2 * Copyright (C) 2010 Red Hat, Inc.
3 * Copyright (c) 2016-2018 Christoph Hellwig.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 #include <linux/module.h>
15 #include <linux/compiler.h>
17 #include <linux/iomap.h>
18 #include <linux/uaccess.h>
19 #include <linux/gfp.h>
20 #include <linux/migrate.h>
22 #include <linux/mm_inline.h>
23 #include <linux/swap.h>
24 #include <linux/pagemap.h>
25 #include <linux/pagevec.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/backing-dev.h>
29 #include <linux/buffer_head.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/dax.h>
32 #include <linux/sched/signal.h>
33 #include <linux/swap.h>
38 * Execute a iomap write on a segment of the mapping that spans a
39 * contiguous range of pages that have identical block mapping state.
41 * This avoids the need to map pages individually, do individual allocations
42 * for each page and most importantly avoid the need for filesystem specific
43 * locking per page. Instead, all the operations are amortised over the entire
44 * range of pages. It is assumed that the filesystems will lock whatever
45 * resources they require in the iomap_begin call, and release them in the
49 iomap_apply(struct inode
*inode
, loff_t pos
, loff_t length
, unsigned flags
,
50 const struct iomap_ops
*ops
, void *data
, iomap_actor_t actor
)
52 struct iomap iomap
= { 0 };
53 loff_t written
= 0, ret
;
56 * Need to map a range from start position for length bytes. This can
57 * span multiple pages - it is only guaranteed to return a range of a
58 * single type of pages (e.g. all into a hole, all mapped or all
59 * unwritten). Failure at this point has nothing to undo.
61 * If allocation is required for this range, reserve the space now so
62 * that the allocation is guaranteed to succeed later on. Once we copy
63 * the data into the page cache pages, then we cannot fail otherwise we
64 * expose transient stale data. If the reserve fails, we can safely
65 * back out at this point as there is nothing to undo.
67 ret
= ops
->iomap_begin(inode
, pos
, length
, flags
, &iomap
);
70 if (WARN_ON(iomap
.offset
> pos
))
72 if (WARN_ON(iomap
.length
== 0))
76 * Cut down the length to the one actually provided by the filesystem,
77 * as it might not be able to give us the whole size that we requested.
79 if (iomap
.offset
+ iomap
.length
< pos
+ length
)
80 length
= iomap
.offset
+ iomap
.length
- pos
;
83 * Now that we have guaranteed that the space allocation will succeed.
84 * we can do the copy-in page by page without having to worry about
85 * failures exposing transient data.
87 written
= actor(inode
, pos
, length
, data
, &iomap
);
90 * Now the data has been copied, commit the range we've copied. This
91 * should not fail unless the filesystem has had a fatal error.
94 ret
= ops
->iomap_end(inode
, pos
, length
,
95 written
> 0 ? written
: 0,
99 return written
? written
: ret
;
103 iomap_sector(struct iomap
*iomap
, loff_t pos
)
105 return (iomap
->addr
+ pos
- iomap
->offset
) >> SECTOR_SHIFT
;
108 static struct iomap_page
*
109 iomap_page_create(struct inode
*inode
, struct page
*page
)
111 struct iomap_page
*iop
= to_iomap_page(page
);
113 if (iop
|| i_blocksize(inode
) == PAGE_SIZE
)
116 iop
= kmalloc(sizeof(*iop
), GFP_NOFS
| __GFP_NOFAIL
);
117 atomic_set(&iop
->read_count
, 0);
118 atomic_set(&iop
->write_count
, 0);
119 bitmap_zero(iop
->uptodate
, PAGE_SIZE
/ SECTOR_SIZE
);
122 * migrate_page_move_mapping() assumes that pages with private data have
123 * their count elevated by 1.
126 set_page_private(page
, (unsigned long)iop
);
127 SetPagePrivate(page
);
132 iomap_page_release(struct page
*page
)
134 struct iomap_page
*iop
= to_iomap_page(page
);
138 WARN_ON_ONCE(atomic_read(&iop
->read_count
));
139 WARN_ON_ONCE(atomic_read(&iop
->write_count
));
140 ClearPagePrivate(page
);
141 set_page_private(page
, 0);
147 * Calculate the range inside the page that we actually need to read.
150 iomap_adjust_read_range(struct inode
*inode
, struct iomap_page
*iop
,
151 loff_t
*pos
, loff_t length
, unsigned *offp
, unsigned *lenp
)
153 unsigned block_bits
= inode
->i_blkbits
;
154 unsigned block_size
= (1 << block_bits
);
155 unsigned poff
= offset_in_page(*pos
);
156 unsigned plen
= min_t(loff_t
, PAGE_SIZE
- poff
, length
);
157 unsigned first
= poff
>> block_bits
;
158 unsigned last
= (poff
+ plen
- 1) >> block_bits
;
159 unsigned end
= offset_in_page(i_size_read(inode
)) >> block_bits
;
162 * If the block size is smaller than the page size we need to check the
163 * per-block uptodate status and adjust the offset and length if needed
164 * to avoid reading in already uptodate ranges.
169 /* move forward for each leading block marked uptodate */
170 for (i
= first
; i
<= last
; i
++) {
171 if (!test_bit(i
, iop
->uptodate
))
179 /* truncate len if we find any trailing uptodate block(s) */
180 for ( ; i
<= last
; i
++) {
181 if (test_bit(i
, iop
->uptodate
)) {
182 plen
-= (last
- i
+ 1) * block_size
;
190 * If the extent spans the block that contains the i_size we need to
191 * handle both halves separately so that we properly zero data in the
192 * page cache for blocks that are entirely outside of i_size.
194 if (first
<= end
&& last
> end
)
195 plen
-= (last
- end
) * block_size
;
202 iomap_set_range_uptodate(struct page
*page
, unsigned off
, unsigned len
)
204 struct iomap_page
*iop
= to_iomap_page(page
);
205 struct inode
*inode
= page
->mapping
->host
;
206 unsigned first
= off
>> inode
->i_blkbits
;
207 unsigned last
= (off
+ len
- 1) >> inode
->i_blkbits
;
209 bool uptodate
= true;
212 for (i
= 0; i
< PAGE_SIZE
/ i_blocksize(inode
); i
++) {
213 if (i
>= first
&& i
<= last
)
214 set_bit(i
, iop
->uptodate
);
215 else if (!test_bit(i
, iop
->uptodate
))
220 if (uptodate
&& !PageError(page
))
221 SetPageUptodate(page
);
225 iomap_read_finish(struct iomap_page
*iop
, struct page
*page
)
227 if (!iop
|| atomic_dec_and_test(&iop
->read_count
))
232 iomap_read_page_end_io(struct bio_vec
*bvec
, int error
)
234 struct page
*page
= bvec
->bv_page
;
235 struct iomap_page
*iop
= to_iomap_page(page
);
237 if (unlikely(error
)) {
238 ClearPageUptodate(page
);
241 iomap_set_range_uptodate(page
, bvec
->bv_offset
, bvec
->bv_len
);
244 iomap_read_finish(iop
, page
);
248 iomap_read_inline_data(struct inode
*inode
, struct page
*page
,
251 size_t size
= i_size_read(inode
);
254 if (PageUptodate(page
))
258 BUG_ON(size
> PAGE_SIZE
- offset_in_page(iomap
->inline_data
));
260 addr
= kmap_atomic(page
);
261 memcpy(addr
, iomap
->inline_data
, size
);
262 memset(addr
+ size
, 0, PAGE_SIZE
- size
);
264 SetPageUptodate(page
);
268 iomap_read_end_io(struct bio
*bio
)
270 int error
= blk_status_to_errno(bio
->bi_status
);
271 struct bio_vec
*bvec
;
274 bio_for_each_segment_all(bvec
, bio
, i
)
275 iomap_read_page_end_io(bvec
, error
);
279 struct iomap_readpage_ctx
{
280 struct page
*cur_page
;
281 bool cur_page_in_bio
;
284 struct list_head
*pages
;
288 iomap_readpage_actor(struct inode
*inode
, loff_t pos
, loff_t length
, void *data
,
291 struct iomap_readpage_ctx
*ctx
= data
;
292 struct page
*page
= ctx
->cur_page
;
293 struct iomap_page
*iop
= iomap_page_create(inode
, page
);
294 bool is_contig
= false;
295 loff_t orig_pos
= pos
;
299 if (iomap
->type
== IOMAP_INLINE
) {
301 iomap_read_inline_data(inode
, page
, iomap
);
305 /* zero post-eof blocks as the page may be mapped */
306 iomap_adjust_read_range(inode
, iop
, &pos
, length
, &poff
, &plen
);
310 if (iomap
->type
!= IOMAP_MAPPED
|| pos
>= i_size_read(inode
)) {
311 zero_user(page
, poff
, plen
);
312 iomap_set_range_uptodate(page
, poff
, plen
);
316 ctx
->cur_page_in_bio
= true;
319 * Try to merge into a previous segment if we can.
