2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
31 #include "print-tree.h"
35 #include "free-space-cache.h"
40 #undef SCRAMBLE_DELAYED_REFS
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
57 CHUNK_ALLOC_NO_FORCE
= 0,
58 CHUNK_ALLOC_LIMITED
= 1,
59 CHUNK_ALLOC_FORCE
= 2,
63 * Control how reservations are dealt with.
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
74 RESERVE_ALLOC_NO_ACCOUNT
= 2,
77 static int update_block_group(struct btrfs_trans_handle
*trans
,
78 struct btrfs_root
*root
, u64 bytenr
,
79 u64 num_bytes
, int alloc
);
80 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
81 struct btrfs_root
*root
,
82 u64 bytenr
, u64 num_bytes
, u64 parent
,
83 u64 root_objectid
, u64 owner_objectid
,
84 u64 owner_offset
, int refs_to_drop
,
85 struct btrfs_delayed_extent_op
*extra_op
,
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
88 struct extent_buffer
*leaf
,
89 struct btrfs_extent_item
*ei
);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
91 struct btrfs_root
*root
,
92 u64 parent
, u64 root_objectid
,
93 u64 flags
, u64 owner
, u64 offset
,
94 struct btrfs_key
*ins
, int ref_mod
);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
96 struct btrfs_root
*root
,
97 u64 parent
, u64 root_objectid
,
98 u64 flags
, struct btrfs_disk_key
*key
,
99 int level
, struct btrfs_key
*ins
,
101 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
102 struct btrfs_root
*extent_root
, u64 flags
,
104 static int find_next_key(struct btrfs_path
*path
, int level
,
105 struct btrfs_key
*key
);
106 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
107 int dump_block_groups
);
108 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
109 u64 num_bytes
, int reserve
,
111 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
113 int btrfs_pin_extent(struct btrfs_root
*root
,
114 u64 bytenr
, u64 num_bytes
, int reserved
);
117 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
120 return cache
->cached
== BTRFS_CACHE_FINISHED
||
121 cache
->cached
== BTRFS_CACHE_ERROR
;
124 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
126 return (cache
->flags
& bits
) == bits
;
129 static void btrfs_get_block_group(struct btrfs_block_group_cache
*cache
)
131 atomic_inc(&cache
->count
);
134 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
136 if (atomic_dec_and_test(&cache
->count
)) {
137 WARN_ON(cache
->pinned
> 0);
138 WARN_ON(cache
->reserved
> 0);
139 kfree(cache
->free_space_ctl
);
145 * this adds the block group to the fs_info rb tree for the block group
148 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
149 struct btrfs_block_group_cache
*block_group
)
152 struct rb_node
*parent
= NULL
;
153 struct btrfs_block_group_cache
*cache
;
155 spin_lock(&info
->block_group_cache_lock
);
156 p
= &info
->block_group_cache_tree
.rb_node
;
160 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
162 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
164 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
167 spin_unlock(&info
->block_group_cache_lock
);
172 rb_link_node(&block_group
->cache_node
, parent
, p
);
173 rb_insert_color(&block_group
->cache_node
,
174 &info
->block_group_cache_tree
);
176 if (info
->first_logical_byte
> block_group
->key
.objectid
)
177 info
->first_logical_byte
= block_group
->key
.objectid
;
179 spin_unlock(&info
->block_group_cache_lock
);
185 * This will return the block group at or after bytenr if contains is 0, else
186 * it will return the block group that contains the bytenr
188 static struct btrfs_block_group_cache
*
189 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
192 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
196 spin_lock(&info
->block_group_cache_lock
);
197 n
= info
->block_group_cache_tree
.rb_node
;
200 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
202 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
203 start
= cache
->key
.objectid
;
205 if (bytenr
< start
) {
206 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
209 } else if (bytenr
> start
) {
210 if (contains
&& bytenr
<= end
) {
221 btrfs_get_block_group(ret
);
222 if (bytenr
== 0 && info
->first_logical_byte
> ret
->key
.objectid
)
223 info
->first_logical_byte
= ret
->key
.objectid
;
225 spin_unlock(&info
->block_group_cache_lock
);
230 static int add_excluded_extent(struct btrfs_root
*root
,
231 u64 start
, u64 num_bytes
)
233 u64 end
= start
+ num_bytes
- 1;
234 set_extent_bits(&root
->fs_info
->freed_extents
[0],
235 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
236 set_extent_bits(&root
->fs_info
->freed_extents
[1],
237 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
241 static void free_excluded_extents(struct btrfs_root
*root
,
242 struct btrfs_block_group_cache
*cache
)
246 start
= cache
->key
.objectid
;
247 end
= start
+ cache
->key
.offset
- 1;
249 clear_extent_bits(&root
->fs_info
->freed_extents
[0],
250 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
251 clear_extent_bits(&root
->fs_info
->freed_extents
[1],
252 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
255 static int exclude_super_stripes(struct btrfs_root
*root
,
256 struct btrfs_block_group_cache
*cache
)
263 if (cache
->key
.objectid
< BTRFS_SUPER_INFO_OFFSET
) {
264 stripe_len
= BTRFS_SUPER_INFO_OFFSET
- cache
->key
.objectid
;
265 cache
->bytes_super
+= stripe_len
;
266 ret
= add_excluded_extent(root
, cache
->key
.objectid
,
272 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
273 bytenr
= btrfs_sb_offset(i
);
274 ret
= btrfs_rmap_block(&root
->fs_info
->mapping_tree
,
275 cache
->key
.objectid
, bytenr
,
276 0, &logical
, &nr
, &stripe_len
);
283 if (logical
[nr
] > cache
->key
.objectid
+
287 if (logical
[nr
] + stripe_len
<= cache
->key
.objectid
)
291 if (start
< cache
->key
.objectid
) {
292 start
= cache
->key
.objectid
;
293 len
= (logical
[nr
] + stripe_len
) - start
;
295 len
= min_t(u64
, stripe_len
,
296 cache
->key
.objectid
+
297 cache
->key
.offset
- start
);
300 cache
->bytes_super
+= len
;
301 ret
= add_excluded_extent(root
, start
, len
);
313 static struct btrfs_caching_control
*
314 get_caching_control(struct btrfs_block_group_cache
*cache
)
316 struct btrfs_caching_control
*ctl
;
318 spin_lock(&cache
->lock
);
319 if (!cache
->caching_ctl
) {
320 spin_unlock(&cache
->lock
);
324 ctl
= cache
->caching_ctl
;
325 atomic_inc(&ctl
->count
);
326 spin_unlock(&cache
->lock
);
330 static void put_caching_control(struct btrfs_caching_control
*ctl
)
332 if (atomic_dec_and_test(&ctl
->count
))
337 * this is only called by cache_block_group, since we could have freed extents
338 * we need to check the pinned_extents for any extents that can't be used yet
339 * since their free space will be released as soon as the transaction commits.
341 static u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
342 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
344 u64 extent_start
, extent_end
, size
, total_added
= 0;
347 while (start
< end
) {
348 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
349 &extent_start
, &extent_end
,
350 EXTENT_DIRTY
| EXTENT_UPTODATE
,
355 if (extent_start
<= start
) {
356 start
= extent_end
+ 1;
357 } else if (extent_start
> start
&& extent_start
< end
) {
358 size
= extent_start
- start
;
360 ret
= btrfs_add_free_space(block_group
, start
,
362 BUG_ON(ret
); /* -ENOMEM or logic error */
363 start
= extent_end
+ 1;
372 ret
= btrfs_add_free_space(block_group
, start
, size
);
373 BUG_ON(ret
); /* -ENOMEM or logic error */
379 static noinline
void caching_thread(struct btrfs_work
*work
)
381 struct btrfs_block_group_cache
*block_group
;
382 struct btrfs_fs_info
*fs_info
;
383 struct btrfs_caching_control
*caching_ctl
;
384 struct btrfs_root
*extent_root
;
385 struct btrfs_path
*path
;
386 struct extent_buffer
*leaf
;
387 struct btrfs_key key
;
393 caching_ctl
= container_of(work
, struct btrfs_caching_control
, work
);
394 block_group
= caching_ctl
->block_group
;
395 fs_info
= block_group
->fs_info
;
396 extent_root
= fs_info
->extent_root
;
398 path
= btrfs_alloc_path();
402 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
405 * We don't want to deadlock with somebody trying to allocate a new
406 * extent for the extent root while also trying to search the extent
407 * root to add free space. So we skip locking and search the commit
408 * root, since its read-only
410 path
->skip_locking
= 1;
411 path
->search_commit_root
= 1;
416 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
418 mutex_lock(&caching_ctl
->mutex
);
419 /* need to make sure the commit_root doesn't disappear */
420 down_read(&fs_info
->commit_root_sem
);
423 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
427 leaf
= path
->nodes
[0];
428 nritems
= btrfs_header_nritems(leaf
);
431 if (btrfs_fs_closing(fs_info
) > 1) {
436 if (path
->slots
[0] < nritems
) {
437 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
439 ret
= find_next_key(path
, 0, &key
);
443 if (need_resched() ||
444 rwsem_is_contended(&fs_info
->commit_root_sem
)) {
445 caching_ctl
->progress
= last
;
446 btrfs_release_path(path
);
447 up_read(&fs_info
->commit_root_sem
);
448 mutex_unlock(&caching_ctl
->mutex
);
453 ret
= btrfs_next_leaf(extent_root
, path
);
458 leaf
= path
->nodes
[0];
459 nritems
= btrfs_header_nritems(leaf
);
463 if (key
.objectid
< last
) {
466 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
468 caching_ctl
->progress
= last
;
469 btrfs_release_path(path
);
473 if (key
.objectid
< block_group
->key
.objectid
) {
478 if (key
.objectid
>= block_group
->key
.objectid
+
479 block_group
->key
.offset
)
482 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
483 key
.type
== BTRFS_METADATA_ITEM_KEY
) {
484 total_found
+= add_new_free_space(block_group
,
487 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
488 last
= key
.objectid
+
489 fs_info
->tree_root
->nodesize
;
491 last
= key
.objectid
+ key
.offset
;
493 if (total_found
> (1024 * 1024 * 2)) {
495 wake_up(&caching_ctl
->wait
);
502 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
503 block_group
->key
.objectid
+
504 block_group
->key
.offset
);
505 caching_ctl
->progress
= (u64
)-1;
507 spin_lock(&block_group
->lock
);
508 block_group
->caching_ctl
= NULL
;
509 block_group
->cached
= BTRFS_CACHE_FINISHED
;
510 spin_unlock(&block_group
->lock
);
513 btrfs_free_path(path
);
514 up_read(&fs_info
->commit_root_sem
);
516 free_excluded_extents(extent_root
, block_group
);
518 mutex_unlock(&caching_ctl
->mutex
);
521 spin_lock(&block_group
->lock
);
522 block_group
->caching_ctl
= NULL
;
523 block_group
->cached
= BTRFS_CACHE_ERROR
;
524 spin_unlock(&block_group
->lock
);
526 wake_up(&caching_ctl
->wait
);
528 put_caching_control(caching_ctl
);
529 btrfs_put_block_group(block_group
);
532 static int cache_block_group(struct btrfs_block_group_cache
*cache
,
536 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
537 struct btrfs_caching_control
*caching_ctl
;
540 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_NOFS
);
544 INIT_LIST_HEAD(&caching_ctl
->list
);
545 mutex_init(&caching_ctl
->mutex
);
546 init_waitqueue_head(&caching_ctl
->wait
);
547 caching_ctl
->block_group
= cache
;
548 caching_ctl
->progress
= cache
->key
.objectid
;
549 atomic_set(&caching_ctl
->count
, 1);
550 btrfs_init_work(&caching_ctl
->work
, btrfs_cache_helper
,
551 caching_thread
, NULL
, NULL
);
553 spin_lock(&cache
->lock
);
555 * This should be a rare occasion, but this could happen I think in the
556 * case where one thread starts to load the space cache info, and then
557 * some other thread starts a transaction commit which tries to do an
558 * allocation while the other thread is still loading the space cache
559 * info. The previous loop should have kept us from choosing this block
560 * group, but if we've moved to the state where we will wait on caching
561 * block groups we need to first check if we're doing a fast load here,
562 * so we can wait for it to finish, otherwise we could end up allocating
563 * from a block group who's cache gets evicted for one reason or
566 while (cache
->cached
== BTRFS_CACHE_FAST
) {
567 struct btrfs_caching_control
*ctl
;
569 ctl
= cache
->caching_ctl
;
570 atomic_inc(&ctl
->count
);
571 prepare_to_wait(&ctl
->wait
, &wait
, TASK_UNINTERRUPTIBLE
);
572 spin_unlock(&cache
->lock
);
576 finish_wait(&ctl
->wait
, &wait
);
577 put_caching_control(ctl
);
578 spin_lock(&cache
->lock
);
581 if (cache
->cached
!= BTRFS_CACHE_NO
) {
582 spin_unlock(&cache
->lock
);
586 WARN_ON(cache
->caching_ctl
);
587 cache
->caching_ctl
= caching_ctl
;
588 cache
->cached
= BTRFS_CACHE_FAST
;
589 spin_unlock(&cache
->lock
);
591 if (fs_info
->mount_opt
& BTRFS_MOUNT_SPACE_CACHE
) {
592 mutex_lock(&caching_ctl
->mutex
);
593 ret
= load_free_space_cache(fs_info
, cache
);
595 spin_lock(&cache
->lock
);
597 cache
->caching_ctl
= NULL
;
598 cache
->cached
= BTRFS_CACHE_FINISHED
;
599 cache
->last_byte_to_unpin
= (u64
)-1;
600 caching_ctl
->progress
= (u64
)-1;
602 if (load_cache_only
) {
603 cache
->caching_ctl
= NULL
;
604 cache
->cached
= BTRFS_CACHE_NO
;
606 cache
->cached
= BTRFS_CACHE_STARTED
;
607 cache
->has_caching_ctl
= 1;
610 spin_unlock(&cache
->lock
);
611 mutex_unlock(&caching_ctl
->mutex
);
613 wake_up(&caching_ctl
->wait
);
615 put_caching_control(caching_ctl
);
616 free_excluded_extents(fs_info
->extent_root
, cache
);
621 * We are not going to do the fast caching, set cached to the
622 * appropriate value and wakeup any waiters.
624 spin_lock(&cache
->lock
);
625 if (load_cache_only
) {
626 cache
->caching_ctl
= NULL
;
627 cache
->cached
= BTRFS_CACHE_NO
;
629 cache
->cached
= BTRFS_CACHE_STARTED
;
630 cache
->has_caching_ctl
= 1;
632 spin_unlock(&cache
->lock
);
633 wake_up(&caching_ctl
->wait
);
636 if (load_cache_only
) {
637 put_caching_control(caching_ctl
);
641 down_write(&fs_info
->commit_root_sem
);
642 atomic_inc(&caching_ctl
->count
);
643 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
644 up_write(&fs_info
->commit_root_sem
);
646 btrfs_get_block_group(cache
);
648 btrfs_queue_work(fs_info
->caching_workers
, &caching_ctl
->work
);
654 * return the block group that starts at or after bytenr
656 static struct btrfs_block_group_cache
*
657 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
659 struct btrfs_block_group_cache
*cache
;
661 cache
= block_group_cache_tree_search(info
, bytenr
, 0);
667 * return the block group that contains the given bytenr
669 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
670 struct btrfs_fs_info
*info
,
673 struct btrfs_block_group_cache
*cache
;
675 cache
= block_group_cache_tree_search(info
, bytenr
, 1);
680 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
683 struct list_head
*head
= &info
->space_info
;
684 struct btrfs_space_info
*found
;
686 flags
&= BTRFS_BLOCK_GROUP_TYPE_MASK
;
689 list_for_each_entry_rcu(found
, head
, list
) {
690 if (found
->flags
& flags
) {
700 * after adding space to the filesystem, we need to clear the full flags
701 * on all the space infos.
703 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
705 struct list_head
*head
= &info
->space_info
;
706 struct btrfs_space_info
*found
;
709 list_for_each_entry_rcu(found
, head
, list
)
714 /* simple helper to search for an existing data extent at a given offset */
715 int btrfs_lookup_data_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
718 struct btrfs_key key
;
719 struct btrfs_path
*path
;
721 path
= btrfs_alloc_path();
725 key
.objectid
= start
;
727 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
728 ret
= btrfs_search_slot(NULL
, root
->fs_info
->extent_root
, &key
, path
,
730 btrfs_free_path(path
);
735 * helper function to lookup reference count and flags of a tree block.
737 * the head node for delayed ref is used to store the sum of all the
738 * reference count modifications queued up in the rbtree. the head
739 * node may also store the extent flags to set. This way you can check
740 * to see what the reference count and extent flags would be if all of
741 * the delayed refs are not processed.
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
744 struct btrfs_root
*root
, u64 bytenr
,
745 u64 offset
, int metadata
, u64
*refs
, u64
*flags
)
747 struct btrfs_delayed_ref_head
*head
;
748 struct btrfs_delayed_ref_root
*delayed_refs
;
749 struct btrfs_path
*path
;
750 struct btrfs_extent_item
*ei
;
751 struct extent_buffer
*leaf
;
752 struct btrfs_key key
;
759 * If we don't have skinny metadata, don't bother doing anything
762 if (metadata
&& !btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
)) {
763 offset
= root
->nodesize
;
767 path
= btrfs_alloc_path();
772 path
->skip_locking
= 1;
773 path
->search_commit_root
= 1;
777 key
.objectid
= bytenr
;
780 key
.type
= BTRFS_METADATA_ITEM_KEY
;
782 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
784 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
,
789 if (ret
> 0 && metadata
&& key
.type
== BTRFS_METADATA_ITEM_KEY
) {
790 if (path
->slots
[0]) {
792 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
794 if (key
.objectid
== bytenr
&&
795 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
796 key
.offset
== root
->nodesize
)
802 leaf
= path
->nodes
[0];
803 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
804 if (item_size
>= sizeof(*ei
)) {
805 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
806 struct btrfs_extent_item
);
807 num_refs
= btrfs_extent_refs(leaf
, ei
);
808 extent_flags
= btrfs_extent_flags(leaf
, ei
);
810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
811 struct btrfs_extent_item_v0
*ei0
;
812 BUG_ON(item_size
!= sizeof(*ei0
));
813 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
814 struct btrfs_extent_item_v0
);
815 num_refs
= btrfs_extent_refs_v0(leaf
, ei0
);
816 /* FIXME: this isn't correct for data */
817 extent_flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
822 BUG_ON(num_refs
== 0);
832 delayed_refs
= &trans
->transaction
->delayed_refs
;
833 spin_lock(&delayed_refs
->lock
);
834 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
836 if (!mutex_trylock(&head
->mutex
)) {
837 atomic_inc(&head
->node
.refs
);
838 spin_unlock(&delayed_refs
->lock
);
840 btrfs_release_path(path
);
843 * Mutex was contended, block until it's released and try
846 mutex_lock(&head
->mutex
);
847 mutex_unlock(&head
->mutex
);
848 btrfs_put_delayed_ref(&head
->node
);
851 spin_lock(&head
->lock
);
852 if (head
->extent_op
&& head
->extent_op
->update_flags
)
853 extent_flags
|= head
->extent_op
->flags_to_set
;
855 BUG_ON(num_refs
== 0);
857 num_refs
+= head
->node
.ref_mod
;
858 spin_unlock(&head
->lock
);
859 mutex_unlock(&head
->mutex
);
861 spin_unlock(&delayed_refs
->lock
);
863 WARN_ON(num_refs
== 0);
867 *flags
= extent_flags
;
869 btrfs_free_path(path
);
874 * Back reference rules. Back refs have three main goals:
876 * 1) differentiate between all holders of references to an extent so that
877 * when a reference is dropped we can make sure it was a valid reference
878 * before freeing the extent.
880 * 2) Provide enough information to quickly find the holders of an extent
881 * if we notice a given block is corrupted or bad.
883 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
884 * maintenance. This is actually the same as #2, but with a slightly
885 * different use case.
887 * There are two kinds of back refs. The implicit back refs is optimized
888 * for pointers in non-shared tree blocks. For a given pointer in a block,
889 * back refs of this kind provide information about the block's owner tree
890 * and the pointer's key. These information allow us to find the block by
891 * b-tree searching. The full back refs is for pointers in tree blocks not
892 * referenced by their owner trees. The location of tree block is recorded
893 * in the back refs. Actually the full back refs is generic, and can be
894 * used in all cases the implicit back refs is used. The major shortcoming
895 * of the full back refs is its overhead. Every time a tree block gets
896 * COWed, we have to update back refs entry for all pointers in it.
898 * For a newly allocated tree block, we use implicit back refs for
899 * pointers in it. This means most tree related operations only involve
900 * implicit back refs. For a tree block created in old transaction, the
901 * only way to drop a reference to it is COW it. So we can detect the
902 * event that tree block loses its owner tree's reference and do the
903 * back refs conversion.
905 * When a tree block is COW'd through a tree, there are four cases:
907 * The reference count of the block is one and the tree is the block's
908 * owner tree. Nothing to do in this case.
910 * The reference count of the block is one and the tree is not the
911 * block's owner tree. In this case, full back refs is used for pointers
912 * in the block. Remove these full back refs, add implicit back refs for
913 * every pointers in the new block.
915 * The reference count of the block is greater than one and the tree is
916 * the block's owner tree. In this case, implicit back refs is used for
917 * pointers in the block. Add full back refs for every pointers in the
918 * block, increase lower level extents' reference counts. The original
919 * implicit back refs are entailed to the new block.
921 * The reference count of the block is greater than one and the tree is
922 * not the block's owner tree. Add implicit back refs for every pointer in
923 * the new block, increase lower level extents' reference count.
925 * Back Reference Key composing:
927 * The key objectid corresponds to the first byte in the extent,
928 * The key type is used to differentiate between types of back refs.
929 * There are different meanings of the key offset for different types
932 * File extents can be referenced by:
934 * - multiple snapshots, subvolumes, or different generations in one subvol
935 * - different files inside a single subvolume
936 * - different offsets inside a file (bookend extents in file.c)
938 * The extent ref structure for the implicit back refs has fields for:
940 * - Objectid of the subvolume root
941 * - objectid of the file holding the reference
942 * - original offset in the file
943 * - how many bookend extents
945 * The key offset for the implicit back refs is hash of the first
948 * The extent ref structure for the full back refs has field for:
950 * - number of pointers in the tree leaf
952 * The key offset for the implicit back refs is the first byte of
955 * When a file extent is allocated, The implicit back refs is used.
956 * the fields are filled in:
958 * (root_key.objectid, inode objectid, offset in file, 1)
960 * When a file extent is removed file truncation, we find the
961 * corresponding implicit back refs and check the following fields:
963 * (btrfs_header_owner(leaf), inode objectid, offset in file)
965 * Btree extents can be referenced by:
967 * - Different subvolumes
969 * Both the implicit back refs and the full back refs for tree blocks
970 * only consist of key. The key offset for the implicit back refs is
971 * objectid of block's owner tree. The key offset for the full back refs
972 * is the first byte of parent block.
974 * When implicit back refs is used, information about the lowest key and
975 * level of the tree block are required. These information are stored in
976 * tree block info structure.
979 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
980 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
981 struct btrfs_root
*root
,
982 struct btrfs_path
*path
,
983 u64 owner
, u32 extra_size
)
985 struct btrfs_extent_item
*item
;
986 struct btrfs_extent_item_v0
*ei0
;
987 struct btrfs_extent_ref_v0
*ref0
;
988 struct btrfs_tree_block_info
*bi
;
989 struct extent_buffer
*leaf
;
990 struct btrfs_key key
;
991 struct btrfs_key found_key
;
992 u32 new_size
= sizeof(*item
);
996 leaf
= path
->nodes
[0];
997 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
999 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1000 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1001 struct btrfs_extent_item_v0
);
1002 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
1004 if (owner
== (u64
)-1) {
1006 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1007 ret
= btrfs_next_leaf(root
, path
);
1010 BUG_ON(ret
> 0); /* Corruption */
1011 leaf
= path
->nodes
[0];
1013 btrfs_item_key_to_cpu(leaf
, &found_key
,
1015 BUG_ON(key
.objectid
!= found_key
.objectid
);
1016 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
1020 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1021 struct btrfs_extent_ref_v0
);
1022 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
1026 btrfs_release_path(path
);
1028 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
1029 new_size
+= sizeof(*bi
);
1031 new_size
-= sizeof(*ei0
);
1032 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
1033 new_size
+ extra_size
, 1);
1036 BUG_ON(ret
); /* Corruption */
1038 btrfs_extend_item(root
, path
, new_size
);
1040 leaf
= path
->nodes
[0];
1041 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1042 btrfs_set_extent_refs(leaf
, item
, refs
);
1043 /* FIXME: get real generation */
1044 btrfs_set_extent_generation(leaf
, item
, 0);
1045 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1046 btrfs_set_extent_flags(leaf
, item
,
1047 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
1048 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
1049 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
1050 /* FIXME: get first key of the block */
1051 memset_extent_buffer(leaf
, 0, (unsigned long)bi
, sizeof(*bi
));
1052 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
1054 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
1056 btrfs_mark_buffer_dirty(leaf
);
1061 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
1063 u32 high_crc
= ~(u32
)0;
1064 u32 low_crc
= ~(u32
)0;
1067 lenum
= cpu_to_le64(root_objectid
);
1068 high_crc
= btrfs_crc32c(high_crc
, &lenum
, sizeof(lenum
));
1069 lenum
= cpu_to_le64(owner
);
1070 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1071 lenum
= cpu_to_le64(offset
);
1072 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1074 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
1077 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
1078 struct btrfs_extent_data_ref
*ref
)
1080 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
1081 btrfs_extent_data_ref_objectid(leaf
, ref
),
1082 btrfs_extent_data_ref_offset(leaf
, ref
));
1085 static int match_extent_data_ref(struct extent_buffer
*leaf
,
1086 struct btrfs_extent_data_ref
*ref
,
1087 u64 root_objectid
, u64 owner
, u64 offset
)
1089 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
1090 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
1091 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
1096 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
1097 struct btrfs_root
*root
,
1098 struct btrfs_path
*path
,
1099 u64 bytenr
, u64 parent
,
1101 u64 owner
, u64 offset
)
1103 struct btrfs_key key
;
1104 struct btrfs_extent_data_ref
*ref
;
1105 struct extent_buffer
*leaf
;
1111 key
.objectid
= bytenr
;
1113 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1114 key
.offset
= parent
;
1116 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1117 key
.offset
= hash_extent_data_ref(root_objectid
,
1122 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1131 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1132 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1133 btrfs_release_path(path
);
1134 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1145 leaf
= path
->nodes
[0];
1146 nritems
= btrfs_header_nritems(leaf
);
1148 if (path
->slots
[0] >= nritems
) {
1149 ret
= btrfs_next_leaf(root
, path
);
1155 leaf
= path
->nodes
[0];
1156 nritems
= btrfs_header_nritems(leaf
);
1160 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1161 if (key
.objectid
!= bytenr
||
1162 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
1165 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1166 struct btrfs_extent_data_ref
);
1168 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1171 btrfs_release_path(path
);
1183 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
1184 struct btrfs_root
*root
,
1185 struct btrfs_path
*path
,
1186 u64 bytenr
, u64 parent
,
1187 u64 root_objectid
, u64 owner
,
1188 u64 offset
, int refs_to_add
)
1190 struct btrfs_key key
;
1191 struct extent_buffer
*leaf
;
1196 key
.objectid
= bytenr
;
1198 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1199 key
.offset
= parent
;
1200 size
= sizeof(struct btrfs_shared_data_ref
);
1202 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1203 key
.offset
= hash_extent_data_ref(root_objectid
,
1205 size
= sizeof(struct btrfs_extent_data_ref
);
1208 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
1209 if (ret
&& ret
!= -EEXIST
)
1212 leaf
= path
->nodes
[0];
1214 struct btrfs_shared_data_ref
*ref
;
1215 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1216 struct btrfs_shared_data_ref
);
1218 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
1220 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
1221 num_refs
+= refs_to_add
;
1222 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
1225 struct btrfs_extent_data_ref
*ref
;
1226 while (ret
== -EEXIST
) {
1227 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1228 struct btrfs_extent_data_ref
);
1229 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1232 btrfs_release_path(path
);
1234 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1236 if (ret
&& ret
!= -EEXIST
)
1239 leaf
= path
->nodes
[0];
1241 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1242 struct btrfs_extent_data_ref
);
1244 btrfs_set_extent_data_ref_root(leaf
, ref
,
1246 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
1247 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
1248 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
1250 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
1251 num_refs
+= refs_to_add
;
1252 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
1255 btrfs_mark_buffer_dirty(leaf
);
1258 btrfs_release_path(path
);
1262 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
1263 struct btrfs_root
*root
,
1264 struct btrfs_path
*path
,
1265 int refs_to_drop
, int *last_ref
)
1267 struct btrfs_key key
;
1268 struct btrfs_extent_data_ref
*ref1
= NULL
;
1269 struct btrfs_shared_data_ref
*ref2
= NULL
;
1270 struct extent_buffer
*leaf
;
1274 leaf
= path
->nodes
[0];
1275 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1277 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1278 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1279 struct btrfs_extent_data_ref
);
1280 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1281 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1282 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1283 struct btrfs_shared_data_ref
);
1284 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1285 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1286 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1287 struct btrfs_extent_ref_v0
*ref0
;
1288 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1289 struct btrfs_extent_ref_v0
);
1290 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1296 BUG_ON(num_refs
< refs_to_drop
);
1297 num_refs
-= refs_to_drop
;
1299 if (num_refs
== 0) {
1300 ret
= btrfs_del_item(trans
, root
, path
);
1303 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1304 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1305 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1306 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1309 struct btrfs_extent_ref_v0
*ref0
;
1310 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1311 struct btrfs_extent_ref_v0
);
1312 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1315 btrfs_mark_buffer_dirty(leaf
);
1320 static noinline u32
extent_data_ref_count(struct btrfs_root
*root
,
1321 struct btrfs_path
*path
,
1322 struct btrfs_extent_inline_ref
*iref
)
1324 struct btrfs_key key
;
1325 struct extent_buffer
*leaf
;
1326 struct btrfs_extent_data_ref
*ref1
;
1327 struct btrfs_shared_data_ref
*ref2
;
1330 leaf
= path
->nodes
[0];
1331 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1333 if (btrfs_extent_inline_ref_type(leaf
, iref
) ==
1334 BTRFS_EXTENT_DATA_REF_KEY
) {
1335 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1336 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1338 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1339 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1341 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1342 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1343 struct btrfs_extent_data_ref
);
1344 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1345 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1346 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1347 struct btrfs_shared_data_ref
);
1348 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1349 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1350 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1351 struct btrfs_extent_ref_v0
*ref0
;
1352 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1353 struct btrfs_extent_ref_v0
);
1354 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1362 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1363 struct btrfs_root
*root
,
1364 struct btrfs_path
*path
,
1365 u64 bytenr
, u64 parent
,
1368 struct btrfs_key key
;
1371 key
.objectid
= bytenr
;
1373 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1374 key
.offset
= parent
;
1376 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1377 key
.offset
= root_objectid
;
1380 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1383 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1384 if (ret
== -ENOENT
&& parent
) {
1385 btrfs_release_path(path
);
1386 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1387 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1395 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1396 struct btrfs_root
*root
,
1397 struct btrfs_path
*path
,
1398 u64 bytenr
, u64 parent
,
1401 struct btrfs_key key
;
1404 key
.objectid
= bytenr
;
1406 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1407 key
.offset
= parent
;
1409 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1410 key
.offset
= root_objectid
;
1413 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1414 btrfs_release_path(path
);
1418 static inline int extent_ref_type(u64 parent
, u64 owner
)
1421 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1423 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1425 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1428 type
= BTRFS_SHARED_DATA_REF_KEY
;
1430 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1435 static int find_next_key(struct btrfs_path
*path
, int level
,
1436 struct btrfs_key
*key
)
1439 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1440 if (!path
->nodes
[level
])
1442 if (path
->slots
[level
] + 1 >=
1443 btrfs_header_nritems(path
->nodes
[level
]))
1446 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1447 path
->slots
[level
] + 1);
1449 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1450 path
->slots
[level
] + 1);
1457 * look for inline back ref. if back ref is found, *ref_ret is set
1458 * to the address of inline back ref, and 0 is returned.
1460 * if back ref isn't found, *ref_ret is set to the address where it
1461 * should be inserted, and -ENOENT is returned.
1463 * if insert is true and there are too many inline back refs, the path
1464 * points to the extent item, and -EAGAIN is returned.
1466 * NOTE: inline back refs are ordered in the same way that back ref
1467 * items in the tree are ordered.
1469 static noinline_for_stack
1470 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1471 struct btrfs_root
*root
,
1472 struct btrfs_path
*path
,
1473 struct btrfs_extent_inline_ref
**ref_ret
,
1474 u64 bytenr
, u64 num_bytes
,
1475 u64 parent
, u64 root_objectid
,
1476 u64 owner
, u64 offset
, int insert
)
1478 struct btrfs_key key
;
1479 struct extent_buffer
*leaf
;
1480 struct btrfs_extent_item
*ei
;
1481 struct btrfs_extent_inline_ref
*iref
;
1491 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
1494 key
.objectid
= bytenr
;
1495 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1496 key
.offset
= num_bytes
;
1498 want
= extent_ref_type(parent
, owner
);
1500 extra_size
= btrfs_extent_inline_ref_size(want
);
1501 path
->keep_locks
= 1;
1506 * Owner is our parent level, so we can just add one to get the level
1507 * for the block we are interested in.
