaction(root);
4467 if (IS_ERR(trans))
4468 return -ENOSPC;
4470 return btrfs_commit_transaction(trans, root);
4473 enum flush_state {
4474 FLUSH_DELAYED_ITEMS_NR = 1,
4475 FLUSH_DELAYED_ITEMS = 2,
4476 FLUSH_DELALLOC = 3,
4477 FLUSH_DELALLOC_WAIT = 4,
4478 ALLOC_CHUNK = 5,
4479 COMMIT_TRANS = 6,
4482 static int flush_space(struct btrfs_root *root,
4483 struct btrfs_space_info *space_info, u64 num_bytes,
4484 u64 orig_bytes, int state)
4486 struct btrfs_trans_handle *trans;
4487 int nr;
4488 int ret = 0;
4490 switch (state) {
4491 case FLUSH_DELAYED_ITEMS_NR:
4492 case FLUSH_DELAYED_ITEMS:
4493 if (state == FLUSH_DELAYED_ITEMS_NR)
4494 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4495 else
4496 nr = -1;
4498 trans = btrfs_join_transaction(root);
4499 if (IS_ERR(trans)) {
4500 ret = PTR_ERR(trans);
4501 break;
4503 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4504 btrfs_end_transaction(trans, root);
4505 break;
4506 case FLUSH_DELALLOC:
4507 case FLUSH_DELALLOC_WAIT:
4508 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4509 state == FLUSH_DELALLOC_WAIT);
4510 break;
4511 case ALLOC_CHUNK:
4512 trans = btrfs_join_transaction(root);
4513 if (IS_ERR(trans)) {
4514 ret = PTR_ERR(trans);
4515 break;
4517 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4518 btrfs_get_alloc_profile(root, 0),
4519 CHUNK_ALLOC_NO_FORCE);
4520 btrfs_end_transaction(trans, root);
4521 if (ret == -ENOSPC)
4522 ret = 0;
4523 break;
4524 case COMMIT_TRANS:
4525 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4526 break;
4527 default:
4528 ret = -ENOSPC;
4529 break;
4532 return ret;
4535 static inline u64
4536 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4537 struct btrfs_space_info *space_info)
4539 u64 used;
4540 u64 expected;
4541 u64 to_reclaim;
4543 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4544 16 * 1024 * 1024);
4545 spin_lock(&space_info->lock);
4546 if (can_overcommit(root, space_info, to_reclaim,
4547 BTRFS_RESERVE_FLUSH_ALL)) {
4548 to_reclaim = 0;
4549 goto out;
4552 used = space_info->bytes_used + space_info->bytes_reserved +
4553 space_info->bytes_pinned + space_info->bytes_readonly +
4554 space_info->bytes_may_use;
4555 if (can_overcommit(root, space_info, 1024 * 1024,
4556 BTRFS_RESERVE_FLUSH_ALL))
4557 expected = div_factor_fine(space_info->total_bytes, 95);
4558 else
4559 expected = div_factor_fine(space_info->total_bytes, 90);
4561 if (used > expected)
4562 to_reclaim = used - expected;
4563 else
4564 to_reclaim = 0;
4565 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4566 space_info->bytes_reserved);
4567 out:
4568 spin_unlock(&space_info->lock);
4570 return to_reclaim;
4573 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4574 struct btrfs_fs_info *fs_info, u64 used)
4576 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4578 /* If we're just plain full then async reclaim just slows us down. */
4579 if (space_info->bytes_used >= thresh)
4580 return 0;
4582 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4583 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4586 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4587 struct btrfs_fs_info *fs_info,
4588 int flush_state)
4590 u64 used;
4592 spin_lock(&space_info->lock);
4594 * We run out of space and have not got any free space via flush_space,
4595 * so don't bother doing async reclaim.
4597 if (flush_state > COMMIT_TRANS && space_info->full) {
4598 spin_unlock(&space_info->lock);
4599 return 0;
4602 used = space_info->bytes_used + space_info->bytes_reserved +
4603 space_info->bytes_pinned + space_info->bytes_readonly +
4604 space_info->bytes_may_use;
4605 if (need_do_async_reclaim(space_info, fs_info, used)) {
4606 spin_unlock(&space_info->lock);
4607 return 1;
4609 spin_unlock(&space_info->lock);
4611 return 0;
4614 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4616 struct btrfs_fs_info *fs_info;
4617 struct btrfs_space_info *space_info;
4618 u64 to_reclaim;
4619 int flush_state;
4621 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4622 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4624 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4625 space_info);
4626 if (!to_reclaim)
4627 return;
4629 flush_state = FLUSH_DELAYED_ITEMS_NR;
4630 do {
4631 flush_space(fs_info->fs_root, space_info, to_reclaim,
4632 to_reclaim, flush_state);
4633 flush_state++;
4634 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4635 flush_state))
4636 return;
4637 } while (flush_state < COMMIT_TRANS);
4640 void btrfs_init_async_reclaim_work(struct work_struct *work)
4642 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4646 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4647 * @root - the root we're allocating for
4648 * @block_rsv - the block_rsv we're allocating for
4649 * @orig_bytes - the number of bytes we want
4650 * @flush - whether or not we can flush to make our reservation
4652 * This will reserve orgi_bytes number of bytes from the space info associated
4653 * with the block_rsv. If there is not enough space it will make an attempt to
4654 * flush out space to make room. It will do this by flushing delalloc if
4655 * possible or committing the transaction. If flush is 0 then no attempts to
4656 * regain reservations will be made and this will fail if there is not enough
4657 * space already.
4659 static int reserve_metadata_bytes(struct btrfs_root *root,
4660 struct btrfs_block_rsv *block_rsv,
4661 u64 orig_bytes,
4662 enum btrfs_reserve_flush_enum flush)
4664 struct btrfs_space_info *space_info = block_rsv->space_info;
4665 u64 used;
4666 u64 num_bytes = orig_bytes;
4667 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4668 int ret = 0;
4669 bool flushing = false;
4671 again:
4672 ret = 0;
4673 spin_lock(&space_info->lock);
4675 * We only want to wait if somebody other than us is flushing and we
4676 * are actually allowed to flush all things.
4678 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4679 space_info->flush) {
4680 spin_unlock(&space_info->lock);
4682 * If we have a trans handle we can't wait because the flusher
4683 * may have to commit the transaction, which would mean we would
4684 * deadlock since we are waiting for the flusher to finish, but
4685 * hold the current transaction open.
4687 if (current->journal_info)
4688 return -EAGAIN;
4689 ret = wait_event_killable(space_info->wait, !space_info->flush);
4690 /* Must have been killed, return */
4691 if (ret)
4692 return -EINTR;
4694 spin_lock(&space_info->lock);
4697 ret = -ENOSPC;
4698 used = space_info->bytes_used + space_info->bytes_reserved +
4699 space_info->bytes_pinned + space_info->bytes_readonly +
4700 space_info->bytes_may_use;
4703 * The idea here is that we've not already over-reserved the block group
4704 * then we can go ahead and save our reservation first and then start
4705 * flushing if we need to. Otherwise if we've already overcommitted
4706 * lets start flushing stuff first and then come back and try to make
4707 * our reservation.
4709 if (used <= space_info->total_bytes) {
4710 if (used + orig_bytes <= space_info->total_bytes) {
4711 space_info->bytes_may_use += orig_bytes;
4712 trace_btrfs_space_reservation(root->fs_info,
4713 "space_info", space_info->flags, orig_bytes, 1);
4714 ret = 0;
4715 } else {
4717 * Ok set num_bytes to orig_bytes since we aren't
4718 * overocmmitted, this way we only try and reclaim what
4719 * we need.
4721 num_bytes = orig_bytes;
4723 } else {
4725 * Ok we're over committed, set num_bytes to the overcommitted
4726 * amount plus the amount of bytes that we need for this
4727 * reservation.
4729 num_bytes = used - space_info->total_bytes +
4730 (orig_bytes * 2);
4733 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4734 space_info->bytes_may_use += orig_bytes;
4735 trace_btrfs_space_reservation(root->fs_info, "space_info",
4736 space_info->flags, orig_bytes,
4738 ret = 0;
4742 * Couldn't make our reservation, save our place so while we're trying
4743 * to reclaim space we can actually use it instead of somebody else
4744 * stealing it from us.
4746 * We make the other tasks wait for the flush only when we can flush
4747 * all things.
4749 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4750 flushing = true;
4751 space_info->flush = 1;
4752 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4753 used += orig_bytes;
4755 * We will do the space reservation dance during log replay,
4756 * which means we won't have fs_info->fs_root set, so don't do
4757 * the async reclaim as we will panic.
4759 if (!root->fs_info->log_root_recovering &&
4760 need_do_async_reclaim(space_info, root->fs_info, used) &&
4761 !work_busy(&root->fs_info->async_reclaim_work))
4762 queue_work(system_unbound_wq,
4763 &root->fs_info->async_reclaim_work);
4765 spin_unlock(&space_info->lock);
4767 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4768 goto out;
4770 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4771 flush_state);
4772 flush_state++;
4775 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4776 * would happen. So skip delalloc flush.
4778 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4779 (flush_state == FLUSH_DELALLOC ||
4780 flush_state == FLUSH_DELALLOC_WAIT))
4781 flush_state = ALLOC_CHUNK;
4783 if (!ret)
4784 goto again;
4785 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4786 flush_state < COMMIT_TRANS)
4787 goto again;
4788 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4789 flush_state <= COMMIT_TRANS)
4790 goto again;
4792 out:
4793 if (ret == -ENOSPC &&
4794 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4795 struct btrfs_block_rsv *global_rsv =
4796 &root->fs_info->global_block_rsv;
4798 if (block_rsv != global_rsv &&
4799 !block_rsv_use_bytes(global_rsv, orig_bytes))
4800 ret = 0;
4802 if (ret == -ENOSPC)
4803 trace_btrfs_space_reservation(root->fs_info,
4804 "space_info:enospc",
4805 space_info->flags, orig_bytes, 1);
4806 if (flushing) {
4807 spin_lock(&space_info->lock);
4808 space_info->flush = 0;
4809 wake_up_all(&space_info->wait);
4810 spin_unlock(&space_info->lock);
4812 return ret;
4815 static struct btrfs_block_rsv *get_block_rsv(
4816 const struct btrfs_trans_handle *trans,
4817 const struct btrfs_root *root)
4819 struct btrfs_block_rsv *block_rsv = NULL;
4821 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4822 block_rsv = trans->block_rsv;
4824 if (root == root->fs_info->csum_root && trans->adding_csums)
4825 block_rsv = trans->block_rsv;
4827 if (root == root->fs_info->uuid_root)
4828 block_rsv = trans->block_rsv;
4830 if (!block_rsv)
4831 block_rsv = root->block_rsv;
4833 if (!block_rsv)
4834 block_rsv = &root->fs_info->empty_block_rsv;
4836 return block_rsv;
4839 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4840 u64 num_bytes)
4842 int ret = -ENOSPC;
4843 spin_lock(&block_rsv->lock);
4844 if (block_rsv->reserved >= num_bytes) {
4845 block_rsv->reserved -= num_bytes;
4846 if (block_rsv->reserved < block_rsv->size)
4847 block_rsv->full = 0;
4848 ret = 0;
4850 spin_unlock(&block_rsv->lock);
4851 return ret;
4854 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4855 u64 num_bytes, int update_size)
4857 spin_lock(&block_rsv->lock);
4858 block_rsv->reserved += num_bytes;
4859 if (update_size)
4860 block_rsv->size += num_bytes;
4861 else if (block_rsv->reserved >= block_rsv->size)
4862 block_rsv->full = 1;
4863 spin_unlock(&block_rsv->lock);
4866 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4867 struct btrfs_block_rsv *dest, u64 num_bytes,
4868 int min_factor)
4870 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4871 u64 min_bytes;
4873 if (global_rsv->space_info != dest->space_info)
4874 return -ENOSPC;
4876 spin_lock(&global_rsv->lock);
4877 min_bytes = div_factor(global_rsv->size, min_factor);
4878 if (global_rsv->reserved < min_bytes + num_bytes) {
4879 spin_unlock(&global_rsv->lock);
4880 return -ENOSPC;
4882 global_rsv->reserved -= num_bytes;
4883 if (global_rsv->reserved < global_rsv->size)
4884 global_rsv->full = 0;
4885 spin_unlock(&global_rsv->lock);
4887 block_rsv_add_bytes(dest, num_bytes, 1);
4888 return 0;
4891 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4892 struct btrfs_block_rsv *block_rsv,
4893 struct btrfs_block_rsv *dest, u64 num_bytes)
4895 struct btrfs_space_info *space_info = block_rsv->space_info;
4897 spin_lock(&block_rsv->lock);
4898 if (num_bytes == (u64)-1)
4899 num_bytes = block_rsv->size;
4900 block_rsv->size -= num_bytes;
4901 if (block_rsv->reserved >= block_rsv->size) {
4902 num_bytes = block_rsv->reserved - block_rsv->size;
4903 block_rsv->reserved = block_rsv->size;
4904 block_rsv->full = 1;
4905 } else {
4906 num_bytes = 0;
4908 spin_unlock(&block_rsv->lock);
4910 if (num_bytes > 0) {
4911 if (dest) {
4912 spin_lock(&dest->lock);
4913 if (!dest->full) {
4914 u64 bytes_to_add;
4916 bytes_to_add = dest->size - dest->reserved;
4917 bytes_to_add = min(num_bytes, bytes_to_add);
4918 dest->reserved += bytes_to_add;
4919 if (dest->reserved >= dest->size)
4920 dest->full = 1;
4921 num_bytes -= bytes_to_add;
4923 spin_unlock(&dest->lock);
4925 if (num_bytes) {
4926 spin_lock(&space_info->lock);
4927 space_info->bytes_may_use -= num_bytes;
4928 trace_btrfs_space_reservation(fs_info, "space_info",
4929 space_info->flags, num_bytes, 0);
4930 spin_unlock(&space_info->lock);
4935 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4936 struct btrfs_block_rsv *dst, u64 num_bytes)
4938 int ret;
4940 ret = block_rsv_use_bytes(src, num_bytes);
4941 if (ret)
4942 return ret;
4944 block_rsv_add_bytes(dst, num_bytes, 1);
4945 return 0;
4948 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4950 memset(rsv, 0, sizeof(*rsv));
4951 spin_lock_init(&rsv->lock);
4952 rsv->type = type;
4955 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4956 unsigned short type)
4958 struct btrfs_block_rsv *block_rsv;
4959 struct btrfs_fs_info *fs_info = root->fs_info;
4961 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4962 if (!block_rsv)
4963 return NULL;
4965 btrfs_init_block_rsv(block_rsv, type);
4966 block_rsv->space_info = __find_space_info(fs_info,
4967 BTRFS_BLOCK_GROUP_METADATA);
4968 return block_rsv;
4971 void btrfs_free_block_rsv(struct btrfs_root *root,
4972 struct btrfs_block_rsv *rsv)
4974 if (!rsv)
4975 return;
4976 btrfs_block_rsv_release(root, rsv, (u64)-1);
4977 kfree(rsv);
4980 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
4982 kfree(rsv);
4985 int btrfs_block_rsv_add(struct btrfs_root *root,
4986 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4987 enum btrfs_reserve_flush_enum flush)
4989 int ret;
4991 if (num_bytes == 0)
4992 return 0;
4994 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4995 if (!ret) {
4996 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4997 return 0;
5000 return ret;
5003 int btrfs_block_rsv_check(struct btrfs_root *root,
5004 struct btrfs_block_rsv *block_rsv, int min_factor)
5006 u64 num_bytes = 0;
5007 int ret = -ENOSPC;
5009 if (!block_rsv)
5010 return 0;
5012 spin_lock(&block_rsv->lock);
5013 num_bytes = div_factor(block_rsv->size, min_factor);
5014 if (block_rsv->reserved >= num_bytes)
5015 ret = 0;
5016 spin_unlock(&block_rsv->lock);
5018 return ret;
5021 int btrfs_block_rsv_refill(struct btrfs_root *root,
5022 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5023 enum btrfs_reserve_flush_enum flush)
5025 u64 num_bytes = 0;
5026 int ret = -ENOSPC;
5028 if (!block_rsv)
5029 return 0;
5031 spin_lock(&block_rsv->lock);
5032 num_bytes = min_reserved;
5033 if (block_rsv->reserved >= num_bytes)
5034 ret = 0;
5035 else
5036 num_bytes -= block_rsv->reserved;
5037 spin_unlock(&block_rsv->lock);
5039 if (!ret)
5040 return 0;
5042 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5043 if (!ret) {
5044 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5045 return 0;
5048 return ret;
5051 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5052 struct btrfs_block_rsv *dst_rsv,
5053 u64 num_bytes)
5055 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5058 void btrfs_block_rsv_release(struct btrfs_root *root,
5059 struct btrfs_block_rsv *block_rsv,
5060 u64 num_bytes)
5062 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5063 if (global_rsv == block_rsv ||
5064 block_rsv->space_info != global_rsv->space_info)
5065 global_rsv = NULL;
5066 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5067 num_bytes);
5071 * helper to calculate size of global block reservation.
5072 * the desired value is sum of space used by extent tree,
5073 * checksum tree and root tree
5075 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5077 struct btrfs_space_info *sinfo;
5078 u64 num_bytes;
5079 u64 meta_used;
5080 u64 data_used;
5081 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5083 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5084 spin_lock(&sinfo->lock);
5085 data_used = sinfo->bytes_used;
5086 spin_unlock(&sinfo->lock);
5088 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5089 spin_lock(&sinfo->lock);
5090 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5091 data_used = 0;
5092 meta_used = sinfo->bytes_used;
5093 spin_unlock(&sinfo->lock);
5095 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5096 csum_size * 2;
5097 num_bytes += div_u64(data_used + meta_used, 50);
5099 if (num_bytes * 3 > meta_used)
5100 num_bytes = div_u64(meta_used, 3);
5102 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5105 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5107 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5108 struct btrfs_space_info *sinfo = block_rsv->space_info;
5109 u64 num_bytes;
5111 num_bytes = calc_global_metadata_size(fs_info);
5113 spin_lock(&sinfo->lock);
5114 spin_lock(&block_rsv->lock);
5116 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5118 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5119 sinfo->bytes_reserved + sinfo->bytes_readonly +
5120 sinfo->bytes_may_use;
5122 if (sinfo->total_bytes > num_bytes) {
5123 num_bytes = sinfo->total_bytes - num_bytes;
5124 block_rsv->reserved += num_bytes;
5125 sinfo->bytes_may_use += num_bytes;
5126 trace_btrfs_space_reservation(fs_info, "space_info",
5127 sinfo->flags, num_bytes, 1);
5130 if (block_rsv->reserved >= block_rsv->size) {
5131 num_bytes = block_rsv->reserved - block_rsv->size;
5132 sinfo->bytes_may_use -= num_bytes;
5133 trace_btrfs_space_reservation(fs_info, "space_info",
5134 sinfo->flags, num_bytes, 0);
5135 block_rsv->reserved = block_rsv->size;
5136 block_rsv->full = 1;
5139 spin_unlock(&block_rsv->lock);
5140 spin_unlock(&sinfo->lock);
5143 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5145 struct btrfs_space_info *space_info;
5147 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5148 fs_info->chunk_block_rsv.space_info = space_info;
5150 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5151 fs_info->global_block_rsv.space_info = space_info;
5152 fs_info->delalloc_block_rsv.space_info = space_info;
5153 fs_info->trans_block_rsv.space_info = space_info;
5154 fs_info->empty_block_rsv.space_info = space_info;
5155 fs_info->delayed_block_rsv.space_info = space_info;
5157 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5158 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5159 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5160 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5161 if (fs_info->quota_root)
5162 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5163 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5165 update_global_block_rsv(fs_info);
5168 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5170 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5171 (u64)-1);
5172 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5173 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5174 WARN_ON(fs_info->trans_block_rsv.size > 0);
5175 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5176 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5177 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5178 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5179 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5182 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5183 struct btrfs_root *root)
5185 if (!trans->block_rsv)
5186 return;
5188 if (!trans->bytes_reserved)
5189 return;
5191 trace_btrfs_space_reservation(root->fs_info, "transaction",
5192 trans->transid, trans->bytes_reserved, 0);
5193 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5194 trans->bytes_reserved = 0;
5197 /* Can only return 0 or -ENOSPC */
5198 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5199 struct inode *inode)
5201 struct btrfs_root *root = BTRFS_I(inode)->root;
5202 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5203 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5206 * We need to hold space in order to delete our orphan item once we've
5207 * added it, so this takes the reservation so we can release it later
5208 * when we are truly done with the orphan item.
