2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * Copyright 2018 Christoph Hellwig.
10 * See ../COPYING for licensing terms.
12 #define pr_fmt(fmt) "%s: " fmt, __func__
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
25 #include <linux/sched/signal.h>
27 #include <linux/file.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_context.h>
31 #include <linux/percpu.h>
32 #include <linux/slab.h>
33 #include <linux/timer.h>
34 #include <linux/aio.h>
35 #include <linux/highmem.h>
36 #include <linux/workqueue.h>
37 #include <linux/security.h>
38 #include <linux/eventfd.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/migrate.h>
42 #include <linux/ramfs.h>
43 #include <linux/percpu-refcount.h>
44 #include <linux/mount.h>
46 #include <asm/kmap_types.h>
47 #include <linux/uaccess.h>
48 #include <linux/nospec.h>
54 #define AIO_RING_MAGIC 0xa10a10a1
55 #define AIO_RING_COMPAT_FEATURES 1
56 #define AIO_RING_INCOMPAT_FEATURES 0
58 unsigned id
; /* kernel internal index number */
59 unsigned nr
; /* number of io_events */
60 unsigned head
; /* Written to by userland or under ring_lock
61 * mutex by aio_read_events_ring(). */
65 unsigned compat_features
;
66 unsigned incompat_features
;
67 unsigned header_length
; /* size of aio_ring */
70 struct io_event io_events
[0];
71 }; /* 128 bytes + ring size */
73 #define AIO_RING_PAGES 8
78 struct kioctx __rcu
*table
[];
82 unsigned reqs_available
;
86 struct completion comp
;
91 struct percpu_ref users
;
94 struct percpu_ref reqs
;
96 unsigned long user_id
;
98 struct __percpu kioctx_cpu
*cpu
;
101 * For percpu reqs_available, number of slots we move to/from global
106 * This is what userspace passed to io_setup(), it's not used for
107 * anything but counting against the global max_reqs quota.
109 * The real limit is nr_events - 1, which will be larger (see
114 /* Size of ringbuffer, in units of struct io_event */
117 unsigned long mmap_base
;
118 unsigned long mmap_size
;
120 struct page
**ring_pages
;
123 struct rcu_work free_rwork
; /* see free_ioctx() */
126 * signals when all in-flight requests are done
128 struct ctx_rq_wait
*rq_wait
;
132 * This counts the number of available slots in the ringbuffer,
133 * so we avoid overflowing it: it's decremented (if positive)
134 * when allocating a kiocb and incremented when the resulting
135 * io_event is pulled off the ringbuffer.
137 * We batch accesses to it with a percpu version.
139 atomic_t reqs_available
;
140 } ____cacheline_aligned_in_smp
;
144 struct list_head active_reqs
; /* used for cancellation */
145 } ____cacheline_aligned_in_smp
;
148 struct mutex ring_lock
;
149 wait_queue_head_t wait
;
150 } ____cacheline_aligned_in_smp
;
154 unsigned completed_events
;
155 spinlock_t completion_lock
;
156 } ____cacheline_aligned_in_smp
;
158 struct page
*internal_pages
[AIO_RING_PAGES
];
159 struct file
*aio_ring_file
;
165 * First field must be the file pointer in all the
166 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
170 struct work_struct work
;
176 struct wait_queue_head
*head
;
180 struct wait_queue_entry wait
;
181 struct work_struct work
;
185 * NOTE! Each of the iocb union members has the file pointer
186 * as the first entry in their struct definition. So you can
187 * access the file pointer through any of the sub-structs,
188 * or directly as just 'ki_filp' in this struct.
192 struct file
*ki_filp
;
194 struct fsync_iocb fsync
;
195 struct poll_iocb poll
;
198 struct kioctx
*ki_ctx
;
199 kiocb_cancel_fn
*ki_cancel
;
201 struct io_event ki_res
;
203 struct list_head ki_list
; /* the aio core uses this
204 * for cancellation */
205 refcount_t ki_refcnt
;
208 * If the aio_resfd field of the userspace iocb is not zero,
209 * this is the underlying eventfd context to deliver events to.
211 struct eventfd_ctx
*ki_eventfd
;
214 /*------ sysctl variables----*/
215 static DEFINE_SPINLOCK(aio_nr_lock
);
216 unsigned long aio_nr
; /* current system wide number of aio requests */
217 unsigned long aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
218 /*----end sysctl variables---*/
220 static struct kmem_cache
*kiocb_cachep
;
221 static struct kmem_cache
*kioctx_cachep
;
223 static struct vfsmount
*aio_mnt
;
225 static const struct file_operations aio_ring_fops
;
226 static const struct address_space_operations aio_ctx_aops
;
228 static struct file
*aio_private_file(struct kioctx
*ctx
, loff_t nr_pages
)
231 struct inode
*inode
= alloc_anon_inode(aio_mnt
->mnt_sb
);
233 return ERR_CAST(inode
);
235 inode
->i_mapping
->a_ops
= &aio_ctx_aops
;
236 inode
->i_mapping
->private_data
= ctx
;
237 inode
->i_size
= PAGE_SIZE
* nr_pages
;
239 file
= alloc_file_pseudo(inode
, aio_mnt
, "[aio]",
240 O_RDWR
, &aio_ring_fops
);
246 static struct dentry
*aio_mount(struct file_system_type
*fs_type
,
247 int flags
, const char *dev_name
, void *data
)
249 struct dentry
*root
= mount_pseudo(fs_type
, "aio:", NULL
, NULL
,
253 root
->d_sb
->s_iflags
|= SB_I_NOEXEC
;
258 * Creates the slab caches used by the aio routines, panic on
259 * failure as this is done early during the boot sequence.
261 static int __init
aio_setup(void)
263 static struct file_system_type aio_fs
= {
266 .kill_sb
= kill_anon_super
,
268 aio_mnt
= kern_mount(&aio_fs
);
270 panic("Failed to create aio fs mount.");
272 kiocb_cachep
= KMEM_CACHE(aio_kiocb
, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
273 kioctx_cachep
= KMEM_CACHE(kioctx
,SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
276 __initcall(aio_setup
);
278 static void put_aio_ring_file(struct kioctx
*ctx
)
280 struct file
*aio_ring_file
= ctx
->aio_ring_file
;
281 struct address_space
*i_mapping
;
284 truncate_setsize(file_inode(aio_ring_file
), 0);
286 /* Prevent further access to the kioctx from migratepages */
287 i_mapping
= aio_ring_file
->f_mapping
;
288 spin_lock(&i_mapping
->private_lock
);
289 i_mapping
->private_data
= NULL
;
290 ctx
->aio_ring_file
= NULL
;
291 spin_unlock(&i_mapping
->private_lock
);
297 static void aio_free_ring(struct kioctx
*ctx
)
301 /* Disconnect the kiotx from the ring file. This prevents future
302 * accesses to the kioctx from page migration.
