2 * linux/arch/arm/mach-sa1100/cpu-sa1110.c
4 * Copyright (C) 2001 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * Note: there are two erratas that apply to the SA1110 here:
11 * 7 - SDRAM auto-power-up failure (rev A0)
12 * 13 - Corruption of internal register reads/writes following
13 * SDRAM reads (rev A0, B0, B1)
15 * We ignore rev. A0 and B0 devices; I don't think they're worth supporting.
17 * The SDRAM type can be passed on the command line as cpu_sa1110.sdram=type
19 #include <linux/cpufreq.h>
20 #include <linux/delay.h>
21 #include <linux/init.h>
23 #include <linux/kernel.h>
24 #include <linux/moduleparam.h>
25 #include <linux/types.h>
27 #include <asm/cputype.h>
28 #include <asm/mach-types.h>
30 #include <mach/generic.h>
31 #include <mach/hardware.h>
37 u_char rows
; /* bits */
38 u_char cas_latency
; /* cycles */
39 u_char tck
; /* clock cycle time (ns) */
40 u_char trcd
; /* activate to r/w (ns) */
41 u_char trp
; /* precharge to activate (ns) */
42 u_char twr
; /* write recovery time (ns) */
43 u_short refresh
; /* refresh time for array (us) */
52 static struct sdram_params sdram_tbl
[] __initdata
= {
53 { /* Toshiba TC59SM716 CL2 */
54 .name
= "TC59SM716-CL2",
62 }, { /* Toshiba TC59SM716 CL3 */
63 .name
= "TC59SM716-CL3",
71 }, { /* Samsung K4S641632D TC75 */
80 }, { /* Samsung K4S281632B-1H */
81 .name
= "K4S281632B-1H",
88 }, { /* Samsung KM416S4030CT */
89 .name
= "KM416S4030CT",
92 .trcd
= 24, /* 3 CLKs */
93 .trp
= 24, /* 3 CLKs */
94 .twr
= 16, /* Trdl: 2 CLKs */
97 }, { /* Winbond W982516AH75L CL3 */
98 .name
= "W982516AH75L",
106 }, { /* Micron MT48LC8M16A2TG-75 */
107 .name
= "MT48LC8M16A2TG-75",
118 static struct sdram_params sdram_params
;
121 * Given a period in ns and frequency in khz, calculate the number of
122 * cycles of frequency in period. Note that we round up to the next
123 * cycle, even if we are only slightly over.
125 static inline u_int
ns_to_cycles(u_int ns
, u_int khz
)
127 return (ns
* khz
+ 999999) / 1000000;
131 * Create the MDCAS register bit pattern.
133 static inline void set_mdcas(u_int
*mdcas
, int delayed
, u_int rcd
)
138 shift
= delayed
+ 1 + rcd
;
140 mdcas
[0] = (1 << rcd
) - 1;
141 mdcas
[0] |= 0x55555555 << shift
;
142 mdcas
[1] = mdcas
[2] = 0x55555555 << (shift
& 1);
146 sdram_calculate_timing(struct sdram_info
*sd
, u_int cpu_khz
,
147 struct sdram_params
*sdram
)
149 u_int mem_khz
, sd_khz
, trp
, twr
;
151 mem_khz
= cpu_khz
/ 2;
155 * If SDCLK would invalidate the SDRAM timings,
156 * run SDCLK at half speed.
158 * CPU steppings prior to B2 must either run the memory at
159 * half speed or use delayed read latching (errata 13).
161 if ((ns_to_cycles(sdram
->tck
, sd_khz
) > 1) ||
162 (CPU_REVISION
< CPU_SA1110_B2
&& sd_khz
< 62000))
165 sd
->mdcnfg
= MDCNFG
& 0x007f007f;
167 twr
= ns_to_cycles(sdram
->twr
, mem_khz
);
169 /* trp should always be >1 */
170 trp
= ns_to_cycles(sdram
->trp
, mem_khz
) - 1;
174 sd
->mdcnfg
|= trp
<< 8;
175 sd
->mdcnfg
|= trp
<< 24;
176 sd
->mdcnfg
|= sdram
->cas_latency
<< 12;
177 sd
->mdcnfg
|= sdram
->cas_latency
<< 28;
178 sd
->mdcnfg
|= twr
<< 14;
179 sd
->mdcnfg
|= twr
<< 30;
181 sd
->mdrefr
= MDREFR
& 0xffbffff0;
184 if (sd_khz
!= mem_khz
)
185 sd
->mdrefr
|= MDREFR_K1DB2
;
187 /* initial number of '1's in MDCAS + 1 */
188 set_mdcas(sd
->mdcas
, sd_khz
>= 62000,
189 ns_to_cycles(sdram
->trcd
, mem_khz
));
192 printk(KERN_DEBUG
"MDCNFG: %08x MDREFR: %08x MDCAS0: %08x MDCAS1: %08x MDCAS2: %08x\n",
193 sd
->mdcnfg
, sd
->mdrefr
, sd
->mdcas
[0], sd
->mdcas
[1],
199 * Set the SDRAM refresh rate.
201 static inline void sdram_set_refresh(u_int dri
)
203 MDREFR
= (MDREFR
& 0xffff000f) | (dri
<< 4);
208 * Update the refresh period. We do this such that we always refresh
209 * the SDRAMs within their permissible period. The refresh period is
210 * always a multiple of the memory clock (fixed at cpu_clock / 2).