5210 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5211 trace_btrfs_space_reservation(root->fs_info, "orphan",
5212 btrfs_ino(inode), num_bytes, 1);
5213 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5216 void btrfs_orphan_release_metadata(struct inode *inode)
5218 struct btrfs_root *root = BTRFS_I(inode)->root;
5219 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5220 trace_btrfs_space_reservation(root->fs_info, "orphan",
5221 btrfs_ino(inode), num_bytes, 0);
5222 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5226 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5227 * root: the root of the parent directory
5228 * rsv: block reservation
5229 * items: the number of items that we need do reservation
5230 * qgroup_reserved: used to return the reserved size in qgroup
5232 * This function is used to reserve the space for snapshot/subvolume
5233 * creation and deletion. Those operations are different with the
5234 * common file/directory operations, they change two fs/file trees
5235 * and root tree, the number of items that the qgroup reserves is
5236 * different with the free space reservation. So we can not use
5237 * the space reseravtion mechanism in start_transaction().
5239 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5240 struct btrfs_block_rsv *rsv,
5241 int items,
5242 u64 *qgroup_reserved,
5243 bool use_global_rsv)
5245 u64 num_bytes;
5246 int ret;
5247 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5249 if (root->fs_info->quota_enabled) {
5250 /* One for parent inode, two for dir entries */
5251 num_bytes = 3 * root->nodesize;
5252 ret = btrfs_qgroup_reserve(root, num_bytes);
5253 if (ret)
5254 return ret;
5255 } else {
5256 num_bytes = 0;
5259 *qgroup_reserved = num_bytes;
5261 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5262 rsv->space_info = __find_space_info(root->fs_info,
5263 BTRFS_BLOCK_GROUP_METADATA);
5264 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5265 BTRFS_RESERVE_FLUSH_ALL);
5267 if (ret == -ENOSPC && use_global_rsv)
5268 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5270 if (ret) {
5271 if (*qgroup_reserved)
5272 btrfs_qgroup_free(root, *qgroup_reserved);
5275 return ret;
5278 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5279 struct btrfs_block_rsv *rsv,
5280 u64 qgroup_reserved)
5282 btrfs_block_rsv_release(root, rsv, (u64)-1);
5286 * drop_outstanding_extent - drop an outstanding extent
5287 * @inode: the inode we're dropping the extent for
5288 * @num_bytes: the number of bytes we're relaseing.
5290 * This is called when we are freeing up an outstanding extent, either called
5291 * after an error or after an extent is written. This will return the number of
5292 * reserved extents that need to be freed. This must be called with
5293 * BTRFS_I(inode)->lock held.
5295 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5297 unsigned drop_inode_space = 0;
5298 unsigned dropped_extents = 0;
5299 unsigned num_extents = 0;
5301 num_extents = (unsigned)div64_u64(num_bytes +
5302 BTRFS_MAX_EXTENT_SIZE - 1,
5303 BTRFS_MAX_EXTENT_SIZE);
5304 ASSERT(num_extents);
5305 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5306 BTRFS_I(inode)->outstanding_extents -= num_extents;
5308 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5309 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5310 &BTRFS_I(inode)->runtime_flags))
5311 drop_inode_space = 1;
5314 * If we have more or the same amount of outsanding extents than we have
5315 * reserved then we need to leave the reserved extents count alone.
5317 if (BTRFS_I(inode)->outstanding_extents >=
5318 BTRFS_I(inode)->reserved_extents)
5319 return drop_inode_space;
5321 dropped_extents = BTRFS_I(inode)->reserved_extents -
5322 BTRFS_I(inode)->outstanding_extents;
5323 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5324 return dropped_extents + drop_inode_space;
5328 * calc_csum_metadata_size - return the amount of metada space that must be
5329 * reserved/free'd for the given bytes.
5330 * @inode: the inode we're manipulating
5331 * @num_bytes: the number of bytes in question
5332 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5334 * This adjusts the number of csum_bytes in the inode and then returns the
5335 * correct amount of metadata that must either be reserved or freed. We
5336 * calculate how many checksums we can fit into one leaf and then divide the
5337 * number of bytes that will need to be checksumed by this value to figure out
5338 * how many checksums will be required. If we are adding bytes then the number
5339 * may go up and we will return the number of additional bytes that must be
5340 * reserved. If it is going down we will return the number of bytes that must
5341 * be freed.
5343 * This must be called with BTRFS_I(inode)->lock held.
5345 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5346 int reserve)
5348 struct btrfs_root *root = BTRFS_I(inode)->root;
5349 u64 old_csums, num_csums;
5351 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5352 BTRFS_I(inode)->csum_bytes == 0)
5353 return 0;
5355 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5356 if (reserve)
5357 BTRFS_I(inode)->csum_bytes += num_bytes;
5358 else
5359 BTRFS_I(inode)->csum_bytes -= num_bytes;
5360 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5362 /* No change, no need to reserve more */
5363 if (old_csums == num_csums)
5364 return 0;
5366 if (reserve)
5367 return btrfs_calc_trans_metadata_size(root,
5368 num_csums - old_csums);
5370 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5373 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5375 struct btrfs_root *root = BTRFS_I(inode)->root;
5376 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5377 u64 to_reserve = 0;
5378 u64 csum_bytes;
5379 unsigned nr_extents = 0;
5380 int extra_reserve = 0;
5381 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5382 int ret = 0;
5383 bool delalloc_lock = true;
5384 u64 to_free = 0;
5385 unsigned dropped;
5387 /* If we are a free space inode we need to not flush since we will be in
5388 * the middle of a transaction commit. We also don't need the delalloc
5389 * mutex since we won't race with anybody. We need this mostly to make
5390 * lockdep shut its filthy mouth.
5392 if (btrfs_is_free_space_inode(inode)) {
5393 flush = BTRFS_RESERVE_NO_FLUSH;
5394 delalloc_lock = false;
5397 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5398 btrfs_transaction_in_commit(root->fs_info))
5399 schedule_timeout(1);
5401 if (delalloc_lock)
5402 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5404 num_bytes = ALIGN(num_bytes, root->sectorsize);
5406 spin_lock(&BTRFS_I(inode)->lock);
5407 nr_extents = (unsigned)div64_u64(num_bytes +
5408 BTRFS_MAX_EXTENT_SIZE - 1,
5409 BTRFS_MAX_EXTENT_SIZE);
5410 BTRFS_I(inode)->outstanding_extents += nr_extents;
5411 nr_extents = 0;
5413 if (BTRFS_I(inode)->outstanding_extents >
5414 BTRFS_I(inode)->reserved_extents)
5415 nr_extents = BTRFS_I(inode)->outstanding_extents -
5416 BTRFS_I(inode)->reserved_extents;
5419 * Add an item to reserve for updating the inode when we complete the
5420 * delalloc io.
5422 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5423 &BTRFS_I(inode)->runtime_flags)) {
5424 nr_extents++;
5425 extra_reserve = 1;
5428 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5429 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5430 csum_bytes = BTRFS_I(inode)->csum_bytes;
5431 spin_unlock(&BTRFS_I(inode)->lock);
5433 if (root->fs_info->quota_enabled) {
5434 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
5435 if (ret)
5436 goto out_fail;
5439 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5440 if (unlikely(ret)) {
5441 if (root->fs_info->quota_enabled)
5442 btrfs_qgroup_free(root, nr_extents * root->nodesize);
5443 goto out_fail;
5446 spin_lock(&BTRFS_I(inode)->lock);
5447 if (extra_reserve) {
5448 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5449 &BTRFS_I(inode)->runtime_flags);
5450 nr_extents--;
5452 BTRFS_I(inode)->reserved_extents += nr_extents;
5453 spin_unlock(&BTRFS_I(inode)->lock);
5455 if (delalloc_lock)
5456 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5458 if (to_reserve)
5459 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5460 btrfs_ino(inode), to_reserve, 1);
5461 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5463 return 0;
5465 out_fail:
5466 spin_lock(&BTRFS_I(inode)->lock);
5467 dropped = drop_outstanding_extent(inode, num_bytes);
5469 * If the inodes csum_bytes is the same as the original
5470 * csum_bytes then we know we haven't raced with any free()ers
5471 * so we can just reduce our inodes csum bytes and carry on.
5473 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5474 calc_csum_metadata_size(inode, num_bytes, 0);
5475 } else {
5476 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5477 u64 bytes;
5480 * This is tricky, but first we need to figure out how much we
5481 * free'd from any free-ers that occured during this
5482 * reservation, so we reset ->csum_bytes to the csum_bytes
5483 * before we dropped our lock, and then call the free for the
5484 * number of bytes that were freed while we were trying our
5485 * reservation.
5487 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5488 BTRFS_I(inode)->csum_bytes = csum_bytes;
5489 to_free = calc_csum_metadata_size(inode, bytes, 0);
5493 * Now we need to see how much we would have freed had we not
5494 * been making this reservation and our ->csum_bytes were not
5495 * artificially inflated.
5497 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5498 bytes = csum_bytes - orig_csum_bytes;
5499 bytes = calc_csum_metadata_size(inode, bytes, 0);
5502 * Now reset ->csum_bytes to what it should be. If bytes is
5503 * more than to_free then we would have free'd more space had we
5504 * not had an artificially high ->csum_bytes, so we need to free
5505 * the remainder. If bytes is the same or less then we don't
5506 * need to do anything, the other free-ers did the correct
5507 * thing.
5509 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5510 if (bytes > to_free)
5511 to_free = bytes - to_free;
5512 else
5513 to_free = 0;
5515 spin_unlock(&BTRFS_I(inode)->lock);
5516 if (dropped)
5517 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5519 if (to_free) {
5520 btrfs_block_rsv_release(root, block_rsv, to_free);
5521 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5522 btrfs_ino(inode), to_free, 0);
5524 if (delalloc_lock)
5525 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5526 return ret;
5530 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5531 * @inode: the inode to release the reservation for
5532 * @num_bytes: the number of bytes we're releasing
5534 * This will release the metadata reservation for an inode. This can be called
5535 * once we complete IO for a given set of bytes to release their metadata
5536 * reservations.
5538 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5540 struct btrfs_root *root = BTRFS_I(inode)->root;
5541 u64 to_free = 0;
5542 unsigned dropped;
5544 num_bytes = ALIGN(num_bytes, root->sectorsize);
5545 spin_lock(&BTRFS_I(inode)->lock);
5546 dropped = drop_outstanding_extent(inode, num_bytes);
5548 if (num_bytes)
5549 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5550 spin_unlock(&BTRFS_I(inode)->lock);
5551 if (dropped > 0)
5552 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5554 if (btrfs_test_is_dummy_root(root))
5555 return;
5557 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5558 btrfs_ino(inode), to_free, 0);
5560 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5561 to_free);
5565 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5566 * @inode: inode we're writing to
5567 * @num_bytes: the number of bytes we want to allocate
5569 * This will do the following things
5571 * o reserve space in the data space info for num_bytes
5572 * o reserve space in the metadata space info based on number of outstanding
5573 * extents and how much csums will be needed
5574 * o add to the inodes ->delalloc_bytes
5575 * o add it to the fs_info's delalloc inodes list.
5577 * This will return 0 for success and -ENOSPC if there is no space left.
5579 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5581 int ret;
5583 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
5584 if (ret)
5585 return ret;
5587 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5588 if (ret) {
5589 btrfs_free_reserved_data_space(inode, num_bytes);
5590 return ret;
5593 return 0;
5597 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5598 * @inode: inode we're releasing space for
5599 * @num_bytes: the number of bytes we want to free up
5601 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5602 * called in the case that we don't need the metadata AND data reservations
5603 * anymore. So if there is an error or we insert an inline extent.
5605 * This function will release the metadata space that was not used and will
5606 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5607 * list if there are no delalloc bytes left.
5609 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5611 btrfs_delalloc_release_metadata(inode, num_bytes);
5612 btrfs_free_reserved_data_space(inode, num_bytes);
5615 static int update_block_group(struct btrfs_trans_handle *trans,
5616 struct btrfs_root *root, u64 bytenr,
5617 u64 num_bytes, int alloc)
5619 struct btrfs_block_group_cache *cache = NULL;
5620 struct btrfs_fs_info *info = root->fs_info;
5621 u64 total = num_bytes;
5622 u64 old_val;
5623 u64 byte_in_group;
5624 int factor;
5626 /* block accounting for super block */
5627 spin_lock(&info->delalloc_root_lock);
5628 old_val = btrfs_super_bytes_used(info->super_copy);
5629 if (alloc)
5630 old_val += num_bytes;
5631 else
5632 old_val -= num_bytes;
5633 btrfs_set_super_bytes_used(info->super_copy, old_val);
5634 spin_unlock(&info->delalloc_root_lock);
5636 while (total) {
5637 cache = btrfs_lookup_block_group(info, bytenr);
5638 if (!cache)
5639 return -ENOENT;
5640 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5641 BTRFS_BLOCK_GROUP_RAID1 |
5642 BTRFS_BLOCK_GROUP_RAID10))
5643 factor = 2;
5644 else
5645 factor = 1;
5647 * If this block group has free space cache written out, we
5648 * need to make sure to load it if we are removing space. This
5649 * is because we need the unpinning stage to actually add the
5650 * space back to the block group, otherwise we will leak space.
5652 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5653 cache_block_group(cache, 1);
5655 byte_in_group = bytenr - cache->key.objectid;
5656 WARN_ON(byte_in_group > cache->key.offset);
5658 spin_lock(&cache->space_info->lock);
5659 spin_lock(&cache->lock);
5661 if (btrfs_test_opt(root, SPACE_CACHE) &&
5662 cache->disk_cache_state < BTRFS_DC_CLEAR)
5663 cache->disk_cache_state = BTRFS_DC_CLEAR;
5665 old_val = btrfs_block_group_used(&cache->item);
5666 num_bytes = min(total, cache->key.offset - byte_in_group);
5667 if (alloc) {
5668 old_val += num_bytes;
5669 btrfs_set_block_group_used(&cache->item, old_val);
5670 cache->reserved -= num_bytes;
5671 cache->space_info->bytes_reserved -= num_bytes;
5672 cache->space_info->bytes_used += num_bytes;
5673 cache->space_info->disk_used += num_bytes * factor;
5674 spin_unlock(&cache->lock);
5675 spin_unlock(&cache->space_info->lock);
5676 } else {
5677 old_val -= num_bytes;
5678 btrfs_set_block_group_used(&cache->item, old_val);
5679 cache->pinned += num_bytes;
5680 cache->space_info->bytes_pinned += num_bytes;
5681 cache->space_info->bytes_used -= num_bytes;
5682 cache->space_info->disk_used -= num_bytes * factor;
5683 spin_unlock(&cache->lock);
5684 spin_unlock(&cache->space_info->lock);
5686 set_extent_dirty(info->pinned_extents,
5687 bytenr, bytenr + num_bytes - 1,
5688 GFP_NOFS | __GFP_NOFAIL);
5690 * No longer have used bytes in this block group, queue
5691 * it for deletion.
5693 if (old_val == 0) {
5694 spin_lock(&info->unused_bgs_lock);
5695 if (list_empty(&cache->bg_list)) {
5696 btrfs_get_block_group(cache);
5697 list_add_tail(&cache->bg_list,
5698 &info->unused_bgs);
5700 spin_unlock(&info->unused_bgs_lock);
5704 spin_lock(&trans->transaction->dirty_bgs_lock);
5705 if (list_empty(&cache->dirty_list)) {
5706 list_add_tail(&cache->dirty_list,
5707 &trans->transaction->dirty_bgs);
5708 trans->transaction->num_dirty_bgs++;
5709 btrfs_get_block_group(cache);
5711 spin_unlock(&trans->transaction->dirty_bgs_lock);
5713 btrfs_put_block_group(cache);
5714 total -= num_bytes;
5715 bytenr += num_bytes;
5717 return 0;
5720 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5722 struct btrfs_block_group_cache *cache;
5723 u64 bytenr;
5725 spin_lock(&root->fs_info->block_group_cache_lock);
5726 bytenr = root->fs_info->first_logical_byte;
5727 spin_unlock(&root->fs_info->block_group_cache_lock);
5729 if (bytenr < (u64)-1)
5730 return bytenr;
5732 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5733 if (!cache)
5734 return 0;
5736 bytenr = cache->key.objectid;
5737 btrfs_put_block_group(cache);
5739 return bytenr;
5742 static int pin_down_extent(struct btrfs_root *root,
5743 struct btrfs_block_group_cache *cache,
5744 u64 bytenr, u64 num_bytes, int reserved)
5746 spin_lock(&cache->space_info->lock);
5747 spin_lock(&cache->lock);
5748 cache->pinned += num_bytes;
5749 cache->space_info->bytes_pinned += num_bytes;
5750 if (reserved) {
5751 cache->reserved -= num_bytes;
5752 cache->space_info->bytes_reserved -= num_bytes;
5754 spin_unlock(&cache->lock);
5755 spin_unlock(&cache->space_info->lock);
5757 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5758 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5759 if (reserved)
5760 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5761 return 0;
5765 * this function must be called within transaction
5767 int btrfs_pin_extent(struct btrfs_root *root,
5768 u64 bytenr, u64 num_bytes, int reserved)
5770 struct btrfs_block_group_cache *cache;
5772 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5773 BUG_ON(!cache); /* Logic error */
5775 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5777 btrfs_put_block_group(cache);
5778 return 0;
5782 * this function must be called within transaction
5784 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5785 u64 bytenr, u64 num_bytes)
5787 struct btrfs_block_group_cache *cache;
5788 int ret;
5790 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5791 if (!cache)
5792 return -EINVAL;
5795 * pull in the free space cache (if any) so that our pin
5796 * removes the free space from the cache. We have load_only set
5797 * to one because the slow code to read in the free extents does check
5798 * the pinned extents.
5800 cache_block_group(cache, 1);
5802 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5804 /* remove us from the free space cache (if we're there at all) */
5805 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5806 btrfs_put_block_group(cache);
5807 return ret;
5810 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5812 int ret;
5813 struct btrfs_block_group_cache *block_group;
5814 struct btrfs_caching_control *caching_ctl;
5816 block_group = btrfs_lookup_block_group(root->fs_info, start);
5817 if (!block_group)
5818 return -EINVAL;
5820 cache_block_group(block_group, 0);
5821 caching_ctl = get_caching_control(block_group);
5823 if (!caching_ctl) {
5824 /* Logic error */
5825 BUG_ON(!block_group_cache_done(block_group));
5826 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5827 } else {
5828 mutex_lock(&caching_ctl->mutex);
5830 if (start >= caching_ctl->progress) {
5831 ret = add_excluded_extent(root, start, num_bytes);
5832 } else if (start + num_bytes <= caching_ctl->progress) {
5833 ret = btrfs_remove_free_space(block_group,
5834 start, num_bytes);
5835 } else {
5836 num_bytes = caching_ctl->progress - start;
5837 ret = btrfs_remove_free_space(block_group,
5838 start, num_bytes);
5839 if (ret)
5840 goto out_lock;
5842 num_bytes = (start + num_bytes) -
5843 caching_ctl->progress;
5844 start = caching_ctl->progress;
5845 ret = add_excluded_extent(root, start, num_bytes);
5847 out_lock:
5848 mutex_unlock(&caching_ctl->mutex);
5849 put_caching_control(caching_ctl);
5851 btrfs_put_block_group(block_group);
5852 return ret;
5855 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5856 struct extent_buffer *eb)
5858 struct btrfs_file_extent_item *item;
5859 struct btrfs_key key;
5860 int found_type;
5861 int i;
5863 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5864 return 0;
5866 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5867 btrfs_item_key_to_cpu(eb, &key, i);
5868 if (key.type != BTRFS_EXTENT_DATA_KEY)
5869 continue;
5870 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5871 found_type = btrfs_file_extent_type(eb, item);
5872 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5873 continue;
5874 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5875 continue;
5876 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5877 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5878 __exclude_logged_extent(log, key.objectid, key.offset);
5881 return 0;
5885 * btrfs_update_reserved_bytes - update the block_group and space info counters
5886 * @cache: The cache we are manipulating
5887 * @num_bytes: The number of bytes in question
5888 * @reserve: One of the reservation enums
5889 * @delalloc: The blocks are allocated for the delalloc write
5891 * This is called by the allocator when it reserves space, or by somebody who is
5892 * freeing space that was never actually used on disk. For example if you
5893 * reserve some space for a new leaf in transaction A and before transaction A
5894 * commits you free that leaf, you call this with reserve set to 0 in order to
5895 * clear the reservation.