321 sector
= iomap_sector(iomap
, pos
);
322 if (ctx
->bio
&& bio_end_sector(ctx
->bio
) == sector
) {
323 if (__bio_try_merge_page(ctx
->bio
, page
, plen
, poff
))
329 * If we start a new segment we need to increase the read count, and we
330 * need to do so before submitting any previous full bio to make sure
331 * that we don't prematurely unlock the page.
334 atomic_inc(&iop
->read_count
);
336 if (!ctx
->bio
|| !is_contig
|| bio_full(ctx
->bio
)) {
337 gfp_t gfp
= mapping_gfp_constraint(page
->mapping
, GFP_KERNEL
);
338 int nr_vecs
= (length
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
341 submit_bio(ctx
->bio
);
343 if (ctx
->is_readahead
) /* same as readahead_gfp_mask */
344 gfp
|= __GFP_NORETRY
| __GFP_NOWARN
;
345 ctx
->bio
= bio_alloc(gfp
, min(BIO_MAX_PAGES
, nr_vecs
));
346 ctx
->bio
->bi_opf
= REQ_OP_READ
;
347 if (ctx
->is_readahead
)
348 ctx
->bio
->bi_opf
|= REQ_RAHEAD
;
349 ctx
->bio
->bi_iter
.bi_sector
= sector
;
350 bio_set_dev(ctx
->bio
, iomap
->bdev
);
351 ctx
->bio
->bi_end_io
= iomap_read_end_io
;
354 __bio_add_page(ctx
->bio
, page
, plen
, poff
);
357 * Move the caller beyond our range so that it keeps making progress.
358 * For that we have to include any leading non-uptodate ranges, but
359 * we can skip trailing ones as they will be handled in the next
362 return pos
- orig_pos
+ plen
;
366 iomap_readpage(struct page
*page
, const struct iomap_ops
*ops
)
368 struct iomap_readpage_ctx ctx
= { .cur_page
= page
};
369 struct inode
*inode
= page
->mapping
->host
;
373 for (poff
= 0; poff
< PAGE_SIZE
; poff
+= ret
) {
374 ret
= iomap_apply(inode
, page_offset(page
) + poff
,
375 PAGE_SIZE
- poff
, 0, ops
, &ctx
,
376 iomap_readpage_actor
);
378 WARN_ON_ONCE(ret
== 0);
386 WARN_ON_ONCE(!ctx
.cur_page_in_bio
);
388 WARN_ON_ONCE(ctx
.cur_page_in_bio
);
393 * Just like mpage_readpages and block_read_full_page we always
394 * return 0 and just mark the page as PageError on errors. This
395 * should be cleaned up all through the stack eventually.
399 EXPORT_SYMBOL_GPL(iomap_readpage
);
402 iomap_next_page(struct inode
*inode
, struct list_head
*pages
, loff_t pos
,
403 loff_t length
, loff_t
*done
)
405 while (!list_empty(pages
)) {
406 struct page
*page
= lru_to_page(pages
);
408 if (page_offset(page
) >= (u64
)pos
+ length
)
411 list_del(&page
->lru
);
412 if (!add_to_page_cache_lru(page
, inode
->i_mapping
, page
->index
,
417 * If we already have a page in the page cache at index we are
418 * done. Upper layers don't care if it is uptodate after the
419 * readpages call itself as every page gets checked again once
430 iomap_readpages_actor(struct inode
*inode
, loff_t pos
, loff_t length
,
431 void *data
, struct iomap
*iomap
)
433 struct iomap_readpage_ctx
*ctx
= data
;
436 for (done
= 0; done
< length
; done
+= ret
) {
437 if (ctx
->cur_page
&& offset_in_page(pos
+ done
) == 0) {
438 if (!ctx
->cur_page_in_bio
)
439 unlock_page(ctx
->cur_page
);
440 put_page(ctx
->cur_page
);
441 ctx
->cur_page
= NULL
;
443 if (!ctx
->cur_page
) {
444 ctx
->cur_page
= iomap_next_page(inode
, ctx
->pages
,
448 ctx
->cur_page_in_bio
= false;
450 ret
= iomap_readpage_actor(inode
, pos
+ done
, length
- done
,
458 iomap_readpages(struct address_space
*mapping
, struct list_head
*pages
,
459 unsigned nr_pages
, const struct iomap_ops
*ops
)
461 struct iomap_readpage_ctx ctx
= {
463 .is_readahead
= true,
465 loff_t pos
= page_offset(list_entry(pages
->prev
, struct page
, lru
));
466 loff_t last
= page_offset(list_entry(pages
->next
, struct page
, lru
));
467 loff_t length
= last
- pos
+ PAGE_SIZE
, ret
= 0;
470 ret
= iomap_apply(mapping
->host
, pos
, length
, 0, ops
,
471 &ctx
, iomap_readpages_actor
);
473 WARN_ON_ONCE(ret
== 0);
484 if (!ctx
.cur_page_in_bio
)
485 unlock_page(ctx
.cur_page
);
486 put_page(ctx
.cur_page
);
490 * Check that we didn't lose a page due to the arcance calling
493 WARN_ON_ONCE(!ret
&& !list_empty(ctx
.pages
));
496 EXPORT_SYMBOL_GPL(iomap_readpages
);
499 * iomap_is_partially_uptodate checks whether blocks within a page are
502 * Returns true if all blocks which correspond to a file portion
503 * we want to read within the page are uptodate.
506 iomap_is_partially_uptodate(struct page
*page
, unsigned long from
,
509 struct iomap_page
*iop
= to_iomap_page(page
);
510 struct inode
*inode
= page
->mapping
->host
;
511 unsigned len
, first
, last
;
514 /* Limit range to one page */
515 len
= min_t(unsigned, PAGE_SIZE
- from
, count
);
517 /* First and last blocks in range within page */
518 first
= from
>> inode
->i_blkbits
;
519 last
= (from
+ len
- 1) >> inode
->i_blkbits
;
522 for (i
= first
; i
<= last
; i
++)
523 if (!test_bit(i
, iop
->uptodate
))
530 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate
);
533 iomap_releasepage(struct page
*page
, gfp_t gfp_mask
)
536 * mm accommodates an old ext3 case where clean pages might not have had
537 * the dirty bit cleared. Thus, it can send actual dirty pages to
538 * ->releasepage() via shrink_active_list(), skip those here.
540 if (PageDirty(page
) || PageWriteback(page
))
542 iomap_page_release(page
);
545 EXPORT_SYMBOL_GPL(iomap_releasepage
);
548 iomap_invalidatepage(struct page
*page
, unsigned int offset
, unsigned int len
)
551 * If we are invalidating the entire page, clear the dirty state from it
552 * and release it to avoid unnecessary buildup of the LRU.