1509 if (skinny_metadata
&& owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1510 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1515 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1522 * We may be a newly converted file system which still has the old fat
1523 * extent entries for metadata, so try and see if we have one of those.
1525 if (ret
> 0 && skinny_metadata
) {
1526 skinny_metadata
= false;
1527 if (path
->slots
[0]) {
1529 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1531 if (key
.objectid
== bytenr
&&
1532 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
1533 key
.offset
== num_bytes
)
1537 key
.objectid
= bytenr
;
1538 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1539 key
.offset
= num_bytes
;
1540 btrfs_release_path(path
);
1545 if (ret
&& !insert
) {
1548 } else if (WARN_ON(ret
)) {
1553 leaf
= path
->nodes
[0];
1554 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1555 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1556 if (item_size
< sizeof(*ei
)) {
1561 ret
= convert_extent_item_v0(trans
, root
, path
, owner
,
1567 leaf
= path
->nodes
[0];
1568 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1571 BUG_ON(item_size
< sizeof(*ei
));
1573 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1574 flags
= btrfs_extent_flags(leaf
, ei
);
1576 ptr
= (unsigned long)(ei
+ 1);
1577 end
= (unsigned long)ei
+ item_size
;
1579 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
&& !skinny_metadata
) {
1580 ptr
+= sizeof(struct btrfs_tree_block_info
);
1590 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1591 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1595 ptr
+= btrfs_extent_inline_ref_size(type
);
1599 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1600 struct btrfs_extent_data_ref
*dref
;
1601 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1602 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1607 if (hash_extent_data_ref_item(leaf
, dref
) <
1608 hash_extent_data_ref(root_objectid
, owner
, offset
))
1612 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1614 if (parent
== ref_offset
) {
1618 if (ref_offset
< parent
)
1621 if (root_objectid
== ref_offset
) {
1625 if (ref_offset
< root_objectid
)
1629 ptr
+= btrfs_extent_inline_ref_size(type
);
1631 if (err
== -ENOENT
&& insert
) {
1632 if (item_size
+ extra_size
>=
1633 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1638 * To add new inline back ref, we have to make sure
1639 * there is no corresponding back ref item.
1640 * For simplicity, we just do not add new inline back
1641 * ref if there is any kind of item for this block
1643 if (find_next_key(path
, 0, &key
) == 0 &&
1644 key
.objectid
== bytenr
&&
1645 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1650 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1653 path
->keep_locks
= 0;
1654 btrfs_unlock_up_safe(path
, 1);
1660 * helper to add new inline back ref
1662 static noinline_for_stack
1663 void setup_inline_extent_backref(struct btrfs_root
*root
,
1664 struct btrfs_path
*path
,
1665 struct btrfs_extent_inline_ref
*iref
,
1666 u64 parent
, u64 root_objectid
,
1667 u64 owner
, u64 offset
, int refs_to_add
,
1668 struct btrfs_delayed_extent_op
*extent_op
)
1670 struct extent_buffer
*leaf
;
1671 struct btrfs_extent_item
*ei
;
1674 unsigned long item_offset
;
1679 leaf
= path
->nodes
[0];
1680 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1681 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1683 type
= extent_ref_type(parent
, owner
);
1684 size
= btrfs_extent_inline_ref_size(type
);
1686 btrfs_extend_item(root
, path
, size
);
1688 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1689 refs
= btrfs_extent_refs(leaf
, ei
);
1690 refs
+= refs_to_add
;
1691 btrfs_set_extent_refs(leaf
, ei
, refs
);
1693 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1695 ptr
= (unsigned long)ei
+ item_offset
;
1696 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1697 if (ptr
< end
- size
)
1698 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1701 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1702 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1703 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1704 struct btrfs_extent_data_ref
*dref
;
1705 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1706 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1707 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1708 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1709 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1710 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1711 struct btrfs_shared_data_ref
*sref
;
1712 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1713 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1714 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1715 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1716 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1718 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1720 btrfs_mark_buffer_dirty(leaf
);
1723 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1724 struct btrfs_root
*root
,
1725 struct btrfs_path
*path
,
1726 struct btrfs_extent_inline_ref
**ref_ret
,
1727 u64 bytenr
, u64 num_bytes
, u64 parent
,
1728 u64 root_objectid
, u64 owner
, u64 offset
)
1732 ret
= lookup_inline_extent_backref(trans
, root
, path
, ref_ret
,
1733 bytenr
, num_bytes
, parent
,
1734 root_objectid
, owner
, offset
, 0);
1738 btrfs_release_path(path
);
1741 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1742 ret
= lookup_tree_block_ref(trans
, root
, path
, bytenr
, parent
,
1745 ret
= lookup_extent_data_ref(trans
, root
, path
, bytenr
, parent
,
1746 root_objectid
, owner
, offset
);
1752 * helper to update/remove inline back ref
1754 static noinline_for_stack
1755 void update_inline_extent_backref(struct btrfs_root
*root
,
1756 struct btrfs_path
*path
,
1757 struct btrfs_extent_inline_ref
*iref
,
1759 struct btrfs_delayed_extent_op
*extent_op
,
1762 struct extent_buffer
*leaf
;
1763 struct btrfs_extent_item
*ei
;
1764 struct btrfs_extent_data_ref
*dref
= NULL
;
1765 struct btrfs_shared_data_ref
*sref
= NULL
;
1773 leaf
= path
->nodes
[0];
1774 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1775 refs
= btrfs_extent_refs(leaf
, ei
);
1776 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1777 refs
+= refs_to_mod
;
1778 btrfs_set_extent_refs(leaf
, ei
, refs
);
1780 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1782 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1784 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1785 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1786 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1787 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1788 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1789 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1792 BUG_ON(refs_to_mod
!= -1);
1795 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1796 refs
+= refs_to_mod
;
1799 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1800 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1802 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1805 size
= btrfs_extent_inline_ref_size(type
);
1806 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1807 ptr
= (unsigned long)iref
;
1808 end
= (unsigned long)ei
+ item_size
;
1809 if (ptr
+ size
< end
)
1810 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1813 btrfs_truncate_item(root
, path
, item_size
, 1);
1815 btrfs_mark_buffer_dirty(leaf
);
1818 static noinline_for_stack
1819 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1820 struct btrfs_root
*root
,
1821 struct btrfs_path
*path
,
1822 u64 bytenr
, u64 num_bytes
, u64 parent
,
1823 u64 root_objectid
, u64 owner
,
1824 u64 offset
, int refs_to_add
,
1825 struct btrfs_delayed_extent_op
*extent_op
)
1827 struct btrfs_extent_inline_ref
*iref
;
1830 ret
= lookup_inline_extent_backref(trans
, root
, path
, &iref
,
1831 bytenr
, num_bytes
, parent
,
1832 root_objectid
, owner
, offset
, 1);
1834 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1835 update_inline_extent_backref(root
, path
, iref
,
1836 refs_to_add
, extent_op
, NULL
);
1837 } else if (ret
== -ENOENT
) {
1838 setup_inline_extent_backref(root
, path
, iref
, parent
,
1839 root_objectid
, owner
, offset
,
1840 refs_to_add
, extent_op
);
1846 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
1847 struct btrfs_root
*root
,
1848 struct btrfs_path
*path
,
1849 u64 bytenr
, u64 parent
, u64 root_objectid
,
1850 u64 owner
, u64 offset
, int refs_to_add
)
1853 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1854 BUG_ON(refs_to_add
!= 1);
1855 ret
= insert_tree_block_ref(trans
, root
, path
, bytenr
,
1856 parent
, root_objectid
);
1858 ret
= insert_extent_data_ref(trans
, root
, path
, bytenr
,
1859 parent
, root_objectid
,
1860 owner
, offset
, refs_to_add
);
1865 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1866 struct btrfs_root
*root
,
1867 struct btrfs_path
*path
,
1868 struct btrfs_extent_inline_ref
*iref
,
1869 int refs_to_drop
, int is_data
, int *last_ref
)
1873 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1875 update_inline_extent_backref(root
, path
, iref
,
1876 -refs_to_drop
, NULL
, last_ref
);
1877 } else if (is_data
) {
1878 ret
= remove_extent_data_ref(trans
, root
, path
, refs_to_drop
,
1882 ret
= btrfs_del_item(trans
, root
, path
);
1887 static int btrfs_issue_discard(struct block_device
*bdev
,
1890 return blkdev_issue_discard(bdev
, start
>> 9, len
>> 9, GFP_NOFS
, 0);
1893 int btrfs_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
1894 u64 num_bytes
, u64
*actual_bytes
)
1897 u64 discarded_bytes
= 0;
1898 struct btrfs_bio
*bbio
= NULL
;
1901 /* Tell the block device(s) that the sectors can be discarded */
1902 ret
= btrfs_map_block(root
->fs_info
, REQ_DISCARD
,
1903 bytenr
, &num_bytes
, &bbio
, 0);
1904 /* Error condition is -ENOMEM */
1906 struct btrfs_bio_stripe
*stripe
= bbio
->stripes
;
1910 for (i
= 0; i
< bbio
->num_stripes
; i
++, stripe
++) {
1911 if (!stripe
->dev
->can_discard
)
1914 ret
= btrfs_issue_discard(stripe
->dev
->bdev
,
1918 discarded_bytes
+= stripe
->length
;
1919 else if (ret
!= -EOPNOTSUPP
)
1920 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1923 * Just in case we get back EOPNOTSUPP for some reason,
1924 * just ignore the return value so we don't screw up
1925 * people calling discard_extent.
1929 btrfs_put_bbio(bbio
);
1933 *actual_bytes
= discarded_bytes
;
1936 if (ret
== -EOPNOTSUPP
)
1941 /* Can return -ENOMEM */
1942 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1943 struct btrfs_root
*root
,
1944 u64 bytenr
, u64 num_bytes
, u64 parent
,
1945 u64 root_objectid
, u64 owner
, u64 offset
,
1949 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1951 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
1952 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
1954 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1955 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
1957 parent
, root_objectid
, (int)owner
,
1958 BTRFS_ADD_DELAYED_REF
, NULL
, no_quota
);
1960 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
1962 parent
, root_objectid
, owner
, offset
,
1963 BTRFS_ADD_DELAYED_REF
, NULL
, no_quota
);
1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1969 struct btrfs_root
*root
,
1970 u64 bytenr
, u64 num_bytes
,
1971 u64 parent
, u64 root_objectid
,
1972 u64 owner
, u64 offset
, int refs_to_add
,
1974 struct btrfs_delayed_extent_op
*extent_op
)
1976 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1977 struct btrfs_path
*path
;
1978 struct extent_buffer
*leaf
;
1979 struct btrfs_extent_item
*item
;
1980 struct btrfs_key key
;
1983 enum btrfs_qgroup_operation_type type
= BTRFS_QGROUP_OPER_ADD_EXCL
;
1985 path
= btrfs_alloc_path();
1989 if (!is_fstree(root_objectid
) || !root
->fs_info
->quota_enabled
)
1993 path
->leave_spinning
= 1;
1994 /* this will setup the path even if it fails to insert the back ref */
1995 ret
= insert_inline_extent_backref(trans
, fs_info
->extent_root
, path
,
1996 bytenr
, num_bytes
, parent
,
1997 root_objectid
, owner
, offset
,
1998 refs_to_add
, extent_op
);
1999 if ((ret
< 0 && ret
!= -EAGAIN
) || (!ret
&& no_quota
))
2002 * Ok we were able to insert an inline extent and it appears to be a new
2003 * reference, deal with the qgroup accounting.
2005 if (!ret
&& !no_quota
) {
2006 ASSERT(root
->fs_info
->quota_enabled
);
2007 leaf
= path
->nodes
[0];
2008 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2009 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2010 struct btrfs_extent_item
);
2011 if (btrfs_extent_refs(leaf
, item
) > (u64
)refs_to_add
)
2012 type
= BTRFS_QGROUP_OPER_ADD_SHARED
;
2013 btrfs_release_path(path
);
2015 ret
= btrfs_qgroup_record_ref(trans
, fs_info
, root_objectid
,
2016 bytenr
, num_bytes
, type
, 0);
2021 * Ok we had -EAGAIN which means we didn't have space to insert and
2022 * inline extent ref, so just update the reference count and add a
2025 leaf
= path
->nodes
[0];
2026 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2027 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2028 refs
= btrfs_extent_refs(leaf
, item
);
2030 type
= BTRFS_QGROUP_OPER_ADD_SHARED
;
2031 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
2033 __run_delayed_extent_op(extent_op
, leaf
, item
);
2035 btrfs_mark_buffer_dirty(leaf
);
2036 btrfs_release_path(path
);
2039 ret
= btrfs_qgroup_record_ref(trans
, fs_info
, root_objectid
,
2040 bytenr
, num_bytes
, type
, 0);
2046 path
->leave_spinning
= 1;
2047 /* now insert the actual backref */
2048 ret
= insert_extent_backref(trans
, root
->fs_info
->extent_root
,
2049 path
, bytenr
, parent
, root_objectid
,
2050 owner
, offset
, refs_to_add
);
2052 btrfs_abort_transaction(trans
, root
, ret
);
2054 btrfs_free_path(path
);
2058 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
2059 struct btrfs_root
*root
,
2060 struct btrfs_delayed_ref_node
*node
,
2061 struct btrfs_delayed_extent_op
*extent_op
,
2062 int insert_reserved
)
2065 struct btrfs_delayed_data_ref
*ref
;
2066 struct btrfs_key ins
;
2071 ins
.objectid
= node
->bytenr
;
2072 ins
.offset
= node
->num_bytes
;
2073 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2075 ref
= btrfs_delayed_node_to_data_ref(node
);
2076 trace_run_delayed_data_ref(node
, ref
, node
->action
);
2078 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2079 parent
= ref
->parent
;
2080 ref_root
= ref
->root
;
2082 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2084 flags
|= extent_op
->flags_to_set
;
2085 ret
= alloc_reserved_file_extent(trans
, root
,
2086 parent
, ref_root
, flags
,
2087 ref
->objectid
, ref
->offset
,
2088 &ins
, node
->ref_mod
);
2089 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2090 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
2091 node
->num_bytes
, parent
,
2092 ref_root
, ref
->objectid
,
2093 ref
->offset
, node
->ref_mod
,
2094 node
->no_quota
, extent_op
);
2095 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2096 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
2097 node
->num_bytes
, parent
,
2098 ref_root
, ref
->objectid
,
2099 ref
->offset
, node
->ref_mod
,
2100 extent_op
, node
->no_quota
);
2107 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
2108 struct extent_buffer
*leaf
,
2109 struct btrfs_extent_item
*ei
)
2111 u64 flags
= btrfs_extent_flags(leaf
, ei
);
2112 if (extent_op
->update_flags
) {
2113 flags
|= extent_op
->flags_to_set
;
2114 btrfs_set_extent_flags(leaf
, ei
, flags
);
2117 if (extent_op
->update_key
) {
2118 struct btrfs_tree_block_info
*bi
;
2119 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
2120 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
2121 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
2125 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
2126 struct btrfs_root
*root
,
2127 struct btrfs_delayed_ref_node
*node
,
2128 struct btrfs_delayed_extent_op
*extent_op
)
2130 struct btrfs_key key
;
2131 struct btrfs_path
*path
;
2132 struct btrfs_extent_item
*ei
;
2133 struct extent_buffer
*leaf
;
2137 int metadata
= !extent_op
->is_data
;
2142 if (metadata
&& !btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
))
2145 path
= btrfs_alloc_path();
2149 key
.objectid
= node
->bytenr
;
2152 key
.type
= BTRFS_METADATA_ITEM_KEY
;
2153 key
.offset
= extent_op
->level
;
2155 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2156 key
.offset
= node
->num_bytes
;
2161 path
->leave_spinning
= 1;
2162 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
, &key
,
2170 if (path
->slots
[0] > 0) {
2172 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
2174 if (key
.objectid
== node
->bytenr
&&
2175 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
2176 key
.offset
== node
->num_bytes
)
2180 btrfs_release_path(path
);
2183 key
.objectid
= node
->bytenr
;
2184 key
.offset
= node
->num_bytes
;
2185 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2194 leaf
= path
->nodes
[0];
2195 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2196 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2197 if (item_size
< sizeof(*ei
)) {
2198 ret
= convert_extent_item_v0(trans
, root
->fs_info
->extent_root
,
2204 leaf
= path
->nodes
[0];
2205 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2208 BUG_ON(item_size
< sizeof(*ei
));
2209 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2210 __run_delayed_extent_op(extent_op
, leaf
, ei
);
2212 btrfs_mark_buffer_dirty(leaf
);
2214 btrfs_free_path(path
);
2218 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
2219 struct btrfs_root
*root
,
2220 struct btrfs_delayed_ref_node
*node
,
2221 struct btrfs_delayed_extent_op
*extent_op
,
2222 int insert_reserved
)
2225 struct btrfs_delayed_tree_ref
*ref
;
2226 struct btrfs_key ins
;
2229 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
2232 ref
= btrfs_delayed_node_to_tree_ref(node
);
2233 trace_run_delayed_tree_ref(node
, ref
, node
->action
);
2235 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2236 parent
= ref
->parent
;
2237 ref_root
= ref
->root
;
2239 ins
.objectid
= node
->bytenr
;
2240 if (skinny_metadata
) {
2241 ins
.offset
= ref
->level
;
2242 ins
.type
= BTRFS_METADATA_ITEM_KEY
;
2244 ins
.offset
= node
->num_bytes
;
2245 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2248 BUG_ON(node
->ref_mod
!= 1);
2249 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2250 BUG_ON(!extent_op
|| !extent_op
->update_flags
);
2251 ret
= alloc_reserved_tree_block(trans
, root
,
2253 extent_op
->flags_to_set
,
2257 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2258 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
2259 node
->num_bytes
, parent
, ref_root
,
2260 ref
->level
, 0, 1, node
->no_quota
,
2262 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2263 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
2264 node
->num_bytes
, parent
, ref_root
,
2265 ref
->level
, 0, 1, extent_op
,
2273 /* helper function to actually process a single delayed ref entry */
2274 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
2275 struct btrfs_root
*root
,
2276 struct btrfs_delayed_ref_node
*node
,
2277 struct btrfs_delayed_extent_op
*extent_op
,
2278 int insert_reserved
)
2282 if (trans
->aborted
) {
2283 if (insert_reserved
)
2284 btrfs_pin_extent(root
, node
->bytenr
,
2285 node
->num_bytes
, 1);
2289 if (btrfs_delayed_ref_is_head(node
)) {
2290 struct btrfs_delayed_ref_head
*head
;
2292 * we've hit the end of the chain and we were supposed
2293 * to insert this extent into the tree. But, it got
2294 * deleted before we ever needed to insert it, so all
2295 * we have to do is clean up the accounting
2298 head
= btrfs_delayed_node_to_head(node
);
2299 trace_run_delayed_ref_head(node
, head
, node
->action
);
2301 if (insert_reserved
) {
2302 btrfs_pin_extent(root
, node
->bytenr
,
2303 node
->num_bytes
, 1);
2304 if (head
->is_data
) {
2305 ret
= btrfs_del_csums(trans
, root
,
2313 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
2314 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2315 ret
= run_delayed_tree_ref(trans
, root
, node
, extent_op
,
2317 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
2318 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2319 ret
= run_delayed_data_ref(trans
, root
, node
, extent_op
,
2326 static noinline
struct btrfs_delayed_ref_node
*
2327 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
2329 struct rb_node
*node
;
2330 struct btrfs_delayed_ref_node
*ref
, *last
= NULL
;;
2333 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2334 * this prevents ref count from going down to zero when
2335 * there still are pending delayed ref.
2337 node
= rb_first(&head
->ref_root
);
2339 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2341 if (ref
->action
== BTRFS_ADD_DELAYED_REF
)
2343 else if (last
== NULL
)
2345 node
= rb_next(node
);
2351 * Returns 0 on success or if called with an already aborted transaction.
2352 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2354 static noinline
int __btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2355 struct btrfs_root
*root
,
2358 struct btrfs_delayed_ref_root
*delayed_refs
;
2359 struct btrfs_delayed_ref_node
*ref
;
2360 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
2361 struct btrfs_delayed_extent_op
*extent_op
;
2362 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2363 ktime_t start
= ktime_get();
2365 unsigned long count
= 0;
2366 unsigned long actual_count
= 0;
2367 int must_insert_reserved
= 0;
2369 delayed_refs
= &trans
->transaction
->delayed_refs
;
2375 spin_lock(&delayed_refs
->lock
);
2376 locked_ref
= btrfs_select_ref_head(trans
);
2378 spin_unlock(&delayed_refs
->lock
);
2382 /* grab the lock that says we are going to process
2383 * all the refs for this head */
2384 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
2385 spin_unlock(&delayed_refs
->lock
);
2387 * we may have dropped the spin lock to get the head
2388 * mutex lock, and that might have given someone else
2389 * time to free the head. If that's true, it has been
2390 * removed from our list and we can move on.
2392 if (ret
== -EAGAIN
) {
2400 * We need to try and merge add/drops of the same ref since we
2401 * can run into issues with relocate dropping the implicit ref
2402 * and then it being added back again before the drop can
2403 * finish. If we merged anything we need to re-loop so we can
2406 spin_lock(&locked_ref
->lock
);
2407 btrfs_merge_delayed_refs(trans
, fs_info
, delayed_refs
,
2411 * locked_ref is the head node, so we have to go one
2412 * node back for any delayed ref updates
2414 ref
= select_delayed_ref(locked_ref
);
2416 if (ref
&& ref
->seq
&&
2417 btrfs_check_delayed_seq(fs_info
, delayed_refs
, ref
->seq
)) {
2418 spin_unlock(&locked_ref
->lock
);
2419 btrfs_delayed_ref_unlock(locked_ref
);
2420 spin_lock(&delayed_refs
->lock
);
2421 locked_ref
->processing
= 0;
2422 delayed_refs
->num_heads_ready
++;
2423 spin_unlock(&delayed_refs
->lock
);
2431 * record the must insert reserved flag before we
2432 * drop the spin lock.
2434 must_insert_reserved
= locked_ref
->must_insert_reserved
;
2435 locked_ref
->must_insert_reserved
= 0;
2437 extent_op
= locked_ref
->extent_op
;
2438 locked_ref
->extent_op
= NULL
;
2443 /* All delayed refs have been processed, Go ahead
2444 * and send the head node to run_one_delayed_ref,
2445 * so that any accounting fixes can happen
2447 ref
= &locked_ref
->node
;
2449 if (extent_op
&& must_insert_reserved
) {
2450 btrfs_free_delayed_extent_op(extent_op
);
2455 spin_unlock(&locked_ref
->lock
);
2456 ret
= run_delayed_extent_op(trans
, root
,
2458 btrfs_free_delayed_extent_op(extent_op
);
2462 * Need to reset must_insert_reserved if
2463 * there was an error so the abort stuff
2464 * can cleanup the reserved space
2467 if (must_insert_reserved
)
2468 locked_ref
->must_insert_reserved
= 1;
2469 locked_ref
->processing
= 0;
2470 btrfs_debug(fs_info
, "run_delayed_extent_op returned %d", ret
);
2471 btrfs_delayed_ref_unlock(locked_ref
);
2478 * Need to drop our head ref lock and re-aqcuire the
2479 * delayed ref lock and then re-check to make sure
2482 spin_unlock(&locked_ref
->lock
);
2483 spin_lock(&delayed_refs
->lock
);
2484 spin_lock(&locked_ref
->lock
);
2485 if (rb_first(&locked_ref
->ref_root
) ||
2486 locked_ref
->extent_op
) {
2487 spin_unlock(&locked_ref
->lock
);
2488 spin_unlock(&delayed_refs
->lock
);
2492 delayed_refs
->num_heads
--;
2493 rb_erase(&locked_ref
->href_node
,
2494 &delayed_refs
->href_root
);
2495 spin_unlock(&delayed_refs
->lock
);
2499 rb_erase(&ref
->rb_node
, &locked_ref
->ref_root
);
2501 atomic_dec(&delayed_refs
->num_entries
);
2503 if (!btrfs_delayed_ref_is_head(ref
)) {
2505 * when we play the delayed ref, also correct the
2508 switch (ref
->action
) {
2509 case BTRFS_ADD_DELAYED_REF
:
2510 case BTRFS_ADD_DELAYED_EXTENT
:
2511 locked_ref
->node
.ref_mod
-= ref
->ref_mod
;
2513 case BTRFS_DROP_DELAYED_REF
:
2514 locked_ref
->node
.ref_mod
+= ref
->ref_mod
;
2520 spin_unlock(&locked_ref
->lock
);
2522 ret
= run_one_delayed_ref(trans
, root
, ref
, extent_op
,
2523 must_insert_reserved
);
2525 btrfs_free_delayed_extent_op(extent_op
);
2527 locked_ref
->processing
= 0;
2528 btrfs_delayed_ref_unlock(locked_ref
);
2529 btrfs_put_delayed_ref(ref
);
2530 btrfs_debug(fs_info
, "run_one_delayed_ref returned %d", ret
);
2535 * If this node is a head, that means all the refs in this head
2536 * have been dealt with, and we will pick the next head to deal
2537 * with, so we must unlock the head and drop it from the cluster
2538 * list before we release it.
2540 if (btrfs_delayed_ref_is_head(ref
)) {
2541 if (locked_ref
->is_data
&&
2542 locked_ref
->total_ref_mod
< 0) {
2543 spin_lock(&delayed_refs
->lock
);
2544 delayed_refs
->pending_csums
-= ref
->num_bytes
;
2545 spin_unlock(&delayed_refs
->lock
);
2547 btrfs_delayed_ref_unlock(locked_ref
);
2550 btrfs_put_delayed_ref(ref
);
2556 * We don't want to include ref heads since we can have empty ref heads
2557 * and those will drastically skew our runtime down since we just do
2558 * accounting, no actual extent tree updates.
2560 if (actual_count
> 0) {
2561 u64 runtime
= ktime_to_ns(ktime_sub(ktime_get(), start
));
2565 * We weigh the current average higher than our current runtime
2566 * to avoid large swings in the average.
2568 spin_lock(&delayed_refs
->lock
);
2569 avg
= fs_info
->avg_delayed_ref_runtime
* 3 + runtime
;
2570 fs_info
->avg_delayed_ref_runtime
= avg
>> 2; /* div by 4 */
2571 spin_unlock(&delayed_refs
->lock
);
2576 #ifdef SCRAMBLE_DELAYED_REFS
2578 * Normally delayed refs get processed in ascending bytenr order. This
2579 * correlates in most cases to the order added. To expose dependencies on this
2580 * order, we start to process the tree in the middle instead of the beginning
2582 static u64
find_middle(struct rb_root
*root
)
2584 struct rb_node
*n
= root
->rb_node
;
2585 struct btrfs_delayed_ref_node
*entry
;
2588 u64 first
= 0, last
= 0;
2592 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2593 first
= entry
->bytenr
;
2597 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2598 last
= entry
->bytenr
;
2603 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2604 WARN_ON(!entry
->in_tree
);
2606 middle
= entry
->bytenr
;
2619 static inline u64
heads_to_leaves(struct btrfs_root
*root
, u64 heads
)
2623 num_bytes
= heads
* (sizeof(struct btrfs_extent_item
) +
2624 sizeof(struct btrfs_extent_inline_ref
));
2625 if (!btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
))
2626 num_bytes
+= heads
* sizeof(struct btrfs_tree_block_info
);
2629 * We don't ever fill up leaves all the way so multiply by 2 just to be
2630 * closer to what we're really going to want to ouse.
2632 return div_u64(num_bytes
, BTRFS_LEAF_DATA_SIZE(root
));
2636 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2637 * would require to store the csums for that many bytes.
2639 u64
btrfs_csum_bytes_to_leaves(struct btrfs_root
*root
, u64 csum_bytes
)
2642 u64 num_csums_per_leaf
;
2645 csum_size
= BTRFS_LEAF_DATA_SIZE(root
) - sizeof(struct btrfs_item
);
2646 num_csums_per_leaf
= div64_u64(csum_size
,
2647 (u64
)btrfs_super_csum_size(root
->fs_info
->super_copy
));
2648 num_csums
= div64_u64(csum_bytes
, root
->sectorsize
);
2649 num_csums
+= num_csums_per_leaf
- 1;
2650 num_csums
= div64_u64(num_csums
, num_csums_per_leaf
);
2654 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle
*trans
,
2655 struct btrfs_root
*root
)
2657 struct btrfs_block_rsv
*global_rsv
;
2658 u64 num_heads
= trans
->transaction
->delayed_refs
.num_heads_ready
;
2659 u64 csum_bytes
= trans
->transaction
->delayed_refs
.pending_csums
;
2660 u64 num_dirty_bgs
= trans
->transaction
->num_dirty_bgs
;
2661 u64 num_bytes
, num_dirty_bgs_bytes
;
2664 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
2665 num_heads
= heads_to_leaves(root
, num_heads
);
2667 num_bytes
+= (num_heads
- 1) * root
->nodesize
;
2669 num_bytes
+= btrfs_csum_bytes_to_leaves(root
, csum_bytes
) * root
->nodesize
;
2670 num_dirty_bgs_bytes
= btrfs_calc_trans_metadata_size(root
,
2672 global_rsv
= &root
->fs_info
->global_block_rsv
;
2675 * If we can't allocate any more chunks lets make sure we have _lots_ of
2676 * wiggle room since running delayed refs can create more delayed refs.
2678 if (global_rsv
->space_info
->full
) {
2679 num_dirty_bgs_bytes
<<= 1;
2683 spin_lock(&global_rsv
->lock
);
2684 if (global_rsv
->reserved
<= num_bytes
+ num_dirty_bgs_bytes
)
2686 spin_unlock(&global_rsv
->lock
);
2690 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle
*trans
,
2691 struct btrfs_root
*root
)
2693 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2695 atomic_read(&trans
->transaction
->delayed_refs
.num_entries
);
2700 avg_runtime
= fs_info
->avg_delayed_ref_runtime
;
2701 val
= num_entries
* avg_runtime
;
2702 if (num_entries
* avg_runtime
>= NSEC_PER_SEC
)
2704 if (val
>= NSEC_PER_SEC
/ 2)
2707 return btrfs_check_space_for_delayed_refs(trans
, root
);
2710 struct async_delayed_refs
{
2711 struct btrfs_root
*root
;
2715 struct completion wait
;
2716 struct btrfs_work work
;
2719 static void delayed_ref_async_start(struct btrfs_work
*work
)
2721 struct async_delayed_refs
*async
;
2722 struct btrfs_trans_handle
*trans
;
2725 async
= container_of(work
, struct async_delayed_refs
, work
);
2727 trans
= btrfs_join_transaction(async
->root
);
2728 if (IS_ERR(trans
)) {
2729 async
->error
= PTR_ERR(trans
);
2734 * trans->sync means that when we call end_transaciton, we won't
2735 * wait on delayed refs
2738 ret
= btrfs_run_delayed_refs(trans
, async
->root
, async
->count
);
2742 ret
= btrfs_end_transaction(trans
, async
->root
);
2743 if (ret
&& !async
->error
)
2747 complete(&async
->wait
);
2752 int btrfs_async_run_delayed_refs(struct btrfs_root
*root
,
2753 unsigned long count
, int wait
)
2755 struct async_delayed_refs
*async
;
2758 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
2762 async
->root
= root
->fs_info
->tree_root
;
2763 async
->count
= count
;
2769 init_completion(&async
->wait
);
2771 btrfs_init_work(&async
->work
, btrfs_extent_refs_helper
,
2772 delayed_ref_async_start
, NULL
, NULL
);
2774 btrfs_queue_work(root
->fs_info
->extent_workers
, &async
->work
);
2777 wait_for_completion(&async
->wait
);
2786 * this starts processing the delayed reference count updates and
2787 * extent insertions we have queued up so far. count can be
2788 * 0, which means to process everything in the tree at the start
2789 * of the run (but not newly added entries), or it can be some target
2790 * number you'd like to process.