304 put_aio_ring_file(ctx
);
306 for (i
= 0; i
< ctx
->nr_pages
; i
++) {
308 pr_debug("pid(%d) [%d] page->count=%d\n", current
->pid
, i
,
309 page_count(ctx
->ring_pages
[i
]));
310 page
= ctx
->ring_pages
[i
];
313 ctx
->ring_pages
[i
] = NULL
;
317 if (ctx
->ring_pages
&& ctx
->ring_pages
!= ctx
->internal_pages
) {
318 kfree(ctx
->ring_pages
);
319 ctx
->ring_pages
= NULL
;
323 static int aio_ring_mremap(struct vm_area_struct
*vma
)
325 struct file
*file
= vma
->vm_file
;
326 struct mm_struct
*mm
= vma
->vm_mm
;
327 struct kioctx_table
*table
;
328 int i
, res
= -EINVAL
;
330 spin_lock(&mm
->ioctx_lock
);
332 table
= rcu_dereference(mm
->ioctx_table
);
333 for (i
= 0; i
< table
->nr
; i
++) {
336 ctx
= rcu_dereference(table
->table
[i
]);
337 if (ctx
&& ctx
->aio_ring_file
== file
) {
338 if (!atomic_read(&ctx
->dead
)) {
339 ctx
->user_id
= ctx
->mmap_base
= vma
->vm_start
;
347 spin_unlock(&mm
->ioctx_lock
);
351 static const struct vm_operations_struct aio_ring_vm_ops
= {
352 .mremap
= aio_ring_mremap
,
353 #if IS_ENABLED(CONFIG_MMU)
354 .fault
= filemap_fault
,
355 .map_pages
= filemap_map_pages
,
356 .page_mkwrite
= filemap_page_mkwrite
,
360 static int aio_ring_mmap(struct file
*file
, struct vm_area_struct
*vma
)
362 vma
->vm_flags
|= VM_DONTEXPAND
;
363 vma
->vm_ops
= &aio_ring_vm_ops
;
367 static const struct file_operations aio_ring_fops
= {
368 .mmap
= aio_ring_mmap
,
371 #if IS_ENABLED(CONFIG_MIGRATION)
372 static int aio_migratepage(struct address_space
*mapping
, struct page
*new,
373 struct page
*old
, enum migrate_mode mode
)
381 * We cannot support the _NO_COPY case here, because copy needs to
382 * happen under the ctx->completion_lock. That does not work with the
383 * migration workflow of MIGRATE_SYNC_NO_COPY.
385 if (mode
== MIGRATE_SYNC_NO_COPY
)
390 /* mapping->private_lock here protects against the kioctx teardown. */
391 spin_lock(&mapping
->private_lock
);
392 ctx
= mapping
->private_data
;
398 /* The ring_lock mutex. The prevents aio_read_events() from writing
399 * to the ring's head, and prevents page migration from mucking in
400 * a partially initialized kiotx.
402 if (!mutex_trylock(&ctx
->ring_lock
)) {
408 if (idx
< (pgoff_t
)ctx
->nr_pages
) {
409 /* Make sure the old page hasn't already been changed */
410 if (ctx
->ring_pages
[idx
] != old
)
418 /* Writeback must be complete */
419 BUG_ON(PageWriteback(old
));
422 rc
= migrate_page_move_mapping(mapping
, new, old
, NULL
, mode
, 1);
423 if (rc
!= MIGRATEPAGE_SUCCESS
) {
428 /* Take completion_lock to prevent other writes to the ring buffer
429 * while the old page is copied to the new. This prevents new
430 * events from being lost.
432 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
433 migrate_page_copy(new, old
);
434 BUG_ON(ctx
->ring_pages
[idx
] != old
);
435 ctx
->ring_pages
[idx
] = new;
436 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
438 /* The old page is no longer accessible. */
442 mutex_unlock(&ctx
->ring_lock
);
444 spin_unlock(&mapping
->private_lock
);
449 static const struct address_space_operations aio_ctx_aops
= {
450 .set_page_dirty
= __set_page_dirty_no_writeback
,
451 #if IS_ENABLED(CONFIG_MIGRATION)
452 .migratepage
= aio_migratepage
,
456 static int aio_setup_ring(struct kioctx
*ctx
, unsigned int nr_events
)
458 struct aio_ring
*ring
;
459 struct mm_struct
*mm
= current
->mm
;
460 unsigned long size
, unused
;
465 /* Compensate for the ring buffer's head/tail overlap entry */
466 nr_events
+= 2; /* 1 is required, 2 for good luck */
468 size
= sizeof(struct aio_ring
);
469 size
+= sizeof(struct io_event
) * nr_events
;
471 nr_pages
= PFN_UP(size
);
475 file
= aio_private_file(ctx
, nr_pages
);
477 ctx
->aio_ring_file
= NULL
;
481 ctx
->aio_ring_file
= file
;
482 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
))
483 / sizeof(struct io_event
);
485 ctx
->ring_pages
= ctx
->internal_pages
;
486 if (nr_pages
> AIO_RING_PAGES
) {
487 ctx
->ring_pages
= kcalloc(nr_pages
, sizeof(struct page
*),
489 if (!ctx
->ring_pages
) {
490 put_aio_ring_file(ctx
);
495 for (i
= 0; i
< nr_pages
; i
++) {
497 page
= find_or_create_page(file
->f_mapping
,
498 i
, GFP_HIGHUSER
| __GFP_ZERO
);
501 pr_debug("pid(%d) page[%d]->count=%d\n",
502 current
->pid
, i
, page_count(page
));
503 SetPageUptodate(page
);
506 ctx
->ring_pages
[i
] = page
;
510 if (unlikely(i
!= nr_pages
)) {
515 ctx
->mmap_size
= nr_pages
* PAGE_SIZE
;
516 pr_debug("attempting mmap of %lu bytes\n", ctx
->mmap_size
);
518 if (down_write_killable(&mm
->mmap_sem
)) {
524 ctx
->mmap_base
= do_mmap_pgoff(ctx
->aio_ring_file
, 0, ctx
->mmap_size
,
525 PROT_READ
| PROT_WRITE
,
526 MAP_SHARED
, 0, &unused
, NULL
);
527 up_write(&mm
->mmap_sem
);
528 if (IS_ERR((void *)ctx
->mmap_base
)) {
534 pr_debug("mmap address: 0x%08lx\n", ctx
->mmap_base
);
536 ctx
->user_id
= ctx
->mmap_base
;
537 ctx
->nr_events
= nr_events
; /* trusted copy */
539 ring
= kmap_atomic(ctx
->ring_pages
[0]);
540 ring
->nr
= nr_events
; /* user copy */
542 ring
->head
= ring
->tail
= 0;
543 ring
->magic
= AIO_RING_MAGIC
;
544 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
545 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
546 ring
->header_length
= sizeof(struct aio_ring
);
548 flush_dcache_page(ctx
->ring_pages
[0]);
553 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
554 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
555 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
557 void kiocb_set_cancel_fn(struct kiocb
*iocb
, kiocb_cancel_fn
*cancel
)
559 struct aio_kiocb
*req
= container_of(iocb
, struct aio_kiocb
, rw
);
560 struct kioctx
*ctx
= req
->ki_ctx
;
563 if (WARN_ON_ONCE(!list_empty(&req
->ki_list
)))
566 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
567 list_add_tail(&req
->ki_list
, &ctx
->active_reqs
);
568 req
->ki_cancel
= cancel
;
569 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
571 EXPORT_SYMBOL(kiocb_set_cancel_fn
);
574 * free_ioctx() should be RCU delayed to synchronize against the RCU
575 * protected lookup_ioctx() and also needs process context to call
576 * aio_free_ring(). Use rcu_work.
578 static void free_ioctx(struct work_struct
*work
)
580 struct kioctx
*ctx
= container_of(to_rcu_work(work
), struct kioctx
,
582 pr_debug("freeing %p\n", ctx
);
585 free_percpu(ctx
->cpu
);
586 percpu_ref_exit(&ctx
->reqs
);
587 percpu_ref_exit(&ctx
->users
);
588 kmem_cache_free(kioctx_cachep
, ctx
);
591 static void free_ioctx_reqs(struct percpu_ref
*ref
)
593 struct kioctx
*ctx
= container_of(ref
, struct kioctx
, reqs
);
595 /* At this point we know that there are no any in-flight requests */
596 if (ctx
->rq_wait
&& atomic_dec_and_test(&ctx
->rq_wait
->count
))
597 complete(&ctx
->rq_wait
->comp
);
599 /* Synchronize against RCU protected table->table[] dereferences */
600 INIT_RCU_WORK(&ctx
->free_rwork
, free_ioctx
);
601 queue_rcu_work(system_wq
, &ctx
->free_rwork
);
605 * When this function runs, the kioctx has been removed from the "hash table"
606 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
607 * now it's safe to cancel any that need to be.
