gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / fs / btrfs / file.c
blob2b230e9b3badcf1454ca485986ed333a6c6c74a1
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include <linux/btrfs.h>
34 #include <linux/uio.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43 #include "qgroup.h"
45 static struct kmem_cache *btrfs_inode_defrag_cachep;
47 * when auto defrag is enabled we
48 * queue up these defrag structs to remember which
49 * inodes need defragging passes
51 struct inode_defrag {
52 struct rb_node rb_node;
53 /* objectid */
54 u64 ino;
56 * transid where the defrag was added, we search for
57 * extents newer than this
59 u64 transid;
61 /* root objectid */
62 u64 root;
64 /* last offset we were able to defrag */
65 u64 last_offset;
67 /* if we've wrapped around back to zero once already */
68 int cycled;
71 static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 struct inode_defrag *defrag2)
74 if (defrag1->root > defrag2->root)
75 return 1;
76 else if (defrag1->root < defrag2->root)
77 return -1;
78 else if (defrag1->ino > defrag2->ino)
79 return 1;
80 else if (defrag1->ino < defrag2->ino)
81 return -1;
82 else
83 return 0;
86 /* pop a record for an inode into the defrag tree. The lock
87 * must be held already
89 * If you're inserting a record for an older transid than an
90 * existing record, the transid already in the tree is lowered
92 * If an existing record is found the defrag item you
93 * pass in is freed
95 static int __btrfs_add_inode_defrag(struct inode *inode,
96 struct inode_defrag *defrag)
98 struct btrfs_root *root = BTRFS_I(inode)->root;
99 struct inode_defrag *entry;
100 struct rb_node **p;
101 struct rb_node *parent = NULL;
102 int ret;
104 p = &root->fs_info->defrag_inodes.rb_node;
105 while (*p) {
106 parent = *p;
107 entry = rb_entry(parent, struct inode_defrag, rb_node);
109 ret = __compare_inode_defrag(defrag, entry);
110 if (ret < 0)
111 p = &parent->rb_left;
112 else if (ret > 0)
113 p = &parent->rb_right;
114 else {
115 /* if we're reinserting an entry for
116 * an old defrag run, make sure to
117 * lower the transid of our existing record
119 if (defrag->transid < entry->transid)
120 entry->transid = defrag->transid;
121 if (defrag->last_offset > entry->last_offset)
122 entry->last_offset = defrag->last_offset;
123 return -EEXIST;
126 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
127 rb_link_node(&defrag->rb_node, parent, p);
128 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
129 return 0;
132 static inline int __need_auto_defrag(struct btrfs_root *root)
134 if (!btrfs_test_opt(root, AUTO_DEFRAG))
135 return 0;
137 if (btrfs_fs_closing(root->fs_info))
138 return 0;
140 return 1;
144 * insert a defrag record for this inode if auto defrag is
145 * enabled
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148 struct inode *inode)
150 struct btrfs_root *root = BTRFS_I(inode)->root;
151 struct inode_defrag *defrag;
152 u64 transid;
153 int ret;
155 if (!__need_auto_defrag(root))
156 return 0;
158 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
159 return 0;
161 if (trans)
162 transid = trans->transid;
163 else
164 transid = BTRFS_I(inode)->root->last_trans;
166 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
167 if (!defrag)
168 return -ENOMEM;
170 defrag->ino = btrfs_ino(inode);
171 defrag->transid = transid;
172 defrag->root = root->root_key.objectid;
174 spin_lock(&root->fs_info->defrag_inodes_lock);
175 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
177 * If we set IN_DEFRAG flag and evict the inode from memory,
178 * and then re-read this inode, this new inode doesn't have
179 * IN_DEFRAG flag. At the case, we may find the existed defrag.
181 ret = __btrfs_add_inode_defrag(inode, defrag);
182 if (ret)
183 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
184 } else {
185 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
187 spin_unlock(&root->fs_info->defrag_inodes_lock);
188 return 0;
192 * Requeue the defrag object. If there is a defrag object that points to
193 * the same inode in the tree, we will merge them together (by
194 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
196 static void btrfs_requeue_inode_defrag(struct inode *inode,
197 struct inode_defrag *defrag)
199 struct btrfs_root *root = BTRFS_I(inode)->root;
200 int ret;
202 if (!__need_auto_defrag(root))
203 goto out;
206 * Here we don't check the IN_DEFRAG flag, because we need merge
207 * them together.
209 spin_lock(&root->fs_info->defrag_inodes_lock);
210 ret = __btrfs_add_inode_defrag(inode, defrag);
211 spin_unlock(&root->fs_info->defrag_inodes_lock);
212 if (ret)
213 goto out;
214 return;
215 out:
216 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
220 * pick the defragable inode that we want, if it doesn't exist, we will get
221 * the next one.
223 static struct inode_defrag *
224 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
226 struct inode_defrag *entry = NULL;
227 struct inode_defrag tmp;
228 struct rb_node *p;
229 struct rb_node *parent = NULL;
230 int ret;
232 tmp.ino = ino;
233 tmp.root = root;
235 spin_lock(&fs_info->defrag_inodes_lock);
236 p = fs_info->defrag_inodes.rb_node;
237 while (p) {
238 parent = p;
239 entry = rb_entry(parent, struct inode_defrag, rb_node);
241 ret = __compare_inode_defrag(&tmp, entry);
242 if (ret < 0)
243 p = parent->rb_left;
244 else if (ret > 0)
245 p = parent->rb_right;
246 else
247 goto out;
250 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
251 parent = rb_next(parent);
252 if (parent)
253 entry = rb_entry(parent, struct inode_defrag, rb_node);
254 else
255 entry = NULL;
257 out:
258 if (entry)
259 rb_erase(parent, &fs_info->defrag_inodes);
260 spin_unlock(&fs_info->defrag_inodes_lock);
261 return entry;
264 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
266 struct inode_defrag *defrag;
267 struct rb_node *node;
269 spin_lock(&fs_info->defrag_inodes_lock);
270 node = rb_first(&fs_info->defrag_inodes);
271 while (node) {
272 rb_erase(node, &fs_info->defrag_inodes);
273 defrag = rb_entry(node, struct inode_defrag, rb_node);
274 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
276 cond_resched_lock(&fs_info->defrag_inodes_lock);
278 node = rb_first(&fs_info->defrag_inodes);
280 spin_unlock(&fs_info->defrag_inodes_lock);
283 #define BTRFS_DEFRAG_BATCH 1024
285 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
286 struct inode_defrag *defrag)
288 struct btrfs_root *inode_root;
289 struct inode *inode;
290 struct btrfs_key key;
291 struct btrfs_ioctl_defrag_range_args range;
292 int num_defrag;
293 int index;
294 int ret;
296 /* get the inode */
297 key.objectid = defrag->root;
298 key.type = BTRFS_ROOT_ITEM_KEY;
299 key.offset = (u64)-1;
301 index = srcu_read_lock(&fs_info->subvol_srcu);
303 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
304 if (IS_ERR(inode_root)) {
305 ret = PTR_ERR(inode_root);
306 goto cleanup;
309 key.objectid = defrag->ino;
310 key.type = BTRFS_INODE_ITEM_KEY;
311 key.offset = 0;
312 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
313 if (IS_ERR(inode)) {
314 ret = PTR_ERR(inode);
315 goto cleanup;
317 srcu_read_unlock(&fs_info->subvol_srcu, index);
319 /* do a chunk of defrag */
320 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
321 memset(&range, 0, sizeof(range));
322 range.len = (u64)-1;
323 range.start = defrag->last_offset;
325 sb_start_write(fs_info->sb);
326 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
327 BTRFS_DEFRAG_BATCH);
328 sb_end_write(fs_info->sb);
330 * if we filled the whole defrag batch, there
331 * must be more work to do. Queue this defrag
332 * again
334 if (num_defrag == BTRFS_DEFRAG_BATCH) {
335 defrag->last_offset = range.start;
336 btrfs_requeue_inode_defrag(inode, defrag);
337 } else if (defrag->last_offset && !defrag->cycled) {
339 * we didn't fill our defrag batch, but
340 * we didn't start at zero. Make sure we loop
341 * around to the start of the file.
343 defrag->last_offset = 0;
344 defrag->cycled = 1;
345 btrfs_requeue_inode_defrag(inode, defrag);
346 } else {
347 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
350 iput(inode);
351 return 0;
352 cleanup:
353 srcu_read_unlock(&fs_info->subvol_srcu, index);
354 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
355 return ret;
359 * run through the list of inodes in the FS that need
360 * defragging
362 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
364 struct inode_defrag *defrag;
365 u64 first_ino = 0;
366 u64 root_objectid = 0;
368 atomic_inc(&fs_info->defrag_running);
369 while (1) {
370 /* Pause the auto defragger. */
371 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
372 &fs_info->fs_state))
373 break;
375 if (!__need_auto_defrag(fs_info->tree_root))
376 break;
378 /* find an inode to defrag */
379 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
380 first_ino);
381 if (!defrag) {
382 if (root_objectid || first_ino) {
383 root_objectid = 0;
384 first_ino = 0;
385 continue;
386 } else {
387 break;
391 first_ino = defrag->ino + 1;
392 root_objectid = defrag->root;
394 __btrfs_run_defrag_inode(fs_info, defrag);
396 atomic_dec(&fs_info->defrag_running);
399 * during unmount, we use the transaction_wait queue to
400 * wait for the defragger to stop
402 wake_up(&fs_info->transaction_wait);
403 return 0;
406 /* simple helper to fault in pages and copy. This should go away
407 * and be replaced with calls into generic code.
409 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
410 size_t write_bytes,
411 struct page **prepared_pages,
412 struct iov_iter *i)
414 size_t copied = 0;
415 size_t total_copied = 0;
416 int pg = 0;
417 int offset = pos & (PAGE_CACHE_SIZE - 1);
419 while (write_bytes > 0) {
420 size_t count = min_t(size_t,
421 PAGE_CACHE_SIZE - offset, write_bytes);
422 struct page *page = prepared_pages[pg];
424 * Copy data from userspace to the current page
426 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
428 /* Flush processor's dcache for this page */
429 flush_dcache_page(page);
432 * if we get a partial write, we can end up with
433 * partially up to date pages. These add
434 * a lot of complexity, so make sure they don't
435 * happen by forcing this copy to be retried.
