4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
33 /* Maximum number of mounts in a mount namespace */
34 unsigned int sysctl_mount_max __read_mostly
= 100000;
36 static unsigned int m_hash_mask __read_mostly
;
37 static unsigned int m_hash_shift __read_mostly
;
38 static unsigned int mp_hash_mask __read_mostly
;
39 static unsigned int mp_hash_shift __read_mostly
;
41 static __initdata
unsigned long mhash_entries
;
42 static int __init
set_mhash_entries(char *str
)
46 mhash_entries
= simple_strtoul(str
, &str
, 0);
49 __setup("mhash_entries=", set_mhash_entries
);
51 static __initdata
unsigned long mphash_entries
;
52 static int __init
set_mphash_entries(char *str
)
56 mphash_entries
= simple_strtoul(str
, &str
, 0);
59 __setup("mphash_entries=", set_mphash_entries
);
62 static DEFINE_IDA(mnt_id_ida
);
63 static DEFINE_IDA(mnt_group_ida
);
65 static struct hlist_head
*mount_hashtable __read_mostly
;
66 static struct hlist_head
*mountpoint_hashtable __read_mostly
;
67 static struct kmem_cache
*mnt_cache __read_mostly
;
68 static DECLARE_RWSEM(namespace_sem
);
71 struct kobject
*fs_kobj
;
72 EXPORT_SYMBOL_GPL(fs_kobj
);
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
82 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(mount_lock
);
84 static inline struct hlist_head
*m_hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
86 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
87 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
88 tmp
= tmp
+ (tmp
>> m_hash_shift
);
89 return &mount_hashtable
[tmp
& m_hash_mask
];
92 static inline struct hlist_head
*mp_hash(struct dentry
*dentry
)
94 unsigned long tmp
= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
95 tmp
= tmp
+ (tmp
>> mp_hash_shift
);
96 return &mountpoint_hashtable
[tmp
& mp_hash_mask
];
99 static int mnt_alloc_id(struct mount
*mnt
)
101 int res
= ida_alloc(&mnt_id_ida
, GFP_KERNEL
);
109 static void mnt_free_id(struct mount
*mnt
)
111 ida_free(&mnt_id_ida
, mnt
->mnt_id
);
115 * Allocate a new peer group ID
117 static int mnt_alloc_group_id(struct mount
*mnt
)
119 int res
= ida_alloc_min(&mnt_group_ida
, 1, GFP_KERNEL
);
123 mnt
->mnt_group_id
= res
;
128 * Release a peer group ID
130 void mnt_release_group_id(struct mount
*mnt
)
132 ida_free(&mnt_group_ida
, mnt
->mnt_group_id
);
133 mnt
->mnt_group_id
= 0;
137 * vfsmount lock must be held for read
139 static inline void mnt_add_count(struct mount
*mnt
, int n
)
142 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, n
);
151 * vfsmount lock must be held for write
153 unsigned int mnt_get_count(struct mount
*mnt
)
156 unsigned int count
= 0;
159 for_each_possible_cpu(cpu
) {
160 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_count
;
165 return mnt
->mnt_count
;
169 static void drop_mountpoint(struct fs_pin
*p
)
171 struct mount
*m
= container_of(p
, struct mount
, mnt_umount
);
172 dput(m
->mnt_ex_mountpoint
);
177 static struct mount
*alloc_vfsmnt(const char *name
)
179 struct mount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
183 err
= mnt_alloc_id(mnt
);
188 mnt
->mnt_devname
= kstrdup_const(name
, GFP_KERNEL
);
189 if (!mnt
->mnt_devname
)
194 mnt
->mnt_pcp
= alloc_percpu(struct mnt_pcp
);
196 goto out_free_devname
;
198 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, 1);
201 mnt
->mnt_writers
= 0;
204 INIT_HLIST_NODE(&mnt
->mnt_hash
);
205 INIT_LIST_HEAD(&mnt
->mnt_child
);
206 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
207 INIT_LIST_HEAD(&mnt
->mnt_list
);
208 INIT_LIST_HEAD(&mnt
->mnt_expire
);
209 INIT_LIST_HEAD(&mnt
->mnt_share
);
210 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
211 INIT_LIST_HEAD(&mnt
->mnt_slave
);
212 INIT_HLIST_NODE(&mnt
->mnt_mp_list
);
213 INIT_LIST_HEAD(&mnt
->mnt_umounting
);
214 init_fs_pin(&mnt
->mnt_umount
, drop_mountpoint
);
220 kfree_const(mnt
->mnt_devname
);
225 kmem_cache_free(mnt_cache
, mnt
);
230 * Most r/o checks on a fs are for operations that take
231 * discrete amounts of time, like a write() or unlink().
232 * We must keep track of when those operations start
233 * (for permission checks) and when they end, so that
234 * we can determine when writes are able to occur to
238 * __mnt_is_readonly: check whether a mount is read-only
239 * @mnt: the mount to check for its write status
241 * This shouldn't be used directly ouside of the VFS.
242 * It does not guarantee that the filesystem will stay
243 * r/w, just that it is right *now*. This can not and
244 * should not be used in place of IS_RDONLY(inode).
245 * mnt_want/drop_write() will _keep_ the filesystem
248 int __mnt_is_readonly(struct vfsmount
*mnt
)
250 if (mnt
->mnt_flags
& MNT_READONLY
)
252 if (sb_rdonly(mnt
->mnt_sb
))
256 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
258 static inline void mnt_inc_writers(struct mount
*mnt
)
261 this_cpu_inc(mnt
->mnt_pcp
->mnt_writers
);
267 static inline void mnt_dec_writers(struct mount
*mnt
)
270 this_cpu_dec(mnt
->mnt_pcp
->mnt_writers
);
276 static unsigned int mnt_get_writers(struct mount
*mnt
)
279 unsigned int count
= 0;
282 for_each_possible_cpu(cpu
) {
283 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_writers
;
288 return mnt
->mnt_writers
;
292 static int mnt_is_readonly(struct vfsmount
*mnt
)
294 if (mnt
->mnt_sb
->s_readonly_remount
)
296 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
298 return __mnt_is_readonly(mnt
);
302 * Most r/o & frozen checks on a fs are for operations that take discrete
303 * amounts of time, like a write() or unlink(). We must keep track of when
304 * those operations start (for permission checks) and when they end, so that we
305 * can determine when writes are able to occur to a filesystem.
308 * __mnt_want_write - get write access to a mount without freeze protection
309 * @m: the mount on which to take a write
311 * This tells the low-level filesystem that a write is about to be performed to
312 * it, and makes sure that writes are allowed (mnt it read-write) before
313 * returning success. This operation does not protect against filesystem being
314 * frozen. When the write operation is finished, __mnt_drop_write() must be
315 * called. This is effectively a refcount.
317 int __mnt_want_write(struct vfsmount
*m
)
319 struct mount
*mnt
= real_mount(m
);
323 mnt_inc_writers(mnt
);
325 * The store to mnt_inc_writers must be visible before we pass
326 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
327 * incremented count after it has set MNT_WRITE_HOLD.
330 while (READ_ONCE(mnt
->mnt
.mnt_flags
) & MNT_WRITE_HOLD
)
333 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
334 * be set to match its requirements. So we must not load that until
335 * MNT_WRITE_HOLD is cleared.
338 if (mnt_is_readonly(m
)) {
339 mnt_dec_writers(mnt
);
348 * mnt_want_write - get write access to a mount
349 * @m: the mount on which to take a write
351 * This tells the low-level filesystem that a write is about to be performed to
352 * it, and makes sure that writes are allowed (mount is read-write, filesystem
353 * is not frozen) before returning success. When the write operation is
354 * finished, mnt_drop_write() must be called. This is effectively a refcount.
356 int mnt_want_write(struct vfsmount
*m
)
360 sb_start_write(m
->mnt_sb
);
361 ret
= __mnt_want_write(m
);
363 sb_end_write(m
->mnt_sb
);
366 EXPORT_SYMBOL_GPL(mnt_want_write
);
369 * mnt_clone_write - get write access to a mount
370 * @mnt: the mount on which to take a write
372 * This is effectively like mnt_want_write, except
373 * it must only be used to take an extra write reference
374 * on a mountpoint that we already know has a write reference
375 * on it. This allows some optimisation.
377 * After finished, mnt_drop_write must be called as usual to
378 * drop the reference.
380 int mnt_clone_write(struct vfsmount
*mnt
)
382 /* superblock may be r/o */
383 if (__mnt_is_readonly(mnt
))
386 mnt_inc_writers(real_mount(mnt
));
390 EXPORT_SYMBOL_GPL(mnt_clone_write
);
393 * __mnt_want_write_file - get write access to a file's mount
394 * @file: the file who's mount on which to take a write
396 * This is like __mnt_want_write, but it takes a file and can
397 * do some optimisations if the file is open for write already
399 int __mnt_want_write_file(struct file
*file
)
401 if (!(file
->f_mode
& FMODE_WRITER
))
402 return __mnt_want_write(file
->f_path
.mnt
);
404 return mnt_clone_write(file
->f_path
.mnt
);
408 * mnt_want_write_file - get write access to a file's mount
409 * @file: the file who's mount on which to take a write
411 * This is like mnt_want_write, but it takes a file and can
412 * do some optimisations if the file is open for write already
414 int mnt_want_write_file(struct file
*file
)
418 sb_start_write(file_inode(file
)->i_sb
);
419 ret
= __mnt_want_write_file(file
);
421 sb_end_write(file_inode(file
)->i_sb
);
424 EXPORT_SYMBOL_GPL(mnt_want_write_file
);
427 * __mnt_drop_write - give up write access to a mount
428 * @mnt: the mount on which to give up write access
430 * Tells the low-level filesystem that we are done
431 * performing writes to it. Must be matched with
432 * __mnt_want_write() call above.
434 void __mnt_drop_write(struct vfsmount
*mnt
)
437 mnt_dec_writers(real_mount(mnt
));
442 * mnt_drop_write - give up write access to a mount
443 * @mnt: the mount on which to give up write access
445 * Tells the low-level filesystem that we are done performing writes to it and
446 * also allows filesystem to be frozen again. Must be matched with
447 * mnt_want_write() call above.
449 void mnt_drop_write(struct vfsmount
*mnt
)
451 __mnt_drop_write(mnt
);
452 sb_end_write(mnt
->mnt_sb
);
454 EXPORT_SYMBOL_GPL(mnt_drop_write
);
456 void __mnt_drop_write_file(struct file
*file
)
458 __mnt_drop_write(file
->f_path
.mnt
);
461 void mnt_drop_write_file(struct file
*file
)
463 __mnt_drop_write_file(file
);
464 sb_end_write(file_inode(file
)->i_sb
);
466 EXPORT_SYMBOL(mnt_drop_write_file
);
468 static int mnt_make_readonly(struct mount
*mnt
)
473 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
475 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
476 * should be visible before we do.
481 * With writers on hold, if this value is zero, then there are
482 * definitely no active writers (although held writers may subsequently
483 * increment the count, they'll have to wait, and decrement it after
484 * seeing MNT_READONLY).