2792 * Returns 0 on success or if called with an aborted transaction
2793 * Returns <0 on error and aborts the transaction
2795 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2796 struct btrfs_root
*root
, unsigned long count
)
2798 struct rb_node
*node
;
2799 struct btrfs_delayed_ref_root
*delayed_refs
;
2800 struct btrfs_delayed_ref_head
*head
;
2802 int run_all
= count
== (unsigned long)-1;
2804 /* We'll clean this up in btrfs_cleanup_transaction */
2808 if (root
== root
->fs_info
->extent_root
)
2809 root
= root
->fs_info
->tree_root
;
2811 delayed_refs
= &trans
->transaction
->delayed_refs
;
2813 count
= atomic_read(&delayed_refs
->num_entries
) * 2;
2816 #ifdef SCRAMBLE_DELAYED_REFS
2817 delayed_refs
->run_delayed_start
= find_middle(&delayed_refs
->root
);
2819 ret
= __btrfs_run_delayed_refs(trans
, root
, count
);
2821 btrfs_abort_transaction(trans
, root
, ret
);
2826 if (!list_empty(&trans
->new_bgs
))
2827 btrfs_create_pending_block_groups(trans
, root
);
2829 spin_lock(&delayed_refs
->lock
);
2830 node
= rb_first(&delayed_refs
->href_root
);
2832 spin_unlock(&delayed_refs
->lock
);
2835 count
= (unsigned long)-1;
2838 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
2840 if (btrfs_delayed_ref_is_head(&head
->node
)) {
2841 struct btrfs_delayed_ref_node
*ref
;
2844 atomic_inc(&ref
->refs
);
2846 spin_unlock(&delayed_refs
->lock
);
2848 * Mutex was contended, block until it's
2849 * released and try again
2851 mutex_lock(&head
->mutex
);
2852 mutex_unlock(&head
->mutex
);
2854 btrfs_put_delayed_ref(ref
);
2860 node
= rb_next(node
);
2862 spin_unlock(&delayed_refs
->lock
);
2867 ret
= btrfs_delayed_qgroup_accounting(trans
, root
->fs_info
);
2870 assert_qgroups_uptodate(trans
);
2874 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
2875 struct btrfs_root
*root
,
2876 u64 bytenr
, u64 num_bytes
, u64 flags
,
2877 int level
, int is_data
)
2879 struct btrfs_delayed_extent_op
*extent_op
;
2882 extent_op
= btrfs_alloc_delayed_extent_op();
2886 extent_op
->flags_to_set
= flags
;
2887 extent_op
->update_flags
= 1;
2888 extent_op
->update_key
= 0;
2889 extent_op
->is_data
= is_data
? 1 : 0;
2890 extent_op
->level
= level
;
2892 ret
= btrfs_add_delayed_extent_op(root
->fs_info
, trans
, bytenr
,
2893 num_bytes
, extent_op
);
2895 btrfs_free_delayed_extent_op(extent_op
);
2899 static noinline
int check_delayed_ref(struct btrfs_trans_handle
*trans
,
2900 struct btrfs_root
*root
,
2901 struct btrfs_path
*path
,
2902 u64 objectid
, u64 offset
, u64 bytenr
)
2904 struct btrfs_delayed_ref_head
*head
;
2905 struct btrfs_delayed_ref_node
*ref
;
2906 struct btrfs_delayed_data_ref
*data_ref
;
2907 struct btrfs_delayed_ref_root
*delayed_refs
;
2908 struct rb_node
*node
;
2911 delayed_refs
= &trans
->transaction
->delayed_refs
;
2912 spin_lock(&delayed_refs
->lock
);
2913 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
2915 spin_unlock(&delayed_refs
->lock
);
2919 if (!mutex_trylock(&head
->mutex
)) {
2920 atomic_inc(&head
->node
.refs
);
2921 spin_unlock(&delayed_refs
->lock
);
2923 btrfs_release_path(path
);
2926 * Mutex was contended, block until it's released and let
2929 mutex_lock(&head
->mutex
);
2930 mutex_unlock(&head
->mutex
);
2931 btrfs_put_delayed_ref(&head
->node
);
2934 spin_unlock(&delayed_refs
->lock
);
2936 spin_lock(&head
->lock
);
2937 node
= rb_first(&head
->ref_root
);
2939 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2940 node
= rb_next(node
);
2942 /* If it's a shared ref we know a cross reference exists */
2943 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
) {
2948 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
2951 * If our ref doesn't match the one we're currently looking at
2952 * then we have a cross reference.
2954 if (data_ref
->root
!= root
->root_key
.objectid
||
2955 data_ref
->objectid
!= objectid
||
2956 data_ref
->offset
!= offset
) {
2961 spin_unlock(&head
->lock
);
2962 mutex_unlock(&head
->mutex
);
2966 static noinline
int check_committed_ref(struct btrfs_trans_handle
*trans
,
2967 struct btrfs_root
*root
,
2968 struct btrfs_path
*path
,
2969 u64 objectid
, u64 offset
, u64 bytenr
)
2971 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2972 struct extent_buffer
*leaf
;
2973 struct btrfs_extent_data_ref
*ref
;
2974 struct btrfs_extent_inline_ref
*iref
;
2975 struct btrfs_extent_item
*ei
;
2976 struct btrfs_key key
;
2980 key
.objectid
= bytenr
;
2981 key
.offset
= (u64
)-1;
2982 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2984 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
2987 BUG_ON(ret
== 0); /* Corruption */
2990 if (path
->slots
[0] == 0)
2994 leaf
= path
->nodes
[0];
2995 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2997 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
3001 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
3002 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3003 if (item_size
< sizeof(*ei
)) {
3004 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
3008 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
3010 if (item_size
!= sizeof(*ei
) +
3011 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
3014 if (btrfs_extent_generation(leaf
, ei
) <=
3015 btrfs_root_last_snapshot(&root
->root_item
))
3018 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
3019 if (btrfs_extent_inline_ref_type(leaf
, iref
) !=
3020 BTRFS_EXTENT_DATA_REF_KEY
)
3023 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
3024 if (btrfs_extent_refs(leaf
, ei
) !=
3025 btrfs_extent_data_ref_count(leaf
, ref
) ||
3026 btrfs_extent_data_ref_root(leaf
, ref
) !=
3027 root
->root_key
.objectid
||
3028 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
3029 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
3037 int btrfs_cross_ref_exist(struct btrfs_trans_handle
*trans
,
3038 struct btrfs_root
*root
,
3039 u64 objectid
, u64 offset
, u64 bytenr
)
3041 struct btrfs_path
*path
;
3045 path
= btrfs_alloc_path();
3050 ret
= check_committed_ref(trans
, root
, path
, objectid
,
3052 if (ret
&& ret
!= -ENOENT
)
3055 ret2
= check_delayed_ref(trans
, root
, path
, objectid
,
3057 } while (ret2
== -EAGAIN
);
3059 if (ret2
&& ret2
!= -ENOENT
) {
3064 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
3067 btrfs_free_path(path
);
3068 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
3073 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
3074 struct btrfs_root
*root
,
3075 struct extent_buffer
*buf
,
3076 int full_backref
, int inc
)
3083 struct btrfs_key key
;
3084 struct btrfs_file_extent_item
*fi
;
3088 int (*process_func
)(struct btrfs_trans_handle
*, struct btrfs_root
*,
3089 u64
, u64
, u64
, u64
, u64
, u64
, int);
3092 if (btrfs_test_is_dummy_root(root
))
3095 ref_root
= btrfs_header_owner(buf
);
3096 nritems
= btrfs_header_nritems(buf
);
3097 level
= btrfs_header_level(buf
);
3099 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) && level
== 0)
3103 process_func
= btrfs_inc_extent_ref
;
3105 process_func
= btrfs_free_extent
;
3108 parent
= buf
->start
;
3112 for (i
= 0; i
< nritems
; i
++) {
3114 btrfs_item_key_to_cpu(buf
, &key
, i
);
3115 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3117 fi
= btrfs_item_ptr(buf
, i
,
3118 struct btrfs_file_extent_item
);
3119 if (btrfs_file_extent_type(buf
, fi
) ==
3120 BTRFS_FILE_EXTENT_INLINE
)
3122 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
3126 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
3127 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
3128 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
3129 parent
, ref_root
, key
.objectid
,
3134 bytenr
= btrfs_node_blockptr(buf
, i
);
3135 num_bytes
= root
->nodesize
;
3136 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
3137 parent
, ref_root
, level
- 1, 0,
3148 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3149 struct extent_buffer
*buf
, int full_backref
)
3151 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1);
3154 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3155 struct extent_buffer
*buf
, int full_backref
)
3157 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0);
3160 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
3161 struct btrfs_root
*root
,
3162 struct btrfs_path
*path
,
3163 struct btrfs_block_group_cache
*cache
)
3166 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
3168 struct extent_buffer
*leaf
;
3170 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
3177 leaf
= path
->nodes
[0];
3178 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3179 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
3180 btrfs_mark_buffer_dirty(leaf
);
3182 btrfs_release_path(path
);
3187 static struct btrfs_block_group_cache
*
3188 next_block_group(struct btrfs_root
*root
,
3189 struct btrfs_block_group_cache
*cache
)
3191 struct rb_node
*node
;
3193 spin_lock(&root
->fs_info
->block_group_cache_lock
);
3195 /* If our block group was removed, we need a full search. */
3196 if (RB_EMPTY_NODE(&cache
->cache_node
)) {
3197 const u64 next_bytenr
= cache
->key
.objectid
+ cache
->key
.offset
;
3199 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
3200 btrfs_put_block_group(cache
);
3201 cache
= btrfs_lookup_first_block_group(root
->fs_info
,
3205 node
= rb_next(&cache
->cache_node
);
3206 btrfs_put_block_group(cache
);
3208 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
3210 btrfs_get_block_group(cache
);
3213 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
3217 static int cache_save_setup(struct btrfs_block_group_cache
*block_group
,
3218 struct btrfs_trans_handle
*trans
,
3219 struct btrfs_path
*path
)
3221 struct btrfs_root
*root
= block_group
->fs_info
->tree_root
;
3222 struct inode
*inode
= NULL
;
3224 int dcs
= BTRFS_DC_ERROR
;
3230 * If this block group is smaller than 100 megs don't bother caching the
3233 if (block_group
->key
.offset
< (100 * 1024 * 1024)) {
3234 spin_lock(&block_group
->lock
);
3235 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
3236 spin_unlock(&block_group
->lock
);
3243 inode
= lookup_free_space_inode(root
, block_group
, path
);
3244 if (IS_ERR(inode
) && PTR_ERR(inode
) != -ENOENT
) {
3245 ret
= PTR_ERR(inode
);
3246 btrfs_release_path(path
);
3250 if (IS_ERR(inode
)) {
3254 if (block_group
->ro
)
3257 ret
= create_free_space_inode(root
, trans
, block_group
, path
);
3263 /* We've already setup this transaction, go ahead and exit */
3264 if (block_group
->cache_generation
== trans
->transid
&&
3265 i_size_read(inode
)) {
3266 dcs
= BTRFS_DC_SETUP
;
3271 * We want to set the generation to 0, that way if anything goes wrong
3272 * from here on out we know not to trust this cache when we load up next
3275 BTRFS_I(inode
)->generation
= 0;
3276 ret
= btrfs_update_inode(trans
, root
, inode
);
3279 * So theoretically we could recover from this, simply set the
3280 * super cache generation to 0 so we know to invalidate the
3281 * cache, but then we'd have to keep track of the block groups
3282 * that fail this way so we know we _have_ to reset this cache
3283 * before the next commit or risk reading stale cache. So to
3284 * limit our exposure to horrible edge cases lets just abort the
3285 * transaction, this only happens in really bad situations
3288 btrfs_abort_transaction(trans
, root
, ret
);
3293 if (i_size_read(inode
) > 0) {
3294 ret
= btrfs_check_trunc_cache_free_space(root
,
3295 &root
->fs_info
->global_block_rsv
);
3299 ret
= btrfs_truncate_free_space_cache(root
, trans
, NULL
, inode
);
3304 spin_lock(&block_group
->lock
);
3305 if (block_group
->cached
!= BTRFS_CACHE_FINISHED
||
3306 !btrfs_test_opt(root
, SPACE_CACHE
)) {
3308 * don't bother trying to write stuff out _if_
3309 * a) we're not cached,
3310 * b) we're with nospace_cache mount option.
3312 dcs
= BTRFS_DC_WRITTEN
;
3313 spin_unlock(&block_group
->lock
);
3316 spin_unlock(&block_group
->lock
);
3319 * Try to preallocate enough space based on how big the block group is.
3320 * Keep in mind this has to include any pinned space which could end up
3321 * taking up quite a bit since it's not folded into the other space
3324 num_pages
= div_u64(block_group
->key
.offset
, 256 * 1024 * 1024);
3329 num_pages
*= PAGE_CACHE_SIZE
;
3331 ret
= btrfs_check_data_free_space(inode
, num_pages
, num_pages
);
3335 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, num_pages
,
3336 num_pages
, num_pages
,
3339 dcs
= BTRFS_DC_SETUP
;
3340 btrfs_free_reserved_data_space(inode
, num_pages
);
3345 btrfs_release_path(path
);
3347 spin_lock(&block_group
->lock
);
3348 if (!ret
&& dcs
== BTRFS_DC_SETUP
)
3349 block_group
->cache_generation
= trans
->transid
;
3350 block_group
->disk_cache_state
= dcs
;
3351 spin_unlock(&block_group
->lock
);
3356 int btrfs_setup_space_cache(struct btrfs_trans_handle
*trans
,
3357 struct btrfs_root
*root
)
3359 struct btrfs_block_group_cache
*cache
, *tmp
;
3360 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3361 struct btrfs_path
*path
;
3363 if (list_empty(&cur_trans
->dirty_bgs
) ||
3364 !btrfs_test_opt(root
, SPACE_CACHE
))
3367 path
= btrfs_alloc_path();
3371 /* Could add new block groups, use _safe just in case */
3372 list_for_each_entry_safe(cache
, tmp
, &cur_trans
->dirty_bgs
,
3374 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
)
3375 cache_save_setup(cache
, trans
, path
);
3378 btrfs_free_path(path
);
3383 * transaction commit does final block group cache writeback during a
3384 * critical section where nothing is allowed to change the FS. This is
3385 * required in order for the cache to actually match the block group,
3386 * but can introduce a lot of latency into the commit.
3388 * So, btrfs_start_dirty_block_groups is here to kick off block group
3389 * cache IO. There's a chance we'll have to redo some of it if the
3390 * block group changes again during the commit, but it greatly reduces
3391 * the commit latency by getting rid of the easy block groups while
3392 * we're still allowing others to join the commit.
3394 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3395 struct btrfs_root
*root
)
3397 struct btrfs_block_group_cache
*cache
;
3398 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3401 struct btrfs_path
*path
= NULL
;
3403 struct list_head
*io
= &cur_trans
->io_bgs
;
3404 int num_started
= 0;
3407 spin_lock(&cur_trans
->dirty_bgs_lock
);
3408 if (list_empty(&cur_trans
->dirty_bgs
)) {
3409 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3412 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
3413 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3417 * make sure all the block groups on our dirty list actually
3420 btrfs_create_pending_block_groups(trans
, root
);
3423 path
= btrfs_alloc_path();
3429 * cache_write_mutex is here only to save us from balance or automatic
3430 * removal of empty block groups deleting this block group while we are
3431 * writing out the cache
3433 mutex_lock(&trans
->transaction
->cache_write_mutex
);
3434 while (!list_empty(&dirty
)) {
3435 cache
= list_first_entry(&dirty
,
3436 struct btrfs_block_group_cache
,
3439 * this can happen if something re-dirties a block
3440 * group that is already under IO. Just wait for it to
3441 * finish and then do it all again
3443 if (!list_empty(&cache
->io_list
)) {
3444 list_del_init(&cache
->io_list
);
3445 btrfs_wait_cache_io(root
, trans
, cache
,
3446 &cache
->io_ctl
, path
,
3447 cache
->key
.objectid
);
3448 btrfs_put_block_group(cache
);
3453 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3454 * if it should update the cache_state. Don't delete
3455 * until after we wait.
3457 * Since we're not running in the commit critical section
3458 * we need the dirty_bgs_lock to protect from update_block_group
3460 spin_lock(&cur_trans
->dirty_bgs_lock
);
3461 list_del_init(&cache
->dirty_list
);
3462 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3466 cache_save_setup(cache
, trans
, path
);
3468 if (cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
3469 cache
->io_ctl
.inode
= NULL
;
3470 ret
= btrfs_write_out_cache(root
, trans
, cache
, path
);
3471 if (ret
== 0 && cache
->io_ctl
.inode
) {
3476 * the cache_write_mutex is protecting
3479 list_add_tail(&cache
->io_list
, io
);
3482 * if we failed to write the cache, the
3483 * generation will be bad and life goes on
3489 ret
= write_one_cache_group(trans
, root
, path
, cache
);
3491 * Our block group might still be attached to the list
3492 * of new block groups in the transaction handle of some
3493 * other task (struct btrfs_trans_handle->new_bgs). This
3494 * means its block group item isn't yet in the extent
3495 * tree. If this happens ignore the error, as we will
3496 * try again later in the critical section of the
3497 * transaction commit.
3499 if (ret
== -ENOENT
) {
3501 spin_lock(&cur_trans
->dirty_bgs_lock
);
3502 if (list_empty(&cache
->dirty_list
)) {
3503 list_add_tail(&cache
->dirty_list
,
3504 &cur_trans
->dirty_bgs
);
3505 btrfs_get_block_group(cache
);
3507 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3509 btrfs_abort_transaction(trans
, root
, ret
);
3513 /* if its not on the io list, we need to put the block group */
3515 btrfs_put_block_group(cache
);
3521 * Avoid blocking other tasks for too long. It might even save
3522 * us from writing caches for block groups that are going to be
3525 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
3526 mutex_lock(&trans
->transaction
->cache_write_mutex
);
3528 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
3531 * go through delayed refs for all the stuff we've just kicked off
3532 * and then loop back (just once)
3534 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
3535 if (!ret
&& loops
== 0) {
3537 spin_lock(&cur_trans
->dirty_bgs_lock
);
3538 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
3540 * dirty_bgs_lock protects us from concurrent block group
3541 * deletes too (not just cache_write_mutex).
3543 if (!list_empty(&dirty
)) {
3544 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3547 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3550 btrfs_free_path(path
);
3554 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3555 struct btrfs_root
*root
)
3557 struct btrfs_block_group_cache
*cache
;
3558 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3561 struct btrfs_path
*path
;
3562 struct list_head
*io
= &cur_trans
->io_bgs
;
3563 int num_started
= 0;
3565 path
= btrfs_alloc_path();
3570 * We don't need the lock here since we are protected by the transaction
3571 * commit. We want to do the cache_save_setup first and then run the
3572 * delayed refs to make sure we have the best chance at doing this all
3575 while (!list_empty(&cur_trans
->dirty_bgs
)) {
3576 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
3577 struct btrfs_block_group_cache
,
3581 * this can happen if cache_save_setup re-dirties a block
3582 * group that is already under IO. Just wait for it to
3583 * finish and then do it all again
3585 if (!list_empty(&cache
->io_list
)) {
3586 list_del_init(&cache
->io_list
);
3587 btrfs_wait_cache_io(root
, trans
, cache
,
3588 &cache
->io_ctl
, path
,
3589 cache
->key
.objectid
);
3590 btrfs_put_block_group(cache
);
3594 * don't remove from the dirty list until after we've waited
3597 list_del_init(&cache
->dirty_list
);
3600 cache_save_setup(cache
, trans
, path
);
3603 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long) -1);
3605 if (!ret
&& cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
3606 cache
->io_ctl
.inode
= NULL
;
3607 ret
= btrfs_write_out_cache(root
, trans
, cache
, path
);
3608 if (ret
== 0 && cache
->io_ctl
.inode
) {
3611 list_add_tail(&cache
->io_list
, io
);
3614 * if we failed to write the cache, the
3615 * generation will be bad and life goes on
3621 ret
= write_one_cache_group(trans
, root
, path
, cache
);
3623 btrfs_abort_transaction(trans
, root
, ret
);
3626 /* if its not on the io list, we need to put the block group */
3628 btrfs_put_block_group(cache
);
3631 while (!list_empty(io
)) {
3632 cache
= list_first_entry(io
, struct btrfs_block_group_cache
,
3634 list_del_init(&cache
->io_list
);
3635 btrfs_wait_cache_io(root
, trans
, cache
,
3636 &cache
->io_ctl
, path
, cache
->key
.objectid
);
3637 btrfs_put_block_group(cache
);
3640 btrfs_free_path(path
);
3644 int btrfs_extent_readonly(struct btrfs_root
*root
, u64 bytenr
)
3646 struct btrfs_block_group_cache
*block_group
;
3649 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
3650 if (!block_group
|| block_group
->ro
)
3653 btrfs_put_block_group(block_group
);
3657 static const char *alloc_name(u64 flags
)
3660 case BTRFS_BLOCK_GROUP_METADATA
|BTRFS_BLOCK_GROUP_DATA
:
3662 case BTRFS_BLOCK_GROUP_METADATA
:
3664 case BTRFS_BLOCK_GROUP_DATA
:
3666 case BTRFS_BLOCK_GROUP_SYSTEM
:
3670 return "invalid-combination";
3674 static int update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
3675 u64 total_bytes
, u64 bytes_used
,
3676 struct btrfs_space_info
**space_info
)
3678 struct btrfs_space_info
*found
;
3683 if (flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3684 BTRFS_BLOCK_GROUP_RAID10
))
3689 found
= __find_space_info(info
, flags
);
3691 spin_lock(&found
->lock
);
3692 found
->total_bytes
+= total_bytes
;
3693 found
->disk_total
+= total_bytes
* factor
;
3694 found
->bytes_used
+= bytes_used
;
3695 found
->disk_used
+= bytes_used
* factor
;
3697 spin_unlock(&found
->lock
);
3698 *space_info
= found
;
3701 found
= kzalloc(sizeof(*found
), GFP_NOFS
);
3705 ret
= percpu_counter_init(&found
->total_bytes_pinned
, 0, GFP_KERNEL
);
3711 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
3712 INIT_LIST_HEAD(&found
->block_groups
[i
]);
3713 init_rwsem(&found
->groups_sem
);
3714 spin_lock_init(&found
->lock
);
3715 found
->flags
= flags
& BTRFS_BLOCK_GROUP_TYPE_MASK
;
3716 found
->total_bytes
= total_bytes
;
3717 found
->disk_total
= total_bytes
* factor
;
3718 found
->bytes_used
= bytes_used
;
3719 found
->disk_used
= bytes_used
* factor
;
3720 found
->bytes_pinned
= 0;
3721 found
->bytes_reserved
= 0;
3722 found
->bytes_readonly
= 0;
3723 found
->bytes_may_use
= 0;
3725 found
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
3726 found
->chunk_alloc
= 0;
3728 init_waitqueue_head(&found
->wait
);
3729 INIT_LIST_HEAD(&found
->ro_bgs
);
3731 ret
= kobject_init_and_add(&found
->kobj
, &space_info_ktype
,
3732 info
->space_info_kobj
, "%s",
3733 alloc_name(found
->flags
));
3739 *space_info
= found
;
3740 list_add_rcu(&found
->list
, &info
->space_info
);
3741 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3742 info
->data_sinfo
= found
;
3747 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
3749 u64 extra_flags
= chunk_to_extended(flags
) &
3750 BTRFS_EXTENDED_PROFILE_MASK
;
3752 write_seqlock(&fs_info
->profiles_lock
);
3753 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3754 fs_info
->avail_data_alloc_bits
|= extra_flags
;
3755 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3756 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
3757 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3758 fs_info
->avail_system_alloc_bits
|= extra_flags
;
3759 write_sequnlock(&fs_info
->profiles_lock
);
3763 * returns target flags in extended format or 0 if restripe for this
3764 * chunk_type is not in progress
3766 * should be called with either volume_mutex or balance_lock held
3768 static u64
get_restripe_target(struct btrfs_fs_info
*fs_info
, u64 flags
)
3770 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3776 if (flags
& BTRFS_BLOCK_GROUP_DATA
&&
3777 bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3778 target
= BTRFS_BLOCK_GROUP_DATA
| bctl
->data
.target
;
3779 } else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
&&
3780 bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3781 target
= BTRFS_BLOCK_GROUP_SYSTEM
| bctl
->sys
.target
;
3782 } else if (flags
& BTRFS_BLOCK_GROUP_METADATA
&&
3783 bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3784 target
= BTRFS_BLOCK_GROUP_METADATA
| bctl
->meta
.target
;
3791 * @flags: available profiles in extended format (see ctree.h)
3793 * Returns reduced profile in chunk format. If profile changing is in
3794 * progress (either running or paused) picks the target profile (if it's
3795 * already available), otherwise falls back to plain reducing.
3797 static u64
btrfs_reduce_alloc_profile(struct btrfs_root
*root
, u64 flags
)
3799 u64 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
3804 * see if restripe for this chunk_type is in progress, if so
3805 * try to reduce to the target profile
3807 spin_lock(&root
->fs_info
->balance_lock
);
3808 target
= get_restripe_target(root
->fs_info
, flags
);
3810 /* pick target profile only if it's already available */
3811 if ((flags
& target
) & BTRFS_EXTENDED_PROFILE_MASK
) {
3812 spin_unlock(&root
->fs_info
->balance_lock
);
3813 return extended_to_chunk(target
);
3816 spin_unlock(&root
->fs_info
->balance_lock
);
3818 /* First, mask out the RAID levels which aren't possible */
3819 if (num_devices
== 1)
3820 flags
&= ~(BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID0
|
3821 BTRFS_BLOCK_GROUP_RAID5
);
3822 if (num_devices
< 3)
3823 flags
&= ~BTRFS_BLOCK_GROUP_RAID6
;
3824 if (num_devices
< 4)
3825 flags
&= ~BTRFS_BLOCK_GROUP_RAID10
;
3827 tmp
= flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID0
|
3828 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID5
|
3829 BTRFS_BLOCK_GROUP_RAID6
| BTRFS_BLOCK_GROUP_RAID10
);
3832 if (tmp
& BTRFS_BLOCK_GROUP_RAID6
)
3833 tmp
= BTRFS_BLOCK_GROUP_RAID6
;
3834 else if (tmp
& BTRFS_BLOCK_GROUP_RAID5
)
3835 tmp
= BTRFS_BLOCK_GROUP_RAID5
;
3836 else if (tmp
& BTRFS_BLOCK_GROUP_RAID10
)
3837 tmp
= BTRFS_BLOCK_GROUP_RAID10
;
3838 else if (tmp
& BTRFS_BLOCK_GROUP_RAID1
)
3839 tmp
= BTRFS_BLOCK_GROUP_RAID1
;
3840 else if (tmp
& BTRFS_BLOCK_GROUP_RAID0
)
3841 tmp
= BTRFS_BLOCK_GROUP_RAID0
;
3843 return extended_to_chunk(flags
| tmp
);
3846 static u64
get_alloc_profile(struct btrfs_root
*root
, u64 orig_flags
)
3853 seq
= read_seqbegin(&root
->fs_info
->profiles_lock
);
3855 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3856 flags
|= root
->fs_info
->avail_data_alloc_bits
;
3857 else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3858 flags
|= root
->fs_info
->avail_system_alloc_bits
;
3859 else if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3860 flags
|= root
->fs_info
->avail_metadata_alloc_bits
;
3861 } while (read_seqretry(&root
->fs_info
->profiles_lock
, seq
));
3863 return btrfs_reduce_alloc_profile(root
, flags
);
3866 u64
btrfs_get_alloc_profile(struct btrfs_root
*root
, int data
)
3872 flags
= BTRFS_BLOCK_GROUP_DATA
;
3873 else if (root
== root
->fs_info
->chunk_root
)
3874 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
3876 flags
= BTRFS_BLOCK_GROUP_METADATA
;
3878 ret
= get_alloc_profile(root
, flags
);
3883 * This will check the space that the inode allocates from to make sure we have
3884 * enough space for bytes.
3886 int btrfs_check_data_free_space(struct inode
*inode
, u64 bytes
, u64 write_bytes
)
3888 struct btrfs_space_info
*data_sinfo
;
3889 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3890 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3893 int need_commit
= 2;
3894 int have_pinned_space
;
3896 /* make sure bytes are sectorsize aligned */
3897 bytes
= ALIGN(bytes
, root
->sectorsize
);
3899 if (btrfs_is_free_space_inode(inode
)) {
3901 ASSERT(current
->journal_info
);
3904 data_sinfo
= fs_info
->data_sinfo
;
3909 /* make sure we have enough space to handle the data first */
3910 spin_lock(&data_sinfo
->lock
);
3911 used
= data_sinfo
->bytes_used
+ data_sinfo
->bytes_reserved
+
3912 data_sinfo
->bytes_pinned
+ data_sinfo
->bytes_readonly
+
3913 data_sinfo
->bytes_may_use
;
3915 if (used
+ bytes
> data_sinfo
->total_bytes
) {
3916 struct btrfs_trans_handle
*trans
;
3919 * if we don't have enough free bytes in this space then we need
3920 * to alloc a new chunk.
3922 if (!data_sinfo
->full
) {
3925 data_sinfo
->force_alloc
= CHUNK_ALLOC_FORCE
;
3926 spin_unlock(&data_sinfo
->lock
);
3928 alloc_target
= btrfs_get_alloc_profile(root
, 1);
3930 * It is ugly that we don't call nolock join
3931 * transaction for the free space inode case here.
3932 * But it is safe because we only do the data space
3933 * reservation for the free space cache in the
3934 * transaction context, the common join transaction
3935 * just increase the counter of the current transaction
3936 * handler, doesn't try to acquire the trans_lock of
3939 trans
= btrfs_join_transaction(root
);
3941 return PTR_ERR(trans
);
3943 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
3945 CHUNK_ALLOC_NO_FORCE
);
3946 btrfs_end_transaction(trans
, root
);
3951 have_pinned_space
= 1;
3957 data_sinfo
= fs_info
->data_sinfo
;
3963 * If we don't have enough pinned space to deal with this
3964 * allocation, and no removed chunk in current transaction,
3965 * don't bother committing the transaction.
3967 have_pinned_space
= percpu_counter_compare(
3968 &data_sinfo
->total_bytes_pinned
,
3969 used
+ bytes
- data_sinfo
->total_bytes
);
3970 spin_unlock(&data_sinfo
->lock
);
3972 /* commit the current transaction and try again */
3975 !atomic_read(&root
->fs_info
->open_ioctl_trans
)) {
3978 if (need_commit
> 0) {
3979 btrfs_start_delalloc_roots(fs_info
, 0, -1);
3980 btrfs_wait_ordered_roots(fs_info
, -1);
3983 trans
= btrfs_join_transaction(root
);
3985 return PTR_ERR(trans
);
3986 if (have_pinned_space
>= 0 ||
3987 trans
->transaction
->have_free_bgs
||
3989 ret
= btrfs_commit_transaction(trans
, root
);
3993 * The cleaner kthread might still be doing iput
3994 * operations. Wait for it to finish so that
3995 * more space is released.
3997 mutex_lock(&root
->fs_info
->cleaner_delayed_iput_mutex
);
3998 mutex_unlock(&root
->fs_info
->cleaner_delayed_iput_mutex
);
4001 btrfs_end_transaction(trans
, root
);
4005 trace_btrfs_space_reservation(root
->fs_info
,
4006 "space_info:enospc",
4007 data_sinfo
->flags
, bytes
, 1);
4010 ret
= btrfs_qgroup_reserve(root
, write_bytes
);
4013 data_sinfo
->bytes_may_use
+= bytes
;
4014 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
4015 data_sinfo
->flags
, bytes
, 1);
4017 spin_unlock(&data_sinfo
->lock
);
4023 * Called if we need to clear a data reservation for this inode.
4025 void btrfs_free_reserved_data_space(struct inode
*inode
, u64 bytes
)
4027 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4028 struct btrfs_space_info
*data_sinfo
;
4030 /* make sure bytes are sectorsize aligned */
4031 bytes
= ALIGN(bytes
, root
->sectorsize
);
4033 data_sinfo
= root
->fs_info
->data_sinfo
;
4034 spin_lock(&data_sinfo
->lock
);
4035 WARN_ON(data_sinfo
->bytes_may_use
< bytes
);
4036 data_sinfo
->bytes_may_use
-= bytes
;
4037 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
4038 data_sinfo
->flags
, bytes
, 0);
4039 spin_unlock(&data_sinfo
->lock
);
4042 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
4044 struct list_head
*head
= &info
->space_info
;
4045 struct btrfs_space_info
*found
;
4048 list_for_each_entry_rcu(found
, head
, list
) {
4049 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
4050 found
->force_alloc
= CHUNK_ALLOC_FORCE
;
4055 static inline u64
calc_global_rsv_need_space(struct btrfs_block_rsv
*global
)
4057 return (global
->size
<< 1);
4060 static int should_alloc_chunk(struct btrfs_root
*root
,
4061 struct btrfs_space_info
*sinfo
, int force
)
4063 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
4064 u64 num_bytes
= sinfo
->total_bytes
- sinfo
->bytes_readonly
;
4065 u64 num_allocated
= sinfo
->bytes_used
+ sinfo
->bytes_reserved
;
4068 if (force
== CHUNK_ALLOC_FORCE
)
4072 * We need to take into account the global rsv because for all intents
4073 * and purposes it's used space. Don't worry about locking the
4074 * global_rsv, it doesn't change except when the transaction commits.
4076 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
4077 num_allocated
+= calc_global_rsv_need_space(global_rsv
);
4080 * in limited mode, we want to have some free space up to
4081 * about 1% of the FS size.