437 * The rest of the btrfs_file_write code will fall
438 * back to page at a time copies after we return 0.
440 if (!PageUptodate(page) && copied < count)
441 copied = 0;
443 iov_iter_advance(i, copied);
444 write_bytes -= copied;
445 total_copied += copied;
447 /* Return to btrfs_file_write_iter to fault page */
448 if (unlikely(copied == 0))
449 break;
451 if (copied < PAGE_CACHE_SIZE - offset) {
452 offset += copied;
453 } else {
454 pg++;
455 offset = 0;
458 return total_copied;
462 * unlocks pages after btrfs_file_write is done with them
464 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
466 size_t i;
467 for (i = 0; i < num_pages; i++) {
468 /* page checked is some magic around finding pages that
469 * have been modified without going through btrfs_set_page_dirty
470 * clear it here. There should be no need to mark the pages
471 * accessed as prepare_pages should have marked them accessed
472 * in prepare_pages via find_or_create_page()
474 ClearPageChecked(pages[i]);
475 unlock_page(pages[i]);
476 page_cache_release(pages[i]);
481 * after copy_from_user, pages need to be dirtied and we need to make
482 * sure holes are created between the current EOF and the start of
483 * any next extents (if required).
485 * this also makes the decision about creating an inline extent vs
486 * doing real data extents, marking pages dirty and delalloc as required.
488 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
489 struct page **pages, size_t num_pages,
490 loff_t pos, size_t write_bytes,
491 struct extent_state **cached)
493 int err = 0;
494 int i;
495 u64 num_bytes;
496 u64 start_pos;
497 u64 end_of_last_block;
498 u64 end_pos = pos + write_bytes;
499 loff_t isize = i_size_read(inode);
501 start_pos = pos & ~((u64)root->sectorsize - 1);
502 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
504 end_of_last_block = start_pos + num_bytes - 1;
505 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
506 cached);
507 if (err)
508 return err;
510 for (i = 0; i < num_pages; i++) {
511 struct page *p = pages[i];
512 SetPageUptodate(p);
513 ClearPageChecked(p);
514 set_page_dirty(p);
518 * we've only changed i_size in ram, and we haven't updated
519 * the disk i_size. There is no need to log the inode
520 * at this time.
522 if (end_pos > isize)
523 i_size_write(inode, end_pos);
524 return 0;
528 * this drops all the extents in the cache that intersect the range
529 * [start, end]. Existing extents are split as required.
531 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
532 int skip_pinned)
534 struct extent_map *em;
535 struct extent_map *split = NULL;
536 struct extent_map *split2 = NULL;
537 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
538 u64 len = end - start + 1;
539 u64 gen;
540 int ret;
541 int testend = 1;
542 unsigned long flags;
543 int compressed = 0;
544 bool modified;
546 WARN_ON(end < start);
547 if (end == (u64)-1) {
548 len = (u64)-1;
549 testend = 0;
551 while (1) {
552 int no_splits = 0;
554 modified = false;
555 if (!split)
556 split = alloc_extent_map();
557 if (!split2)
558 split2 = alloc_extent_map();
559 if (!split || !split2)
560 no_splits = 1;
562 write_lock(&em_tree->lock);
563 em = lookup_extent_mapping(em_tree, start, len);
564 if (!em) {
565 write_unlock(&em_tree->lock);
566 break;
568 flags = em->flags;
569 gen = em->generation;
570 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
571 if (testend && em->start + em->len >= start + len) {
572 free_extent_map(em);
573 write_unlock(&em_tree->lock);
574 break;
576 start = em->start + em->len;
577 if (testend)
578 len = start + len - (em->start + em->len);
579 free_extent_map(em);
580 write_unlock(&em_tree->lock);
581 continue;
583 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
584 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
585 clear_bit(EXTENT_FLAG_LOGGING, &flags);
586 modified = !list_empty(&em->list);
587 if (no_splits)
588 goto next;
590 if (em->start < start) {
591 split->start = em->start;
592 split->len = start - em->start;
594 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
595 split->orig_start = em->orig_start;
596 split->block_start = em->block_start;
598 if (compressed)
599 split->block_len = em->block_len;
600 else
601 split->block_len = split->len;
602 split->orig_block_len = max(split->block_len,
603 em->orig_block_len);
604 split->ram_bytes = em->ram_bytes;
605 } else {
606 split->orig_start = split->start;
607 split->block_len = 0;
608 split->block_start = em->block_start;
609 split->orig_block_len = 0;
610 split->ram_bytes = split->len;
613 split->generation = gen;
614 split->bdev = em->bdev;
615 split->flags = flags;
616 split->compress_type = em->compress_type;
617 replace_extent_mapping(em_tree, em, split, modified);
618 free_extent_map(split);
619 split = split2;
620 split2 = NULL;
622 if (testend && em->start + em->len > start + len) {
623 u64 diff = start + len - em->start;
625 split->start = start + len;
626 split->len = em->start + em->len - (start + len);
627 split->bdev = em->bdev;
628 split->flags = flags;
629 split->compress_type = em->compress_type;
630 split->generation = gen;
632 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
633 split->orig_block_len = max(em->block_len,
634 em->orig_block_len);
636 split->ram_bytes = em->ram_bytes;
637 if (compressed) {
638 split->block_len = em->block_len;
639 split->block_start = em->block_start;
640 split->orig_start = em->orig_start;
641 } else {
642 split->block_len = split->len;
643 split->block_start = em->block_start
644 + diff;
645 split->orig_start = em->orig_start;
647 } else {
648 split->ram_bytes = split->len;
649 split->orig_start = split->start;
650 split->block_len = 0;
651 split->block_start = em->block_start;
652 split->orig_block_len = 0;
655 if (extent_map_in_tree(em)) {
656 replace_extent_mapping(em_tree, em, split,
657 modified);
658 } else {
659 ret = add_extent_mapping(em_tree, split,
660 modified);
661 ASSERT(ret == 0); /* Logic error */
663 free_extent_map(split);
664 split = NULL;
666 next:
667 if (extent_map_in_tree(em))
668 remove_extent_mapping(em_tree, em);
669 write_unlock(&em_tree->lock);
671 /* once for us */
672 free_extent_map(em);
673 /* once for the tree*/
674 free_extent_map(em);
676 if (split)
677 free_extent_map(split);
678 if (split2)
679 free_extent_map(split2);
683 * this is very complex, but the basic idea is to drop all extents
684 * in the range start - end. hint_block is filled in with a block number
685 * that would be a good hint to the block allocator for this file.
687 * If an extent intersects the range but is not entirely inside the range
688 * it is either truncated or split. Anything entirely inside the range
689 * is deleted from the tree.
691 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
692 struct btrfs_root *root, struct inode *inode,
693 struct btrfs_path *path, u64 start, u64 end,
694 u64 *drop_end, int drop_cache,
695 int replace_extent,
696 u32 extent_item_size,
697 int *key_inserted)
699 struct extent_buffer *leaf;
700 struct btrfs_file_extent_item *fi;
701 struct btrfs_key key;
702 struct btrfs_key new_key;
703 u64 ino = btrfs_ino(inode);
704 u64 search_start = start;
705 u64 disk_bytenr = 0;
706 u64 num_bytes = 0;
707 u64 extent_offset = 0;
708 u64 extent_end = 0;
709 int del_nr = 0;
710 int del_slot = 0;
711 int extent_type;
712 int recow;
713 int ret;
714 int modify_tree = -1;
715 int update_refs;
716 int found = 0;
717 int leafs_visited = 0;
719 if (drop_cache)
720 btrfs_drop_extent_cache(inode, start, end - 1, 0);
722 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
723 modify_tree = 0;
725 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
726 root == root->fs_info->tree_root);
727 while (1) {
728 recow = 0;
729 ret = btrfs_lookup_file_extent(trans, root, path, ino,
730 search_start, modify_tree);
731 if (ret < 0)
732 break;
733 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
734 leaf = path->nodes[0];
735 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
736 if (key.objectid == ino &&
737 key.type == BTRFS_EXTENT_DATA_KEY)
738 path->slots[0]--;
740 ret = 0;
741 leafs_visited++;
742 next_slot:
743 leaf = path->nodes[0];
744 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
745 BUG_ON(del_nr > 0);
746 ret = btrfs_next_leaf(root, path);
747 if (ret < 0)
748 break;
749 if (ret > 0) {
750 ret = 0;
751 break;
753 leafs_visited++;
754 leaf = path->nodes[0];
755 recow = 1;
758 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
760 if (key.objectid > ino)
761 break;
762 if (WARN_ON_ONCE(key.objectid < ino) ||
763 key.type < BTRFS_EXTENT_DATA_KEY) {
764 ASSERT(del_nr == 0);
765 path->slots[0]++;
766 goto next_slot;
768 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
769 break;
771 fi = btrfs_item_ptr(leaf, path->slots[0],
772 struct btrfs_file_extent_item);
773 extent_type = btrfs_file_extent_type(leaf, fi);
775 if (extent_type == BTRFS_FILE_EXTENT_REG ||
776 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
777 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
778 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
779 extent_offset = btrfs_file_extent_offset(leaf, fi);
780 extent_end = key.offset +
781 btrfs_file_extent_num_bytes(leaf, fi);
782 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
783 extent_end = key.offset +
784 btrfs_file_extent_inline_len(leaf,
785 path->slots[0], fi);
786 } else {
787 /* can't happen */
788 BUG();
792 * Don't skip extent items representing 0 byte lengths. They
793 * used to be created (bug) if while punching holes we hit
794 * -ENOSPC condition. So if we find one here, just ensure we
795 * delete it, otherwise we would insert a new file extent item
796 * with the same key (offset) as that 0 bytes length file
797 * extent item in the call to setup_items_for_insert() later
798 * in this function.