486 * It is OK to have counter incremented on one CPU and decremented on
487 * another: the sum will add up correctly. The danger would be when we
488 * sum up each counter, if we read a counter before it is incremented,
489 * but then read another CPU's count which it has been subsequently
490 * decremented from -- we would see more decrements than we should.
491 * MNT_WRITE_HOLD protects against this scenario, because
492 * mnt_want_write first increments count, then smp_mb, then spins on
493 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
494 * we're counting up here.
496 if (mnt_get_writers(mnt
) > 0)
499 mnt
->mnt
.mnt_flags
|= MNT_READONLY
;
501 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
502 * that become unheld will see MNT_READONLY.
505 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
510 static void __mnt_unmake_readonly(struct mount
*mnt
)
513 mnt
->mnt
.mnt_flags
&= ~MNT_READONLY
;
517 int sb_prepare_remount_readonly(struct super_block
*sb
)
522 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
523 if (atomic_long_read(&sb
->s_remove_count
))
527 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
528 if (!(mnt
->mnt
.mnt_flags
& MNT_READONLY
)) {
529 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
531 if (mnt_get_writers(mnt
) > 0) {
537 if (!err
&& atomic_long_read(&sb
->s_remove_count
))
541 sb
->s_readonly_remount
= 1;
544 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
545 if (mnt
->mnt
.mnt_flags
& MNT_WRITE_HOLD
)
546 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
553 static void free_vfsmnt(struct mount
*mnt
)
555 kfree_const(mnt
->mnt_devname
);
557 free_percpu(mnt
->mnt_pcp
);
559 kmem_cache_free(mnt_cache
, mnt
);
562 static void delayed_free_vfsmnt(struct rcu_head
*head
)
564 free_vfsmnt(container_of(head
, struct mount
, mnt_rcu
));
567 /* call under rcu_read_lock */
568 int __legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
571 if (read_seqretry(&mount_lock
, seq
))
575 mnt
= real_mount(bastard
);
576 mnt_add_count(mnt
, 1);
577 smp_mb(); // see mntput_no_expire()
578 if (likely(!read_seqretry(&mount_lock
, seq
)))
580 if (bastard
->mnt_flags
& MNT_SYNC_UMOUNT
) {
581 mnt_add_count(mnt
, -1);
585 if (unlikely(bastard
->mnt_flags
& MNT_DOOMED
)) {
586 mnt_add_count(mnt
, -1);
591 /* caller will mntput() */
595 /* call under rcu_read_lock */
596 bool legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
598 int res
= __legitimize_mnt(bastard
, seq
);
601 if (unlikely(res
< 0)) {
610 * find the first mount at @dentry on vfsmount @mnt.
611 * call under rcu_read_lock()
613 struct mount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
)
615 struct hlist_head
*head
= m_hash(mnt
, dentry
);
618 hlist_for_each_entry_rcu(p
, head
, mnt_hash
)
619 if (&p
->mnt_parent
->mnt
== mnt
&& p
->mnt_mountpoint
== dentry
)
625 * lookup_mnt - Return the first child mount mounted at path
627 * "First" means first mounted chronologically. If you create the
630 * mount /dev/sda1 /mnt
631 * mount /dev/sda2 /mnt
632 * mount /dev/sda3 /mnt
634 * Then lookup_mnt() on the base /mnt dentry in the root mount will
635 * return successively the root dentry and vfsmount of /dev/sda1, then
636 * /dev/sda2, then /dev/sda3, then NULL.
638 * lookup_mnt takes a reference to the found vfsmount.
640 struct vfsmount
*lookup_mnt(const struct path
*path
)
642 struct mount
*child_mnt
;
648 seq
= read_seqbegin(&mount_lock
);
649 child_mnt
= __lookup_mnt(path
->mnt
, path
->dentry
);
650 m
= child_mnt
? &child_mnt
->mnt
: NULL
;
651 } while (!legitimize_mnt(m
, seq
));
657 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
658 * current mount namespace.
660 * The common case is dentries are not mountpoints at all and that
661 * test is handled inline. For the slow case when we are actually
662 * dealing with a mountpoint of some kind, walk through all of the
663 * mounts in the current mount namespace and test to see if the dentry
666 * The mount_hashtable is not usable in the context because we
667 * need to identify all mounts that may be in the current mount
668 * namespace not just a mount that happens to have some specified
671 bool __is_local_mountpoint(struct dentry
*dentry
)
673 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
675 bool is_covered
= false;
677 if (!d_mountpoint(dentry
))
680 down_read(&namespace_sem
);
681 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
682 is_covered
= (mnt
->mnt_mountpoint
== dentry
);
686 up_read(&namespace_sem
);
691 static struct mountpoint
*lookup_mountpoint(struct dentry
*dentry
)
693 struct hlist_head
*chain
= mp_hash(dentry
);
694 struct mountpoint
*mp
;
696 hlist_for_each_entry(mp
, chain
, m_hash
) {
697 if (mp
->m_dentry
== dentry
) {
705 static struct mountpoint
*get_mountpoint(struct dentry
*dentry
)
707 struct mountpoint
*mp
, *new = NULL
;
710 if (d_mountpoint(dentry
)) {
711 /* might be worth a WARN_ON() */
712 if (d_unlinked(dentry
))
713 return ERR_PTR(-ENOENT
);
715 read_seqlock_excl(&mount_lock
);
716 mp
= lookup_mountpoint(dentry
);
717 read_sequnlock_excl(&mount_lock
);
723 new = kmalloc(sizeof(struct mountpoint
), GFP_KERNEL
);
725 return ERR_PTR(-ENOMEM
);
728 /* Exactly one processes may set d_mounted */
729 ret
= d_set_mounted(dentry
);
731 /* Someone else set d_mounted? */
735 /* The dentry is not available as a mountpoint? */
740 /* Add the new mountpoint to the hash table */
741 read_seqlock_excl(&mount_lock
);
742 new->m_dentry
= dentry
;
744 hlist_add_head(&new->m_hash
, mp_hash(dentry
));
745 INIT_HLIST_HEAD(&new->m_list
);
746 read_sequnlock_excl(&mount_lock
);
755 static void put_mountpoint(struct mountpoint
*mp
)
757 if (!--mp
->m_count
) {
758 struct dentry
*dentry
= mp
->m_dentry
;
759 BUG_ON(!hlist_empty(&mp
->m_list
));
760 spin_lock(&dentry
->d_lock
);
761 dentry
->d_flags
&= ~DCACHE_MOUNTED
;
762 spin_unlock(&dentry
->d_lock
);
763 hlist_del(&mp
->m_hash
);
768 static inline int check_mnt(struct mount
*mnt
)
770 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
774 * vfsmount lock must be held for write
776 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
780 wake_up_interruptible(&ns
->poll
);
785 * vfsmount lock must be held for write
787 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
789 if (ns
&& ns
->event
!= event
) {
791 wake_up_interruptible(&ns
->poll
);
796 * vfsmount lock must be held for write
798 static void unhash_mnt(struct mount
*mnt
)
800 mnt
->mnt_parent
= mnt
;
801 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
802 list_del_init(&mnt
->mnt_child
);
803 hlist_del_init_rcu(&mnt
->mnt_hash
);
804 hlist_del_init(&mnt
->mnt_mp_list
);
805 put_mountpoint(mnt
->mnt_mp
);
810 * vfsmount lock must be held for write
812 static void detach_mnt(struct mount
*mnt
, struct path
*old_path
)
814 old_path
->dentry
= mnt
->mnt_mountpoint
;
815 old_path
->mnt
= &mnt
->mnt_parent
->mnt
;
820 * vfsmount lock must be held for write
822 static void umount_mnt(struct mount
*mnt
)
824 /* old mountpoint will be dropped when we can do that */
825 mnt
->mnt_ex_mountpoint
= mnt
->mnt_mountpoint
;
830 * vfsmount lock must be held for write
832 void mnt_set_mountpoint(struct mount
*mnt
,
833 struct mountpoint
*mp
,
834 struct mount
*child_mnt
)
837 mnt_add_count(mnt
, 1); /* essentially, that's mntget */
838 child_mnt
->mnt_mountpoint
= dget(mp
->m_dentry
);
839 child_mnt
->mnt_parent
= mnt
;
840 child_mnt
->mnt_mp
= mp
;
841 hlist_add_head(&child_mnt
->mnt_mp_list
, &mp
->m_list
);
844 static void __attach_mnt(struct mount
*mnt
, struct mount
*parent
)
846 hlist_add_head_rcu(&mnt
->mnt_hash
,
847 m_hash(&parent
->mnt
, mnt
->mnt_mountpoint
));
848 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
852 * vfsmount lock must be held for write
854 static void attach_mnt(struct mount
*mnt
,
855 struct mount
*parent
,
856 struct mountpoint
*mp
)
858 mnt_set_mountpoint(parent
, mp
, mnt
);
859 __attach_mnt(mnt
, parent
);
862 void mnt_change_mountpoint(struct mount
*parent
, struct mountpoint
*mp
, struct mount
*mnt
)
864 struct mountpoint
*old_mp
= mnt
->mnt_mp
;
865 struct dentry
*old_mountpoint
= mnt
->mnt_mountpoint
;
866 struct mount
*old_parent
= mnt
->mnt_parent
;
868 list_del_init(&mnt
->mnt_child
);
869 hlist_del_init(&mnt
->mnt_mp_list
);
870 hlist_del_init_rcu(&mnt
->mnt_hash
);
872 attach_mnt(mnt
, parent
, mp
);
874 put_mountpoint(old_mp
);
877 * Safely avoid even the suggestion this code might sleep or
878 * lock the mount hash by taking advantage of the knowledge that
879 * mnt_change_mountpoint will not release the final reference
882 * During mounting, the mount passed in as the parent mount will
883 * continue to use the old mountpoint and during unmounting, the
884 * old mountpoint will continue to exist until namespace_unlock,
885 * which happens well after mnt_change_mountpoint.
