2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
11 * Modified by Dave Peterson and Doug Thompson
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <asm/uaccess.h>
33 #include "edac_core.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
40 #define edac_atomic_scrub(va, size) do { } while (0)
43 /* lock to memory controller's control array */
44 static DEFINE_MUTEX(mem_ctls_mutex
);
45 static LIST_HEAD(mc_devices
);
48 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
49 * apei/ghes and i7core_edac to be used at the same time.
51 static void const *edac_mc_owner
;
53 static struct bus_type mc_bus
[EDAC_MAX_MCS
];
55 unsigned edac_dimm_info_location(struct dimm_info
*dimm
, char *buf
,
58 struct mem_ctl_info
*mci
= dimm
->mci
;
62 for (i
= 0; i
< mci
->n_layers
; i
++) {
63 n
= snprintf(p
, len
, "%s %d ",
64 edac_layer_name
[mci
->layers
[i
].type
],
76 #ifdef CONFIG_EDAC_DEBUG
78 static void edac_mc_dump_channel(struct rank_info
*chan
)
80 edac_dbg(4, " channel->chan_idx = %d\n", chan
->chan_idx
);
81 edac_dbg(4, " channel = %p\n", chan
);
82 edac_dbg(4, " channel->csrow = %p\n", chan
->csrow
);
83 edac_dbg(4, " channel->dimm = %p\n", chan
->dimm
);
86 static void edac_mc_dump_dimm(struct dimm_info
*dimm
, int number
)
90 edac_dimm_info_location(dimm
, location
, sizeof(location
));
92 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
93 dimm
->mci
->csbased
? "rank" : "dimm",
94 number
, location
, dimm
->csrow
, dimm
->cschannel
);
95 edac_dbg(4, " dimm = %p\n", dimm
);
96 edac_dbg(4, " dimm->label = '%s'\n", dimm
->label
);
97 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm
->nr_pages
);
98 edac_dbg(4, " dimm->grain = %d\n", dimm
->grain
);
99 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm
->nr_pages
);
102 static void edac_mc_dump_csrow(struct csrow_info
*csrow
)
104 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow
->csrow_idx
);
105 edac_dbg(4, " csrow = %p\n", csrow
);
106 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow
->first_page
);
107 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow
->last_page
);
108 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow
->page_mask
);
109 edac_dbg(4, " csrow->nr_channels = %d\n", csrow
->nr_channels
);
110 edac_dbg(4, " csrow->channels = %p\n", csrow
->channels
);
111 edac_dbg(4, " csrow->mci = %p\n", csrow
->mci
);
114 static void edac_mc_dump_mci(struct mem_ctl_info
*mci
)
116 edac_dbg(3, "\tmci = %p\n", mci
);
117 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci
->mtype_cap
);
118 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci
->edac_ctl_cap
);
119 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci
->edac_cap
);
120 edac_dbg(4, "\tmci->edac_check = %p\n", mci
->edac_check
);
121 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
122 mci
->nr_csrows
, mci
->csrows
);
123 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
124 mci
->tot_dimms
, mci
->dimms
);
125 edac_dbg(3, "\tdev = %p\n", mci
->pdev
);
126 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
127 mci
->mod_name
, mci
->ctl_name
);
128 edac_dbg(3, "\tpvt_info = %p\n\n", mci
->pvt_info
);
131 #endif /* CONFIG_EDAC_DEBUG */
133 const char * const edac_mem_types
[] = {
134 [MEM_EMPTY
] = "Empty csrow",
135 [MEM_RESERVED
] = "Reserved csrow type",
136 [MEM_UNKNOWN
] = "Unknown csrow type",
137 [MEM_FPM
] = "Fast page mode RAM",
138 [MEM_EDO
] = "Extended data out RAM",
139 [MEM_BEDO
] = "Burst Extended data out RAM",
140 [MEM_SDR
] = "Single data rate SDRAM",
141 [MEM_RDR
] = "Registered single data rate SDRAM",
142 [MEM_DDR
] = "Double data rate SDRAM",
143 [MEM_RDDR
] = "Registered Double data rate SDRAM",
144 [MEM_RMBS
] = "Rambus DRAM",
145 [MEM_DDR2
] = "Unbuffered DDR2 RAM",
146 [MEM_FB_DDR2
] = "Fully buffered DDR2",
147 [MEM_RDDR2
] = "Registered DDR2 RAM",
148 [MEM_XDR
] = "Rambus XDR",
149 [MEM_DDR3
] = "Unbuffered DDR3 RAM",
150 [MEM_RDDR3
] = "Registered DDR3 RAM",
151 [MEM_LRDDR3
] = "Load-Reduced DDR3 RAM",
152 [MEM_DDR4
] = "Unbuffered DDR4 RAM",
153 [MEM_RDDR4
] = "Registered DDR4 RAM",
155 EXPORT_SYMBOL_GPL(edac_mem_types
);
158 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
159 * @p: pointer to a pointer with the memory offset to be used. At
160 * return, this will be incremented to point to the next offset
161 * @size: Size of the data structure to be reserved
162 * @n_elems: Number of elements that should be reserved
164 * If 'size' is a constant, the compiler will optimize this whole function
165 * down to either a no-op or the addition of a constant to the value of '*p'.