5897 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5898 * ENOSPC accounting. For data we handle the reservation through clearing the
5899 * delalloc bits in the io_tree. We have to do this since we could end up
5900 * allocating less disk space for the amount of data we have reserved in the
5901 * case of compression.
5903 * If this is a reservation and the block group has become read only we cannot
5904 * make the reservation and return -EAGAIN, otherwise this function always
5905 * succeeds.
5907 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5908 u64 num_bytes, int reserve, int delalloc)
5910 struct btrfs_space_info *space_info = cache->space_info;
5911 int ret = 0;
5913 spin_lock(&space_info->lock);
5914 spin_lock(&cache->lock);
5915 if (reserve != RESERVE_FREE) {
5916 if (cache->ro) {
5917 ret = -EAGAIN;
5918 } else {
5919 cache->reserved += num_bytes;
5920 space_info->bytes_reserved += num_bytes;
5921 if (reserve == RESERVE_ALLOC) {
5922 trace_btrfs_space_reservation(cache->fs_info,
5923 "space_info", space_info->flags,
5924 num_bytes, 0);
5925 space_info->bytes_may_use -= num_bytes;
5928 if (delalloc)
5929 cache->delalloc_bytes += num_bytes;
5931 } else {
5932 if (cache->ro)
5933 space_info->bytes_readonly += num_bytes;
5934 cache->reserved -= num_bytes;
5935 space_info->bytes_reserved -= num_bytes;
5937 if (delalloc)
5938 cache->delalloc_bytes -= num_bytes;
5940 spin_unlock(&cache->lock);
5941 spin_unlock(&space_info->lock);
5942 return ret;
5945 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5946 struct btrfs_root *root)
5948 struct btrfs_fs_info *fs_info = root->fs_info;
5949 struct btrfs_caching_control *next;
5950 struct btrfs_caching_control *caching_ctl;
5951 struct btrfs_block_group_cache *cache;
5953 down_write(&fs_info->commit_root_sem);
5955 list_for_each_entry_safe(caching_ctl, next,
5956 &fs_info->caching_block_groups, list) {
5957 cache = caching_ctl->block_group;
5958 if (block_group_cache_done(cache)) {
5959 cache->last_byte_to_unpin = (u64)-1;
5960 list_del_init(&caching_ctl->list);
5961 put_caching_control(caching_ctl);
5962 } else {
5963 cache->last_byte_to_unpin = caching_ctl->progress;
5967 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5968 fs_info->pinned_extents = &fs_info->freed_extents[1];
5969 else
5970 fs_info->pinned_extents = &fs_info->freed_extents[0];
5972 up_write(&fs_info->commit_root_sem);
5974 update_global_block_rsv(fs_info);
5977 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5978 const bool return_free_space)
5980 struct btrfs_fs_info *fs_info = root->fs_info;
5981 struct btrfs_block_group_cache *cache = NULL;
5982 struct btrfs_space_info *space_info;
5983 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5984 u64 len;
5985 bool readonly;
5987 while (start <= end) {
5988 readonly = false;
5989 if (!cache ||
5990 start >= cache->key.objectid + cache->key.offset) {
5991 if (cache)
5992 btrfs_put_block_group(cache);
5993 cache = btrfs_lookup_block_group(fs_info, start);
5994 BUG_ON(!cache); /* Logic error */
5997 len = cache->key.objectid + cache->key.offset - start;
5998 len = min(len, end + 1 - start);
6000 if (start < cache->last_byte_to_unpin) {
6001 len = min(len, cache->last_byte_to_unpin - start);
6002 if (return_free_space)
6003 btrfs_add_free_space(cache, start, len);
6006 start += len;
6007 space_info = cache->space_info;
6009 spin_lock(&space_info->lock);
6010 spin_lock(&cache->lock);
6011 cache->pinned -= len;
6012 space_info->bytes_pinned -= len;
6013 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6014 if (cache->ro) {
6015 space_info->bytes_readonly += len;
6016 readonly = true;
6018 spin_unlock(&cache->lock);
6019 if (!readonly && global_rsv->space_info == space_info) {
6020 spin_lock(&global_rsv->lock);
6021 if (!global_rsv->full) {
6022 len = min(len, global_rsv->size -
6023 global_rsv->reserved);
6024 global_rsv->reserved += len;
6025 space_info->bytes_may_use += len;
6026 if (global_rsv->reserved >= global_rsv->size)
6027 global_rsv->full = 1;
6029 spin_unlock(&global_rsv->lock);
6031 spin_unlock(&space_info->lock);
6034 if (cache)
6035 btrfs_put_block_group(cache);
6036 return 0;
6039 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6040 struct btrfs_root *root)
6042 struct btrfs_fs_info *fs_info = root->fs_info;
6043 struct extent_io_tree *unpin;
6044 u64 start;
6045 u64 end;
6046 int ret;
6048 if (trans->aborted)
6049 return 0;
6051 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6052 unpin = &fs_info->freed_extents[1];
6053 else
6054 unpin = &fs_info->freed_extents[0];
6056 while (1) {
6057 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6058 ret = find_first_extent_bit(unpin, 0, &start, &end,
6059 EXTENT_DIRTY, NULL);
6060 if (ret) {
6061 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6062 break;
6065 if (btrfs_test_opt(root, DISCARD))
6066 ret = btrfs_discard_extent(root, start,
6067 end + 1 - start, NULL);
6069 clear_extent_dirty(unpin, start, end, GFP_NOFS);
6070 unpin_extent_range(root, start, end, true);
6071 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6072 cond_resched();
6075 return 0;
6078 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6079 u64 owner, u64 root_objectid)
6081 struct btrfs_space_info *space_info;
6082 u64 flags;
6084 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6085 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6086 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6087 else
6088 flags = BTRFS_BLOCK_GROUP_METADATA;
6089 } else {
6090 flags = BTRFS_BLOCK_GROUP_DATA;
6093 space_info = __find_space_info(fs_info, flags);
6094 BUG_ON(!space_info); /* Logic bug */
6095 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6099 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6100 struct btrfs_root *root,
6101 u64 bytenr, u64 num_bytes, u64 parent,
6102 u64 root_objectid, u64 owner_objectid,
6103 u64 owner_offset, int refs_to_drop,
6104 struct btrfs_delayed_extent_op *extent_op,
6105 int no_quota)
6107 struct btrfs_key key;
6108 struct btrfs_path *path;
6109 struct btrfs_fs_info *info = root->fs_info;
6110 struct btrfs_root *extent_root = info->extent_root;
6111 struct extent_buffer *leaf;
6112 struct btrfs_extent_item *ei;
6113 struct btrfs_extent_inline_ref *iref;
6114 int ret;
6115 int is_data;
6116 int extent_slot = 0;
6117 int found_extent = 0;
6118 int num_to_del = 1;
6119 u32 item_size;
6120 u64 refs;
6121 int last_ref = 0;
6122 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
6123 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6124 SKINNY_METADATA);
6126 if (!info->quota_enabled || !is_fstree(root_objectid))
6127 no_quota = 1;
6129 path = btrfs_alloc_path();
6130 if (!path)
6131 return -ENOMEM;
6133 path->reada = 1;
6134 path->leave_spinning = 1;
6136 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6137 BUG_ON(!is_data && refs_to_drop != 1);
6139 if (is_data)
6140 skinny_metadata = 0;
6142 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6143 bytenr, num_bytes, parent,
6144 root_objectid, owner_objectid,
6145 owner_offset);
6146 if (ret == 0) {
6147 extent_slot = path->slots[0];
6148 while (extent_slot >= 0) {
6149 btrfs_item_key_to_cpu(path->nodes[0], &key,
6150 extent_slot);
6151 if (key.objectid != bytenr)
6152 break;
6153 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6154 key.offset == num_bytes) {
6155 found_extent = 1;
6156 break;
6158 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6159 key.offset == owner_objectid) {
6160 found_extent = 1;
6161 break;
6163 if (path->slots[0] - extent_slot > 5)
6164 break;
6165 extent_slot--;
6167 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6168 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6169 if (found_extent && item_size < sizeof(*ei))
6170 found_extent = 0;
6171 #endif
6172 if (!found_extent) {
6173 BUG_ON(iref);
6174 ret = remove_extent_backref(trans, extent_root, path,
6175 NULL, refs_to_drop,
6176 is_data, &last_ref);
6177 if (ret) {
6178 btrfs_abort_transaction(trans, extent_root, ret);
6179 goto out;
6181 btrfs_release_path(path);
6182 path->leave_spinning = 1;
6184 key.objectid = bytenr;
6185 key.type = BTRFS_EXTENT_ITEM_KEY;
6186 key.offset = num_bytes;
6188 if (!is_data && skinny_metadata) {
6189 key.type = BTRFS_METADATA_ITEM_KEY;
6190 key.offset = owner_objectid;
6193 ret = btrfs_search_slot(trans, extent_root,
6194 &key, path, -1, 1);
6195 if (ret > 0 && skinny_metadata && path->slots[0]) {
6197 * Couldn't find our skinny metadata item,
6198 * see if we have ye olde extent item.
6200 path->slots[0]--;
6201 btrfs_item_key_to_cpu(path->nodes[0], &key,
6202 path->slots[0]);
6203 if (key.objectid == bytenr &&
6204 key.type == BTRFS_EXTENT_ITEM_KEY &&
6205 key.offset == num_bytes)
6206 ret = 0;
6209 if (ret > 0 && skinny_metadata) {
6210 skinny_metadata = false;
6211 key.objectid = bytenr;
6212 key.type = BTRFS_EXTENT_ITEM_KEY;
6213 key.offset = num_bytes;
6214 btrfs_release_path(path);
6215 ret = btrfs_search_slot(trans, extent_root,
6216 &key, path, -1, 1);
6219 if (ret) {
6220 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6221 ret, bytenr);
6222 if (ret > 0)
6223 btrfs_print_leaf(extent_root,
6224 path->nodes[0]);
6226 if (ret < 0) {
6227 btrfs_abort_transaction(trans, extent_root, ret);
6228 goto out;
6230 extent_slot = path->slots[0];
6232 } else if (WARN_ON(ret == -ENOENT)) {
6233 btrfs_print_leaf(extent_root, path->nodes[0]);
6234 btrfs_err(info,
6235 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6236 bytenr, parent, root_objectid, owner_objectid,
6237 owner_offset);
6238 btrfs_abort_transaction(trans, extent_root, ret);
6239 goto out;
6240 } else {
6241 btrfs_abort_transaction(trans, extent_root, ret);
6242 goto out;
6245 leaf = path->nodes[0];
6246 item_size = btrfs_item_size_nr(leaf, extent_slot);
6247 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6248 if (item_size < sizeof(*ei)) {
6249 BUG_ON(found_extent || extent_slot != path->slots[0]);
6250 ret = convert_extent_item_v0(trans, extent_root, path,
6251 owner_objectid, 0);
6252 if (ret < 0) {
6253 btrfs_abort_transaction(trans, extent_root, ret);
6254 goto out;
6257 btrfs_release_path(path);
6258 path->leave_spinning = 1;
6260 key.objectid = bytenr;
6261 key.type = BTRFS_EXTENT_ITEM_KEY;
6262 key.offset = num_bytes;
6264 ret = btrfs_search_slot(trans, extent_root, &key, path,
6265 -1, 1);
6266 if (ret) {
6267 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6268 ret, bytenr);
6269 btrfs_print_leaf(extent_root, path->nodes[0]);
6271 if (ret < 0) {
6272 btrfs_abort_transaction(trans, extent_root, ret);
6273 goto out;
6276 extent_slot = path->slots[0];
6277 leaf = path->nodes[0];
6278 item_size = btrfs_item_size_nr(leaf, extent_slot);
6280 #endif
6281 BUG_ON(item_size < sizeof(*ei));
6282 ei = btrfs_item_ptr(leaf, extent_slot,
6283 struct btrfs_extent_item);
6284 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6285 key.type == BTRFS_EXTENT_ITEM_KEY) {
6286 struct btrfs_tree_block_info *bi;
6287 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6288 bi = (struct btrfs_tree_block_info *)(ei + 1);
6289 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6292 refs = btrfs_extent_refs(leaf, ei);
6293 if (refs < refs_to_drop) {
6294 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6295 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6296 ret = -EINVAL;
6297 btrfs_abort_transaction(trans, extent_root, ret);
6298 goto out;
6300 refs -= refs_to_drop;
6302 if (refs > 0) {
6303 type = BTRFS_QGROUP_OPER_SUB_SHARED;
6304 if (extent_op)
6305 __run_delayed_extent_op(extent_op, leaf, ei);
6307 * In the case of inline back ref, reference count will
6308 * be updated by remove_extent_backref
6310 if (iref) {
6311 BUG_ON(!found_extent);
6312 } else {
6313 btrfs_set_extent_refs(leaf, ei, refs);
6314 btrfs_mark_buffer_dirty(leaf);
6316 if (found_extent) {
6317 ret = remove_extent_backref(trans, extent_root, path,
6318 iref, refs_to_drop,
6319 is_data, &last_ref);
6320 if (ret) {
6321 btrfs_abort_transaction(trans, extent_root, ret);
6322 goto out;
6325 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6326 root_objectid);
6327 } else {
6328 if (found_extent) {
6329 BUG_ON(is_data && refs_to_drop !=
6330 extent_data_ref_count(root, path, iref));
6331 if (iref) {
6332 BUG_ON(path->slots[0] != extent_slot);
6333 } else {
6334 BUG_ON(path->slots[0] != extent_slot + 1);
6335 path->slots[0] = extent_slot;
6336 num_to_del = 2;
6340 last_ref = 1;
6341 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6342 num_to_del);
6343 if (ret) {
6344 btrfs_abort_transaction(trans, extent_root, ret);
6345 goto out;
6347 btrfs_release_path(path);
6349 if (is_data) {
6350 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6351 if (ret) {
6352 btrfs_abort_transaction(trans, extent_root, ret);
6353 goto out;
6357 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6358 if (ret) {
6359 btrfs_abort_transaction(trans, extent_root, ret);
6360 goto out;
6363 btrfs_release_path(path);
6365 /* Deal with the quota accounting */
6366 if (!ret && last_ref && !no_quota) {
6367 int mod_seq = 0;
6369 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6370 type == BTRFS_QGROUP_OPER_SUB_SHARED)
6371 mod_seq = 1;
6373 ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6374 bytenr, num_bytes, type,
6375 mod_seq);
6377 out:
6378 btrfs_free_path(path);
6379 return ret;
6383 * when we free an block, it is possible (and likely) that we free the last
6384 * delayed ref for that extent as well. This searches the delayed ref tree for
6385 * a given extent, and if there are no other delayed refs to be processed, it
6386 * removes it from the tree.
6388 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6389 struct btrfs_root *root, u64 bytenr)
6391 struct btrfs_delayed_ref_head *head;
6392 struct btrfs_delayed_ref_root *delayed_refs;
6393 int ret = 0;
6395 delayed_refs = &trans->transaction->delayed_refs;
6396 spin_lock(&delayed_refs->lock);
6397 head = btrfs_find_delayed_ref_head(trans, bytenr);
6398 if (!head)
6399 goto out_delayed_unlock;
6401 spin_lock(&head->lock);
6402 if (rb_first(&head->ref_root))
6403 goto out;
6405 if (head->extent_op) {
6406 if (!head->must_insert_reserved)
6407 goto out;
6408 btrfs_free_delayed_extent_op(head->extent_op);
6409 head->extent_op = NULL;
6413 * waiting for the lock here would deadlock. If someone else has it
6414 * locked they are already in the process of dropping it anyway
6416 if (!mutex_trylock(&head->mutex))
6417 goto out;
6420 * at this point we have a head with no other entries. Go
6421 * ahead and process it.
6423 head->node.in_tree = 0;
6424 rb_erase(&head->href_node, &delayed_refs->href_root);
6426 atomic_dec(&delayed_refs->num_entries);
6429 * we don't take a ref on the node because we're removing it from the
6430 * tree, so we just steal the ref the tree was holding.
6432 delayed_refs->num_heads--;
6433 if (head->processing == 0)
6434 delayed_refs->num_heads_ready--;
6435 head->processing = 0;
6436 spin_unlock(&head->lock);
6437 spin_unlock(&delayed_refs->lock);
6439 BUG_ON(head->extent_op);
6440 if (head->must_insert_reserved)
6441 ret = 1;
6443 mutex_unlock(&head->mutex);
6444 btrfs_put_delayed_ref(&head->node);
6445 return ret;
6446 out:
6447 spin_unlock(&head->lock);
6449 out_delayed_unlock:
6450 spin_unlock(&delayed_refs->lock);
6451 return 0;
6454 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6455 struct btrfs_root *root,
6456 struct extent_buffer *buf,
6457 u64 parent, int last_ref)
6459 int pin = 1;
6460 int ret;
6462 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6463 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6464 buf->start, buf->len,
6465 parent, root->root_key.objectid,
6466 btrfs_header_level(buf),
6467 BTRFS_DROP_DELAYED_REF, NULL, 0);
6468 BUG_ON(ret); /* -ENOMEM */
6471 if (!last_ref)
6472 return;
6474 if (btrfs_header_generation(buf) == trans->transid) {
6475 struct btrfs_block_group_cache *cache;
6477 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6478 ret = check_ref_cleanup(trans, root, buf->start);
6479 if (!ret)
6480 goto out;
6483 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6485 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6486 pin_down_extent(root, cache, buf->start, buf->len, 1);
6487 btrfs_put_block_group(cache);
6488 goto out;
6491 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6493 btrfs_add_free_space(cache, buf->start, buf->len);
6494 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6495 btrfs_put_block_group(cache);
6496 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6497 pin = 0;
6499 out:
6500 if (pin)
6501 add_pinned_bytes(root->fs_info, buf->len,
6502 btrfs_header_level(buf),
6503 root->root_key.objectid);
6506 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6507 * anymore.
6509 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6512 /* Can return -ENOMEM */
6513 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6514 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6515 u64 owner, u64 offset, int no_quota)
6517 int ret;
6518 struct btrfs_fs_info *fs_info = root->fs_info;
6520 if (btrfs_test_is_dummy_root(root))
6521 return 0;
6523 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6526 * tree log blocks never actually go into the extent allocation
6527 * tree, just update pinning info and exit early.
6529 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6530 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6531 /* unlocks the pinned mutex */
6532 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6533 ret = 0;
6534 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6535 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6536 num_bytes,
6537 parent, root_objectid, (int)owner,
6538 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6539 } else {
6540 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6541 num_bytes,
6542 parent, root_objectid, owner,
6543 offset, BTRFS_DROP_DELAYED_REF,
6544 NULL, no_quota);
6546 return ret;
6550 * when we wait for progress in the block group caching, its because
6551 * our allocation attempt failed at least once. So, we must sleep
6552 * and let some progress happen before we try again.
6554 * This function will sleep at least once waiting for new free space to
6555 * show up, and then it will check the block group free space numbers
6556 * for our min num_bytes. Another option is to have it go ahead
6557 * and look in the rbtree for a free extent of a given size, but this
6558 * is a good start.
6560 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6561 * any of the information in this block group.