887 spin_lock(&old_mountpoint
->d_lock
);
888 old_mountpoint
->d_lockref
.count
--;
889 spin_unlock(&old_mountpoint
->d_lock
);
891 mnt_add_count(old_parent
, -1);
895 * vfsmount lock must be held for write
897 static void commit_tree(struct mount
*mnt
)
899 struct mount
*parent
= mnt
->mnt_parent
;
902 struct mnt_namespace
*n
= parent
->mnt_ns
;
904 BUG_ON(parent
== mnt
);
906 list_add_tail(&head
, &mnt
->mnt_list
);
907 list_for_each_entry(m
, &head
, mnt_list
)
910 list_splice(&head
, n
->list
.prev
);
912 n
->mounts
+= n
->pending_mounts
;
913 n
->pending_mounts
= 0;
915 __attach_mnt(mnt
, parent
);
916 touch_mnt_namespace(n
);
919 static struct mount
*next_mnt(struct mount
*p
, struct mount
*root
)
921 struct list_head
*next
= p
->mnt_mounts
.next
;
922 if (next
== &p
->mnt_mounts
) {
926 next
= p
->mnt_child
.next
;
927 if (next
!= &p
->mnt_parent
->mnt_mounts
)
932 return list_entry(next
, struct mount
, mnt_child
);
935 static struct mount
*skip_mnt_tree(struct mount
*p
)
937 struct list_head
*prev
= p
->mnt_mounts
.prev
;
938 while (prev
!= &p
->mnt_mounts
) {
939 p
= list_entry(prev
, struct mount
, mnt_child
);
940 prev
= p
->mnt_mounts
.prev
;
946 vfs_kern_mount(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
952 return ERR_PTR(-ENODEV
);
954 mnt
= alloc_vfsmnt(name
);
956 return ERR_PTR(-ENOMEM
);
958 if (flags
& SB_KERNMOUNT
)
959 mnt
->mnt
.mnt_flags
= MNT_INTERNAL
;
961 root
= mount_fs(type
, flags
, name
, data
);
965 return ERR_CAST(root
);
968 mnt
->mnt
.mnt_root
= root
;
969 mnt
->mnt
.mnt_sb
= root
->d_sb
;
970 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
971 mnt
->mnt_parent
= mnt
;
973 list_add_tail(&mnt
->mnt_instance
, &root
->d_sb
->s_mounts
);
977 EXPORT_SYMBOL_GPL(vfs_kern_mount
);
980 vfs_submount(const struct dentry
*mountpoint
, struct file_system_type
*type
,
981 const char *name
, void *data
)
983 /* Until it is worked out how to pass the user namespace
984 * through from the parent mount to the submount don't support
985 * unprivileged mounts with submounts.
987 if (mountpoint
->d_sb
->s_user_ns
!= &init_user_ns
)
988 return ERR_PTR(-EPERM
);
990 return vfs_kern_mount(type
, SB_SUBMOUNT
, name
, data
);
992 EXPORT_SYMBOL_GPL(vfs_submount
);
994 static struct mount
*clone_mnt(struct mount
*old
, struct dentry
*root
,
997 struct super_block
*sb
= old
->mnt
.mnt_sb
;
1001 mnt
= alloc_vfsmnt(old
->mnt_devname
);
1003 return ERR_PTR(-ENOMEM
);
1005 if (flag
& (CL_SLAVE
| CL_PRIVATE
| CL_SHARED_TO_SLAVE
))
1006 mnt
->mnt_group_id
= 0; /* not a peer of original */
1008 mnt
->mnt_group_id
= old
->mnt_group_id
;
1010 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
1011 err
= mnt_alloc_group_id(mnt
);
1016 mnt
->mnt
.mnt_flags
= old
->mnt
.mnt_flags
;
1017 mnt
->mnt
.mnt_flags
&= ~(MNT_WRITE_HOLD
|MNT_MARKED
|MNT_INTERNAL
);
1018 /* Don't allow unprivileged users to change mount flags */
1019 if (flag
& CL_UNPRIVILEGED
) {
1020 mnt
->mnt
.mnt_flags
|= MNT_LOCK_ATIME
;
1022 if (mnt
->mnt
.mnt_flags
& MNT_READONLY
)
1023 mnt
->mnt
.mnt_flags
|= MNT_LOCK_READONLY
;
1025 if (mnt
->mnt
.mnt_flags
& MNT_NODEV
)
1026 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NODEV
;
1028 if (mnt
->mnt
.mnt_flags
& MNT_NOSUID
)
1029 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOSUID
;
1031 if (mnt
->mnt
.mnt_flags
& MNT_NOEXEC
)
1032 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOEXEC
;
1035 /* Don't allow unprivileged users to reveal what is under a mount */
1036 if ((flag
& CL_UNPRIVILEGED
) &&
1037 (!(flag
& CL_EXPIRE
) || list_empty(&old
->mnt_expire
)))
1038 mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
1040 atomic_inc(&sb
->s_active
);
1041 mnt
->mnt
.mnt_sb
= sb
;
1042 mnt
->mnt
.mnt_root
= dget(root
);
1043 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
1044 mnt
->mnt_parent
= mnt
;
1046 list_add_tail(&mnt
->mnt_instance
, &sb
->s_mounts
);
1047 unlock_mount_hash();
1049 if ((flag
& CL_SLAVE
) ||
1050 ((flag
& CL_SHARED_TO_SLAVE
) && IS_MNT_SHARED(old
))) {
1051 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
1052 mnt
->mnt_master
= old
;
1053 CLEAR_MNT_SHARED(mnt
);
1054 } else if (!(flag
& CL_PRIVATE
)) {
1055 if ((flag
& CL_MAKE_SHARED
) || IS_MNT_SHARED(old
))
1056 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
1057 if (IS_MNT_SLAVE(old
))
1058 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
1059 mnt
->mnt_master
= old
->mnt_master
;
1061 CLEAR_MNT_SHARED(mnt
);
1063 if (flag
& CL_MAKE_SHARED
)
1064 set_mnt_shared(mnt
);
1066 /* stick the duplicate mount on the same expiry list
1067 * as the original if that was on one */
1068 if (flag
& CL_EXPIRE
) {
1069 if (!list_empty(&old
->mnt_expire
))
1070 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
1078 return ERR_PTR(err
);
1081 static void cleanup_mnt(struct mount
*mnt
)
1084 * This probably indicates that somebody messed
1085 * up a mnt_want/drop_write() pair. If this
1086 * happens, the filesystem was probably unable
1087 * to make r/w->r/o transitions.
1090 * The locking used to deal with mnt_count decrement provides barriers,
1091 * so mnt_get_writers() below is safe.
1093 WARN_ON(mnt_get_writers(mnt
));
1094 if (unlikely(mnt
->mnt_pins
.first
))
1096 fsnotify_vfsmount_delete(&mnt
->mnt
);
1097 dput(mnt
->mnt
.mnt_root
);
1098 deactivate_super(mnt
->mnt
.mnt_sb
);
1100 call_rcu(&mnt
->mnt_rcu
, delayed_free_vfsmnt
);
1103 static void __cleanup_mnt(struct rcu_head
*head
)
1105 cleanup_mnt(container_of(head
, struct mount
, mnt_rcu
));
1108 static LLIST_HEAD(delayed_mntput_list
);
1109 static void delayed_mntput(struct work_struct
*unused
)
1111 struct llist_node
*node
= llist_del_all(&delayed_mntput_list
);
1112 struct mount
*m
, *t
;
1114 llist_for_each_entry_safe(m
, t
, node
, mnt_llist
)
1117 static DECLARE_DELAYED_WORK(delayed_mntput_work
, delayed_mntput
);
1119 static void mntput_no_expire(struct mount
*mnt
)
1122 if (likely(READ_ONCE(mnt
->mnt_ns
))) {
1124 * Since we don't do lock_mount_hash() here,
1125 * ->mnt_ns can change under us. However, if it's
1126 * non-NULL, then there's a reference that won't
1127 * be dropped until after an RCU delay done after
1128 * turning ->mnt_ns NULL. So if we observe it
1129 * non-NULL under rcu_read_lock(), the reference
1130 * we are dropping is not the final one.
1132 mnt_add_count(mnt
, -1);
1138 * make sure that if __legitimize_mnt() has not seen us grab
1139 * mount_lock, we'll see their refcount increment here.
1142 mnt_add_count(mnt
, -1);
1143 if (mnt_get_count(mnt
)) {
1145 unlock_mount_hash();
1148 if (unlikely(mnt
->mnt
.mnt_flags
& MNT_DOOMED
)) {
1150 unlock_mount_hash();
1153 mnt
->mnt
.mnt_flags
|= MNT_DOOMED
;
1156 list_del(&mnt
->mnt_instance
);
1158 if (unlikely(!list_empty(&mnt
->mnt_mounts
))) {
1159 struct mount
*p
, *tmp
;
1160 list_for_each_entry_safe(p
, tmp
, &mnt
->mnt_mounts
, mnt_child
) {
1164 unlock_mount_hash();
1166 if (likely(!(mnt
->mnt
.mnt_flags
& MNT_INTERNAL
))) {
1167 struct task_struct
*task
= current
;
1168 if (likely(!(task
->flags
& PF_KTHREAD
))) {
1169 init_task_work(&mnt
->mnt_rcu
, __cleanup_mnt
);
1170 if (!task_work_add(task
, &mnt
->mnt_rcu
, true))
1173 if (llist_add(&mnt
->mnt_llist
, &delayed_mntput_list
))
1174 schedule_delayed_work(&delayed_mntput_work
, 1);
1180 void mntput(struct vfsmount
*mnt
)
1183 struct mount
*m
= real_mount(mnt
);
1184 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1185 if (unlikely(m
->mnt_expiry_mark
))
1186 m
->mnt_expiry_mark
= 0;
1187 mntput_no_expire(m
);
1190 EXPORT_SYMBOL(mntput
);
1192 struct vfsmount
*mntget(struct vfsmount
*mnt
)
1195 mnt_add_count(real_mount(mnt
), 1);
1198 EXPORT_SYMBOL(mntget
);
1200 /* path_is_mountpoint() - Check if path is a mount in the current
1203 * d_mountpoint() can only be used reliably to establish if a dentry is
1204 * not mounted in any namespace and that common case is handled inline.
1205 * d_mountpoint() isn't aware of the possibility there may be multiple
1206 * mounts using a given dentry in a different namespace. This function
1207 * checks if the passed in path is a mountpoint rather than the dentry
1210 bool path_is_mountpoint(const struct path
*path
)
1215 if (!d_mountpoint(path
->dentry
))
1220 seq
= read_seqbegin(&mount_lock
);
1221 res
= __path_is_mountpoint(path
);
1222 } while (read_seqretry(&mount_lock
, seq
));
1227 EXPORT_SYMBOL(path_is_mountpoint
);
1229 struct vfsmount
*mnt_clone_internal(const struct path
*path
)
1232 p
= clone_mnt(real_mount(path
->mnt
), path
->dentry
, CL_PRIVATE
);
1235 p
->mnt
.mnt_flags
|= MNT_INTERNAL
;
1239 #ifdef CONFIG_PROC_FS
1240 /* iterator; we want it to have access to namespace_sem, thus here... */
1241 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
1243 struct proc_mounts
*p
= m
->private;
1245 down_read(&namespace_sem
);
1246 if (p
->cached_event
== p
->ns
->event
) {
1247 void *v
= p
->cached_mount
;
1248 if (*pos
== p
->cached_index
)
1250 if (*pos
== p
->cached_index
+ 1) {
1251 v
= seq_list_next(v
, &p
->ns
->list
, &p
->cached_index
);
1252 return p
->cached_mount
= v
;
1256 p
->cached_event
= p
->ns
->event
;
1257 p
->cached_mount
= seq_list_start(&p
->ns
->list
, *pos
);
1258 p
->cached_index
= *pos
;
1259 return p
->cached_mount
;
1262 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1264 struct proc_mounts
*p
= m
->private;
1266 p
->cached_mount
= seq_list_next(v
, &p
->ns
->list
, pos
);
1267 p
->cached_index
= *pos
;
1268 return p
->cached_mount
;
1271 static void m_stop(struct seq_file
*m
, void *v
)
1273 up_read(&namespace_sem
);
1276 static int m_show(struct seq_file
*m
, void *v
)
1278 struct proc_mounts
*p
= m
->private;
1279 struct mount
*r
= list_entry(v
, struct mount
, mnt_list
);
1280 return p
->show(m
, &r
->mnt
);
1283 const struct seq_operations mounts_op
= {
1289 #endif /* CONFIG_PROC_FS */
1292 * may_umount_tree - check if a mount tree is busy
1293 * @mnt: root of mount tree
1295 * This is called to check if a tree of mounts has any
1296 * open files, pwds, chroots or sub mounts that are
1299 int may_umount_tree(struct vfsmount
*m
)
1301 struct mount
*mnt
= real_mount(m
);
1302 int actual_refs
= 0;
1303 int minimum_refs
= 0;
1307 /* write lock needed for mnt_get_count */
1309 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1310 actual_refs
+= mnt_get_count(p
);
1313 unlock_mount_hash();
1315 if (actual_refs
> minimum_refs
)
1321 EXPORT_SYMBOL(may_umount_tree
);
1324 * may_umount - check if a mount point is busy
1325 * @mnt: root of mount
1327 * This is called to check if a mount point has any
1328 * open files, pwds, chroots or sub mounts. If the
1329 * mount has sub mounts this will return busy
1330 * regardless of whether the sub mounts are busy.