167 * The 'p' pointer is absolutely needed to keep the proper advancing
168 * further in memory to the proper offsets when allocating the struct along
169 * with its embedded structs, as edac_device_alloc_ctl_info() does it
170 * above, for example.
172 * At return, the pointer 'p' will be incremented to be used on a next call
175 void *edac_align_ptr(void **p
, unsigned size
, int n_elems
)
180 *p
+= size
* n_elems
;
183 * 'p' can possibly be an unaligned item X such that sizeof(X) is
184 * 'size'. Adjust 'p' so that its alignment is at least as
185 * stringent as what the compiler would provide for X and return
186 * the aligned result.
187 * Here we assume that the alignment of a "long long" is the most
188 * stringent alignment that the compiler will ever provide by default.
189 * As far as I know, this is a reasonable assumption.
191 if (size
> sizeof(long))
192 align
= sizeof(long long);
193 else if (size
> sizeof(int))
194 align
= sizeof(long);
195 else if (size
> sizeof(short))
197 else if (size
> sizeof(char))
198 align
= sizeof(short);
202 r
= (unsigned long)p
% align
;
209 return (void *)(((unsigned long)ptr
) + align
- r
);
212 static void _edac_mc_free(struct mem_ctl_info
*mci
)
215 struct csrow_info
*csr
;
216 const unsigned int tot_dimms
= mci
->tot_dimms
;
217 const unsigned int tot_channels
= mci
->num_cschannel
;
218 const unsigned int tot_csrows
= mci
->nr_csrows
;
221 for (i
= 0; i
< tot_dimms
; i
++)
222 kfree(mci
->dimms
[i
]);
226 for (row
= 0; row
< tot_csrows
; row
++) {
227 csr
= mci
->csrows
[row
];
230 for (chn
= 0; chn
< tot_channels
; chn
++)
231 kfree(csr
->channels
[chn
]);
232 kfree(csr
->channels
);
243 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
244 * @mc_num: Memory controller number
245 * @n_layers: Number of MC hierarchy layers
246 * layers: Describes each layer as seen by the Memory Controller
247 * @size_pvt: size of private storage needed
250 * Everything is kmalloc'ed as one big chunk - more efficient.
251 * Only can be used if all structures have the same lifetime - otherwise
252 * you have to allocate and initialize your own structures.
254 * Use edac_mc_free() to free mc structures allocated by this function.
256 * NOTE: drivers handle multi-rank memories in different ways: in some
257 * drivers, one multi-rank memory stick is mapped as one entry, while, in
258 * others, a single multi-rank memory stick would be mapped into several
259 * entries. Currently, this function will allocate multiple struct dimm_info
260 * on such scenarios, as grouping the multiple ranks require drivers change.
264 * On success: struct mem_ctl_info pointer
266 struct mem_ctl_info
*edac_mc_alloc(unsigned mc_num
,
268 struct edac_mc_layer
*layers
,
271 struct mem_ctl_info
*mci
;
272 struct edac_mc_layer
*layer
;
273 struct csrow_info
*csr
;
274 struct rank_info
*chan
;
275 struct dimm_info
*dimm
;
276 u32
*ce_per_layer
[EDAC_MAX_LAYERS
], *ue_per_layer
[EDAC_MAX_LAYERS
];
277 unsigned pos
[EDAC_MAX_LAYERS
];
278 unsigned size
, tot_dimms
= 1, count
= 1;
279 unsigned tot_csrows
= 1, tot_channels
= 1, tot_errcount
= 0;
280 void *pvt
, *p
, *ptr
= NULL
;
281 int i
, j
, row
, chn
, n
, len
, off
;
282 bool per_rank
= false;
284 BUG_ON(n_layers
> EDAC_MAX_LAYERS
|| n_layers
== 0);
286 * Calculate the total amount of dimms and csrows/cschannels while
287 * in the old API emulation mode
289 for (i
= 0; i
< n_layers
; i
++) {
290 tot_dimms
*= layers
[i
].size
;
291 if (layers
[i
].is_virt_csrow
)
292 tot_csrows
*= layers
[i
].size
;
294 tot_channels
*= layers
[i
].size
;
296 if (layers
[i
].type
== EDAC_MC_LAYER_CHIP_SELECT
)
300 /* Figure out the offsets of the various items from the start of an mc
301 * structure. We want the alignment of each item to be at least as
302 * stringent as what the compiler would provide if we could simply
303 * hardcode everything into a single struct.