554 if (offset
== 0 && len
== PAGE_SIZE
) {
555 WARN_ON_ONCE(PageWriteback(page
));
556 cancel_dirty_page(page
);
557 iomap_page_release(page
);
560 EXPORT_SYMBOL_GPL(iomap_invalidatepage
);
562 #ifdef CONFIG_MIGRATION
564 iomap_migrate_page(struct address_space
*mapping
, struct page
*newpage
,
565 struct page
*page
, enum migrate_mode mode
)
569 ret
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
, 0);
570 if (ret
!= MIGRATEPAGE_SUCCESS
)
573 if (page_has_private(page
)) {
574 ClearPagePrivate(page
);
576 set_page_private(newpage
, page_private(page
));
577 set_page_private(page
, 0);
579 SetPagePrivate(newpage
);
582 if (mode
!= MIGRATE_SYNC_NO_COPY
)
583 migrate_page_copy(newpage
, page
);
585 migrate_page_states(newpage
, page
);
586 return MIGRATEPAGE_SUCCESS
;
588 EXPORT_SYMBOL_GPL(iomap_migrate_page
);
589 #endif /* CONFIG_MIGRATION */
592 iomap_write_failed(struct inode
*inode
, loff_t pos
, unsigned len
)
594 loff_t i_size
= i_size_read(inode
);
597 * Only truncate newly allocated pages beyoned EOF, even if the
598 * write started inside the existing inode size.
600 if (pos
+ len
> i_size
)
601 truncate_pagecache_range(inode
, max(pos
, i_size
), pos
+ len
);
605 iomap_read_page_sync(struct inode
*inode
, loff_t block_start
, struct page
*page
,
606 unsigned poff
, unsigned plen
, unsigned from
, unsigned to
,
612 if (iomap
->type
!= IOMAP_MAPPED
|| block_start
>= i_size_read(inode
)) {
613 zero_user_segments(page
, poff
, from
, to
, poff
+ plen
);
614 iomap_set_range_uptodate(page
, poff
, plen
);
618 bio_init(&bio
, &bvec
, 1);
619 bio
.bi_opf
= REQ_OP_READ
;
620 bio
.bi_iter
.bi_sector
= iomap_sector(iomap
, block_start
);
621 bio_set_dev(&bio
, iomap
->bdev
);
622 __bio_add_page(&bio
, page
, plen
, poff
);
623 return submit_bio_wait(&bio
);
627 __iomap_write_begin(struct inode
*inode
, loff_t pos
, unsigned len
,
628 struct page
*page
, struct iomap
*iomap
)
630 struct iomap_page
*iop
= iomap_page_create(inode
, page
);
631 loff_t block_size
= i_blocksize(inode
);
632 loff_t block_start
= pos
& ~(block_size
- 1);
633 loff_t block_end
= (pos
+ len
+ block_size
- 1) & ~(block_size
- 1);
634 unsigned from
= offset_in_page(pos
), to
= from
+ len
, poff
, plen
;
637 if (PageUptodate(page
))
641 iomap_adjust_read_range(inode
, iop
, &block_start
,
642 block_end
- block_start
, &poff
, &plen
);
646 if ((from
> poff
&& from
< poff
+ plen
) ||
647 (to
> poff
&& to
< poff
+ plen
)) {
648 status
= iomap_read_page_sync(inode
, block_start
, page
,
649 poff
, plen
, from
, to
, iomap
);
654 } while ((block_start
+= plen
) < block_end
);
660 iomap_write_begin(struct inode
*inode
, loff_t pos
, unsigned len
, unsigned flags
,
661 struct page
**pagep
, struct iomap
*iomap
)
663 pgoff_t index
= pos
>> PAGE_SHIFT
;
667 BUG_ON(pos
+ len
> iomap
->offset
+ iomap
->length
);
669 if (fatal_signal_pending(current
))
672 page
= grab_cache_page_write_begin(inode
->i_mapping
, index
, flags
);
676 if (iomap
->type
== IOMAP_INLINE
)
677 iomap_read_inline_data(inode
, page
, iomap
);
678 else if (iomap
->flags
& IOMAP_F_BUFFER_HEAD
)
679 status
= __block_write_begin_int(page
, pos
, len
, NULL
, iomap
);
681 status
= __iomap_write_begin(inode
, pos
, len
, page
, iomap
);
682 if (unlikely(status
)) {
687 iomap_write_failed(inode
, pos
, len
);
695 iomap_set_page_dirty(struct page
*page
)
697 struct address_space
*mapping
= page_mapping(page
);
700 if (unlikely(!mapping
))
701 return !TestSetPageDirty(page
);
704 * Lock out page->mem_cgroup migration to keep PageDirty
705 * synchronized with per-memcg dirty page counters.
707 lock_page_memcg(page
);
708 newly_dirty
= !TestSetPageDirty(page
);
710 __set_page_dirty(page
, mapping
, 0);
711 unlock_page_memcg(page
);
714 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
717 EXPORT_SYMBOL_GPL(iomap_set_page_dirty
);
720 __iomap_write_end(struct inode
*inode
, loff_t pos
, unsigned len
,
721 unsigned copied
, struct page
*page
, struct iomap
*iomap
)
723 flush_dcache_page(page
);
726 * The blocks that were entirely written will now be uptodate, so we
727 * don't have to worry about a readpage reading them and overwriting a
728 * partial write. However if we have encountered a short write and only
729 * partially written into a block, it will not be marked uptodate, so a
730 * readpage might come in and destroy our partial write.
732 * Do the simplest thing, and just treat any short write to a non
733 * uptodate page as a zero-length write, and force the caller to redo
736 if (unlikely(copied
< len
&& !PageUptodate(page
))) {
739 iomap_set_range_uptodate(page
, offset_in_page(pos
), len
);
740 iomap_set_page_dirty(page
);
742 return __generic_write_end(inode
, pos
, copied
, page
);
746 iomap_write_end_inline(struct inode
*inode
, struct page
*page
,
747 struct iomap
*iomap
, loff_t pos
, unsigned copied
)
751 WARN_ON_ONCE(!PageUptodate(page
));
752 BUG_ON(pos
+ copied
> PAGE_SIZE
- offset_in_page(iomap
->inline_data
));
754 addr
= kmap_atomic(page
);
755 memcpy(iomap
->inline_data
+ pos
, addr
+ pos
, copied
);
758 mark_inode_dirty(inode
);
759 __generic_write_end(inode
, pos
, copied
, page
);
764 iomap_write_end(struct inode
*inode
, loff_t pos
, unsigned len
,
765 unsigned copied
, struct page
*page
, struct iomap
*iomap
)
769 if (iomap
->type
== IOMAP_INLINE
) {
770 ret
= iomap_write_end_inline(inode
, page
, iomap
, pos
, copied
);
771 } else if (iomap
->flags
& IOMAP_F_BUFFER_HEAD
) {
772 ret
= generic_write_end(NULL
, inode
->i_mapping
, pos
, len
,
775 ret
= __iomap_write_end(inode
, pos
, len
, copied
, page
, iomap
);
778 if (iomap
->page_done
)
779 iomap
->page_done(inode
, pos
, copied
, page
, iomap
);
782 iomap_write_failed(inode
, pos
, len
);
787 iomap_write_actor(struct inode
*inode
, loff_t pos
, loff_t length
, void *data
,
790 struct iov_iter
*i
= data
;
793 unsigned int flags
= AOP_FLAG_NOFS
;
797 unsigned long offset
; /* Offset into pagecache page */
798 unsigned long bytes
; /* Bytes to write to page */
799 size_t copied
; /* Bytes copied from user */
801 offset
= offset_in_page(pos
);
802 bytes
= min_t(unsigned long, PAGE_SIZE
- offset
,
809 * Bring in the user page that we will copy from _first_.