1332 * Doesn't take quota and stuff into account. IOW, in some cases it will
1333 * give false negatives. The main reason why it's here is that we need
1334 * a non-destructive way to look for easily umountable filesystems.
1336 int may_umount(struct vfsmount
*mnt
)
1339 down_read(&namespace_sem
);
1341 if (propagate_mount_busy(real_mount(mnt
), 2))
1343 unlock_mount_hash();
1344 up_read(&namespace_sem
);
1348 EXPORT_SYMBOL(may_umount
);
1350 static HLIST_HEAD(unmounted
); /* protected by namespace_sem */
1352 static void namespace_unlock(void)
1354 struct hlist_head head
;
1356 hlist_move_list(&unmounted
, &head
);
1358 up_write(&namespace_sem
);
1360 if (likely(hlist_empty(&head
)))
1365 group_pin_kill(&head
);
1368 static inline void namespace_lock(void)
1370 down_write(&namespace_sem
);
1373 enum umount_tree_flags
{
1375 UMOUNT_PROPAGATE
= 2,
1376 UMOUNT_CONNECTED
= 4,
1379 static bool disconnect_mount(struct mount
*mnt
, enum umount_tree_flags how
)
1381 /* Leaving mounts connected is only valid for lazy umounts */
1382 if (how
& UMOUNT_SYNC
)
1385 /* A mount without a parent has nothing to be connected to */
1386 if (!mnt_has_parent(mnt
))
1389 /* Because the reference counting rules change when mounts are
1390 * unmounted and connected, umounted mounts may not be
1391 * connected to mounted mounts.
1393 if (!(mnt
->mnt_parent
->mnt
.mnt_flags
& MNT_UMOUNT
))
1396 /* Has it been requested that the mount remain connected? */
1397 if (how
& UMOUNT_CONNECTED
)
1400 /* Is the mount locked such that it needs to remain connected? */
1401 if (IS_MNT_LOCKED(mnt
))
1404 /* By default disconnect the mount */
1409 * mount_lock must be held
1410 * namespace_sem must be held for write
1412 static void umount_tree(struct mount
*mnt
, enum umount_tree_flags how
)
1414 LIST_HEAD(tmp_list
);
1417 if (how
& UMOUNT_PROPAGATE
)
1418 propagate_mount_unlock(mnt
);
1420 /* Gather the mounts to umount */
1421 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1422 p
->mnt
.mnt_flags
|= MNT_UMOUNT
;
1423 list_move(&p
->mnt_list
, &tmp_list
);
1426 /* Hide the mounts from mnt_mounts */
1427 list_for_each_entry(p
, &tmp_list
, mnt_list
) {
1428 list_del_init(&p
->mnt_child
);
1431 /* Add propogated mounts to the tmp_list */
1432 if (how
& UMOUNT_PROPAGATE
)
1433 propagate_umount(&tmp_list
);
1435 while (!list_empty(&tmp_list
)) {
1436 struct mnt_namespace
*ns
;
1438 p
= list_first_entry(&tmp_list
, struct mount
, mnt_list
);
1439 list_del_init(&p
->mnt_expire
);
1440 list_del_init(&p
->mnt_list
);
1444 __touch_mnt_namespace(ns
);
1447 if (how
& UMOUNT_SYNC
)
1448 p
->mnt
.mnt_flags
|= MNT_SYNC_UMOUNT
;
1450 disconnect
= disconnect_mount(p
, how
);
1452 pin_insert_group(&p
->mnt_umount
, &p
->mnt_parent
->mnt
,
1453 disconnect
? &unmounted
: NULL
);
1454 if (mnt_has_parent(p
)) {
1455 mnt_add_count(p
->mnt_parent
, -1);
1457 /* Don't forget about p */
1458 list_add_tail(&p
->mnt_child
, &p
->mnt_parent
->mnt_mounts
);
1463 change_mnt_propagation(p
, MS_PRIVATE
);
1467 static void shrink_submounts(struct mount
*mnt
);
1469 static int do_umount(struct mount
*mnt
, int flags
)
1471 struct super_block
*sb
= mnt
->mnt
.mnt_sb
;
1474 retval
= security_sb_umount(&mnt
->mnt
, flags
);
1479 * Allow userspace to request a mountpoint be expired rather than
1480 * unmounting unconditionally. Unmount only happens if:
1481 * (1) the mark is already set (the mark is cleared by mntput())
1482 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1484 if (flags
& MNT_EXPIRE
) {
1485 if (&mnt
->mnt
== current
->fs
->root
.mnt
||
1486 flags
& (MNT_FORCE
| MNT_DETACH
))
1490 * probably don't strictly need the lock here if we examined
1491 * all race cases, but it's a slowpath.
1494 if (mnt_get_count(mnt
) != 2) {
1495 unlock_mount_hash();
1498 unlock_mount_hash();
1500 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1505 * If we may have to abort operations to get out of this
1506 * mount, and they will themselves hold resources we must
1507 * allow the fs to do things. In the Unix tradition of
1508 * 'Gee thats tricky lets do it in userspace' the umount_begin
1509 * might fail to complete on the first run through as other tasks
1510 * must return, and the like. Thats for the mount program to worry
1511 * about for the moment.
1514 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1515 sb
->s_op
->umount_begin(sb
);
1519 * No sense to grab the lock for this test, but test itself looks
1520 * somewhat bogus. Suggestions for better replacement?
1521 * Ho-hum... In principle, we might treat that as umount + switch
1522 * to rootfs. GC would eventually take care of the old vfsmount.
1523 * Actually it makes sense, especially if rootfs would contain a
1524 * /reboot - static binary that would close all descriptors and
1525 * call reboot(9). Then init(8) could umount root and exec /reboot.
1527 if (&mnt
->mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1529 * Special case for "unmounting" root ...
1530 * we just try to remount it readonly.
1532 if (!ns_capable(sb
->s_user_ns
, CAP_SYS_ADMIN
))
1534 down_write(&sb
->s_umount
);
1536 retval
= do_remount_sb(sb
, SB_RDONLY
, NULL
, 0);
1537 up_write(&sb
->s_umount
);
1544 /* Recheck MNT_LOCKED with the locks held */
1546 if (mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
1550 if (flags
& MNT_DETACH
) {
1551 if (!list_empty(&mnt
->mnt_list
))
1552 umount_tree(mnt
, UMOUNT_PROPAGATE
);
1555 shrink_submounts(mnt
);
1557 if (!propagate_mount_busy(mnt
, 2)) {
1558 if (!list_empty(&mnt
->mnt_list
))
1559 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
1564 unlock_mount_hash();
1570 * __detach_mounts - lazily unmount all mounts on the specified dentry
1572 * During unlink, rmdir, and d_drop it is possible to loose the path
1573 * to an existing mountpoint, and wind up leaking the mount.
1574 * detach_mounts allows lazily unmounting those mounts instead of
1577 * The caller may hold dentry->d_inode->i_mutex.
1579 void __detach_mounts(struct dentry
*dentry
)
1581 struct mountpoint
*mp
;
1586 mp
= lookup_mountpoint(dentry
);
1587 if (IS_ERR_OR_NULL(mp
))
1591 while (!hlist_empty(&mp
->m_list
)) {
1592 mnt
= hlist_entry(mp
->m_list
.first
, struct mount
, mnt_mp_list
);
1593 if (mnt
->mnt
.mnt_flags
& MNT_UMOUNT
) {
1594 hlist_add_head(&mnt
->mnt_umount
.s_list
, &unmounted
);
1597 else umount_tree(mnt
, UMOUNT_CONNECTED
);
1601 unlock_mount_hash();
1606 * Is the caller allowed to modify his namespace?
1608 static inline bool may_mount(void)
1610 return ns_capable(current
->nsproxy
->mnt_ns
->user_ns
, CAP_SYS_ADMIN
);
1613 static inline bool may_mandlock(void)
1615 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1618 return capable(CAP_SYS_ADMIN
);
1622 * Now umount can handle mount points as well as block devices.
1623 * This is important for filesystems which use unnamed block devices.
1625 * We now support a flag for forced unmount like the other 'big iron'
1626 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1629 int ksys_umount(char __user
*name
, int flags
)
1634 int lookup_flags
= 0;
1636 if (flags
& ~(MNT_FORCE
| MNT_DETACH
| MNT_EXPIRE
| UMOUNT_NOFOLLOW
))
1642 if (!(flags
& UMOUNT_NOFOLLOW
))
1643 lookup_flags
|= LOOKUP_FOLLOW
;
1645 retval
= user_path_mountpoint_at(AT_FDCWD
, name
, lookup_flags
, &path
);
1648 mnt
= real_mount(path
.mnt
);
1650 if (path
.dentry
!= path
.mnt
->mnt_root
)
1652 if (!check_mnt(mnt
))
1654 if (mnt
->mnt
.mnt_flags
& MNT_LOCKED
) /* Check optimistically */
1657 if (flags
& MNT_FORCE
&& !capable(CAP_SYS_ADMIN
))
1660 retval
= do_umount(mnt
, flags
);
1662 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1664 mntput_no_expire(mnt
);
1669 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1671 return ksys_umount(name
, flags
);
1674 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1677 * The 2.0 compatible umount. No flags.
1679 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1681 return ksys_umount(name
, 0);
1686 static bool is_mnt_ns_file(struct dentry
*dentry
)
1688 /* Is this a proxy for a mount namespace? */
1689 return dentry
->d_op
== &ns_dentry_operations
&&
1690 dentry
->d_fsdata
== &mntns_operations
;
1693 struct mnt_namespace
*to_mnt_ns(struct ns_common
*ns
)
1695 return container_of(ns
, struct mnt_namespace
, ns
);
1698 static bool mnt_ns_loop(struct dentry
*dentry
)
1700 /* Could bind mounting the mount namespace inode cause a
1701 * mount namespace loop?