6563 static noinline void
6564 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6565 u64 num_bytes)
6567 struct btrfs_caching_control *caching_ctl;
6569 caching_ctl = get_caching_control(cache);
6570 if (!caching_ctl)
6571 return;
6573 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6574 (cache->free_space_ctl->free_space >= num_bytes));
6576 put_caching_control(caching_ctl);
6579 static noinline int
6580 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6582 struct btrfs_caching_control *caching_ctl;
6583 int ret = 0;
6585 caching_ctl = get_caching_control(cache);
6586 if (!caching_ctl)
6587 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6589 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6590 if (cache->cached == BTRFS_CACHE_ERROR)
6591 ret = -EIO;
6592 put_caching_control(caching_ctl);
6593 return ret;
6596 int __get_raid_index(u64 flags)
6598 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6599 return BTRFS_RAID_RAID10;
6600 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6601 return BTRFS_RAID_RAID1;
6602 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6603 return BTRFS_RAID_DUP;
6604 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6605 return BTRFS_RAID_RAID0;
6606 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6607 return BTRFS_RAID_RAID5;
6608 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6609 return BTRFS_RAID_RAID6;
6611 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6614 int get_block_group_index(struct btrfs_block_group_cache *cache)
6616 return __get_raid_index(cache->flags);
6619 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6620 [BTRFS_RAID_RAID10] = "raid10",
6621 [BTRFS_RAID_RAID1] = "raid1",
6622 [BTRFS_RAID_DUP] = "dup",
6623 [BTRFS_RAID_RAID0] = "raid0",
6624 [BTRFS_RAID_SINGLE] = "single",
6625 [BTRFS_RAID_RAID5] = "raid5",
6626 [BTRFS_RAID_RAID6] = "raid6",
6629 static const char *get_raid_name(enum btrfs_raid_types type)
6631 if (type >= BTRFS_NR_RAID_TYPES)
6632 return NULL;
6634 return btrfs_raid_type_names[type];
6637 enum btrfs_loop_type {
6638 LOOP_CACHING_NOWAIT = 0,
6639 LOOP_CACHING_WAIT = 1,
6640 LOOP_ALLOC_CHUNK = 2,
6641 LOOP_NO_EMPTY_SIZE = 3,
6644 static inline void
6645 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6646 int delalloc)
6648 if (delalloc)
6649 down_read(&cache->data_rwsem);
6652 static inline void
6653 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6654 int delalloc)
6656 btrfs_get_block_group(cache);
6657 if (delalloc)
6658 down_read(&cache->data_rwsem);
6661 static struct btrfs_block_group_cache *
6662 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6663 struct btrfs_free_cluster *cluster,
6664 int delalloc)
6666 struct btrfs_block_group_cache *used_bg;
6667 bool locked = false;
6668 again:
6669 spin_lock(&cluster->refill_lock);
6670 if (locked) {
6671 if (used_bg == cluster->block_group)
6672 return used_bg;
6674 up_read(&used_bg->data_rwsem);
6675 btrfs_put_block_group(used_bg);
6678 used_bg = cluster->block_group;
6679 if (!used_bg)
6680 return NULL;
6682 if (used_bg == block_group)
6683 return used_bg;
6685 btrfs_get_block_group(used_bg);
6687 if (!delalloc)
6688 return used_bg;
6690 if (down_read_trylock(&used_bg->data_rwsem))
6691 return used_bg;
6693 spin_unlock(&cluster->refill_lock);
6694 down_read(&used_bg->data_rwsem);
6695 locked = true;
6696 goto again;
6699 static inline void
6700 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6701 int delalloc)
6703 if (delalloc)
6704 up_read(&cache->data_rwsem);
6705 btrfs_put_block_group(cache);
6709 * walks the btree of allocated extents and find a hole of a given size.
6710 * The key ins is changed to record the hole:
6711 * ins->objectid == start position
6712 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6713 * ins->offset == the size of the hole.
6714 * Any available blocks before search_start are skipped.
6716 * If there is no suitable free space, we will record the max size of
6717 * the free space extent currently.
6719 static noinline int find_free_extent(struct btrfs_root *orig_root,
6720 u64 num_bytes, u64 empty_size,
6721 u64 hint_byte, struct btrfs_key *ins,
6722 u64 flags, int delalloc)
6724 int ret = 0;
6725 struct btrfs_root *root = orig_root->fs_info->extent_root;
6726 struct btrfs_free_cluster *last_ptr = NULL;
6727 struct btrfs_block_group_cache *block_group = NULL;
6728 u64 search_start = 0;
6729 u64 max_extent_size = 0;
6730 int empty_cluster = 2 * 1024 * 1024;
6731 struct btrfs_space_info *space_info;
6732 int loop = 0;
6733 int index = __get_raid_index(flags);
6734 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6735 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6736 bool failed_cluster_refill = false;
6737 bool failed_alloc = false;
6738 bool use_cluster = true;
6739 bool have_caching_bg = false;
6741 WARN_ON(num_bytes < root->sectorsize);
6742 ins->type = BTRFS_EXTENT_ITEM_KEY;
6743 ins->objectid = 0;
6744 ins->offset = 0;
6746 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6748 space_info = __find_space_info(root->fs_info, flags);
6749 if (!space_info) {
6750 btrfs_err(root->fs_info, "No space info for %llu", flags);
6751 return -ENOSPC;
6755 * If the space info is for both data and metadata it means we have a
6756 * small filesystem and we can't use the clustering stuff.
6758 if (btrfs_mixed_space_info(space_info))
6759 use_cluster = false;
6761 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6762 last_ptr = &root->fs_info->meta_alloc_cluster;
6763 if (!btrfs_test_opt(root, SSD))
6764 empty_cluster = 64 * 1024;
6767 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6768 btrfs_test_opt(root, SSD)) {
6769 last_ptr = &root->fs_info->data_alloc_cluster;
6772 if (last_ptr) {
6773 spin_lock(&last_ptr->lock);
6774 if (last_ptr->block_group)
6775 hint_byte = last_ptr->window_start;
6776 spin_unlock(&last_ptr->lock);
6779 search_start = max(search_start, first_logical_byte(root, 0));
6780 search_start = max(search_start, hint_byte);
6782 if (!last_ptr)
6783 empty_cluster = 0;
6785 if (search_start == hint_byte) {
6786 block_group = btrfs_lookup_block_group(root->fs_info,
6787 search_start);
6789 * we don't want to use the block group if it doesn't match our
6790 * allocation bits, or if its not cached.
6792 * However if we are re-searching with an ideal block group
6793 * picked out then we don't care that the block group is cached.
6795 if (block_group && block_group_bits(block_group, flags) &&
6796 block_group->cached != BTRFS_CACHE_NO) {
6797 down_read(&space_info->groups_sem);
6798 if (list_empty(&block_group->list) ||
6799 block_group->ro) {
6801 * someone is removing this block group,
6802 * we can't jump into the have_block_group
6803 * target because our list pointers are not
6804 * valid
6806 btrfs_put_block_group(block_group);
6807 up_read(&space_info->groups_sem);
6808 } else {
6809 index = get_block_group_index(block_group);
6810 btrfs_lock_block_group(block_group, delalloc);
6811 goto have_block_group;
6813 } else if (block_group) {
6814 btrfs_put_block_group(block_group);
6817 search:
6818 have_caching_bg = false;
6819 down_read(&space_info->groups_sem);
6820 list_for_each_entry(block_group, &space_info->block_groups[index],
6821 list) {
6822 u64 offset;
6823 int cached;
6825 btrfs_grab_block_group(block_group, delalloc);
6826 search_start = block_group->key.objectid;
6829 * this can happen if we end up cycling through all the
6830 * raid types, but we want to make sure we only allocate
6831 * for the proper type.
6833 if (!block_group_bits(block_group, flags)) {
6834 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6835 BTRFS_BLOCK_GROUP_RAID1 |
6836 BTRFS_BLOCK_GROUP_RAID5 |
6837 BTRFS_BLOCK_GROUP_RAID6 |
6838 BTRFS_BLOCK_GROUP_RAID10;
6841 * if they asked for extra copies and this block group
6842 * doesn't provide them, bail. This does allow us to
6843 * fill raid0 from raid1.
6845 if ((flags & extra) && !(block_group->flags & extra))
6846 goto loop;
6849 have_block_group:
6850 cached = block_group_cache_done(block_group);
6851 if (unlikely(!cached)) {
6852 ret = cache_block_group(block_group, 0);
6853 BUG_ON(ret < 0);
6854 ret = 0;
6857 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6858 goto loop;
6859 if (unlikely(block_group->ro))
6860 goto loop;
6863 * Ok we want to try and use the cluster allocator, so
6864 * lets look there
6866 if (last_ptr) {
6867 struct btrfs_block_group_cache *used_block_group;
6868 unsigned long aligned_cluster;
6870 * the refill lock keeps out other
6871 * people trying to start a new cluster
6873 used_block_group = btrfs_lock_cluster(block_group,
6874 last_ptr,
6875 delalloc);
6876 if (!used_block_group)
6877 goto refill_cluster;
6879 if (used_block_group != block_group &&
6880 (used_block_group->ro ||
6881 !block_group_bits(used_block_group, flags)))
6882 goto release_cluster;
6884 offset = btrfs_alloc_from_cluster(used_block_group,
6885 last_ptr,
6886 num_bytes,
6887 used_block_group->key.objectid,
6888 &max_extent_size);
6889 if (offset) {
6890 /* we have a block, we're done */
6891 spin_unlock(&last_ptr->refill_lock);
6892 trace_btrfs_reserve_extent_cluster(root,
6893 used_block_group,
6894 search_start, num_bytes);
6895 if (used_block_group != block_group) {
6896 btrfs_release_block_group(block_group,
6897 delalloc);
6898 block_group = used_block_group;
6900 goto checks;
6903 WARN_ON(last_ptr->block_group != used_block_group);
6904 release_cluster:
6905 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6906 * set up a new clusters, so lets just skip it
6907 * and let the allocator find whatever block
6908 * it can find. If we reach this point, we
6909 * will have tried the cluster allocator
6910 * plenty of times and not have found
6911 * anything, so we are likely way too
6912 * fragmented for the clustering stuff to find
6913 * anything.
6915 * However, if the cluster is taken from the
6916 * current block group, release the cluster
6917 * first, so that we stand a better chance of
6918 * succeeding in the unclustered
6919 * allocation. */
6920 if (loop >= LOOP_NO_EMPTY_SIZE &&
6921 used_block_group != block_group) {
6922 spin_unlock(&last_ptr->refill_lock);
6923 btrfs_release_block_group(used_block_group,
6924 delalloc);
6925 goto unclustered_alloc;
6929 * this cluster didn't work out, free it and
6930 * start over
6932 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6934 if (used_block_group != block_group)
6935 btrfs_release_block_group(used_block_group,
6936 delalloc);
6937 refill_cluster:
6938 if (loop >= LOOP_NO_EMPTY_SIZE) {
6939 spin_unlock(&last_ptr->refill_lock);
6940 goto unclustered_alloc;
6943 aligned_cluster = max_t(unsigned long,
6944 empty_cluster + empty_size,
6945 block_group->full_stripe_len);
6947 /* allocate a cluster in this block group */
6948 ret = btrfs_find_space_cluster(root, block_group,
6949 last_ptr, search_start,
6950 num_bytes,
6951 aligned_cluster);
6952 if (ret == 0) {
6954 * now pull our allocation out of this
6955 * cluster
6957 offset = btrfs_alloc_from_cluster(block_group,
6958 last_ptr,
6959 num_bytes,
6960 search_start,
6961 &max_extent_size);
6962 if (offset) {
6963 /* we found one, proceed */
6964 spin_unlock(&last_ptr->refill_lock);
6965 trace_btrfs_reserve_extent_cluster(root,
6966 block_group, search_start,
6967 num_bytes);
6968 goto checks;
6970 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6971 && !failed_cluster_refill) {
6972 spin_unlock(&last_ptr->refill_lock);
6974 failed_cluster_refill = true;
6975 wait_block_group_cache_progress(block_group,
6976 num_bytes + empty_cluster + empty_size);
6977 goto have_block_group;
6981 * at this point we either didn't find a cluster
6982 * or we weren't able to allocate a block from our
6983 * cluster. Free the cluster we've been trying
6984 * to use, and go to the next block group
6986 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6987 spin_unlock(&last_ptr->refill_lock);
6988 goto loop;
6991 unclustered_alloc:
6992 spin_lock(&block_group->free_space_ctl->tree_lock);
6993 if (cached &&
6994 block_group->free_space_ctl->free_space <
6995 num_bytes + empty_cluster + empty_size) {
6996 if (block_group->free_space_ctl->free_space >
6997 max_extent_size)
6998 max_extent_size =
6999 block_group->free_space_ctl->free_space;
7000 spin_unlock(&block_group->free_space_ctl->tree_lock);
7001 goto loop;
7003 spin_unlock(&block_group->free_space_ctl->tree_lock);
7005 offset = btrfs_find_space_for_alloc(block_group, search_start,
7006 num_bytes, empty_size,
7007 &max_extent_size);
7009 * If we didn't find a chunk, and we haven't failed on this
7010 * block group before, and this block group is in the middle of
7011 * caching and we are ok with waiting, then go ahead and wait
7012 * for progress to be made, and set failed_alloc to true.
7014 * If failed_alloc is true then we've already waited on this
7015 * block group once and should move on to the next block group.
7017 if (!offset && !failed_alloc && !cached &&
7018 loop > LOOP_CACHING_NOWAIT) {
7019 wait_block_group_cache_progress(block_group,
7020 num_bytes + empty_size);
7021 failed_alloc = true;
7022 goto have_block_group;
7023 } else if (!offset) {
7024 if (!cached)
7025 have_caching_bg = true;
7026 goto loop;
7028 checks:
7029 search_start = ALIGN(offset, root->stripesize);
7031 /* move on to the next group */
7032 if (search_start + num_bytes >
7033 block_group->key.objectid + block_group->key.offset) {
7034 btrfs_add_free_space(block_group, offset, num_bytes);
7035 goto loop;
7038 if (offset < search_start)
7039 btrfs_add_free_space(block_group, offset,
7040 search_start - offset);
7041 BUG_ON(offset > search_start);
7043 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7044 alloc_type, delalloc);
7045 if (ret == -EAGAIN) {
7046 btrfs_add_free_space(block_group, offset, num_bytes);
7047 goto loop;
7050 /* we are all good, lets return */
7051 ins->objectid = search_start;
7052 ins->offset = num_bytes;
7054 trace_btrfs_reserve_extent(orig_root, block_group,
7055 search_start, num_bytes);
7056 btrfs_release_block_group(block_group, delalloc);
7057 break;
7058 loop:
7059 failed_cluster_refill = false;
7060 failed_alloc = false;
7061 BUG_ON(index != get_block_group_index(block_group));
7062 btrfs_release_block_group(block_group, delalloc);
7064 up_read(&space_info->groups_sem);
7066 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7067 goto search;
7069 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7070 goto search;
7073 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7074 * caching kthreads as we move along
7075 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7076 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7077 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7078 * again
7080 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7081 index = 0;
7082 loop++;
7083 if (loop == LOOP_ALLOC_CHUNK) {
7084 struct btrfs_trans_handle *trans;
7085 int exist = 0;
7087 trans = current->journal_info;
7088 if (trans)
7089 exist = 1;
7090 else
7091 trans = btrfs_join_transaction(root);
7093 if (IS_ERR(trans)) {
7094 ret = PTR_ERR(trans);
7095 goto out;
7098 ret = do_chunk_alloc(trans, root, flags,
7099 CHUNK_ALLOC_FORCE);
7101 * Do not bail out on ENOSPC since we
7102 * can do more things.
7104 if (ret < 0 && ret != -ENOSPC)
7105 btrfs_abort_transaction(trans,
7106 root, ret);
7107 else
7108 ret = 0;
7109 if (!exist)
7110 btrfs_end_transaction(trans, root);
7111 if (ret)
7112 goto out;
7115 if (loop == LOOP_NO_EMPTY_SIZE) {
7116 empty_size = 0;
7117 empty_cluster = 0;
7120 goto search;
7121 } else if (!ins->objectid) {
7122 ret = -ENOSPC;
7123 } else if (ins->objectid) {
7124 ret = 0;
7126 out:
7127 if (ret == -ENOSPC)
7128 ins->offset = max_extent_size;
7129 return ret;
7132 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7133 int dump_block_groups)
7135 struct btrfs_block_group_cache *cache;
7136 int index = 0;
7138 spin_lock(&info->lock);
7139 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7140 info->flags,
7141 info->total_bytes - info->bytes_used - info->bytes_pinned -
7142 info->bytes_reserved - info->bytes_readonly,
7143 (info->full) ? "" : "not ");
7144 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7145 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7146 info->total_bytes, info->bytes_used, info->bytes_pinned,
7147 info->bytes_reserved, info->bytes_may_use,
7148 info->bytes_readonly);
7149 spin_unlock(&info->lock);
7151 if (!dump_block_groups)
7152 return;
7154 down_read(&info->groups_sem);
7155 again:
7156 list_for_each_entry(cache, &info->block_groups[index], list) {
7157 spin_lock(&cache->lock);
7158 printk(KERN_INFO "BTRFS: "
7159 "block group %llu has %llu bytes, "
7160 "%llu used %llu pinned %llu reserved %s\n",
7161 cache->key.objectid, cache->key.offset,
7162 btrfs_block_group_used(&cache->item), cache->pinned,
7163 cache->reserved, cache->ro ? "[readonly]" : "");
7164 btrfs_dump_free_space(cache, bytes);
7165 spin_unlock(&cache->lock);
7167 if (++index < BTRFS_NR_RAID_TYPES)
7168 goto again;
7169 up_read(&info->groups_sem);
7172 int btrfs_reserve_extent(struct btrfs_root *root,
7173 u64 num_bytes, u64 min_alloc_size,
7174 u64 empty_size, u64 hint_byte,
7175 struct btrfs_key *ins, int is_data, int delalloc)
7177 bool final_tried = false;
7178 u64 flags;
7179 int ret;
7181 flags = btrfs_get_alloc_profile(root, is_data);
7182 again:
7183 WARN_ON(num_bytes < root->sectorsize);
7184 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7185 flags, delalloc);
7187 if (ret == -ENOSPC) {
7188 if (!final_tried && ins->offset) {
7189 num_bytes = min(num_bytes >> 1, ins->offset);
7190 num_bytes = round_down(num_bytes, root->sectorsize);
7191 num_bytes = max(num_bytes, min_alloc_size);
7192 if (num_bytes == min_alloc_size)
7193 final_tried = true;
7194 goto again;
7195 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7196 struct btrfs_space_info *sinfo;
7198 sinfo = __find_space_info(root->fs_info, flags);
7199 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7200 flags, num_bytes);
7201 if (sinfo)
7202 dump_space_info(sinfo, num_bytes, 1);
7206 return ret;
7209 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7210 u64 start, u64 len,
7211 int pin, int delalloc)
7213 struct btrfs_block_group_cache *cache;
7214 int ret = 0;
7216 cache = btrfs_lookup_block_group(root->fs_info, start);
7217 if (!cache) {
7218 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7219 start);
7220 return -ENOSPC;
7223 if (pin)
7224 pin_down_extent(root, cache, start, len, 1);
7225 else {
7226 if (btrfs_test_opt(root, DISCARD))
7227 ret = btrfs_discard_extent(root, start, len, NULL);
7228 btrfs_add_free_space(cache, start, len);
7229 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7232 btrfs_put_block_group(cache);
7234 trace_btrfs_reserved_extent_free(root, start, len);
7236 return ret;
7239 int btrfs_free_reserved_extent(struct btrfs_root *root,
7240 u64 start, u64 len, int delalloc)
7242 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7245 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7246 u64 start, u64 len)
7248 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7251 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7252 struct btrfs_root *root,
7253 u64 parent, u64 root_objectid,
7254 u64 flags, u64 owner, u64 offset,
7255 struct btrfs_key *ins, int ref_mod)
7257 int ret;
7258 struct btrfs_fs_info *fs_info = root->fs_info;
7259 struct btrfs_extent_item *extent_item;
7260 struct btrfs_extent_inline_ref *iref;
7261 struct btrfs_path *path;
7262 struct extent_buffer *leaf;
7263 int type;
7264 u32 size;
7266 if (parent > 0)
7267 type = BTRFS_SHARED_DATA_REF_KEY;
7268 else
7269 type = BTRFS_EXTENT_DATA_REF_KEY;
7271 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7273 path = btrfs_alloc_path();
7274 if (!path)
7275 return -ENOMEM;
7277 path->leave_spinning = 1;
7278 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7279 ins, size);
7280 if (ret) {
7281 btrfs_free_path(path);
7282 return ret;
7285 leaf = path->nodes[0];
7286 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7287 struct btrfs_extent_item);
7288 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7289 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7290 btrfs_set_extent_flags(leaf, extent_item,
7291 flags | BTRFS_EXTENT_FLAG_DATA);
7293 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7294 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7295 if (parent > 0) {
7296 struct btrfs_shared_data_ref *ref;
7297 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7298 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7299 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7300 } else {
7301 struct btrfs_extent_data_ref *ref;
7302 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7303 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7304 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7305 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7306 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7309 btrfs_mark_buffer_dirty(path->nodes[0]);
7310 btrfs_free_path(path);
7312 /* Always set parent to 0 here since its exclusive anyway. */
7313 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7314 ins->objectid, ins->offset,
7315 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7316 if (ret)
7317 return ret;
7319 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7320 if (ret) { /* -ENOENT, logic error */
7321 btrfs_err(fs_info, "update block group failed for %llu %llu",
7322 ins->objectid, ins->offset);
7323 BUG();
7325 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7326 return ret;
7329 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7330 struct btrfs_root *root,
7331 u64 parent, u64 root_objectid,
7332 u64 flags, struct btrfs_disk_key *key,
7333 int level, struct btrfs_key *ins,
7334 int no_quota)
7336 int ret;
7337 struct btrfs_fs_info *fs_info = root->fs_info;
7338 struct btrfs_extent_item *extent_item;
7339 struct btrfs_tree_block_info *block_info;
7340 struct btrfs_extent_inline_ref *iref;
7341 struct btrfs_path *path;
7342 struct extent_buffer *leaf;
7343 u32 size = sizeof(*extent_item) + sizeof(*iref);
7344 u64 num_bytes = ins->offset;
7345 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7346 SKINNY_METADATA);
7348 if (!skinny_metadata)
7349 size += sizeof(*block_info);
7351 path = btrfs_alloc_path();
7352 if (!path) {
7353 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7354 root->nodesize);
7355 return -ENOMEM;
7358 path->leave_spinning = 1;
7359 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7360 ins, size);
7361 if (ret) {
7362 btrfs_free_path(path);
7363 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7364 root->nodesize);
7365 return ret;
7368 leaf = path->nodes[0];
7369 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7370 struct btrfs_extent_item);
7371 btrfs_set_extent_refs(leaf, extent_item, 1);
7372 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7373 btrfs_set_extent_flags(leaf, extent_item,
7374 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7376 if (skinny_metadata) {
7377 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7378 num_bytes = root->nodesize;
7379 } else {
7380 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7381 btrfs_set_tree_block_key(leaf, block_info, key);
7382 btrfs_set_tree_block_level(leaf, block_info, level);
7383 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7386 if (parent > 0) {
7387 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7388 btrfs_set_extent_inline_ref_type(leaf, iref,
7389 BTRFS_SHARED_BLOCK_REF_KEY);
7390 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7391 } else {
7392 btrfs_set_extent_inline_ref_type(leaf, iref,
7393 BTRFS_TREE_BLOCK_REF_KEY);
7394 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7397 btrfs_mark_buffer_dirty(leaf);
7398 btrfs_free_path(path);
7400 if (!no_quota) {
7401 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7402 ins->objectid, num_bytes,
7403 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7404 if (ret)
7405 return ret;
7408 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7410 if (ret) { /* -ENOENT, logic error */
7411 btrfs_err(fs_info, "update block group failed for %llu %llu",
7412 ins->objectid, ins->offset);
7413 BUG();
7416 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7417 return ret;
7420 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7421 struct btrfs_root *root,
7422 u64 root_objectid, u64 owner,
7423 u64 offset, struct btrfs_key *ins)
7425 int ret;
7427 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7429 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7430 ins->offset, 0,
7431 root_objectid, owner, offset,
7432 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7433 return ret;
7437 * this is used by the tree logging recovery code. It records that
7438 * an extent has been allocated and makes sure to clear the free
7439 * space cache bits as well
7441 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7442 struct btrfs_root *root,
7443 u64 root_objectid, u64 owner, u64 offset,
7444 struct btrfs_key *ins)
7446 int ret;
7447 struct btrfs_block_group_cache *block_group;
7450 * Mixed block groups will exclude before processing the log so we only
7451 * need to do the exlude dance if this fs isn't mixed.