810 * Otherwise there's a nasty deadlock on copying from the
811 * same page as we're writing to, without it being marked
814 * Not only is this an optimisation, but it is also required
815 * to check that the address is actually valid, when atomic
816 * usercopies are used, below.
818 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
823 status
= iomap_write_begin(inode
, pos
, bytes
, flags
, &page
,
825 if (unlikely(status
))
828 if (mapping_writably_mapped(inode
->i_mapping
))
829 flush_dcache_page(page
);
831 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
833 flush_dcache_page(page
);
835 status
= iomap_write_end(inode
, pos
, bytes
, copied
, page
,
837 if (unlikely(status
< 0))
843 iov_iter_advance(i
, copied
);
844 if (unlikely(copied
== 0)) {
846 * If we were unable to copy any data at all, we must
847 * fall back to a single segment length write.
849 * If we didn't fallback here, we could livelock
850 * because not all segments in the iov can be copied at
851 * once without a pagefault.
853 bytes
= min_t(unsigned long, PAGE_SIZE
- offset
,
854 iov_iter_single_seg_count(i
));
861 balance_dirty_pages_ratelimited(inode
->i_mapping
);
862 } while (iov_iter_count(i
) && length
);
864 return written
? written
: status
;
868 iomap_file_buffered_write(struct kiocb
*iocb
, struct iov_iter
*iter
,
869 const struct iomap_ops
*ops
)
871 struct inode
*inode
= iocb
->ki_filp
->f_mapping
->host
;
872 loff_t pos
= iocb
->ki_pos
, ret
= 0, written
= 0;
874 while (iov_iter_count(iter
)) {
875 ret
= iomap_apply(inode
, pos
, iov_iter_count(iter
),
876 IOMAP_WRITE
, ops
, iter
, iomap_write_actor
);
883 return written
? written
: ret
;
885 EXPORT_SYMBOL_GPL(iomap_file_buffered_write
);
888 __iomap_read_page(struct inode
*inode
, loff_t offset
)
890 struct address_space
*mapping
= inode
->i_mapping
;
893 page
= read_mapping_page(mapping
, offset
>> PAGE_SHIFT
, NULL
);
896 if (!PageUptodate(page
)) {
898 return ERR_PTR(-EIO
);
904 iomap_dirty_actor(struct inode
*inode
, loff_t pos
, loff_t length
, void *data
,
911 struct page
*page
, *rpage
;
912 unsigned long offset
; /* Offset into pagecache page */
913 unsigned long bytes
; /* Bytes to write to page */
915 offset
= offset_in_page(pos
);
916 bytes
= min_t(loff_t
, PAGE_SIZE
- offset
, length
);
918 rpage
= __iomap_read_page(inode
, pos
);
920 return PTR_ERR(rpage
);
922 status
= iomap_write_begin(inode
, pos
, bytes
,
923 AOP_FLAG_NOFS
, &page
, iomap
);
925 if (unlikely(status
))
928 WARN_ON_ONCE(!PageUptodate(page
));
930 status
= iomap_write_end(inode
, pos
, bytes
, bytes
, page
, iomap
);
931 if (unlikely(status
<= 0)) {
932 if (WARN_ON_ONCE(status
== 0))
943 balance_dirty_pages_ratelimited(inode
->i_mapping
);
950 iomap_file_dirty(struct inode
*inode
, loff_t pos
, loff_t len
,
951 const struct iomap_ops
*ops
)
956 ret
= iomap_apply(inode
, pos
, len
, IOMAP_WRITE
, ops
, NULL
,
966 EXPORT_SYMBOL_GPL(iomap_file_dirty
);
968 static int iomap_zero(struct inode
*inode
, loff_t pos
, unsigned offset
,
969 unsigned bytes
, struct iomap
*iomap
)
974 status
= iomap_write_begin(inode
, pos
, bytes
, AOP_FLAG_NOFS
, &page
,
979 zero_user(page
, offset
, bytes
);
980 mark_page_accessed(page
);
982 return iomap_write_end(inode
, pos
, bytes
, bytes
, page
, iomap
);
985 static int iomap_dax_zero(loff_t pos
, unsigned offset
, unsigned bytes
,
988 return __dax_zero_page_range(iomap
->bdev
, iomap
->dax_dev
,
989 iomap_sector(iomap
, pos
& PAGE_MASK
), offset
, bytes
);
993 iomap_zero_range_actor(struct inode
*inode
, loff_t pos
, loff_t count
,
994 void *data
, struct iomap
*iomap
)
996 bool *did_zero
= data
;
1000 /* already zeroed? we're done. */
1001 if (iomap
->type
== IOMAP_HOLE
|| iomap
->type
== IOMAP_UNWRITTEN
)
1005 unsigned offset
, bytes
;
1007 offset
= offset_in_page(pos
);
1008 bytes
= min_t(loff_t
, PAGE_SIZE
- offset
, count
);
1011 status
= iomap_dax_zero(pos
, offset
, bytes
, iomap
);
1013 status
= iomap_zero(inode
, pos
, offset
, bytes
, iomap
);
1022 } while (count
> 0);
1028 iomap_zero_range(struct inode
*inode
, loff_t pos
, loff_t len
, bool *did_zero
,
1029 const struct iomap_ops
*ops
)
1034 ret
= iomap_apply(inode
, pos
, len
, IOMAP_ZERO
,
1035 ops
, did_zero
, iomap_zero_range_actor
);
1045 EXPORT_SYMBOL_GPL(iomap_zero_range
);
1048 iomap_truncate_page(struct inode
*inode
, loff_t pos
, bool *did_zero
,
1049 const struct iomap_ops
*ops
)
1051 unsigned int blocksize
= i_blocksize(inode
);
1052 unsigned int off
= pos
& (blocksize
- 1);
1054 /* Block boundary? Nothing to do */
1057 return iomap_zero_range(inode
, pos
, blocksize
- off
, did_zero
, ops
);
1059 EXPORT_SYMBOL_GPL(iomap_truncate_page
);
1062 iomap_page_mkwrite_actor(struct inode
*inode
, loff_t pos
, loff_t length
,
1063 void *data
, struct iomap
*iomap
)
1065 struct page
*page
= data
;
1068 if (iomap
->flags
& IOMAP_F_BUFFER_HEAD
) {
1069 ret
= __block_write_begin_int(page
, pos
, length
, NULL
, iomap
);
1072 block_commit_write(page
, 0, length
);
1074 WARN_ON_ONCE(!PageUptodate(page
));
1075 iomap_page_create(inode
, page
);
1076 set_page_dirty(page
);
1082 int iomap_page_mkwrite(struct vm_fault
*vmf
, const struct iomap_ops
*ops
)
1084 struct page
*page
= vmf
->page
;
1085 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
1086 unsigned long length
;
1087 loff_t offset
, size
;
1091 size
= i_size_read(inode
);
1092 if ((page
->mapping
!= inode
->i_mapping
) ||
1093 (page_offset(page
) > size
)) {
1094 /* We overload EFAULT to mean page got truncated */
1099 /* page is wholly or partially inside EOF */
1100 if (((page
->index
+ 1) << PAGE_SHIFT
) > size
)
1101 length
= offset_in_page(size
);
1105 offset
= page_offset(page
);
1106 while (length
> 0) {
1107 ret
= iomap_apply(inode
, offset
, length
,
1108 IOMAP_WRITE
| IOMAP_FAULT
, ops
, page
,
1109 iomap_page_mkwrite_actor
);
1110 if (unlikely(ret
<= 0))
1116 wait_for_stable_page(page
);
1117 return VM_FAULT_LOCKED
;
1120 return block_page_mkwrite_return(ret
);
1122 EXPORT_SYMBOL_GPL(iomap_page_mkwrite
);
1125 struct fiemap_extent_info
*fi
;
1129 static int iomap_to_fiemap(struct fiemap_extent_info
*fi
,
1130 struct iomap
*iomap
, u32 flags
)
1132 switch (iomap
->type
) {
1136 case IOMAP_DELALLOC
:
1137 flags
|= FIEMAP_EXTENT_DELALLOC
| FIEMAP_EXTENT_UNKNOWN
;
1141 case IOMAP_UNWRITTEN
:
1142 flags
|= FIEMAP_EXTENT_UNWRITTEN
;
1145 flags
|= FIEMAP_EXTENT_DATA_INLINE
;