609 static void free_ioctx_users(struct percpu_ref
*ref
)
611 struct kioctx
*ctx
= container_of(ref
, struct kioctx
, users
);
612 struct aio_kiocb
*req
;
614 spin_lock_irq(&ctx
->ctx_lock
);
616 while (!list_empty(&ctx
->active_reqs
)) {
617 req
= list_first_entry(&ctx
->active_reqs
,
618 struct aio_kiocb
, ki_list
);
619 req
->ki_cancel(&req
->rw
);
620 list_del_init(&req
->ki_list
);
623 spin_unlock_irq(&ctx
->ctx_lock
);
625 percpu_ref_kill(&ctx
->reqs
);
626 percpu_ref_put(&ctx
->reqs
);
629 static int ioctx_add_table(struct kioctx
*ctx
, struct mm_struct
*mm
)
632 struct kioctx_table
*table
, *old
;
633 struct aio_ring
*ring
;
635 spin_lock(&mm
->ioctx_lock
);
636 table
= rcu_dereference_raw(mm
->ioctx_table
);
640 for (i
= 0; i
< table
->nr
; i
++)
641 if (!rcu_access_pointer(table
->table
[i
])) {
643 rcu_assign_pointer(table
->table
[i
], ctx
);
644 spin_unlock(&mm
->ioctx_lock
);
646 /* While kioctx setup is in progress,
647 * we are protected from page migration
648 * changes ring_pages by ->ring_lock.
650 ring
= kmap_atomic(ctx
->ring_pages
[0]);
656 new_nr
= (table
? table
->nr
: 1) * 4;
657 spin_unlock(&mm
->ioctx_lock
);
659 table
= kzalloc(sizeof(*table
) + sizeof(struct kioctx
*) *
666 spin_lock(&mm
->ioctx_lock
);
667 old
= rcu_dereference_raw(mm
->ioctx_table
);
670 rcu_assign_pointer(mm
->ioctx_table
, table
);
671 } else if (table
->nr
> old
->nr
) {
672 memcpy(table
->table
, old
->table
,
673 old
->nr
* sizeof(struct kioctx
*));
675 rcu_assign_pointer(mm
->ioctx_table
, table
);
684 static void aio_nr_sub(unsigned nr
)
686 spin_lock(&aio_nr_lock
);
687 if (WARN_ON(aio_nr
- nr
> aio_nr
))
691 spin_unlock(&aio_nr_lock
);
695 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
697 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
699 struct mm_struct
*mm
= current
->mm
;
704 * Store the original nr_events -- what userspace passed to io_setup(),
705 * for counting against the global limit -- before it changes.
707 unsigned int max_reqs
= nr_events
;
710 * We keep track of the number of available ringbuffer slots, to prevent
711 * overflow (reqs_available), and we also use percpu counters for this.
713 * So since up to half the slots might be on other cpu's percpu counters
714 * and unavailable, double nr_events so userspace sees what they
715 * expected: additionally, we move req_batch slots to/from percpu
716 * counters at a time, so make sure that isn't 0:
718 nr_events
= max(nr_events
, num_possible_cpus() * 4);
721 /* Prevent overflows */
722 if (nr_events
> (0x10000000U
/ sizeof(struct io_event
))) {
723 pr_debug("ENOMEM: nr_events too high\n");
724 return ERR_PTR(-EINVAL
);
727 if (!nr_events
|| (unsigned long)max_reqs
> aio_max_nr
)
728 return ERR_PTR(-EAGAIN
);
730 ctx
= kmem_cache_zalloc(kioctx_cachep
, GFP_KERNEL
);
732 return ERR_PTR(-ENOMEM
);
734 ctx
->max_reqs
= max_reqs
;
736 spin_lock_init(&ctx
->ctx_lock
);
737 spin_lock_init(&ctx
->completion_lock
);
738 mutex_init(&ctx
->ring_lock
);
739 /* Protect against page migration throughout kiotx setup by keeping
740 * the ring_lock mutex held until setup is complete. */
741 mutex_lock(&ctx
->ring_lock
);
742 init_waitqueue_head(&ctx
->wait
);
744 INIT_LIST_HEAD(&ctx
->active_reqs
);
746 if (percpu_ref_init(&ctx
->users
, free_ioctx_users
, 0, GFP_KERNEL
))
749 if (percpu_ref_init(&ctx
->reqs
, free_ioctx_reqs
, 0, GFP_KERNEL
))
752 ctx
->cpu
= alloc_percpu(struct kioctx_cpu
);
756 err
= aio_setup_ring(ctx
, nr_events
);
760 atomic_set(&ctx
->reqs_available
, ctx
->nr_events
- 1);
761 ctx
->req_batch
= (ctx
->nr_events
- 1) / (num_possible_cpus() * 4);
762 if (ctx
->req_batch
< 1)
765 /* limit the number of system wide aios */
766 spin_lock(&aio_nr_lock
);
767 if (aio_nr
+ ctx
->max_reqs
> aio_max_nr
||
768 aio_nr
+ ctx
->max_reqs
< aio_nr
) {
769 spin_unlock(&aio_nr_lock
);
773 aio_nr
+= ctx
->max_reqs
;
774 spin_unlock(&aio_nr_lock
);
776 percpu_ref_get(&ctx
->users
); /* io_setup() will drop this ref */
777 percpu_ref_get(&ctx
->reqs
); /* free_ioctx_users() will drop this */
779 err
= ioctx_add_table(ctx
, mm
);
783 /* Release the ring_lock mutex now that all setup is complete. */
784 mutex_unlock(&ctx
->ring_lock
);
786 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
787 ctx
, ctx
->user_id
, mm
, ctx
->nr_events
);
791 aio_nr_sub(ctx
->max_reqs
);
793 atomic_set(&ctx
->dead
, 1);
795 vm_munmap(ctx
->mmap_base
, ctx
->mmap_size
);
798 mutex_unlock(&ctx
->ring_lock
);
799 free_percpu(ctx
->cpu
);
800 percpu_ref_exit(&ctx
->reqs
);
801 percpu_ref_exit(&ctx
->users
);
802 kmem_cache_free(kioctx_cachep
, ctx
);
803 pr_debug("error allocating ioctx %d\n", err
);
808 * Cancels all outstanding aio requests on an aio context. Used
809 * when the processes owning a context have all exited to encourage
810 * the rapid destruction of the kioctx.
812 static int kill_ioctx(struct mm_struct
*mm
, struct kioctx
*ctx
,
813 struct ctx_rq_wait
*wait
)
815 struct kioctx_table
*table
;
817 spin_lock(&mm
->ioctx_lock
);
818 if (atomic_xchg(&ctx
->dead
, 1)) {
819 spin_unlock(&mm
->ioctx_lock
);
823 table
= rcu_dereference_raw(mm
->ioctx_table
);
824 WARN_ON(ctx
!= rcu_access_pointer(table
->table
[ctx
->id
]));
825 RCU_INIT_POINTER(table
->table
[ctx
->id
], NULL
);
826 spin_unlock(&mm
->ioctx_lock
);
828 /* free_ioctx_reqs() will do the necessary RCU synchronization */
829 wake_up_all(&ctx
->wait
);
832 * It'd be more correct to do this in free_ioctx(), after all
833 * the outstanding kiocbs have finished - but by then io_destroy
834 * has already returned, so io_setup() could potentially return
835 * -EAGAIN with no ioctxs actually in use (as far as userspace
838 aio_nr_sub(ctx
->max_reqs
);
841 vm_munmap(ctx
->mmap_base
, ctx
->mmap_size
);
844 percpu_ref_kill(&ctx
->users
);
849 * exit_aio: called when the last user of mm goes away. At this point, there is
850 * no way for any new requests to be submited or any of the io_* syscalls to be
851 * called on the context.