7453 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7454 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7455 if (ret)
7456 return ret;
7459 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7460 if (!block_group)
7461 return -EINVAL;
7463 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7464 RESERVE_ALLOC_NO_ACCOUNT, 0);
7465 BUG_ON(ret); /* logic error */
7466 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7467 0, owner, offset, ins, 1);
7468 btrfs_put_block_group(block_group);
7469 return ret;
7472 static struct extent_buffer *
7473 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7474 u64 bytenr, int level)
7476 struct extent_buffer *buf;
7478 buf = btrfs_find_create_tree_block(root, bytenr);
7479 if (!buf)
7480 return ERR_PTR(-ENOMEM);
7481 btrfs_set_header_generation(buf, trans->transid);
7482 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7483 btrfs_tree_lock(buf);
7484 clean_tree_block(trans, root->fs_info, buf);
7485 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7487 btrfs_set_lock_blocking(buf);
7488 btrfs_set_buffer_uptodate(buf);
7490 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7491 buf->log_index = root->log_transid % 2;
7493 * we allow two log transactions at a time, use different
7494 * EXENT bit to differentiate dirty pages.
7496 if (buf->log_index == 0)
7497 set_extent_dirty(&root->dirty_log_pages, buf->start,
7498 buf->start + buf->len - 1, GFP_NOFS);
7499 else
7500 set_extent_new(&root->dirty_log_pages, buf->start,
7501 buf->start + buf->len - 1, GFP_NOFS);
7502 } else {
7503 buf->log_index = -1;
7504 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7505 buf->start + buf->len - 1, GFP_NOFS);
7507 trans->dirty = true;
7508 /* this returns a buffer locked for blocking */
7509 return buf;
7512 static struct btrfs_block_rsv *
7513 use_block_rsv(struct btrfs_trans_handle *trans,
7514 struct btrfs_root *root, u32 blocksize)
7516 struct btrfs_block_rsv *block_rsv;
7517 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7518 int ret;
7519 bool global_updated = false;
7521 block_rsv = get_block_rsv(trans, root);
7523 if (unlikely(block_rsv->size == 0))
7524 goto try_reserve;
7525 again:
7526 ret = block_rsv_use_bytes(block_rsv, blocksize);
7527 if (!ret)
7528 return block_rsv;
7530 if (block_rsv->failfast)
7531 return ERR_PTR(ret);
7533 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7534 global_updated = true;
7535 update_global_block_rsv(root->fs_info);
7536 goto again;
7539 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7540 static DEFINE_RATELIMIT_STATE(_rs,
7541 DEFAULT_RATELIMIT_INTERVAL * 10,
7542 /*DEFAULT_RATELIMIT_BURST*/ 1);
7543 if (__ratelimit(&_rs))
7544 WARN(1, KERN_DEBUG
7545 "BTRFS: block rsv returned %d\n", ret);
7547 try_reserve:
7548 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7549 BTRFS_RESERVE_NO_FLUSH);
7550 if (!ret)
7551 return block_rsv;
7553 * If we couldn't reserve metadata bytes try and use some from
7554 * the global reserve if its space type is the same as the global
7555 * reservation.
7557 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7558 block_rsv->space_info == global_rsv->space_info) {
7559 ret = block_rsv_use_bytes(global_rsv, blocksize);
7560 if (!ret)
7561 return global_rsv;
7563 return ERR_PTR(ret);
7566 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7567 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7569 block_rsv_add_bytes(block_rsv, blocksize, 0);
7570 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7574 * finds a free extent and does all the dirty work required for allocation
7575 * returns the key for the extent through ins, and a tree buffer for
7576 * the first block of the extent through buf.
7578 * returns the tree buffer or an ERR_PTR on error.
7580 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7581 struct btrfs_root *root,
7582 u64 parent, u64 root_objectid,
7583 struct btrfs_disk_key *key, int level,
7584 u64 hint, u64 empty_size)
7586 struct btrfs_key ins;
7587 struct btrfs_block_rsv *block_rsv;
7588 struct extent_buffer *buf;
7589 struct btrfs_delayed_extent_op *extent_op;
7590 u64 flags = 0;
7591 int ret;
7592 u32 blocksize = root->nodesize;
7593 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7594 SKINNY_METADATA);
7596 if (btrfs_test_is_dummy_root(root)) {
7597 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7598 level);
7599 if (!IS_ERR(buf))
7600 root->alloc_bytenr += blocksize;
7601 return buf;
7604 block_rsv = use_block_rsv(trans, root, blocksize);
7605 if (IS_ERR(block_rsv))
7606 return ERR_CAST(block_rsv);
7608 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7609 empty_size, hint, &ins, 0, 0);
7610 if (ret)
7611 goto out_unuse;
7613 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7614 if (IS_ERR(buf)) {
7615 ret = PTR_ERR(buf);
7616 goto out_free_reserved;
7619 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7620 if (parent == 0)
7621 parent = ins.objectid;
7622 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7623 } else
7624 BUG_ON(parent > 0);
7626 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7627 extent_op = btrfs_alloc_delayed_extent_op();
7628 if (!extent_op) {
7629 ret = -ENOMEM;
7630 goto out_free_buf;
7632 if (key)
7633 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7634 else
7635 memset(&extent_op->key, 0, sizeof(extent_op->key));
7636 extent_op->flags_to_set = flags;
7637 if (skinny_metadata)
7638 extent_op->update_key = 0;
7639 else
7640 extent_op->update_key = 1;
7641 extent_op->update_flags = 1;
7642 extent_op->is_data = 0;
7643 extent_op->level = level;
7645 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7646 ins.objectid, ins.offset,
7647 parent, root_objectid, level,
7648 BTRFS_ADD_DELAYED_EXTENT,
7649 extent_op, 0);
7650 if (ret)
7651 goto out_free_delayed;
7653 return buf;
7655 out_free_delayed:
7656 btrfs_free_delayed_extent_op(extent_op);
7657 out_free_buf:
7658 free_extent_buffer(buf);
7659 out_free_reserved:
7660 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7661 out_unuse:
7662 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7663 return ERR_PTR(ret);
7666 struct walk_control {
7667 u64 refs[BTRFS_MAX_LEVEL];
7668 u64 flags[BTRFS_MAX_LEVEL];
7669 struct btrfs_key update_progress;
7670 int stage;
7671 int level;
7672 int shared_level;
7673 int update_ref;
7674 int keep_locks;
7675 int reada_slot;
7676 int reada_count;
7677 int for_reloc;
7680 #define DROP_REFERENCE 1
7681 #define UPDATE_BACKREF 2
7683 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7684 struct btrfs_root *root,
7685 struct walk_control *wc,
7686 struct btrfs_path *path)
7688 u64 bytenr;
7689 u64 generation;
7690 u64 refs;
7691 u64 flags;
7692 u32 nritems;
7693 u32 blocksize;
7694 struct btrfs_key key;
7695 struct extent_buffer *eb;
7696 int ret;
7697 int slot;
7698 int nread = 0;
7700 if (path->slots[wc->level] < wc->reada_slot) {
7701 wc->reada_count = wc->reada_count * 2 / 3;
7702 wc->reada_count = max(wc->reada_count, 2);
7703 } else {
7704 wc->reada_count = wc->reada_count * 3 / 2;
7705 wc->reada_count = min_t(int, wc->reada_count,
7706 BTRFS_NODEPTRS_PER_BLOCK(root));
7709 eb = path->nodes[wc->level];
7710 nritems = btrfs_header_nritems(eb);
7711 blocksize = root->nodesize;
7713 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7714 if (nread >= wc->reada_count)
7715 break;
7717 cond_resched();
7718 bytenr = btrfs_node_blockptr(eb, slot);
7719 generation = btrfs_node_ptr_generation(eb, slot);
7721 if (slot == path->slots[wc->level])
7722 goto reada;
7724 if (wc->stage == UPDATE_BACKREF &&
7725 generation <= root->root_key.offset)
7726 continue;
7728 /* We don't lock the tree block, it's OK to be racy here */
7729 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7730 wc->level - 1, 1, &refs,
7731 &flags);
7732 /* We don't care about errors in readahead. */
7733 if (ret < 0)
7734 continue;
7735 BUG_ON(refs == 0);
7737 if (wc->stage == DROP_REFERENCE) {
7738 if (refs == 1)
7739 goto reada;
7741 if (wc->level == 1 &&
7742 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7743 continue;
7744 if (!wc->update_ref ||
7745 generation <= root->root_key.offset)
7746 continue;
7747 btrfs_node_key_to_cpu(eb, &key, slot);
7748 ret = btrfs_comp_cpu_keys(&key,
7749 &wc->update_progress);
7750 if (ret < 0)
7751 continue;
7752 } else {
7753 if (wc->level == 1 &&
7754 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7755 continue;
7757 reada:
7758 readahead_tree_block(root, bytenr);
7759 nread++;
7761 wc->reada_slot = slot;
7764 static int account_leaf_items(struct btrfs_trans_handle *trans,
7765 struct btrfs_root *root,
7766 struct extent_buffer *eb)
7768 int nr = btrfs_header_nritems(eb);
7769 int i, extent_type, ret;
7770 struct btrfs_key key;
7771 struct btrfs_file_extent_item *fi;
7772 u64 bytenr, num_bytes;
7774 for (i = 0; i < nr; i++) {
7775 btrfs_item_key_to_cpu(eb, &key, i);
7777 if (key.type != BTRFS_EXTENT_DATA_KEY)
7778 continue;
7780 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7781 /* filter out non qgroup-accountable extents */
7782 extent_type = btrfs_file_extent_type(eb, fi);
7784 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7785 continue;
7787 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7788 if (!bytenr)
7789 continue;
7791 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7793 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7794 root->objectid,
7795 bytenr, num_bytes,
7796 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7797 if (ret)
7798 return ret;
7800 return 0;
7804 * Walk up the tree from the bottom, freeing leaves and any interior
7805 * nodes which have had all slots visited. If a node (leaf or
7806 * interior) is freed, the node above it will have it's slot
7807 * incremented. The root node will never be freed.
7809 * At the end of this function, we should have a path which has all
7810 * slots incremented to the next position for a search. If we need to
7811 * read a new node it will be NULL and the node above it will have the
7812 * correct slot selected for a later read.
7814 * If we increment the root nodes slot counter past the number of
7815 * elements, 1 is returned to signal completion of the search.
7817 static int adjust_slots_upwards(struct btrfs_root *root,
7818 struct btrfs_path *path, int root_level)
7820 int level = 0;
7821 int nr, slot;
7822 struct extent_buffer *eb;
7824 if (root_level == 0)
7825 return 1;
7827 while (level <= root_level) {
7828 eb = path->nodes[level];
7829 nr = btrfs_header_nritems(eb);
7830 path->slots[level]++;
7831 slot = path->slots[level];
7832 if (slot >= nr || level == 0) {
7834 * Don't free the root - we will detect this
7835 * condition after our loop and return a
7836 * positive value for caller to stop walking the tree.
7838 if (level != root_level) {
7839 btrfs_tree_unlock_rw(eb, path->locks[level]);
7840 path->locks[level] = 0;
7842 free_extent_buffer(eb);
7843 path->nodes[level] = NULL;
7844 path->slots[level] = 0;
7846 } else {
7848 * We have a valid slot to walk back down
7849 * from. Stop here so caller can process these
7850 * new nodes.
7852 break;
7855 level++;
7858 eb = path->nodes[root_level];
7859 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7860 return 1;
7862 return 0;
7866 * root_eb is the subtree root and is locked before this function is called.
7868 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7869 struct btrfs_root *root,
7870 struct extent_buffer *root_eb,
7871 u64 root_gen,
7872 int root_level)
7874 int ret = 0;
7875 int level;
7876 struct extent_buffer *eb = root_eb;
7877 struct btrfs_path *path = NULL;
7879 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7880 BUG_ON(root_eb == NULL);
7882 if (!root->fs_info->quota_enabled)
7883 return 0;
7885 if (!extent_buffer_uptodate(root_eb)) {
7886 ret = btrfs_read_buffer(root_eb, root_gen);
7887 if (ret)
7888 goto out;
7891 if (root_level == 0) {
7892 ret = account_leaf_items(trans, root, root_eb);
7893 goto out;
7896 path = btrfs_alloc_path();
7897 if (!path)
7898 return -ENOMEM;
7901 * Walk down the tree. Missing extent blocks are filled in as
7902 * we go. Metadata is accounted every time we read a new
7903 * extent block.
7905 * When we reach a leaf, we account for file extent items in it,
7906 * walk back up the tree (adjusting slot pointers as we go)
7907 * and restart the search process.
7909 extent_buffer_get(root_eb); /* For path */
7910 path->nodes[root_level] = root_eb;
7911 path->slots[root_level] = 0;
7912 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7913 walk_down:
7914 level = root_level;
7915 while (level >= 0) {
7916 if (path->nodes[level] == NULL) {
7917 int parent_slot;
7918 u64 child_gen;
7919 u64 child_bytenr;
7921 /* We need to get child blockptr/gen from
7922 * parent before we can read it. */
7923 eb = path->nodes[level + 1];
7924 parent_slot = path->slots[level + 1];
7925 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7926 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7928 eb = read_tree_block(root, child_bytenr, child_gen);
7929 if (!eb || !extent_buffer_uptodate(eb)) {
7930 ret = -EIO;
7931 goto out;
7934 path->nodes[level] = eb;
7935 path->slots[level] = 0;
7937 btrfs_tree_read_lock(eb);
7938 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7939 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7941 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7942 root->objectid,
7943 child_bytenr,
7944 root->nodesize,
7945 BTRFS_QGROUP_OPER_SUB_SUBTREE,
7947 if (ret)
7948 goto out;
7952 if (level == 0) {
7953 ret = account_leaf_items(trans, root, path->nodes[level]);
7954 if (ret)
7955 goto out;
7957 /* Nonzero return here means we completed our search */
7958 ret = adjust_slots_upwards(root, path, root_level);
7959 if (ret)
7960 break;
7962 /* Restart search with new slots */
7963 goto walk_down;
7966 level--;
7969 ret = 0;
7970 out:
7971 btrfs_free_path(path);
7973 return ret;
7977 * helper to process tree block while walking down the tree.
7979 * when wc->stage == UPDATE_BACKREF, this function updates
7980 * back refs for pointers in the block.
7982 * NOTE: return value 1 means we should stop walking down.
7984 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7985 struct btrfs_root *root,
7986 struct btrfs_path *path,
7987 struct walk_control *wc, int lookup_info)
7989 int level = wc->level;
7990 struct extent_buffer *eb = path->nodes[level];
7991 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7992 int ret;
7994 if (wc->stage == UPDATE_BACKREF &&
7995 btrfs_header_owner(eb) != root->root_key.objectid)
7996 return 1;
7999 * when reference count of tree block is 1, it won't increase
8000 * again. once full backref flag is set, we never clear it.
8002 if (lookup_info &&
8003 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8004 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8005 BUG_ON(!path->locks[level]);
8006 ret = btrfs_lookup_extent_info(trans, root,
8007 eb->start, level, 1,
8008 &wc->refs[level],
8009 &wc->flags[level]);
8010 BUG_ON(ret == -ENOMEM);
8011 if (ret)
8012 return ret;
8013 BUG_ON(wc->refs[level] == 0);
8016 if (wc->stage == DROP_REFERENCE) {
8017 if (wc->refs[level] > 1)
8018 return 1;
8020 if (path->locks[level] && !wc->keep_locks) {
8021 btrfs_tree_unlock_rw(eb, path->locks[level]);
8022 path->locks[level] = 0;
8024 return 0;
8027 /* wc->stage == UPDATE_BACKREF */
8028 if (!(wc->flags[level] & flag)) {
8029 BUG_ON(!path->locks[level]);
8030 ret = btrfs_inc_ref(trans, root, eb, 1);
8031 BUG_ON(ret); /* -ENOMEM */
8032 ret = btrfs_dec_ref(trans, root, eb, 0);
8033 BUG_ON(ret); /* -ENOMEM */
8034 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8035 eb->len, flag,
8036 btrfs_header_level(eb), 0);
8037 BUG_ON(ret); /* -ENOMEM */
8038 wc->flags[level] |= flag;
8042 * the block is shared by multiple trees, so it's not good to
8043 * keep the tree lock
8045 if (path->locks[level] && level > 0) {
8046 btrfs_tree_unlock_rw(eb, path->locks[level]);
8047 path->locks[level] = 0;
8049 return 0;
8053 * helper to process tree block pointer.
8055 * when wc->stage == DROP_REFERENCE, this function checks
8056 * reference count of the block pointed to. if the block
8057 * is shared and we need update back refs for the subtree
8058 * rooted at the block, this function changes wc->stage to
8059 * UPDATE_BACKREF. if the block is shared and there is no
8060 * need to update back, this function drops the reference
8061 * to the block.
8063 * NOTE: return value 1 means we should stop walking down.