800 if (extent_end == key.offset && extent_end >= search_start)
801 goto delete_extent_item;
803 if (extent_end <= search_start) {
804 path->slots[0]++;
805 goto next_slot;
808 found = 1;
809 search_start = max(key.offset, start);
810 if (recow || !modify_tree) {
811 modify_tree = -1;
812 btrfs_release_path(path);
813 continue;
817 * | - range to drop - |
818 * | -------- extent -------- |
820 if (start > key.offset && end < extent_end) {
821 BUG_ON(del_nr > 0);
822 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
823 ret = -EOPNOTSUPP;
824 break;
827 memcpy(&new_key, &key, sizeof(new_key));
828 new_key.offset = start;
829 ret = btrfs_duplicate_item(trans, root, path,
830 &new_key);
831 if (ret == -EAGAIN) {
832 btrfs_release_path(path);
833 continue;
835 if (ret < 0)
836 break;
838 leaf = path->nodes[0];
839 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
840 struct btrfs_file_extent_item);
841 btrfs_set_file_extent_num_bytes(leaf, fi,
842 start - key.offset);
844 fi = btrfs_item_ptr(leaf, path->slots[0],
845 struct btrfs_file_extent_item);
847 extent_offset += start - key.offset;
848 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
849 btrfs_set_file_extent_num_bytes(leaf, fi,
850 extent_end - start);
851 btrfs_mark_buffer_dirty(leaf);
853 if (update_refs && disk_bytenr > 0) {
854 ret = btrfs_inc_extent_ref(trans, root,
855 disk_bytenr, num_bytes, 0,
856 root->root_key.objectid,
857 new_key.objectid,
858 start - extent_offset, 1);
859 BUG_ON(ret); /* -ENOMEM */
861 key.offset = start;
864 * | ---- range to drop ----- |
865 * | -------- extent -------- |
867 if (start <= key.offset && end < extent_end) {
868 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
869 ret = -EOPNOTSUPP;
870 break;
873 memcpy(&new_key, &key, sizeof(new_key));
874 new_key.offset = end;
875 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
877 extent_offset += end - key.offset;
878 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
879 btrfs_set_file_extent_num_bytes(leaf, fi,
880 extent_end - end);
881 btrfs_mark_buffer_dirty(leaf);
882 if (update_refs && disk_bytenr > 0)
883 inode_sub_bytes(inode, end - key.offset);
884 break;
887 search_start = extent_end;
889 * | ---- range to drop ----- |
890 * | -------- extent -------- |
892 if (start > key.offset && end >= extent_end) {
893 BUG_ON(del_nr > 0);
894 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
895 ret = -EOPNOTSUPP;
896 break;
899 btrfs_set_file_extent_num_bytes(leaf, fi,
900 start - key.offset);
901 btrfs_mark_buffer_dirty(leaf);
902 if (update_refs && disk_bytenr > 0)
903 inode_sub_bytes(inode, extent_end - start);
904 if (end == extent_end)
905 break;
907 path->slots[0]++;
908 goto next_slot;
912 * | ---- range to drop ----- |
913 * | ------ extent ------ |
915 if (start <= key.offset && end >= extent_end) {
916 delete_extent_item:
917 if (del_nr == 0) {
918 del_slot = path->slots[0];
919 del_nr = 1;
920 } else {
921 BUG_ON(del_slot + del_nr != path->slots[0]);
922 del_nr++;
925 if (update_refs &&
926 extent_type == BTRFS_FILE_EXTENT_INLINE) {
927 inode_sub_bytes(inode,
928 extent_end - key.offset);
929 extent_end = ALIGN(extent_end,
930 root->sectorsize);
931 } else if (update_refs && disk_bytenr > 0) {
932 ret = btrfs_free_extent(trans, root,
933 disk_bytenr, num_bytes, 0,
934 root->root_key.objectid,
935 key.objectid, key.offset -
936 extent_offset, 0);
937 BUG_ON(ret); /* -ENOMEM */
938 inode_sub_bytes(inode,
939 extent_end - key.offset);
942 if (end == extent_end)
943 break;
945 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
946 path->slots[0]++;
947 goto next_slot;
950 ret = btrfs_del_items(trans, root, path, del_slot,
951 del_nr);
952 if (ret) {
953 btrfs_abort_transaction(trans, root, ret);
954 break;
957 del_nr = 0;
958 del_slot = 0;
960 btrfs_release_path(path);
961 continue;
964 BUG_ON(1);
967 if (!ret && del_nr > 0) {
969 * Set path->slots[0] to first slot, so that after the delete
970 * if items are move off from our leaf to its immediate left or
971 * right neighbor leafs, we end up with a correct and adjusted
972 * path->slots[0] for our insertion (if replace_extent != 0).
974 path->slots[0] = del_slot;
975 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
976 if (ret)
977 btrfs_abort_transaction(trans, root, ret);
980 leaf = path->nodes[0];
982 * If btrfs_del_items() was called, it might have deleted a leaf, in
983 * which case it unlocked our path, so check path->locks[0] matches a
984 * write lock.
986 if (!ret && replace_extent && leafs_visited == 1 &&
987 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
988 path->locks[0] == BTRFS_WRITE_LOCK) &&
989 btrfs_leaf_free_space(root, leaf) >=
990 sizeof(struct btrfs_item) + extent_item_size) {
992 key.objectid = ino;
993 key.type = BTRFS_EXTENT_DATA_KEY;
994 key.offset = start;
995 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
996 struct btrfs_key slot_key;
998 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
999 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1000 path->slots[0]++;
1002 setup_items_for_insert(root, path, &key,
1003 &extent_item_size,
1004 extent_item_size,
1005 sizeof(struct btrfs_item) +
1006 extent_item_size, 1);
1007 *key_inserted = 1;
1010 if (!replace_extent || !(*key_inserted))
1011 btrfs_release_path(path);
1012 if (drop_end)
1013 *drop_end = found ? min(end, extent_end) : end;
1014 return ret;
1017 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1018 struct btrfs_root *root, struct inode *inode, u64 start,
1019 u64 end, int drop_cache)
1021 struct btrfs_path *path;
1022 int ret;
1024 path = btrfs_alloc_path();
1025 if (!path)
1026 return -ENOMEM;
1027 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1028 drop_cache, 0, 0, NULL);
1029 btrfs_free_path(path);
1030 return ret;
1033 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1034 u64 objectid, u64 bytenr, u64 orig_offset,
1035 u64 *start, u64 *end)
1037 struct btrfs_file_extent_item *fi;
1038 struct btrfs_key key;
1039 u64 extent_end;
1041 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1042 return 0;
1044 btrfs_item_key_to_cpu(leaf, &key, slot);
1045 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1046 return 0;
1048 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1049 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1050 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1051 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1052 btrfs_file_extent_compression(leaf, fi) ||
1053 btrfs_file_extent_encryption(leaf, fi) ||
1054 btrfs_file_extent_other_encoding(leaf, fi))
1055 return 0;
1057 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1058 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1059 return 0;
1061 *start = key.offset;
1062 *end = extent_end;
1063 return 1;
1067 * Mark extent in the range start - end as written.
1069 * This changes extent type from 'pre-allocated' to 'regular'. If only
1070 * part of extent is marked as written, the extent will be split into
1071 * two or three.