305 mci
= edac_align_ptr(&ptr
, sizeof(*mci
), 1);
306 layer
= edac_align_ptr(&ptr
, sizeof(*layer
), n_layers
);
307 for (i
= 0; i
< n_layers
; i
++) {
308 count
*= layers
[i
].size
;
309 edac_dbg(4, "errcount layer %d size %d\n", i
, count
);
310 ce_per_layer
[i
] = edac_align_ptr(&ptr
, sizeof(u32
), count
);
311 ue_per_layer
[i
] = edac_align_ptr(&ptr
, sizeof(u32
), count
);
312 tot_errcount
+= 2 * count
;
315 edac_dbg(4, "allocating %d error counters\n", tot_errcount
);
316 pvt
= edac_align_ptr(&ptr
, sz_pvt
, 1);
317 size
= ((unsigned long)pvt
) + sz_pvt
;
319 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
322 per_rank
? "ranks" : "dimms",
323 tot_csrows
* tot_channels
);
325 mci
= kzalloc(size
, GFP_KERNEL
);
329 /* Adjust pointers so they point within the memory we just allocated
330 * rather than an imaginary chunk of memory located at address 0.
332 layer
= (struct edac_mc_layer
*)(((char *)mci
) + ((unsigned long)layer
));
333 for (i
= 0; i
< n_layers
; i
++) {
334 mci
->ce_per_layer
[i
] = (u32
*)((char *)mci
+ ((unsigned long)ce_per_layer
[i
]));
335 mci
->ue_per_layer
[i
] = (u32
*)((char *)mci
+ ((unsigned long)ue_per_layer
[i
]));
337 pvt
= sz_pvt
? (((char *)mci
) + ((unsigned long)pvt
)) : NULL
;
339 /* setup index and various internal pointers */
340 mci
->mc_idx
= mc_num
;
341 mci
->tot_dimms
= tot_dimms
;
343 mci
->n_layers
= n_layers
;
345 memcpy(mci
->layers
, layers
, sizeof(*layer
) * n_layers
);
346 mci
->nr_csrows
= tot_csrows
;
347 mci
->num_cschannel
= tot_channels
;
348 mci
->csbased
= per_rank
;
351 * Alocate and fill the csrow/channels structs
353 mci
->csrows
= kcalloc(tot_csrows
, sizeof(*mci
->csrows
), GFP_KERNEL
);
356 for (row
= 0; row
< tot_csrows
; row
++) {
357 csr
= kzalloc(sizeof(**mci
->csrows
), GFP_KERNEL
);
360 mci
->csrows
[row
] = csr
;
361 csr
->csrow_idx
= row
;
363 csr
->nr_channels
= tot_channels
;
364 csr
->channels
= kcalloc(tot_channels
, sizeof(*csr
->channels
),
369 for (chn
= 0; chn
< tot_channels
; chn
++) {
370 chan
= kzalloc(sizeof(**csr
->channels
), GFP_KERNEL
);
373 csr
->channels
[chn
] = chan
;
374 chan
->chan_idx
= chn
;
380 * Allocate and fill the dimm structs
382 mci
->dimms
= kcalloc(tot_dimms
, sizeof(*mci
->dimms
), GFP_KERNEL
);
386 memset(&pos
, 0, sizeof(pos
));
389 for (i
= 0; i
< tot_dimms
; i
++) {
390 chan
= mci
->csrows
[row
]->channels
[chn
];
391 off
= EDAC_DIMM_OFF(layer
, n_layers
, pos
[0], pos
[1], pos
[2]);
392 if (off
< 0 || off
>= tot_dimms
) {
393 edac_mc_printk(mci
, KERN_ERR
, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
397 dimm
= kzalloc(sizeof(**mci
->dimms
), GFP_KERNEL
);
400 mci
->dimms
[off
] = dimm
;
404 * Copy DIMM location and initialize it.
406 len
= sizeof(dimm
->label
);
408 n
= snprintf(p
, len
, "mc#%u", mc_num
);
411 for (j
= 0; j
< n_layers
; j
++) {
412 n
= snprintf(p
, len
, "%s#%u",
413 edac_layer_name
[layers
[j
].type
],
417 dimm
->location
[j
] = pos
[j
];
423 /* Link it to the csrows old API data */
426 dimm
->cschannel
= chn
;
428 /* Increment csrow location */
429 if (layers
[0].is_virt_csrow
) {
431 if (chn
== tot_channels
) {
437 if (row
== tot_csrows
) {
443 /* Increment dimm location */
444 for (j
= n_layers
- 1; j
>= 0; j
--) {
446 if (pos
[j
] < layers
[j
].size
)
452 mci
->op_state
= OP_ALLOC
;
461 EXPORT_SYMBOL_GPL(edac_mc_alloc
);
465 * 'Free' a previously allocated 'mci' structure
466 * @mci: pointer to a struct mem_ctl_info structure
468 void edac_mc_free(struct mem_ctl_info
*mci
)
472 /* If we're not yet registered with sysfs free only what was allocated
473 * in edac_mc_alloc().