1703 struct mnt_namespace
*mnt_ns
;
1704 if (!is_mnt_ns_file(dentry
))
1707 mnt_ns
= to_mnt_ns(get_proc_ns(dentry
->d_inode
));
1708 return current
->nsproxy
->mnt_ns
->seq
>= mnt_ns
->seq
;
1711 struct mount
*copy_tree(struct mount
*mnt
, struct dentry
*dentry
,
1714 struct mount
*res
, *p
, *q
, *r
, *parent
;
1716 if (!(flag
& CL_COPY_UNBINDABLE
) && IS_MNT_UNBINDABLE(mnt
))
1717 return ERR_PTR(-EINVAL
);
1719 if (!(flag
& CL_COPY_MNT_NS_FILE
) && is_mnt_ns_file(dentry
))
1720 return ERR_PTR(-EINVAL
);
1722 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1726 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1729 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1731 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1734 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1735 if (!(flag
& CL_COPY_UNBINDABLE
) &&
1736 IS_MNT_UNBINDABLE(s
)) {
1737 if (s
->mnt
.mnt_flags
& MNT_LOCKED
) {
1738 /* Both unbindable and locked. */
1739 q
= ERR_PTR(-EPERM
);
1742 s
= skip_mnt_tree(s
);
1746 if (!(flag
& CL_COPY_MNT_NS_FILE
) &&
1747 is_mnt_ns_file(s
->mnt
.mnt_root
)) {
1748 s
= skip_mnt_tree(s
);
1751 while (p
!= s
->mnt_parent
) {
1757 q
= clone_mnt(p
, p
->mnt
.mnt_root
, flag
);
1761 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1762 attach_mnt(q
, parent
, p
->mnt_mp
);
1763 unlock_mount_hash();
1770 umount_tree(res
, UMOUNT_SYNC
);
1771 unlock_mount_hash();
1776 /* Caller should check returned pointer for errors */
1778 struct vfsmount
*collect_mounts(const struct path
*path
)
1782 if (!check_mnt(real_mount(path
->mnt
)))
1783 tree
= ERR_PTR(-EINVAL
);
1785 tree
= copy_tree(real_mount(path
->mnt
), path
->dentry
,
1786 CL_COPY_ALL
| CL_PRIVATE
);
1789 return ERR_CAST(tree
);
1793 void drop_collected_mounts(struct vfsmount
*mnt
)
1797 umount_tree(real_mount(mnt
), 0);
1798 unlock_mount_hash();
1803 * clone_private_mount - create a private clone of a path
1805 * This creates a new vfsmount, which will be the clone of @path. The new will
1806 * not be attached anywhere in the namespace and will be private (i.e. changes
1807 * to the originating mount won't be propagated into this).
1809 * Release with mntput().
1811 struct vfsmount
*clone_private_mount(const struct path
*path
)
1813 struct mount
*old_mnt
= real_mount(path
->mnt
);
1814 struct mount
*new_mnt
;
1816 if (IS_MNT_UNBINDABLE(old_mnt
))
1817 return ERR_PTR(-EINVAL
);
1819 new_mnt
= clone_mnt(old_mnt
, path
->dentry
, CL_PRIVATE
);
1820 if (IS_ERR(new_mnt
))
1821 return ERR_CAST(new_mnt
);
1823 return &new_mnt
->mnt
;
1825 EXPORT_SYMBOL_GPL(clone_private_mount
);
1827 int iterate_mounts(int (*f
)(struct vfsmount
*, void *), void *arg
,
1828 struct vfsmount
*root
)
1831 int res
= f(root
, arg
);
1834 list_for_each_entry(mnt
, &real_mount(root
)->mnt_list
, mnt_list
) {
1835 res
= f(&mnt
->mnt
, arg
);
1842 static void cleanup_group_ids(struct mount
*mnt
, struct mount
*end
)
1846 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1847 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1848 mnt_release_group_id(p
);
1852 static int invent_group_ids(struct mount
*mnt
, bool recurse
)
1856 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1857 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1858 int err
= mnt_alloc_group_id(p
);
1860 cleanup_group_ids(mnt
, p
);
1869 int count_mounts(struct mnt_namespace
*ns
, struct mount
*mnt
)
1871 unsigned int max
= READ_ONCE(sysctl_mount_max
);
1872 unsigned int mounts
= 0, old
, pending
, sum
;
1875 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
1879 pending
= ns
->pending_mounts
;
1880 sum
= old
+ pending
;
1884 (mounts
> (max
- sum
)))
1887 ns
->pending_mounts
= pending
+ mounts
;
1892 * @source_mnt : mount tree to be attached
1893 * @nd : place the mount tree @source_mnt is attached
1894 * @parent_nd : if non-null, detach the source_mnt from its parent and
1895 * store the parent mount and mountpoint dentry.
1896 * (done when source_mnt is moved)
1898 * NOTE: in the table below explains the semantics when a source mount
1899 * of a given type is attached to a destination mount of a given type.
1900 * ---------------------------------------------------------------------------
1901 * | BIND MOUNT OPERATION |
1902 * |**************************************************************************
1903 * | source-->| shared | private | slave | unbindable |
1907 * |**************************************************************************
1908 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1910 * |non-shared| shared (+) | private | slave (*) | invalid |
1911 * ***************************************************************************
1912 * A bind operation clones the source mount and mounts the clone on the
1913 * destination mount.
1915 * (++) the cloned mount is propagated to all the mounts in the propagation
1916 * tree of the destination mount and the cloned mount is added to
1917 * the peer group of the source mount.
1918 * (+) the cloned mount is created under the destination mount and is marked
1919 * as shared. The cloned mount is added to the peer group of the source
1921 * (+++) the mount is propagated to all the mounts in the propagation tree
1922 * of the destination mount and the cloned mount is made slave
1923 * of the same master as that of the source mount. The cloned mount
1924 * is marked as 'shared and slave'.
1925 * (*) the cloned mount is made a slave of the same master as that of the
1928 * ---------------------------------------------------------------------------
1929 * | MOVE MOUNT OPERATION |
1930 * |**************************************************************************
1931 * | source-->| shared | private | slave | unbindable |
1935 * |**************************************************************************
1936 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1938 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1939 * ***************************************************************************
1941 * (+) the mount is moved to the destination. And is then propagated to
1942 * all the mounts in the propagation tree of the destination mount.
1943 * (+*) the mount is moved to the destination.
1944 * (+++) the mount is moved to the destination and is then propagated to
1945 * all the mounts belonging to the destination mount's propagation tree.
1946 * the mount is marked as 'shared and slave'.
1947 * (*) the mount continues to be a slave at the new location.
1949 * if the source mount is a tree, the operations explained above is
1950 * applied to each mount in the tree.
1951 * Must be called without spinlocks held, since this function can sleep
1954 static int attach_recursive_mnt(struct mount
*source_mnt
,
1955 struct mount
*dest_mnt
,
1956 struct mountpoint
*dest_mp
,
1957 struct path
*parent_path
)
1959 HLIST_HEAD(tree_list
);
1960 struct mnt_namespace
*ns
= dest_mnt
->mnt_ns
;
1961 struct mountpoint
*smp
;
1962 struct mount
*child
, *p
;
1963 struct hlist_node
*n
;
1966 /* Preallocate a mountpoint in case the new mounts need
1967 * to be tucked under other mounts.
1969 smp
= get_mountpoint(source_mnt
->mnt
.mnt_root
);
1971 return PTR_ERR(smp
);
1973 /* Is there space to add these mounts to the mount namespace? */
1975 err
= count_mounts(ns
, source_mnt
);
1980 if (IS_MNT_SHARED(dest_mnt
)) {
1981 err
= invent_group_ids(source_mnt
, true);
1984 err
= propagate_mnt(dest_mnt
, dest_mp
, source_mnt
, &tree_list
);
1987 goto out_cleanup_ids
;
1988 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
1994 detach_mnt(source_mnt
, parent_path
);
1995 attach_mnt(source_mnt
, dest_mnt
, dest_mp
);
1996 touch_mnt_namespace(source_mnt
->mnt_ns
);
1998 mnt_set_mountpoint(dest_mnt
, dest_mp
, source_mnt
);
1999 commit_tree(source_mnt
);
2002 hlist_for_each_entry_safe(child
, n
, &tree_list
, mnt_hash
) {
2004 hlist_del_init(&child
->mnt_hash
);
2005 q
= __lookup_mnt(&child
->mnt_parent
->mnt
,
2006 child
->mnt_mountpoint
);
2008 mnt_change_mountpoint(child
, smp
, q
);
2011 put_mountpoint(smp
);
2012 unlock_mount_hash();
2017 while (!hlist_empty(&tree_list
)) {
2018 child
= hlist_entry(tree_list
.first
, struct mount
, mnt_hash
);
2019 child
->mnt_parent
->mnt_ns
->pending_mounts
= 0;
2020 umount_tree(child
, UMOUNT_SYNC
);
2022 unlock_mount_hash();
2023 cleanup_group_ids(source_mnt
, NULL
);
2025 ns
->pending_mounts
= 0;
2027 read_seqlock_excl(&mount_lock
);
2028 put_mountpoint(smp
);
2029 read_sequnlock_excl(&mount_lock
);
2034 static struct mountpoint
*lock_mount(struct path
*path
)
2036 struct vfsmount
*mnt
;
2037 struct dentry
*dentry
= path
->dentry
;
2039 inode_lock(dentry
->d_inode
);
2040 if (unlikely(cant_mount(dentry
))) {
2041 inode_unlock(dentry
->d_inode
);
2042 return ERR_PTR(-ENOENT
);
2045 mnt
= lookup_mnt(path
);
2047 struct mountpoint
*mp
= get_mountpoint(dentry
);
2050 inode_unlock(dentry
->d_inode
);
2056 inode_unlock(path
->dentry
->d_inode
);
2059 dentry
= path
->dentry
= dget(mnt
->mnt_root
);
2063 static void unlock_mount(struct mountpoint
*where
)
2065 struct dentry
*dentry
= where
->m_dentry
;
2067 read_seqlock_excl(&mount_lock
);
2068 put_mountpoint(where
);
2069 read_sequnlock_excl(&mount_lock
);
2072 inode_unlock(dentry
->d_inode
);
2075 static int graft_tree(struct mount
*mnt
, struct mount
*p
, struct mountpoint
*mp
)
2077 if (mnt
->mnt
.mnt_sb
->s_flags
& SB_NOUSER
)
2080 if (d_is_dir(mp
->m_dentry
) !=
2081 d_is_dir(mnt
->mnt
.mnt_root
))
2084 return attach_recursive_mnt(mnt
, p
, mp
, NULL
);
2088 * Sanity check the flags to change_mnt_propagation.
2091 static int flags_to_propagation_type(int ms_flags
)
2093 int type
= ms_flags
& ~(MS_REC
| MS_SILENT
);
2095 /* Fail if any non-propagation flags are set */
2096 if (type
& ~(MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2098 /* Only one propagation flag should be set */
2099 if (!is_power_of_2(type
))
2105 * recursively change the type of the mountpoint.