853 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
856 void exit_aio(struct mm_struct
*mm
)
858 struct kioctx_table
*table
= rcu_dereference_raw(mm
->ioctx_table
);
859 struct ctx_rq_wait wait
;
865 atomic_set(&wait
.count
, table
->nr
);
866 init_completion(&wait
.comp
);
869 for (i
= 0; i
< table
->nr
; ++i
) {
871 rcu_dereference_protected(table
->table
[i
], true);
879 * We don't need to bother with munmap() here - exit_mmap(mm)
880 * is coming and it'll unmap everything. And we simply can't,
881 * this is not necessarily our ->mm.
882 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
883 * that it needs to unmap the area, just set it to 0.
886 kill_ioctx(mm
, ctx
, &wait
);
889 if (!atomic_sub_and_test(skipped
, &wait
.count
)) {
890 /* Wait until all IO for the context are done. */
891 wait_for_completion(&wait
.comp
);
894 RCU_INIT_POINTER(mm
->ioctx_table
, NULL
);
898 static void put_reqs_available(struct kioctx
*ctx
, unsigned nr
)
900 struct kioctx_cpu
*kcpu
;
903 local_irq_save(flags
);
904 kcpu
= this_cpu_ptr(ctx
->cpu
);
905 kcpu
->reqs_available
+= nr
;
907 while (kcpu
->reqs_available
>= ctx
->req_batch
* 2) {
908 kcpu
->reqs_available
-= ctx
->req_batch
;
909 atomic_add(ctx
->req_batch
, &ctx
->reqs_available
);
912 local_irq_restore(flags
);
915 static bool __get_reqs_available(struct kioctx
*ctx
)
917 struct kioctx_cpu
*kcpu
;
921 local_irq_save(flags
);
922 kcpu
= this_cpu_ptr(ctx
->cpu
);
923 if (!kcpu
->reqs_available
) {
924 int old
, avail
= atomic_read(&ctx
->reqs_available
);
927 if (avail
< ctx
->req_batch
)
931 avail
= atomic_cmpxchg(&ctx
->reqs_available
,
932 avail
, avail
- ctx
->req_batch
);
933 } while (avail
!= old
);
935 kcpu
->reqs_available
+= ctx
->req_batch
;
939 kcpu
->reqs_available
--;
941 local_irq_restore(flags
);
945 /* refill_reqs_available
946 * Updates the reqs_available reference counts used for tracking the
947 * number of free slots in the completion ring. This can be called
948 * from aio_complete() (to optimistically update reqs_available) or
949 * from aio_get_req() (the we're out of events case). It must be
950 * called holding ctx->completion_lock.
952 static void refill_reqs_available(struct kioctx
*ctx
, unsigned head
,
955 unsigned events_in_ring
, completed
;
957 /* Clamp head since userland can write to it. */
958 head
%= ctx
->nr_events
;
960 events_in_ring
= tail
- head
;
962 events_in_ring
= ctx
->nr_events
- (head
- tail
);
964 completed
= ctx
->completed_events
;
965 if (events_in_ring
< completed
)
966 completed
-= events_in_ring
;
973 ctx
->completed_events
-= completed
;
974 put_reqs_available(ctx
, completed
);
977 /* user_refill_reqs_available
978 * Called to refill reqs_available when aio_get_req() encounters an
979 * out of space in the completion ring.
981 static void user_refill_reqs_available(struct kioctx
*ctx
)
983 spin_lock_irq(&ctx
->completion_lock
);
984 if (ctx
->completed_events
) {
985 struct aio_ring
*ring
;
988 /* Access of ring->head may race with aio_read_events_ring()
989 * here, but that's okay since whether we read the old version
990 * or the new version, and either will be valid. The important
991 * part is that head cannot pass tail since we prevent
992 * aio_complete() from updating tail by holding
993 * ctx->completion_lock. Even if head is invalid, the check
994 * against ctx->completed_events below will make sure we do the
997 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1001 refill_reqs_available(ctx
, head
, ctx
->tail
);
1004 spin_unlock_irq(&ctx
->completion_lock
);
1007 static bool get_reqs_available(struct kioctx
*ctx
)
1009 if (__get_reqs_available(ctx
))
1011 user_refill_reqs_available(ctx
);
1012 return __get_reqs_available(ctx
);
1016 * Allocate a slot for an aio request.
1017 * Returns NULL if no requests are free.
1019 * The refcount is initialized to 2 - one for the async op completion,
1020 * one for the synchronous code that does this.
1022 static inline struct aio_kiocb
*aio_get_req(struct kioctx
*ctx
)
1024 struct aio_kiocb
*req
;
1026 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
);
1030 percpu_ref_get(&ctx
->reqs
);
1032 INIT_LIST_HEAD(&req
->ki_list
);
1033 refcount_set(&req
->ki_refcnt
, 2);
1034 req
->ki_eventfd
= NULL
;
1038 static struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
1040 struct aio_ring __user
*ring
= (void __user
*)ctx_id
;
1041 struct mm_struct
*mm
= current
->mm
;
1042 struct kioctx
*ctx
, *ret
= NULL
;
1043 struct kioctx_table
*table
;
1046 if (get_user(id
, &ring
->id
))
1050 table
= rcu_dereference(mm
->ioctx_table
);
1052 if (!table
|| id
>= table
->nr
)
1055 id
= array_index_nospec(id
, table
->nr
);
1056 ctx
= rcu_dereference(table
->table
[id
]);
1057 if (ctx
&& ctx
->user_id
== ctx_id
) {
1058 if (percpu_ref_tryget_live(&ctx
->users
))
1066 static inline void iocb_destroy(struct aio_kiocb
*iocb
)
1069 fput(iocb
->ki_filp
);
1070 percpu_ref_put(&iocb
->ki_ctx
->reqs
);
1071 kmem_cache_free(kiocb_cachep
, iocb
);
1075 * Called when the io request on the given iocb is complete.
1077 static void aio_complete(struct aio_kiocb
*iocb
)
1079 struct kioctx
*ctx
= iocb
->ki_ctx
;
1080 struct aio_ring
*ring
;
1081 struct io_event
*ev_page
, *event
;
1082 unsigned tail
, pos
, head
;
1083 unsigned long flags
;
1086 * Add a completion event to the ring buffer. Must be done holding
1087 * ctx->completion_lock to prevent other code from messing with the tail
1088 * pointer since we might be called from irq context.
1090 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
1093 pos
= tail
+ AIO_EVENTS_OFFSET
;
1095 if (++tail
>= ctx
->nr_events
)
1098 ev_page
= kmap_atomic(ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
]);
1099 event
= ev_page
+ pos
% AIO_EVENTS_PER_PAGE
;
1101 *event
= iocb
->ki_res
;
1103 kunmap_atomic(ev_page
);
1104 flush_dcache_page(ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
]);
1106 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx
, tail
, iocb
,
1107 (void __user
*)(unsigned long)iocb
->ki_res
.obj
,
1108 iocb
->ki_res
.data
, iocb
->ki_res
.res
, iocb
->ki_res
.res2
);
1110 /* after flagging the request as done, we
1111 * must never even look at it again
1113 smp_wmb(); /* make event visible before updating tail */
1117 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1120 kunmap_atomic(ring
);
1121 flush_dcache_page(ctx
->ring_pages
[0]);
1123 ctx
->completed_events
++;
1124 if (ctx
->completed_events
> 1)
1125 refill_reqs_available(ctx
, head
, tail
);
1126 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
1128 pr_debug("added to ring %p at [%u]\n", iocb
, tail
);
1131 * Check if the user asked us to deliver the result through an
1132 * eventfd. The eventfd_signal() function is safe to be called
1135 if (iocb
->ki_eventfd
) {
1136 eventfd_signal(iocb
->ki_eventfd
, 1);
1137 eventfd_ctx_put(iocb
->ki_eventfd
);
1141 * We have to order our ring_info tail store above and test
1142 * of the wait list below outside the wait lock. This is
1143 * like in wake_up_bit() where clearing a bit has to be
1144 * ordered with the unlocked test.