475 if (!device_is_registered(&mci
->dev
)) {
480 /* the mci instance is freed here, when the sysfs object is dropped */
481 edac_unregister_sysfs(mci
);
483 EXPORT_SYMBOL_GPL(edac_mc_free
);
489 * scan list of controllers looking for the one that manages
491 * @dev: pointer to a struct device related with the MCI
493 struct mem_ctl_info
*find_mci_by_dev(struct device
*dev
)
495 struct mem_ctl_info
*mci
;
496 struct list_head
*item
;
500 list_for_each(item
, &mc_devices
) {
501 mci
= list_entry(item
, struct mem_ctl_info
, link
);
503 if (mci
->pdev
== dev
)
509 EXPORT_SYMBOL_GPL(find_mci_by_dev
);
512 * handler for EDAC to check if NMI type handler has asserted interrupt
514 static int edac_mc_assert_error_check_and_clear(void)
518 if (edac_op_state
== EDAC_OPSTATE_POLL
)
521 old_state
= edac_err_assert
;
528 * edac_mc_workq_function
529 * performs the operation scheduled by a workq request
531 static void edac_mc_workq_function(struct work_struct
*work_req
)
533 struct delayed_work
*d_work
= to_delayed_work(work_req
);
534 struct mem_ctl_info
*mci
= to_edac_mem_ctl_work(d_work
);
536 mutex_lock(&mem_ctls_mutex
);
538 /* if this control struct has movd to offline state, we are done */
539 if (mci
->op_state
== OP_OFFLINE
) {
540 mutex_unlock(&mem_ctls_mutex
);
544 /* Only poll controllers that are running polled and have a check */
545 if (edac_mc_assert_error_check_and_clear() && (mci
->edac_check
!= NULL
))
546 mci
->edac_check(mci
);
548 mutex_unlock(&mem_ctls_mutex
);
551 queue_delayed_work(edac_workqueue
, &mci
->work
,
552 msecs_to_jiffies(edac_mc_get_poll_msec()));
556 * edac_mc_workq_setup
557 * initialize a workq item for this mci
558 * passing in the new delay period in msec
562 * called with the mem_ctls_mutex held
564 static void edac_mc_workq_setup(struct mem_ctl_info
*mci
, unsigned msec
,
569 /* if this instance is not in the POLL state, then simply return */
570 if (mci
->op_state
!= OP_RUNNING_POLL
)
574 INIT_DELAYED_WORK(&mci
->work
, edac_mc_workq_function
);
576 mod_delayed_work(edac_workqueue
, &mci
->work
, msecs_to_jiffies(msec
));
580 * edac_mc_workq_teardown
581 * stop the workq processing on this mci
585 * called WITHOUT lock held
587 static void edac_mc_workq_teardown(struct mem_ctl_info
*mci
)
591 if (mci
->op_state
!= OP_RUNNING_POLL
)
594 status
= cancel_delayed_work(&mci
->work
);
596 edac_dbg(0, "not canceled, flush the queue\n");
598 /* workq instance might be running, wait for it */
599 flush_workqueue(edac_workqueue
);
604 * edac_mc_reset_delay_period(unsigned long value)
606 * user space has updated our poll period value, need to
607 * reset our workq delays
609 void edac_mc_reset_delay_period(unsigned long value
)
611 struct mem_ctl_info
*mci
;
612 struct list_head
*item
;
614 mutex_lock(&mem_ctls_mutex
);
616 list_for_each(item
, &mc_devices
) {
617 mci
= list_entry(item
, struct mem_ctl_info
, link
);
619 edac_mc_workq_setup(mci
, value
, false);
622 mutex_unlock(&mem_ctls_mutex
);
627 /* Return 0 on success, 1 on failure.
628 * Before calling this function, caller must
629 * assign a unique value to mci->mc_idx.
633 * called with the mem_ctls_mutex lock held
635 static int add_mc_to_global_list(struct mem_ctl_info
*mci
)
637 struct list_head
*item
, *insert_before
;
638 struct mem_ctl_info
*p
;
640 insert_before
= &mc_devices
;
642 p
= find_mci_by_dev(mci
->pdev
);
643 if (unlikely(p
!= NULL
))
646 list_for_each(item
, &mc_devices
) {
647 p
= list_entry(item
, struct mem_ctl_info
, link
);
649 if (p
->mc_idx
>= mci
->mc_idx
) {
650 if (unlikely(p
->mc_idx
== mci
->mc_idx
))
653 insert_before
= item
;
658 list_add_tail_rcu(&mci
->link
, insert_before
);
659 atomic_inc(&edac_handlers
);
663 edac_printk(KERN_WARNING
, EDAC_MC
,
664 "%s (%s) %s %s already assigned %d\n", dev_name(p
->pdev
),
665 edac_dev_name(mci
), p
->mod_name
, p
->ctl_name
, p
->mc_idx
);
669 edac_printk(KERN_WARNING
, EDAC_MC
,
670 "bug in low-level driver: attempt to assign\n"
671 " duplicate mc_idx %d in %s()\n", p
->mc_idx
, __func__
);
675 static int del_mc_from_global_list(struct mem_ctl_info
*mci
)
677 int handlers
= atomic_dec_return(&edac_handlers
);
678 list_del_rcu(&mci
->link
);
680 /* these are for safe removal of devices from global list while
681 * NMI handlers may be traversing list
684 INIT_LIST_HEAD(&mci
->link
);
690 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
692 * If found, return a pointer to the structure.