2107 static int do_change_type(struct path
*path
, int ms_flags
)
2110 struct mount
*mnt
= real_mount(path
->mnt
);
2111 int recurse
= ms_flags
& MS_REC
;
2115 if (path
->dentry
!= path
->mnt
->mnt_root
)
2118 type
= flags_to_propagation_type(ms_flags
);
2123 if (type
== MS_SHARED
) {
2124 err
= invent_group_ids(mnt
, recurse
);
2130 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
2131 change_mnt_propagation(m
, type
);
2132 unlock_mount_hash();
2139 static bool has_locked_children(struct mount
*mnt
, struct dentry
*dentry
)
2141 struct mount
*child
;
2142 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
2143 if (!is_subdir(child
->mnt_mountpoint
, dentry
))
2146 if (child
->mnt
.mnt_flags
& MNT_LOCKED
)
2153 * do loopback mount.
2155 static int do_loopback(struct path
*path
, const char *old_name
,
2158 struct path old_path
;
2159 struct mount
*mnt
= NULL
, *old
, *parent
;
2160 struct mountpoint
*mp
;
2162 if (!old_name
|| !*old_name
)
2164 err
= kern_path(old_name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &old_path
);
2169 if (mnt_ns_loop(old_path
.dentry
))
2172 mp
= lock_mount(path
);
2177 old
= real_mount(old_path
.mnt
);
2178 parent
= real_mount(path
->mnt
);
2181 if (IS_MNT_UNBINDABLE(old
))
2184 if (!check_mnt(parent
))
2187 if (!check_mnt(old
) && old_path
.dentry
->d_op
!= &ns_dentry_operations
)
2190 if (!recurse
&& has_locked_children(old
, old_path
.dentry
))
2194 mnt
= copy_tree(old
, old_path
.dentry
, CL_COPY_MNT_NS_FILE
);
2196 mnt
= clone_mnt(old
, old_path
.dentry
, 0);
2203 mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
2205 err
= graft_tree(mnt
, parent
, mp
);
2208 umount_tree(mnt
, UMOUNT_SYNC
);
2209 unlock_mount_hash();
2214 path_put(&old_path
);
2218 static int change_mount_flags(struct vfsmount
*mnt
, int ms_flags
)
2221 int readonly_request
= 0;
2223 if (ms_flags
& MS_RDONLY
)
2224 readonly_request
= 1;
2225 if (readonly_request
== __mnt_is_readonly(mnt
))
2228 if (readonly_request
)
2229 error
= mnt_make_readonly(real_mount(mnt
));
2231 __mnt_unmake_readonly(real_mount(mnt
));
2236 * change filesystem flags. dir should be a physical root of filesystem.
2237 * If you've mounted a non-root directory somewhere and want to do remount
2238 * on it - tough luck.
2240 static int do_remount(struct path
*path
, int ms_flags
, int sb_flags
,
2241 int mnt_flags
, void *data
)
2244 struct super_block
*sb
= path
->mnt
->mnt_sb
;
2245 struct mount
*mnt
= real_mount(path
->mnt
);
2247 if (!check_mnt(mnt
))
2250 if (path
->dentry
!= path
->mnt
->mnt_root
)
2253 /* Don't allow changing of locked mnt flags.
2255 * No locks need to be held here while testing the various
2256 * MNT_LOCK flags because those flags can never be cleared
2257 * once they are set.
2259 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_READONLY
) &&
2260 !(mnt_flags
& MNT_READONLY
)) {
2263 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NODEV
) &&
2264 !(mnt_flags
& MNT_NODEV
)) {
2267 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NOSUID
) &&
2268 !(mnt_flags
& MNT_NOSUID
)) {
2271 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NOEXEC
) &&
2272 !(mnt_flags
& MNT_NOEXEC
)) {
2275 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_ATIME
) &&
2276 ((mnt
->mnt
.mnt_flags
& MNT_ATIME_MASK
) != (mnt_flags
& MNT_ATIME_MASK
))) {
2280 err
= security_sb_remount(sb
, data
);
2284 down_write(&sb
->s_umount
);
2285 if (ms_flags
& MS_BIND
)
2286 err
= change_mount_flags(path
->mnt
, ms_flags
);
2287 else if (!ns_capable(sb
->s_user_ns
, CAP_SYS_ADMIN
))
2290 err
= do_remount_sb(sb
, sb_flags
, data
, 0);
2293 mnt_flags
|= mnt
->mnt
.mnt_flags
& ~MNT_USER_SETTABLE_MASK
;
2294 mnt
->mnt
.mnt_flags
= mnt_flags
;
2295 touch_mnt_namespace(mnt
->mnt_ns
);
2296 unlock_mount_hash();
2298 up_write(&sb
->s_umount
);
2302 static inline int tree_contains_unbindable(struct mount
*mnt
)
2305 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
2306 if (IS_MNT_UNBINDABLE(p
))
2312 static int do_move_mount(struct path
*path
, const char *old_name
)
2314 struct path old_path
, parent_path
;
2317 struct mountpoint
*mp
;
2319 if (!old_name
|| !*old_name
)
2321 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
2325 mp
= lock_mount(path
);
2330 old
= real_mount(old_path
.mnt
);
2331 p
= real_mount(path
->mnt
);
2334 if (!check_mnt(p
) || !check_mnt(old
))
2337 if (old
->mnt
.mnt_flags
& MNT_LOCKED
)
2341 if (old_path
.dentry
!= old_path
.mnt
->mnt_root
)
2344 if (!mnt_has_parent(old
))
2347 if (d_is_dir(path
->dentry
) !=
2348 d_is_dir(old_path
.dentry
))
2351 * Don't move a mount residing in a shared parent.
2353 if (IS_MNT_SHARED(old
->mnt_parent
))
2356 * Don't move a mount tree containing unbindable mounts to a destination
2357 * mount which is shared.
2359 if (IS_MNT_SHARED(p
) && tree_contains_unbindable(old
))
2362 for (; mnt_has_parent(p
); p
= p
->mnt_parent
)
2366 err
= attach_recursive_mnt(old
, real_mount(path
->mnt
), mp
, &parent_path
);
2370 /* if the mount is moved, it should no longer be expire
2372 list_del_init(&old
->mnt_expire
);
2377 path_put(&parent_path
);
2378 path_put(&old_path
);
2382 static struct vfsmount
*fs_set_subtype(struct vfsmount
*mnt
, const char *fstype
)
2385 const char *subtype
= strchr(fstype
, '.');
2394 mnt
->mnt_sb
->s_subtype
= kstrdup(subtype
, GFP_KERNEL
);
2396 if (!mnt
->mnt_sb
->s_subtype
)
2402 return ERR_PTR(err
);
2406 * add a mount into a namespace's mount tree
2408 static int do_add_mount(struct mount
*newmnt
, struct path
*path
, int mnt_flags
)
2410 struct mountpoint
*mp
;
2411 struct mount
*parent
;
2414 mnt_flags
&= ~MNT_INTERNAL_FLAGS
;
2416 mp
= lock_mount(path
);
2420 parent
= real_mount(path
->mnt
);
2422 if (unlikely(!check_mnt(parent
))) {
2423 /* that's acceptable only for automounts done in private ns */
2424 if (!(mnt_flags
& MNT_SHRINKABLE
))
2426 /* ... and for those we'd better have mountpoint still alive */
2427 if (!parent
->mnt_ns
)
2431 /* Refuse the same filesystem on the same mount point */
2433 if (path
->mnt
->mnt_sb
== newmnt
->mnt
.mnt_sb
&&
2434 path
->mnt
->mnt_root
== path
->dentry
)
2438 if (d_is_symlink(newmnt
->mnt
.mnt_root
))
2441 newmnt
->mnt
.mnt_flags
= mnt_flags
;
2442 err
= graft_tree(newmnt
, parent
, mp
);
2449 static bool mount_too_revealing(struct vfsmount
*mnt
, int *new_mnt_flags
);
2452 * create a new mount for userspace and request it to be added into the
2455 static int do_new_mount(struct path
*path
, const char *fstype
, int sb_flags
,
2456 int mnt_flags
, const char *name
, void *data
)
2458 struct file_system_type
*type
;
2459 struct vfsmount
*mnt
;
2465 type
= get_fs_type(fstype
);
2469 mnt
= vfs_kern_mount(type
, sb_flags
, name
, data
);
2470 if (!IS_ERR(mnt
) && (type
->fs_flags
& FS_HAS_SUBTYPE
) &&
2471 !mnt
->mnt_sb
->s_subtype
)
2472 mnt
= fs_set_subtype(mnt
, fstype
);
2474 put_filesystem(type
);
2476 return PTR_ERR(mnt
);
2478 if (mount_too_revealing(mnt
, &mnt_flags
)) {
2483 err
= do_add_mount(real_mount(mnt
), path
, mnt_flags
);
2489 int finish_automount(struct vfsmount
*m
, struct path
*path
)
2491 struct mount
*mnt
= real_mount(m
);
2493 /* The new mount record should have at least 2 refs to prevent it being
2494 * expired before we get a chance to add it
2496 BUG_ON(mnt_get_count(mnt
) < 2);
2498 if (m
->mnt_sb
== path
->mnt
->mnt_sb
&&
2499 m
->mnt_root
== path
->dentry
) {
2504 err
= do_add_mount(mnt
, path
, path
->mnt
->mnt_flags
| MNT_SHRINKABLE
);
2508 /* remove m from any expiration list it may be on */
2509 if (!list_empty(&mnt
->mnt_expire
)) {
2511 list_del_init(&mnt
->mnt_expire
);
2520 * mnt_set_expiry - Put a mount on an expiration list
2521 * @mnt: The mount to list.
2522 * @expiry_list: The list to add the mount to.
2524 void mnt_set_expiry(struct vfsmount
*mnt
, struct list_head
*expiry_list
)
2528 list_add_tail(&real_mount(mnt
)->mnt_expire
, expiry_list
);
2532 EXPORT_SYMBOL(mnt_set_expiry
);
2535 * process a list of expirable mountpoints with the intent of discarding any
2536 * mountpoints that aren't in use and haven't been touched since last we came
2539 void mark_mounts_for_expiry(struct list_head
*mounts
)
2541 struct mount
*mnt
, *next
;
2542 LIST_HEAD(graveyard
);
2544 if (list_empty(mounts
))
2550 /* extract from the expiration list every vfsmount that matches the
2551 * following criteria:
2552 * - only referenced by its parent vfsmount
2553 * - still marked for expiry (marked on the last call here; marks are
2554 * cleared by mntput())
2556 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
2557 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
2558 propagate_mount_busy(mnt
, 1))
2560 list_move(&mnt
->mnt_expire
, &graveyard
);
2562 while (!list_empty(&graveyard
)) {
2563 mnt
= list_first_entry(&graveyard
, struct mount
, mnt_expire
);
2564 touch_mnt_namespace(mnt
->mnt_ns
);
2565 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2567 unlock_mount_hash();
2571 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
2574 * Ripoff of 'select_parent()'
2576 * search the list of submounts for a given mountpoint, and move any
2577 * shrinkable submounts to the 'graveyard' list.