1148 if (waitqueue_active(&ctx
->wait
))
1149 wake_up(&ctx
->wait
);
1152 static inline void iocb_put(struct aio_kiocb
*iocb
)
1154 if (refcount_dec_and_test(&iocb
->ki_refcnt
)) {
1160 /* aio_read_events_ring
1161 * Pull an event off of the ioctx's event ring. Returns the number of
1164 static long aio_read_events_ring(struct kioctx
*ctx
,
1165 struct io_event __user
*event
, long nr
)
1167 struct aio_ring
*ring
;
1168 unsigned head
, tail
, pos
;
1173 * The mutex can block and wake us up and that will cause
1174 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1175 * and repeat. This should be rare enough that it doesn't cause
1176 * peformance issues. See the comment in read_events() for more detail.
1178 sched_annotate_sleep();
1179 mutex_lock(&ctx
->ring_lock
);
1181 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1182 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1185 kunmap_atomic(ring
);
1188 * Ensure that once we've read the current tail pointer, that
1189 * we also see the events that were stored up to the tail.
1193 pr_debug("h%u t%u m%u\n", head
, tail
, ctx
->nr_events
);
1198 head
%= ctx
->nr_events
;
1199 tail
%= ctx
->nr_events
;
1203 struct io_event
*ev
;
1206 avail
= (head
<= tail
? tail
: ctx
->nr_events
) - head
;
1210 pos
= head
+ AIO_EVENTS_OFFSET
;
1211 page
= ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
];
1212 pos
%= AIO_EVENTS_PER_PAGE
;
1214 avail
= min(avail
, nr
- ret
);
1215 avail
= min_t(long, avail
, AIO_EVENTS_PER_PAGE
- pos
);
1218 copy_ret
= copy_to_user(event
+ ret
, ev
+ pos
,
1219 sizeof(*ev
) * avail
);
1222 if (unlikely(copy_ret
)) {
1229 head
%= ctx
->nr_events
;
1232 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1234 kunmap_atomic(ring
);
1235 flush_dcache_page(ctx
->ring_pages
[0]);
1237 pr_debug("%li h%u t%u\n", ret
, head
, tail
);
1239 mutex_unlock(&ctx
->ring_lock
);
1244 static bool aio_read_events(struct kioctx
*ctx
, long min_nr
, long nr
,
1245 struct io_event __user
*event
, long *i
)
1247 long ret
= aio_read_events_ring(ctx
, event
+ *i
, nr
- *i
);
1252 if (unlikely(atomic_read(&ctx
->dead
)))
1258 return ret
< 0 || *i
>= min_nr
;
1261 static long read_events(struct kioctx
*ctx
, long min_nr
, long nr
,
1262 struct io_event __user
*event
,
1268 * Note that aio_read_events() is being called as the conditional - i.e.
1269 * we're calling it after prepare_to_wait() has set task state to
1270 * TASK_INTERRUPTIBLE.
1272 * But aio_read_events() can block, and if it blocks it's going to flip
1273 * the task state back to TASK_RUNNING.
1275 * This should be ok, provided it doesn't flip the state back to
1276 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1277 * will only happen if the mutex_lock() call blocks, and we then find
1278 * the ringbuffer empty. So in practice we should be ok, but it's
1279 * something to be aware of when touching this code.
1282 aio_read_events(ctx
, min_nr
, nr
, event
, &ret
);
1284 wait_event_interruptible_hrtimeout(ctx
->wait
,
1285 aio_read_events(ctx
, min_nr
, nr
, event
, &ret
),
1291 * Create an aio_context capable of receiving at least nr_events.
1292 * ctxp must not point to an aio_context that already exists, and
1293 * must be initialized to 0 prior to the call. On successful
1294 * creation of the aio_context, *ctxp is filled in with the resulting
1295 * handle. May fail with -EINVAL if *ctxp is not initialized,
1296 * if the specified nr_events exceeds internal limits. May fail
1297 * with -EAGAIN if the specified nr_events exceeds the user's limit
1298 * of available events. May fail with -ENOMEM if insufficient kernel
1299 * resources are available. May fail with -EFAULT if an invalid
1300 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1303 SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, aio_context_t __user
*, ctxp
)
1305 struct kioctx
*ioctx
= NULL
;
1309 ret
= get_user(ctx
, ctxp
);
1314 if (unlikely(ctx
|| nr_events
== 0)) {
1315 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1320 ioctx
= ioctx_alloc(nr_events
);
1321 ret
= PTR_ERR(ioctx
);
1322 if (!IS_ERR(ioctx
)) {
1323 ret
= put_user(ioctx
->user_id
, ctxp
);
1325 kill_ioctx(current
->mm
, ioctx
, NULL
);
1326 percpu_ref_put(&ioctx
->users
);
1333 #ifdef CONFIG_COMPAT
1334 COMPAT_SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, u32 __user
*, ctx32p
)
1336 struct kioctx
*ioctx
= NULL
;
1340 ret
= get_user(ctx
, ctx32p
);
1345 if (unlikely(ctx
|| nr_events
== 0)) {
1346 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1351 ioctx
= ioctx_alloc(nr_events
);
1352 ret
= PTR_ERR(ioctx
);
1353 if (!IS_ERR(ioctx
)) {
1354 /* truncating is ok because it's a user address */
1355 ret
= put_user((u32
)ioctx
->user_id
, ctx32p
);
1357 kill_ioctx(current
->mm
, ioctx
, NULL
);
1358 percpu_ref_put(&ioctx
->users
);
1367 * Destroy the aio_context specified. May cancel any outstanding
1368 * AIOs and block on completion. Will fail with -ENOSYS if not
1369 * implemented. May fail with -EINVAL if the context pointed to
1372 SYSCALL_DEFINE1(io_destroy
, aio_context_t
, ctx
)
1374 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1375 if (likely(NULL
!= ioctx
)) {
1376 struct ctx_rq_wait wait
;
1379 init_completion(&wait
.comp
);
1380 atomic_set(&wait
.count
, 1);
1382 /* Pass requests_done to kill_ioctx() where it can be set
1383 * in a thread-safe way. If we try to set it here then we have
1384 * a race condition if two io_destroy() called simultaneously.
1386 ret
= kill_ioctx(current
->mm
, ioctx
, &wait
);
1387 percpu_ref_put(&ioctx
->users
);
1389 /* Wait until all IO for the context are done. Otherwise kernel
1390 * keep using user-space buffers even if user thinks the context
1394 wait_for_completion(&wait
.comp
);
1398 pr_debug("EINVAL: invalid context id\n");
1402 static void aio_remove_iocb(struct aio_kiocb
*iocb
)
1404 struct kioctx
*ctx
= iocb
->ki_ctx
;
1405 unsigned long flags
;
1407 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
1408 list_del(&iocb
->ki_list
);
1409 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
1412 static void aio_complete_rw(struct kiocb
*kiocb
, long res
, long res2
)
1414 struct aio_kiocb
*iocb
= container_of(kiocb
, struct aio_kiocb
, rw
);
1416 if (!list_empty_careful(&iocb
->ki_list
))
1417 aio_remove_iocb(iocb
);
1419 if (kiocb
->ki_flags
& IOCB_WRITE
) {
1420 struct inode
*inode
= file_inode(kiocb
->ki_filp
);
1423 * Tell lockdep we inherited freeze protection from submission
1426 if (S_ISREG(inode
->i_mode
))
1427 __sb_writers_acquired(inode
->i_sb
, SB_FREEZE_WRITE
);
1428 file_end_write(kiocb
->ki_filp
);
1431 iocb
->ki_res
.res
= res
;
1432 iocb
->ki_res
.res2
= res2
;
1436 static int aio_prep_rw(struct kiocb
*req
, const struct iocb
*iocb
)
1440 req
->ki_complete
= aio_complete_rw
;
1441 req
->private = NULL
;
1442 req
->ki_pos
= iocb
->aio_offset
;
1443 req
->ki_flags
= iocb_flags(req
->ki_filp
);
1444 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
)
1445 req
->ki_flags
|= IOCB_EVENTFD
;
1446 req
->ki_hint
= ki_hint_validate(file_write_hint(req
->ki_filp
));
1447 if (iocb
->aio_flags
& IOCB_FLAG_IOPRIO
) {
1449 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1450 * aio_reqprio is interpreted as an I/O scheduling
1451 * class and priority.