1149 if (iomap
->flags
& IOMAP_F_MERGED
)
1150 flags
|= FIEMAP_EXTENT_MERGED
;
1151 if (iomap
->flags
& IOMAP_F_SHARED
)
1152 flags
|= FIEMAP_EXTENT_SHARED
;
1154 return fiemap_fill_next_extent(fi
, iomap
->offset
,
1155 iomap
->addr
!= IOMAP_NULL_ADDR
? iomap
->addr
: 0,
1156 iomap
->length
, flags
);
1160 iomap_fiemap_actor(struct inode
*inode
, loff_t pos
, loff_t length
, void *data
,
1161 struct iomap
*iomap
)
1163 struct fiemap_ctx
*ctx
= data
;
1164 loff_t ret
= length
;
1166 if (iomap
->type
== IOMAP_HOLE
)
1169 ret
= iomap_to_fiemap(ctx
->fi
, &ctx
->prev
, 0);
1172 case 0: /* success */
1174 case 1: /* extent array full */
1181 int iomap_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fi
,
1182 loff_t start
, loff_t len
, const struct iomap_ops
*ops
)
1184 struct fiemap_ctx ctx
;
1187 memset(&ctx
, 0, sizeof(ctx
));
1189 ctx
.prev
.type
= IOMAP_HOLE
;
1191 ret
= fiemap_check_flags(fi
, FIEMAP_FLAG_SYNC
);
1195 if (fi
->fi_flags
& FIEMAP_FLAG_SYNC
) {
1196 ret
= filemap_write_and_wait(inode
->i_mapping
);
1202 ret
= iomap_apply(inode
, start
, len
, IOMAP_REPORT
, ops
, &ctx
,
1203 iomap_fiemap_actor
);
1204 /* inode with no (attribute) mapping will give ENOENT */
1216 if (ctx
.prev
.type
!= IOMAP_HOLE
) {
1217 ret
= iomap_to_fiemap(fi
, &ctx
.prev
, FIEMAP_EXTENT_LAST
);
1224 EXPORT_SYMBOL_GPL(iomap_fiemap
);
1227 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
1228 * Returns true if found and updates @lastoff to the offset in file.
1231 page_seek_hole_data(struct inode
*inode
, struct page
*page
, loff_t
*lastoff
,
1234 const struct address_space_operations
*ops
= inode
->i_mapping
->a_ops
;
1235 unsigned int bsize
= i_blocksize(inode
), off
;
1236 bool seek_data
= whence
== SEEK_DATA
;
1237 loff_t poff
= page_offset(page
);
1239 if (WARN_ON_ONCE(*lastoff
>= poff
+ PAGE_SIZE
))
1242 if (*lastoff
< poff
) {
1244 * Last offset smaller than the start of the page means we found
1247 if (whence
== SEEK_HOLE
)
1253 * Just check the page unless we can and should check block ranges:
1255 if (bsize
== PAGE_SIZE
|| !ops
->is_partially_uptodate
)
1256 return PageUptodate(page
) == seek_data
;
1259 if (unlikely(page
->mapping
!= inode
->i_mapping
))
1260 goto out_unlock_not_found
;
1262 for (off
= 0; off
< PAGE_SIZE
; off
+= bsize
) {
1263 if (offset_in_page(*lastoff
) >= off
+ bsize
)
1265 if (ops
->is_partially_uptodate(page
, off
, bsize
) == seek_data
) {
1269 *lastoff
= poff
+ off
+ bsize
;
1272 out_unlock_not_found
:
1278 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
1280 * Within unwritten extents, the page cache determines which parts are holes
1281 * and which are data: uptodate buffer heads count as data; everything else
1284 * Returns the resulting offset on successs, and -ENOENT otherwise.
1287 page_cache_seek_hole_data(struct inode
*inode
, loff_t offset
, loff_t length
,
1290 pgoff_t index
= offset
>> PAGE_SHIFT
;
1291 pgoff_t end
= DIV_ROUND_UP(offset
+ length
, PAGE_SIZE
);
1292 loff_t lastoff
= offset
;
1293 struct pagevec pvec
;
1298 pagevec_init(&pvec
);
1301 unsigned nr_pages
, i
;
1303 nr_pages
= pagevec_lookup_range(&pvec
, inode
->i_mapping
, &index
,
1308 for (i
= 0; i
< nr_pages
; i
++) {
1309 struct page
*page
= pvec
.pages
[i
];
1311 if (page_seek_hole_data(inode
, page
, &lastoff
, whence
))
1313 lastoff
= page_offset(page
) + PAGE_SIZE
;
1315 pagevec_release(&pvec
);
1316 } while (index
< end
);
1318 /* When no page at lastoff and we are not done, we found a hole. */
1319 if (whence
!= SEEK_HOLE
)
1323 if (lastoff
< offset
+ length
)
1328 pagevec_release(&pvec
);
1334 iomap_seek_hole_actor(struct inode
*inode
, loff_t offset
, loff_t length
,
1335 void *data
, struct iomap
*iomap
)
1337 switch (iomap
->type
) {
1338 case IOMAP_UNWRITTEN
:
1339 offset
= page_cache_seek_hole_data(inode
, offset
, length
,
1345 *(loff_t
*)data
= offset
;
1353 iomap_seek_hole(struct inode
*inode
, loff_t offset
, const struct iomap_ops
*ops
)
1355 loff_t size
= i_size_read(inode
);
1356 loff_t length
= size
- offset
;
1359 /* Nothing to be found before or beyond the end of the file. */
1360 if (offset
< 0 || offset
>= size
)
1363 while (length
> 0) {
1364 ret
= iomap_apply(inode
, offset
, length
, IOMAP_REPORT
, ops
,
1365 &offset
, iomap_seek_hole_actor
);
1377 EXPORT_SYMBOL_GPL(iomap_seek_hole
);
1380 iomap_seek_data_actor(struct inode
*inode
, loff_t offset
, loff_t length
,
1381 void *data
, struct iomap
*iomap
)
1383 switch (iomap
->type
) {
1386 case IOMAP_UNWRITTEN
:
1387 offset
= page_cache_seek_hole_data(inode
, offset
, length
,
1393 *(loff_t
*)data
= offset
;
1399 iomap_seek_data(struct inode
*inode
, loff_t offset
, const struct iomap_ops
*ops
)
1401 loff_t size
= i_size_read(inode
);
1402 loff_t length
= size
- offset
;
1405 /* Nothing to be found before or beyond the end of the file. */
1406 if (offset
< 0 || offset
>= size
)
1409 while (length
> 0) {
1410 ret
= iomap_apply(inode
, offset
, length
, IOMAP_REPORT
, ops
,
1411 &offset
, iomap_seek_data_actor
);
1425 EXPORT_SYMBOL_GPL(iomap_seek_data
);
1428 * Private flags for iomap_dio, must not overlap with the public ones in
1431 #define IOMAP_DIO_WRITE_FUA (1 << 28)
1432 #define IOMAP_DIO_NEED_SYNC (1 << 29)
1433 #define IOMAP_DIO_WRITE (1 << 30)
1434 #define IOMAP_DIO_DIRTY (1 << 31)
1438 iomap_dio_end_io_t
*end_io
;
1444 bool wait_for_completion
;
1447 /* used during submission and for synchronous completion: */
1449 struct iov_iter
*iter
;
1450 struct task_struct
*waiter
;
1451 struct request_queue
*last_queue
;
1455 /* used for aio completion: */
1457 struct work_struct work
;
1462 static ssize_t
iomap_dio_complete(struct iomap_dio
*dio
)
1464 struct kiocb
*iocb
= dio
->iocb
;
1465 struct inode
*inode
= file_inode(iocb
->ki_filp
);
1466 loff_t offset
= iocb
->ki_pos
;
1470 ret
= dio
->end_io(iocb
,
1471 dio
->error
? dio
->error
: dio
->size
,
1479 /* check for short read */
1480 if (offset
+ ret
> dio
->i_size
&&
1481 !(dio
->flags
& IOMAP_DIO_WRITE
))
1482 ret
= dio
->i_size
- offset
;
1483 iocb
->ki_pos
+= ret
;
1487 * Try again to invalidate clean pages which might have been cached by
1488 * non-direct readahead, or faulted in by get_user_pages() if the source
1489 * of the write was an mmap'ed region of the file we're writing. Either
1490 * one is a pretty crazy thing to do, so we don't support it 100%. If
1491 * this invalidation fails, tough, the write still worked...