1073 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1074 struct inode *inode, u64 start, u64 end)
1076 struct btrfs_root *root = BTRFS_I(inode)->root;
1077 struct extent_buffer *leaf;
1078 struct btrfs_path *path;
1079 struct btrfs_file_extent_item *fi;
1080 struct btrfs_key key;
1081 struct btrfs_key new_key;
1082 u64 bytenr;
1083 u64 num_bytes;
1084 u64 extent_end;
1085 u64 orig_offset;
1086 u64 other_start;
1087 u64 other_end;
1088 u64 split;
1089 int del_nr = 0;
1090 int del_slot = 0;
1091 int recow;
1092 int ret;
1093 u64 ino = btrfs_ino(inode);
1095 path = btrfs_alloc_path();
1096 if (!path)
1097 return -ENOMEM;
1098 again:
1099 recow = 0;
1100 split = start;
1101 key.objectid = ino;
1102 key.type = BTRFS_EXTENT_DATA_KEY;
1103 key.offset = split;
1105 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1106 if (ret < 0)
1107 goto out;
1108 if (ret > 0 && path->slots[0] > 0)
1109 path->slots[0]--;
1111 leaf = path->nodes[0];
1112 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1113 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1114 fi = btrfs_item_ptr(leaf, path->slots[0],
1115 struct btrfs_file_extent_item);
1116 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1117 BTRFS_FILE_EXTENT_PREALLOC);
1118 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1119 BUG_ON(key.offset > start || extent_end < end);
1121 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1122 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1123 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1124 memcpy(&new_key, &key, sizeof(new_key));
1126 if (start == key.offset && end < extent_end) {
1127 other_start = 0;
1128 other_end = start;
1129 if (extent_mergeable(leaf, path->slots[0] - 1,
1130 ino, bytenr, orig_offset,
1131 &other_start, &other_end)) {
1132 new_key.offset = end;
1133 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1134 fi = btrfs_item_ptr(leaf, path->slots[0],
1135 struct btrfs_file_extent_item);
1136 btrfs_set_file_extent_generation(leaf, fi,
1137 trans->transid);
1138 btrfs_set_file_extent_num_bytes(leaf, fi,
1139 extent_end - end);
1140 btrfs_set_file_extent_offset(leaf, fi,
1141 end - orig_offset);
1142 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1143 struct btrfs_file_extent_item);
1144 btrfs_set_file_extent_generation(leaf, fi,
1145 trans->transid);
1146 btrfs_set_file_extent_num_bytes(leaf, fi,
1147 end - other_start);
1148 btrfs_mark_buffer_dirty(leaf);
1149 goto out;
1153 if (start > key.offset && end == extent_end) {
1154 other_start = end;
1155 other_end = 0;
1156 if (extent_mergeable(leaf, path->slots[0] + 1,
1157 ino, bytenr, orig_offset,
1158 &other_start, &other_end)) {
1159 fi = btrfs_item_ptr(leaf, path->slots[0],
1160 struct btrfs_file_extent_item);
1161 btrfs_set_file_extent_num_bytes(leaf, fi,
1162 start - key.offset);
1163 btrfs_set_file_extent_generation(leaf, fi,
1164 trans->transid);
1165 path->slots[0]++;
1166 new_key.offset = start;
1167 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1169 fi = btrfs_item_ptr(leaf, path->slots[0],
1170 struct btrfs_file_extent_item);
1171 btrfs_set_file_extent_generation(leaf, fi,
1172 trans->transid);
1173 btrfs_set_file_extent_num_bytes(leaf, fi,
1174 other_end - start);
1175 btrfs_set_file_extent_offset(leaf, fi,
1176 start - orig_offset);
1177 btrfs_mark_buffer_dirty(leaf);
1178 goto out;
1182 while (start > key.offset || end < extent_end) {
1183 if (key.offset == start)
1184 split = end;
1186 new_key.offset = split;
1187 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1188 if (ret == -EAGAIN) {
1189 btrfs_release_path(path);
1190 goto again;
1192 if (ret < 0) {
1193 btrfs_abort_transaction(trans, root, ret);
1194 goto out;
1197 leaf = path->nodes[0];
1198 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1199 struct btrfs_file_extent_item);
1200 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1201 btrfs_set_file_extent_num_bytes(leaf, fi,
1202 split - key.offset);
1204 fi = btrfs_item_ptr(leaf, path->slots[0],
1205 struct btrfs_file_extent_item);
1207 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1208 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1209 btrfs_set_file_extent_num_bytes(leaf, fi,
1210 extent_end - split);
1211 btrfs_mark_buffer_dirty(leaf);
1213 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1214 root->root_key.objectid,
1215 ino, orig_offset, 1);
1216 BUG_ON(ret); /* -ENOMEM */
1218 if (split == start) {
1219 key.offset = start;
1220 } else {
1221 BUG_ON(start != key.offset);
1222 path->slots[0]--;
1223 extent_end = end;
1225 recow = 1;
1228 other_start = end;
1229 other_end = 0;
1230 if (extent_mergeable(leaf, path->slots[0] + 1,
1231 ino, bytenr, orig_offset,
1232 &other_start, &other_end)) {
1233 if (recow) {
1234 btrfs_release_path(path);
1235 goto again;
1237 extent_end = other_end;
1238 del_slot = path->slots[0] + 1;
1239 del_nr++;
1240 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1241 0, root->root_key.objectid,
1242 ino, orig_offset, 0);
1243 BUG_ON(ret); /* -ENOMEM */
1245 other_start = 0;
1246 other_end = start;
1247 if (extent_mergeable(leaf, path->slots[0] - 1,
1248 ino, bytenr, orig_offset,
1249 &other_start, &other_end)) {
1250 if (recow) {
1251 btrfs_release_path(path);
1252 goto again;
1254 key.offset = other_start;
1255 del_slot = path->slots[0];
1256 del_nr++;
1257 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1258 0, root->root_key.objectid,
1259 ino, orig_offset, 0);
1260 BUG_ON(ret); /* -ENOMEM */
1262 if (del_nr == 0) {
1263 fi = btrfs_item_ptr(leaf, path->slots[0],
1264 struct btrfs_file_extent_item);
1265 btrfs_set_file_extent_type(leaf, fi,
1266 BTRFS_FILE_EXTENT_REG);
1267 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1268 btrfs_mark_buffer_dirty(leaf);
1269 } else {
1270 fi = btrfs_item_ptr(leaf, del_slot - 1,
1271 struct btrfs_file_extent_item);
1272 btrfs_set_file_extent_type(leaf, fi,
1273 BTRFS_FILE_EXTENT_REG);
1274 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1275 btrfs_set_file_extent_num_bytes(leaf, fi,
1276 extent_end - key.offset);
1277 btrfs_mark_buffer_dirty(leaf);
1279 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1280 if (ret < 0) {
1281 btrfs_abort_transaction(trans, root, ret);
1282 goto out;
1285 out:
1286 btrfs_free_path(path);
1287 return 0;
1291 * on error we return an unlocked page and the error value
1292 * on success we return a locked page and 0
1294 static int prepare_uptodate_page(struct page *page, u64 pos,
1295 bool force_uptodate)
1297 int ret = 0;
1299 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1300 !PageUptodate(page)) {
1301 ret = btrfs_readpage(NULL, page);
1302 if (ret)
1303 return ret;
1304 lock_page(page);
1305 if (!PageUptodate(page)) {
1306 unlock_page(page);
1307 return -EIO;
1310 return 0;
1314 * this just gets pages into the page cache and locks them down.
1316 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1317 size_t num_pages, loff_t pos,
1318 size_t write_bytes, bool force_uptodate)
1320 int i;
1321 unsigned long index = pos >> PAGE_CACHE_SHIFT;
1322 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1323 int err = 0;
1324 int faili;
1326 for (i = 0; i < num_pages; i++) {
1327 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1328 mask | __GFP_WRITE);
1329 if (!pages[i]) {
1330 faili = i - 1;
1331 err = -ENOMEM;
1332 goto fail;
1335 if (i == 0)
1336 err = prepare_uptodate_page(pages[i], pos,
1337 force_uptodate);
1338 if (i == num_pages - 1)
1339 err = prepare_uptodate_page(pages[i],
1340 pos + write_bytes, false);
1341 if (err) {
1342 page_cache_release(pages[i]);
1343 faili = i - 1;
1344 goto fail;
1346 wait_on_page_writeback(pages[i]);
1349 return 0;
1350 fail:
1351 while (faili >= 0) {
1352 unlock_page(pages[faili]);
1353 page_cache_release(pages[faili]);
1354 faili--;
1356 return err;
1361 * This function locks the extent and properly waits for data=ordered extents
1362 * to finish before allowing the pages to be modified if need.
1364 * The return value:
1365 * 1 - the extent is locked
1366 * 0 - the extent is not locked, and everything is OK
1367 * -EAGAIN - need re-prepare the pages
1368 * the other < 0 number - Something wrong happens
1370 static noinline int
1371 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1372 size_t num_pages, loff_t pos,
1373 u64 *lockstart, u64 *lockend,
1374 struct extent_state **cached_state)
1376 u64 start_pos;
1377 u64 last_pos;
1378 int i;
1379 int ret = 0;
1381 start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1382 last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1384 if (start_pos < inode->i_size) {
1385 struct btrfs_ordered_extent *ordered;
1386 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1387 start_pos, last_pos, 0, cached_state);
1388 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1389 last_pos - start_pos + 1);
1390 if (ordered &&
1391 ordered->file_offset + ordered->len > start_pos &&
1392 ordered->file_offset <= last_pos) {
1393 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1394 start_pos, last_pos,
1395 cached_state, GFP_NOFS);
1396 for (i = 0; i < num_pages; i++) {
1397 unlock_page(pages[i]);
1398 page_cache_release(pages[i]);
1400 btrfs_start_ordered_extent(inode, ordered, 1);
1401 btrfs_put_ordered_extent(ordered);
1402 return -EAGAIN;
1404 if (ordered)
1405 btrfs_put_ordered_extent(ordered);
1407 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1408 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1409 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1410 0, 0, cached_state, GFP_NOFS);
1411 *lockstart = start_pos;
1412 *lockend = last_pos;
1413 ret = 1;
1416 for (i = 0; i < num_pages; i++) {
1417 if (clear_page_dirty_for_io(pages[i]))
1418 account_page_redirty(pages[i]);
1419 set_page_extent_mapped(pages[i]);
1420 WARN_ON(!PageLocked(pages[i]));
1423 return ret;
1426 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1427 size_t *write_bytes)
1429 struct btrfs_root *root = BTRFS_I(inode)->root;
1430 struct btrfs_ordered_extent *ordered;
1431 u64 lockstart, lockend;
1432 u64 num_bytes;
1433 int ret;
1435 ret = btrfs_start_write_no_snapshoting(root);
1436 if (!ret)
1437 return -ENOSPC;
1439 lockstart = round_down(pos, root->sectorsize);
1440 lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1442 while (1) {
1443 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1444 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1445 lockend - lockstart + 1);
1446 if (!ordered) {
1447 break;
1449 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1450 btrfs_start_ordered_extent(inode, ordered, 1);
1451 btrfs_put_ordered_extent(ordered);
1454 num_bytes = lockend - lockstart + 1;
1455 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1456 if (ret <= 0) {
1457 ret = 0;
1458 btrfs_end_write_no_snapshoting(root);
1459 } else {
1460 *write_bytes = min_t(size_t, *write_bytes ,
1461 num_bytes - pos + lockstart);
1464 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1466 return ret;
1469 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1470 struct iov_iter *i,
1471 loff_t pos)
1473 struct inode *inode = file_inode(file);
1474 struct btrfs_root *root = BTRFS_I(inode)->root;
1475 struct page **pages = NULL;
1476 struct extent_state *cached_state = NULL;
1477 u64 release_bytes = 0;
1478 u64 lockstart;
1479 u64 lockend;
1480 unsigned long first_index;
1481 size_t num_written = 0;
1482 int nrptrs;
1483 int ret = 0;
1484 bool only_release_metadata = false;
1485 bool force_page_uptodate = false;
1486 bool need_unlock;
1488 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_CACHE_SIZE),
1489 PAGE_CACHE_SIZE / (sizeof(struct page *)));
1490 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1491 nrptrs = max(nrptrs, 8);
1492 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1493 if (!pages)
1494 return -ENOMEM;
1496 first_index = pos >> PAGE_CACHE_SHIFT;
1498 while (iov_iter_count(i) > 0) {
1499 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1500 size_t write_bytes = min(iov_iter_count(i),
1501 nrptrs * (size_t)PAGE_CACHE_SIZE -
1502 offset);
1503 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1504 PAGE_CACHE_SIZE);
1505 size_t reserve_bytes;
1506 size_t dirty_pages;
1507 size_t copied;
1509 WARN_ON(num_pages > nrptrs);
1512 * Fault pages before locking them in prepare_pages
1513 * to avoid recursive lock
1515 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1516 ret = -EFAULT;
1517 break;
1520 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1521 ret = btrfs_check_data_free_space(inode, reserve_bytes, write_bytes);
1522 if (ret == -ENOSPC &&
1523 (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1524 BTRFS_INODE_PREALLOC))) {
1525 ret = check_can_nocow(inode, pos, &write_bytes);
1526 if (ret > 0) {
1527 only_release_metadata = true;
1529 * our prealloc extent may be smaller than
1530 * write_bytes, so scale down.