695 * Caller must hold mem_ctls_mutex.
697 struct mem_ctl_info
*edac_mc_find(int idx
)
699 struct list_head
*item
;
700 struct mem_ctl_info
*mci
;
702 list_for_each(item
, &mc_devices
) {
703 mci
= list_entry(item
, struct mem_ctl_info
, link
);
705 if (mci
->mc_idx
>= idx
) {
706 if (mci
->mc_idx
== idx
)
715 EXPORT_SYMBOL(edac_mc_find
);
718 * edac_mc_add_mc_with_groups: Insert the 'mci' structure into the mci
719 * global list and create sysfs entries associated with mci structure
720 * @mci: pointer to the mci structure to be added to the list
721 * @groups: optional attribute groups for the driver-specific sysfs entries
728 /* FIXME - should a warning be printed if no error detection? correction? */
729 int edac_mc_add_mc_with_groups(struct mem_ctl_info
*mci
,
730 const struct attribute_group
**groups
)
735 if (mci
->mc_idx
>= EDAC_MAX_MCS
) {
736 pr_warn_once("Too many memory controllers: %d\n", mci
->mc_idx
);
740 #ifdef CONFIG_EDAC_DEBUG
741 if (edac_debug_level
>= 3)
742 edac_mc_dump_mci(mci
);
744 if (edac_debug_level
>= 4) {
747 for (i
= 0; i
< mci
->nr_csrows
; i
++) {
748 struct csrow_info
*csrow
= mci
->csrows
[i
];
752 for (j
= 0; j
< csrow
->nr_channels
; j
++)
753 nr_pages
+= csrow
->channels
[j
]->dimm
->nr_pages
;
756 edac_mc_dump_csrow(csrow
);
757 for (j
= 0; j
< csrow
->nr_channels
; j
++)
758 if (csrow
->channels
[j
]->dimm
->nr_pages
)
759 edac_mc_dump_channel(csrow
->channels
[j
]);
761 for (i
= 0; i
< mci
->tot_dimms
; i
++)
762 if (mci
->dimms
[i
]->nr_pages
)
763 edac_mc_dump_dimm(mci
->dimms
[i
], i
);
766 mutex_lock(&mem_ctls_mutex
);
768 if (edac_mc_owner
&& edac_mc_owner
!= mci
->mod_name
) {
773 if (add_mc_to_global_list(mci
))
776 /* set load time so that error rate can be tracked */
777 mci
->start_time
= jiffies
;
779 mci
->bus
= &mc_bus
[mci
->mc_idx
];
781 if (edac_create_sysfs_mci_device(mci
, groups
)) {
782 edac_mc_printk(mci
, KERN_WARNING
,
783 "failed to create sysfs device\n");
787 /* If there IS a check routine, then we are running POLLED */
788 if (mci
->edac_check
!= NULL
) {
789 /* This instance is NOW RUNNING */
790 mci
->op_state
= OP_RUNNING_POLL
;
792 edac_mc_workq_setup(mci
, edac_mc_get_poll_msec(), true);
794 mci
->op_state
= OP_RUNNING_INTERRUPT
;
797 /* Report action taken */
798 edac_mc_printk(mci
, KERN_INFO
,
799 "Giving out device to module %s controller %s: DEV %s (%s)\n",
800 mci
->mod_name
, mci
->ctl_name
, mci
->dev_name
,
801 edac_op_state_to_string(mci
->op_state
));
803 edac_mc_owner
= mci
->mod_name
;
805 mutex_unlock(&mem_ctls_mutex
);
809 del_mc_from_global_list(mci
);
812 mutex_unlock(&mem_ctls_mutex
);
815 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups
);
818 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
819 * remove mci structure from global list
820 * @pdev: Pointer to 'struct device' representing mci structure to remove.
822 * Return pointer to removed mci structure, or NULL if device not found.