4083 if (force
== CHUNK_ALLOC_LIMITED
) {
4084 thresh
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
4085 thresh
= max_t(u64
, 64 * 1024 * 1024,
4086 div_factor_fine(thresh
, 1));
4088 if (num_bytes
- num_allocated
< thresh
)
4092 if (num_allocated
+ 2 * 1024 * 1024 < div_factor(num_bytes
, 8))
4097 static u64
get_system_chunk_thresh(struct btrfs_root
*root
, u64 type
)
4101 if (type
& (BTRFS_BLOCK_GROUP_RAID10
|
4102 BTRFS_BLOCK_GROUP_RAID0
|
4103 BTRFS_BLOCK_GROUP_RAID5
|
4104 BTRFS_BLOCK_GROUP_RAID6
))
4105 num_dev
= root
->fs_info
->fs_devices
->rw_devices
;
4106 else if (type
& BTRFS_BLOCK_GROUP_RAID1
)
4109 num_dev
= 1; /* DUP or single */
4111 /* metadata for updaing devices and chunk tree */
4112 return btrfs_calc_trans_metadata_size(root
, num_dev
+ 1);
4115 static void check_system_chunk(struct btrfs_trans_handle
*trans
,
4116 struct btrfs_root
*root
, u64 type
)
4118 struct btrfs_space_info
*info
;
4122 info
= __find_space_info(root
->fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
4123 spin_lock(&info
->lock
);
4124 left
= info
->total_bytes
- info
->bytes_used
- info
->bytes_pinned
-
4125 info
->bytes_reserved
- info
->bytes_readonly
;
4126 spin_unlock(&info
->lock
);
4128 thresh
= get_system_chunk_thresh(root
, type
);
4129 if (left
< thresh
&& btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
4130 btrfs_info(root
->fs_info
, "left=%llu, need=%llu, flags=%llu",
4131 left
, thresh
, type
);
4132 dump_space_info(info
, 0, 0);
4135 if (left
< thresh
) {
4138 flags
= btrfs_get_alloc_profile(root
->fs_info
->chunk_root
, 0);
4139 btrfs_alloc_chunk(trans
, root
, flags
);
4143 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
4144 struct btrfs_root
*extent_root
, u64 flags
, int force
)
4146 struct btrfs_space_info
*space_info
;
4147 struct btrfs_fs_info
*fs_info
= extent_root
->fs_info
;
4148 int wait_for_alloc
= 0;
4151 /* Don't re-enter if we're already allocating a chunk */
4152 if (trans
->allocating_chunk
)
4155 space_info
= __find_space_info(extent_root
->fs_info
, flags
);
4157 ret
= update_space_info(extent_root
->fs_info
, flags
,
4159 BUG_ON(ret
); /* -ENOMEM */
4161 BUG_ON(!space_info
); /* Logic error */
4164 spin_lock(&space_info
->lock
);
4165 if (force
< space_info
->force_alloc
)
4166 force
= space_info
->force_alloc
;
4167 if (space_info
->full
) {
4168 if (should_alloc_chunk(extent_root
, space_info
, force
))
4172 spin_unlock(&space_info
->lock
);
4176 if (!should_alloc_chunk(extent_root
, space_info
, force
)) {
4177 spin_unlock(&space_info
->lock
);
4179 } else if (space_info
->chunk_alloc
) {
4182 space_info
->chunk_alloc
= 1;
4185 spin_unlock(&space_info
->lock
);
4187 mutex_lock(&fs_info
->chunk_mutex
);
4190 * The chunk_mutex is held throughout the entirety of a chunk
4191 * allocation, so once we've acquired the chunk_mutex we know that the
4192 * other guy is done and we need to recheck and see if we should
4195 if (wait_for_alloc
) {
4196 mutex_unlock(&fs_info
->chunk_mutex
);
4201 trans
->allocating_chunk
= true;
4204 * If we have mixed data/metadata chunks we want to make sure we keep
4205 * allocating mixed chunks instead of individual chunks.
4207 if (btrfs_mixed_space_info(space_info
))
4208 flags
|= (BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
);
4211 * if we're doing a data chunk, go ahead and make sure that
4212 * we keep a reasonable number of metadata chunks allocated in the
4215 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
4216 fs_info
->data_chunk_allocations
++;
4217 if (!(fs_info
->data_chunk_allocations
%
4218 fs_info
->metadata_ratio
))
4219 force_metadata_allocation(fs_info
);
4223 * Check if we have enough space in SYSTEM chunk because we may need
4224 * to update devices.
4226 check_system_chunk(trans
, extent_root
, flags
);
4228 ret
= btrfs_alloc_chunk(trans
, extent_root
, flags
);
4229 trans
->allocating_chunk
= false;
4231 spin_lock(&space_info
->lock
);
4232 if (ret
< 0 && ret
!= -ENOSPC
)
4235 space_info
->full
= 1;
4239 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
4241 space_info
->chunk_alloc
= 0;
4242 spin_unlock(&space_info
->lock
);
4243 mutex_unlock(&fs_info
->chunk_mutex
);
4247 static int can_overcommit(struct btrfs_root
*root
,
4248 struct btrfs_space_info
*space_info
, u64 bytes
,
4249 enum btrfs_reserve_flush_enum flush
)
4251 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
4252 u64 profile
= btrfs_get_alloc_profile(root
, 0);
4257 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4258 space_info
->bytes_pinned
+ space_info
->bytes_readonly
;
4261 * We only want to allow over committing if we have lots of actual space
4262 * free, but if we don't have enough space to handle the global reserve
4263 * space then we could end up having a real enospc problem when trying
4264 * to allocate a chunk or some other such important allocation.
4266 spin_lock(&global_rsv
->lock
);
4267 space_size
= calc_global_rsv_need_space(global_rsv
);
4268 spin_unlock(&global_rsv
->lock
);
4269 if (used
+ space_size
>= space_info
->total_bytes
)
4272 used
+= space_info
->bytes_may_use
;
4274 spin_lock(&root
->fs_info
->free_chunk_lock
);
4275 avail
= root
->fs_info
->free_chunk_space
;
4276 spin_unlock(&root
->fs_info
->free_chunk_lock
);
4279 * If we have dup, raid1 or raid10 then only half of the free
4280 * space is actually useable. For raid56, the space info used
4281 * doesn't include the parity drive, so we don't have to
4284 if (profile
& (BTRFS_BLOCK_GROUP_DUP
|
4285 BTRFS_BLOCK_GROUP_RAID1
|
4286 BTRFS_BLOCK_GROUP_RAID10
))
4290 * If we aren't flushing all things, let us overcommit up to
4291 * 1/2th of the space. If we can flush, don't let us overcommit
4292 * too much, let it overcommit up to 1/8 of the space.
4294 if (flush
== BTRFS_RESERVE_FLUSH_ALL
)
4299 if (used
+ bytes
< space_info
->total_bytes
+ avail
)
4304 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root
*root
,
4305 unsigned long nr_pages
, int nr_items
)
4307 struct super_block
*sb
= root
->fs_info
->sb
;
4309 if (down_read_trylock(&sb
->s_umount
)) {
4310 writeback_inodes_sb_nr(sb
, nr_pages
, WB_REASON_FS_FREE_SPACE
);
4311 up_read(&sb
->s_umount
);
4314 * We needn't worry the filesystem going from r/w to r/o though
4315 * we don't acquire ->s_umount mutex, because the filesystem
4316 * should guarantee the delalloc inodes list be empty after
4317 * the filesystem is readonly(all dirty pages are written to
4320 btrfs_start_delalloc_roots(root
->fs_info
, 0, nr_items
);
4321 if (!current
->journal_info
)
4322 btrfs_wait_ordered_roots(root
->fs_info
, nr_items
);
4326 static inline int calc_reclaim_items_nr(struct btrfs_root
*root
, u64 to_reclaim
)
4331 bytes
= btrfs_calc_trans_metadata_size(root
, 1);
4332 nr
= (int)div64_u64(to_reclaim
, bytes
);
4338 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4341 * shrink metadata reservation for delalloc
4343 static void shrink_delalloc(struct btrfs_root
*root
, u64 to_reclaim
, u64 orig
,
4346 struct btrfs_block_rsv
*block_rsv
;
4347 struct btrfs_space_info
*space_info
;
4348 struct btrfs_trans_handle
*trans
;
4352 unsigned long nr_pages
;
4355 enum btrfs_reserve_flush_enum flush
;
4357 /* Calc the number of the pages we need flush for space reservation */
4358 items
= calc_reclaim_items_nr(root
, to_reclaim
);
4359 to_reclaim
= items
* EXTENT_SIZE_PER_ITEM
;
4361 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4362 block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
4363 space_info
= block_rsv
->space_info
;
4365 delalloc_bytes
= percpu_counter_sum_positive(
4366 &root
->fs_info
->delalloc_bytes
);
4367 if (delalloc_bytes
== 0) {
4371 btrfs_wait_ordered_roots(root
->fs_info
, items
);
4376 while (delalloc_bytes
&& loops
< 3) {
4377 max_reclaim
= min(delalloc_bytes
, to_reclaim
);
4378 nr_pages
= max_reclaim
>> PAGE_CACHE_SHIFT
;
4379 btrfs_writeback_inodes_sb_nr(root
, nr_pages
, items
);
4381 * We need to wait for the async pages to actually start before
4384 max_reclaim
= atomic_read(&root
->fs_info
->async_delalloc_pages
);
4388 if (max_reclaim
<= nr_pages
)
4391 max_reclaim
-= nr_pages
;
4393 wait_event(root
->fs_info
->async_submit_wait
,
4394 atomic_read(&root
->fs_info
->async_delalloc_pages
) <=
4398 flush
= BTRFS_RESERVE_FLUSH_ALL
;
4400 flush
= BTRFS_RESERVE_NO_FLUSH
;
4401 spin_lock(&space_info
->lock
);
4402 if (can_overcommit(root
, space_info
, orig
, flush
)) {
4403 spin_unlock(&space_info
->lock
);
4406 spin_unlock(&space_info
->lock
);
4409 if (wait_ordered
&& !trans
) {
4410 btrfs_wait_ordered_roots(root
->fs_info
, items
);
4412 time_left
= schedule_timeout_killable(1);
4416 delalloc_bytes
= percpu_counter_sum_positive(
4417 &root
->fs_info
->delalloc_bytes
);
4422 * maybe_commit_transaction - possibly commit the transaction if its ok to
4423 * @root - the root we're allocating for
4424 * @bytes - the number of bytes we want to reserve
4425 * @force - force the commit
4427 * This will check to make sure that committing the transaction will actually
4428 * get us somewhere and then commit the transaction if it does. Otherwise it
4429 * will return -ENOSPC.
4431 static int may_commit_transaction(struct btrfs_root
*root
,
4432 struct btrfs_space_info
*space_info
,
4433 u64 bytes
, int force
)
4435 struct btrfs_block_rsv
*delayed_rsv
= &root
->fs_info
->delayed_block_rsv
;
4436 struct btrfs_trans_handle
*trans
;
4438 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4445 /* See if there is enough pinned space to make this reservation */
4446 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4451 * See if there is some space in the delayed insertion reservation for
4454 if (space_info
!= delayed_rsv
->space_info
)
4457 spin_lock(&delayed_rsv
->lock
);
4458 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4459 bytes
- delayed_rsv
->size
) >= 0) {
4460 spin_unlock(&delayed_rsv
->lock
);
4463 spin_unlock(&delayed_rsv
->lock
);
4466 trans
= btrfs_join_transaction(root
);
4470 return btrfs_commit_transaction(trans
, root
);
4474 FLUSH_DELAYED_ITEMS_NR
= 1,
4475 FLUSH_DELAYED_ITEMS
= 2,
4477 FLUSH_DELALLOC_WAIT
= 4,
4482 static int flush_space(struct btrfs_root
*root
,
4483 struct btrfs_space_info
*space_info
, u64 num_bytes
,
4484 u64 orig_bytes
, int state
)
4486 struct btrfs_trans_handle
*trans
;
4491 case FLUSH_DELAYED_ITEMS_NR
:
4492 case FLUSH_DELAYED_ITEMS
:
4493 if (state
== FLUSH_DELAYED_ITEMS_NR
)
4494 nr
= calc_reclaim_items_nr(root
, num_bytes
) * 2;
4498 trans
= btrfs_join_transaction(root
);
4499 if (IS_ERR(trans
)) {
4500 ret
= PTR_ERR(trans
);
4503 ret
= btrfs_run_delayed_items_nr(trans
, root
, nr
);
4504 btrfs_end_transaction(trans
, root
);
4506 case FLUSH_DELALLOC
:
4507 case FLUSH_DELALLOC_WAIT
:
4508 shrink_delalloc(root
, num_bytes
* 2, orig_bytes
,
4509 state
== FLUSH_DELALLOC_WAIT
);
4512 trans
= btrfs_join_transaction(root
);
4513 if (IS_ERR(trans
)) {
4514 ret
= PTR_ERR(trans
);
4517 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
4518 btrfs_get_alloc_profile(root
, 0),
4519 CHUNK_ALLOC_NO_FORCE
);
4520 btrfs_end_transaction(trans
, root
);
4525 ret
= may_commit_transaction(root
, space_info
, orig_bytes
, 0);
4536 btrfs_calc_reclaim_metadata_size(struct btrfs_root
*root
,
4537 struct btrfs_space_info
*space_info
)
4543 to_reclaim
= min_t(u64
, num_online_cpus() * 1024 * 1024,
4545 spin_lock(&space_info
->lock
);
4546 if (can_overcommit(root
, space_info
, to_reclaim
,
4547 BTRFS_RESERVE_FLUSH_ALL
)) {
4552 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4553 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
4554 space_info
->bytes_may_use
;
4555 if (can_overcommit(root
, space_info
, 1024 * 1024,
4556 BTRFS_RESERVE_FLUSH_ALL
))
4557 expected
= div_factor_fine(space_info
->total_bytes
, 95);
4559 expected
= div_factor_fine(space_info
->total_bytes
, 90);
4561 if (used
> expected
)
4562 to_reclaim
= used
- expected
;
4565 to_reclaim
= min(to_reclaim
, space_info
->bytes_may_use
+
4566 space_info
->bytes_reserved
);
4568 spin_unlock(&space_info
->lock
);
4573 static inline int need_do_async_reclaim(struct btrfs_space_info
*space_info
,
4574 struct btrfs_fs_info
*fs_info
, u64 used
)
4576 u64 thresh
= div_factor_fine(space_info
->total_bytes
, 98);
4578 /* If we're just plain full then async reclaim just slows us down. */
4579 if (space_info
->bytes_used
>= thresh
)
4582 return (used
>= thresh
&& !btrfs_fs_closing(fs_info
) &&
4583 !test_bit(BTRFS_FS_STATE_REMOUNTING
, &fs_info
->fs_state
));
4586 static int btrfs_need_do_async_reclaim(struct btrfs_space_info
*space_info
,
4587 struct btrfs_fs_info
*fs_info
,
4592 spin_lock(&space_info
->lock
);
4594 * We run out of space and have not got any free space via flush_space,
4595 * so don't bother doing async reclaim.
4597 if (flush_state
> COMMIT_TRANS
&& space_info
->full
) {
4598 spin_unlock(&space_info
->lock
);
4602 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4603 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
4604 space_info
->bytes_may_use
;
4605 if (need_do_async_reclaim(space_info
, fs_info
, used
)) {
4606 spin_unlock(&space_info
->lock
);
4609 spin_unlock(&space_info
->lock
);
4614 static void btrfs_async_reclaim_metadata_space(struct work_struct
*work
)
4616 struct btrfs_fs_info
*fs_info
;
4617 struct btrfs_space_info
*space_info
;
4621 fs_info
= container_of(work
, struct btrfs_fs_info
, async_reclaim_work
);
4622 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4624 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
->fs_root
,
4629 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
4631 flush_space(fs_info
->fs_root
, space_info
, to_reclaim
,
4632 to_reclaim
, flush_state
);
4634 if (!btrfs_need_do_async_reclaim(space_info
, fs_info
,
4637 } while (flush_state
< COMMIT_TRANS
);
4640 void btrfs_init_async_reclaim_work(struct work_struct
*work
)
4642 INIT_WORK(work
, btrfs_async_reclaim_metadata_space
);
4646 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4647 * @root - the root we're allocating for
4648 * @block_rsv - the block_rsv we're allocating for
4649 * @orig_bytes - the number of bytes we want
4650 * @flush - whether or not we can flush to make our reservation
4652 * This will reserve orgi_bytes number of bytes from the space info associated
4653 * with the block_rsv. If there is not enough space it will make an attempt to
4654 * flush out space to make room. It will do this by flushing delalloc if
4655 * possible or committing the transaction. If flush is 0 then no attempts to
4656 * regain reservations will be made and this will fail if there is not enough
4659 static int reserve_metadata_bytes(struct btrfs_root
*root
,
4660 struct btrfs_block_rsv
*block_rsv
,
4662 enum btrfs_reserve_flush_enum flush
)
4664 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
4666 u64 num_bytes
= orig_bytes
;
4667 int flush_state
= FLUSH_DELAYED_ITEMS_NR
;
4669 bool flushing
= false;
4673 spin_lock(&space_info
->lock
);
4675 * We only want to wait if somebody other than us is flushing and we
4676 * are actually allowed to flush all things.
4678 while (flush
== BTRFS_RESERVE_FLUSH_ALL
&& !flushing
&&
4679 space_info
->flush
) {
4680 spin_unlock(&space_info
->lock
);
4682 * If we have a trans handle we can't wait because the flusher
4683 * may have to commit the transaction, which would mean we would
4684 * deadlock since we are waiting for the flusher to finish, but
4685 * hold the current transaction open.
4687 if (current
->journal_info
)
4689 ret
= wait_event_killable(space_info
->wait
, !space_info
->flush
);
4690 /* Must have been killed, return */
4694 spin_lock(&space_info
->lock
);
4698 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4699 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
4700 space_info
->bytes_may_use
;
4703 * The idea here is that we've not already over-reserved the block group
4704 * then we can go ahead and save our reservation first and then start
4705 * flushing if we need to. Otherwise if we've already overcommitted
4706 * lets start flushing stuff first and then come back and try to make
4709 if (used
<= space_info
->total_bytes
) {
4710 if (used
+ orig_bytes
<= space_info
->total_bytes
) {
4711 space_info
->bytes_may_use
+= orig_bytes
;
4712 trace_btrfs_space_reservation(root
->fs_info
,
4713 "space_info", space_info
->flags
, orig_bytes
, 1);
4717 * Ok set num_bytes to orig_bytes since we aren't
4718 * overocmmitted, this way we only try and reclaim what
4721 num_bytes
= orig_bytes
;
4725 * Ok we're over committed, set num_bytes to the overcommitted
4726 * amount plus the amount of bytes that we need for this
4729 num_bytes
= used
- space_info
->total_bytes
+
4733 if (ret
&& can_overcommit(root
, space_info
, orig_bytes
, flush
)) {
4734 space_info
->bytes_may_use
+= orig_bytes
;
4735 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
4736 space_info
->flags
, orig_bytes
,
4742 * Couldn't make our reservation, save our place so while we're trying
4743 * to reclaim space we can actually use it instead of somebody else
4744 * stealing it from us.
4746 * We make the other tasks wait for the flush only when we can flush
4749 if (ret
&& flush
!= BTRFS_RESERVE_NO_FLUSH
) {
4751 space_info
->flush
= 1;
4752 } else if (!ret
&& space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
4755 * We will do the space reservation dance during log replay,
4756 * which means we won't have fs_info->fs_root set, so don't do
4757 * the async reclaim as we will panic.
4759 if (!root
->fs_info
->log_root_recovering
&&
4760 need_do_async_reclaim(space_info
, root
->fs_info
, used
) &&
4761 !work_busy(&root
->fs_info
->async_reclaim_work
))
4762 queue_work(system_unbound_wq
,
4763 &root
->fs_info
->async_reclaim_work
);
4765 spin_unlock(&space_info
->lock
);
4767 if (!ret
|| flush
== BTRFS_RESERVE_NO_FLUSH
)
4770 ret
= flush_space(root
, space_info
, num_bytes
, orig_bytes
,
4775 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4776 * would happen. So skip delalloc flush.
4778 if (flush
== BTRFS_RESERVE_FLUSH_LIMIT
&&
4779 (flush_state
== FLUSH_DELALLOC
||
4780 flush_state
== FLUSH_DELALLOC_WAIT
))
4781 flush_state
= ALLOC_CHUNK
;
4785 else if (flush
== BTRFS_RESERVE_FLUSH_LIMIT
&&
4786 flush_state
< COMMIT_TRANS
)
4788 else if (flush
== BTRFS_RESERVE_FLUSH_ALL
&&
4789 flush_state
<= COMMIT_TRANS
)
4793 if (ret
== -ENOSPC
&&
4794 unlikely(root
->orphan_cleanup_state
== ORPHAN_CLEANUP_STARTED
)) {
4795 struct btrfs_block_rsv
*global_rsv
=
4796 &root
->fs_info
->global_block_rsv
;
4798 if (block_rsv
!= global_rsv
&&
4799 !block_rsv_use_bytes(global_rsv
, orig_bytes
))
4803 trace_btrfs_space_reservation(root
->fs_info
,
4804 "space_info:enospc",
4805 space_info
->flags
, orig_bytes
, 1);
4807 spin_lock(&space_info
->lock
);
4808 space_info
->flush
= 0;
4809 wake_up_all(&space_info
->wait
);
4810 spin_unlock(&space_info
->lock
);
4815 static struct btrfs_block_rsv
*get_block_rsv(
4816 const struct btrfs_trans_handle
*trans
,
4817 const struct btrfs_root
*root
)
4819 struct btrfs_block_rsv
*block_rsv
= NULL
;
4821 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4822 block_rsv
= trans
->block_rsv
;
4824 if (root
== root
->fs_info
->csum_root
&& trans
->adding_csums
)
4825 block_rsv
= trans
->block_rsv
;
4827 if (root
== root
->fs_info
->uuid_root
)
4828 block_rsv
= trans
->block_rsv
;
4831 block_rsv
= root
->block_rsv
;
4834 block_rsv
= &root
->fs_info
->empty_block_rsv
;
4839 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
4843 spin_lock(&block_rsv
->lock
);
4844 if (block_rsv
->reserved
>= num_bytes
) {
4845 block_rsv
->reserved
-= num_bytes
;
4846 if (block_rsv
->reserved
< block_rsv
->size
)
4847 block_rsv
->full
= 0;
4850 spin_unlock(&block_rsv
->lock
);
4854 static void block_rsv_add_bytes(struct btrfs_block_rsv
*block_rsv
,
4855 u64 num_bytes
, int update_size
)
4857 spin_lock(&block_rsv
->lock
);
4858 block_rsv
->reserved
+= num_bytes
;
4860 block_rsv
->size
+= num_bytes
;
4861 else if (block_rsv
->reserved
>= block_rsv
->size
)
4862 block_rsv
->full
= 1;
4863 spin_unlock(&block_rsv
->lock
);
4866 int btrfs_cond_migrate_bytes(struct btrfs_fs_info
*fs_info
,
4867 struct btrfs_block_rsv
*dest
, u64 num_bytes
,
4870 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
4873 if (global_rsv
->space_info
!= dest
->space_info
)
4876 spin_lock(&global_rsv
->lock
);
4877 min_bytes
= div_factor(global_rsv
->size
, min_factor
);
4878 if (global_rsv
->reserved
< min_bytes
+ num_bytes
) {
4879 spin_unlock(&global_rsv
->lock
);
4882 global_rsv
->reserved
-= num_bytes
;
4883 if (global_rsv
->reserved
< global_rsv
->size
)
4884 global_rsv
->full
= 0;
4885 spin_unlock(&global_rsv
->lock
);
4887 block_rsv_add_bytes(dest
, num_bytes
, 1);
4891 static void block_rsv_release_bytes(struct btrfs_fs_info
*fs_info
,
4892 struct btrfs_block_rsv
*block_rsv
,
4893 struct btrfs_block_rsv
*dest
, u64 num_bytes
)
4895 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
4897 spin_lock(&block_rsv
->lock
);
4898 if (num_bytes
== (u64
)-1)
4899 num_bytes
= block_rsv
->size
;
4900 block_rsv
->size
-= num_bytes
;
4901 if (block_rsv
->reserved
>= block_rsv
->size
) {
4902 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
4903 block_rsv
->reserved
= block_rsv
->size
;
4904 block_rsv
->full
= 1;
4908 spin_unlock(&block_rsv
->lock
);
4910 if (num_bytes
> 0) {
4912 spin_lock(&dest
->lock
);
4916 bytes_to_add
= dest
->size
- dest
->reserved
;
4917 bytes_to_add
= min(num_bytes
, bytes_to_add
);
4918 dest
->reserved
+= bytes_to_add
;
4919 if (dest
->reserved
>= dest
->size
)
4921 num_bytes
-= bytes_to_add
;
4923 spin_unlock(&dest
->lock
);
4926 spin_lock(&space_info
->lock
);
4927 space_info
->bytes_may_use
-= num_bytes
;
4928 trace_btrfs_space_reservation(fs_info
, "space_info",
4929 space_info
->flags
, num_bytes
, 0);
4930 spin_unlock(&space_info
->lock
);
4935 static int block_rsv_migrate_bytes(struct btrfs_block_rsv
*src
,
4936 struct btrfs_block_rsv
*dst
, u64 num_bytes
)
4940 ret
= block_rsv_use_bytes(src
, num_bytes
);
4944 block_rsv_add_bytes(dst
, num_bytes
, 1);
4948 void btrfs_init_block_rsv(struct btrfs_block_rsv
*rsv
, unsigned short type
)
4950 memset(rsv
, 0, sizeof(*rsv
));
4951 spin_lock_init(&rsv
->lock
);
4955 struct btrfs_block_rsv
*btrfs_alloc_block_rsv(struct btrfs_root
*root
,
4956 unsigned short type
)
4958 struct btrfs_block_rsv
*block_rsv
;
4959 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4961 block_rsv
= kmalloc(sizeof(*block_rsv
), GFP_NOFS
);
4965 btrfs_init_block_rsv(block_rsv
, type
);
4966 block_rsv
->space_info
= __find_space_info(fs_info
,
4967 BTRFS_BLOCK_GROUP_METADATA
);
4971 void btrfs_free_block_rsv(struct btrfs_root
*root
,
4972 struct btrfs_block_rsv
*rsv
)
4976 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
4980 void __btrfs_free_block_rsv(struct btrfs_block_rsv
*rsv
)
4985 int btrfs_block_rsv_add(struct btrfs_root
*root
,
4986 struct btrfs_block_rsv
*block_rsv
, u64 num_bytes
,
4987 enum btrfs_reserve_flush_enum flush
)
4994 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
4996 block_rsv_add_bytes(block_rsv
, num_bytes
, 1);
5003 int btrfs_block_rsv_check(struct btrfs_root
*root
,
5004 struct btrfs_block_rsv
*block_rsv
, int min_factor
)
5012 spin_lock(&block_rsv
->lock
);
5013 num_bytes
= div_factor(block_rsv
->size
, min_factor
);
5014 if (block_rsv
->reserved
>= num_bytes
)
5016 spin_unlock(&block_rsv
->lock
);
5021 int btrfs_block_rsv_refill(struct btrfs_root
*root
,
5022 struct btrfs_block_rsv
*block_rsv
, u64 min_reserved
,
5023 enum btrfs_reserve_flush_enum flush
)
5031 spin_lock(&block_rsv
->lock
);
5032 num_bytes
= min_reserved
;
5033 if (block_rsv
->reserved
>= num_bytes
)
5036 num_bytes
-= block_rsv
->reserved
;
5037 spin_unlock(&block_rsv
->lock
);
5042 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
5044 block_rsv_add_bytes(block_rsv
, num_bytes
, 0);
5051 int btrfs_block_rsv_migrate(struct btrfs_block_rsv
*src_rsv
,
5052 struct btrfs_block_rsv
*dst_rsv
,
5055 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
5058 void btrfs_block_rsv_release(struct btrfs_root
*root
,
5059 struct btrfs_block_rsv
*block_rsv
,
5062 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
5063 if (global_rsv
== block_rsv
||
5064 block_rsv
->space_info
!= global_rsv
->space_info
)
5066 block_rsv_release_bytes(root
->fs_info
, block_rsv
, global_rsv
,
5071 * helper to calculate size of global block reservation.
5072 * the desired value is sum of space used by extent tree,
5073 * checksum tree and root tree
5075 static u64
calc_global_metadata_size(struct btrfs_fs_info
*fs_info
)
5077 struct btrfs_space_info
*sinfo
;
5081 int csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
5083 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_DATA
);
5084 spin_lock(&sinfo
->lock
);
5085 data_used
= sinfo
->bytes_used
;
5086 spin_unlock(&sinfo
->lock
);
5088 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
5089 spin_lock(&sinfo
->lock
);
5090 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_DATA
)
5092 meta_used
= sinfo
->bytes_used
;
5093 spin_unlock(&sinfo
->lock
);
5095 num_bytes
= (data_used
>> fs_info
->sb
->s_blocksize_bits
) *
5097 num_bytes
+= div_u64(data_used
+ meta_used
, 50);
5099 if (num_bytes
* 3 > meta_used
)
5100 num_bytes
= div_u64(meta_used
, 3);
5102 return ALIGN(num_bytes
, fs_info
->extent_root
->nodesize
<< 10);
5105 static void update_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5107 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
5108 struct btrfs_space_info
*sinfo
= block_rsv
->space_info
;
5111 num_bytes
= calc_global_metadata_size(fs_info
);
5113 spin_lock(&sinfo
->lock
);
5114 spin_lock(&block_rsv
->lock
);
5116 block_rsv
->size
= min_t(u64
, num_bytes
, 512 * 1024 * 1024);
5118 num_bytes
= sinfo
->bytes_used
+ sinfo
->bytes_pinned
+
5119 sinfo
->bytes_reserved
+ sinfo
->bytes_readonly
+
5120 sinfo
->bytes_may_use
;
5122 if (sinfo
->total_bytes
> num_bytes
) {
5123 num_bytes
= sinfo
->total_bytes
- num_bytes
;
5124 block_rsv
->reserved
+= num_bytes
;
5125 sinfo
->bytes_may_use
+= num_bytes
;
5126 trace_btrfs_space_reservation(fs_info
, "space_info",
5127 sinfo
->flags
, num_bytes
, 1);
5130 if (block_rsv
->reserved
>= block_rsv
->size
) {
5131 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
5132 sinfo
->bytes_may_use
-= num_bytes
;
5133 trace_btrfs_space_reservation(fs_info
, "space_info",
5134 sinfo
->flags
, num_bytes
, 0);
5135 block_rsv
->reserved
= block_rsv
->size
;
5136 block_rsv
->full
= 1;
5139 spin_unlock(&block_rsv
->lock
);
5140 spin_unlock(&sinfo
->lock
);
5143 static void init_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5145 struct btrfs_space_info
*space_info
;
5147 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
5148 fs_info
->chunk_block_rsv
.space_info
= space_info
;
5150 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
5151 fs_info
->global_block_rsv
.space_info
= space_info
;
5152 fs_info
->delalloc_block_rsv
.space_info
= space_info
;
5153 fs_info
->trans_block_rsv
.space_info
= space_info
;
5154 fs_info
->empty_block_rsv
.space_info
= space_info
;
5155 fs_info
->delayed_block_rsv
.space_info
= space_info
;
5157 fs_info
->extent_root
->block_rsv
= &fs_info
->global_block_rsv
;
5158 fs_info
->csum_root
->block_rsv
= &fs_info
->global_block_rsv
;
5159 fs_info
->dev_root
->block_rsv
= &fs_info
->global_block_rsv
;
5160 fs_info
->tree_root
->block_rsv
= &fs_info
->global_block_rsv
;
5161 if (fs_info
->quota_root
)
5162 fs_info
->quota_root
->block_rsv
= &fs_info
->global_block_rsv
;
5163 fs_info
->chunk_root
->block_rsv
= &fs_info
->chunk_block_rsv
;
5165 update_global_block_rsv(fs_info
);
5168 static void release_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5170 block_rsv_release_bytes(fs_info
, &fs_info
->global_block_rsv
, NULL
,
5172 WARN_ON(fs_info
->delalloc_block_rsv
.size
> 0);
5173 WARN_ON(fs_info
->delalloc_block_rsv
.reserved
> 0);
5174 WARN_ON(fs_info
->trans_block_rsv
.size
> 0);
5175 WARN_ON(fs_info
->trans_block_rsv
.reserved
> 0);
5176 WARN_ON(fs_info
->chunk_block_rsv
.size
> 0);
5177 WARN_ON(fs_info
->chunk_block_rsv
.reserved
> 0);
5178 WARN_ON(fs_info
->delayed_block_rsv
.size
> 0);
5179 WARN_ON(fs_info
->delayed_block_rsv
.reserved
> 0);
5182 void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
,
5183 struct btrfs_root
*root
)
5185 if (!trans
->block_rsv
)
5188 if (!trans
->bytes_reserved
)
5191 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
5192 trans
->transid
, trans
->bytes_reserved
, 0);
5193 btrfs_block_rsv_release(root
, trans
->block_rsv
, trans
->bytes_reserved
);
5194 trans
->bytes_reserved
= 0;
5197 /* Can only return 0 or -ENOSPC */
5198 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle
*trans
,
5199 struct inode
*inode
)
5201 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5202 struct btrfs_block_rsv
*src_rsv
= get_block_rsv(trans
, root
);
5203 struct btrfs_block_rsv
*dst_rsv
= root
->orphan_block_rsv
;
5206 * We need to hold space in order to delete our orphan item once we've
5207 * added it, so this takes the reservation so we can release it later
5208 * when we are truly done with the orphan item.
5210 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
5211 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
5212 btrfs_ino(inode
), num_bytes
, 1);
5213 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
5216 void btrfs_orphan_release_metadata(struct inode
*inode
)
5218 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5219 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
5220 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
5221 btrfs_ino(inode
), num_bytes
, 0);
5222 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
, num_bytes
);
5226 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5227 * root: the root of the parent directory
5228 * rsv: block reservation
5229 * items: the number of items that we need do reservation
5230 * qgroup_reserved: used to return the reserved size in qgroup
5232 * This function is used to reserve the space for snapshot/subvolume
5233 * creation and deletion. Those operations are different with the
5234 * common file/directory operations, they change two fs/file trees
5235 * and root tree, the number of items that the qgroup reserves is
5236 * different with the free space reservation. So we can not use
5237 * the space reseravtion mechanism in start_transaction().