1532 num_pages = DIV_ROUND_UP(write_bytes + offset,
1533 PAGE_CACHE_SIZE);
1534 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1535 ret = 0;
1536 } else {
1537 ret = -ENOSPC;
1541 if (ret)
1542 break;
1544 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1545 if (ret) {
1546 if (!only_release_metadata)
1547 btrfs_free_reserved_data_space(inode,
1548 reserve_bytes);
1549 else
1550 btrfs_end_write_no_snapshoting(root);
1551 break;
1554 release_bytes = reserve_bytes;
1555 need_unlock = false;
1556 again:
1558 * This is going to setup the pages array with the number of
1559 * pages we want, so we don't really need to worry about the
1560 * contents of pages from loop to loop
1562 ret = prepare_pages(inode, pages, num_pages,
1563 pos, write_bytes,
1564 force_page_uptodate);
1565 if (ret)
1566 break;
1568 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1569 pos, &lockstart, &lockend,
1570 &cached_state);
1571 if (ret < 0) {
1572 if (ret == -EAGAIN)
1573 goto again;
1574 break;
1575 } else if (ret > 0) {
1576 need_unlock = true;
1577 ret = 0;
1580 copied = btrfs_copy_from_user(pos, num_pages,
1581 write_bytes, pages, i);
1584 * if we have trouble faulting in the pages, fall
1585 * back to one page at a time
1587 if (copied < write_bytes)
1588 nrptrs = 1;
1590 if (copied == 0) {
1591 force_page_uptodate = true;
1592 dirty_pages = 0;
1593 } else {
1594 force_page_uptodate = false;
1595 dirty_pages = DIV_ROUND_UP(copied + offset,
1596 PAGE_CACHE_SIZE);
1600 * If we had a short copy we need to release the excess delaloc
1601 * bytes we reserved. We need to increment outstanding_extents
1602 * because btrfs_delalloc_release_space will decrement it, but
1603 * we still have an outstanding extent for the chunk we actually
1604 * managed to copy.
1606 if (num_pages > dirty_pages) {
1607 release_bytes = (num_pages - dirty_pages) <<
1608 PAGE_CACHE_SHIFT;
1609 if (copied > 0) {
1610 spin_lock(&BTRFS_I(inode)->lock);
1611 BTRFS_I(inode)->outstanding_extents++;
1612 spin_unlock(&BTRFS_I(inode)->lock);
1614 if (only_release_metadata)
1615 btrfs_delalloc_release_metadata(inode,
1616 release_bytes);
1617 else
1618 btrfs_delalloc_release_space(inode,
1619 release_bytes);
1622 release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1624 if (copied > 0)
1625 ret = btrfs_dirty_pages(root, inode, pages,
1626 dirty_pages, pos, copied,
1627 NULL);
1628 if (need_unlock)
1629 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1630 lockstart, lockend, &cached_state,
1631 GFP_NOFS);
1632 if (ret) {
1633 btrfs_drop_pages(pages, num_pages);
1634 break;
1637 release_bytes = 0;
1638 if (only_release_metadata)
1639 btrfs_end_write_no_snapshoting(root);
1641 if (only_release_metadata && copied > 0) {
1642 lockstart = round_down(pos, root->sectorsize);
1643 lockend = lockstart +
1644 (dirty_pages << PAGE_CACHE_SHIFT) - 1;
1646 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1647 lockend, EXTENT_NORESERVE, NULL,
1648 NULL, GFP_NOFS);
1649 only_release_metadata = false;
1652 btrfs_drop_pages(pages, num_pages);
1654 cond_resched();
1656 balance_dirty_pages_ratelimited(inode->i_mapping);
1657 if (dirty_pages < (root->nodesize >> PAGE_CACHE_SHIFT) + 1)
1658 btrfs_btree_balance_dirty(root);
1660 pos += copied;
1661 num_written += copied;
1664 kfree(pages);
1666 if (release_bytes) {
1667 if (only_release_metadata) {
1668 btrfs_end_write_no_snapshoting(root);
1669 btrfs_delalloc_release_metadata(inode, release_bytes);
1670 } else {
1671 btrfs_delalloc_release_space(inode, release_bytes);
1675 return num_written ? num_written : ret;
1678 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1679 struct iov_iter *from,
1680 loff_t pos)
1682 struct file *file = iocb->ki_filp;
1683 struct inode *inode = file_inode(file);
1684 ssize_t written;
1685 ssize_t written_buffered;
1686 loff_t endbyte;
1687 int err;
1689 written = generic_file_direct_write(iocb, from, pos);
1691 if (written < 0 || !iov_iter_count(from))
1692 return written;
1694 pos += written;
1695 written_buffered = __btrfs_buffered_write(file, from, pos);
1696 if (written_buffered < 0) {
1697 err = written_buffered;
1698 goto out;
1701 * Ensure all data is persisted. We want the next direct IO read to be
1702 * able to read what was just written.
1704 endbyte = pos + written_buffered - 1;
1705 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1706 if (err)
1707 goto out;
1708 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1709 if (err)
1710 goto out;
1711 written += written_buffered;
1712 iocb->ki_pos = pos + written_buffered;
1713 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1714 endbyte >> PAGE_CACHE_SHIFT);
1715 out:
1716 return written ? written : err;
1719 static void update_time_for_write(struct inode *inode)
1721 struct timespec now;
1723 if (IS_NOCMTIME(inode))
1724 return;
1726 now = current_fs_time(inode->i_sb);
1727 if (!timespec_equal(&inode->i_mtime, &now))
1728 inode->i_mtime = now;
1730 if (!timespec_equal(&inode->i_ctime, &now))
1731 inode->i_ctime = now;
1733 if (IS_I_VERSION(inode))
1734 inode_inc_iversion(inode);
1737 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1738 struct iov_iter *from)
1740 struct file *file = iocb->ki_filp;
1741 struct inode *inode = file_inode(file);
1742 struct btrfs_root *root = BTRFS_I(inode)->root;
1743 u64 start_pos;
1744 u64 end_pos;
1745 ssize_t num_written = 0;
1746 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1747 ssize_t err;
1748 loff_t pos;
1749 size_t count;
1751 mutex_lock(&inode->i_mutex);
1752 err = generic_write_checks(iocb, from);
1753 if (err <= 0) {
1754 mutex_unlock(&inode->i_mutex);
1755 return err;
1758 current->backing_dev_info = inode_to_bdi(inode);
1759 err = file_remove_suid(file);
1760 if (err) {
1761 mutex_unlock(&inode->i_mutex);
1762 goto out;
1766 * If BTRFS flips readonly due to some impossible error
1767 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1768 * although we have opened a file as writable, we have
1769 * to stop this write operation to ensure FS consistency.
1771 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1772 mutex_unlock(&inode->i_mutex);
1773 err = -EROFS;
1774 goto out;
1778 * We reserve space for updating the inode when we reserve space for the
1779 * extent we are going to write, so we will enospc out there. We don't
1780 * need to start yet another transaction to update the inode as we will
1781 * update the inode when we finish writing whatever data we write.
1783 update_time_for_write(inode);
1785 pos = iocb->ki_pos;
1786 count = iov_iter_count(from);
1787 start_pos = round_down(pos, root->sectorsize);
1788 if (start_pos > i_size_read(inode)) {
1789 /* Expand hole size to cover write data, preventing empty gap */
1790 end_pos = round_up(pos + count, root->sectorsize);
1791 err = btrfs_cont_expand(inode, i_size_read(inode), end_pos);
1792 if (err) {
1793 mutex_unlock(&inode->i_mutex);
1794 goto out;
1798 if (sync)
1799 atomic_inc(&BTRFS_I(inode)->sync_writers);
1801 if (iocb->ki_flags & IOCB_DIRECT) {
1802 num_written = __btrfs_direct_write(iocb, from, pos);
1803 } else {
1804 num_written = __btrfs_buffered_write(file, from, pos);
1805 if (num_written > 0)
1806 iocb->ki_pos = pos + num_written;
1809 mutex_unlock(&inode->i_mutex);
1812 * We also have to set last_sub_trans to the current log transid,
1813 * otherwise subsequent syncs to a file that's been synced in this
1814 * transaction will appear to have already occured.
1816 spin_lock(&BTRFS_I(inode)->lock);
1817 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1818 spin_unlock(&BTRFS_I(inode)->lock);
1819 if (num_written > 0) {
1820 err = generic_write_sync(file, pos, num_written);
1821 if (err < 0)
1822 num_written = err;
1825 if (sync)
1826 atomic_dec(&BTRFS_I(inode)->sync_writers);
1827 out:
1828 current->backing_dev_info = NULL;
1829 return num_written ? num_written : err;
1832 int btrfs_release_file(struct inode *inode, struct file *filp)
1834 if (filp->private_data)
1835 btrfs_ioctl_trans_end(filp);
1837 * ordered_data_close is set by settattr when we are about to truncate
1838 * a file from a non-zero size to a zero size. This tries to
1839 * flush down new bytes that may have been written if the
1840 * application were using truncate to replace a file in place.
1842 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1843 &BTRFS_I(inode)->runtime_flags))
1844 filemap_flush(inode->i_mapping);
1845 return 0;
1848 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1850 int ret;
1852 atomic_inc(&BTRFS_I(inode)->sync_writers);
1853 ret = btrfs_fdatawrite_range(inode, start, end);
1854 atomic_dec(&BTRFS_I(inode)->sync_writers);
1856 return ret;
1860 * fsync call for both files and directories. This logs the inode into
1861 * the tree log instead of forcing full commits whenever possible.