1493 * And this page cache invalidation has to be after dio->end_io(), as
1494 * some filesystems convert unwritten extents to real allocations in
1495 * end_io() when necessary, otherwise a racing buffer read would cache
1496 * zeros from unwritten extents.
1499 (dio
->flags
& IOMAP_DIO_WRITE
) && inode
->i_mapping
->nrpages
) {
1501 err
= invalidate_inode_pages2_range(inode
->i_mapping
,
1502 offset
>> PAGE_SHIFT
,
1503 (offset
+ dio
->size
- 1) >> PAGE_SHIFT
);
1505 dio_warn_stale_pagecache(iocb
->ki_filp
);
1509 * If this is a DSYNC write, make sure we push it to stable storage now
1510 * that we've written data.
1512 if (ret
> 0 && (dio
->flags
& IOMAP_DIO_NEED_SYNC
))
1513 ret
= generic_write_sync(iocb
, ret
);
1515 inode_dio_end(file_inode(iocb
->ki_filp
));
1521 static void iomap_dio_complete_work(struct work_struct
*work
)
1523 struct iomap_dio
*dio
= container_of(work
, struct iomap_dio
, aio
.work
);
1524 struct kiocb
*iocb
= dio
->iocb
;
1526 iocb
->ki_complete(iocb
, iomap_dio_complete(dio
), 0);
1530 * Set an error in the dio if none is set yet. We have to use cmpxchg
1531 * as the submission context and the completion context(s) can race to
1534 static inline void iomap_dio_set_error(struct iomap_dio
*dio
, int ret
)
1536 cmpxchg(&dio
->error
, 0, ret
);
1539 static void iomap_dio_bio_end_io(struct bio
*bio
)
1541 struct iomap_dio
*dio
= bio
->bi_private
;
1542 bool should_dirty
= (dio
->flags
& IOMAP_DIO_DIRTY
);
1545 iomap_dio_set_error(dio
, blk_status_to_errno(bio
->bi_status
));
1547 if (atomic_dec_and_test(&dio
->ref
)) {
1548 if (dio
->wait_for_completion
) {
1549 struct task_struct
*waiter
= dio
->submit
.waiter
;
1550 WRITE_ONCE(dio
->submit
.waiter
, NULL
);
1551 wake_up_process(waiter
);
1552 } else if (dio
->flags
& IOMAP_DIO_WRITE
) {
1553 struct inode
*inode
= file_inode(dio
->iocb
->ki_filp
);
1555 INIT_WORK(&dio
->aio
.work
, iomap_dio_complete_work
);
1556 queue_work(inode
->i_sb
->s_dio_done_wq
, &dio
->aio
.work
);
1558 iomap_dio_complete_work(&dio
->aio
.work
);
1563 bio_check_pages_dirty(bio
);
1565 struct bio_vec
*bvec
;
1568 bio_for_each_segment_all(bvec
, bio
, i
)
1569 put_page(bvec
->bv_page
);
1575 iomap_dio_zero(struct iomap_dio
*dio
, struct iomap
*iomap
, loff_t pos
,
1578 struct page
*page
= ZERO_PAGE(0);
1581 bio
= bio_alloc(GFP_KERNEL
, 1);
1582 bio_set_dev(bio
, iomap
->bdev
);
1583 bio
->bi_iter
.bi_sector
= iomap_sector(iomap
, pos
);
1584 bio
->bi_private
= dio
;
1585 bio
->bi_end_io
= iomap_dio_bio_end_io
;
1588 __bio_add_page(bio
, page
, len
, 0);
1589 bio_set_op_attrs(bio
, REQ_OP_WRITE
, REQ_SYNC
| REQ_IDLE
);
1591 atomic_inc(&dio
->ref
);
1592 return submit_bio(bio
);
1596 iomap_dio_bio_actor(struct inode
*inode
, loff_t pos
, loff_t length
,
1597 struct iomap_dio
*dio
, struct iomap
*iomap
)
1599 unsigned int blkbits
= blksize_bits(bdev_logical_block_size(iomap
->bdev
));
1600 unsigned int fs_block_size
= i_blocksize(inode
), pad
;
1601 unsigned int align
= iov_iter_alignment(dio
->submit
.iter
);
1602 struct iov_iter iter
;
1604 bool need_zeroout
= false;
1605 bool use_fua
= false;
1609 if ((pos
| length
| align
) & ((1 << blkbits
) - 1))
1612 if (iomap
->type
== IOMAP_UNWRITTEN
) {
1613 dio
->flags
|= IOMAP_DIO_UNWRITTEN
;
1614 need_zeroout
= true;
1617 if (iomap
->flags
& IOMAP_F_SHARED
)
1618 dio
->flags
|= IOMAP_DIO_COW
;
1620 if (iomap
->flags
& IOMAP_F_NEW
) {
1621 need_zeroout
= true;
1624 * Use a FUA write if we need datasync semantics, this
1625 * is a pure data IO that doesn't require any metadata
1626 * updates and the underlying device supports FUA. This
1627 * allows us to avoid cache flushes on IO completion.
1629 if (!(iomap
->flags
& (IOMAP_F_SHARED
|IOMAP_F_DIRTY
)) &&
1630 (dio
->flags
& IOMAP_DIO_WRITE_FUA
) &&
1631 blk_queue_fua(bdev_get_queue(iomap
->bdev
)))
1636 * Operate on a partial iter trimmed to the extent we were called for.
1637 * We'll update the iter in the dio once we're done with this extent.