8065 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8066 struct btrfs_root *root,
8067 struct btrfs_path *path,
8068 struct walk_control *wc, int *lookup_info)
8070 u64 bytenr;
8071 u64 generation;
8072 u64 parent;
8073 u32 blocksize;
8074 struct btrfs_key key;
8075 struct extent_buffer *next;
8076 int level = wc->level;
8077 int reada = 0;
8078 int ret = 0;
8079 bool need_account = false;
8081 generation = btrfs_node_ptr_generation(path->nodes[level],
8082 path->slots[level]);
8084 * if the lower level block was created before the snapshot
8085 * was created, we know there is no need to update back refs
8086 * for the subtree
8088 if (wc->stage == UPDATE_BACKREF &&
8089 generation <= root->root_key.offset) {
8090 *lookup_info = 1;
8091 return 1;
8094 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8095 blocksize = root->nodesize;
8097 next = btrfs_find_tree_block(root->fs_info, bytenr);
8098 if (!next) {
8099 next = btrfs_find_create_tree_block(root, bytenr);
8100 if (!next)
8101 return -ENOMEM;
8102 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8103 level - 1);
8104 reada = 1;
8106 btrfs_tree_lock(next);
8107 btrfs_set_lock_blocking(next);
8109 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8110 &wc->refs[level - 1],
8111 &wc->flags[level - 1]);
8112 if (ret < 0) {
8113 btrfs_tree_unlock(next);
8114 return ret;
8117 if (unlikely(wc->refs[level - 1] == 0)) {
8118 btrfs_err(root->fs_info, "Missing references.");
8119 BUG();
8121 *lookup_info = 0;
8123 if (wc->stage == DROP_REFERENCE) {
8124 if (wc->refs[level - 1] > 1) {
8125 need_account = true;
8126 if (level == 1 &&
8127 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8128 goto skip;
8130 if (!wc->update_ref ||
8131 generation <= root->root_key.offset)
8132 goto skip;
8134 btrfs_node_key_to_cpu(path->nodes[level], &key,
8135 path->slots[level]);
8136 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8137 if (ret < 0)
8138 goto skip;
8140 wc->stage = UPDATE_BACKREF;
8141 wc->shared_level = level - 1;
8143 } else {
8144 if (level == 1 &&
8145 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8146 goto skip;
8149 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8150 btrfs_tree_unlock(next);
8151 free_extent_buffer(next);
8152 next = NULL;
8153 *lookup_info = 1;
8156 if (!next) {
8157 if (reada && level == 1)
8158 reada_walk_down(trans, root, wc, path);
8159 next = read_tree_block(root, bytenr, generation);
8160 if (!next || !extent_buffer_uptodate(next)) {
8161 free_extent_buffer(next);
8162 return -EIO;
8164 btrfs_tree_lock(next);
8165 btrfs_set_lock_blocking(next);
8168 level--;
8169 BUG_ON(level != btrfs_header_level(next));
8170 path->nodes[level] = next;
8171 path->slots[level] = 0;
8172 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8173 wc->level = level;
8174 if (wc->level == 1)
8175 wc->reada_slot = 0;
8176 return 0;
8177 skip:
8178 wc->refs[level - 1] = 0;
8179 wc->flags[level - 1] = 0;
8180 if (wc->stage == DROP_REFERENCE) {
8181 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8182 parent = path->nodes[level]->start;
8183 } else {
8184 BUG_ON(root->root_key.objectid !=
8185 btrfs_header_owner(path->nodes[level]));
8186 parent = 0;
8189 if (need_account) {
8190 ret = account_shared_subtree(trans, root, next,
8191 generation, level - 1);
8192 if (ret) {
8193 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8194 "%d accounting shared subtree. Quota "
8195 "is out of sync, rescan required.\n",
8196 root->fs_info->sb->s_id, ret);
8199 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8200 root->root_key.objectid, level - 1, 0, 0);
8201 BUG_ON(ret); /* -ENOMEM */
8203 btrfs_tree_unlock(next);
8204 free_extent_buffer(next);
8205 *lookup_info = 1;
8206 return 1;
8210 * helper to process tree block while walking up the tree.
8212 * when wc->stage == DROP_REFERENCE, this function drops
8213 * reference count on the block.
8215 * when wc->stage == UPDATE_BACKREF, this function changes
8216 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8217 * to UPDATE_BACKREF previously while processing the block.
8219 * NOTE: return value 1 means we should stop walking up.
8221 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8222 struct btrfs_root *root,
8223 struct btrfs_path *path,
8224 struct walk_control *wc)
8226 int ret;
8227 int level = wc->level;
8228 struct extent_buffer *eb = path->nodes[level];
8229 u64 parent = 0;
8231 if (wc->stage == UPDATE_BACKREF) {
8232 BUG_ON(wc->shared_level < level);
8233 if (level < wc->shared_level)
8234 goto out;
8236 ret = find_next_key(path, level + 1, &wc->update_progress);
8237 if (ret > 0)
8238 wc->update_ref = 0;
8240 wc->stage = DROP_REFERENCE;
8241 wc->shared_level = -1;
8242 path->slots[level] = 0;
8245 * check reference count again if the block isn't locked.
8246 * we should start walking down the tree again if reference
8247 * count is one.
8249 if (!path->locks[level]) {
8250 BUG_ON(level == 0);
8251 btrfs_tree_lock(eb);
8252 btrfs_set_lock_blocking(eb);
8253 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8255 ret = btrfs_lookup_extent_info(trans, root,
8256 eb->start, level, 1,
8257 &wc->refs[level],
8258 &wc->flags[level]);
8259 if (ret < 0) {
8260 btrfs_tree_unlock_rw(eb, path->locks[level]);
8261 path->locks[level] = 0;
8262 return ret;
8264 BUG_ON(wc->refs[level] == 0);
8265 if (wc->refs[level] == 1) {
8266 btrfs_tree_unlock_rw(eb, path->locks[level]);
8267 path->locks[level] = 0;
8268 return 1;
8273 /* wc->stage == DROP_REFERENCE */
8274 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8276 if (wc->refs[level] == 1) {
8277 if (level == 0) {
8278 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8279 ret = btrfs_dec_ref(trans, root, eb, 1);
8280 else
8281 ret = btrfs_dec_ref(trans, root, eb, 0);
8282 BUG_ON(ret); /* -ENOMEM */
8283 ret = account_leaf_items(trans, root, eb);
8284 if (ret) {
8285 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8286 "%d accounting leaf items. Quota "
8287 "is out of sync, rescan required.\n",
8288 root->fs_info->sb->s_id, ret);
8291 /* make block locked assertion in clean_tree_block happy */
8292 if (!path->locks[level] &&
8293 btrfs_header_generation(eb) == trans->transid) {
8294 btrfs_tree_lock(eb);
8295 btrfs_set_lock_blocking(eb);
8296 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8298 clean_tree_block(trans, root->fs_info, eb);
8301 if (eb == root->node) {
8302 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8303 parent = eb->start;
8304 else
8305 BUG_ON(root->root_key.objectid !=
8306 btrfs_header_owner(eb));
8307 } else {
8308 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8309 parent = path->nodes[level + 1]->start;
8310 else
8311 BUG_ON(root->root_key.objectid !=
8312 btrfs_header_owner(path->nodes[level + 1]));
8315 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8316 out:
8317 wc->refs[level] = 0;
8318 wc->flags[level] = 0;
8319 return 0;
8322 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8323 struct btrfs_root *root,
8324 struct btrfs_path *path,
8325 struct walk_control *wc)
8327 int level = wc->level;
8328 int lookup_info = 1;
8329 int ret;
8331 while (level >= 0) {
8332 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8333 if (ret > 0)
8334 break;
8336 if (level == 0)
8337 break;
8339 if (path->slots[level] >=
8340 btrfs_header_nritems(path->nodes[level]))
8341 break;
8343 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8344 if (ret > 0) {
8345 path->slots[level]++;
8346 continue;
8347 } else if (ret < 0)
8348 return ret;
8349 level = wc->level;
8351 return 0;
8354 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8355 struct btrfs_root *root,
8356 struct btrfs_path *path,
8357 struct walk_control *wc, int max_level)
8359 int level = wc->level;
8360 int ret;
8362 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8363 while (level < max_level && path->nodes[level]) {
8364 wc->level = level;
8365 if (path->slots[level] + 1 <
8366 btrfs_header_nritems(path->nodes[level])) {
8367 path->slots[level]++;
8368 return 0;
8369 } else {
8370 ret = walk_up_proc(trans, root, path, wc);
8371 if (ret > 0)
8372 return 0;
8374 if (path->locks[level]) {
8375 btrfs_tree_unlock_rw(path->nodes[level],
8376 path->locks[level]);
8377 path->locks[level] = 0;
8379 free_extent_buffer(path->nodes[level]);
8380 path->nodes[level] = NULL;
8381 level++;
8384 return 1;
8388 * drop a subvolume tree.
8390 * this function traverses the tree freeing any blocks that only
8391 * referenced by the tree.
8393 * when a shared tree block is found. this function decreases its
8394 * reference count by one. if update_ref is true, this function
8395 * also make sure backrefs for the shared block and all lower level
8396 * blocks are properly updated.
8398 * If called with for_reloc == 0, may exit early with -EAGAIN
8400 int btrfs_drop_snapshot(struct btrfs_root *root,
8401 struct btrfs_block_rsv *block_rsv, int update_ref,
8402 int for_reloc)
8404 struct btrfs_path *path;
8405 struct btrfs_trans_handle *trans;
8406 struct btrfs_root *tree_root = root->fs_info->tree_root;
8407 struct btrfs_root_item *root_item = &root->root_item;
8408 struct walk_control *wc;
8409 struct btrfs_key key;
8410 int err = 0;
8411 int ret;
8412 int level;
8413 bool root_dropped = false;
8415 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8417 path = btrfs_alloc_path();
8418 if (!path) {
8419 err = -ENOMEM;
8420 goto out;
8423 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8424 if (!wc) {
8425 btrfs_free_path(path);
8426 err = -ENOMEM;
8427 goto out;
8430 trans = btrfs_start_transaction(tree_root, 0);
8431 if (IS_ERR(trans)) {
8432 err = PTR_ERR(trans);
8433 goto out_free;
8436 if (block_rsv)
8437 trans->block_rsv = block_rsv;
8439 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8440 level = btrfs_header_level(root->node);
8441 path->nodes[level] = btrfs_lock_root_node(root);
8442 btrfs_set_lock_blocking(path->nodes[level]);
8443 path->slots[level] = 0;
8444 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8445 memset(&wc->update_progress, 0,
8446 sizeof(wc->update_progress));
8447 } else {
8448 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8449 memcpy(&wc->update_progress, &key,
8450 sizeof(wc->update_progress));
8452 level = root_item->drop_level;
8453 BUG_ON(level == 0);
8454 path->lowest_level = level;
8455 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8456 path->lowest_level = 0;
8457 if (ret < 0) {
8458 err = ret;
8459 goto out_end_trans;
8461 WARN_ON(ret > 0);
8464 * unlock our path, this is safe because only this
8465 * function is allowed to delete this snapshot
8467 btrfs_unlock_up_safe(path, 0);
8469 level = btrfs_header_level(root->node);
8470 while (1) {
8471 btrfs_tree_lock(path->nodes[level]);
8472 btrfs_set_lock_blocking(path->nodes[level]);
8473 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8475 ret = btrfs_lookup_extent_info(trans, root,
8476 path->nodes[level]->start,
8477 level, 1, &wc->refs[level],
8478 &wc->flags[level]);
8479 if (ret < 0) {
8480 err = ret;
8481 goto out_end_trans;
8483 BUG_ON(wc->refs[level] == 0);
8485 if (level == root_item->drop_level)
8486 break;
8488 btrfs_tree_unlock(path->nodes[level]);
8489 path->locks[level] = 0;
8490 WARN_ON(wc->refs[level] != 1);
8491 level--;
8495 wc->level = level;
8496 wc->shared_level = -1;
8497 wc->stage = DROP_REFERENCE;
8498 wc->update_ref = update_ref;
8499 wc->keep_locks = 0;
8500 wc->for_reloc = for_reloc;
8501 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8503 while (1) {
8505 ret = walk_down_tree(trans, root, path, wc);
8506 if (ret < 0) {
8507 err = ret;
8508 break;
8511 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8512 if (ret < 0) {
8513 err = ret;
8514 break;
8517 if (ret > 0) {
8518 BUG_ON(wc->stage != DROP_REFERENCE);
8519 break;
8522 if (wc->stage == DROP_REFERENCE) {
8523 level = wc->level;
8524 btrfs_node_key(path->nodes[level],
8525 &root_item->drop_progress,
8526 path->slots[level]);
8527 root_item->drop_level = level;
8530 BUG_ON(wc->level == 0);
8531 if (btrfs_should_end_transaction(trans, tree_root) ||
8532 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8533 ret = btrfs_update_root(trans, tree_root,
8534 &root->root_key,
8535 root_item);
8536 if (ret) {
8537 btrfs_abort_transaction(trans, tree_root, ret);
8538 err = ret;
8539 goto out_end_trans;
8543 * Qgroup update accounting is run from
8544 * delayed ref handling. This usually works
8545 * out because delayed refs are normally the
8546 * only way qgroup updates are added. However,
8547 * we may have added updates during our tree
8548 * walk so run qgroups here to make sure we
8549 * don't lose any updates.
8551 ret = btrfs_delayed_qgroup_accounting(trans,
8552 root->fs_info);
8553 if (ret)
8554 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8555 "running qgroup updates "
8556 "during snapshot delete. "
8557 "Quota is out of sync, "
8558 "rescan required.\n", ret);
8560 btrfs_end_transaction_throttle(trans, tree_root);
8561 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8562 pr_debug("BTRFS: drop snapshot early exit\n");
8563 err = -EAGAIN;
8564 goto out_free;
8567 trans = btrfs_start_transaction(tree_root, 0);
8568 if (IS_ERR(trans)) {
8569 err = PTR_ERR(trans);
8570 goto out_free;
8572 if (block_rsv)
8573 trans->block_rsv = block_rsv;
8576 btrfs_release_path(path);
8577 if (err)
8578 goto out_end_trans;
8580 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8581 if (ret) {
8582 btrfs_abort_transaction(trans, tree_root, ret);
8583 goto out_end_trans;
8586 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8587 ret = btrfs_find_root(tree_root, &root->root_key, path,
8588 NULL, NULL);
8589 if (ret < 0) {
8590 btrfs_abort_transaction(trans, tree_root, ret);
8591 err = ret;
8592 goto out_end_trans;
8593 } else if (ret > 0) {
8594 /* if we fail to delete the orphan item this time
8595 * around, it'll get picked up the next time.
8597 * The most common failure here is just -ENOENT.
8599 btrfs_del_orphan_item(trans, tree_root,
8600 root->root_key.objectid);
8604 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8605 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8606 } else {
8607 free_extent_buffer(root->node);
8608 free_extent_buffer(root->commit_root);
8609 btrfs_put_fs_root(root);
8611 root_dropped = true;
8612 out_end_trans:
8613 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8614 if (ret)
8615 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8616 "running qgroup updates "
8617 "during snapshot delete. "
8618 "Quota is out of sync, "
8619 "rescan required.\n", ret);
8621 btrfs_end_transaction_throttle(trans, tree_root);
8622 out_free:
8623 kfree(wc);
8624 btrfs_free_path(path);
8625 out:
8627 * So if we need to stop dropping the snapshot for whatever reason we
8628 * need to make sure to add it back to the dead root list so that we
8629 * keep trying to do the work later. This also cleans up roots if we
8630 * don't have it in the radix (like when we recover after a power fail
8631 * or unmount) so we don't leak memory.
8633 if (!for_reloc && root_dropped == false)
8634 btrfs_add_dead_root(root);
8635 if (err && err != -EAGAIN)
8636 btrfs_std_error(root->fs_info, err);
8637 return err;
8641 * drop subtree rooted at tree block 'node'.
8643 * NOTE: this function will unlock and release tree block 'node'
8644 * only used by relocation code
8646 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8647 struct btrfs_root *root,
8648 struct extent_buffer *node,
8649 struct extent_buffer *parent)
8651 struct btrfs_path *path;
8652 struct walk_control *wc;
8653 int level;
8654 int parent_level;
8655 int ret = 0;
8656 int wret;
8658 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8660 path = btrfs_alloc_path();
8661 if (!path)
8662 return -ENOMEM;
8664 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8665 if (!wc) {
8666 btrfs_free_path(path);
8667 return -ENOMEM;
8670 btrfs_assert_tree_locked(parent);
8671 parent_level = btrfs_header_level(parent);
8672 extent_buffer_get(parent);
8673 path->nodes[parent_level] = parent;
8674 path->slots[parent_level] = btrfs_header_nritems(parent);
8676 btrfs_assert_tree_locked(node);
8677 level = btrfs_header_level(node);
8678 path->nodes[level] = node;
8679 path->slots[level] = 0;
8680 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8682 wc->refs[parent_level] = 1;
8683 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8684 wc->level = level;
8685 wc->shared_level = -1;
8686 wc->stage = DROP_REFERENCE;
8687 wc->update_ref = 0;
8688 wc->keep_locks = 1;
8689 wc->for_reloc = 1;
8690 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8692 while (1) {
8693 wret = walk_down_tree(trans, root, path, wc);
8694 if (wret < 0) {
8695 ret = wret;
8696 break;
8699 wret = walk_up_tree(trans, root, path, wc, parent_level);
8700 if (wret < 0)
8701 ret = wret;
8702 if (wret != 0)
8703 break;
8706 kfree(wc);
8707 btrfs_free_path(path);
8708 return ret;
8711 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8713 u64 num_devices;
8714 u64 stripped;
8717 * if restripe for this chunk_type is on pick target profile and
8718 * return, otherwise do the usual balance
8720 stripped = get_restripe_target(root->fs_info, flags);
8721 if (stripped)
8722 return extended_to_chunk(stripped);
8724 num_devices = root->fs_info->fs_devices->rw_devices;
8726 stripped = BTRFS_BLOCK_GROUP_RAID0 |
8727 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8728 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8730 if (num_devices == 1) {
8731 stripped |= BTRFS_BLOCK_GROUP_DUP;
8732 stripped = flags & ~stripped;
8734 /* turn raid0 into single device chunks */
8735 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8736 return stripped;
8738 /* turn mirroring into duplication */
8739 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8740 BTRFS_BLOCK_GROUP_RAID10))
8741 return stripped | BTRFS_BLOCK_GROUP_DUP;
8742 } else {
8743 /* they already had raid on here, just return */
8744 if (flags & stripped)
8745 return flags;
8747 stripped |= BTRFS_BLOCK_GROUP_DUP;
8748 stripped = flags & ~stripped;
8750 /* switch duplicated blocks with raid1 */
8751 if (flags & BTRFS_BLOCK_GROUP_DUP)
8752 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8754 /* this is drive concat, leave it alone */
8757 return flags;
8760 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8762 struct btrfs_space_info *sinfo = cache->space_info;
8763 u64 num_bytes;
8764 u64 min_allocable_bytes;
8765 int ret = -ENOSPC;
8769 * We need some metadata space and system metadata space for
8770 * allocating chunks in some corner cases until we force to set
8771 * it to be readonly.
8773 if ((sinfo->flags &
8774 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8775 !force)
8776 min_allocable_bytes = 1 * 1024 * 1024;
8777 else
8778 min_allocable_bytes = 0;
8780 spin_lock(&sinfo->lock);
8781 spin_lock(&cache->lock);
8783 if (cache->ro) {
8784 ret = 0;
8785 goto out;
8788 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8789 cache->bytes_super - btrfs_block_group_used(&cache->item);
8791 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8792 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8793 min_allocable_bytes <= sinfo->total_bytes) {
8794 sinfo->bytes_readonly += num_bytes;
8795 cache->ro = 1;
8796 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8797 ret = 0;
8799 out:
8800 spin_unlock(&cache->lock);
8801 spin_unlock(&sinfo->lock);
8802 return ret;
8805 int btrfs_set_block_group_ro(struct btrfs_root *root,
8806 struct btrfs_block_group_cache *cache)
8809 struct btrfs_trans_handle *trans;
8810 u64 alloc_flags;
8811 int ret;
8813 BUG_ON(cache->ro);
8815 again:
8816 trans = btrfs_join_transaction(root);
8817 if (IS_ERR(trans))
8818 return PTR_ERR(trans);
8821 * we're not allowed to set block groups readonly after the dirty
8822 * block groups cache has started writing. If it already started,
8823 * back off and let this transaction commit
8825 mutex_lock(&root->fs_info->ro_block_group_mutex);
8826 if (trans->transaction->dirty_bg_run) {
8827 u64 transid = trans->transid;
8829 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8830 btrfs_end_transaction(trans, root);
8832 ret = btrfs_wait_for_commit(root, transid);
8833 if (ret)
8834 return ret;
8835 goto again;
8839 * if we are changing raid levels, try to allocate a corresponding
8840 * block group with the new raid level.