1863 * It needs to call filemap_fdatawait so that all ordered extent updates are
1864 * in the metadata btree are up to date for copying to the log.
1866 * It drops the inode mutex before doing the tree log commit. This is an
1867 * important optimization for directories because holding the mutex prevents
1868 * new operations on the dir while we write to disk.
1870 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1872 struct dentry *dentry = file->f_path.dentry;
1873 struct inode *inode = d_inode(dentry);
1874 struct btrfs_root *root = BTRFS_I(inode)->root;
1875 struct btrfs_trans_handle *trans;
1876 struct btrfs_log_ctx ctx;
1877 int ret = 0;
1878 bool full_sync = 0;
1880 trace_btrfs_sync_file(file, datasync);
1883 * We write the dirty pages in the range and wait until they complete
1884 * out of the ->i_mutex. If so, we can flush the dirty pages by
1885 * multi-task, and make the performance up. See
1886 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1888 ret = start_ordered_ops(inode, start, end);
1889 if (ret)
1890 return ret;
1892 mutex_lock(&inode->i_mutex);
1893 atomic_inc(&root->log_batch);
1894 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1895 &BTRFS_I(inode)->runtime_flags);
1897 * We might have have had more pages made dirty after calling
1898 * start_ordered_ops and before acquiring the inode's i_mutex.
1900 if (full_sync) {
1902 * For a full sync, we need to make sure any ordered operations
1903 * start and finish before we start logging the inode, so that
1904 * all extents are persisted and the respective file extent
1905 * items are in the fs/subvol btree.
1907 ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
1908 } else {
1910 * Start any new ordered operations before starting to log the
1911 * inode. We will wait for them to finish in btrfs_sync_log().
1913 * Right before acquiring the inode's mutex, we might have new
1914 * writes dirtying pages, which won't immediately start the
1915 * respective ordered operations - that is done through the
1916 * fill_delalloc callbacks invoked from the writepage and
1917 * writepages address space operations. So make sure we start
1918 * all ordered operations before starting to log our inode. Not
1919 * doing this means that while logging the inode, writeback
1920 * could start and invoke writepage/writepages, which would call
1921 * the fill_delalloc callbacks (cow_file_range,
1922 * submit_compressed_extents). These callbacks add first an
1923 * extent map to the modified list of extents and then create
1924 * the respective ordered operation, which means in
1925 * tree-log.c:btrfs_log_inode() we might capture all existing
1926 * ordered operations (with btrfs_get_logged_extents()) before
1927 * the fill_delalloc callback adds its ordered operation, and by
1928 * the time we visit the modified list of extent maps (with
1929 * btrfs_log_changed_extents()), we see and process the extent
1930 * map they created. We then use the extent map to construct a
1931 * file extent item for logging without waiting for the
1932 * respective ordered operation to finish - this file extent
1933 * item points to a disk location that might not have yet been
1934 * written to, containing random data - so after a crash a log
1935 * replay will make our inode have file extent items that point
1936 * to disk locations containing invalid data, as we returned
1937 * success to userspace without waiting for the respective
1938 * ordered operation to finish, because it wasn't captured by
1939 * btrfs_get_logged_extents().
1941 ret = start_ordered_ops(inode, start, end);
1943 if (ret) {
1944 mutex_unlock(&inode->i_mutex);
1945 goto out;
1947 atomic_inc(&root->log_batch);
1950 * If the last transaction that changed this file was before the current
1951 * transaction and we have the full sync flag set in our inode, we can
1952 * bail out now without any syncing.
1954 * Note that we can't bail out if the full sync flag isn't set. This is
1955 * because when the full sync flag is set we start all ordered extents
1956 * and wait for them to fully complete - when they complete they update
1957 * the inode's last_trans field through:
1959 * btrfs_finish_ordered_io() ->
1960 * btrfs_update_inode_fallback() ->
1961 * btrfs_update_inode() ->
1962 * btrfs_set_inode_last_trans()
1964 * So we are sure that last_trans is up to date and can do this check to
1965 * bail out safely. For the fast path, when the full sync flag is not
1966 * set in our inode, we can not do it because we start only our ordered
1967 * extents and don't wait for them to complete (that is when
1968 * btrfs_finish_ordered_io runs), so here at this point their last_trans
1969 * value might be less than or equals to fs_info->last_trans_committed,
1970 * and setting a speculative last_trans for an inode when a buffered
1971 * write is made (such as fs_info->generation + 1 for example) would not
1972 * be reliable since after setting the value and before fsync is called
1973 * any number of transactions can start and commit (transaction kthread
1974 * commits the current transaction periodically), and a transaction
1975 * commit does not start nor waits for ordered extents to complete.
1977 smp_mb();
1978 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1979 (full_sync && BTRFS_I(inode)->last_trans <=
1980 root->fs_info->last_trans_committed)) {
1982 * We'v had everything committed since the last time we were
1983 * modified so clear this flag in case it was set for whatever
1984 * reason, it's no longer relevant.
1986 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1987 &BTRFS_I(inode)->runtime_flags);
1988 mutex_unlock(&inode->i_mutex);
1989 goto out;
1993 * ok we haven't committed the transaction yet, lets do a commit
1995 if (file->private_data)
1996 btrfs_ioctl_trans_end(file);
1999 * We use start here because we will need to wait on the IO to complete
2000 * in btrfs_sync_log, which could require joining a transaction (for
2001 * example checking cross references in the nocow path). If we use join
2002 * here we could get into a situation where we're waiting on IO to
2003 * happen that is blocked on a transaction trying to commit. With start
2004 * we inc the extwriter counter, so we wait for all extwriters to exit
2005 * before we start blocking join'ers. This comment is to keep somebody
2006 * from thinking they are super smart and changing this to
2007 * btrfs_join_transaction *cough*Josef*cough*.
2009 trans = btrfs_start_transaction(root, 0);
2010 if (IS_ERR(trans)) {
2011 ret = PTR_ERR(trans);
2012 mutex_unlock(&inode->i_mutex);
2013 goto out;
2015 trans->sync = true;
2017 btrfs_init_log_ctx(&ctx);
2019 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2020 if (ret < 0) {
2021 /* Fallthrough and commit/free transaction. */
2022 ret = 1;
2025 /* we've logged all the items and now have a consistent
2026 * version of the file in the log. It is possible that
2027 * someone will come in and modify the file, but that's
2028 * fine because the log is consistent on disk, and we
2029 * have references to all of the file's extents
2031 * It is possible that someone will come in and log the
2032 * file again, but that will end up using the synchronization
2033 * inside btrfs_sync_log to keep things safe.
2035 mutex_unlock(&inode->i_mutex);
2038 * If any of the ordered extents had an error, just return it to user
2039 * space, so that the application knows some writes didn't succeed and
2040 * can take proper action (retry for e.g.). Blindly committing the
2041 * transaction in this case, would fool userspace that everything was
2042 * successful. And we also want to make sure our log doesn't contain
2043 * file extent items pointing to extents that weren't fully written to -
2044 * just like in the non fast fsync path, where we check for the ordered
2045 * operation's error flag before writing to the log tree and return -EIO
2046 * if any of them had this flag set (btrfs_wait_ordered_range) -
2047 * therefore we need to check for errors in the ordered operations,
2048 * which are indicated by ctx.io_err.
2050 if (ctx.io_err) {
2051 btrfs_end_transaction(trans, root);
2052 ret = ctx.io_err;
2053 goto out;
2056 if (ret != BTRFS_NO_LOG_SYNC) {
2057 if (!ret) {
2058 ret = btrfs_sync_log(trans, root, &ctx);
2059 if (!ret) {
2060 ret = btrfs_end_transaction(trans, root);
2061 goto out;
2064 if (!full_sync) {
2065 ret = btrfs_wait_ordered_range(inode, start,
2066 end - start + 1);
2067 if (ret) {
2068 btrfs_end_transaction(trans, root);
2069 goto out;
2072 ret = btrfs_commit_transaction(trans, root);
2073 } else {
2074 ret = btrfs_end_transaction(trans, root);
2076 out:
2077 return ret > 0 ? -EIO : ret;
2080 static const struct vm_operations_struct btrfs_file_vm_ops = {
2081 .fault = filemap_fault,
2082 .map_pages = filemap_map_pages,
2083 .page_mkwrite = btrfs_page_mkwrite,
2086 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2088 struct address_space *mapping = filp->f_mapping;
2090 if (!mapping->a_ops->readpage)
2091 return -ENOEXEC;
2093 file_accessed(filp);
2094 vma->vm_ops = &btrfs_file_vm_ops;
2096 return 0;
2099 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2100 int slot, u64 start, u64 end)
2102 struct btrfs_file_extent_item *fi;
2103 struct btrfs_key key;
2105 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2106 return 0;
2108 btrfs_item_key_to_cpu(leaf, &key, slot);
2109 if (key.objectid != btrfs_ino(inode) ||
2110 key.type != BTRFS_EXTENT_DATA_KEY)
2111 return 0;
2113 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2115 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2116 return 0;
2118 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2119 return 0;
2121 if (key.offset == end)
2122 return 1;
2123 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2124 return 1;
2125 return 0;
2128 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2129 struct btrfs_path *path, u64 offset, u64 end)
2131 struct btrfs_root *root = BTRFS_I(inode)->root;
2132 struct extent_buffer *leaf;
2133 struct btrfs_file_extent_item *fi;
2134 struct extent_map *hole_em;
2135 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2136 struct btrfs_key key;
2137 int ret;
2139 if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2140 goto out;
2142 key.objectid = btrfs_ino(inode);
2143 key.type = BTRFS_EXTENT_DATA_KEY;
2144 key.offset = offset;
2146 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2147 if (ret < 0)
2148 return ret;
2149 BUG_ON(!ret);
2151 leaf = path->nodes[0];
2152 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2153 u64 num_bytes;
2155 path->slots[0]--;
2156 fi = btrfs_item_ptr(leaf, path->slots[0],
2157 struct btrfs_file_extent_item);
2158 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2159 end - offset;
2160 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2161 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2162 btrfs_set_file_extent_offset(leaf, fi, 0);
2163 btrfs_mark_buffer_dirty(leaf);
2164 goto out;
2167 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2168 u64 num_bytes;
2170 key.offset = offset;
2171 btrfs_set_item_key_safe(root->fs_info, path, &key);
2172 fi = btrfs_item_ptr(leaf, path->slots[0],
2173 struct btrfs_file_extent_item);
2174 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2175 offset;
2176 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2177 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2178 btrfs_set_file_extent_offset(leaf, fi, 0);
2179 btrfs_mark_buffer_dirty(leaf);
2180 goto out;
2182 btrfs_release_path(path);
2184 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2185 0, 0, end - offset, 0, end - offset,
2186 0, 0, 0);
2187 if (ret)
2188 return ret;
2190 out:
2191 btrfs_release_path(path);
2193 hole_em = alloc_extent_map();
2194 if (!hole_em) {
2195 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2196 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2197 &BTRFS_I(inode)->runtime_flags);
2198 } else {
2199 hole_em->start = offset;
2200 hole_em->len = end - offset;
2201 hole_em->ram_bytes = hole_em->len;
2202 hole_em->orig_start = offset;
2204 hole_em->block_start = EXTENT_MAP_HOLE;
2205 hole_em->block_len = 0;
2206 hole_em->orig_block_len = 0;
2207 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2208 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2209 hole_em->generation = trans->transid;
2211 do {
2212 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2213 write_lock(&em_tree->lock);
2214 ret = add_extent_mapping(em_tree, hole_em, 1);
2215 write_unlock(&em_tree->lock);
2216 } while (ret == -EEXIST);
2217 free_extent_map(hole_em);
2218 if (ret)
2219 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2220 &BTRFS_I(inode)->runtime_flags);
2223 return 0;
2227 * Find a hole extent on given inode and change start/len to the end of hole
2228 * extent.(hole/vacuum extent whose em->start <= start &&
2229 * em->start + em->len > start)
2230 * When a hole extent is found, return 1 and modify start/len.