1453 ret
= ioprio_check_cap(iocb
->aio_reqprio
);
1455 pr_debug("aio ioprio check cap error: %d\n", ret
);
1459 req
->ki_ioprio
= iocb
->aio_reqprio
;
1461 req
->ki_ioprio
= IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE
, 0);
1463 ret
= kiocb_set_rw_flags(req
, iocb
->aio_rw_flags
);
1467 req
->ki_flags
&= ~IOCB_HIPRI
; /* no one is going to poll for this I/O */
1471 static int aio_setup_rw(int rw
, const struct iocb
*iocb
, struct iovec
**iovec
,
1472 bool vectored
, bool compat
, struct iov_iter
*iter
)
1474 void __user
*buf
= (void __user
*)(uintptr_t)iocb
->aio_buf
;
1475 size_t len
= iocb
->aio_nbytes
;
1478 ssize_t ret
= import_single_range(rw
, buf
, len
, *iovec
, iter
);
1482 #ifdef CONFIG_COMPAT
1484 return compat_import_iovec(rw
, buf
, len
, UIO_FASTIOV
, iovec
,
1487 return import_iovec(rw
, buf
, len
, UIO_FASTIOV
, iovec
, iter
);
1490 static inline void aio_rw_done(struct kiocb
*req
, ssize_t ret
)
1496 case -ERESTARTNOINTR
:
1497 case -ERESTARTNOHAND
:
1498 case -ERESTART_RESTARTBLOCK
:
1500 * There's no easy way to restart the syscall since other AIO's
1501 * may be already running. Just fail this IO with EINTR.
1506 req
->ki_complete(req
, ret
, 0);
1510 static ssize_t
aio_read(struct kiocb
*req
, const struct iocb
*iocb
,
1511 bool vectored
, bool compat
)
1513 struct iovec inline_vecs
[UIO_FASTIOV
], *iovec
= inline_vecs
;
1514 struct iov_iter iter
;
1518 ret
= aio_prep_rw(req
, iocb
);
1521 file
= req
->ki_filp
;
1522 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1525 if (unlikely(!file
->f_op
->read_iter
))
1528 ret
= aio_setup_rw(READ
, iocb
, &iovec
, vectored
, compat
, &iter
);
1531 ret
= rw_verify_area(READ
, file
, &req
->ki_pos
, iov_iter_count(&iter
));
1533 aio_rw_done(req
, call_read_iter(file
, req
, &iter
));
1538 static ssize_t
aio_write(struct kiocb
*req
, const struct iocb
*iocb
,
1539 bool vectored
, bool compat
)
1541 struct iovec inline_vecs
[UIO_FASTIOV
], *iovec
= inline_vecs
;
1542 struct iov_iter iter
;
1546 ret
= aio_prep_rw(req
, iocb
);
1549 file
= req
->ki_filp
;
1551 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1553 if (unlikely(!file
->f_op
->write_iter
))
1556 ret
= aio_setup_rw(WRITE
, iocb
, &iovec
, vectored
, compat
, &iter
);
1559 ret
= rw_verify_area(WRITE
, file
, &req
->ki_pos
, iov_iter_count(&iter
));
1562 * Open-code file_start_write here to grab freeze protection,
1563 * which will be released by another thread in
1564 * aio_complete_rw(). Fool lockdep by telling it the lock got
1565 * released so that it doesn't complain about the held lock when
1566 * we return to userspace.
1568 if (S_ISREG(file_inode(file
)->i_mode
)) {
1569 __sb_start_write(file_inode(file
)->i_sb
, SB_FREEZE_WRITE
, true);
1570 __sb_writers_release(file_inode(file
)->i_sb
, SB_FREEZE_WRITE
);
1572 req
->ki_flags
|= IOCB_WRITE
;
1573 aio_rw_done(req
, call_write_iter(file
, req
, &iter
));
1579 static void aio_fsync_work(struct work_struct
*work
)
1581 struct aio_kiocb
*iocb
= container_of(work
, struct aio_kiocb
, fsync
.work
);
1583 iocb
->ki_res
.res
= vfs_fsync(iocb
->fsync
.file
, iocb
->fsync
.datasync
);
1587 static int aio_fsync(struct fsync_iocb
*req
, const struct iocb
*iocb
,
1590 if (unlikely(iocb
->aio_buf
|| iocb
->aio_offset
|| iocb
->aio_nbytes
||
1591 iocb
->aio_rw_flags
))
1594 if (unlikely(!req
->file
->f_op
->fsync
))
1597 req
->datasync
= datasync
;
1598 INIT_WORK(&req
->work
, aio_fsync_work
);
1599 schedule_work(&req
->work
);
1603 static void aio_poll_complete_work(struct work_struct
*work
)
1605 struct poll_iocb
*req
= container_of(work
, struct poll_iocb
, work
);
1606 struct aio_kiocb
*iocb
= container_of(req
, struct aio_kiocb
, poll
);
1607 struct poll_table_struct pt
= { ._key
= req
->events
};
1608 struct kioctx
*ctx
= iocb
->ki_ctx
;
1611 if (!READ_ONCE(req
->cancelled
))
1612 mask
= vfs_poll(req
->file
, &pt
) & req
->events
;
1615 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1616 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1617 * synchronize with them. In the cancellation case the list_del_init
1618 * itself is not actually needed, but harmless so we keep it in to
1619 * avoid further branches in the fast path.
1621 spin_lock_irq(&ctx
->ctx_lock
);
1622 if (!mask
&& !READ_ONCE(req
->cancelled
)) {
1623 add_wait_queue(req
->head
, &req
->wait
);
1624 spin_unlock_irq(&ctx
->ctx_lock
);
1627 list_del_init(&iocb
->ki_list
);
1628 iocb
->ki_res
.res
= mangle_poll(mask
);
1630 spin_unlock_irq(&ctx
->ctx_lock
);
1635 /* assumes we are called with irqs disabled */
1636 static int aio_poll_cancel(struct kiocb
*iocb
)
1638 struct aio_kiocb
*aiocb
= container_of(iocb
, struct aio_kiocb
, rw
);
1639 struct poll_iocb
*req
= &aiocb
->poll
;
1641 spin_lock(&req
->head
->lock
);
1642 WRITE_ONCE(req
->cancelled
, true);
1643 if (!list_empty(&req
->wait
.entry
)) {
1644 list_del_init(&req
->wait
.entry
);
1645 schedule_work(&aiocb
->poll
.work
);
1647 spin_unlock(&req
->head
->lock
);
1652 static int aio_poll_wake(struct wait_queue_entry
*wait
, unsigned mode
, int sync
,
1655 struct poll_iocb
*req
= container_of(wait
, struct poll_iocb
, wait
);
1656 struct aio_kiocb
*iocb
= container_of(req
, struct aio_kiocb
, poll
);
1657 __poll_t mask
= key_to_poll(key
);
1658 unsigned long flags
;
1660 /* for instances that support it check for an event match first: */
1661 if (mask
&& !(mask
& req
->events
))
1664 list_del_init(&req
->wait
.entry
);
1666 if (mask
&& spin_trylock_irqsave(&iocb
->ki_ctx
->ctx_lock
, flags
)) {
1668 * Try to complete the iocb inline if we can. Use
1669 * irqsave/irqrestore because not all filesystems (e.g. fuse)
1670 * call this function with IRQs disabled and because IRQs
1671 * have to be disabled before ctx_lock is obtained.