5239 int btrfs_subvolume_reserve_metadata(struct btrfs_root
*root
,
5240 struct btrfs_block_rsv
*rsv
,
5242 u64
*qgroup_reserved
,
5243 bool use_global_rsv
)
5247 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
5249 if (root
->fs_info
->quota_enabled
) {
5250 /* One for parent inode, two for dir entries */
5251 num_bytes
= 3 * root
->nodesize
;
5252 ret
= btrfs_qgroup_reserve(root
, num_bytes
);
5259 *qgroup_reserved
= num_bytes
;
5261 num_bytes
= btrfs_calc_trans_metadata_size(root
, items
);
5262 rsv
->space_info
= __find_space_info(root
->fs_info
,
5263 BTRFS_BLOCK_GROUP_METADATA
);
5264 ret
= btrfs_block_rsv_add(root
, rsv
, num_bytes
,
5265 BTRFS_RESERVE_FLUSH_ALL
);
5267 if (ret
== -ENOSPC
&& use_global_rsv
)
5268 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, num_bytes
);
5271 if (*qgroup_reserved
)
5272 btrfs_qgroup_free(root
, *qgroup_reserved
);
5278 void btrfs_subvolume_release_metadata(struct btrfs_root
*root
,
5279 struct btrfs_block_rsv
*rsv
,
5280 u64 qgroup_reserved
)
5282 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
5286 * drop_outstanding_extent - drop an outstanding extent
5287 * @inode: the inode we're dropping the extent for
5288 * @num_bytes: the number of bytes we're relaseing.
5290 * This is called when we are freeing up an outstanding extent, either called
5291 * after an error or after an extent is written. This will return the number of
5292 * reserved extents that need to be freed. This must be called with
5293 * BTRFS_I(inode)->lock held.
5295 static unsigned drop_outstanding_extent(struct inode
*inode
, u64 num_bytes
)
5297 unsigned drop_inode_space
= 0;
5298 unsigned dropped_extents
= 0;
5299 unsigned num_extents
= 0;
5301 num_extents
= (unsigned)div64_u64(num_bytes
+
5302 BTRFS_MAX_EXTENT_SIZE
- 1,
5303 BTRFS_MAX_EXTENT_SIZE
);
5304 ASSERT(num_extents
);
5305 ASSERT(BTRFS_I(inode
)->outstanding_extents
>= num_extents
);
5306 BTRFS_I(inode
)->outstanding_extents
-= num_extents
;
5308 if (BTRFS_I(inode
)->outstanding_extents
== 0 &&
5309 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5310 &BTRFS_I(inode
)->runtime_flags
))
5311 drop_inode_space
= 1;
5314 * If we have more or the same amount of outsanding extents than we have
5315 * reserved then we need to leave the reserved extents count alone.
5317 if (BTRFS_I(inode
)->outstanding_extents
>=
5318 BTRFS_I(inode
)->reserved_extents
)
5319 return drop_inode_space
;
5321 dropped_extents
= BTRFS_I(inode
)->reserved_extents
-
5322 BTRFS_I(inode
)->outstanding_extents
;
5323 BTRFS_I(inode
)->reserved_extents
-= dropped_extents
;
5324 return dropped_extents
+ drop_inode_space
;
5328 * calc_csum_metadata_size - return the amount of metada space that must be
5329 * reserved/free'd for the given bytes.
5330 * @inode: the inode we're manipulating
5331 * @num_bytes: the number of bytes in question
5332 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5334 * This adjusts the number of csum_bytes in the inode and then returns the
5335 * correct amount of metadata that must either be reserved or freed. We
5336 * calculate how many checksums we can fit into one leaf and then divide the
5337 * number of bytes that will need to be checksumed by this value to figure out
5338 * how many checksums will be required. If we are adding bytes then the number
5339 * may go up and we will return the number of additional bytes that must be
5340 * reserved. If it is going down we will return the number of bytes that must
5343 * This must be called with BTRFS_I(inode)->lock held.
5345 static u64
calc_csum_metadata_size(struct inode
*inode
, u64 num_bytes
,
5348 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5349 u64 old_csums
, num_csums
;
5351 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
&&
5352 BTRFS_I(inode
)->csum_bytes
== 0)
5355 old_csums
= btrfs_csum_bytes_to_leaves(root
, BTRFS_I(inode
)->csum_bytes
);
5357 BTRFS_I(inode
)->csum_bytes
+= num_bytes
;
5359 BTRFS_I(inode
)->csum_bytes
-= num_bytes
;
5360 num_csums
= btrfs_csum_bytes_to_leaves(root
, BTRFS_I(inode
)->csum_bytes
);
5362 /* No change, no need to reserve more */
5363 if (old_csums
== num_csums
)
5367 return btrfs_calc_trans_metadata_size(root
,
5368 num_csums
- old_csums
);
5370 return btrfs_calc_trans_metadata_size(root
, old_csums
- num_csums
);
5373 int btrfs_delalloc_reserve_metadata(struct inode
*inode
, u64 num_bytes
)
5375 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5376 struct btrfs_block_rsv
*block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5379 unsigned nr_extents
= 0;
5380 int extra_reserve
= 0;
5381 enum btrfs_reserve_flush_enum flush
= BTRFS_RESERVE_FLUSH_ALL
;
5383 bool delalloc_lock
= true;
5387 /* If we are a free space inode we need to not flush since we will be in
5388 * the middle of a transaction commit. We also don't need the delalloc
5389 * mutex since we won't race with anybody. We need this mostly to make
5390 * lockdep shut its filthy mouth.
5392 if (btrfs_is_free_space_inode(inode
)) {
5393 flush
= BTRFS_RESERVE_NO_FLUSH
;
5394 delalloc_lock
= false;
5397 if (flush
!= BTRFS_RESERVE_NO_FLUSH
&&
5398 btrfs_transaction_in_commit(root
->fs_info
))
5399 schedule_timeout(1);
5402 mutex_lock(&BTRFS_I(inode
)->delalloc_mutex
);
5404 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
5406 spin_lock(&BTRFS_I(inode
)->lock
);
5407 nr_extents
= (unsigned)div64_u64(num_bytes
+
5408 BTRFS_MAX_EXTENT_SIZE
- 1,
5409 BTRFS_MAX_EXTENT_SIZE
);
5410 BTRFS_I(inode
)->outstanding_extents
+= nr_extents
;
5413 if (BTRFS_I(inode
)->outstanding_extents
>
5414 BTRFS_I(inode
)->reserved_extents
)
5415 nr_extents
= BTRFS_I(inode
)->outstanding_extents
-
5416 BTRFS_I(inode
)->reserved_extents
;
5419 * Add an item to reserve for updating the inode when we complete the
5422 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5423 &BTRFS_I(inode
)->runtime_flags
)) {
5428 to_reserve
= btrfs_calc_trans_metadata_size(root
, nr_extents
);
5429 to_reserve
+= calc_csum_metadata_size(inode
, num_bytes
, 1);
5430 csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
5431 spin_unlock(&BTRFS_I(inode
)->lock
);
5433 if (root
->fs_info
->quota_enabled
) {
5434 ret
= btrfs_qgroup_reserve(root
, nr_extents
* root
->nodesize
);
5439 ret
= reserve_metadata_bytes(root
, block_rsv
, to_reserve
, flush
);
5440 if (unlikely(ret
)) {
5441 if (root
->fs_info
->quota_enabled
)
5442 btrfs_qgroup_free(root
, nr_extents
* root
->nodesize
);
5446 spin_lock(&BTRFS_I(inode
)->lock
);
5447 if (extra_reserve
) {
5448 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5449 &BTRFS_I(inode
)->runtime_flags
);
5452 BTRFS_I(inode
)->reserved_extents
+= nr_extents
;
5453 spin_unlock(&BTRFS_I(inode
)->lock
);
5456 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
5459 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
5460 btrfs_ino(inode
), to_reserve
, 1);
5461 block_rsv_add_bytes(block_rsv
, to_reserve
, 1);
5466 spin_lock(&BTRFS_I(inode
)->lock
);
5467 dropped
= drop_outstanding_extent(inode
, num_bytes
);
5469 * If the inodes csum_bytes is the same as the original
5470 * csum_bytes then we know we haven't raced with any free()ers
5471 * so we can just reduce our inodes csum bytes and carry on.
5473 if (BTRFS_I(inode
)->csum_bytes
== csum_bytes
) {
5474 calc_csum_metadata_size(inode
, num_bytes
, 0);
5476 u64 orig_csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
5480 * This is tricky, but first we need to figure out how much we
5481 * free'd from any free-ers that occured during this
5482 * reservation, so we reset ->csum_bytes to the csum_bytes
5483 * before we dropped our lock, and then call the free for the
5484 * number of bytes that were freed while we were trying our
5487 bytes
= csum_bytes
- BTRFS_I(inode
)->csum_bytes
;
5488 BTRFS_I(inode
)->csum_bytes
= csum_bytes
;
5489 to_free
= calc_csum_metadata_size(inode
, bytes
, 0);
5493 * Now we need to see how much we would have freed had we not
5494 * been making this reservation and our ->csum_bytes were not
5495 * artificially inflated.
5497 BTRFS_I(inode
)->csum_bytes
= csum_bytes
- num_bytes
;
5498 bytes
= csum_bytes
- orig_csum_bytes
;
5499 bytes
= calc_csum_metadata_size(inode
, bytes
, 0);
5502 * Now reset ->csum_bytes to what it should be. If bytes is
5503 * more than to_free then we would have free'd more space had we
5504 * not had an artificially high ->csum_bytes, so we need to free
5505 * the remainder. If bytes is the same or less then we don't
5506 * need to do anything, the other free-ers did the correct
5509 BTRFS_I(inode
)->csum_bytes
= orig_csum_bytes
- num_bytes
;
5510 if (bytes
> to_free
)
5511 to_free
= bytes
- to_free
;
5515 spin_unlock(&BTRFS_I(inode
)->lock
);
5517 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
5520 btrfs_block_rsv_release(root
, block_rsv
, to_free
);
5521 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
5522 btrfs_ino(inode
), to_free
, 0);
5525 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
5530 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5531 * @inode: the inode to release the reservation for
5532 * @num_bytes: the number of bytes we're releasing
5534 * This will release the metadata reservation for an inode. This can be called
5535 * once we complete IO for a given set of bytes to release their metadata
5538 void btrfs_delalloc_release_metadata(struct inode
*inode
, u64 num_bytes
)
5540 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5544 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
5545 spin_lock(&BTRFS_I(inode
)->lock
);
5546 dropped
= drop_outstanding_extent(inode
, num_bytes
);
5549 to_free
= calc_csum_metadata_size(inode
, num_bytes
, 0);
5550 spin_unlock(&BTRFS_I(inode
)->lock
);
5552 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
5554 if (btrfs_test_is_dummy_root(root
))
5557 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
5558 btrfs_ino(inode
), to_free
, 0);
5560 btrfs_block_rsv_release(root
, &root
->fs_info
->delalloc_block_rsv
,
5565 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5566 * @inode: inode we're writing to
5567 * @num_bytes: the number of bytes we want to allocate
5569 * This will do the following things
5571 * o reserve space in the data space info for num_bytes
5572 * o reserve space in the metadata space info based on number of outstanding
5573 * extents and how much csums will be needed
5574 * o add to the inodes ->delalloc_bytes
5575 * o add it to the fs_info's delalloc inodes list.
5577 * This will return 0 for success and -ENOSPC if there is no space left.
5579 int btrfs_delalloc_reserve_space(struct inode
*inode
, u64 num_bytes
)
5583 ret
= btrfs_check_data_free_space(inode
, num_bytes
, num_bytes
);
5587 ret
= btrfs_delalloc_reserve_metadata(inode
, num_bytes
);
5589 btrfs_free_reserved_data_space(inode
, num_bytes
);
5597 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5598 * @inode: inode we're releasing space for
5599 * @num_bytes: the number of bytes we want to free up
5601 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5602 * called in the case that we don't need the metadata AND data reservations
5603 * anymore. So if there is an error or we insert an inline extent.
5605 * This function will release the metadata space that was not used and will
5606 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5607 * list if there are no delalloc bytes left.
5609 void btrfs_delalloc_release_space(struct inode
*inode
, u64 num_bytes
)
5611 btrfs_delalloc_release_metadata(inode
, num_bytes
);
5612 btrfs_free_reserved_data_space(inode
, num_bytes
);
5615 static int update_block_group(struct btrfs_trans_handle
*trans
,
5616 struct btrfs_root
*root
, u64 bytenr
,
5617 u64 num_bytes
, int alloc
)
5619 struct btrfs_block_group_cache
*cache
= NULL
;
5620 struct btrfs_fs_info
*info
= root
->fs_info
;
5621 u64 total
= num_bytes
;
5626 /* block accounting for super block */
5627 spin_lock(&info
->delalloc_root_lock
);
5628 old_val
= btrfs_super_bytes_used(info
->super_copy
);
5630 old_val
+= num_bytes
;
5632 old_val
-= num_bytes
;
5633 btrfs_set_super_bytes_used(info
->super_copy
, old_val
);
5634 spin_unlock(&info
->delalloc_root_lock
);
5637 cache
= btrfs_lookup_block_group(info
, bytenr
);
5640 if (cache
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
5641 BTRFS_BLOCK_GROUP_RAID1
|
5642 BTRFS_BLOCK_GROUP_RAID10
))
5647 * If this block group has free space cache written out, we
5648 * need to make sure to load it if we are removing space. This
5649 * is because we need the unpinning stage to actually add the
5650 * space back to the block group, otherwise we will leak space.
5652 if (!alloc
&& cache
->cached
== BTRFS_CACHE_NO
)
5653 cache_block_group(cache
, 1);
5655 byte_in_group
= bytenr
- cache
->key
.objectid
;
5656 WARN_ON(byte_in_group
> cache
->key
.offset
);
5658 spin_lock(&cache
->space_info
->lock
);
5659 spin_lock(&cache
->lock
);
5661 if (btrfs_test_opt(root
, SPACE_CACHE
) &&
5662 cache
->disk_cache_state
< BTRFS_DC_CLEAR
)
5663 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
5665 old_val
= btrfs_block_group_used(&cache
->item
);
5666 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
5668 old_val
+= num_bytes
;
5669 btrfs_set_block_group_used(&cache
->item
, old_val
);
5670 cache
->reserved
-= num_bytes
;
5671 cache
->space_info
->bytes_reserved
-= num_bytes
;
5672 cache
->space_info
->bytes_used
+= num_bytes
;
5673 cache
->space_info
->disk_used
+= num_bytes
* factor
;
5674 spin_unlock(&cache
->lock
);
5675 spin_unlock(&cache
->space_info
->lock
);
5677 old_val
-= num_bytes
;
5678 btrfs_set_block_group_used(&cache
->item
, old_val
);
5679 cache
->pinned
+= num_bytes
;
5680 cache
->space_info
->bytes_pinned
+= num_bytes
;
5681 cache
->space_info
->bytes_used
-= num_bytes
;
5682 cache
->space_info
->disk_used
-= num_bytes
* factor
;
5683 spin_unlock(&cache
->lock
);
5684 spin_unlock(&cache
->space_info
->lock
);
5686 set_extent_dirty(info
->pinned_extents
,
5687 bytenr
, bytenr
+ num_bytes
- 1,
5688 GFP_NOFS
| __GFP_NOFAIL
);
5690 * No longer have used bytes in this block group, queue
5694 spin_lock(&info
->unused_bgs_lock
);
5695 if (list_empty(&cache
->bg_list
)) {
5696 btrfs_get_block_group(cache
);
5697 list_add_tail(&cache
->bg_list
,
5700 spin_unlock(&info
->unused_bgs_lock
);
5704 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
5705 if (list_empty(&cache
->dirty_list
)) {
5706 list_add_tail(&cache
->dirty_list
,
5707 &trans
->transaction
->dirty_bgs
);
5708 trans
->transaction
->num_dirty_bgs
++;
5709 btrfs_get_block_group(cache
);
5711 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
5713 btrfs_put_block_group(cache
);
5715 bytenr
+= num_bytes
;
5720 static u64
first_logical_byte(struct btrfs_root
*root
, u64 search_start
)
5722 struct btrfs_block_group_cache
*cache
;
5725 spin_lock(&root
->fs_info
->block_group_cache_lock
);
5726 bytenr
= root
->fs_info
->first_logical_byte
;
5727 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
5729 if (bytenr
< (u64
)-1)
5732 cache
= btrfs_lookup_first_block_group(root
->fs_info
, search_start
);
5736 bytenr
= cache
->key
.objectid
;
5737 btrfs_put_block_group(cache
);
5742 static int pin_down_extent(struct btrfs_root
*root
,
5743 struct btrfs_block_group_cache
*cache
,
5744 u64 bytenr
, u64 num_bytes
, int reserved
)
5746 spin_lock(&cache
->space_info
->lock
);
5747 spin_lock(&cache
->lock
);
5748 cache
->pinned
+= num_bytes
;
5749 cache
->space_info
->bytes_pinned
+= num_bytes
;
5751 cache
->reserved
-= num_bytes
;
5752 cache
->space_info
->bytes_reserved
-= num_bytes
;
5754 spin_unlock(&cache
->lock
);
5755 spin_unlock(&cache
->space_info
->lock
);
5757 set_extent_dirty(root
->fs_info
->pinned_extents
, bytenr
,
5758 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
5760 trace_btrfs_reserved_extent_free(root
, bytenr
, num_bytes
);
5765 * this function must be called within transaction
5767 int btrfs_pin_extent(struct btrfs_root
*root
,
5768 u64 bytenr
, u64 num_bytes
, int reserved
)
5770 struct btrfs_block_group_cache
*cache
;
5772 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
5773 BUG_ON(!cache
); /* Logic error */
5775 pin_down_extent(root
, cache
, bytenr
, num_bytes
, reserved
);
5777 btrfs_put_block_group(cache
);
5782 * this function must be called within transaction
5784 int btrfs_pin_extent_for_log_replay(struct btrfs_root
*root
,
5785 u64 bytenr
, u64 num_bytes
)
5787 struct btrfs_block_group_cache
*cache
;
5790 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
5795 * pull in the free space cache (if any) so that our pin
5796 * removes the free space from the cache. We have load_only set
5797 * to one because the slow code to read in the free extents does check
5798 * the pinned extents.
5800 cache_block_group(cache
, 1);
5802 pin_down_extent(root
, cache
, bytenr
, num_bytes
, 0);
5804 /* remove us from the free space cache (if we're there at all) */
5805 ret
= btrfs_remove_free_space(cache
, bytenr
, num_bytes
);
5806 btrfs_put_block_group(cache
);
5810 static int __exclude_logged_extent(struct btrfs_root
*root
, u64 start
, u64 num_bytes
)
5813 struct btrfs_block_group_cache
*block_group
;
5814 struct btrfs_caching_control
*caching_ctl
;
5816 block_group
= btrfs_lookup_block_group(root
->fs_info
, start
);
5820 cache_block_group(block_group
, 0);
5821 caching_ctl
= get_caching_control(block_group
);
5825 BUG_ON(!block_group_cache_done(block_group
));
5826 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
5828 mutex_lock(&caching_ctl
->mutex
);
5830 if (start
>= caching_ctl
->progress
) {
5831 ret
= add_excluded_extent(root
, start
, num_bytes
);
5832 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
5833 ret
= btrfs_remove_free_space(block_group
,
5836 num_bytes
= caching_ctl
->progress
- start
;
5837 ret
= btrfs_remove_free_space(block_group
,
5842 num_bytes
= (start
+ num_bytes
) -
5843 caching_ctl
->progress
;
5844 start
= caching_ctl
->progress
;
5845 ret
= add_excluded_extent(root
, start
, num_bytes
);
5848 mutex_unlock(&caching_ctl
->mutex
);
5849 put_caching_control(caching_ctl
);
5851 btrfs_put_block_group(block_group
);
5855 int btrfs_exclude_logged_extents(struct btrfs_root
*log
,
5856 struct extent_buffer
*eb
)
5858 struct btrfs_file_extent_item
*item
;
5859 struct btrfs_key key
;
5863 if (!btrfs_fs_incompat(log
->fs_info
, MIXED_GROUPS
))
5866 for (i
= 0; i
< btrfs_header_nritems(eb
); i
++) {
5867 btrfs_item_key_to_cpu(eb
, &key
, i
);
5868 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5870 item
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
5871 found_type
= btrfs_file_extent_type(eb
, item
);
5872 if (found_type
== BTRFS_FILE_EXTENT_INLINE
)
5874 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
5876 key
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
5877 key
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
5878 __exclude_logged_extent(log
, key
.objectid
, key
.offset
);
5885 * btrfs_update_reserved_bytes - update the block_group and space info counters
5886 * @cache: The cache we are manipulating
5887 * @num_bytes: The number of bytes in question
5888 * @reserve: One of the reservation enums
5889 * @delalloc: The blocks are allocated for the delalloc write
5891 * This is called by the allocator when it reserves space, or by somebody who is
5892 * freeing space that was never actually used on disk. For example if you
5893 * reserve some space for a new leaf in transaction A and before transaction A
5894 * commits you free that leaf, you call this with reserve set to 0 in order to
5895 * clear the reservation.
5897 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5898 * ENOSPC accounting. For data we handle the reservation through clearing the
5899 * delalloc bits in the io_tree. We have to do this since we could end up
5900 * allocating less disk space for the amount of data we have reserved in the
5901 * case of compression.
5903 * If this is a reservation and the block group has become read only we cannot
5904 * make the reservation and return -EAGAIN, otherwise this function always
5907 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
5908 u64 num_bytes
, int reserve
, int delalloc
)
5910 struct btrfs_space_info
*space_info
= cache
->space_info
;
5913 spin_lock(&space_info
->lock
);
5914 spin_lock(&cache
->lock
);
5915 if (reserve
!= RESERVE_FREE
) {
5919 cache
->reserved
+= num_bytes
;
5920 space_info
->bytes_reserved
+= num_bytes
;
5921 if (reserve
== RESERVE_ALLOC
) {
5922 trace_btrfs_space_reservation(cache
->fs_info
,
5923 "space_info", space_info
->flags
,
5925 space_info
->bytes_may_use
-= num_bytes
;
5929 cache
->delalloc_bytes
+= num_bytes
;
5933 space_info
->bytes_readonly
+= num_bytes
;
5934 cache
->reserved
-= num_bytes
;
5935 space_info
->bytes_reserved
-= num_bytes
;
5938 cache
->delalloc_bytes
-= num_bytes
;
5940 spin_unlock(&cache
->lock
);
5941 spin_unlock(&space_info
->lock
);
5945 void btrfs_prepare_extent_commit(struct btrfs_trans_handle
*trans
,
5946 struct btrfs_root
*root
)
5948 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5949 struct btrfs_caching_control
*next
;
5950 struct btrfs_caching_control
*caching_ctl
;
5951 struct btrfs_block_group_cache
*cache
;
5953 down_write(&fs_info
->commit_root_sem
);
5955 list_for_each_entry_safe(caching_ctl
, next
,
5956 &fs_info
->caching_block_groups
, list
) {
5957 cache
= caching_ctl
->block_group
;
5958 if (block_group_cache_done(cache
)) {
5959 cache
->last_byte_to_unpin
= (u64
)-1;
5960 list_del_init(&caching_ctl
->list
);
5961 put_caching_control(caching_ctl
);
5963 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
5967 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
5968 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
5970 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
5972 up_write(&fs_info
->commit_root_sem
);
5974 update_global_block_rsv(fs_info
);
5977 static int unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
,
5978 const bool return_free_space
)
5980 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5981 struct btrfs_block_group_cache
*cache
= NULL
;
5982 struct btrfs_space_info
*space_info
;
5983 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5987 while (start
<= end
) {
5990 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
5992 btrfs_put_block_group(cache
);
5993 cache
= btrfs_lookup_block_group(fs_info
, start
);
5994 BUG_ON(!cache
); /* Logic error */
5997 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
5998 len
= min(len
, end
+ 1 - start
);
6000 if (start
< cache
->last_byte_to_unpin
) {
6001 len
= min(len
, cache
->last_byte_to_unpin
- start
);
6002 if (return_free_space
)
6003 btrfs_add_free_space(cache
, start
, len
);
6007 space_info
= cache
->space_info
;
6009 spin_lock(&space_info
->lock
);
6010 spin_lock(&cache
->lock
);
6011 cache
->pinned
-= len
;
6012 space_info
->bytes_pinned
-= len
;
6013 percpu_counter_add(&space_info
->total_bytes_pinned
, -len
);
6015 space_info
->bytes_readonly
+= len
;
6018 spin_unlock(&cache
->lock
);
6019 if (!readonly
&& global_rsv
->space_info
== space_info
) {
6020 spin_lock(&global_rsv
->lock
);
6021 if (!global_rsv
->full
) {
6022 len
= min(len
, global_rsv
->size
-
6023 global_rsv
->reserved
);
6024 global_rsv
->reserved
+= len
;
6025 space_info
->bytes_may_use
+= len
;
6026 if (global_rsv
->reserved
>= global_rsv
->size
)
6027 global_rsv
->full
= 1;
6029 spin_unlock(&global_rsv
->lock
);
6031 spin_unlock(&space_info
->lock
);
6035 btrfs_put_block_group(cache
);
6039 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
6040 struct btrfs_root
*root
)
6042 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6043 struct extent_io_tree
*unpin
;
6051 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
6052 unpin
= &fs_info
->freed_extents
[1];
6054 unpin
= &fs_info
->freed_extents
[0];
6057 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
6058 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
6059 EXTENT_DIRTY
, NULL
);
6061 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
6065 if (btrfs_test_opt(root
, DISCARD
))
6066 ret
= btrfs_discard_extent(root
, start
,
6067 end
+ 1 - start
, NULL
);
6069 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
6070 unpin_extent_range(root
, start
, end
, true);
6071 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
6078 static void add_pinned_bytes(struct btrfs_fs_info
*fs_info
, u64 num_bytes
,
6079 u64 owner
, u64 root_objectid
)
6081 struct btrfs_space_info
*space_info
;
6084 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
6085 if (root_objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
6086 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
6088 flags
= BTRFS_BLOCK_GROUP_METADATA
;
6090 flags
= BTRFS_BLOCK_GROUP_DATA
;
6093 space_info
= __find_space_info(fs_info
, flags
);
6094 BUG_ON(!space_info
); /* Logic bug */
6095 percpu_counter_add(&space_info
->total_bytes_pinned
, num_bytes
);
6099 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
6100 struct btrfs_root
*root
,
6101 u64 bytenr
, u64 num_bytes
, u64 parent
,
6102 u64 root_objectid
, u64 owner_objectid
,
6103 u64 owner_offset
, int refs_to_drop
,
6104 struct btrfs_delayed_extent_op
*extent_op
,
6107 struct btrfs_key key
;
6108 struct btrfs_path
*path
;
6109 struct btrfs_fs_info
*info
= root
->fs_info
;
6110 struct btrfs_root
*extent_root
= info
->extent_root
;
6111 struct extent_buffer
*leaf
;
6112 struct btrfs_extent_item
*ei
;
6113 struct btrfs_extent_inline_ref
*iref
;
6116 int extent_slot
= 0;
6117 int found_extent
= 0;
6122 enum btrfs_qgroup_operation_type type
= BTRFS_QGROUP_OPER_SUB_EXCL
;
6123 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
6126 if (!info
->quota_enabled
|| !is_fstree(root_objectid
))
6129 path
= btrfs_alloc_path();
6134 path
->leave_spinning
= 1;
6136 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
6137 BUG_ON(!is_data
&& refs_to_drop
!= 1);
6140 skinny_metadata
= 0;
6142 ret
= lookup_extent_backref(trans
, extent_root
, path
, &iref
,
6143 bytenr
, num_bytes
, parent
,
6144 root_objectid
, owner_objectid
,
6147 extent_slot
= path
->slots
[0];
6148 while (extent_slot
>= 0) {
6149 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
6151 if (key
.objectid
!= bytenr
)
6153 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
6154 key
.offset
== num_bytes
) {
6158 if (key
.type
== BTRFS_METADATA_ITEM_KEY
&&
6159 key
.offset
== owner_objectid
) {
6163 if (path
->slots
[0] - extent_slot
> 5)
6167 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6168 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
6169 if (found_extent
&& item_size
< sizeof(*ei
))
6172 if (!found_extent
) {
6174 ret
= remove_extent_backref(trans
, extent_root
, path
,
6176 is_data
, &last_ref
);
6178 btrfs_abort_transaction(trans
, extent_root
, ret
);
6181 btrfs_release_path(path
);
6182 path
->leave_spinning
= 1;
6184 key
.objectid
= bytenr
;
6185 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6186 key
.offset
= num_bytes
;
6188 if (!is_data
&& skinny_metadata
) {
6189 key
.type
= BTRFS_METADATA_ITEM_KEY
;
6190 key
.offset
= owner_objectid
;
6193 ret
= btrfs_search_slot(trans
, extent_root
,
6195 if (ret
> 0 && skinny_metadata
&& path
->slots
[0]) {
6197 * Couldn't find our skinny metadata item,
6198 * see if we have ye olde extent item.
6201 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
6203 if (key
.objectid
== bytenr
&&
6204 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
6205 key
.offset
== num_bytes
)
6209 if (ret
> 0 && skinny_metadata
) {
6210 skinny_metadata
= false;
6211 key
.objectid
= bytenr
;
6212 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6213 key
.offset
= num_bytes
;
6214 btrfs_release_path(path
);
6215 ret
= btrfs_search_slot(trans
, extent_root
,
6220 btrfs_err(info
, "umm, got %d back from search, was looking for %llu",
6223 btrfs_print_leaf(extent_root
,
6227 btrfs_abort_transaction(trans
, extent_root
, ret
);
6230 extent_slot
= path
->slots
[0];
6232 } else if (WARN_ON(ret
== -ENOENT
)) {
6233 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
6235 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6236 bytenr
, parent
, root_objectid
, owner_objectid
,
6238 btrfs_abort_transaction(trans
, extent_root
, ret
);
6241 btrfs_abort_transaction(trans
, extent_root
, ret
);
6245 leaf
= path
->nodes
[0];
6246 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
6247 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6248 if (item_size
< sizeof(*ei
)) {
6249 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
6250 ret
= convert_extent_item_v0(trans
, extent_root
, path
,
6253 btrfs_abort_transaction(trans
, extent_root
, ret
);
6257 btrfs_release_path(path
);
6258 path
->leave_spinning
= 1;
6260 key
.objectid
= bytenr
;
6261 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6262 key
.offset
= num_bytes
;
6264 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
6267 btrfs_err(info
, "umm, got %d back from search, was looking for %llu",
6269 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
6272 btrfs_abort_transaction(trans
, extent_root
, ret
);
6276 extent_slot
= path
->slots
[0];
6277 leaf
= path
->nodes
[0];
6278 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
6281 BUG_ON(item_size
< sizeof(*ei
));
6282 ei
= btrfs_item_ptr(leaf
, extent_slot
,
6283 struct btrfs_extent_item
);
6284 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
6285 key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
6286 struct btrfs_tree_block_info
*bi
;
6287 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
6288 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
6289 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
6292 refs
= btrfs_extent_refs(leaf
, ei
);
6293 if (refs
< refs_to_drop
) {
6294 btrfs_err(info
, "trying to drop %d refs but we only have %Lu "
6295 "for bytenr %Lu", refs_to_drop
, refs
, bytenr
);
6297 btrfs_abort_transaction(trans
, extent_root
, ret
);
6300 refs
-= refs_to_drop
;
6303 type
= BTRFS_QGROUP_OPER_SUB_SHARED
;
6305 __run_delayed_extent_op(extent_op
, leaf
, ei
);
6307 * In the case of inline back ref, reference count will
6308 * be updated by remove_extent_backref
6311 BUG_ON(!found_extent
);
6313 btrfs_set_extent_refs(leaf
, ei
, refs
);
6314 btrfs_mark_buffer_dirty(leaf
);
6317 ret
= remove_extent_backref(trans
, extent_root
, path
,
6319 is_data
, &last_ref
);
6321 btrfs_abort_transaction(trans
, extent_root
, ret
);
6325 add_pinned_bytes(root
->fs_info
, -num_bytes
, owner_objectid
,
6329 BUG_ON(is_data
&& refs_to_drop
!=
6330 extent_data_ref_count(root
, path
, iref
));
6332 BUG_ON(path
->slots
[0] != extent_slot
);
6334 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
6335 path
->slots
[0] = extent_slot
;
6341 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
6344 btrfs_abort_transaction(trans
, extent_root
, ret
);
6347 btrfs_release_path(path
);
6350 ret
= btrfs_del_csums(trans
, root
, bytenr
, num_bytes
);
6352 btrfs_abort_transaction(trans
, extent_root
, ret
);
6357 ret
= update_block_group(trans
, root
, bytenr
, num_bytes
, 0);
6359 btrfs_abort_transaction(trans
, extent_root
, ret
);
6363 btrfs_release_path(path
);
6365 /* Deal with the quota accounting */
6366 if (!ret
&& last_ref
&& !no_quota
) {
6369 if (owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
&&
6370 type
== BTRFS_QGROUP_OPER_SUB_SHARED
)
6373 ret
= btrfs_qgroup_record_ref(trans
, info
, root_objectid
,
6374 bytenr
, num_bytes
, type
,
6378 btrfs_free_path(path
);
6383 * when we free an block, it is possible (and likely) that we free the last
6384 * delayed ref for that extent as well. This searches the delayed ref tree for
6385 * a given extent, and if there are no other delayed refs to be processed, it
6386 * removes it from the tree.
6388 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
6389 struct btrfs_root
*root
, u64 bytenr
)
6391 struct btrfs_delayed_ref_head
*head
;
6392 struct btrfs_delayed_ref_root
*delayed_refs
;
6395 delayed_refs
= &trans
->transaction
->delayed_refs
;
6396 spin_lock(&delayed_refs
->lock
);
6397 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
6399 goto out_delayed_unlock
;
6401 spin_lock(&head
->lock
);
6402 if (rb_first(&head
->ref_root
))
6405 if (head
->extent_op
) {
6406 if (!head
->must_insert_reserved
)
6408 btrfs_free_delayed_extent_op(head
->extent_op
);
6409 head
->extent_op
= NULL
;
6413 * waiting for the lock here would deadlock. If someone else has it
6414 * locked they are already in the process of dropping it anyway
6416 if (!mutex_trylock(&head
->mutex
))
6420 * at this point we have a head with no other entries. Go
6421 * ahead and process it.