8842 alloc_flags = update_block_group_flags(root, cache->flags);
8843 if (alloc_flags != cache->flags) {
8844 ret = do_chunk_alloc(trans, root, alloc_flags,
8845 CHUNK_ALLOC_FORCE);
8847 * ENOSPC is allowed here, we may have enough space
8848 * already allocated at the new raid level to
8849 * carry on
8851 if (ret == -ENOSPC)
8852 ret = 0;
8853 if (ret < 0)
8854 goto out;
8857 ret = set_block_group_ro(cache, 0);
8858 if (!ret)
8859 goto out;
8860 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8861 ret = do_chunk_alloc(trans, root, alloc_flags,
8862 CHUNK_ALLOC_FORCE);
8863 if (ret < 0)
8864 goto out;
8865 ret = set_block_group_ro(cache, 0);
8866 out:
8867 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8868 alloc_flags = update_block_group_flags(root, cache->flags);
8869 lock_chunks(root->fs_info->chunk_root);
8870 check_system_chunk(trans, root, alloc_flags);
8871 unlock_chunks(root->fs_info->chunk_root);
8873 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8875 btrfs_end_transaction(trans, root);
8876 return ret;
8879 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8880 struct btrfs_root *root, u64 type)
8882 u64 alloc_flags = get_alloc_profile(root, type);
8883 return do_chunk_alloc(trans, root, alloc_flags,
8884 CHUNK_ALLOC_FORCE);
8888 * helper to account the unused space of all the readonly block group in the
8889 * space_info. takes mirrors into account.
8891 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8893 struct btrfs_block_group_cache *block_group;
8894 u64 free_bytes = 0;
8895 int factor;
8897 /* It's df, we don't care if it's racey */
8898 if (list_empty(&sinfo->ro_bgs))
8899 return 0;
8901 spin_lock(&sinfo->lock);
8902 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8903 spin_lock(&block_group->lock);
8905 if (!block_group->ro) {
8906 spin_unlock(&block_group->lock);
8907 continue;
8910 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8911 BTRFS_BLOCK_GROUP_RAID10 |
8912 BTRFS_BLOCK_GROUP_DUP))
8913 factor = 2;
8914 else
8915 factor = 1;
8917 free_bytes += (block_group->key.offset -
8918 btrfs_block_group_used(&block_group->item)) *
8919 factor;
8921 spin_unlock(&block_group->lock);
8923 spin_unlock(&sinfo->lock);
8925 return free_bytes;
8928 void btrfs_set_block_group_rw(struct btrfs_root *root,
8929 struct btrfs_block_group_cache *cache)
8931 struct btrfs_space_info *sinfo = cache->space_info;
8932 u64 num_bytes;
8934 BUG_ON(!cache->ro);
8936 spin_lock(&sinfo->lock);
8937 spin_lock(&cache->lock);
8938 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8939 cache->bytes_super - btrfs_block_group_used(&cache->item);
8940 sinfo->bytes_readonly -= num_bytes;
8941 cache->ro = 0;
8942 list_del_init(&cache->ro_list);
8943 spin_unlock(&cache->lock);
8944 spin_unlock(&sinfo->lock);
8948 * checks to see if its even possible to relocate this block group.
8950 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8951 * ok to go ahead and try.
8953 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8955 struct btrfs_block_group_cache *block_group;
8956 struct btrfs_space_info *space_info;
8957 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8958 struct btrfs_device *device;
8959 struct btrfs_trans_handle *trans;
8960 u64 min_free;
8961 u64 dev_min = 1;
8962 u64 dev_nr = 0;
8963 u64 target;
8964 int index;
8965 int full = 0;
8966 int ret = 0;
8968 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8970 /* odd, couldn't find the block group, leave it alone */
8971 if (!block_group)
8972 return -1;
8974 min_free = btrfs_block_group_used(&block_group->item);
8976 /* no bytes used, we're good */
8977 if (!min_free)
8978 goto out;
8980 space_info = block_group->space_info;
8981 spin_lock(&space_info->lock);
8983 full = space_info->full;
8986 * if this is the last block group we have in this space, we can't
8987 * relocate it unless we're able to allocate a new chunk below.
8989 * Otherwise, we need to make sure we have room in the space to handle
8990 * all of the extents from this block group. If we can, we're good
8992 if ((space_info->total_bytes != block_group->key.offset) &&
8993 (space_info->bytes_used + space_info->bytes_reserved +
8994 space_info->bytes_pinned + space_info->bytes_readonly +
8995 min_free < space_info->total_bytes)) {
8996 spin_unlock(&space_info->lock);
8997 goto out;
8999 spin_unlock(&space_info->lock);
9002 * ok we don't have enough space, but maybe we have free space on our
9003 * devices to allocate new chunks for relocation, so loop through our
9004 * alloc devices and guess if we have enough space. if this block
9005 * group is going to be restriped, run checks against the target
9006 * profile instead of the current one.
9008 ret = -1;
9011 * index:
9012 * 0: raid10
9013 * 1: raid1
9014 * 2: dup
9015 * 3: raid0
9016 * 4: single
9018 target = get_restripe_target(root->fs_info, block_group->flags);
9019 if (target) {
9020 index = __get_raid_index(extended_to_chunk(target));
9021 } else {
9023 * this is just a balance, so if we were marked as full
9024 * we know there is no space for a new chunk
9026 if (full)
9027 goto out;
9029 index = get_block_group_index(block_group);
9032 if (index == BTRFS_RAID_RAID10) {
9033 dev_min = 4;
9034 /* Divide by 2 */
9035 min_free >>= 1;
9036 } else if (index == BTRFS_RAID_RAID1) {
9037 dev_min = 2;
9038 } else if (index == BTRFS_RAID_DUP) {
9039 /* Multiply by 2 */
9040 min_free <<= 1;
9041 } else if (index == BTRFS_RAID_RAID0) {
9042 dev_min = fs_devices->rw_devices;
9043 min_free = div64_u64(min_free, dev_min);
9046 /* We need to do this so that we can look at pending chunks */
9047 trans = btrfs_join_transaction(root);
9048 if (IS_ERR(trans)) {
9049 ret = PTR_ERR(trans);
9050 goto out;
9053 mutex_lock(&root->fs_info->chunk_mutex);
9054 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9055 u64 dev_offset;
9058 * check to make sure we can actually find a chunk with enough
9059 * space to fit our block group in.
9061 if (device->total_bytes > device->bytes_used + min_free &&
9062 !device->is_tgtdev_for_dev_replace) {
9063 ret = find_free_dev_extent(trans, device, min_free,
9064 &dev_offset, NULL);
9065 if (!ret)
9066 dev_nr++;
9068 if (dev_nr >= dev_min)
9069 break;
9071 ret = -1;
9074 mutex_unlock(&root->fs_info->chunk_mutex);
9075 btrfs_end_transaction(trans, root);
9076 out:
9077 btrfs_put_block_group(block_group);
9078 return ret;
9081 static int find_first_block_group(struct btrfs_root *root,
9082 struct btrfs_path *path, struct btrfs_key *key)
9084 int ret = 0;
9085 struct btrfs_key found_key;
9086 struct extent_buffer *leaf;
9087 int slot;
9089 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9090 if (ret < 0)
9091 goto out;
9093 while (1) {
9094 slot = path->slots[0];
9095 leaf = path->nodes[0];
9096 if (slot >= btrfs_header_nritems(leaf)) {
9097 ret = btrfs_next_leaf(root, path);
9098 if (ret == 0)
9099 continue;
9100 if (ret < 0)
9101 goto out;
9102 break;
9104 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9106 if (found_key.objectid >= key->objectid &&
9107 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9108 ret = 0;
9109 goto out;
9111 path->slots[0]++;
9113 out:
9114 return ret;
9117 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9119 struct btrfs_block_group_cache *block_group;
9120 u64 last = 0;
9122 while (1) {
9123 struct inode *inode;
9125 block_group = btrfs_lookup_first_block_group(info, last);
9126 while (block_group) {
9127 spin_lock(&block_group->lock);
9128 if (block_group->iref)
9129 break;
9130 spin_unlock(&block_group->lock);
9131 block_group = next_block_group(info->tree_root,
9132 block_group);
9134 if (!block_group) {
9135 if (last == 0)
9136 break;
9137 last = 0;
9138 continue;
9141 inode = block_group->inode;
9142 block_group->iref = 0;
9143 block_group->inode = NULL;
9144 spin_unlock(&block_group->lock);
9145 iput(inode);
9146 last = block_group->key.objectid + block_group->key.offset;
9147 btrfs_put_block_group(block_group);
9151 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9153 struct btrfs_block_group_cache *block_group;
9154 struct btrfs_space_info *space_info;
9155 struct btrfs_caching_control *caching_ctl;
9156 struct rb_node *n;
9158 down_write(&info->commit_root_sem);
9159 while (!list_empty(&info->caching_block_groups)) {
9160 caching_ctl = list_entry(info->caching_block_groups.next,
9161 struct btrfs_caching_control, list);
9162 list_del(&caching_ctl->list);
9163 put_caching_control(caching_ctl);
9165 up_write(&info->commit_root_sem);
9167 spin_lock(&info->unused_bgs_lock);
9168 while (!list_empty(&info->unused_bgs)) {
9169 block_group = list_first_entry(&info->unused_bgs,
9170 struct btrfs_block_group_cache,
9171 bg_list);
9172 list_del_init(&block_group->bg_list);
9173 btrfs_put_block_group(block_group);
9175 spin_unlock(&info->unused_bgs_lock);
9177 spin_lock(&info->block_group_cache_lock);
9178 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9179 block_group = rb_entry(n, struct btrfs_block_group_cache,
9180 cache_node);
9181 rb_erase(&block_group->cache_node,
9182 &info->block_group_cache_tree);
9183 RB_CLEAR_NODE(&block_group->cache_node);
9184 spin_unlock(&info->block_group_cache_lock);
9186 down_write(&block_group->space_info->groups_sem);
9187 list_del(&block_group->list);
9188 up_write(&block_group->space_info->groups_sem);
9190 if (block_group->cached == BTRFS_CACHE_STARTED)
9191 wait_block_group_cache_done(block_group);
9194 * We haven't cached this block group, which means we could
9195 * possibly have excluded extents on this block group.
9197 if (block_group->cached == BTRFS_CACHE_NO ||
9198 block_group->cached == BTRFS_CACHE_ERROR)
9199 free_excluded_extents(info->extent_root, block_group);
9201 btrfs_remove_free_space_cache(block_group);
9202 btrfs_put_block_group(block_group);
9204 spin_lock(&info->block_group_cache_lock);
9206 spin_unlock(&info->block_group_cache_lock);
9208 /* now that all the block groups are freed, go through and
9209 * free all the space_info structs. This is only called during
9210 * the final stages of unmount, and so we know nobody is
9211 * using them. We call synchronize_rcu() once before we start,
9212 * just to be on the safe side.
9214 synchronize_rcu();
9216 release_global_block_rsv(info);
9218 while (!list_empty(&info->space_info)) {
9219 int i;
9221 space_info = list_entry(info->space_info.next,
9222 struct btrfs_space_info,
9223 list);
9224 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9225 if (WARN_ON(space_info->bytes_pinned > 0 ||
9226 space_info->bytes_reserved > 0 ||
9227 space_info->bytes_may_use > 0)) {
9228 dump_space_info(space_info, 0, 0);
9231 list_del(&space_info->list);
9232 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9233 struct kobject *kobj;
9234 kobj = space_info->block_group_kobjs[i];
9235 space_info->block_group_kobjs[i] = NULL;
9236 if (kobj) {
9237 kobject_del(kobj);
9238 kobject_put(kobj);
9241 kobject_del(&space_info->kobj);
9242 kobject_put(&space_info->kobj);
9244 return 0;
9247 static void __link_block_group(struct btrfs_space_info *space_info,
9248 struct btrfs_block_group_cache *cache)
9250 int index = get_block_group_index(cache);
9251 bool first = false;
9253 down_write(&space_info->groups_sem);
9254 if (list_empty(&space_info->block_groups[index]))
9255 first = true;
9256 list_add_tail(&cache->list, &space_info->block_groups[index]);
9257 up_write(&space_info->groups_sem);
9259 if (first) {
9260 struct raid_kobject *rkobj;
9261 int ret;
9263 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9264 if (!rkobj)
9265 goto out_err;
9266 rkobj->raid_type = index;
9267 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9268 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9269 "%s", get_raid_name(index));
9270 if (ret) {
9271 kobject_put(&rkobj->kobj);
9272 goto out_err;
9274 space_info->block_group_kobjs[index] = &rkobj->kobj;
9277 return;
9278 out_err:
9279 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9282 static struct btrfs_block_group_cache *
9283 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9285 struct btrfs_block_group_cache *cache;
9287 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9288 if (!cache)
9289 return NULL;
9291 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9292 GFP_NOFS);
9293 if (!cache->free_space_ctl) {
9294 kfree(cache);
9295 return NULL;
9298 cache->key.objectid = start;
9299 cache->key.offset = size;
9300 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9302 cache->sectorsize = root->sectorsize;
9303 cache->fs_info = root->fs_info;
9304 cache->full_stripe_len = btrfs_full_stripe_len(root,
9305 &root->fs_info->mapping_tree,
9306 start);
9307 atomic_set(&cache->count, 1);
9308 spin_lock_init(&cache->lock);
9309 init_rwsem(&cache->data_rwsem);
9310 INIT_LIST_HEAD(&cache->list);
9311 INIT_LIST_HEAD(&cache->cluster_list);
9312 INIT_LIST_HEAD(&cache->bg_list);
9313 INIT_LIST_HEAD(&cache->ro_list);
9314 INIT_LIST_HEAD(&cache->dirty_list);
9315 INIT_LIST_HEAD(&cache->io_list);
9316 btrfs_init_free_space_ctl(cache);
9317 atomic_set(&cache->trimming, 0);
9319 return cache;
9322 int btrfs_read_block_groups(struct btrfs_root *root)
9324 struct btrfs_path *path;
9325 int ret;
9326 struct btrfs_block_group_cache *cache;
9327 struct btrfs_fs_info *info = root->fs_info;
9328 struct btrfs_space_info *space_info;
9329 struct btrfs_key key;
9330 struct btrfs_key found_key;
9331 struct extent_buffer *leaf;
9332 int need_clear = 0;
9333 u64 cache_gen;
9335 root = info->extent_root;
9336 key.objectid = 0;
9337 key.offset = 0;
9338 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9339 path = btrfs_alloc_path();
9340 if (!path)
9341 return -ENOMEM;
9342 path->reada = 1;
9344 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9345 if (btrfs_test_opt(root, SPACE_CACHE) &&
9346 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9347 need_clear = 1;
9348 if (btrfs_test_opt(root, CLEAR_CACHE))
9349 need_clear = 1;
9351 while (1) {
9352 ret = find_first_block_group(root, path, &key);
9353 if (ret > 0)
9354 break;
9355 if (ret != 0)
9356 goto error;
9358 leaf = path->nodes[0];
9359 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9361 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9362 found_key.offset);
9363 if (!cache) {
9364 ret = -ENOMEM;
9365 goto error;
9368 if (need_clear) {
9370 * When we mount with old space cache, we need to
9371 * set BTRFS_DC_CLEAR and set dirty flag.
9373 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9374 * truncate the old free space cache inode and
9375 * setup a new one.
9376 * b) Setting 'dirty flag' makes sure that we flush
9377 * the new space cache info onto disk.
9379 if (btrfs_test_opt(root, SPACE_CACHE))
9380 cache->disk_cache_state = BTRFS_DC_CLEAR;
9383 read_extent_buffer(leaf, &cache->item,
9384 btrfs_item_ptr_offset(leaf, path->slots[0]),
9385 sizeof(cache->item));
9386 cache->flags = btrfs_block_group_flags(&cache->item);
9388 key.objectid = found_key.objectid + found_key.offset;
9389 btrfs_release_path(path);
9392 * We need to exclude the super stripes now so that the space
9393 * info has super bytes accounted for, otherwise we'll think
9394 * we have more space than we actually do.
9396 ret = exclude_super_stripes(root, cache);
9397 if (ret) {
9399 * We may have excluded something, so call this just in
9400 * case.
9402 free_excluded_extents(root, cache);
9403 btrfs_put_block_group(cache);
9404 goto error;
9408 * check for two cases, either we are full, and therefore
9409 * don't need to bother with the caching work since we won't
9410 * find any space, or we are empty, and we can just add all
9411 * the space in and be done with it. This saves us _alot_ of
9412 * time, particularly in the full case.
9414 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9415 cache->last_byte_to_unpin = (u64)-1;
9416 cache->cached = BTRFS_CACHE_FINISHED;
9417 free_excluded_extents(root, cache);
9418 } else if (btrfs_block_group_used(&cache->item) == 0) {
9419 cache->last_byte_to_unpin = (u64)-1;
9420 cache->cached = BTRFS_CACHE_FINISHED;
9421 add_new_free_space(cache, root->fs_info,
9422 found_key.objectid,
9423 found_key.objectid +
9424 found_key.offset);
9425 free_excluded_extents(root, cache);
9428 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9429 if (ret) {
9430 btrfs_remove_free_space_cache(cache);
9431 btrfs_put_block_group(cache);
9432 goto error;
9435 ret = update_space_info(info, cache->flags, found_key.offset,
9436 btrfs_block_group_used(&cache->item),
9437 &space_info);
9438 if (ret) {
9439 btrfs_remove_free_space_cache(cache);
9440 spin_lock(&info->block_group_cache_lock);
9441 rb_erase(&cache->cache_node,
9442 &info->block_group_cache_tree);
9443 RB_CLEAR_NODE(&cache->cache_node);
9444 spin_unlock(&info->block_group_cache_lock);
9445 btrfs_put_block_group(cache);
9446 goto error;
9449 cache->space_info = space_info;
9450 spin_lock(&cache->space_info->lock);
9451 cache->space_info->bytes_readonly += cache->bytes_super;
9452 spin_unlock(&cache->space_info->lock);
9454 __link_block_group(space_info, cache);
9456 set_avail_alloc_bits(root->fs_info, cache->flags);
9457 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9458 set_block_group_ro(cache, 1);
9459 } else if (btrfs_block_group_used(&cache->item) == 0) {
9460 spin_lock(&info->unused_bgs_lock);
9461 /* Should always be true but just in case. */
9462 if (list_empty(&cache->bg_list)) {
9463 btrfs_get_block_group(cache);
9464 list_add_tail(&cache->bg_list,
9465 &info->unused_bgs);
9467 spin_unlock(&info->unused_bgs_lock);
9471 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9472 if (!(get_alloc_profile(root, space_info->flags) &
9473 (BTRFS_BLOCK_GROUP_RAID10 |
9474 BTRFS_BLOCK_GROUP_RAID1 |
9475 BTRFS_BLOCK_GROUP_RAID5 |
9476 BTRFS_BLOCK_GROUP_RAID6 |
9477 BTRFS_BLOCK_GROUP_DUP)))
9478 continue;
9480 * avoid allocating from un-mirrored block group if there are
9481 * mirrored block groups.