2579 static int select_submounts(struct mount
*parent
, struct list_head
*graveyard
)
2581 struct mount
*this_parent
= parent
;
2582 struct list_head
*next
;
2586 next
= this_parent
->mnt_mounts
.next
;
2588 while (next
!= &this_parent
->mnt_mounts
) {
2589 struct list_head
*tmp
= next
;
2590 struct mount
*mnt
= list_entry(tmp
, struct mount
, mnt_child
);
2593 if (!(mnt
->mnt
.mnt_flags
& MNT_SHRINKABLE
))
2596 * Descend a level if the d_mounts list is non-empty.
2598 if (!list_empty(&mnt
->mnt_mounts
)) {
2603 if (!propagate_mount_busy(mnt
, 1)) {
2604 list_move_tail(&mnt
->mnt_expire
, graveyard
);
2609 * All done at this level ... ascend and resume the search
2611 if (this_parent
!= parent
) {
2612 next
= this_parent
->mnt_child
.next
;
2613 this_parent
= this_parent
->mnt_parent
;
2620 * process a list of expirable mountpoints with the intent of discarding any
2621 * submounts of a specific parent mountpoint
2623 * mount_lock must be held for write
2625 static void shrink_submounts(struct mount
*mnt
)
2627 LIST_HEAD(graveyard
);
2630 /* extract submounts of 'mountpoint' from the expiration list */
2631 while (select_submounts(mnt
, &graveyard
)) {
2632 while (!list_empty(&graveyard
)) {
2633 m
= list_first_entry(&graveyard
, struct mount
,
2635 touch_mnt_namespace(m
->mnt_ns
);
2636 umount_tree(m
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2642 * Some copy_from_user() implementations do not return the exact number of
2643 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2644 * Note that this function differs from copy_from_user() in that it will oops
2645 * on bad values of `to', rather than returning a short copy.
2647 static long exact_copy_from_user(void *to
, const void __user
* from
,
2651 const char __user
*f
= from
;
2654 if (!access_ok(VERIFY_READ
, from
, n
))
2658 if (__get_user(c
, f
)) {
2669 void *copy_mount_options(const void __user
* data
)
2678 copy
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2680 return ERR_PTR(-ENOMEM
);
2682 /* We only care that *some* data at the address the user
2683 * gave us is valid. Just in case, we'll zero
2684 * the remainder of the page.
2686 /* copy_from_user cannot cross TASK_SIZE ! */
2687 size
= TASK_SIZE
- (unsigned long)data
;
2688 if (size
> PAGE_SIZE
)
2691 i
= size
- exact_copy_from_user(copy
, data
, size
);
2694 return ERR_PTR(-EFAULT
);
2697 memset(copy
+ i
, 0, PAGE_SIZE
- i
);
2701 char *copy_mount_string(const void __user
*data
)
2703 return data
? strndup_user(data
, PAGE_SIZE
) : NULL
;
2707 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2708 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2710 * data is a (void *) that can point to any structure up to
2711 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2712 * information (or be NULL).
2714 * Pre-0.97 versions of mount() didn't have a flags word.
2715 * When the flags word was introduced its top half was required
2716 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2717 * Therefore, if this magic number is present, it carries no information
2718 * and must be discarded.
2720 long do_mount(const char *dev_name
, const char __user
*dir_name
,
2721 const char *type_page
, unsigned long flags
, void *data_page
)
2724 unsigned int mnt_flags
= 0, sb_flags
;
2728 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
2729 flags
&= ~MS_MGC_MSK
;
2731 /* Basic sanity checks */
2733 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
2735 if (flags
& MS_NOUSER
)
2738 /* ... and get the mountpoint */
2739 retval
= user_path(dir_name
, &path
);
2743 retval
= security_sb_mount(dev_name
, &path
,
2744 type_page
, flags
, data_page
);
2745 if (!retval
&& !may_mount())
2747 if (!retval
&& (flags
& SB_MANDLOCK
) && !may_mandlock())
2752 /* Default to relatime unless overriden */
2753 if (!(flags
& MS_NOATIME
))
2754 mnt_flags
|= MNT_RELATIME
;
2756 /* Separate the per-mountpoint flags */
2757 if (flags
& MS_NOSUID
)
2758 mnt_flags
|= MNT_NOSUID
;
2759 if (flags
& MS_NODEV
)
2760 mnt_flags
|= MNT_NODEV
;
2761 if (flags
& MS_NOEXEC
)
2762 mnt_flags
|= MNT_NOEXEC
;
2763 if (flags
& MS_NOATIME
)
2764 mnt_flags
|= MNT_NOATIME
;
2765 if (flags
& MS_NODIRATIME
)
2766 mnt_flags
|= MNT_NODIRATIME
;
2767 if (flags
& MS_STRICTATIME
)
2768 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
2769 if (flags
& MS_RDONLY
)
2770 mnt_flags
|= MNT_READONLY
;
2772 /* The default atime for remount is preservation */
2773 if ((flags
& MS_REMOUNT
) &&
2774 ((flags
& (MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
|
2775 MS_STRICTATIME
)) == 0)) {
2776 mnt_flags
&= ~MNT_ATIME_MASK
;
2777 mnt_flags
|= path
.mnt
->mnt_flags
& MNT_ATIME_MASK
;
2780 sb_flags
= flags
& (SB_RDONLY
|
2789 if (flags
& MS_REMOUNT
)
2790 retval
= do_remount(&path
, flags
, sb_flags
, mnt_flags
,
2792 else if (flags
& MS_BIND
)
2793 retval
= do_loopback(&path
, dev_name
, flags
& MS_REC
);
2794 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2795 retval
= do_change_type(&path
, flags
);
2796 else if (flags
& MS_MOVE
)
2797 retval
= do_move_mount(&path
, dev_name
);
2799 retval
= do_new_mount(&path
, type_page
, sb_flags
, mnt_flags
,
2800 dev_name
, data_page
);
2806 static struct ucounts
*inc_mnt_namespaces(struct user_namespace
*ns
)
2808 return inc_ucount(ns
, current_euid(), UCOUNT_MNT_NAMESPACES
);
2811 static void dec_mnt_namespaces(struct ucounts
*ucounts
)
2813 dec_ucount(ucounts
, UCOUNT_MNT_NAMESPACES
);
2816 static void free_mnt_ns(struct mnt_namespace
*ns
)
2818 ns_free_inum(&ns
->ns
);
2819 dec_mnt_namespaces(ns
->ucounts
);
2820 put_user_ns(ns
->user_ns
);
2825 * Assign a sequence number so we can detect when we attempt to bind
2826 * mount a reference to an older mount namespace into the current
2827 * mount namespace, preventing reference counting loops. A 64bit
2828 * number incrementing at 10Ghz will take 12,427 years to wrap which
2829 * is effectively never, so we can ignore the possibility.
2831 static atomic64_t mnt_ns_seq
= ATOMIC64_INIT(1);
2833 static struct mnt_namespace
*alloc_mnt_ns(struct user_namespace
*user_ns
)
2835 struct mnt_namespace
*new_ns
;
2836 struct ucounts
*ucounts
;
2839 ucounts
= inc_mnt_namespaces(user_ns
);
2841 return ERR_PTR(-ENOSPC
);
2843 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
2845 dec_mnt_namespaces(ucounts
);
2846 return ERR_PTR(-ENOMEM
);
2848 ret
= ns_alloc_inum(&new_ns
->ns
);
2851 dec_mnt_namespaces(ucounts
);
2852 return ERR_PTR(ret
);
2854 new_ns
->ns
.ops
= &mntns_operations
;
2855 new_ns
->seq
= atomic64_add_return(1, &mnt_ns_seq
);
2856 atomic_set(&new_ns
->count
, 1);
2857 new_ns
->root
= NULL
;
2858 INIT_LIST_HEAD(&new_ns
->list
);
2859 init_waitqueue_head(&new_ns
->poll
);
2861 new_ns
->user_ns
= get_user_ns(user_ns
);
2862 new_ns
->ucounts
= ucounts
;
2864 new_ns
->pending_mounts
= 0;
2869 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
2870 struct user_namespace
*user_ns
, struct fs_struct
*new_fs
)
2872 struct mnt_namespace
*new_ns
;
2873 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
2874 struct mount
*p
, *q
;
2881 if (likely(!(flags
& CLONE_NEWNS
))) {
2888 new_ns
= alloc_mnt_ns(user_ns
);
2893 /* First pass: copy the tree topology */
2894 copy_flags
= CL_COPY_UNBINDABLE
| CL_EXPIRE
;
2895 if (user_ns
!= ns
->user_ns
)
2896 copy_flags
|= CL_SHARED_TO_SLAVE
| CL_UNPRIVILEGED
;
2897 new = copy_tree(old
, old
->mnt
.mnt_root
, copy_flags
);
2900 free_mnt_ns(new_ns
);
2901 return ERR_CAST(new);
2904 list_add_tail(&new_ns
->list
, &new->mnt_list
);
2907 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2908 * as belonging to new namespace. We have already acquired a private
2909 * fs_struct, so tsk->fs->lock is not needed.
2917 if (&p
->mnt
== new_fs
->root
.mnt
) {
2918 new_fs
->root
.mnt
= mntget(&q
->mnt
);
2921 if (&p
->mnt
== new_fs
->pwd
.mnt
) {
2922 new_fs
->pwd
.mnt
= mntget(&q
->mnt
);
2926 p
= next_mnt(p
, old
);
2927 q
= next_mnt(q
, new);
2930 while (p
->mnt
.mnt_root
!= q
->mnt
.mnt_root
)
2931 p
= next_mnt(p
, old
);
2944 * create_mnt_ns - creates a private namespace and adds a root filesystem
2945 * @mnt: pointer to the new root filesystem mountpoint
2947 static struct mnt_namespace
*create_mnt_ns(struct vfsmount
*m
)
2949 struct mnt_namespace
*new_ns
= alloc_mnt_ns(&init_user_ns
);
2950 if (!IS_ERR(new_ns
)) {
2951 struct mount
*mnt
= real_mount(m
);
2952 mnt
->mnt_ns
= new_ns
;
2955 list_add(&mnt
->mnt_list
, &new_ns
->list
);
2962 struct dentry
*mount_subtree(struct vfsmount
*mnt
, const char *name
)
2964 struct mnt_namespace
*ns
;
2965 struct super_block
*s
;
2969 ns
= create_mnt_ns(mnt
);
2971 return ERR_CAST(ns
);
2973 err
= vfs_path_lookup(mnt
->mnt_root
, mnt
,
2974 name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &path
);
2979 return ERR_PTR(err
);
2981 /* trade a vfsmount reference for active sb one */
2982 s
= path
.mnt
->mnt_sb
;
2983 atomic_inc(&s
->s_active
);
2985 /* lock the sucker */
2986 down_write(&s
->s_umount
);
2987 /* ... and return the root of (sub)tree on it */
2990 EXPORT_SYMBOL(mount_subtree
);
2992 int ksys_mount(char __user
*dev_name
, char __user
*dir_name
, char __user
*type
,
2993 unsigned long flags
, void __user
*data
)
3000 kernel_type
= copy_mount_string(type
);
3001 ret
= PTR_ERR(kernel_type
);
3002 if (IS_ERR(kernel_type
))
3005 kernel_dev
= copy_mount_string(dev_name
);
3006 ret
= PTR_ERR(kernel_dev
);
3007 if (IS_ERR(kernel_dev
))
3010 options
= copy_mount_options(data
);
3011 ret
= PTR_ERR(options
);
3012 if (IS_ERR(options
))
3015 ret
= do_mount(kernel_dev
, dir_name
, kernel_type
, flags
, options
);
3026 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
3027 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
3029 return ksys_mount(dev_name
, dir_name
, type
, flags
, data
);
3033 * Return true if path is reachable from root
3035 * namespace_sem or mount_lock is held
3037 bool is_path_reachable(struct mount
*mnt
, struct dentry
*dentry
,
3038 const struct path
*root
)
3040 while (&mnt
->mnt
!= root
->mnt
&& mnt_has_parent(mnt
)) {
3041 dentry
= mnt
->mnt_mountpoint
;
3042 mnt
= mnt
->mnt_parent
;
3044 return &mnt
->mnt
== root
->mnt
&& is_subdir(dentry
, root
->dentry
);
3047 bool path_is_under(const struct path
*path1
, const struct path
*path2
)
3050 read_seqlock_excl(&mount_lock
);
3051 res
= is_path_reachable(real_mount(path1
->mnt
), path1
->dentry
, path2
);
3052 read_sequnlock_excl(&mount_lock
);
3055 EXPORT_SYMBOL(path_is_under
);
3058 * pivot_root Semantics:
3059 * Moves the root file system of the current process to the directory put_old,
3060 * makes new_root as the new root file system of the current process, and sets
3061 * root/cwd of all processes which had them on the current root to new_root.