1673 list_del(&iocb
->ki_list
);
1674 iocb
->ki_res
.res
= mangle_poll(mask
);
1676 spin_unlock_irqrestore(&iocb
->ki_ctx
->ctx_lock
, flags
);
1679 schedule_work(&req
->work
);
1684 struct aio_poll_table
{
1685 struct poll_table_struct pt
;
1686 struct aio_kiocb
*iocb
;
1691 aio_poll_queue_proc(struct file
*file
, struct wait_queue_head
*head
,
1692 struct poll_table_struct
*p
)
1694 struct aio_poll_table
*pt
= container_of(p
, struct aio_poll_table
, pt
);
1696 /* multiple wait queues per file are not supported */
1697 if (unlikely(pt
->iocb
->poll
.head
)) {
1698 pt
->error
= -EINVAL
;
1703 pt
->iocb
->poll
.head
= head
;
1704 add_wait_queue(head
, &pt
->iocb
->poll
.wait
);
1707 static ssize_t
aio_poll(struct aio_kiocb
*aiocb
, const struct iocb
*iocb
)
1709 struct kioctx
*ctx
= aiocb
->ki_ctx
;
1710 struct poll_iocb
*req
= &aiocb
->poll
;
1711 struct aio_poll_table apt
;
1712 bool cancel
= false;
1715 /* reject any unknown events outside the normal event mask. */
1716 if ((u16
)iocb
->aio_buf
!= iocb
->aio_buf
)
1718 /* reject fields that are not defined for poll */
1719 if (iocb
->aio_offset
|| iocb
->aio_nbytes
|| iocb
->aio_rw_flags
)
1722 INIT_WORK(&req
->work
, aio_poll_complete_work
);
1723 req
->events
= demangle_poll(iocb
->aio_buf
) | EPOLLERR
| EPOLLHUP
;
1727 req
->cancelled
= false;
1729 apt
.pt
._qproc
= aio_poll_queue_proc
;
1730 apt
.pt
._key
= req
->events
;
1732 apt
.error
= -EINVAL
; /* same as no support for IOCB_CMD_POLL */
1734 /* initialized the list so that we can do list_empty checks */
1735 INIT_LIST_HEAD(&req
->wait
.entry
);
1736 init_waitqueue_func_entry(&req
->wait
, aio_poll_wake
);
1738 mask
= vfs_poll(req
->file
, &apt
.pt
) & req
->events
;
1739 spin_lock_irq(&ctx
->ctx_lock
);
1740 if (likely(req
->head
)) {
1741 spin_lock(&req
->head
->lock
);
1742 if (unlikely(list_empty(&req
->wait
.entry
))) {
1748 if (mask
|| apt
.error
) {
1749 list_del_init(&req
->wait
.entry
);
1750 } else if (cancel
) {
1751 WRITE_ONCE(req
->cancelled
, true);
1752 } else if (!req
->done
) { /* actually waiting for an event */
1753 list_add_tail(&aiocb
->ki_list
, &ctx
->active_reqs
);
1754 aiocb
->ki_cancel
= aio_poll_cancel
;
1756 spin_unlock(&req
->head
->lock
);
1758 if (mask
) { /* no async, we'd stolen it */
1759 aiocb
->ki_res
.res
= mangle_poll(mask
);
1762 spin_unlock_irq(&ctx
->ctx_lock
);
1768 static int __io_submit_one(struct kioctx
*ctx
, const struct iocb
*iocb
,
1769 struct iocb __user
*user_iocb
, bool compat
)
1771 struct aio_kiocb
*req
;
1774 /* enforce forwards compatibility on users */
1775 if (unlikely(iocb
->aio_reserved2
)) {
1776 pr_debug("EINVAL: reserve field set\n");
1780 /* prevent overflows */
1782 (iocb
->aio_buf
!= (unsigned long)iocb
->aio_buf
) ||
1783 (iocb
->aio_nbytes
!= (size_t)iocb
->aio_nbytes
) ||
1784 ((ssize_t
)iocb
->aio_nbytes
< 0)
1786 pr_debug("EINVAL: overflow check\n");
1790 if (!get_reqs_available(ctx
))
1794 req
= aio_get_req(ctx
);
1796 goto out_put_reqs_available
;
1798 req
->ki_filp
= fget(iocb
->aio_fildes
);
1800 if (unlikely(!req
->ki_filp
))
1803 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
) {
1805 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1806 * instance of the file* now. The file descriptor must be
1807 * an eventfd() fd, and will be signaled for each completed
1808 * event using the eventfd_signal() function.
1810 req
->ki_eventfd
= eventfd_ctx_fdget((int) iocb
->aio_resfd
);
1811 if (IS_ERR(req
->ki_eventfd
)) {
1812 ret
= PTR_ERR(req
->ki_eventfd
);
1813 req
->ki_eventfd
= NULL
;
1818 ret
= put_user(KIOCB_KEY
, &user_iocb
->aio_key
);
1819 if (unlikely(ret
)) {
1820 pr_debug("EFAULT: aio_key\n");
1824 req
->ki_res
.obj
= (u64
)(unsigned long)user_iocb
;
1825 req
->ki_res
.data
= iocb
->aio_data
;
1826 req
->ki_res
.res
= 0;
1827 req
->ki_res
.res2
= 0;
1829 switch (iocb
->aio_lio_opcode
) {
1830 case IOCB_CMD_PREAD
:
1831 ret
= aio_read(&req
->rw
, iocb
, false, compat
);
1833 case IOCB_CMD_PWRITE
:
1834 ret
= aio_write(&req
->rw
, iocb
, false, compat
);
1836 case IOCB_CMD_PREADV
:
1837 ret
= aio_read(&req
->rw
, iocb
, true, compat
);
1839 case IOCB_CMD_PWRITEV
:
1840 ret
= aio_write(&req
->rw
, iocb
, true, compat
);
1842 case IOCB_CMD_FSYNC
:
1843 ret
= aio_fsync(&req
->fsync
, iocb
, false);
1845 case IOCB_CMD_FDSYNC
:
1846 ret
= aio_fsync(&req
->fsync
, iocb
, true);
1849 ret
= aio_poll(req
, iocb
);
1852 pr_debug("invalid aio operation %d\n", iocb
->aio_lio_opcode
);
1857 /* Done with the synchronous reference */
1861 * If ret is 0, we'd either done aio_complete() ourselves or have
1862 * arranged for that to be done asynchronously. Anything non-zero
1863 * means that we need to destroy req ourselves.
1869 if (req
->ki_eventfd
)
1870 eventfd_ctx_put(req
->ki_eventfd
);
1872 out_put_reqs_available
:
1873 put_reqs_available(ctx
, 1);
1877 static int io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1882 if (unlikely(copy_from_user(&iocb
, user_iocb
, sizeof(iocb
))))
1885 return __io_submit_one(ctx
, &iocb
, user_iocb
, compat
);
1889 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1890 * the number of iocbs queued. May return -EINVAL if the aio_context
1891 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1892 * *iocbpp[0] is not properly initialized, if the operation specified
1893 * is invalid for the file descriptor in the iocb. May fail with
1894 * -EFAULT if any of the data structures point to invalid data. May
1895 * fail with -EBADF if the file descriptor specified in the first
1896 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1897 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1898 * fail with -ENOSYS if not implemented.