824 struct mem_ctl_info
*edac_mc_del_mc(struct device
*dev
)
826 struct mem_ctl_info
*mci
;
830 mutex_lock(&mem_ctls_mutex
);
832 /* find the requested mci struct in the global list */
833 mci
= find_mci_by_dev(dev
);
835 mutex_unlock(&mem_ctls_mutex
);
839 if (!del_mc_from_global_list(mci
))
840 edac_mc_owner
= NULL
;
841 mutex_unlock(&mem_ctls_mutex
);
843 /* flush workq processes */
844 edac_mc_workq_teardown(mci
);
846 /* marking MCI offline */
847 mci
->op_state
= OP_OFFLINE
;
849 /* remove from sysfs */
850 edac_remove_sysfs_mci_device(mci
);
852 edac_printk(KERN_INFO
, EDAC_MC
,
853 "Removed device %d for %s %s: DEV %s\n", mci
->mc_idx
,
854 mci
->mod_name
, mci
->ctl_name
, edac_dev_name(mci
));
858 EXPORT_SYMBOL_GPL(edac_mc_del_mc
);
860 static void edac_mc_scrub_block(unsigned long page
, unsigned long offset
,
865 unsigned long flags
= 0;
869 /* ECC error page was not in our memory. Ignore it. */
870 if (!pfn_valid(page
))
873 /* Find the actual page structure then map it and fix */
874 pg
= pfn_to_page(page
);
877 local_irq_save(flags
);
879 virt_addr
= kmap_atomic(pg
);
881 /* Perform architecture specific atomic scrub operation */
882 edac_atomic_scrub(virt_addr
+ offset
, size
);
884 /* Unmap and complete */
885 kunmap_atomic(virt_addr
);
888 local_irq_restore(flags
);
891 /* FIXME - should return -1 */
892 int edac_mc_find_csrow_by_page(struct mem_ctl_info
*mci
, unsigned long page
)
894 struct csrow_info
**csrows
= mci
->csrows
;
897 edac_dbg(1, "MC%d: 0x%lx\n", mci
->mc_idx
, page
);
900 for (i
= 0; i
< mci
->nr_csrows
; i
++) {
901 struct csrow_info
*csrow
= csrows
[i
];
903 for (j
= 0; j
< csrow
->nr_channels
; j
++) {
904 struct dimm_info
*dimm
= csrow
->channels
[j
]->dimm
;
910 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
912 csrow
->first_page
, page
, csrow
->last_page
,
915 if ((page
>= csrow
->first_page
) &&
916 (page
<= csrow
->last_page
) &&
917 ((page
& csrow
->page_mask
) ==
918 (csrow
->first_page
& csrow
->page_mask
))) {
925 edac_mc_printk(mci
, KERN_ERR
,
926 "could not look up page error address %lx\n",
927 (unsigned long)page
);
931 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page
);
933 const char *edac_layer_name
[] = {
934 [EDAC_MC_LAYER_BRANCH
] = "branch",
935 [EDAC_MC_LAYER_CHANNEL
] = "channel",
936 [EDAC_MC_LAYER_SLOT
] = "slot",
937 [EDAC_MC_LAYER_CHIP_SELECT
] = "csrow",
938 [EDAC_MC_LAYER_ALL_MEM
] = "memory",
940 EXPORT_SYMBOL_GPL(edac_layer_name
);
942 static void edac_inc_ce_error(struct mem_ctl_info
*mci
,
943 bool enable_per_layer_report
,
944 const int pos
[EDAC_MAX_LAYERS
],
951 if (!enable_per_layer_report
) {
952 mci
->ce_noinfo_count
+= count
;
956 for (i
= 0; i
< mci
->n_layers
; i
++) {
960 mci
->ce_per_layer
[i
][index
] += count
;
962 if (i
< mci
->n_layers
- 1)
963 index
*= mci
->layers
[i
+ 1].size
;
967 static void edac_inc_ue_error(struct mem_ctl_info
*mci
,
968 bool enable_per_layer_report
,
969 const int pos
[EDAC_MAX_LAYERS
],
976 if (!enable_per_layer_report
) {
977 mci
->ce_noinfo_count
+= count
;
981 for (i
= 0; i
< mci
->n_layers
; i
++) {
985 mci
->ue_per_layer
[i
][index
] += count
;
987 if (i
< mci
->n_layers
- 1)
988 index
*= mci
->layers
[i
+ 1].size
;
992 static void edac_ce_error(struct mem_ctl_info
*mci
,
993 const u16 error_count
,
994 const int pos
[EDAC_MAX_LAYERS
],
996 const char *location
,
999 const char *other_detail
,
1000 const bool enable_per_layer_report
,
1001 const unsigned long page_frame_number
,
1002 const unsigned long offset_in_page
,
1005 unsigned long remapped_page
;
1011 if (edac_mc_get_log_ce()) {
1012 if (other_detail
&& *other_detail
)
1013 edac_mc_printk(mci
, KERN_WARNING
,
1014 "%d CE %s%son %s (%s %s - %s)\n",
1015 error_count
, msg
, msg_aux
, label
,
1016 location
, detail
, other_detail
);
1018 edac_mc_printk(mci
, KERN_WARNING
,
1019 "%d CE %s%son %s (%s %s)\n",
1020 error_count
, msg
, msg_aux
, label
,
1023 edac_inc_ce_error(mci
, enable_per_layer_report
, pos
, error_count
);
1025 if (mci
->scrub_mode
== SCRUB_SW_SRC
) {
1027 * Some memory controllers (called MCs below) can remap
1028 * memory so that it is still available at a different
1029 * address when PCI devices map into memory.