2232 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2234 struct extent_map *em;
2235 int ret = 0;
2237 em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2238 if (IS_ERR_OR_NULL(em)) {
2239 if (!em)
2240 ret = -ENOMEM;
2241 else
2242 ret = PTR_ERR(em);
2243 return ret;
2246 /* Hole or vacuum extent(only exists in no-hole mode) */
2247 if (em->block_start == EXTENT_MAP_HOLE) {
2248 ret = 1;
2249 *len = em->start + em->len > *start + *len ?
2250 0 : *start + *len - em->start - em->len;
2251 *start = em->start + em->len;
2253 free_extent_map(em);
2254 return ret;
2257 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2259 struct btrfs_root *root = BTRFS_I(inode)->root;
2260 struct extent_state *cached_state = NULL;
2261 struct btrfs_path *path;
2262 struct btrfs_block_rsv *rsv;
2263 struct btrfs_trans_handle *trans;
2264 u64 lockstart;
2265 u64 lockend;
2266 u64 tail_start;
2267 u64 tail_len;
2268 u64 orig_start = offset;
2269 u64 cur_offset;
2270 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2271 u64 drop_end;
2272 int ret = 0;
2273 int err = 0;
2274 int rsv_count;
2275 bool same_page;
2276 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2277 u64 ino_size;
2278 bool truncated_page = false;
2279 bool updated_inode = false;
2281 ret = btrfs_wait_ordered_range(inode, offset, len);
2282 if (ret)
2283 return ret;
2285 mutex_lock(&inode->i_mutex);
2286 ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
2287 ret = find_first_non_hole(inode, &offset, &len);
2288 if (ret < 0)
2289 goto out_only_mutex;
2290 if (ret && !len) {
2291 /* Already in a large hole */
2292 ret = 0;
2293 goto out_only_mutex;
2296 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2297 lockend = round_down(offset + len,
2298 BTRFS_I(inode)->root->sectorsize) - 1;
2299 same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2300 ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2303 * We needn't truncate any page which is beyond the end of the file
2304 * because we are sure there is no data there.
2307 * Only do this if we are in the same page and we aren't doing the
2308 * entire page.
2310 if (same_page && len < PAGE_CACHE_SIZE) {
2311 if (offset < ino_size) {
2312 truncated_page = true;
2313 ret = btrfs_truncate_page(inode, offset, len, 0);
2314 } else {
2315 ret = 0;
2317 goto out_only_mutex;
2320 /* zero back part of the first page */
2321 if (offset < ino_size) {
2322 truncated_page = true;
2323 ret = btrfs_truncate_page(inode, offset, 0, 0);
2324 if (ret) {
2325 mutex_unlock(&inode->i_mutex);
2326 return ret;
2330 /* Check the aligned pages after the first unaligned page,
2331 * if offset != orig_start, which means the first unaligned page
2332 * including serveral following pages are already in holes,
2333 * the extra check can be skipped */
2334 if (offset == orig_start) {
2335 /* after truncate page, check hole again */
2336 len = offset + len - lockstart;
2337 offset = lockstart;
2338 ret = find_first_non_hole(inode, &offset, &len);
2339 if (ret < 0)
2340 goto out_only_mutex;
2341 if (ret && !len) {
2342 ret = 0;
2343 goto out_only_mutex;
2345 lockstart = offset;
2348 /* Check the tail unaligned part is in a hole */
2349 tail_start = lockend + 1;
2350 tail_len = offset + len - tail_start;
2351 if (tail_len) {
2352 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2353 if (unlikely(ret < 0))
2354 goto out_only_mutex;
2355 if (!ret) {
2356 /* zero the front end of the last page */
2357 if (tail_start + tail_len < ino_size) {
2358 truncated_page = true;
2359 ret = btrfs_truncate_page(inode,
2360 tail_start + tail_len, 0, 1);
2361 if (ret)
2362 goto out_only_mutex;
2367 if (lockend < lockstart) {
2368 ret = 0;
2369 goto out_only_mutex;
2372 while (1) {
2373 struct btrfs_ordered_extent *ordered;
2375 truncate_pagecache_range(inode, lockstart, lockend);
2377 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2378 0, &cached_state);
2379 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2382 * We need to make sure we have no ordered extents in this range
2383 * and nobody raced in and read a page in this range, if we did
2384 * we need to try again.
2386 if ((!ordered ||
2387 (ordered->file_offset + ordered->len <= lockstart ||
2388 ordered->file_offset > lockend)) &&
2389 !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2390 if (ordered)
2391 btrfs_put_ordered_extent(ordered);
2392 break;
2394 if (ordered)
2395 btrfs_put_ordered_extent(ordered);
2396 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2397 lockend, &cached_state, GFP_NOFS);
2398 ret = btrfs_wait_ordered_range(inode, lockstart,
2399 lockend - lockstart + 1);
2400 if (ret) {
2401 mutex_unlock(&inode->i_mutex);
2402 return ret;
2406 path = btrfs_alloc_path();
2407 if (!path) {
2408 ret = -ENOMEM;
2409 goto out;
2412 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2413 if (!rsv) {
2414 ret = -ENOMEM;
2415 goto out_free;
2417 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2418 rsv->failfast = 1;
2421 * 1 - update the inode
2422 * 1 - removing the extents in the range
2423 * 1 - adding the hole extent if no_holes isn't set
2425 rsv_count = no_holes ? 2 : 3;
2426 trans = btrfs_start_transaction(root, rsv_count);
2427 if (IS_ERR(trans)) {
2428 err = PTR_ERR(trans);
2429 goto out_free;
2432 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2433 min_size);
2434 BUG_ON(ret);
2435 trans->block_rsv = rsv;
2437 cur_offset = lockstart;
2438 len = lockend - cur_offset;
2439 while (cur_offset < lockend) {
2440 ret = __btrfs_drop_extents(trans, root, inode, path,
2441 cur_offset, lockend + 1,
2442 &drop_end, 1, 0, 0, NULL);
2443 if (ret != -ENOSPC)
2444 break;
2446 trans->block_rsv = &root->fs_info->trans_block_rsv;
2448 if (cur_offset < ino_size) {
2449 ret = fill_holes(trans, inode, path, cur_offset,
2450 drop_end);
2451 if (ret) {
2452 err = ret;
2453 break;
2457 cur_offset = drop_end;
2459 ret = btrfs_update_inode(trans, root, inode);
2460 if (ret) {
2461 err = ret;
2462 break;
2465 btrfs_end_transaction(trans, root);
2466 btrfs_btree_balance_dirty(root);
2468 trans = btrfs_start_transaction(root, rsv_count);
2469 if (IS_ERR(trans)) {
2470 ret = PTR_ERR(trans);
2471 trans = NULL;
2472 break;
2475 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2476 rsv, min_size);
2477 BUG_ON(ret); /* shouldn't happen */
2478 trans->block_rsv = rsv;
2480 ret = find_first_non_hole(inode, &cur_offset, &len);
2481 if (unlikely(ret < 0))
2482 break;
2483 if (ret && !len) {
2484 ret = 0;
2485 break;
2489 if (ret) {
2490 err = ret;
2491 goto out_trans;
2494 trans->block_rsv = &root->fs_info->trans_block_rsv;
2496 * Don't insert file hole extent item if it's for a range beyond eof
2497 * (because it's useless) or if it represents a 0 bytes range (when
2498 * cur_offset == drop_end).
2500 if (cur_offset < ino_size && cur_offset < drop_end) {
2501 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2502 if (ret) {
2503 err = ret;
2504 goto out_trans;
2508 out_trans:
2509 if (!trans)
2510 goto out_free;
2512 inode_inc_iversion(inode);
2513 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2515 trans->block_rsv = &root->fs_info->trans_block_rsv;
2516 ret = btrfs_update_inode(trans, root, inode);
2517 updated_inode = true;
2518 btrfs_end_transaction(trans, root);
2519 btrfs_btree_balance_dirty(root);
2520 out_free:
2521 btrfs_free_path(path);
2522 btrfs_free_block_rsv(root, rsv);
2523 out:
2524 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2525 &cached_state, GFP_NOFS);
2526 out_only_mutex:
2527 if (!updated_inode && truncated_page && !ret && !err) {
2529 * If we only end up zeroing part of a page, we still need to
2530 * update the inode item, so that all the time fields are
2531 * updated as well as the necessary btrfs inode in memory fields
2532 * for detecting, at fsync time, if the inode isn't yet in the
2533 * log tree or it's there but not up to date.