1639 iter
= *dio
->submit
.iter
;
1640 iov_iter_truncate(&iter
, length
);
1642 nr_pages
= iov_iter_npages(&iter
, BIO_MAX_PAGES
);
1647 /* zero out from the start of the block to the write offset */
1648 pad
= pos
& (fs_block_size
- 1);
1650 iomap_dio_zero(dio
, iomap
, pos
- pad
, pad
);
1656 iov_iter_revert(dio
->submit
.iter
, copied
);
1660 bio
= bio_alloc(GFP_KERNEL
, nr_pages
);
1661 bio_set_dev(bio
, iomap
->bdev
);
1662 bio
->bi_iter
.bi_sector
= iomap_sector(iomap
, pos
);
1663 bio
->bi_write_hint
= dio
->iocb
->ki_hint
;
1664 bio
->bi_ioprio
= dio
->iocb
->ki_ioprio
;
1665 bio
->bi_private
= dio
;
1666 bio
->bi_end_io
= iomap_dio_bio_end_io
;
1668 ret
= bio_iov_iter_get_pages(bio
, &iter
);
1669 if (unlikely(ret
)) {
1671 return copied
? copied
: ret
;
1674 n
= bio
->bi_iter
.bi_size
;
1675 if (dio
->flags
& IOMAP_DIO_WRITE
) {
1676 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
| REQ_IDLE
;
1678 bio
->bi_opf
|= REQ_FUA
;
1680 dio
->flags
&= ~IOMAP_DIO_WRITE_FUA
;
1681 task_io_account_write(n
);
1683 bio
->bi_opf
= REQ_OP_READ
;
1684 if (dio
->flags
& IOMAP_DIO_DIRTY
)
1685 bio_set_pages_dirty(bio
);
1688 iov_iter_advance(dio
->submit
.iter
, n
);
1694 nr_pages
= iov_iter_npages(&iter
, BIO_MAX_PAGES
);
1696 atomic_inc(&dio
->ref
);
1698 dio
->submit
.last_queue
= bdev_get_queue(iomap
->bdev
);
1699 dio
->submit
.cookie
= submit_bio(bio
);
1703 /* zero out from the end of the write to the end of the block */
1704 pad
= pos
& (fs_block_size
- 1);
1706 iomap_dio_zero(dio
, iomap
, pos
, fs_block_size
- pad
);
1712 iomap_dio_hole_actor(loff_t length
, struct iomap_dio
*dio
)
1714 length
= iov_iter_zero(length
, dio
->submit
.iter
);
1715 dio
->size
+= length
;
1720 iomap_dio_inline_actor(struct inode
*inode
, loff_t pos
, loff_t length
,
1721 struct iomap_dio
*dio
, struct iomap
*iomap
)
1723 struct iov_iter
*iter
= dio
->submit
.iter
;
1726 BUG_ON(pos
+ length
> PAGE_SIZE
- offset_in_page(iomap
->inline_data
));
1728 if (dio
->flags
& IOMAP_DIO_WRITE
) {
1729 loff_t size
= inode
->i_size
;
1732 memset(iomap
->inline_data
+ size
, 0, pos
- size
);
1733 copied
= copy_from_iter(iomap
->inline_data
+ pos
, length
, iter
);
1735 if (pos
+ copied
> size
)
1736 i_size_write(inode
, pos
+ copied
);
1737 mark_inode_dirty(inode
);
1740 copied
= copy_to_iter(iomap
->inline_data
+ pos
, length
, iter
);
1742 dio
->size
+= copied
;
1747 iomap_dio_actor(struct inode
*inode
, loff_t pos
, loff_t length
,
1748 void *data
, struct iomap
*iomap
)
1750 struct iomap_dio
*dio
= data
;
1752 switch (iomap
->type
) {
1754 if (WARN_ON_ONCE(dio
->flags
& IOMAP_DIO_WRITE
))
1756 return iomap_dio_hole_actor(length
, dio
);
1757 case IOMAP_UNWRITTEN
:
1758 if (!(dio
->flags
& IOMAP_DIO_WRITE
))
1759 return iomap_dio_hole_actor(length
, dio
);
1760 return iomap_dio_bio_actor(inode
, pos
, length
, dio
, iomap
);
1762 return iomap_dio_bio_actor(inode
, pos
, length
, dio
, iomap
);
1764 return iomap_dio_inline_actor(inode
, pos
, length
, dio
, iomap
);
1772 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
1773 * is being issued as AIO or not. This allows us to optimise pure data writes
1774 * to use REQ_FUA rather than requiring generic_write_sync() to issue a
1775 * REQ_FLUSH post write. This is slightly tricky because a single request here
1776 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
1777 * may be pure data writes. In that case, we still need to do a full data sync
1781 iomap_dio_rw(struct kiocb
*iocb
, struct iov_iter
*iter
,
1782 const struct iomap_ops
*ops
, iomap_dio_end_io_t end_io
)
1784 struct address_space
*mapping
= iocb
->ki_filp
->f_mapping
;
1785 struct inode
*inode
= file_inode(iocb
->ki_filp
);
1786 size_t count
= iov_iter_count(iter
);
1787 loff_t pos
= iocb
->ki_pos
, start
= pos
;
1788 loff_t end
= iocb
->ki_pos
+ count
- 1, ret
= 0;
1789 unsigned int flags
= IOMAP_DIRECT
;
1790 bool wait_for_completion
= is_sync_kiocb(iocb
);
1791 struct blk_plug plug
;
1792 struct iomap_dio
*dio
;
1794 lockdep_assert_held(&inode
->i_rwsem
);
1799 dio
= kmalloc(sizeof(*dio
), GFP_KERNEL
);
1804 atomic_set(&dio
->ref
, 1);
1806 dio
->i_size
= i_size_read(inode
);
1807 dio
->end_io
= end_io
;
1811 dio
->submit
.iter
= iter
;
1812 dio
->submit
.waiter
= current
;
1813 dio
->submit
.cookie
= BLK_QC_T_NONE
;
1814 dio
->submit
.last_queue
= NULL
;
1816 if (iov_iter_rw(iter
) == READ
) {
1817 if (pos
>= dio
->i_size
)
1820 if (iter
->type
== ITER_IOVEC
)
1821 dio
->flags
|= IOMAP_DIO_DIRTY
;
1823 flags
|= IOMAP_WRITE
;
1824 dio
->flags
|= IOMAP_DIO_WRITE
;
1826 /* for data sync or sync, we need sync completion processing */
1827 if (iocb
->ki_flags
& IOCB_DSYNC
)
1828 dio
->flags
|= IOMAP_DIO_NEED_SYNC
;
1831 * For datasync only writes, we optimistically try using FUA for
1832 * this IO. Any non-FUA write that occurs will clear this flag,
1833 * hence we know before completion whether a cache flush is
1836 if ((iocb
->ki_flags
& (IOCB_DSYNC
| IOCB_SYNC
)) == IOCB_DSYNC
)
1837 dio
->flags
|= IOMAP_DIO_WRITE_FUA
;
1840 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
1841 if (filemap_range_has_page(mapping
, start
, end
)) {
1845 flags
|= IOMAP_NOWAIT
;
1848 ret
= filemap_write_and_wait_range(mapping
, start
, end
);
1853 * Try to invalidate cache pages for the range we're direct
1854 * writing. If this invalidation fails, tough, the write will
1855 * still work, but racing two incompatible write paths is a
1856 * pretty crazy thing to do, so we don't support it 100%.
1858 ret
= invalidate_inode_pages2_range(mapping
,
1859 start
>> PAGE_SHIFT
, end
>> PAGE_SHIFT
);
1861 dio_warn_stale_pagecache(iocb
->ki_filp
);
1864 if (iov_iter_rw(iter
) == WRITE
&& !wait_for_completion
&&
1865 !inode
->i_sb
->s_dio_done_wq
) {
1866 ret
= sb_init_dio_done_wq(inode
->i_sb
);
1871 inode_dio_begin(inode
);
1873 blk_start_plug(&plug
);
1875 ret
= iomap_apply(inode
, pos
, count
, flags
, ops
, dio
,
1878 /* magic error code to fall back to buffered I/O */
1879 if (ret
== -ENOTBLK
) {
1880 wait_for_completion
= true;
1887 if (iov_iter_rw(iter
) == READ
&& pos
>= dio
->i_size
)
1889 } while ((count
= iov_iter_count(iter
)) > 0);
1890 blk_finish_plug(&plug
);
1893 iomap_dio_set_error(dio
, ret
);
1896 * If all the writes we issued were FUA, we don't need to flush the
1897 * cache on IO completion. Clear the sync flag for this case.
1899 if (dio
->flags
& IOMAP_DIO_WRITE_FUA
)
1900 dio
->flags
&= ~IOMAP_DIO_NEED_SYNC
;
1903 * We are about to drop our additional submission reference, which
1904 * might be the last reference to the dio. There are three three
1905 * different ways we can progress here:
1907 * (a) If this is the last reference we will always complete and free
1908 * the dio ourselves.
1909 * (b) If this is not the last reference, and we serve an asynchronous
1910 * iocb, we must never touch the dio after the decrement, the
1911 * I/O completion handler will complete and free it.