1900 SYSCALL_DEFINE3(io_submit
, aio_context_t
, ctx_id
, long, nr
,
1901 struct iocb __user
* __user
*, iocbpp
)
1906 struct blk_plug plug
;
1908 if (unlikely(nr
< 0))
1911 ctx
= lookup_ioctx(ctx_id
);
1912 if (unlikely(!ctx
)) {
1913 pr_debug("EINVAL: invalid context id\n");
1917 if (nr
> ctx
->nr_events
)
1918 nr
= ctx
->nr_events
;
1920 blk_start_plug(&plug
);
1921 for (i
= 0; i
< nr
; i
++) {
1922 struct iocb __user
*user_iocb
;
1924 if (unlikely(get_user(user_iocb
, iocbpp
+ i
))) {
1929 ret
= io_submit_one(ctx
, user_iocb
, false);
1933 blk_finish_plug(&plug
);
1935 percpu_ref_put(&ctx
->users
);
1939 #ifdef CONFIG_COMPAT
1940 COMPAT_SYSCALL_DEFINE3(io_submit
, compat_aio_context_t
, ctx_id
,
1941 int, nr
, compat_uptr_t __user
*, iocbpp
)
1946 struct blk_plug plug
;
1948 if (unlikely(nr
< 0))
1951 ctx
= lookup_ioctx(ctx_id
);
1952 if (unlikely(!ctx
)) {
1953 pr_debug("EINVAL: invalid context id\n");
1957 if (nr
> ctx
->nr_events
)
1958 nr
= ctx
->nr_events
;
1960 blk_start_plug(&plug
);
1961 for (i
= 0; i
< nr
; i
++) {
1962 compat_uptr_t user_iocb
;
1964 if (unlikely(get_user(user_iocb
, iocbpp
+ i
))) {
1969 ret
= io_submit_one(ctx
, compat_ptr(user_iocb
), true);
1973 blk_finish_plug(&plug
);
1975 percpu_ref_put(&ctx
->users
);
1981 * Attempts to cancel an iocb previously passed to io_submit. If
1982 * the operation is successfully cancelled, the resulting event is
1983 * copied into the memory pointed to by result without being placed
1984 * into the completion queue and 0 is returned. May fail with
1985 * -EFAULT if any of the data structures pointed to are invalid.
1986 * May fail with -EINVAL if aio_context specified by ctx_id is
1987 * invalid. May fail with -EAGAIN if the iocb specified was not
1988 * cancelled. Will fail with -ENOSYS if not implemented.
1990 SYSCALL_DEFINE3(io_cancel
, aio_context_t
, ctx_id
, struct iocb __user
*, iocb
,
1991 struct io_event __user
*, result
)
1994 struct aio_kiocb
*kiocb
;
1997 u64 obj
= (u64
)(unsigned long)iocb
;
1999 if (unlikely(get_user(key
, &iocb
->aio_key
)))
2001 if (unlikely(key
!= KIOCB_KEY
))
2004 ctx
= lookup_ioctx(ctx_id
);
2008 spin_lock_irq(&ctx
->ctx_lock
);
2009 /* TODO: use a hash or array, this sucks. */
2010 list_for_each_entry(kiocb
, &ctx
->active_reqs
, ki_list
) {
2011 if (kiocb
->ki_res
.obj
== obj
) {
2012 ret
= kiocb
->ki_cancel(&kiocb
->rw
);
2013 list_del_init(&kiocb
->ki_list
);
2017 spin_unlock_irq(&ctx
->ctx_lock
);
2021 * The result argument is no longer used - the io_event is
2022 * always delivered via the ring buffer. -EINPROGRESS indicates
2023 * cancellation is progress:
2028 percpu_ref_put(&ctx
->users
);
2033 static long do_io_getevents(aio_context_t ctx_id
,
2036 struct io_event __user
*events
,
2037 struct timespec64
*ts
)
2039 ktime_t until
= ts
? timespec64_to_ktime(*ts
) : KTIME_MAX
;
2040 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
2043 if (likely(ioctx
)) {
2044 if (likely(min_nr
<= nr
&& min_nr
>= 0))
2045 ret
= read_events(ioctx
, min_nr
, nr
, events
, until
);
2046 percpu_ref_put(&ioctx
->users
);
2053 * Attempts to read at least min_nr events and up to nr events from
2054 * the completion queue for the aio_context specified by ctx_id. If
2055 * it succeeds, the number of read events is returned. May fail with
2056 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2057 * out of range, if timeout is out of range. May fail with -EFAULT
2058 * if any of the memory specified is invalid. May return 0 or
2059 * < min_nr if the timeout specified by timeout has elapsed
2060 * before sufficient events are available, where timeout == NULL
2061 * specifies an infinite timeout. Note that the timeout pointed to by
2062 * timeout is relative. Will fail with -ENOSYS if not implemented.
2064 SYSCALL_DEFINE5(io_getevents
, aio_context_t
, ctx_id
,
2067 struct io_event __user
*, events
,
2068 struct timespec __user
*, timeout
)
2070 struct timespec64 ts
;
2073 if (timeout
&& unlikely(get_timespec64(&ts
, timeout
)))
2076 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &ts
: NULL
);
2077 if (!ret
&& signal_pending(current
))
2082 struct __aio_sigset
{
2083 const sigset_t __user
*sigmask
;
2087 SYSCALL_DEFINE6(io_pgetevents
,
2088 aio_context_t
, ctx_id
,
2091 struct io_event __user
*, events
,
2092 struct timespec __user
*, timeout
,
2093 const struct __aio_sigset __user
*, usig
)
2095 struct __aio_sigset ksig
= { NULL
, };
2096 sigset_t ksigmask
, sigsaved
;
2097 struct timespec64 ts
;
2100 if (timeout
&& unlikely(get_timespec64(&ts
, timeout
)))
2103 if (usig
&& copy_from_user(&ksig
, usig
, sizeof(ksig
)))
2107 if (ksig
.sigsetsize
!= sizeof(sigset_t
))
2109 if (copy_from_user(&ksigmask
, ksig
.sigmask
, sizeof(ksigmask
)))
2111 sigdelsetmask(&ksigmask
, sigmask(SIGKILL
) | sigmask(SIGSTOP
));
2112 sigprocmask(SIG_SETMASK
, &ksigmask
, &sigsaved
);
2115 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &ts
: NULL
);
2116 if (signal_pending(current
)) {
2118 current
->saved_sigmask
= sigsaved
;
2119 set_restore_sigmask();
2123 ret
= -ERESTARTNOHAND
;
2126 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
2132 #ifdef CONFIG_COMPAT
2133 COMPAT_SYSCALL_DEFINE5(io_getevents
, compat_aio_context_t
, ctx_id
,
2134 compat_long_t
, min_nr
,
2136 struct io_event __user
*, events
,
2137 struct compat_timespec __user
*, timeout
)
2139 struct timespec64 t
;
2142 if (timeout
&& compat_get_timespec64(&t
, timeout
))
2145 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &t
: NULL
);
2146 if (!ret
&& signal_pending(current
))
2152 struct __compat_aio_sigset
{
2153 compat_sigset_t __user
*sigmask
;
2154 compat_size_t sigsetsize
;
2157 COMPAT_SYSCALL_DEFINE6(io_pgetevents
,
2158 compat_aio_context_t
, ctx_id
,
2159 compat_long_t
, min_nr
,
2161 struct io_event __user
*, events
,
2162 struct compat_timespec __user
*, timeout
,
2163 const struct __compat_aio_sigset __user
*, usig
)
2165 struct __compat_aio_sigset ksig
= { NULL
, };
2166 sigset_t ksigmask
, sigsaved
;
2167 struct timespec64 t
;
2170 if (timeout
&& compat_get_timespec64(&t
, timeout
))
2173 if (usig
&& copy_from_user(&ksig
, usig
, sizeof(ksig
)))
2177 if (ksig
.sigsetsize
!= sizeof(compat_sigset_t
))
2179 if (get_compat_sigset(&ksigmask
, ksig
.sigmask
))
2181 sigdelsetmask(&ksigmask
, sigmask(SIGKILL
) | sigmask(SIGSTOP
));
2182 sigprocmask(SIG_SETMASK
, &ksigmask
, &sigsaved
);
2185 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &t
: NULL
);
2186 if (signal_pending(current
)) {
2188 current
->saved_sigmask
= sigsaved
;
2189 set_restore_sigmask();
2192 ret
= -ERESTARTNOHAND
;
2195 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);