1030 * MC's that can't do this, lose the memory where PCI
1031 * devices are mapped. This mapping is MC-dependent
1032 * and so we call back into the MC driver for it to
1033 * map the MC page to a physical (CPU) page which can
1034 * then be mapped to a virtual page - which can then
1037 remapped_page
= mci
->ctl_page_to_phys
?
1038 mci
->ctl_page_to_phys(mci
, page_frame_number
) :
1041 edac_mc_scrub_block(remapped_page
,
1042 offset_in_page
, grain
);
1046 static void edac_ue_error(struct mem_ctl_info
*mci
,
1047 const u16 error_count
,
1048 const int pos
[EDAC_MAX_LAYERS
],
1050 const char *location
,
1053 const char *other_detail
,
1054 const bool enable_per_layer_report
)
1061 if (edac_mc_get_log_ue()) {
1062 if (other_detail
&& *other_detail
)
1063 edac_mc_printk(mci
, KERN_WARNING
,
1064 "%d UE %s%son %s (%s %s - %s)\n",
1065 error_count
, msg
, msg_aux
, label
,
1066 location
, detail
, other_detail
);
1068 edac_mc_printk(mci
, KERN_WARNING
,
1069 "%d UE %s%son %s (%s %s)\n",
1070 error_count
, msg
, msg_aux
, label
,
1074 if (edac_mc_get_panic_on_ue()) {
1075 if (other_detail
&& *other_detail
)
1076 panic("UE %s%son %s (%s%s - %s)\n",
1077 msg
, msg_aux
, label
, location
, detail
, other_detail
);
1079 panic("UE %s%son %s (%s%s)\n",
1080 msg
, msg_aux
, label
, location
, detail
);
1083 edac_inc_ue_error(mci
, enable_per_layer_report
, pos
, error_count
);
1087 * edac_raw_mc_handle_error - reports a memory event to userspace without doing
1088 * anything to discover the error location
1090 * @type: severity of the error (CE/UE/Fatal)
1091 * @mci: a struct mem_ctl_info pointer
1092 * @e: error description
1094 * This raw function is used internally by edac_mc_handle_error(). It should
1095 * only be called directly when the hardware error come directly from BIOS,
1096 * like in the case of APEI GHES driver.
1098 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type
,
1099 struct mem_ctl_info
*mci
,
1100 struct edac_raw_error_desc
*e
)
1103 int pos
[EDAC_MAX_LAYERS
] = { e
->top_layer
, e
->mid_layer
, e
->low_layer
};
1105 /* Memory type dependent details about the error */
1106 if (type
== HW_EVENT_ERR_CORRECTED
) {
1107 snprintf(detail
, sizeof(detail
),
1108 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1109 e
->page_frame_number
, e
->offset_in_page
,
1110 e
->grain
, e
->syndrome
);
1111 edac_ce_error(mci
, e
->error_count
, pos
, e
->msg
, e
->location
, e
->label
,
1112 detail
, e
->other_detail
, e
->enable_per_layer_report
,
1113 e
->page_frame_number
, e
->offset_in_page
, e
->grain
);
1115 snprintf(detail
, sizeof(detail
),
1116 "page:0x%lx offset:0x%lx grain:%ld",
1117 e
->page_frame_number
, e
->offset_in_page
, e
->grain
);
1119 edac_ue_error(mci
, e
->error_count
, pos
, e
->msg
, e
->location
, e
->label
,
1120 detail
, e
->other_detail
, e
->enable_per_layer_report
);
1125 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error
);
1128 * edac_mc_handle_error - reports a memory event to userspace
1130 * @type: severity of the error (CE/UE/Fatal)
1131 * @mci: a struct mem_ctl_info pointer
1132 * @error_count: Number of errors of the same type
1133 * @page_frame_number: mem page where the error occurred
1134 * @offset_in_page: offset of the error inside the page
1135 * @syndrome: ECC syndrome
1136 * @top_layer: Memory layer[0] position
1137 * @mid_layer: Memory layer[1] position
1138 * @low_layer: Memory layer[2] position
1139 * @msg: Message meaningful to the end users that
1140 * explains the event
1141 * @other_detail: Technical details about the event that
1142 * may help hardware manufacturers and
1143 * EDAC developers to analyse the event
1145 void edac_mc_handle_error(const enum hw_event_mc_err_type type
,
1146 struct mem_ctl_info
*mci
,
1147 const u16 error_count
,
1148 const unsigned long page_frame_number
,
1149 const unsigned long offset_in_page
,
1150 const unsigned long syndrome
,
1151 const int top_layer
,
1152 const int mid_layer
,
1153 const int low_layer
,
1155 const char *other_detail
)
1158 int row
= -1, chan
= -1;
1159 int pos
[EDAC_MAX_LAYERS
] = { top_layer
, mid_layer
, low_layer
};
1160 int i
, n_labels
= 0;
1162 struct edac_raw_error_desc
*e
= &mci
->error_desc
;
1164 edac_dbg(3, "MC%d\n", mci
->mc_idx
);
1166 /* Fills the error report buffer */
1167 memset(e
, 0, sizeof (*e
));
1168 e
->error_count
= error_count
;
1169 e
->top_layer
= top_layer
;
1170 e
->mid_layer
= mid_layer
;
1171 e
->low_layer
= low_layer
;
1172 e
->page_frame_number
= page_frame_number
;
1173 e
->offset_in_page
= offset_in_page
;
1174 e
->syndrome
= syndrome
;
1176 e
->other_detail
= other_detail
;
1179 * Check if the event report is consistent and if the memory
1180 * location is known. If it is known, enable_per_layer_report will be
1181 * true, the DIMM(s) label info will be filled and the per-layer
1182 * error counters will be incremented.