6423 head
->node
.in_tree
= 0;
6424 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
6426 atomic_dec(&delayed_refs
->num_entries
);
6429 * we don't take a ref on the node because we're removing it from the
6430 * tree, so we just steal the ref the tree was holding.
6432 delayed_refs
->num_heads
--;
6433 if (head
->processing
== 0)
6434 delayed_refs
->num_heads_ready
--;
6435 head
->processing
= 0;
6436 spin_unlock(&head
->lock
);
6437 spin_unlock(&delayed_refs
->lock
);
6439 BUG_ON(head
->extent_op
);
6440 if (head
->must_insert_reserved
)
6443 mutex_unlock(&head
->mutex
);
6444 btrfs_put_delayed_ref(&head
->node
);
6447 spin_unlock(&head
->lock
);
6450 spin_unlock(&delayed_refs
->lock
);
6454 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
6455 struct btrfs_root
*root
,
6456 struct extent_buffer
*buf
,
6457 u64 parent
, int last_ref
)
6462 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
6463 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
6464 buf
->start
, buf
->len
,
6465 parent
, root
->root_key
.objectid
,
6466 btrfs_header_level(buf
),
6467 BTRFS_DROP_DELAYED_REF
, NULL
, 0);
6468 BUG_ON(ret
); /* -ENOMEM */
6474 if (btrfs_header_generation(buf
) == trans
->transid
) {
6475 struct btrfs_block_group_cache
*cache
;
6477 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
6478 ret
= check_ref_cleanup(trans
, root
, buf
->start
);
6483 cache
= btrfs_lookup_block_group(root
->fs_info
, buf
->start
);
6485 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
6486 pin_down_extent(root
, cache
, buf
->start
, buf
->len
, 1);
6487 btrfs_put_block_group(cache
);
6491 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
6493 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
6494 btrfs_update_reserved_bytes(cache
, buf
->len
, RESERVE_FREE
, 0);
6495 btrfs_put_block_group(cache
);
6496 trace_btrfs_reserved_extent_free(root
, buf
->start
, buf
->len
);
6501 add_pinned_bytes(root
->fs_info
, buf
->len
,
6502 btrfs_header_level(buf
),
6503 root
->root_key
.objectid
);
6506 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6509 clear_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
);
6512 /* Can return -ENOMEM */
6513 int btrfs_free_extent(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
6514 u64 bytenr
, u64 num_bytes
, u64 parent
, u64 root_objectid
,
6515 u64 owner
, u64 offset
, int no_quota
)
6518 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6520 if (btrfs_test_is_dummy_root(root
))
6523 add_pinned_bytes(root
->fs_info
, num_bytes
, owner
, root_objectid
);
6526 * tree log blocks never actually go into the extent allocation
6527 * tree, just update pinning info and exit early.
6529 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
6530 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
6531 /* unlocks the pinned mutex */
6532 btrfs_pin_extent(root
, bytenr
, num_bytes
, 1);
6534 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
6535 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
6537 parent
, root_objectid
, (int)owner
,
6538 BTRFS_DROP_DELAYED_REF
, NULL
, no_quota
);
6540 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
6542 parent
, root_objectid
, owner
,
6543 offset
, BTRFS_DROP_DELAYED_REF
,
6550 * when we wait for progress in the block group caching, its because
6551 * our allocation attempt failed at least once. So, we must sleep
6552 * and let some progress happen before we try again.
6554 * This function will sleep at least once waiting for new free space to
6555 * show up, and then it will check the block group free space numbers
6556 * for our min num_bytes. Another option is to have it go ahead
6557 * and look in the rbtree for a free extent of a given size, but this
6560 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6561 * any of the information in this block group.
6563 static noinline
void
6564 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
6567 struct btrfs_caching_control
*caching_ctl
;
6569 caching_ctl
= get_caching_control(cache
);
6573 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
6574 (cache
->free_space_ctl
->free_space
>= num_bytes
));
6576 put_caching_control(caching_ctl
);
6580 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
6582 struct btrfs_caching_control
*caching_ctl
;
6585 caching_ctl
= get_caching_control(cache
);
6587 return (cache
->cached
== BTRFS_CACHE_ERROR
) ? -EIO
: 0;
6589 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
6590 if (cache
->cached
== BTRFS_CACHE_ERROR
)
6592 put_caching_control(caching_ctl
);
6596 int __get_raid_index(u64 flags
)
6598 if (flags
& BTRFS_BLOCK_GROUP_RAID10
)
6599 return BTRFS_RAID_RAID10
;
6600 else if (flags
& BTRFS_BLOCK_GROUP_RAID1
)
6601 return BTRFS_RAID_RAID1
;
6602 else if (flags
& BTRFS_BLOCK_GROUP_DUP
)
6603 return BTRFS_RAID_DUP
;
6604 else if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
6605 return BTRFS_RAID_RAID0
;
6606 else if (flags
& BTRFS_BLOCK_GROUP_RAID5
)
6607 return BTRFS_RAID_RAID5
;
6608 else if (flags
& BTRFS_BLOCK_GROUP_RAID6
)
6609 return BTRFS_RAID_RAID6
;
6611 return BTRFS_RAID_SINGLE
; /* BTRFS_BLOCK_GROUP_SINGLE */
6614 int get_block_group_index(struct btrfs_block_group_cache
*cache
)
6616 return __get_raid_index(cache
->flags
);
6619 static const char *btrfs_raid_type_names
[BTRFS_NR_RAID_TYPES
] = {
6620 [BTRFS_RAID_RAID10
] = "raid10",
6621 [BTRFS_RAID_RAID1
] = "raid1",
6622 [BTRFS_RAID_DUP
] = "dup",
6623 [BTRFS_RAID_RAID0
] = "raid0",
6624 [BTRFS_RAID_SINGLE
] = "single",
6625 [BTRFS_RAID_RAID5
] = "raid5",
6626 [BTRFS_RAID_RAID6
] = "raid6",
6629 static const char *get_raid_name(enum btrfs_raid_types type
)
6631 if (type
>= BTRFS_NR_RAID_TYPES
)
6634 return btrfs_raid_type_names
[type
];
6637 enum btrfs_loop_type
{
6638 LOOP_CACHING_NOWAIT
= 0,
6639 LOOP_CACHING_WAIT
= 1,
6640 LOOP_ALLOC_CHUNK
= 2,
6641 LOOP_NO_EMPTY_SIZE
= 3,
6645 btrfs_lock_block_group(struct btrfs_block_group_cache
*cache
,
6649 down_read(&cache
->data_rwsem
);
6653 btrfs_grab_block_group(struct btrfs_block_group_cache
*cache
,
6656 btrfs_get_block_group(cache
);
6658 down_read(&cache
->data_rwsem
);
6661 static struct btrfs_block_group_cache
*
6662 btrfs_lock_cluster(struct btrfs_block_group_cache
*block_group
,
6663 struct btrfs_free_cluster
*cluster
,
6666 struct btrfs_block_group_cache
*used_bg
;
6667 bool locked
= false;
6669 spin_lock(&cluster
->refill_lock
);
6671 if (used_bg
== cluster
->block_group
)
6674 up_read(&used_bg
->data_rwsem
);
6675 btrfs_put_block_group(used_bg
);
6678 used_bg
= cluster
->block_group
;
6682 if (used_bg
== block_group
)
6685 btrfs_get_block_group(used_bg
);
6690 if (down_read_trylock(&used_bg
->data_rwsem
))
6693 spin_unlock(&cluster
->refill_lock
);
6694 down_read(&used_bg
->data_rwsem
);
6700 btrfs_release_block_group(struct btrfs_block_group_cache
*cache
,
6704 up_read(&cache
->data_rwsem
);
6705 btrfs_put_block_group(cache
);
6709 * walks the btree of allocated extents and find a hole of a given size.
6710 * The key ins is changed to record the hole:
6711 * ins->objectid == start position
6712 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6713 * ins->offset == the size of the hole.
6714 * Any available blocks before search_start are skipped.
6716 * If there is no suitable free space, we will record the max size of
6717 * the free space extent currently.
6719 static noinline
int find_free_extent(struct btrfs_root
*orig_root
,
6720 u64 num_bytes
, u64 empty_size
,
6721 u64 hint_byte
, struct btrfs_key
*ins
,
6722 u64 flags
, int delalloc
)
6725 struct btrfs_root
*root
= orig_root
->fs_info
->extent_root
;
6726 struct btrfs_free_cluster
*last_ptr
= NULL
;
6727 struct btrfs_block_group_cache
*block_group
= NULL
;
6728 u64 search_start
= 0;
6729 u64 max_extent_size
= 0;
6730 int empty_cluster
= 2 * 1024 * 1024;
6731 struct btrfs_space_info
*space_info
;
6733 int index
= __get_raid_index(flags
);
6734 int alloc_type
= (flags
& BTRFS_BLOCK_GROUP_DATA
) ?
6735 RESERVE_ALLOC_NO_ACCOUNT
: RESERVE_ALLOC
;
6736 bool failed_cluster_refill
= false;
6737 bool failed_alloc
= false;
6738 bool use_cluster
= true;
6739 bool have_caching_bg
= false;
6741 WARN_ON(num_bytes
< root
->sectorsize
);
6742 ins
->type
= BTRFS_EXTENT_ITEM_KEY
;
6746 trace_find_free_extent(orig_root
, num_bytes
, empty_size
, flags
);
6748 space_info
= __find_space_info(root
->fs_info
, flags
);
6750 btrfs_err(root
->fs_info
, "No space info for %llu", flags
);
6755 * If the space info is for both data and metadata it means we have a
6756 * small filesystem and we can't use the clustering stuff.
6758 if (btrfs_mixed_space_info(space_info
))
6759 use_cluster
= false;
6761 if (flags
& BTRFS_BLOCK_GROUP_METADATA
&& use_cluster
) {
6762 last_ptr
= &root
->fs_info
->meta_alloc_cluster
;
6763 if (!btrfs_test_opt(root
, SSD
))
6764 empty_cluster
= 64 * 1024;
6767 if ((flags
& BTRFS_BLOCK_GROUP_DATA
) && use_cluster
&&
6768 btrfs_test_opt(root
, SSD
)) {
6769 last_ptr
= &root
->fs_info
->data_alloc_cluster
;
6773 spin_lock(&last_ptr
->lock
);
6774 if (last_ptr
->block_group
)
6775 hint_byte
= last_ptr
->window_start
;
6776 spin_unlock(&last_ptr
->lock
);
6779 search_start
= max(search_start
, first_logical_byte(root
, 0));
6780 search_start
= max(search_start
, hint_byte
);
6785 if (search_start
== hint_byte
) {
6786 block_group
= btrfs_lookup_block_group(root
->fs_info
,
6789 * we don't want to use the block group if it doesn't match our
6790 * allocation bits, or if its not cached.
6792 * However if we are re-searching with an ideal block group
6793 * picked out then we don't care that the block group is cached.
6795 if (block_group
&& block_group_bits(block_group
, flags
) &&
6796 block_group
->cached
!= BTRFS_CACHE_NO
) {
6797 down_read(&space_info
->groups_sem
);
6798 if (list_empty(&block_group
->list
) ||
6801 * someone is removing this block group,
6802 * we can't jump into the have_block_group
6803 * target because our list pointers are not
6806 btrfs_put_block_group(block_group
);
6807 up_read(&space_info
->groups_sem
);
6809 index
= get_block_group_index(block_group
);
6810 btrfs_lock_block_group(block_group
, delalloc
);
6811 goto have_block_group
;
6813 } else if (block_group
) {
6814 btrfs_put_block_group(block_group
);
6818 have_caching_bg
= false;
6819 down_read(&space_info
->groups_sem
);
6820 list_for_each_entry(block_group
, &space_info
->block_groups
[index
],
6825 btrfs_grab_block_group(block_group
, delalloc
);
6826 search_start
= block_group
->key
.objectid
;
6829 * this can happen if we end up cycling through all the
6830 * raid types, but we want to make sure we only allocate
6831 * for the proper type.
6833 if (!block_group_bits(block_group
, flags
)) {
6834 u64 extra
= BTRFS_BLOCK_GROUP_DUP
|
6835 BTRFS_BLOCK_GROUP_RAID1
|
6836 BTRFS_BLOCK_GROUP_RAID5
|
6837 BTRFS_BLOCK_GROUP_RAID6
|
6838 BTRFS_BLOCK_GROUP_RAID10
;
6841 * if they asked for extra copies and this block group
6842 * doesn't provide them, bail. This does allow us to
6843 * fill raid0 from raid1.
6845 if ((flags
& extra
) && !(block_group
->flags
& extra
))
6850 cached
= block_group_cache_done(block_group
);
6851 if (unlikely(!cached
)) {
6852 ret
= cache_block_group(block_group
, 0);
6857 if (unlikely(block_group
->cached
== BTRFS_CACHE_ERROR
))
6859 if (unlikely(block_group
->ro
))
6863 * Ok we want to try and use the cluster allocator, so
6867 struct btrfs_block_group_cache
*used_block_group
;
6868 unsigned long aligned_cluster
;
6870 * the refill lock keeps out other
6871 * people trying to start a new cluster
6873 used_block_group
= btrfs_lock_cluster(block_group
,
6876 if (!used_block_group
)
6877 goto refill_cluster
;
6879 if (used_block_group
!= block_group
&&
6880 (used_block_group
->ro
||
6881 !block_group_bits(used_block_group
, flags
)))
6882 goto release_cluster
;
6884 offset
= btrfs_alloc_from_cluster(used_block_group
,
6887 used_block_group
->key
.objectid
,
6890 /* we have a block, we're done */
6891 spin_unlock(&last_ptr
->refill_lock
);
6892 trace_btrfs_reserve_extent_cluster(root
,
6894 search_start
, num_bytes
);
6895 if (used_block_group
!= block_group
) {
6896 btrfs_release_block_group(block_group
,
6898 block_group
= used_block_group
;
6903 WARN_ON(last_ptr
->block_group
!= used_block_group
);
6905 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6906 * set up a new clusters, so lets just skip it
6907 * and let the allocator find whatever block
6908 * it can find. If we reach this point, we
6909 * will have tried the cluster allocator
6910 * plenty of times and not have found
6911 * anything, so we are likely way too
6912 * fragmented for the clustering stuff to find
6915 * However, if the cluster is taken from the
6916 * current block group, release the cluster
6917 * first, so that we stand a better chance of
6918 * succeeding in the unclustered
6920 if (loop
>= LOOP_NO_EMPTY_SIZE
&&
6921 used_block_group
!= block_group
) {
6922 spin_unlock(&last_ptr
->refill_lock
);
6923 btrfs_release_block_group(used_block_group
,
6925 goto unclustered_alloc
;
6929 * this cluster didn't work out, free it and
6932 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
6934 if (used_block_group
!= block_group
)
6935 btrfs_release_block_group(used_block_group
,
6938 if (loop
>= LOOP_NO_EMPTY_SIZE
) {
6939 spin_unlock(&last_ptr
->refill_lock
);
6940 goto unclustered_alloc
;
6943 aligned_cluster
= max_t(unsigned long,
6944 empty_cluster
+ empty_size
,
6945 block_group
->full_stripe_len
);
6947 /* allocate a cluster in this block group */
6948 ret
= btrfs_find_space_cluster(root
, block_group
,
6949 last_ptr
, search_start
,
6954 * now pull our allocation out of this
6957 offset
= btrfs_alloc_from_cluster(block_group
,
6963 /* we found one, proceed */
6964 spin_unlock(&last_ptr
->refill_lock
);
6965 trace_btrfs_reserve_extent_cluster(root
,
6966 block_group
, search_start
,
6970 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
6971 && !failed_cluster_refill
) {
6972 spin_unlock(&last_ptr
->refill_lock
);
6974 failed_cluster_refill
= true;
6975 wait_block_group_cache_progress(block_group
,
6976 num_bytes
+ empty_cluster
+ empty_size
);
6977 goto have_block_group
;
6981 * at this point we either didn't find a cluster
6982 * or we weren't able to allocate a block from our
6983 * cluster. Free the cluster we've been trying
6984 * to use, and go to the next block group
6986 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
6987 spin_unlock(&last_ptr
->refill_lock
);
6992 spin_lock(&block_group
->free_space_ctl
->tree_lock
);
6994 block_group
->free_space_ctl
->free_space
<
6995 num_bytes
+ empty_cluster
+ empty_size
) {
6996 if (block_group
->free_space_ctl
->free_space
>
6999 block_group
->free_space_ctl
->free_space
;
7000 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
7003 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
7005 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
7006 num_bytes
, empty_size
,
7009 * If we didn't find a chunk, and we haven't failed on this
7010 * block group before, and this block group is in the middle of
7011 * caching and we are ok with waiting, then go ahead and wait
7012 * for progress to be made, and set failed_alloc to true.
7014 * If failed_alloc is true then we've already waited on this
7015 * block group once and should move on to the next block group.
7017 if (!offset
&& !failed_alloc
&& !cached
&&
7018 loop
> LOOP_CACHING_NOWAIT
) {
7019 wait_block_group_cache_progress(block_group
,
7020 num_bytes
+ empty_size
);
7021 failed_alloc
= true;
7022 goto have_block_group
;
7023 } else if (!offset
) {
7025 have_caching_bg
= true;
7029 search_start
= ALIGN(offset
, root
->stripesize
);
7031 /* move on to the next group */
7032 if (search_start
+ num_bytes
>
7033 block_group
->key
.objectid
+ block_group
->key
.offset
) {
7034 btrfs_add_free_space(block_group
, offset
, num_bytes
);
7038 if (offset
< search_start
)
7039 btrfs_add_free_space(block_group
, offset
,
7040 search_start
- offset
);
7041 BUG_ON(offset
> search_start
);
7043 ret
= btrfs_update_reserved_bytes(block_group
, num_bytes
,
7044 alloc_type
, delalloc
);
7045 if (ret
== -EAGAIN
) {
7046 btrfs_add_free_space(block_group
, offset
, num_bytes
);
7050 /* we are all good, lets return */
7051 ins
->objectid
= search_start
;
7052 ins
->offset
= num_bytes
;
7054 trace_btrfs_reserve_extent(orig_root
, block_group
,
7055 search_start
, num_bytes
);
7056 btrfs_release_block_group(block_group
, delalloc
);
7059 failed_cluster_refill
= false;
7060 failed_alloc
= false;
7061 BUG_ON(index
!= get_block_group_index(block_group
));
7062 btrfs_release_block_group(block_group
, delalloc
);
7064 up_read(&space_info
->groups_sem
);
7066 if (!ins
->objectid
&& loop
>= LOOP_CACHING_WAIT
&& have_caching_bg
)
7069 if (!ins
->objectid
&& ++index
< BTRFS_NR_RAID_TYPES
)
7073 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7074 * caching kthreads as we move along
7075 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7076 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7077 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7080 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
) {
7083 if (loop
== LOOP_ALLOC_CHUNK
) {
7084 struct btrfs_trans_handle
*trans
;
7087 trans
= current
->journal_info
;
7091 trans
= btrfs_join_transaction(root
);
7093 if (IS_ERR(trans
)) {
7094 ret
= PTR_ERR(trans
);
7098 ret
= do_chunk_alloc(trans
, root
, flags
,
7101 * Do not bail out on ENOSPC since we
7102 * can do more things.
7104 if (ret
< 0 && ret
!= -ENOSPC
)
7105 btrfs_abort_transaction(trans
,
7110 btrfs_end_transaction(trans
, root
);
7115 if (loop
== LOOP_NO_EMPTY_SIZE
) {
7121 } else if (!ins
->objectid
) {
7123 } else if (ins
->objectid
) {
7128 ins
->offset
= max_extent_size
;
7132 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
7133 int dump_block_groups
)
7135 struct btrfs_block_group_cache
*cache
;
7138 spin_lock(&info
->lock
);
7139 printk(KERN_INFO
"BTRFS: space_info %llu has %llu free, is %sfull\n",
7141 info
->total_bytes
- info
->bytes_used
- info
->bytes_pinned
-
7142 info
->bytes_reserved
- info
->bytes_readonly
,
7143 (info
->full
) ? "" : "not ");
7144 printk(KERN_INFO
"BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7145 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7146 info
->total_bytes
, info
->bytes_used
, info
->bytes_pinned
,
7147 info
->bytes_reserved
, info
->bytes_may_use
,
7148 info
->bytes_readonly
);
7149 spin_unlock(&info
->lock
);
7151 if (!dump_block_groups
)
7154 down_read(&info
->groups_sem
);
7156 list_for_each_entry(cache
, &info
->block_groups
[index
], list
) {
7157 spin_lock(&cache
->lock
);
7158 printk(KERN_INFO
"BTRFS: "
7159 "block group %llu has %llu bytes, "
7160 "%llu used %llu pinned %llu reserved %s\n",
7161 cache
->key
.objectid
, cache
->key
.offset
,
7162 btrfs_block_group_used(&cache
->item
), cache
->pinned
,
7163 cache
->reserved
, cache
->ro
? "[readonly]" : "");
7164 btrfs_dump_free_space(cache
, bytes
);
7165 spin_unlock(&cache
->lock
);
7167 if (++index
< BTRFS_NR_RAID_TYPES
)
7169 up_read(&info
->groups_sem
);
7172 int btrfs_reserve_extent(struct btrfs_root
*root
,
7173 u64 num_bytes
, u64 min_alloc_size
,
7174 u64 empty_size
, u64 hint_byte
,
7175 struct btrfs_key
*ins
, int is_data
, int delalloc
)
7177 bool final_tried
= false;
7181 flags
= btrfs_get_alloc_profile(root
, is_data
);
7183 WARN_ON(num_bytes
< root
->sectorsize
);
7184 ret
= find_free_extent(root
, num_bytes
, empty_size
, hint_byte
, ins
,
7187 if (ret
== -ENOSPC
) {
7188 if (!final_tried
&& ins
->offset
) {
7189 num_bytes
= min(num_bytes
>> 1, ins
->offset
);
7190 num_bytes
= round_down(num_bytes
, root
->sectorsize
);
7191 num_bytes
= max(num_bytes
, min_alloc_size
);
7192 if (num_bytes
== min_alloc_size
)
7195 } else if (btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
7196 struct btrfs_space_info
*sinfo
;
7198 sinfo
= __find_space_info(root
->fs_info
, flags
);
7199 btrfs_err(root
->fs_info
, "allocation failed flags %llu, wanted %llu",
7202 dump_space_info(sinfo
, num_bytes
, 1);
7209 static int __btrfs_free_reserved_extent(struct btrfs_root
*root
,
7211 int pin
, int delalloc
)
7213 struct btrfs_block_group_cache
*cache
;
7216 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
7218 btrfs_err(root
->fs_info
, "Unable to find block group for %llu",
7224 pin_down_extent(root
, cache
, start
, len
, 1);
7226 if (btrfs_test_opt(root
, DISCARD
))
7227 ret
= btrfs_discard_extent(root
, start
, len
, NULL
);
7228 btrfs_add_free_space(cache
, start
, len
);
7229 btrfs_update_reserved_bytes(cache
, len
, RESERVE_FREE
, delalloc
);
7232 btrfs_put_block_group(cache
);
7234 trace_btrfs_reserved_extent_free(root
, start
, len
);
7239 int btrfs_free_reserved_extent(struct btrfs_root
*root
,
7240 u64 start
, u64 len
, int delalloc
)
7242 return __btrfs_free_reserved_extent(root
, start
, len
, 0, delalloc
);
7245 int btrfs_free_and_pin_reserved_extent(struct btrfs_root
*root
,
7248 return __btrfs_free_reserved_extent(root
, start
, len
, 1, 0);
7251 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
7252 struct btrfs_root
*root
,
7253 u64 parent
, u64 root_objectid
,
7254 u64 flags
, u64 owner
, u64 offset
,
7255 struct btrfs_key
*ins
, int ref_mod
)
7258 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7259 struct btrfs_extent_item
*extent_item
;
7260 struct btrfs_extent_inline_ref
*iref
;
7261 struct btrfs_path
*path
;
7262 struct extent_buffer
*leaf
;
7267 type
= BTRFS_SHARED_DATA_REF_KEY
;
7269 type
= BTRFS_EXTENT_DATA_REF_KEY
;
7271 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
7273 path
= btrfs_alloc_path();
7277 path
->leave_spinning
= 1;
7278 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
7281 btrfs_free_path(path
);
7285 leaf
= path
->nodes
[0];
7286 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
7287 struct btrfs_extent_item
);
7288 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
7289 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
7290 btrfs_set_extent_flags(leaf
, extent_item
,
7291 flags
| BTRFS_EXTENT_FLAG_DATA
);
7293 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
7294 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
7296 struct btrfs_shared_data_ref
*ref
;
7297 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
7298 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
7299 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
7301 struct btrfs_extent_data_ref
*ref
;
7302 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
7303 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
7304 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
7305 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
7306 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
7309 btrfs_mark_buffer_dirty(path
->nodes
[0]);
7310 btrfs_free_path(path
);
7312 /* Always set parent to 0 here since its exclusive anyway. */
7313 ret
= btrfs_qgroup_record_ref(trans
, fs_info
, root_objectid
,
7314 ins
->objectid
, ins
->offset
,
7315 BTRFS_QGROUP_OPER_ADD_EXCL
, 0);
7319 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
, 1);
7320 if (ret
) { /* -ENOENT, logic error */
7321 btrfs_err(fs_info
, "update block group failed for %llu %llu",
7322 ins
->objectid
, ins
->offset
);
7325 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, ins
->offset
);
7329 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
7330 struct btrfs_root
*root
,
7331 u64 parent
, u64 root_objectid
,
7332 u64 flags
, struct btrfs_disk_key
*key
,
7333 int level
, struct btrfs_key
*ins
,
7337 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7338 struct btrfs_extent_item
*extent_item
;
7339 struct btrfs_tree_block_info
*block_info
;
7340 struct btrfs_extent_inline_ref
*iref
;
7341 struct btrfs_path
*path
;
7342 struct extent_buffer
*leaf
;
7343 u32 size
= sizeof(*extent_item
) + sizeof(*iref
);
7344 u64 num_bytes
= ins
->offset
;
7345 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
7348 if (!skinny_metadata
)
7349 size
+= sizeof(*block_info
);
7351 path
= btrfs_alloc_path();
7353 btrfs_free_and_pin_reserved_extent(root
, ins
->objectid
,
7358 path
->leave_spinning
= 1;
7359 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
7362 btrfs_free_path(path
);
7363 btrfs_free_and_pin_reserved_extent(root
, ins
->objectid
,
7368 leaf
= path
->nodes
[0];
7369 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
7370 struct btrfs_extent_item
);
7371 btrfs_set_extent_refs(leaf
, extent_item
, 1);
7372 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
7373 btrfs_set_extent_flags(leaf
, extent_item
,
7374 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
7376 if (skinny_metadata
) {
7377 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
7378 num_bytes
= root
->nodesize
;
7380 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
7381 btrfs_set_tree_block_key(leaf
, block_info
, key
);
7382 btrfs_set_tree_block_level(leaf
, block_info
, level
);
7383 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
7387 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
7388 btrfs_set_extent_inline_ref_type(leaf
, iref
,
7389 BTRFS_SHARED_BLOCK_REF_KEY
);
7390 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
7392 btrfs_set_extent_inline_ref_type(leaf
, iref
,
7393 BTRFS_TREE_BLOCK_REF_KEY
);
7394 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
7397 btrfs_mark_buffer_dirty(leaf
);
7398 btrfs_free_path(path
);
7401 ret
= btrfs_qgroup_record_ref(trans
, fs_info
, root_objectid
,
7402 ins
->objectid
, num_bytes
,
7403 BTRFS_QGROUP_OPER_ADD_EXCL
, 0);
7408 ret
= update_block_group(trans
, root
, ins
->objectid
, root
->nodesize
,
7410 if (ret
) { /* -ENOENT, logic error */
7411 btrfs_err(fs_info
, "update block group failed for %llu %llu",
7412 ins
->objectid
, ins
->offset
);
7416 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, root
->nodesize
);
7420 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
7421 struct btrfs_root
*root
,
7422 u64 root_objectid
, u64 owner
,
7423 u64 offset
, struct btrfs_key
*ins
)
7427 BUG_ON(root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
7429 ret
= btrfs_add_delayed_data_ref(root
->fs_info
, trans
, ins
->objectid
,
7431 root_objectid
, owner
, offset
,
7432 BTRFS_ADD_DELAYED_EXTENT
, NULL
, 0);
7437 * this is used by the tree logging recovery code. It records that
7438 * an extent has been allocated and makes sure to clear the free
7439 * space cache bits as well
7441 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
7442 struct btrfs_root
*root
,
7443 u64 root_objectid
, u64 owner
, u64 offset
,
7444 struct btrfs_key
*ins
)
7447 struct btrfs_block_group_cache
*block_group
;
7450 * Mixed block groups will exclude before processing the log so we only
7451 * need to do the exlude dance if this fs isn't mixed.
7453 if (!btrfs_fs_incompat(root
->fs_info
, MIXED_GROUPS
)) {
7454 ret
= __exclude_logged_extent(root
, ins
->objectid
, ins
->offset
);
7459 block_group
= btrfs_lookup_block_group(root
->fs_info
, ins
->objectid
);
7463 ret
= btrfs_update_reserved_bytes(block_group
, ins
->offset
,
7464 RESERVE_ALLOC_NO_ACCOUNT
, 0);
7465 BUG_ON(ret
); /* logic error */
7466 ret
= alloc_reserved_file_extent(trans
, root
, 0, root_objectid
,
7467 0, owner
, offset
, ins
, 1);
7468 btrfs_put_block_group(block_group
);
7472 static struct extent_buffer
*
7473 btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
7474 u64 bytenr
, int level
)
7476 struct extent_buffer
*buf
;
7478 buf
= btrfs_find_create_tree_block(root
, bytenr
);
7480 return ERR_PTR(-ENOMEM
);
7481 btrfs_set_header_generation(buf
, trans
->transid
);
7482 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, buf
, level
);
7483 btrfs_tree_lock(buf
);
7484 clean_tree_block(trans
, root
->fs_info
, buf
);
7485 clear_bit(EXTENT_BUFFER_STALE
, &buf
->bflags
);
7487 btrfs_set_lock_blocking(buf
);
7488 btrfs_set_buffer_uptodate(buf
);
7490 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
7491 buf
->log_index
= root
->log_transid
% 2;
7493 * we allow two log transactions at a time, use different
7494 * EXENT bit to differentiate dirty pages.
7496 if (buf
->log_index
== 0)
7497 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
7498 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
7500 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
7501 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
7503 buf
->log_index
= -1;
7504 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
7505 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
7507 trans
->dirty
= true;
7508 /* this returns a buffer locked for blocking */
7512 static struct btrfs_block_rsv
*
7513 use_block_rsv(struct btrfs_trans_handle
*trans
,
7514 struct btrfs_root
*root
, u32 blocksize
)
7516 struct btrfs_block_rsv
*block_rsv
;
7517 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
7519 bool global_updated
= false;
7521 block_rsv
= get_block_rsv(trans
, root
);
7523 if (unlikely(block_rsv
->size
== 0))
7526 ret
= block_rsv_use_bytes(block_rsv
, blocksize
);
7530 if (block_rsv
->failfast
)
7531 return ERR_PTR(ret
);
7533 if (block_rsv
->type
== BTRFS_BLOCK_RSV_GLOBAL
&& !global_updated
) {
7534 global_updated
= true;
7535 update_global_block_rsv(root
->fs_info
);
7539 if (btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
7540 static DEFINE_RATELIMIT_STATE(_rs
,
7541 DEFAULT_RATELIMIT_INTERVAL
* 10,
7542 /*DEFAULT_RATELIMIT_BURST*/ 1);
7543 if (__ratelimit(&_rs
))
7545 "BTRFS: block rsv returned %d\n", ret
);
7548 ret
= reserve_metadata_bytes(root
, block_rsv
, blocksize
,
7549 BTRFS_RESERVE_NO_FLUSH
);
7553 * If we couldn't reserve metadata bytes try and use some from
7554 * the global reserve if its space type is the same as the global
7557 if (block_rsv
->type
!= BTRFS_BLOCK_RSV_GLOBAL
&&
7558 block_rsv
->space_info
== global_rsv
->space_info
) {
7559 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
7563 return ERR_PTR(ret
);
7566 static void unuse_block_rsv(struct btrfs_fs_info
*fs_info
,
7567 struct btrfs_block_rsv
*block_rsv
, u32 blocksize
)
7569 block_rsv_add_bytes(block_rsv
, blocksize
, 0);
7570 block_rsv_release_bytes(fs_info
, block_rsv
, NULL
, 0);
7574 * finds a free extent and does all the dirty work required for allocation
7575 * returns the key for the extent through ins, and a tree buffer for
7576 * the first block of the extent through buf.
7578 * returns the tree buffer or an ERR_PTR on error.