9483 list_for_each_entry(cache,
9484 &space_info->block_groups[BTRFS_RAID_RAID0],
9485 list)
9486 set_block_group_ro(cache, 1);
9487 list_for_each_entry(cache,
9488 &space_info->block_groups[BTRFS_RAID_SINGLE],
9489 list)
9490 set_block_group_ro(cache, 1);
9493 init_global_block_rsv(info);
9494 ret = 0;
9495 error:
9496 btrfs_free_path(path);
9497 return ret;
9500 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9501 struct btrfs_root *root)
9503 struct btrfs_block_group_cache *block_group, *tmp;
9504 struct btrfs_root *extent_root = root->fs_info->extent_root;
9505 struct btrfs_block_group_item item;
9506 struct btrfs_key key;
9507 int ret = 0;
9509 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9510 if (ret)
9511 goto next;
9513 spin_lock(&block_group->lock);
9514 memcpy(&item, &block_group->item, sizeof(item));
9515 memcpy(&key, &block_group->key, sizeof(key));
9516 spin_unlock(&block_group->lock);
9518 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9519 sizeof(item));
9520 if (ret)
9521 btrfs_abort_transaction(trans, extent_root, ret);
9522 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9523 key.objectid, key.offset);
9524 if (ret)
9525 btrfs_abort_transaction(trans, extent_root, ret);
9526 next:
9527 list_del_init(&block_group->bg_list);
9531 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9532 struct btrfs_root *root, u64 bytes_used,
9533 u64 type, u64 chunk_objectid, u64 chunk_offset,
9534 u64 size)
9536 int ret;
9537 struct btrfs_root *extent_root;
9538 struct btrfs_block_group_cache *cache;
9540 extent_root = root->fs_info->extent_root;
9542 btrfs_set_log_full_commit(root->fs_info, trans);
9544 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9545 if (!cache)
9546 return -ENOMEM;
9548 btrfs_set_block_group_used(&cache->item, bytes_used);
9549 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9550 btrfs_set_block_group_flags(&cache->item, type);
9552 cache->flags = type;
9553 cache->last_byte_to_unpin = (u64)-1;
9554 cache->cached = BTRFS_CACHE_FINISHED;
9555 ret = exclude_super_stripes(root, cache);
9556 if (ret) {
9558 * We may have excluded something, so call this just in
9559 * case.
9561 free_excluded_extents(root, cache);
9562 btrfs_put_block_group(cache);
9563 return ret;
9566 add_new_free_space(cache, root->fs_info, chunk_offset,
9567 chunk_offset + size);
9569 free_excluded_extents(root, cache);
9571 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9572 if (ret) {
9573 btrfs_remove_free_space_cache(cache);
9574 btrfs_put_block_group(cache);
9575 return ret;
9578 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9579 &cache->space_info);
9580 if (ret) {
9581 btrfs_remove_free_space_cache(cache);
9582 spin_lock(&root->fs_info->block_group_cache_lock);
9583 rb_erase(&cache->cache_node,
9584 &root->fs_info->block_group_cache_tree);
9585 RB_CLEAR_NODE(&cache->cache_node);
9586 spin_unlock(&root->fs_info->block_group_cache_lock);
9587 btrfs_put_block_group(cache);
9588 return ret;
9590 update_global_block_rsv(root->fs_info);
9592 spin_lock(&cache->space_info->lock);
9593 cache->space_info->bytes_readonly += cache->bytes_super;
9594 spin_unlock(&cache->space_info->lock);
9596 __link_block_group(cache->space_info, cache);
9598 list_add_tail(&cache->bg_list, &trans->new_bgs);
9600 set_avail_alloc_bits(extent_root->fs_info, type);
9602 return 0;
9605 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9607 u64 extra_flags = chunk_to_extended(flags) &
9608 BTRFS_EXTENDED_PROFILE_MASK;
9610 write_seqlock(&fs_info->profiles_lock);
9611 if (flags & BTRFS_BLOCK_GROUP_DATA)
9612 fs_info->avail_data_alloc_bits &= ~extra_flags;
9613 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9614 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9615 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9616 fs_info->avail_system_alloc_bits &= ~extra_flags;
9617 write_sequnlock(&fs_info->profiles_lock);
9620 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9621 struct btrfs_root *root, u64 group_start,
9622 struct extent_map *em)
9624 struct btrfs_path *path;
9625 struct btrfs_block_group_cache *block_group;
9626 struct btrfs_free_cluster *cluster;
9627 struct btrfs_root *tree_root = root->fs_info->tree_root;
9628 struct btrfs_key key;
9629 struct inode *inode;
9630 struct kobject *kobj = NULL;
9631 int ret;
9632 int index;
9633 int factor;
9634 struct btrfs_caching_control *caching_ctl = NULL;
9635 bool remove_em;
9637 root = root->fs_info->extent_root;
9639 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9640 BUG_ON(!block_group);
9641 BUG_ON(!block_group->ro);
9644 * Free the reserved super bytes from this block group before
9645 * remove it.
9647 free_excluded_extents(root, block_group);
9649 memcpy(&key, &block_group->key, sizeof(key));
9650 index = get_block_group_index(block_group);
9651 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9652 BTRFS_BLOCK_GROUP_RAID1 |
9653 BTRFS_BLOCK_GROUP_RAID10))
9654 factor = 2;
9655 else
9656 factor = 1;
9658 /* make sure this block group isn't part of an allocation cluster */
9659 cluster = &root->fs_info->data_alloc_cluster;
9660 spin_lock(&cluster->refill_lock);
9661 btrfs_return_cluster_to_free_space(block_group, cluster);
9662 spin_unlock(&cluster->refill_lock);
9665 * make sure this block group isn't part of a metadata
9666 * allocation cluster
9668 cluster = &root->fs_info->meta_alloc_cluster;
9669 spin_lock(&cluster->refill_lock);
9670 btrfs_return_cluster_to_free_space(block_group, cluster);
9671 spin_unlock(&cluster->refill_lock);
9673 path = btrfs_alloc_path();
9674 if (!path) {
9675 ret = -ENOMEM;
9676 goto out;
9680 * get the inode first so any iput calls done for the io_list
9681 * aren't the final iput (no unlinks allowed now)
9683 inode = lookup_free_space_inode(tree_root, block_group, path);
9685 mutex_lock(&trans->transaction->cache_write_mutex);
9687 * make sure our free spache cache IO is done before remove the
9688 * free space inode
9690 spin_lock(&trans->transaction->dirty_bgs_lock);
9691 if (!list_empty(&block_group->io_list)) {
9692 list_del_init(&block_group->io_list);
9694 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9696 spin_unlock(&trans->transaction->dirty_bgs_lock);
9697 btrfs_wait_cache_io(root, trans, block_group,
9698 &block_group->io_ctl, path,
9699 block_group->key.objectid);
9700 btrfs_put_block_group(block_group);
9701 spin_lock(&trans->transaction->dirty_bgs_lock);
9704 if (!list_empty(&block_group->dirty_list)) {
9705 list_del_init(&block_group->dirty_list);
9706 btrfs_put_block_group(block_group);
9708 spin_unlock(&trans->transaction->dirty_bgs_lock);
9709 mutex_unlock(&trans->transaction->cache_write_mutex);
9711 if (!IS_ERR(inode)) {
9712 ret = btrfs_orphan_add(trans, inode);
9713 if (ret) {
9714 btrfs_add_delayed_iput(inode);
9715 goto out;
9717 clear_nlink(inode);
9718 /* One for the block groups ref */
9719 spin_lock(&block_group->lock);
9720 if (block_group->iref) {
9721 block_group->iref = 0;
9722 block_group->inode = NULL;
9723 spin_unlock(&block_group->lock);
9724 iput(inode);
9725 } else {
9726 spin_unlock(&block_group->lock);
9728 /* One for our lookup ref */
9729 btrfs_add_delayed_iput(inode);
9732 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9733 key.offset = block_group->key.objectid;
9734 key.type = 0;
9736 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9737 if (ret < 0)
9738 goto out;
9739 if (ret > 0)
9740 btrfs_release_path(path);
9741 if (ret == 0) {
9742 ret = btrfs_del_item(trans, tree_root, path);
9743 if (ret)
9744 goto out;
9745 btrfs_release_path(path);
9748 spin_lock(&root->fs_info->block_group_cache_lock);
9749 rb_erase(&block_group->cache_node,
9750 &root->fs_info->block_group_cache_tree);
9751 RB_CLEAR_NODE(&block_group->cache_node);
9753 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9754 root->fs_info->first_logical_byte = (u64)-1;
9755 spin_unlock(&root->fs_info->block_group_cache_lock);
9757 down_write(&block_group->space_info->groups_sem);
9759 * we must use list_del_init so people can check to see if they
9760 * are still on the list after taking the semaphore
9762 list_del_init(&block_group->list);
9763 if (list_empty(&block_group->space_info->block_groups[index])) {
9764 kobj = block_group->space_info->block_group_kobjs[index];
9765 block_group->space_info->block_group_kobjs[index] = NULL;
9766 clear_avail_alloc_bits(root->fs_info, block_group->flags);
9768 up_write(&block_group->space_info->groups_sem);
9769 if (kobj) {
9770 kobject_del(kobj);
9771 kobject_put(kobj);
9774 if (block_group->has_caching_ctl)
9775 caching_ctl = get_caching_control(block_group);
9776 if (block_group->cached == BTRFS_CACHE_STARTED)
9777 wait_block_group_cache_done(block_group);
9778 if (block_group->has_caching_ctl) {
9779 down_write(&root->fs_info->commit_root_sem);
9780 if (!caching_ctl) {
9781 struct btrfs_caching_control *ctl;
9783 list_for_each_entry(ctl,
9784 &root->fs_info->caching_block_groups, list)
9785 if (ctl->block_group == block_group) {
9786 caching_ctl = ctl;
9787 atomic_inc(&caching_ctl->count);
9788 break;
9791 if (caching_ctl)
9792 list_del_init(&caching_ctl->list);
9793 up_write(&root->fs_info->commit_root_sem);
9794 if (caching_ctl) {
9795 /* Once for the caching bgs list and once for us. */
9796 put_caching_control(caching_ctl);
9797 put_caching_control(caching_ctl);
9801 spin_lock(&trans->transaction->dirty_bgs_lock);
9802 if (!list_empty(&block_group->dirty_list)) {
9803 WARN_ON(1);
9805 if (!list_empty(&block_group->io_list)) {
9806 WARN_ON(1);
9808 spin_unlock(&trans->transaction->dirty_bgs_lock);
9809 btrfs_remove_free_space_cache(block_group);
9811 spin_lock(&block_group->space_info->lock);
9812 list_del_init(&block_group->ro_list);
9814 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9815 WARN_ON(block_group->space_info->total_bytes
9816 < block_group->key.offset);
9817 WARN_ON(block_group->space_info->bytes_readonly
9818 < block_group->key.offset);
9819 WARN_ON(block_group->space_info->disk_total
9820 < block_group->key.offset * factor);
9822 block_group->space_info->total_bytes -= block_group->key.offset;
9823 block_group->space_info->bytes_readonly -= block_group->key.offset;
9824 block_group->space_info->disk_total -= block_group->key.offset * factor;
9826 spin_unlock(&block_group->space_info->lock);
9828 memcpy(&key, &block_group->key, sizeof(key));
9830 lock_chunks(root);
9831 if (!list_empty(&em->list)) {
9832 /* We're in the transaction->pending_chunks list. */
9833 free_extent_map(em);
9835 spin_lock(&block_group->lock);
9836 block_group->removed = 1;
9838 * At this point trimming can't start on this block group, because we
9839 * removed the block group from the tree fs_info->block_group_cache_tree
9840 * so no one can't find it anymore and even if someone already got this
9841 * block group before we removed it from the rbtree, they have already
9842 * incremented block_group->trimming - if they didn't, they won't find
9843 * any free space entries because we already removed them all when we
9844 * called btrfs_remove_free_space_cache().
9846 * And we must not remove the extent map from the fs_info->mapping_tree
9847 * to prevent the same logical address range and physical device space
9848 * ranges from being reused for a new block group. This is because our
9849 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9850 * completely transactionless, so while it is trimming a range the
9851 * currently running transaction might finish and a new one start,
9852 * allowing for new block groups to be created that can reuse the same
9853 * physical device locations unless we take this special care.
9855 remove_em = (atomic_read(&block_group->trimming) == 0);
9857 * Make sure a trimmer task always sees the em in the pinned_chunks list
9858 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9859 * before checking block_group->removed).
9861 if (!remove_em) {
9863 * Our em might be in trans->transaction->pending_chunks which
9864 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9865 * and so is the fs_info->pinned_chunks list.
9867 * So at this point we must be holding the chunk_mutex to avoid
9868 * any races with chunk allocation (more specifically at
9869 * volumes.c:contains_pending_extent()), to ensure it always
9870 * sees the em, either in the pending_chunks list or in the
9871 * pinned_chunks list.
9873 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9875 spin_unlock(&block_group->lock);
9877 if (remove_em) {
9878 struct extent_map_tree *em_tree;
9880 em_tree = &root->fs_info->mapping_tree.map_tree;
9881 write_lock(&em_tree->lock);
9883 * The em might be in the pending_chunks list, so make sure the
9884 * chunk mutex is locked, since remove_extent_mapping() will
9885 * delete us from that list.
9887 remove_extent_mapping(em_tree, em);
9888 write_unlock(&em_tree->lock);
9889 /* once for the tree */
9890 free_extent_map(em);
9893 unlock_chunks(root);
9895 btrfs_put_block_group(block_group);
9896 btrfs_put_block_group(block_group);
9898 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9899 if (ret > 0)
9900 ret = -EIO;
9901 if (ret < 0)
9902 goto out;
9904 ret = btrfs_del_item(trans, root, path);
9905 out:
9906 btrfs_free_path(path);
9907 return ret;
9911 * Process the unused_bgs list and remove any that don't have any allocated
9912 * space inside of them.
9914 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9916 struct btrfs_block_group_cache *block_group;
9917 struct btrfs_space_info *space_info;
9918 struct btrfs_root *root = fs_info->extent_root;
9919 struct btrfs_trans_handle *trans;
9920 int ret = 0;
9922 if (!fs_info->open)
9923 return;
9925 spin_lock(&fs_info->unused_bgs_lock);
9926 while (!list_empty(&fs_info->unused_bgs)) {
9927 u64 start, end;
9929 block_group = list_first_entry(&fs_info->unused_bgs,
9930 struct btrfs_block_group_cache,
9931 bg_list);
9932 space_info = block_group->space_info;
9933 list_del_init(&block_group->bg_list);
9934 if (ret || btrfs_mixed_space_info(space_info)) {
9935 btrfs_put_block_group(block_group);
9936 continue;
9938 spin_unlock(&fs_info->unused_bgs_lock);
9940 /* Don't want to race with allocators so take the groups_sem */
9941 down_write(&space_info->groups_sem);
9942 spin_lock(&block_group->lock);
9943 if (block_group->reserved ||
9944 btrfs_block_group_used(&block_group->item) ||
9945 block_group->ro) {
9947 * We want to bail if we made new allocations or have
9948 * outstanding allocations in this block group. We do
9949 * the ro check in case balance is currently acting on
9950 * this block group.
9952 spin_unlock(&block_group->lock);
9953 up_write(&space_info->groups_sem);
9954 goto next;
9956 spin_unlock(&block_group->lock);
9958 /* We don't want to force the issue, only flip if it's ok. */
9959 ret = set_block_group_ro(block_group, 0);
9960 up_write(&space_info->groups_sem);
9961 if (ret < 0) {
9962 ret = 0;
9963 goto next;
9967 * Want to do this before we do anything else so we can recover
9968 * properly if we fail to join the transaction.
9970 /* 1 for btrfs_orphan_reserve_metadata() */
9971 trans = btrfs_start_transaction(root, 1);
9972 if (IS_ERR(trans)) {
9973 btrfs_set_block_group_rw(root, block_group);
9974 ret = PTR_ERR(trans);
9975 goto next;
9979 * We could have pending pinned extents for this block group,
9980 * just delete them, we don't care about them anymore.
9982 start = block_group->key.objectid;
9983 end = start + block_group->key.offset - 1;
9985 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9986 * btrfs_finish_extent_commit(). If we are at transaction N,
9987 * another task might be running finish_extent_commit() for the
9988 * previous transaction N - 1, and have seen a range belonging
9989 * to the block group in freed_extents[] before we were able to
9990 * clear the whole block group range from freed_extents[]. This
9991 * means that task can lookup for the block group after we
9992 * unpinned it from freed_extents[] and removed it, leading to
9993 * a BUG_ON() at btrfs_unpin_extent_range().
9995 mutex_lock(&fs_info->unused_bg_unpin_mutex);
9996 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
9997 EXTENT_DIRTY, GFP_NOFS);
9998 if (ret) {
9999 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10000 btrfs_set_block_group_rw(root, block_group);
10001 goto end_trans;
10003 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10004 EXTENT_DIRTY, GFP_NOFS);
10005 if (ret) {
10006 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10007 btrfs_set_block_group_rw(root, block_group);
10008 goto end_trans;
10010 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10012 /* Reset pinned so btrfs_put_block_group doesn't complain */
10013 spin_lock(&space_info->lock);
10014 spin_lock(&block_group->lock);
10016 space_info->bytes_pinned -= block_group->pinned;
10017 space_info->bytes_readonly += block_group->pinned;
10018 percpu_counter_add(&space_info->total_bytes_pinned,
10019 -block_group->pinned);
10020 block_group->pinned = 0;
10022 spin_unlock(&block_group->lock);
10023 spin_unlock(&space_info->lock);
10026 * Btrfs_remove_chunk will abort the transaction if things go
10027 * horribly wrong.
10029 ret = btrfs_remove_chunk(trans, root,
10030 block_group->key.objectid);
10031 end_trans:
10032 btrfs_end_transaction(trans, root);
10033 next:
10034 btrfs_put_block_group(block_group);
10035 spin_lock(&fs_info->unused_bgs_lock);
10037 spin_unlock(&fs_info->unused_bgs_lock);
10040 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10042 struct btrfs_space_info *space_info;
10043 struct btrfs_super_block *disk_super;
10044 u64 features;
10045 u64 flags;
10046 int mixed = 0;
10047 int ret;
10049 disk_super = fs_info->super_copy;
10050 if (!btrfs_super_root(disk_super))
10051 return 1;
10053 features = btrfs_super_incompat_flags(disk_super);
10054 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10055 mixed = 1;
10057 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10058 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10059 if (ret)
10060 goto out;
10062 if (mixed) {
10063 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10064 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10065 } else {
10066 flags = BTRFS_BLOCK_GROUP_METADATA;
10067 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10068 if (ret)
10069 goto out;
10071 flags = BTRFS_BLOCK_GROUP_DATA;
10072 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10074 out:
10075 return ret;
10078 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10080 return unpin_extent_range(root, start, end, false);
10083 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10085 struct btrfs_fs_info *fs_info = root->fs_info;
10086 struct btrfs_block_group_cache *cache = NULL;
10087 u64 group_trimmed;
10088 u64 start;
10089 u64 end;
10090 u64 trimmed = 0;
10091 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10092 int ret = 0;
10095 * try to trim all FS space, our block group may start from non-zero.
10097 if (range->len == total_bytes)
10098 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10099 else
10100 cache = btrfs_lookup_block_group(fs_info, range->start);
10102 while (cache) {
10103 if (cache->key.objectid >= (range->start + range->len)) {
10104 btrfs_put_block_group(cache);
10105 break;
10108 start = max(range->start, cache->key.objectid);
10109 end = min(range->start + range->len,
10110 cache->key.objectid + cache->key.offset);
10112 if (end - start >= range->minlen) {
10113 if (!block_group_cache_done(cache)) {
10114 ret = cache_block_group(cache, 0);
10115 if (ret) {
10116 btrfs_put_block_group(cache);
10117 break;
10119 ret = wait_block_group_cache_done(cache);
10120 if (ret) {
10121 btrfs_put_block_group(cache);
10122 break;
10125 ret = btrfs_trim_block_group(cache,
10126 &group_trimmed,
10127 start,
10128 end,
10129 range->minlen);
10131 trimmed += group_trimmed;
10132 if (ret) {
10133 btrfs_put_block_group(cache);
10134 break;
10138 cache = next_block_group(fs_info->tree_root, cache);
10141 range->len = trimmed;
10142 return ret;
10146 * btrfs_{start,end}_write_no_snapshoting() are similar to
10147 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10148 * data into the page cache through nocow before the subvolume is snapshoted,
10149 * but flush the data into disk after the snapshot creation, or to prevent
10150 * operations while snapshoting is ongoing and that cause the snapshot to be
10151 * inconsistent (writes followed by expanding truncates for example).
10153 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10155 percpu_counter_dec(&root->subv_writers->counter);
10157 * Make sure counter is updated before we wake up
10158 * waiters.
10160 smp_mb();
10161 if (waitqueue_active(&root->subv_writers->wait))
10162 wake_up(&root->subv_writers->wait);
10165 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10167 if (atomic_read(&root->will_be_snapshoted))
10168 return 0;
10170 percpu_counter_inc(&root->subv_writers->counter);
10172 * Make sure counter is updated before we check for snapshot creation.
10174 smp_mb();
10175 if (atomic_read(&root->will_be_snapshoted)) {
10176 btrfs_end_write_no_snapshoting(root);
10177 return 0;
10179 return 1;