1912 * (c) If this is not the last reference, but we serve a synchronous
1913 * iocb, the I/O completion handler will wake us up on the drop
1914 * of the final reference, and we will complete and free it here
1915 * after we got woken by the I/O completion handler.
1917 dio
->wait_for_completion
= wait_for_completion
;
1918 if (!atomic_dec_and_test(&dio
->ref
)) {
1919 if (!wait_for_completion
)
1920 return -EIOCBQUEUED
;
1923 set_current_state(TASK_UNINTERRUPTIBLE
);
1924 if (!READ_ONCE(dio
->submit
.waiter
))
1927 if (!(iocb
->ki_flags
& IOCB_HIPRI
) ||
1928 !dio
->submit
.last_queue
||
1929 !blk_poll(dio
->submit
.last_queue
,
1930 dio
->submit
.cookie
))
1933 __set_current_state(TASK_RUNNING
);
1936 return iomap_dio_complete(dio
);
1942 EXPORT_SYMBOL_GPL(iomap_dio_rw
);
1944 /* Swapfile activation */
1947 struct iomap_swapfile_info
{
1948 struct iomap iomap
; /* accumulated iomap */
1949 struct swap_info_struct
*sis
;
1950 uint64_t lowest_ppage
; /* lowest physical addr seen (pages) */
1951 uint64_t highest_ppage
; /* highest physical addr seen (pages) */
1952 unsigned long nr_pages
; /* number of pages collected */
1953 int nr_extents
; /* extent count */
1957 * Collect physical extents for this swap file. Physical extents reported to
1958 * the swap code must be trimmed to align to a page boundary. The logical
1959 * offset within the file is irrelevant since the swapfile code maps logical
1960 * page numbers of the swap device to the physical page-aligned extents.
1962 static int iomap_swapfile_add_extent(struct iomap_swapfile_info
*isi
)
1964 struct iomap
*iomap
= &isi
->iomap
;
1965 unsigned long nr_pages
;
1966 uint64_t first_ppage
;
1967 uint64_t first_ppage_reported
;
1968 uint64_t next_ppage
;
1972 * Round the start up and the end down so that the physical
1973 * extent aligns to a page boundary.
1975 first_ppage
= ALIGN(iomap
->addr
, PAGE_SIZE
) >> PAGE_SHIFT
;
1976 next_ppage
= ALIGN_DOWN(iomap
->addr
+ iomap
->length
, PAGE_SIZE
) >>
1979 /* Skip too-short physical extents. */
1980 if (first_ppage
>= next_ppage
)
1982 nr_pages
= next_ppage
- first_ppage
;
1985 * Calculate how much swap space we're adding; the first page contains
1986 * the swap header and doesn't count. The mm still wants that first
1987 * page fed to add_swap_extent, however.
1989 first_ppage_reported
= first_ppage
;
1990 if (iomap
->offset
== 0)
1991 first_ppage_reported
++;
1992 if (isi
->lowest_ppage
> first_ppage_reported
)
1993 isi
->lowest_ppage
= first_ppage_reported
;
1994 if (isi
->highest_ppage
< (next_ppage
- 1))
1995 isi
->highest_ppage
= next_ppage
- 1;
1997 /* Add extent, set up for the next call. */
1998 error
= add_swap_extent(isi
->sis
, isi
->nr_pages
, nr_pages
, first_ppage
);
2001 isi
->nr_extents
+= error
;
2002 isi
->nr_pages
+= nr_pages
;
2007 * Accumulate iomaps for this swap file. We have to accumulate iomaps because
2008 * swap only cares about contiguous page-aligned physical extents and makes no
2009 * distinction between written and unwritten extents.
2011 static loff_t
iomap_swapfile_activate_actor(struct inode
*inode
, loff_t pos
,
2012 loff_t count
, void *data
, struct iomap
*iomap
)
2014 struct iomap_swapfile_info
*isi
= data
;
2017 switch (iomap
->type
) {
2019 case IOMAP_UNWRITTEN
:
2020 /* Only real or unwritten extents. */
2023 /* No inline data. */
2024 pr_err("swapon: file is inline\n");
2027 pr_err("swapon: file has unallocated extents\n");
2031 /* No uncommitted metadata or shared blocks. */
2032 if (iomap
->flags
& IOMAP_F_DIRTY
) {
2033 pr_err("swapon: file is not committed\n");
2036 if (iomap
->flags
& IOMAP_F_SHARED
) {
2037 pr_err("swapon: file has shared extents\n");
2041 /* Only one bdev per swap file. */
2042 if (iomap
->bdev
!= isi
->sis
->bdev
) {
2043 pr_err("swapon: file is on multiple devices\n");
2047 if (isi
->iomap
.length
== 0) {
2048 /* No accumulated extent, so just store it. */
2049 memcpy(&isi
->iomap
, iomap
, sizeof(isi
->iomap
));
2050 } else if (isi
->iomap
.addr
+ isi
->iomap
.length
== iomap
->addr
) {
2051 /* Append this to the accumulated extent. */
2052 isi
->iomap
.length
+= iomap
->length
;
2054 /* Otherwise, add the retained iomap and store this one. */
2055 error
= iomap_swapfile_add_extent(isi
);
2058 memcpy(&isi
->iomap
, iomap
, sizeof(isi
->iomap
));
2064 * Iterate a swap file's iomaps to construct physical extents that can be
2065 * passed to the swapfile subsystem.
2067 int iomap_swapfile_activate(struct swap_info_struct
*sis
,
2068 struct file
*swap_file
, sector_t
*pagespan
,
2069 const struct iomap_ops
*ops
)
2071 struct iomap_swapfile_info isi
= {
2073 .lowest_ppage
= (sector_t
)-1ULL,
2075 struct address_space
*mapping
= swap_file
->f_mapping
;
2076 struct inode
*inode
= mapping
->host
;
2078 loff_t len
= ALIGN_DOWN(i_size_read(inode
), PAGE_SIZE
);
2082 * Persist all file mapping metadata so that we won't have any
2083 * IOMAP_F_DIRTY iomaps.
2085 ret
= vfs_fsync(swap_file
, 1);
2090 ret
= iomap_apply(inode
, pos
, len
, IOMAP_REPORT
,
2091 ops
, &isi
, iomap_swapfile_activate_actor
);
2099 if (isi
.iomap
.length
) {
2100 ret
= iomap_swapfile_add_extent(&isi
);
2105 *pagespan
= 1 + isi
.highest_ppage
- isi
.lowest_ppage
;
2106 sis
->max
= isi
.nr_pages
;
2107 sis
->pages
= isi
.nr_pages
- 1;
2108 sis
->highest_bit
= isi
.nr_pages
- 1;
2109 return isi
.nr_extents
;
2111 EXPORT_SYMBOL_GPL(iomap_swapfile_activate
);
2112 #endif /* CONFIG_SWAP */
2115 iomap_bmap_actor(struct inode
*inode
, loff_t pos
, loff_t length
,
2116 void *data
, struct iomap
*iomap
)
2118 sector_t
*bno
= data
, addr
;
2120 if (iomap
->type
== IOMAP_MAPPED
) {
2121 addr
= (pos
- iomap
->offset
+ iomap
->addr
) >> inode
->i_blkbits
;
2123 WARN(1, "would truncate bmap result\n");
2130 /* legacy ->bmap interface. 0 is the error return (!) */
2132 iomap_bmap(struct address_space
*mapping
, sector_t bno
,
2133 const struct iomap_ops
*ops
)
2135 struct inode
*inode
= mapping
->host
;
2136 loff_t pos
= bno
<< inode
->i_blkbits
;
2137 unsigned blocksize
= i_blocksize(inode
);
2139 if (filemap_write_and_wait(mapping
))
2143 iomap_apply(inode
, pos
, blocksize
, 0, ops
, &bno
, iomap_bmap_actor
);
2146 EXPORT_SYMBOL_GPL(iomap_bmap
);