7580 struct extent_buffer
*btrfs_alloc_tree_block(struct btrfs_trans_handle
*trans
,
7581 struct btrfs_root
*root
,
7582 u64 parent
, u64 root_objectid
,
7583 struct btrfs_disk_key
*key
, int level
,
7584 u64 hint
, u64 empty_size
)
7586 struct btrfs_key ins
;
7587 struct btrfs_block_rsv
*block_rsv
;
7588 struct extent_buffer
*buf
;
7589 struct btrfs_delayed_extent_op
*extent_op
;
7592 u32 blocksize
= root
->nodesize
;
7593 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
7596 if (btrfs_test_is_dummy_root(root
)) {
7597 buf
= btrfs_init_new_buffer(trans
, root
, root
->alloc_bytenr
,
7600 root
->alloc_bytenr
+= blocksize
;
7604 block_rsv
= use_block_rsv(trans
, root
, blocksize
);
7605 if (IS_ERR(block_rsv
))
7606 return ERR_CAST(block_rsv
);
7608 ret
= btrfs_reserve_extent(root
, blocksize
, blocksize
,
7609 empty_size
, hint
, &ins
, 0, 0);
7613 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
, level
);
7616 goto out_free_reserved
;
7619 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
7621 parent
= ins
.objectid
;
7622 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
7626 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
7627 extent_op
= btrfs_alloc_delayed_extent_op();
7633 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
7635 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
7636 extent_op
->flags_to_set
= flags
;
7637 if (skinny_metadata
)
7638 extent_op
->update_key
= 0;
7640 extent_op
->update_key
= 1;
7641 extent_op
->update_flags
= 1;
7642 extent_op
->is_data
= 0;
7643 extent_op
->level
= level
;
7645 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
7646 ins
.objectid
, ins
.offset
,
7647 parent
, root_objectid
, level
,
7648 BTRFS_ADD_DELAYED_EXTENT
,
7651 goto out_free_delayed
;
7656 btrfs_free_delayed_extent_op(extent_op
);
7658 free_extent_buffer(buf
);
7660 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
, 0);
7662 unuse_block_rsv(root
->fs_info
, block_rsv
, blocksize
);
7663 return ERR_PTR(ret
);
7666 struct walk_control
{
7667 u64 refs
[BTRFS_MAX_LEVEL
];
7668 u64 flags
[BTRFS_MAX_LEVEL
];
7669 struct btrfs_key update_progress
;
7680 #define DROP_REFERENCE 1
7681 #define UPDATE_BACKREF 2
7683 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
7684 struct btrfs_root
*root
,
7685 struct walk_control
*wc
,
7686 struct btrfs_path
*path
)
7694 struct btrfs_key key
;
7695 struct extent_buffer
*eb
;
7700 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
7701 wc
->reada_count
= wc
->reada_count
* 2 / 3;
7702 wc
->reada_count
= max(wc
->reada_count
, 2);
7704 wc
->reada_count
= wc
->reada_count
* 3 / 2;
7705 wc
->reada_count
= min_t(int, wc
->reada_count
,
7706 BTRFS_NODEPTRS_PER_BLOCK(root
));
7709 eb
= path
->nodes
[wc
->level
];
7710 nritems
= btrfs_header_nritems(eb
);
7711 blocksize
= root
->nodesize
;
7713 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
7714 if (nread
>= wc
->reada_count
)
7718 bytenr
= btrfs_node_blockptr(eb
, slot
);
7719 generation
= btrfs_node_ptr_generation(eb
, slot
);
7721 if (slot
== path
->slots
[wc
->level
])
7724 if (wc
->stage
== UPDATE_BACKREF
&&
7725 generation
<= root
->root_key
.offset
)
7728 /* We don't lock the tree block, it's OK to be racy here */
7729 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
,
7730 wc
->level
- 1, 1, &refs
,
7732 /* We don't care about errors in readahead. */
7737 if (wc
->stage
== DROP_REFERENCE
) {
7741 if (wc
->level
== 1 &&
7742 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
7744 if (!wc
->update_ref
||
7745 generation
<= root
->root_key
.offset
)
7747 btrfs_node_key_to_cpu(eb
, &key
, slot
);
7748 ret
= btrfs_comp_cpu_keys(&key
,
7749 &wc
->update_progress
);
7753 if (wc
->level
== 1 &&
7754 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
7758 readahead_tree_block(root
, bytenr
);
7761 wc
->reada_slot
= slot
;
7764 static int account_leaf_items(struct btrfs_trans_handle
*trans
,
7765 struct btrfs_root
*root
,
7766 struct extent_buffer
*eb
)
7768 int nr
= btrfs_header_nritems(eb
);
7769 int i
, extent_type
, ret
;
7770 struct btrfs_key key
;
7771 struct btrfs_file_extent_item
*fi
;
7772 u64 bytenr
, num_bytes
;
7774 for (i
= 0; i
< nr
; i
++) {
7775 btrfs_item_key_to_cpu(eb
, &key
, i
);
7777 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
7780 fi
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
7781 /* filter out non qgroup-accountable extents */
7782 extent_type
= btrfs_file_extent_type(eb
, fi
);
7784 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
)
7787 bytenr
= btrfs_file_extent_disk_bytenr(eb
, fi
);
7791 num_bytes
= btrfs_file_extent_disk_num_bytes(eb
, fi
);
7793 ret
= btrfs_qgroup_record_ref(trans
, root
->fs_info
,
7796 BTRFS_QGROUP_OPER_SUB_SUBTREE
, 0);
7804 * Walk up the tree from the bottom, freeing leaves and any interior
7805 * nodes which have had all slots visited. If a node (leaf or
7806 * interior) is freed, the node above it will have it's slot
7807 * incremented. The root node will never be freed.
7809 * At the end of this function, we should have a path which has all
7810 * slots incremented to the next position for a search. If we need to
7811 * read a new node it will be NULL and the node above it will have the
7812 * correct slot selected for a later read.
7814 * If we increment the root nodes slot counter past the number of
7815 * elements, 1 is returned to signal completion of the search.
7817 static int adjust_slots_upwards(struct btrfs_root
*root
,
7818 struct btrfs_path
*path
, int root_level
)
7822 struct extent_buffer
*eb
;
7824 if (root_level
== 0)
7827 while (level
<= root_level
) {
7828 eb
= path
->nodes
[level
];
7829 nr
= btrfs_header_nritems(eb
);
7830 path
->slots
[level
]++;
7831 slot
= path
->slots
[level
];
7832 if (slot
>= nr
|| level
== 0) {
7834 * Don't free the root - we will detect this
7835 * condition after our loop and return a
7836 * positive value for caller to stop walking the tree.
7838 if (level
!= root_level
) {
7839 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
7840 path
->locks
[level
] = 0;
7842 free_extent_buffer(eb
);
7843 path
->nodes
[level
] = NULL
;
7844 path
->slots
[level
] = 0;
7848 * We have a valid slot to walk back down
7849 * from. Stop here so caller can process these
7858 eb
= path
->nodes
[root_level
];
7859 if (path
->slots
[root_level
] >= btrfs_header_nritems(eb
))
7866 * root_eb is the subtree root and is locked before this function is called.
7868 static int account_shared_subtree(struct btrfs_trans_handle
*trans
,
7869 struct btrfs_root
*root
,
7870 struct extent_buffer
*root_eb
,
7876 struct extent_buffer
*eb
= root_eb
;
7877 struct btrfs_path
*path
= NULL
;
7879 BUG_ON(root_level
< 0 || root_level
> BTRFS_MAX_LEVEL
);
7880 BUG_ON(root_eb
== NULL
);
7882 if (!root
->fs_info
->quota_enabled
)
7885 if (!extent_buffer_uptodate(root_eb
)) {
7886 ret
= btrfs_read_buffer(root_eb
, root_gen
);
7891 if (root_level
== 0) {
7892 ret
= account_leaf_items(trans
, root
, root_eb
);
7896 path
= btrfs_alloc_path();
7901 * Walk down the tree. Missing extent blocks are filled in as
7902 * we go. Metadata is accounted every time we read a new
7905 * When we reach a leaf, we account for file extent items in it,
7906 * walk back up the tree (adjusting slot pointers as we go)
7907 * and restart the search process.
7909 extent_buffer_get(root_eb
); /* For path */
7910 path
->nodes
[root_level
] = root_eb
;
7911 path
->slots
[root_level
] = 0;
7912 path
->locks
[root_level
] = 0; /* so release_path doesn't try to unlock */
7915 while (level
>= 0) {
7916 if (path
->nodes
[level
] == NULL
) {
7921 /* We need to get child blockptr/gen from
7922 * parent before we can read it. */
7923 eb
= path
->nodes
[level
+ 1];
7924 parent_slot
= path
->slots
[level
+ 1];
7925 child_bytenr
= btrfs_node_blockptr(eb
, parent_slot
);
7926 child_gen
= btrfs_node_ptr_generation(eb
, parent_slot
);
7928 eb
= read_tree_block(root
, child_bytenr
, child_gen
);
7929 if (!eb
|| !extent_buffer_uptodate(eb
)) {
7934 path
->nodes
[level
] = eb
;
7935 path
->slots
[level
] = 0;
7937 btrfs_tree_read_lock(eb
);
7938 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
7939 path
->locks
[level
] = BTRFS_READ_LOCK_BLOCKING
;
7941 ret
= btrfs_qgroup_record_ref(trans
, root
->fs_info
,
7945 BTRFS_QGROUP_OPER_SUB_SUBTREE
,
7953 ret
= account_leaf_items(trans
, root
, path
->nodes
[level
]);
7957 /* Nonzero return here means we completed our search */
7958 ret
= adjust_slots_upwards(root
, path
, root_level
);
7962 /* Restart search with new slots */
7971 btrfs_free_path(path
);
7977 * helper to process tree block while walking down the tree.
7979 * when wc->stage == UPDATE_BACKREF, this function updates
7980 * back refs for pointers in the block.
7982 * NOTE: return value 1 means we should stop walking down.
7984 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
7985 struct btrfs_root
*root
,
7986 struct btrfs_path
*path
,
7987 struct walk_control
*wc
, int lookup_info
)
7989 int level
= wc
->level
;
7990 struct extent_buffer
*eb
= path
->nodes
[level
];
7991 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
7994 if (wc
->stage
== UPDATE_BACKREF
&&
7995 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
7999 * when reference count of tree block is 1, it won't increase
8000 * again. once full backref flag is set, we never clear it.
8003 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
8004 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
8005 BUG_ON(!path
->locks
[level
]);
8006 ret
= btrfs_lookup_extent_info(trans
, root
,
8007 eb
->start
, level
, 1,
8010 BUG_ON(ret
== -ENOMEM
);
8013 BUG_ON(wc
->refs
[level
] == 0);
8016 if (wc
->stage
== DROP_REFERENCE
) {
8017 if (wc
->refs
[level
] > 1)
8020 if (path
->locks
[level
] && !wc
->keep_locks
) {
8021 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8022 path
->locks
[level
] = 0;
8027 /* wc->stage == UPDATE_BACKREF */
8028 if (!(wc
->flags
[level
] & flag
)) {
8029 BUG_ON(!path
->locks
[level
]);
8030 ret
= btrfs_inc_ref(trans
, root
, eb
, 1);
8031 BUG_ON(ret
); /* -ENOMEM */
8032 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
8033 BUG_ON(ret
); /* -ENOMEM */
8034 ret
= btrfs_set_disk_extent_flags(trans
, root
, eb
->start
,
8036 btrfs_header_level(eb
), 0);
8037 BUG_ON(ret
); /* -ENOMEM */
8038 wc
->flags
[level
] |= flag
;
8042 * the block is shared by multiple trees, so it's not good to
8043 * keep the tree lock
8045 if (path
->locks
[level
] && level
> 0) {
8046 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8047 path
->locks
[level
] = 0;
8053 * helper to process tree block pointer.
8055 * when wc->stage == DROP_REFERENCE, this function checks
8056 * reference count of the block pointed to. if the block
8057 * is shared and we need update back refs for the subtree
8058 * rooted at the block, this function changes wc->stage to
8059 * UPDATE_BACKREF. if the block is shared and there is no
8060 * need to update back, this function drops the reference
8063 * NOTE: return value 1 means we should stop walking down.
8065 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
8066 struct btrfs_root
*root
,
8067 struct btrfs_path
*path
,
8068 struct walk_control
*wc
, int *lookup_info
)
8074 struct btrfs_key key
;
8075 struct extent_buffer
*next
;
8076 int level
= wc
->level
;
8079 bool need_account
= false;
8081 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
8082 path
->slots
[level
]);
8084 * if the lower level block was created before the snapshot
8085 * was created, we know there is no need to update back refs
8088 if (wc
->stage
== UPDATE_BACKREF
&&
8089 generation
<= root
->root_key
.offset
) {
8094 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
8095 blocksize
= root
->nodesize
;
8097 next
= btrfs_find_tree_block(root
->fs_info
, bytenr
);
8099 next
= btrfs_find_create_tree_block(root
, bytenr
);
8102 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, next
,
8106 btrfs_tree_lock(next
);
8107 btrfs_set_lock_blocking(next
);
8109 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, level
- 1, 1,
8110 &wc
->refs
[level
- 1],
8111 &wc
->flags
[level
- 1]);
8113 btrfs_tree_unlock(next
);
8117 if (unlikely(wc
->refs
[level
- 1] == 0)) {
8118 btrfs_err(root
->fs_info
, "Missing references.");
8123 if (wc
->stage
== DROP_REFERENCE
) {
8124 if (wc
->refs
[level
- 1] > 1) {
8125 need_account
= true;
8127 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8130 if (!wc
->update_ref
||
8131 generation
<= root
->root_key
.offset
)
8134 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
8135 path
->slots
[level
]);
8136 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
8140 wc
->stage
= UPDATE_BACKREF
;
8141 wc
->shared_level
= level
- 1;
8145 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8149 if (!btrfs_buffer_uptodate(next
, generation
, 0)) {
8150 btrfs_tree_unlock(next
);
8151 free_extent_buffer(next
);
8157 if (reada
&& level
== 1)
8158 reada_walk_down(trans
, root
, wc
, path
);
8159 next
= read_tree_block(root
, bytenr
, generation
);
8160 if (!next
|| !extent_buffer_uptodate(next
)) {
8161 free_extent_buffer(next
);
8164 btrfs_tree_lock(next
);
8165 btrfs_set_lock_blocking(next
);
8169 BUG_ON(level
!= btrfs_header_level(next
));
8170 path
->nodes
[level
] = next
;
8171 path
->slots
[level
] = 0;
8172 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8178 wc
->refs
[level
- 1] = 0;
8179 wc
->flags
[level
- 1] = 0;
8180 if (wc
->stage
== DROP_REFERENCE
) {
8181 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
8182 parent
= path
->nodes
[level
]->start
;
8184 BUG_ON(root
->root_key
.objectid
!=
8185 btrfs_header_owner(path
->nodes
[level
]));
8190 ret
= account_shared_subtree(trans
, root
, next
,
8191 generation
, level
- 1);
8193 printk_ratelimited(KERN_ERR
"BTRFS: %s Error "
8194 "%d accounting shared subtree. Quota "
8195 "is out of sync, rescan required.\n",
8196 root
->fs_info
->sb
->s_id
, ret
);
8199 ret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
, parent
,
8200 root
->root_key
.objectid
, level
- 1, 0, 0);
8201 BUG_ON(ret
); /* -ENOMEM */
8203 btrfs_tree_unlock(next
);
8204 free_extent_buffer(next
);
8210 * helper to process tree block while walking up the tree.
8212 * when wc->stage == DROP_REFERENCE, this function drops
8213 * reference count on the block.
8215 * when wc->stage == UPDATE_BACKREF, this function changes
8216 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8217 * to UPDATE_BACKREF previously while processing the block.
8219 * NOTE: return value 1 means we should stop walking up.
8221 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
8222 struct btrfs_root
*root
,
8223 struct btrfs_path
*path
,
8224 struct walk_control
*wc
)
8227 int level
= wc
->level
;
8228 struct extent_buffer
*eb
= path
->nodes
[level
];
8231 if (wc
->stage
== UPDATE_BACKREF
) {
8232 BUG_ON(wc
->shared_level
< level
);
8233 if (level
< wc
->shared_level
)
8236 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
8240 wc
->stage
= DROP_REFERENCE
;
8241 wc
->shared_level
= -1;
8242 path
->slots
[level
] = 0;
8245 * check reference count again if the block isn't locked.
8246 * we should start walking down the tree again if reference
8249 if (!path
->locks
[level
]) {
8251 btrfs_tree_lock(eb
);
8252 btrfs_set_lock_blocking(eb
);
8253 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8255 ret
= btrfs_lookup_extent_info(trans
, root
,
8256 eb
->start
, level
, 1,
8260 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8261 path
->locks
[level
] = 0;
8264 BUG_ON(wc
->refs
[level
] == 0);
8265 if (wc
->refs
[level
] == 1) {
8266 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8267 path
->locks
[level
] = 0;
8273 /* wc->stage == DROP_REFERENCE */
8274 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
8276 if (wc
->refs
[level
] == 1) {
8278 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
8279 ret
= btrfs_dec_ref(trans
, root
, eb
, 1);
8281 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
8282 BUG_ON(ret
); /* -ENOMEM */
8283 ret
= account_leaf_items(trans
, root
, eb
);
8285 printk_ratelimited(KERN_ERR
"BTRFS: %s Error "
8286 "%d accounting leaf items. Quota "
8287 "is out of sync, rescan required.\n",
8288 root
->fs_info
->sb
->s_id
, ret
);
8291 /* make block locked assertion in clean_tree_block happy */
8292 if (!path
->locks
[level
] &&
8293 btrfs_header_generation(eb
) == trans
->transid
) {
8294 btrfs_tree_lock(eb
);
8295 btrfs_set_lock_blocking(eb
);
8296 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8298 clean_tree_block(trans
, root
->fs_info
, eb
);
8301 if (eb
== root
->node
) {
8302 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
8305 BUG_ON(root
->root_key
.objectid
!=
8306 btrfs_header_owner(eb
));
8308 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
8309 parent
= path
->nodes
[level
+ 1]->start
;
8311 BUG_ON(root
->root_key
.objectid
!=
8312 btrfs_header_owner(path
->nodes
[level
+ 1]));
8315 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1);
8317 wc
->refs
[level
] = 0;
8318 wc
->flags
[level
] = 0;
8322 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
8323 struct btrfs_root
*root
,
8324 struct btrfs_path
*path
,
8325 struct walk_control
*wc
)
8327 int level
= wc
->level
;
8328 int lookup_info
= 1;
8331 while (level
>= 0) {
8332 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
8339 if (path
->slots
[level
] >=
8340 btrfs_header_nritems(path
->nodes
[level
]))
8343 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
8345 path
->slots
[level
]++;
8354 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
8355 struct btrfs_root
*root
,
8356 struct btrfs_path
*path
,
8357 struct walk_control
*wc
, int max_level
)
8359 int level
= wc
->level
;
8362 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
8363 while (level
< max_level
&& path
->nodes
[level
]) {
8365 if (path
->slots
[level
] + 1 <
8366 btrfs_header_nritems(path
->nodes
[level
])) {
8367 path
->slots
[level
]++;
8370 ret
= walk_up_proc(trans
, root
, path
, wc
);
8374 if (path
->locks
[level
]) {
8375 btrfs_tree_unlock_rw(path
->nodes
[level
],
8376 path
->locks
[level
]);
8377 path
->locks
[level
] = 0;
8379 free_extent_buffer(path
->nodes
[level
]);
8380 path
->nodes
[level
] = NULL
;
8388 * drop a subvolume tree.
8390 * this function traverses the tree freeing any blocks that only
8391 * referenced by the tree.
8393 * when a shared tree block is found. this function decreases its
8394 * reference count by one. if update_ref is true, this function
8395 * also make sure backrefs for the shared block and all lower level
8396 * blocks are properly updated.
8398 * If called with for_reloc == 0, may exit early with -EAGAIN
8400 int btrfs_drop_snapshot(struct btrfs_root
*root
,
8401 struct btrfs_block_rsv
*block_rsv
, int update_ref
,
8404 struct btrfs_path
*path
;
8405 struct btrfs_trans_handle
*trans
;
8406 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
8407 struct btrfs_root_item
*root_item
= &root
->root_item
;
8408 struct walk_control
*wc
;
8409 struct btrfs_key key
;
8413 bool root_dropped
= false;
8415 btrfs_debug(root
->fs_info
, "Drop subvolume %llu", root
->objectid
);
8417 path
= btrfs_alloc_path();
8423 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
8425 btrfs_free_path(path
);
8430 trans
= btrfs_start_transaction(tree_root
, 0);
8431 if (IS_ERR(trans
)) {
8432 err
= PTR_ERR(trans
);
8437 trans
->block_rsv
= block_rsv
;
8439 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
8440 level
= btrfs_header_level(root
->node
);
8441 path
->nodes
[level
] = btrfs_lock_root_node(root
);
8442 btrfs_set_lock_blocking(path
->nodes
[level
]);
8443 path
->slots
[level
] = 0;
8444 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8445 memset(&wc
->update_progress
, 0,
8446 sizeof(wc
->update_progress
));
8448 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
8449 memcpy(&wc
->update_progress
, &key
,
8450 sizeof(wc
->update_progress
));
8452 level
= root_item
->drop_level
;
8454 path
->lowest_level
= level
;
8455 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
8456 path
->lowest_level
= 0;
8464 * unlock our path, this is safe because only this
8465 * function is allowed to delete this snapshot
8467 btrfs_unlock_up_safe(path
, 0);
8469 level
= btrfs_header_level(root
->node
);
8471 btrfs_tree_lock(path
->nodes
[level
]);
8472 btrfs_set_lock_blocking(path
->nodes
[level
]);
8473 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8475 ret
= btrfs_lookup_extent_info(trans
, root
,
8476 path
->nodes
[level
]->start
,
8477 level
, 1, &wc
->refs
[level
],
8483 BUG_ON(wc
->refs
[level
] == 0);
8485 if (level
== root_item
->drop_level
)
8488 btrfs_tree_unlock(path
->nodes
[level
]);
8489 path
->locks
[level
] = 0;
8490 WARN_ON(wc
->refs
[level
] != 1);
8496 wc
->shared_level
= -1;
8497 wc
->stage
= DROP_REFERENCE
;
8498 wc
->update_ref
= update_ref
;
8500 wc
->for_reloc
= for_reloc
;
8501 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
8505 ret
= walk_down_tree(trans
, root
, path
, wc
);
8511 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
8518 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
8522 if (wc
->stage
== DROP_REFERENCE
) {
8524 btrfs_node_key(path
->nodes
[level
],
8525 &root_item
->drop_progress
,
8526 path
->slots
[level
]);
8527 root_item
->drop_level
= level
;
8530 BUG_ON(wc
->level
== 0);
8531 if (btrfs_should_end_transaction(trans
, tree_root
) ||
8532 (!for_reloc
&& btrfs_need_cleaner_sleep(root
))) {
8533 ret
= btrfs_update_root(trans
, tree_root
,
8537 btrfs_abort_transaction(trans
, tree_root
, ret
);
8543 * Qgroup update accounting is run from
8544 * delayed ref handling. This usually works
8545 * out because delayed refs are normally the
8546 * only way qgroup updates are added. However,
8547 * we may have added updates during our tree
8548 * walk so run qgroups here to make sure we
8549 * don't lose any updates.
8551 ret
= btrfs_delayed_qgroup_accounting(trans
,
8554 printk_ratelimited(KERN_ERR
"BTRFS: Failure %d "
8555 "running qgroup updates "
8556 "during snapshot delete. "
8557 "Quota is out of sync, "
8558 "rescan required.\n", ret
);
8560 btrfs_end_transaction_throttle(trans
, tree_root
);
8561 if (!for_reloc
&& btrfs_need_cleaner_sleep(root
)) {
8562 pr_debug("BTRFS: drop snapshot early exit\n");
8567 trans
= btrfs_start_transaction(tree_root
, 0);
8568 if (IS_ERR(trans
)) {
8569 err
= PTR_ERR(trans
);
8573 trans
->block_rsv
= block_rsv
;
8576 btrfs_release_path(path
);
8580 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
8582 btrfs_abort_transaction(trans
, tree_root
, ret
);
8586 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
8587 ret
= btrfs_find_root(tree_root
, &root
->root_key
, path
,
8590 btrfs_abort_transaction(trans
, tree_root
, ret
);
8593 } else if (ret
> 0) {
8594 /* if we fail to delete the orphan item this time
8595 * around, it'll get picked up the next time.
8597 * The most common failure here is just -ENOENT.
8599 btrfs_del_orphan_item(trans
, tree_root
,
8600 root
->root_key
.objectid
);
8604 if (test_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
)) {
8605 btrfs_drop_and_free_fs_root(tree_root
->fs_info
, root
);
8607 free_extent_buffer(root
->node
);
8608 free_extent_buffer(root
->commit_root
);
8609 btrfs_put_fs_root(root
);
8611 root_dropped
= true;
8613 ret
= btrfs_delayed_qgroup_accounting(trans
, tree_root
->fs_info
);
8615 printk_ratelimited(KERN_ERR
"BTRFS: Failure %d "
8616 "running qgroup updates "
8617 "during snapshot delete. "
8618 "Quota is out of sync, "
8619 "rescan required.\n", ret
);
8621 btrfs_end_transaction_throttle(trans
, tree_root
);
8624 btrfs_free_path(path
);
8627 * So if we need to stop dropping the snapshot for whatever reason we
8628 * need to make sure to add it back to the dead root list so that we
8629 * keep trying to do the work later. This also cleans up roots if we
8630 * don't have it in the radix (like when we recover after a power fail
8631 * or unmount) so we don't leak memory.
8633 if (!for_reloc
&& root_dropped
== false)
8634 btrfs_add_dead_root(root
);
8635 if (err
&& err
!= -EAGAIN
)
8636 btrfs_std_error(root
->fs_info
, err
);
8641 * drop subtree rooted at tree block 'node'.
8643 * NOTE: this function will unlock and release tree block 'node'
8644 * only used by relocation code
8646 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
8647 struct btrfs_root
*root
,
8648 struct extent_buffer
*node
,
8649 struct extent_buffer
*parent
)
8651 struct btrfs_path
*path
;
8652 struct walk_control
*wc
;
8658 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
8660 path
= btrfs_alloc_path();
8664 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
8666 btrfs_free_path(path
);
8670 btrfs_assert_tree_locked(parent
);
8671 parent_level
= btrfs_header_level(parent
);
8672 extent_buffer_get(parent
);
8673 path
->nodes
[parent_level
] = parent
;
8674 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
8676 btrfs_assert_tree_locked(node
);
8677 level
= btrfs_header_level(node
);
8678 path
->nodes
[level
] = node
;
8679 path
->slots
[level
] = 0;
8680 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8682 wc
->refs
[parent_level
] = 1;
8683 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
8685 wc
->shared_level
= -1;
8686 wc
->stage
= DROP_REFERENCE
;
8690 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
8693 wret
= walk_down_tree(trans
, root
, path
, wc
);
8699 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
8707 btrfs_free_path(path
);
8711 static u64
update_block_group_flags(struct btrfs_root
*root
, u64 flags
)
8717 * if restripe for this chunk_type is on pick target profile and
8718 * return, otherwise do the usual balance
8720 stripped
= get_restripe_target(root
->fs_info
, flags
);
8722 return extended_to_chunk(stripped
);
8724 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
8726 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
8727 BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
|
8728 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
8730 if (num_devices
== 1) {
8731 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
8732 stripped
= flags
& ~stripped
;
8734 /* turn raid0 into single device chunks */
8735 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
8738 /* turn mirroring into duplication */
8739 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
8740 BTRFS_BLOCK_GROUP_RAID10
))
8741 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
8743 /* they already had raid on here, just return */
8744 if (flags
& stripped
)
8747 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
8748 stripped
= flags
& ~stripped
;
8750 /* switch duplicated blocks with raid1 */
8751 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
8752 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
8754 /* this is drive concat, leave it alone */
8760 static int set_block_group_ro(struct btrfs_block_group_cache
*cache
, int force
)
8762 struct btrfs_space_info
*sinfo
= cache
->space_info
;
8764 u64 min_allocable_bytes
;
8769 * We need some metadata space and system metadata space for
8770 * allocating chunks in some corner cases until we force to set
8771 * it to be readonly.
8774 (BTRFS_BLOCK_GROUP_SYSTEM
| BTRFS_BLOCK_GROUP_METADATA
)) &&
8776 min_allocable_bytes
= 1 * 1024 * 1024;
8778 min_allocable_bytes
= 0;
8780 spin_lock(&sinfo
->lock
);
8781 spin_lock(&cache
->lock
);
8788 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
8789 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
8791 if (sinfo
->bytes_used
+ sinfo
->bytes_reserved
+ sinfo
->bytes_pinned
+
8792 sinfo
->bytes_may_use
+ sinfo
->bytes_readonly
+ num_bytes
+
8793 min_allocable_bytes
<= sinfo
->total_bytes
) {
8794 sinfo
->bytes_readonly
+= num_bytes
;
8796 list_add_tail(&cache
->ro_list
, &sinfo
->ro_bgs
);
8800 spin_unlock(&cache
->lock
);
8801 spin_unlock(&sinfo
->lock
);
8805 int btrfs_set_block_group_ro(struct btrfs_root
*root
,
8806 struct btrfs_block_group_cache
*cache
)
8809 struct btrfs_trans_handle
*trans
;
8816 trans
= btrfs_join_transaction(root
);
8818 return PTR_ERR(trans
);
8821 * we're not allowed to set block groups readonly after the dirty
8822 * block groups cache has started writing. If it already started,
8823 * back off and let this transaction commit
8825 mutex_lock(&root
->fs_info
->ro_block_group_mutex
);
8826 if (trans
->transaction
->dirty_bg_run
) {
8827 u64 transid
= trans
->transid
;
8829 mutex_unlock(&root
->fs_info
->ro_block_group_mutex
);
8830 btrfs_end_transaction(trans
, root
);
8832 ret
= btrfs_wait_for_commit(root
, transid
);
8839 * if we are changing raid levels, try to allocate a corresponding
8840 * block group with the new raid level.
8842 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
8843 if (alloc_flags
!= cache
->flags
) {
8844 ret
= do_chunk_alloc(trans
, root
, alloc_flags
,
8847 * ENOSPC is allowed here, we may have enough space
8848 * already allocated at the new raid level to
8857 ret
= set_block_group_ro(cache
, 0);
8860 alloc_flags
= get_alloc_profile(root
, cache
->space_info
->flags
);
8861 ret
= do_chunk_alloc(trans
, root
, alloc_flags
,
8865 ret
= set_block_group_ro(cache
, 0);
8867 if (cache
->flags
& BTRFS_BLOCK_GROUP_SYSTEM
) {
8868 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
8869 lock_chunks(root
->fs_info
->chunk_root
);
8870 check_system_chunk(trans
, root
, alloc_flags
);
8871 unlock_chunks(root
->fs_info
->chunk_root
);
8873 mutex_unlock(&root
->fs_info
->ro_block_group_mutex
);
8875 btrfs_end_transaction(trans
, root
);
8879 int btrfs_force_chunk_alloc(struct btrfs_trans_handle
*trans
,
8880 struct btrfs_root
*root
, u64 type
)
8882 u64 alloc_flags
= get_alloc_profile(root
, type
);
8883 return do_chunk_alloc(trans
, root
, alloc_flags
,
8888 * helper to account the unused space of all the readonly block group in the
8889 * space_info. takes mirrors into account.
8891 u64
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info
*sinfo
)
8893 struct btrfs_block_group_cache
*block_group
;
8897 /* It's df, we don't care if it's racey */
8898 if (list_empty(&sinfo
->ro_bgs
))
8901 spin_lock(&sinfo
->lock
);
8902 list_for_each_entry(block_group
, &sinfo
->ro_bgs
, ro_list
) {
8903 spin_lock(&block_group
->lock
);
8905 if (!block_group
->ro
) {
8906 spin_unlock(&block_group
->lock
);
8910 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_RAID1
|
8911 BTRFS_BLOCK_GROUP_RAID10
|
8912 BTRFS_BLOCK_GROUP_DUP
))
8917 free_bytes
+= (block_group
->key
.offset
-
8918 btrfs_block_group_used(&block_group
->item
)) *
8921 spin_unlock(&block_group
->lock
);
8923 spin_unlock(&sinfo
->lock
);
8928 void btrfs_set_block_group_rw(struct btrfs_root
*root
,
8929 struct btrfs_block_group_cache
*cache
)
8931 struct btrfs_space_info
*sinfo
= cache
->space_info
;
8936 spin_lock(&sinfo
->lock
);
8937 spin_lock(&cache
->lock
);
8938 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
8939 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
8940 sinfo
->bytes_readonly
-= num_bytes
;
8942 list_del_init(&cache
->ro_list
);
8943 spin_unlock(&cache
->lock
);
8944 spin_unlock(&sinfo
->lock
);
8948 * checks to see if its even possible to relocate this block group.
8950 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8951 * ok to go ahead and try.
8953 int btrfs_can_relocate(struct btrfs_root
*root
, u64 bytenr
)
8955 struct btrfs_block_group_cache
*block_group
;
8956 struct btrfs_space_info
*space_info
;
8957 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
8958 struct btrfs_device
*device
;
8959 struct btrfs_trans_handle
*trans
;
8968 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
8970 /* odd, couldn't find the block group, leave it alone */
8974 min_free
= btrfs_block_group_used(&block_group
->item
);
8976 /* no bytes used, we're good */
8980 space_info
= block_group
->space_info
;
8981 spin_lock(&space_info
->lock
);
8983 full
= space_info
->full
;
8986 * if this is the last block group we have in this space, we can't
8987 * relocate it unless we're able to allocate a new chunk below.
8989 * Otherwise, we need to make sure we have room in the space to handle
8990 * all of the extents from this block group. If we can, we're good
8992 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
8993 (space_info
->bytes_used
+ space_info
->bytes_reserved
+
8994 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
8995 min_free
< space_info
->total_bytes
)) {
8996 spin_unlock(&space_info
->lock
);
8999 spin_unlock(&space_info
->lock
);
9002 * ok we don't have enough space, but maybe we have free space on our
9003 * devices to allocate new chunks for relocation, so loop through our
9004 * alloc devices and guess if we have enough space. if this block
9005 * group is going to be restriped, run checks against the target
9006 * profile instead of the current one.