1184 for (i
= 0; i
< mci
->n_layers
; i
++) {
1185 if (pos
[i
] >= (int)mci
->layers
[i
].size
) {
1187 edac_mc_printk(mci
, KERN_ERR
,
1188 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1189 edac_layer_name
[mci
->layers
[i
].type
],
1190 pos
[i
], mci
->layers
[i
].size
);
1192 * Instead of just returning it, let's use what's
1193 * known about the error. The increment routines and
1194 * the DIMM filter logic will do the right thing by
1195 * pointing the likely damaged DIMMs.
1200 e
->enable_per_layer_report
= true;
1204 * Get the dimm label/grain that applies to the match criteria.
1205 * As the error algorithm may not be able to point to just one memory
1206 * stick, the logic here will get all possible labels that could
1207 * pottentially be affected by the error.
1208 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1209 * to have only the MC channel and the MC dimm (also called "branch")
1210 * but the channel is not known, as the memory is arranged in pairs,
1211 * where each memory belongs to a separate channel within the same
1217 for (i
= 0; i
< mci
->tot_dimms
; i
++) {
1218 struct dimm_info
*dimm
= mci
->dimms
[i
];
1220 if (top_layer
>= 0 && top_layer
!= dimm
->location
[0])
1222 if (mid_layer
>= 0 && mid_layer
!= dimm
->location
[1])
1224 if (low_layer
>= 0 && low_layer
!= dimm
->location
[2])
1227 /* get the max grain, over the error match range */
1228 if (dimm
->grain
> e
->grain
)
1229 e
->grain
= dimm
->grain
;
1232 * If the error is memory-controller wide, there's no need to
1233 * seek for the affected DIMMs because the whole
1234 * channel/memory controller/... may be affected.
1235 * Also, don't show errors for empty DIMM slots.
1237 if (e
->enable_per_layer_report
&& dimm
->nr_pages
) {
1238 if (n_labels
>= EDAC_MAX_LABELS
) {
1239 e
->enable_per_layer_report
= false;
1243 if (p
!= e
->label
) {
1244 strcpy(p
, OTHER_LABEL
);
1245 p
+= strlen(OTHER_LABEL
);
1247 strcpy(p
, dimm
->label
);
1252 * get csrow/channel of the DIMM, in order to allow
1253 * incrementing the compat API counters
1255 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1256 mci
->csbased
? "rank" : "dimm",
1257 dimm
->csrow
, dimm
->cschannel
);
1260 else if (row
>= 0 && row
!= dimm
->csrow
)
1264 chan
= dimm
->cschannel
;
1265 else if (chan
>= 0 && chan
!= dimm
->cschannel
)
1270 if (!e
->enable_per_layer_report
) {
1271 strcpy(e
->label
, "any memory");
1273 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row
, chan
);
1275 strcpy(e
->label
, "unknown memory");
1276 if (type
== HW_EVENT_ERR_CORRECTED
) {
1278 mci
->csrows
[row
]->ce_count
+= error_count
;
1280 mci
->csrows
[row
]->channels
[chan
]->ce_count
+= error_count
;
1284 mci
->csrows
[row
]->ue_count
+= error_count
;
1287 /* Fill the RAM location data */
1290 for (i
= 0; i
< mci
->n_layers
; i
++) {
1294 p
+= sprintf(p
, "%s:%d ",
1295 edac_layer_name
[mci
->layers
[i
].type
],
1298 if (p
> e
->location
)
1301 /* Report the error via the trace interface */
1302 grain_bits
= fls_long(e
->grain
) + 1;
1303 trace_mc_event(type
, e
->msg
, e
->label
, e
->error_count
,
1304 mci
->mc_idx
, e
->top_layer
, e
->mid_layer
, e
->low_layer
,
1305 (e
->page_frame_number
<< PAGE_SHIFT
) | e
->offset_in_page
,
1306 grain_bits
, e
->syndrome
, e
->other_detail
);
1308 edac_raw_mc_handle_error(type
, mci
, e
);
1310 EXPORT_SYMBOL_GPL(edac_mc_handle_error
);