2535 trans = btrfs_start_transaction(root, 1);
2536 if (IS_ERR(trans)) {
2537 err = PTR_ERR(trans);
2538 } else {
2539 err = btrfs_update_inode(trans, root, inode);
2540 ret = btrfs_end_transaction(trans, root);
2543 mutex_unlock(&inode->i_mutex);
2544 if (ret && !err)
2545 err = ret;
2546 return err;
2549 static long btrfs_fallocate(struct file *file, int mode,
2550 loff_t offset, loff_t len)
2552 struct inode *inode = file_inode(file);
2553 struct extent_state *cached_state = NULL;
2554 u64 cur_offset;
2555 u64 last_byte;
2556 u64 alloc_start;
2557 u64 alloc_end;
2558 u64 alloc_hint = 0;
2559 u64 locked_end;
2560 struct extent_map *em;
2561 int blocksize = BTRFS_I(inode)->root->sectorsize;
2562 int ret;
2564 alloc_start = round_down(offset, blocksize);
2565 alloc_end = round_up(offset + len, blocksize);
2567 /* Make sure we aren't being give some crap mode */
2568 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2569 return -EOPNOTSUPP;
2571 if (mode & FALLOC_FL_PUNCH_HOLE)
2572 return btrfs_punch_hole(inode, offset, len);
2575 * Make sure we have enough space before we do the
2576 * allocation.
2578 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start, alloc_end - alloc_start);
2579 if (ret)
2580 return ret;
2582 mutex_lock(&inode->i_mutex);
2583 ret = inode_newsize_ok(inode, alloc_end);
2584 if (ret)
2585 goto out;
2587 if (alloc_start > inode->i_size) {
2588 ret = btrfs_cont_expand(inode, i_size_read(inode),
2589 alloc_start);
2590 if (ret)
2591 goto out;
2592 } else {
2594 * If we are fallocating from the end of the file onward we
2595 * need to zero out the end of the page if i_size lands in the
2596 * middle of a page.
2598 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2599 if (ret)
2600 goto out;
2604 * wait for ordered IO before we have any locks. We'll loop again
2605 * below with the locks held.
2607 ret = btrfs_wait_ordered_range(inode, alloc_start,
2608 alloc_end - alloc_start);
2609 if (ret)
2610 goto out;
2612 locked_end = alloc_end - 1;
2613 while (1) {
2614 struct btrfs_ordered_extent *ordered;
2616 /* the extent lock is ordered inside the running
2617 * transaction
2619 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2620 locked_end, 0, &cached_state);
2621 ordered = btrfs_lookup_first_ordered_extent(inode,
2622 alloc_end - 1);
2623 if (ordered &&
2624 ordered->file_offset + ordered->len > alloc_start &&
2625 ordered->file_offset < alloc_end) {
2626 btrfs_put_ordered_extent(ordered);
2627 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2628 alloc_start, locked_end,
2629 &cached_state, GFP_NOFS);
2631 * we can't wait on the range with the transaction
2632 * running or with the extent lock held
2634 ret = btrfs_wait_ordered_range(inode, alloc_start,
2635 alloc_end - alloc_start);
2636 if (ret)
2637 goto out;
2638 } else {
2639 if (ordered)
2640 btrfs_put_ordered_extent(ordered);
2641 break;
2645 cur_offset = alloc_start;
2646 while (1) {
2647 u64 actual_end;
2649 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2650 alloc_end - cur_offset, 0);
2651 if (IS_ERR_OR_NULL(em)) {
2652 if (!em)
2653 ret = -ENOMEM;
2654 else
2655 ret = PTR_ERR(em);
2656 break;
2658 last_byte = min(extent_map_end(em), alloc_end);
2659 actual_end = min_t(u64, extent_map_end(em), offset + len);
2660 last_byte = ALIGN(last_byte, blocksize);
2662 if (em->block_start == EXTENT_MAP_HOLE ||
2663 (cur_offset >= inode->i_size &&
2664 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2665 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2666 last_byte - cur_offset,
2667 1 << inode->i_blkbits,
2668 offset + len,
2669 &alloc_hint);
2670 } else if (actual_end > inode->i_size &&
2671 !(mode & FALLOC_FL_KEEP_SIZE)) {
2672 struct btrfs_trans_handle *trans;
2673 struct btrfs_root *root = BTRFS_I(inode)->root;
2676 * We didn't need to allocate any more space, but we
2677 * still extended the size of the file so we need to
2678 * update i_size and the inode item.
2680 trans = btrfs_start_transaction(root, 1);
2681 if (IS_ERR(trans)) {
2682 ret = PTR_ERR(trans);
2683 } else {
2684 inode->i_ctime = CURRENT_TIME;
2685 i_size_write(inode, actual_end);
2686 btrfs_ordered_update_i_size(inode, actual_end,
2687 NULL);
2688 ret = btrfs_update_inode(trans, root, inode);
2689 if (ret)
2690 btrfs_end_transaction(trans, root);
2691 else
2692 ret = btrfs_end_transaction(trans,
2693 root);
2696 free_extent_map(em);
2697 if (ret < 0)
2698 break;
2700 cur_offset = last_byte;
2701 if (cur_offset >= alloc_end) {
2702 ret = 0;
2703 break;
2706 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2707 &cached_state, GFP_NOFS);
2708 out:
2709 mutex_unlock(&inode->i_mutex);
2710 /* Let go of our reservation. */
2711 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2712 return ret;
2715 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2717 struct btrfs_root *root = BTRFS_I(inode)->root;
2718 struct extent_map *em = NULL;
2719 struct extent_state *cached_state = NULL;
2720 u64 lockstart;
2721 u64 lockend;
2722 u64 start;
2723 u64 len;
2724 int ret = 0;
2726 if (inode->i_size == 0)
2727 return -ENXIO;
2730 * *offset can be negative, in this case we start finding DATA/HOLE from
2731 * the very start of the file.
2733 start = max_t(loff_t, 0, *offset);
2735 lockstart = round_down(start, root->sectorsize);
2736 lockend = round_up(i_size_read(inode), root->sectorsize);
2737 if (lockend <= lockstart)
2738 lockend = lockstart + root->sectorsize;
2739 lockend--;
2740 len = lockend - lockstart + 1;
2742 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2743 &cached_state);
2745 while (start < inode->i_size) {
2746 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2747 if (IS_ERR(em)) {
2748 ret = PTR_ERR(em);
2749 em = NULL;
2750 break;
2753 if (whence == SEEK_HOLE &&
2754 (em->block_start == EXTENT_MAP_HOLE ||
2755 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2756 break;
2757 else if (whence == SEEK_DATA &&
2758 (em->block_start != EXTENT_MAP_HOLE &&
2759 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2760 break;
2762 start = em->start + em->len;
2763 free_extent_map(em);
2764 em = NULL;
2765 cond_resched();
2767 free_extent_map(em);
2768 if (!ret) {
2769 if (whence == SEEK_DATA && start >= inode->i_size)
2770 ret = -ENXIO;
2771 else
2772 *offset = min_t(loff_t, start, inode->i_size);
2774 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2775 &cached_state, GFP_NOFS);
2776 return ret;
2779 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2781 struct inode *inode = file->f_mapping->host;
2782 int ret;
2784 mutex_lock(&inode->i_mutex);
2785 switch (whence) {
2786 case SEEK_END:
2787 case SEEK_CUR:
2788 offset = generic_file_llseek(file, offset, whence);
2789 goto out;
2790 case SEEK_DATA:
2791 case SEEK_HOLE:
2792 if (offset >= i_size_read(inode)) {
2793 mutex_unlock(&inode->i_mutex);
2794 return -ENXIO;
2797 ret = find_desired_extent(inode, &offset, whence);
2798 if (ret) {
2799 mutex_unlock(&inode->i_mutex);
2800 return ret;
2804 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2805 out:
2806 mutex_unlock(&inode->i_mutex);
2807 return offset;
2810 const struct file_operations btrfs_file_operations = {
2811 .llseek = btrfs_file_llseek,
2812 .read_iter = generic_file_read_iter,
2813 .splice_read = generic_file_splice_read,
2814 .write_iter = btrfs_file_write_iter,
2815 .mmap = btrfs_file_mmap,
2816 .open = generic_file_open,
2817 .release = btrfs_release_file,
2818 .fsync = btrfs_sync_file,
2819 .fallocate = btrfs_fallocate,
2820 .unlocked_ioctl = btrfs_ioctl,
2821 #ifdef CONFIG_COMPAT
2822 .compat_ioctl = btrfs_compat_ioctl,
2823 #endif
2826 void btrfs_auto_defrag_exit(void)
2828 if (btrfs_inode_defrag_cachep)
2829 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2832 int btrfs_auto_defrag_init(void)
2834 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2835 sizeof(struct inode_defrag), 0,
2836 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2837 NULL);
2838 if (!btrfs_inode_defrag_cachep)
2839 return -ENOMEM;
2841 return 0;
2844 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
2846 int ret;
2849 * So with compression we will find and lock a dirty page and clear the
2850 * first one as dirty, setup an async extent, and immediately return
2851 * with the entire range locked but with nobody actually marked with
2852 * writeback. So we can't just filemap_write_and_wait_range() and
2853 * expect it to work since it will just kick off a thread to do the
2854 * actual work. So we need to call filemap_fdatawrite_range _again_
2855 * since it will wait on the page lock, which won't be unlocked until
2856 * after the pages have been marked as writeback and so we're good to go
2857 * from there. We have to do this otherwise we'll miss the ordered
2858 * extents and that results in badness. Please Josef, do not think you
2859 * know better and pull this out at some point in the future, it is
2860 * right and you are wrong.
2862 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
2863 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
2864 &BTRFS_I(inode)->runtime_flags))
2865 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
2867 return ret;