9018 target
= get_restripe_target(root
->fs_info
, block_group
->flags
);
9020 index
= __get_raid_index(extended_to_chunk(target
));
9023 * this is just a balance, so if we were marked as full
9024 * we know there is no space for a new chunk
9029 index
= get_block_group_index(block_group
);
9032 if (index
== BTRFS_RAID_RAID10
) {
9036 } else if (index
== BTRFS_RAID_RAID1
) {
9038 } else if (index
== BTRFS_RAID_DUP
) {
9041 } else if (index
== BTRFS_RAID_RAID0
) {
9042 dev_min
= fs_devices
->rw_devices
;
9043 min_free
= div64_u64(min_free
, dev_min
);
9046 /* We need to do this so that we can look at pending chunks */
9047 trans
= btrfs_join_transaction(root
);
9048 if (IS_ERR(trans
)) {
9049 ret
= PTR_ERR(trans
);
9053 mutex_lock(&root
->fs_info
->chunk_mutex
);
9054 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
9058 * check to make sure we can actually find a chunk with enough
9059 * space to fit our block group in.
9061 if (device
->total_bytes
> device
->bytes_used
+ min_free
&&
9062 !device
->is_tgtdev_for_dev_replace
) {
9063 ret
= find_free_dev_extent(trans
, device
, min_free
,
9068 if (dev_nr
>= dev_min
)
9074 mutex_unlock(&root
->fs_info
->chunk_mutex
);
9075 btrfs_end_transaction(trans
, root
);
9077 btrfs_put_block_group(block_group
);
9081 static int find_first_block_group(struct btrfs_root
*root
,
9082 struct btrfs_path
*path
, struct btrfs_key
*key
)
9085 struct btrfs_key found_key
;
9086 struct extent_buffer
*leaf
;
9089 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
9094 slot
= path
->slots
[0];
9095 leaf
= path
->nodes
[0];
9096 if (slot
>= btrfs_header_nritems(leaf
)) {
9097 ret
= btrfs_next_leaf(root
, path
);
9104 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
9106 if (found_key
.objectid
>= key
->objectid
&&
9107 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
9117 void btrfs_put_block_group_cache(struct btrfs_fs_info
*info
)
9119 struct btrfs_block_group_cache
*block_group
;
9123 struct inode
*inode
;
9125 block_group
= btrfs_lookup_first_block_group(info
, last
);
9126 while (block_group
) {
9127 spin_lock(&block_group
->lock
);
9128 if (block_group
->iref
)
9130 spin_unlock(&block_group
->lock
);
9131 block_group
= next_block_group(info
->tree_root
,
9141 inode
= block_group
->inode
;
9142 block_group
->iref
= 0;
9143 block_group
->inode
= NULL
;
9144 spin_unlock(&block_group
->lock
);
9146 last
= block_group
->key
.objectid
+ block_group
->key
.offset
;
9147 btrfs_put_block_group(block_group
);
9151 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
9153 struct btrfs_block_group_cache
*block_group
;
9154 struct btrfs_space_info
*space_info
;
9155 struct btrfs_caching_control
*caching_ctl
;
9158 down_write(&info
->commit_root_sem
);
9159 while (!list_empty(&info
->caching_block_groups
)) {
9160 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
9161 struct btrfs_caching_control
, list
);
9162 list_del(&caching_ctl
->list
);
9163 put_caching_control(caching_ctl
);
9165 up_write(&info
->commit_root_sem
);
9167 spin_lock(&info
->unused_bgs_lock
);
9168 while (!list_empty(&info
->unused_bgs
)) {
9169 block_group
= list_first_entry(&info
->unused_bgs
,
9170 struct btrfs_block_group_cache
,
9172 list_del_init(&block_group
->bg_list
);
9173 btrfs_put_block_group(block_group
);
9175 spin_unlock(&info
->unused_bgs_lock
);
9177 spin_lock(&info
->block_group_cache_lock
);
9178 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
9179 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
9181 rb_erase(&block_group
->cache_node
,
9182 &info
->block_group_cache_tree
);
9183 RB_CLEAR_NODE(&block_group
->cache_node
);
9184 spin_unlock(&info
->block_group_cache_lock
);
9186 down_write(&block_group
->space_info
->groups_sem
);
9187 list_del(&block_group
->list
);
9188 up_write(&block_group
->space_info
->groups_sem
);
9190 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
9191 wait_block_group_cache_done(block_group
);
9194 * We haven't cached this block group, which means we could
9195 * possibly have excluded extents on this block group.
9197 if (block_group
->cached
== BTRFS_CACHE_NO
||
9198 block_group
->cached
== BTRFS_CACHE_ERROR
)
9199 free_excluded_extents(info
->extent_root
, block_group
);
9201 btrfs_remove_free_space_cache(block_group
);
9202 btrfs_put_block_group(block_group
);
9204 spin_lock(&info
->block_group_cache_lock
);
9206 spin_unlock(&info
->block_group_cache_lock
);
9208 /* now that all the block groups are freed, go through and
9209 * free all the space_info structs. This is only called during
9210 * the final stages of unmount, and so we know nobody is
9211 * using them. We call synchronize_rcu() once before we start,
9212 * just to be on the safe side.
9216 release_global_block_rsv(info
);
9218 while (!list_empty(&info
->space_info
)) {
9221 space_info
= list_entry(info
->space_info
.next
,
9222 struct btrfs_space_info
,
9224 if (btrfs_test_opt(info
->tree_root
, ENOSPC_DEBUG
)) {
9225 if (WARN_ON(space_info
->bytes_pinned
> 0 ||
9226 space_info
->bytes_reserved
> 0 ||
9227 space_info
->bytes_may_use
> 0)) {
9228 dump_space_info(space_info
, 0, 0);
9231 list_del(&space_info
->list
);
9232 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
9233 struct kobject
*kobj
;
9234 kobj
= space_info
->block_group_kobjs
[i
];
9235 space_info
->block_group_kobjs
[i
] = NULL
;
9241 kobject_del(&space_info
->kobj
);
9242 kobject_put(&space_info
->kobj
);
9247 static void __link_block_group(struct btrfs_space_info
*space_info
,
9248 struct btrfs_block_group_cache
*cache
)
9250 int index
= get_block_group_index(cache
);
9253 down_write(&space_info
->groups_sem
);
9254 if (list_empty(&space_info
->block_groups
[index
]))
9256 list_add_tail(&cache
->list
, &space_info
->block_groups
[index
]);
9257 up_write(&space_info
->groups_sem
);
9260 struct raid_kobject
*rkobj
;
9263 rkobj
= kzalloc(sizeof(*rkobj
), GFP_NOFS
);
9266 rkobj
->raid_type
= index
;
9267 kobject_init(&rkobj
->kobj
, &btrfs_raid_ktype
);
9268 ret
= kobject_add(&rkobj
->kobj
, &space_info
->kobj
,
9269 "%s", get_raid_name(index
));
9271 kobject_put(&rkobj
->kobj
);
9274 space_info
->block_group_kobjs
[index
] = &rkobj
->kobj
;
9279 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9282 static struct btrfs_block_group_cache
*
9283 btrfs_create_block_group_cache(struct btrfs_root
*root
, u64 start
, u64 size
)
9285 struct btrfs_block_group_cache
*cache
;
9287 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
9291 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
9293 if (!cache
->free_space_ctl
) {
9298 cache
->key
.objectid
= start
;
9299 cache
->key
.offset
= size
;
9300 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
9302 cache
->sectorsize
= root
->sectorsize
;
9303 cache
->fs_info
= root
->fs_info
;
9304 cache
->full_stripe_len
= btrfs_full_stripe_len(root
,
9305 &root
->fs_info
->mapping_tree
,
9307 atomic_set(&cache
->count
, 1);
9308 spin_lock_init(&cache
->lock
);
9309 init_rwsem(&cache
->data_rwsem
);
9310 INIT_LIST_HEAD(&cache
->list
);
9311 INIT_LIST_HEAD(&cache
->cluster_list
);
9312 INIT_LIST_HEAD(&cache
->bg_list
);
9313 INIT_LIST_HEAD(&cache
->ro_list
);
9314 INIT_LIST_HEAD(&cache
->dirty_list
);
9315 INIT_LIST_HEAD(&cache
->io_list
);
9316 btrfs_init_free_space_ctl(cache
);
9317 atomic_set(&cache
->trimming
, 0);
9322 int btrfs_read_block_groups(struct btrfs_root
*root
)
9324 struct btrfs_path
*path
;
9326 struct btrfs_block_group_cache
*cache
;
9327 struct btrfs_fs_info
*info
= root
->fs_info
;
9328 struct btrfs_space_info
*space_info
;
9329 struct btrfs_key key
;
9330 struct btrfs_key found_key
;
9331 struct extent_buffer
*leaf
;
9335 root
= info
->extent_root
;
9338 key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
9339 path
= btrfs_alloc_path();
9344 cache_gen
= btrfs_super_cache_generation(root
->fs_info
->super_copy
);
9345 if (btrfs_test_opt(root
, SPACE_CACHE
) &&
9346 btrfs_super_generation(root
->fs_info
->super_copy
) != cache_gen
)
9348 if (btrfs_test_opt(root
, CLEAR_CACHE
))
9352 ret
= find_first_block_group(root
, path
, &key
);
9358 leaf
= path
->nodes
[0];
9359 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
9361 cache
= btrfs_create_block_group_cache(root
, found_key
.objectid
,
9370 * When we mount with old space cache, we need to
9371 * set BTRFS_DC_CLEAR and set dirty flag.
9373 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9374 * truncate the old free space cache inode and
9376 * b) Setting 'dirty flag' makes sure that we flush
9377 * the new space cache info onto disk.
9379 if (btrfs_test_opt(root
, SPACE_CACHE
))
9380 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
9383 read_extent_buffer(leaf
, &cache
->item
,
9384 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
9385 sizeof(cache
->item
));
9386 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
9388 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
9389 btrfs_release_path(path
);
9392 * We need to exclude the super stripes now so that the space
9393 * info has super bytes accounted for, otherwise we'll think
9394 * we have more space than we actually do.
9396 ret
= exclude_super_stripes(root
, cache
);
9399 * We may have excluded something, so call this just in
9402 free_excluded_extents(root
, cache
);
9403 btrfs_put_block_group(cache
);
9408 * check for two cases, either we are full, and therefore
9409 * don't need to bother with the caching work since we won't
9410 * find any space, or we are empty, and we can just add all
9411 * the space in and be done with it. This saves us _alot_ of
9412 * time, particularly in the full case.
9414 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
9415 cache
->last_byte_to_unpin
= (u64
)-1;
9416 cache
->cached
= BTRFS_CACHE_FINISHED
;
9417 free_excluded_extents(root
, cache
);
9418 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
9419 cache
->last_byte_to_unpin
= (u64
)-1;
9420 cache
->cached
= BTRFS_CACHE_FINISHED
;
9421 add_new_free_space(cache
, root
->fs_info
,
9423 found_key
.objectid
+
9425 free_excluded_extents(root
, cache
);
9428 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
9430 btrfs_remove_free_space_cache(cache
);
9431 btrfs_put_block_group(cache
);
9435 ret
= update_space_info(info
, cache
->flags
, found_key
.offset
,
9436 btrfs_block_group_used(&cache
->item
),
9439 btrfs_remove_free_space_cache(cache
);
9440 spin_lock(&info
->block_group_cache_lock
);
9441 rb_erase(&cache
->cache_node
,
9442 &info
->block_group_cache_tree
);
9443 RB_CLEAR_NODE(&cache
->cache_node
);
9444 spin_unlock(&info
->block_group_cache_lock
);
9445 btrfs_put_block_group(cache
);
9449 cache
->space_info
= space_info
;
9450 spin_lock(&cache
->space_info
->lock
);
9451 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
9452 spin_unlock(&cache
->space_info
->lock
);
9454 __link_block_group(space_info
, cache
);
9456 set_avail_alloc_bits(root
->fs_info
, cache
->flags
);
9457 if (btrfs_chunk_readonly(root
, cache
->key
.objectid
)) {
9458 set_block_group_ro(cache
, 1);
9459 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
9460 spin_lock(&info
->unused_bgs_lock
);
9461 /* Should always be true but just in case. */
9462 if (list_empty(&cache
->bg_list
)) {
9463 btrfs_get_block_group(cache
);
9464 list_add_tail(&cache
->bg_list
,
9467 spin_unlock(&info
->unused_bgs_lock
);
9471 list_for_each_entry_rcu(space_info
, &root
->fs_info
->space_info
, list
) {
9472 if (!(get_alloc_profile(root
, space_info
->flags
) &
9473 (BTRFS_BLOCK_GROUP_RAID10
|
9474 BTRFS_BLOCK_GROUP_RAID1
|
9475 BTRFS_BLOCK_GROUP_RAID5
|
9476 BTRFS_BLOCK_GROUP_RAID6
|
9477 BTRFS_BLOCK_GROUP_DUP
)))
9480 * avoid allocating from un-mirrored block group if there are
9481 * mirrored block groups.
9483 list_for_each_entry(cache
,
9484 &space_info
->block_groups
[BTRFS_RAID_RAID0
],
9486 set_block_group_ro(cache
, 1);
9487 list_for_each_entry(cache
,
9488 &space_info
->block_groups
[BTRFS_RAID_SINGLE
],
9490 set_block_group_ro(cache
, 1);
9493 init_global_block_rsv(info
);
9496 btrfs_free_path(path
);
9500 void btrfs_create_pending_block_groups(struct btrfs_trans_handle
*trans
,
9501 struct btrfs_root
*root
)
9503 struct btrfs_block_group_cache
*block_group
, *tmp
;
9504 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
9505 struct btrfs_block_group_item item
;
9506 struct btrfs_key key
;
9509 list_for_each_entry_safe(block_group
, tmp
, &trans
->new_bgs
, bg_list
) {
9513 spin_lock(&block_group
->lock
);
9514 memcpy(&item
, &block_group
->item
, sizeof(item
));
9515 memcpy(&key
, &block_group
->key
, sizeof(key
));
9516 spin_unlock(&block_group
->lock
);
9518 ret
= btrfs_insert_item(trans
, extent_root
, &key
, &item
,
9521 btrfs_abort_transaction(trans
, extent_root
, ret
);
9522 ret
= btrfs_finish_chunk_alloc(trans
, extent_root
,
9523 key
.objectid
, key
.offset
);
9525 btrfs_abort_transaction(trans
, extent_root
, ret
);
9527 list_del_init(&block_group
->bg_list
);
9531 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
9532 struct btrfs_root
*root
, u64 bytes_used
,
9533 u64 type
, u64 chunk_objectid
, u64 chunk_offset
,
9537 struct btrfs_root
*extent_root
;
9538 struct btrfs_block_group_cache
*cache
;
9540 extent_root
= root
->fs_info
->extent_root
;
9542 btrfs_set_log_full_commit(root
->fs_info
, trans
);
9544 cache
= btrfs_create_block_group_cache(root
, chunk_offset
, size
);
9548 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
9549 btrfs_set_block_group_chunk_objectid(&cache
->item
, chunk_objectid
);
9550 btrfs_set_block_group_flags(&cache
->item
, type
);
9552 cache
->flags
= type
;
9553 cache
->last_byte_to_unpin
= (u64
)-1;
9554 cache
->cached
= BTRFS_CACHE_FINISHED
;
9555 ret
= exclude_super_stripes(root
, cache
);
9558 * We may have excluded something, so call this just in
9561 free_excluded_extents(root
, cache
);
9562 btrfs_put_block_group(cache
);
9566 add_new_free_space(cache
, root
->fs_info
, chunk_offset
,
9567 chunk_offset
+ size
);
9569 free_excluded_extents(root
, cache
);
9571 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
9573 btrfs_remove_free_space_cache(cache
);
9574 btrfs_put_block_group(cache
);
9578 ret
= update_space_info(root
->fs_info
, cache
->flags
, size
, bytes_used
,
9579 &cache
->space_info
);
9581 btrfs_remove_free_space_cache(cache
);
9582 spin_lock(&root
->fs_info
->block_group_cache_lock
);
9583 rb_erase(&cache
->cache_node
,
9584 &root
->fs_info
->block_group_cache_tree
);
9585 RB_CLEAR_NODE(&cache
->cache_node
);
9586 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
9587 btrfs_put_block_group(cache
);
9590 update_global_block_rsv(root
->fs_info
);
9592 spin_lock(&cache
->space_info
->lock
);
9593 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
9594 spin_unlock(&cache
->space_info
->lock
);
9596 __link_block_group(cache
->space_info
, cache
);
9598 list_add_tail(&cache
->bg_list
, &trans
->new_bgs
);
9600 set_avail_alloc_bits(extent_root
->fs_info
, type
);
9605 static void clear_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
9607 u64 extra_flags
= chunk_to_extended(flags
) &
9608 BTRFS_EXTENDED_PROFILE_MASK
;
9610 write_seqlock(&fs_info
->profiles_lock
);
9611 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
9612 fs_info
->avail_data_alloc_bits
&= ~extra_flags
;
9613 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
9614 fs_info
->avail_metadata_alloc_bits
&= ~extra_flags
;
9615 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
9616 fs_info
->avail_system_alloc_bits
&= ~extra_flags
;
9617 write_sequnlock(&fs_info
->profiles_lock
);
9620 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
9621 struct btrfs_root
*root
, u64 group_start
,
9622 struct extent_map
*em
)
9624 struct btrfs_path
*path
;
9625 struct btrfs_block_group_cache
*block_group
;
9626 struct btrfs_free_cluster
*cluster
;
9627 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
9628 struct btrfs_key key
;
9629 struct inode
*inode
;
9630 struct kobject
*kobj
= NULL
;
9634 struct btrfs_caching_control
*caching_ctl
= NULL
;
9637 root
= root
->fs_info
->extent_root
;
9639 block_group
= btrfs_lookup_block_group(root
->fs_info
, group_start
);
9640 BUG_ON(!block_group
);
9641 BUG_ON(!block_group
->ro
);
9644 * Free the reserved super bytes from this block group before
9647 free_excluded_extents(root
, block_group
);
9649 memcpy(&key
, &block_group
->key
, sizeof(key
));
9650 index
= get_block_group_index(block_group
);
9651 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
9652 BTRFS_BLOCK_GROUP_RAID1
|
9653 BTRFS_BLOCK_GROUP_RAID10
))
9658 /* make sure this block group isn't part of an allocation cluster */
9659 cluster
= &root
->fs_info
->data_alloc_cluster
;
9660 spin_lock(&cluster
->refill_lock
);
9661 btrfs_return_cluster_to_free_space(block_group
, cluster
);
9662 spin_unlock(&cluster
->refill_lock
);
9665 * make sure this block group isn't part of a metadata
9666 * allocation cluster
9668 cluster
= &root
->fs_info
->meta_alloc_cluster
;
9669 spin_lock(&cluster
->refill_lock
);
9670 btrfs_return_cluster_to_free_space(block_group
, cluster
);
9671 spin_unlock(&cluster
->refill_lock
);
9673 path
= btrfs_alloc_path();
9680 * get the inode first so any iput calls done for the io_list
9681 * aren't the final iput (no unlinks allowed now)
9683 inode
= lookup_free_space_inode(tree_root
, block_group
, path
);
9685 mutex_lock(&trans
->transaction
->cache_write_mutex
);
9687 * make sure our free spache cache IO is done before remove the
9690 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
9691 if (!list_empty(&block_group
->io_list
)) {
9692 list_del_init(&block_group
->io_list
);
9694 WARN_ON(!IS_ERR(inode
) && inode
!= block_group
->io_ctl
.inode
);
9696 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
9697 btrfs_wait_cache_io(root
, trans
, block_group
,
9698 &block_group
->io_ctl
, path
,
9699 block_group
->key
.objectid
);
9700 btrfs_put_block_group(block_group
);
9701 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
9704 if (!list_empty(&block_group
->dirty_list
)) {
9705 list_del_init(&block_group
->dirty_list
);
9706 btrfs_put_block_group(block_group
);
9708 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
9709 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
9711 if (!IS_ERR(inode
)) {
9712 ret
= btrfs_orphan_add(trans
, inode
);
9714 btrfs_add_delayed_iput(inode
);
9718 /* One for the block groups ref */
9719 spin_lock(&block_group
->lock
);
9720 if (block_group
->iref
) {
9721 block_group
->iref
= 0;
9722 block_group
->inode
= NULL
;
9723 spin_unlock(&block_group
->lock
);
9726 spin_unlock(&block_group
->lock
);
9728 /* One for our lookup ref */
9729 btrfs_add_delayed_iput(inode
);
9732 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
9733 key
.offset
= block_group
->key
.objectid
;
9736 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
9740 btrfs_release_path(path
);
9742 ret
= btrfs_del_item(trans
, tree_root
, path
);
9745 btrfs_release_path(path
);
9748 spin_lock(&root
->fs_info
->block_group_cache_lock
);
9749 rb_erase(&block_group
->cache_node
,
9750 &root
->fs_info
->block_group_cache_tree
);
9751 RB_CLEAR_NODE(&block_group
->cache_node
);
9753 if (root
->fs_info
->first_logical_byte
== block_group
->key
.objectid
)
9754 root
->fs_info
->first_logical_byte
= (u64
)-1;
9755 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
9757 down_write(&block_group
->space_info
->groups_sem
);
9759 * we must use list_del_init so people can check to see if they
9760 * are still on the list after taking the semaphore
9762 list_del_init(&block_group
->list
);
9763 if (list_empty(&block_group
->space_info
->block_groups
[index
])) {
9764 kobj
= block_group
->space_info
->block_group_kobjs
[index
];
9765 block_group
->space_info
->block_group_kobjs
[index
] = NULL
;
9766 clear_avail_alloc_bits(root
->fs_info
, block_group
->flags
);
9768 up_write(&block_group
->space_info
->groups_sem
);
9774 if (block_group
->has_caching_ctl
)
9775 caching_ctl
= get_caching_control(block_group
);
9776 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
9777 wait_block_group_cache_done(block_group
);
9778 if (block_group
->has_caching_ctl
) {
9779 down_write(&root
->fs_info
->commit_root_sem
);
9781 struct btrfs_caching_control
*ctl
;
9783 list_for_each_entry(ctl
,
9784 &root
->fs_info
->caching_block_groups
, list
)
9785 if (ctl
->block_group
== block_group
) {
9787 atomic_inc(&caching_ctl
->count
);
9792 list_del_init(&caching_ctl
->list
);
9793 up_write(&root
->fs_info
->commit_root_sem
);
9795 /* Once for the caching bgs list and once for us. */
9796 put_caching_control(caching_ctl
);
9797 put_caching_control(caching_ctl
);
9801 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
9802 if (!list_empty(&block_group
->dirty_list
)) {
9805 if (!list_empty(&block_group
->io_list
)) {
9808 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
9809 btrfs_remove_free_space_cache(block_group
);
9811 spin_lock(&block_group
->space_info
->lock
);
9812 list_del_init(&block_group
->ro_list
);
9814 if (btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
9815 WARN_ON(block_group
->space_info
->total_bytes
9816 < block_group
->key
.offset
);
9817 WARN_ON(block_group
->space_info
->bytes_readonly
9818 < block_group
->key
.offset
);
9819 WARN_ON(block_group
->space_info
->disk_total
9820 < block_group
->key
.offset
* factor
);
9822 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
9823 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
9824 block_group
->space_info
->disk_total
-= block_group
->key
.offset
* factor
;
9826 spin_unlock(&block_group
->space_info
->lock
);
9828 memcpy(&key
, &block_group
->key
, sizeof(key
));
9831 if (!list_empty(&em
->list
)) {
9832 /* We're in the transaction->pending_chunks list. */
9833 free_extent_map(em
);
9835 spin_lock(&block_group
->lock
);
9836 block_group
->removed
= 1;
9838 * At this point trimming can't start on this block group, because we
9839 * removed the block group from the tree fs_info->block_group_cache_tree
9840 * so no one can't find it anymore and even if someone already got this
9841 * block group before we removed it from the rbtree, they have already
9842 * incremented block_group->trimming - if they didn't, they won't find
9843 * any free space entries because we already removed them all when we
9844 * called btrfs_remove_free_space_cache().
9846 * And we must not remove the extent map from the fs_info->mapping_tree
9847 * to prevent the same logical address range and physical device space
9848 * ranges from being reused for a new block group. This is because our
9849 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9850 * completely transactionless, so while it is trimming a range the
9851 * currently running transaction might finish and a new one start,
9852 * allowing for new block groups to be created that can reuse the same
9853 * physical device locations unless we take this special care.
9855 remove_em
= (atomic_read(&block_group
->trimming
) == 0);
9857 * Make sure a trimmer task always sees the em in the pinned_chunks list
9858 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9859 * before checking block_group->removed).
9863 * Our em might be in trans->transaction->pending_chunks which
9864 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9865 * and so is the fs_info->pinned_chunks list.
9867 * So at this point we must be holding the chunk_mutex to avoid
9868 * any races with chunk allocation (more specifically at
9869 * volumes.c:contains_pending_extent()), to ensure it always
9870 * sees the em, either in the pending_chunks list or in the
9871 * pinned_chunks list.
9873 list_move_tail(&em
->list
, &root
->fs_info
->pinned_chunks
);
9875 spin_unlock(&block_group
->lock
);
9878 struct extent_map_tree
*em_tree
;
9880 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
9881 write_lock(&em_tree
->lock
);
9883 * The em might be in the pending_chunks list, so make sure the
9884 * chunk mutex is locked, since remove_extent_mapping() will
9885 * delete us from that list.
9887 remove_extent_mapping(em_tree
, em
);
9888 write_unlock(&em_tree
->lock
);
9889 /* once for the tree */
9890 free_extent_map(em
);
9893 unlock_chunks(root
);
9895 btrfs_put_block_group(block_group
);
9896 btrfs_put_block_group(block_group
);
9898 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
9904 ret
= btrfs_del_item(trans
, root
, path
);
9906 btrfs_free_path(path
);
9911 * Process the unused_bgs list and remove any that don't have any allocated
9912 * space inside of them.
9914 void btrfs_delete_unused_bgs(struct btrfs_fs_info
*fs_info
)
9916 struct btrfs_block_group_cache
*block_group
;
9917 struct btrfs_space_info
*space_info
;
9918 struct btrfs_root
*root
= fs_info
->extent_root
;
9919 struct btrfs_trans_handle
*trans
;
9925 spin_lock(&fs_info
->unused_bgs_lock
);
9926 while (!list_empty(&fs_info
->unused_bgs
)) {
9929 block_group
= list_first_entry(&fs_info
->unused_bgs
,
9930 struct btrfs_block_group_cache
,
9932 space_info
= block_group
->space_info
;
9933 list_del_init(&block_group
->bg_list
);
9934 if (ret
|| btrfs_mixed_space_info(space_info
)) {
9935 btrfs_put_block_group(block_group
);
9938 spin_unlock(&fs_info
->unused_bgs_lock
);
9940 /* Don't want to race with allocators so take the groups_sem */
9941 down_write(&space_info
->groups_sem
);
9942 spin_lock(&block_group
->lock
);
9943 if (block_group
->reserved
||
9944 btrfs_block_group_used(&block_group
->item
) ||
9947 * We want to bail if we made new allocations or have
9948 * outstanding allocations in this block group. We do
9949 * the ro check in case balance is currently acting on
9952 spin_unlock(&block_group
->lock
);
9953 up_write(&space_info
->groups_sem
);
9956 spin_unlock(&block_group
->lock
);
9958 /* We don't want to force the issue, only flip if it's ok. */
9959 ret
= set_block_group_ro(block_group
, 0);
9960 up_write(&space_info
->groups_sem
);
9967 * Want to do this before we do anything else so we can recover
9968 * properly if we fail to join the transaction.
9970 /* 1 for btrfs_orphan_reserve_metadata() */
9971 trans
= btrfs_start_transaction(root
, 1);
9972 if (IS_ERR(trans
)) {
9973 btrfs_set_block_group_rw(root
, block_group
);
9974 ret
= PTR_ERR(trans
);
9979 * We could have pending pinned extents for this block group,
9980 * just delete them, we don't care about them anymore.
9982 start
= block_group
->key
.objectid
;
9983 end
= start
+ block_group
->key
.offset
- 1;
9985 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9986 * btrfs_finish_extent_commit(). If we are at transaction N,
9987 * another task might be running finish_extent_commit() for the
9988 * previous transaction N - 1, and have seen a range belonging
9989 * to the block group in freed_extents[] before we were able to
9990 * clear the whole block group range from freed_extents[]. This
9991 * means that task can lookup for the block group after we
9992 * unpinned it from freed_extents[] and removed it, leading to
9993 * a BUG_ON() at btrfs_unpin_extent_range().
9995 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
9996 ret
= clear_extent_bits(&fs_info
->freed_extents
[0], start
, end
,
9997 EXTENT_DIRTY
, GFP_NOFS
);
9999 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10000 btrfs_set_block_group_rw(root
, block_group
);
10003 ret
= clear_extent_bits(&fs_info
->freed_extents
[1], start
, end
,
10004 EXTENT_DIRTY
, GFP_NOFS
);
10006 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10007 btrfs_set_block_group_rw(root
, block_group
);
10010 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10012 /* Reset pinned so btrfs_put_block_group doesn't complain */
10013 spin_lock(&space_info
->lock
);
10014 spin_lock(&block_group
->lock
);
10016 space_info
->bytes_pinned
-= block_group
->pinned
;
10017 space_info
->bytes_readonly
+= block_group
->pinned
;
10018 percpu_counter_add(&space_info
->total_bytes_pinned
,
10019 -block_group
->pinned
);
10020 block_group
->pinned
= 0;
10022 spin_unlock(&block_group
->lock
);
10023 spin_unlock(&space_info
->lock
);
10026 * Btrfs_remove_chunk will abort the transaction if things go
10029 ret
= btrfs_remove_chunk(trans
, root
,
10030 block_group
->key
.objectid
);
10032 btrfs_end_transaction(trans
, root
);
10034 btrfs_put_block_group(block_group
);
10035 spin_lock(&fs_info
->unused_bgs_lock
);
10037 spin_unlock(&fs_info
->unused_bgs_lock
);
10040 int btrfs_init_space_info(struct btrfs_fs_info
*fs_info
)
10042 struct btrfs_space_info
*space_info
;
10043 struct btrfs_super_block
*disk_super
;
10049 disk_super
= fs_info
->super_copy
;
10050 if (!btrfs_super_root(disk_super
))
10053 features
= btrfs_super_incompat_flags(disk_super
);
10054 if (features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
10057 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
10058 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
10063 flags
= BTRFS_BLOCK_GROUP_METADATA
| BTRFS_BLOCK_GROUP_DATA
;
10064 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
10066 flags
= BTRFS_BLOCK_GROUP_METADATA
;
10067 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
10071 flags
= BTRFS_BLOCK_GROUP_DATA
;
10072 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
10078 int btrfs_error_unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
10080 return unpin_extent_range(root
, start
, end
, false);
10083 int btrfs_trim_fs(struct btrfs_root
*root
, struct fstrim_range
*range
)
10085 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
10086 struct btrfs_block_group_cache
*cache
= NULL
;
10091 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
10095 * try to trim all FS space, our block group may start from non-zero.
10097 if (range
->len
== total_bytes
)
10098 cache
= btrfs_lookup_first_block_group(fs_info
, range
->start
);
10100 cache
= btrfs_lookup_block_group(fs_info
, range
->start
);
10103 if (cache
->key
.objectid
>= (range
->start
+ range
->len
)) {
10104 btrfs_put_block_group(cache
);
10108 start
= max(range
->start
, cache
->key
.objectid
);
10109 end
= min(range
->start
+ range
->len
,
10110 cache
->key
.objectid
+ cache
->key
.offset
);
10112 if (end
- start
>= range
->minlen
) {
10113 if (!block_group_cache_done(cache
)) {
10114 ret
= cache_block_group(cache
, 0);
10116 btrfs_put_block_group(cache
);
10119 ret
= wait_block_group_cache_done(cache
);
10121 btrfs_put_block_group(cache
);
10125 ret
= btrfs_trim_block_group(cache
,
10131 trimmed
+= group_trimmed
;
10133 btrfs_put_block_group(cache
);
10138 cache
= next_block_group(fs_info
->tree_root
, cache
);
10141 range
->len
= trimmed
;
10146 * btrfs_{start,end}_write_no_snapshoting() are similar to
10147 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10148 * data into the page cache through nocow before the subvolume is snapshoted,
10149 * but flush the data into disk after the snapshot creation, or to prevent
10150 * operations while snapshoting is ongoing and that cause the snapshot to be
10151 * inconsistent (writes followed by expanding truncates for example).
10153 void btrfs_end_write_no_snapshoting(struct btrfs_root
*root
)
10155 percpu_counter_dec(&root
->subv_writers
->counter
);
10157 * Make sure counter is updated before we wake up
10161 if (waitqueue_active(&root
->subv_writers
->wait
))
10162 wake_up(&root
->subv_writers
->wait
);
10165 int btrfs_start_write_no_snapshoting(struct btrfs_root
*root
)
10167 if (atomic_read(&root
->will_be_snapshoted
))
10170 percpu_counter_inc(&root
->subv_writers
->counter
);
10172 * Make sure counter is updated before we check for snapshot creation.
10175 if (atomic_read(&root
->will_be_snapshoted
)) {
10176 btrfs_end_write_no_snapshoting(root
);