212 * FIXME: we don't currently take account of burst accesses here,
213 * but neither do Intels DM nor Angel.
216 sdram_update_refresh(u_int cpu_khz
, struct sdram_params
*sdram
)
218 u_int ns_row
= (sdram
->refresh
* 1000) >> sdram
->rows
;
219 u_int dri
= ns_to_cycles(ns_row
, cpu_khz
/ 2) / 32;
223 printk(KERN_DEBUG
"new dri value = %d\n", dri
);
226 sdram_set_refresh(dri
);
230 * Ok, set the CPU frequency.
232 static int sa1110_target(struct cpufreq_policy
*policy
, unsigned int ppcr
)
234 struct sdram_params
*sdram
= &sdram_params
;
235 struct sdram_info sd
;
239 sdram_calculate_timing(&sd
, sa11x0_freq_table
[ppcr
].frequency
, sdram
);
243 * These values are wrong according to the SA1110 documentation
244 * and errata, but they seem to work. Need to get a storage
245 * scope on to the SDRAM signals to work out why.
247 if (policy
->max
< 147500) {
248 sd
.mdrefr
|= MDREFR_K1DB2
;
249 sd
.mdcas
[0] = 0xaaaaaa7f;
251 sd
.mdrefr
&= ~MDREFR_K1DB2
;
252 sd
.mdcas
[0] = 0xaaaaaa9f;
254 sd
.mdcas
[1] = 0xaaaaaaaa;
255 sd
.mdcas
[2] = 0xaaaaaaaa;
259 * The clock could be going away for some time. Set the SDRAMs
260 * to refresh rapidly (every 64 memory clock cycles). To get
261 * through the whole array, we need to wait 262144 mclk cycles.
262 * We wait 20ms to be safe.
264 sdram_set_refresh(2);
265 if (!irqs_disabled())
271 * Reprogram the DRAM timings with interrupts disabled, and
272 * ensure that we are doing this within a complete cache line.
273 * This means that we won't access SDRAM for the duration of
276 local_irq_save(flags
);
277 asm("mcr p15, 0, %0, c7, c10, 4" : : "r" (0));
279 __asm__
__volatile__("\n\
282 1: str %3, [%1, #0] @ MDCNFG \n\
283 str %4, [%1, #28] @ MDREFR \n\
284 str %5, [%1, #4] @ MDCAS0 \n\
285 str %6, [%1, #8] @ MDCAS1 \n\
286 str %7, [%1, #12] @ MDCAS2 \n\
287 str %8, [%2, #0] @ PPCR \n\
294 : "r" (&MDCNFG
), "r" (&PPCR
), "0" (sd
.mdcnfg
),
295 "r" (sd
.mdrefr
), "r" (sd
.mdcas
[0]),
296 "r" (sd
.mdcas
[1]), "r" (sd
.mdcas
[2]), "r" (ppcr
));
297 local_irq_restore(flags
);
300 * Now, return the SDRAM refresh back to normal.
302 sdram_update_refresh(sa11x0_freq_table
[ppcr
].frequency
, sdram
);
307 static int __init
sa1110_cpu_init(struct cpufreq_policy
*policy
)
309 return cpufreq_generic_init(policy
, sa11x0_freq_table
, CPUFREQ_ETERNAL
);
312 /* sa1110_driver needs __refdata because it must remain after init registers
313 * it with cpufreq_register_driver() */
314 static struct cpufreq_driver sa1110_driver __refdata
= {
315 .flags
= CPUFREQ_STICKY
| CPUFREQ_NEED_INITIAL_FREQ_CHECK
,
316 .verify
= cpufreq_generic_frequency_table_verify
,
317 .target_index
= sa1110_target
,
318 .get
= sa11x0_getspeed
,
319 .init
= sa1110_cpu_init
,
323 static struct sdram_params
*sa1110_find_sdram(const char *name
)
325 struct sdram_params
*sdram
;
327 for (sdram
= sdram_tbl
; sdram
< sdram_tbl
+ ARRAY_SIZE(sdram_tbl
);
329 if (strcmp(name
, sdram
->name
) == 0)
335 static char sdram_name
[16];
337 static int __init
sa1110_clk_init(void)
339 struct sdram_params
*sdram
;
340 const char *name
= sdram_name
;
342 if (!cpu_is_sa1110())
346 if (machine_is_assabet())
347 name
= "TC59SM716-CL3";
348 if (machine_is_pt_system3())
350 if (machine_is_h3100())
351 name
= "KM416S4030CT";
352 if (machine_is_jornada720() || machine_is_h3600())
353 name
= "K4S281632B-1H";
354 if (machine_is_nanoengine())
355 name
= "MT48LC8M16A2TG-75";
358 sdram
= sa1110_find_sdram(name
);
360 printk(KERN_DEBUG
"SDRAM: tck: %d trcd: %d trp: %d"
361 " twr: %d refresh: %d cas_latency: %d\n",
362 sdram
->tck
, sdram
->trcd
, sdram
->trp
,
363 sdram
->twr
, sdram
->refresh
, sdram
->cas_latency
);
365 memcpy(&sdram_params
, sdram
, sizeof(sdram_params
));
367 return cpufreq_register_driver(&sa1110_driver
);
373 module_param_string(sdram
, sdram_name
, sizeof(sdram_name
), 0);
374 arch_initcall(sa1110_clk_init
);