3064 * The new_root and put_old must be directories, and must not be on the
3065 * same file system as the current process root. The put_old must be
3066 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3067 * pointed to by put_old must yield the same directory as new_root. No other
3068 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3070 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3071 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3072 * in this situation.
3075 * - we don't move root/cwd if they are not at the root (reason: if something
3076 * cared enough to change them, it's probably wrong to force them elsewhere)
3077 * - it's okay to pick a root that isn't the root of a file system, e.g.
3078 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3079 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3082 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
3083 const char __user
*, put_old
)
3085 struct path
new, old
, parent_path
, root_parent
, root
;
3086 struct mount
*new_mnt
, *root_mnt
, *old_mnt
;
3087 struct mountpoint
*old_mp
, *root_mp
;
3093 error
= user_path_dir(new_root
, &new);
3097 error
= user_path_dir(put_old
, &old
);
3101 error
= security_sb_pivotroot(&old
, &new);
3105 get_fs_root(current
->fs
, &root
);
3106 old_mp
= lock_mount(&old
);
3107 error
= PTR_ERR(old_mp
);
3112 new_mnt
= real_mount(new.mnt
);
3113 root_mnt
= real_mount(root
.mnt
);
3114 old_mnt
= real_mount(old
.mnt
);
3115 if (IS_MNT_SHARED(old_mnt
) ||
3116 IS_MNT_SHARED(new_mnt
->mnt_parent
) ||
3117 IS_MNT_SHARED(root_mnt
->mnt_parent
))
3119 if (!check_mnt(root_mnt
) || !check_mnt(new_mnt
))
3121 if (new_mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
3124 if (d_unlinked(new.dentry
))
3127 if (new_mnt
== root_mnt
|| old_mnt
== root_mnt
)
3128 goto out4
; /* loop, on the same file system */
3130 if (root
.mnt
->mnt_root
!= root
.dentry
)
3131 goto out4
; /* not a mountpoint */
3132 if (!mnt_has_parent(root_mnt
))
3133 goto out4
; /* not attached */
3134 root_mp
= root_mnt
->mnt_mp
;
3135 if (new.mnt
->mnt_root
!= new.dentry
)
3136 goto out4
; /* not a mountpoint */
3137 if (!mnt_has_parent(new_mnt
))
3138 goto out4
; /* not attached */
3139 /* make sure we can reach put_old from new_root */
3140 if (!is_path_reachable(old_mnt
, old
.dentry
, &new))
3142 /* make certain new is below the root */
3143 if (!is_path_reachable(new_mnt
, new.dentry
, &root
))
3145 root_mp
->m_count
++; /* pin it so it won't go away */
3147 detach_mnt(new_mnt
, &parent_path
);
3148 detach_mnt(root_mnt
, &root_parent
);
3149 if (root_mnt
->mnt
.mnt_flags
& MNT_LOCKED
) {
3150 new_mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
3151 root_mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
3153 /* mount old root on put_old */
3154 attach_mnt(root_mnt
, old_mnt
, old_mp
);
3155 /* mount new_root on / */
3156 attach_mnt(new_mnt
, real_mount(root_parent
.mnt
), root_mp
);
3157 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
3158 /* A moved mount should not expire automatically */
3159 list_del_init(&new_mnt
->mnt_expire
);
3160 put_mountpoint(root_mp
);
3161 unlock_mount_hash();
3162 chroot_fs_refs(&root
, &new);
3165 unlock_mount(old_mp
);
3167 path_put(&root_parent
);
3168 path_put(&parent_path
);
3180 static void __init
init_mount_tree(void)
3182 struct vfsmount
*mnt
;
3183 struct mnt_namespace
*ns
;
3185 struct file_system_type
*type
;
3187 type
= get_fs_type("rootfs");
3189 panic("Can't find rootfs type");
3190 mnt
= vfs_kern_mount(type
, 0, "rootfs", NULL
);
3191 put_filesystem(type
);
3193 panic("Can't create rootfs");
3195 ns
= create_mnt_ns(mnt
);
3197 panic("Can't allocate initial namespace");
3199 init_task
.nsproxy
->mnt_ns
= ns
;
3203 root
.dentry
= mnt
->mnt_root
;
3204 mnt
->mnt_flags
|= MNT_LOCKED
;
3206 set_fs_pwd(current
->fs
, &root
);
3207 set_fs_root(current
->fs
, &root
);
3210 void __init
mnt_init(void)
3214 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct mount
),
3215 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3217 mount_hashtable
= alloc_large_system_hash("Mount-cache",
3218 sizeof(struct hlist_head
),
3221 &m_hash_shift
, &m_hash_mask
, 0, 0);
3222 mountpoint_hashtable
= alloc_large_system_hash("Mountpoint-cache",
3223 sizeof(struct hlist_head
),
3226 &mp_hash_shift
, &mp_hash_mask
, 0, 0);
3228 if (!mount_hashtable
|| !mountpoint_hashtable
)
3229 panic("Failed to allocate mount hash table\n");
3235 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
3237 fs_kobj
= kobject_create_and_add("fs", NULL
);
3239 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
3244 void put_mnt_ns(struct mnt_namespace
*ns
)
3246 if (!atomic_dec_and_test(&ns
->count
))
3248 drop_collected_mounts(&ns
->root
->mnt
);
3252 struct vfsmount
*kern_mount_data(struct file_system_type
*type
, void *data
)
3254 struct vfsmount
*mnt
;
3255 mnt
= vfs_kern_mount(type
, SB_KERNMOUNT
, type
->name
, data
);
3258 * it is a longterm mount, don't release mnt until
3259 * we unmount before file sys is unregistered
3261 real_mount(mnt
)->mnt_ns
= MNT_NS_INTERNAL
;
3265 EXPORT_SYMBOL_GPL(kern_mount_data
);
3267 void kern_unmount(struct vfsmount
*mnt
)
3269 /* release long term mount so mount point can be released */
3270 if (!IS_ERR_OR_NULL(mnt
)) {
3271 real_mount(mnt
)->mnt_ns
= NULL
;
3272 synchronize_rcu(); /* yecchhh... */
3276 EXPORT_SYMBOL(kern_unmount
);
3278 bool our_mnt(struct vfsmount
*mnt
)
3280 return check_mnt(real_mount(mnt
));
3283 bool current_chrooted(void)
3285 /* Does the current process have a non-standard root */
3286 struct path ns_root
;
3287 struct path fs_root
;
3290 /* Find the namespace root */
3291 ns_root
.mnt
= ¤t
->nsproxy
->mnt_ns
->root
->mnt
;
3292 ns_root
.dentry
= ns_root
.mnt
->mnt_root
;
3294 while (d_mountpoint(ns_root
.dentry
) && follow_down_one(&ns_root
))
3297 get_fs_root(current
->fs
, &fs_root
);
3299 chrooted
= !path_equal(&fs_root
, &ns_root
);
3307 static bool mnt_already_visible(struct mnt_namespace
*ns
, struct vfsmount
*new,
3310 int new_flags
= *new_mnt_flags
;
3312 bool visible
= false;
3314 down_read(&namespace_sem
);
3315 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
3316 struct mount
*child
;
3319 if (mnt
->mnt
.mnt_sb
->s_type
!= new->mnt_sb
->s_type
)
3322 /* This mount is not fully visible if it's root directory
3323 * is not the root directory of the filesystem.
3325 if (mnt
->mnt
.mnt_root
!= mnt
->mnt
.mnt_sb
->s_root
)
3328 /* A local view of the mount flags */
3329 mnt_flags
= mnt
->mnt
.mnt_flags
;
3331 /* Don't miss readonly hidden in the superblock flags */
3332 if (sb_rdonly(mnt
->mnt
.mnt_sb
))
3333 mnt_flags
|= MNT_LOCK_READONLY
;
3335 /* Verify the mount flags are equal to or more permissive
3336 * than the proposed new mount.
3338 if ((mnt_flags
& MNT_LOCK_READONLY
) &&
3339 !(new_flags
& MNT_READONLY
))
3341 if ((mnt_flags
& MNT_LOCK_ATIME
) &&
3342 ((mnt_flags
& MNT_ATIME_MASK
) != (new_flags
& MNT_ATIME_MASK
)))
3345 /* This mount is not fully visible if there are any
3346 * locked child mounts that cover anything except for
3347 * empty directories.
3349 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
3350 struct inode
*inode
= child
->mnt_mountpoint
->d_inode
;
3351 /* Only worry about locked mounts */
3352 if (!(child
->mnt
.mnt_flags
& MNT_LOCKED
))
3354 /* Is the directory permanetly empty? */
3355 if (!is_empty_dir_inode(inode
))
3358 /* Preserve the locked attributes */
3359 *new_mnt_flags
|= mnt_flags
& (MNT_LOCK_READONLY
| \
3366 up_read(&namespace_sem
);
3370 static bool mount_too_revealing(struct vfsmount
*mnt
, int *new_mnt_flags
)
3372 const unsigned long required_iflags
= SB_I_NOEXEC
| SB_I_NODEV
;
3373 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
3374 unsigned long s_iflags
;
3376 if (ns
->user_ns
== &init_user_ns
)
3379 /* Can this filesystem be too revealing? */
3380 s_iflags
= mnt
->mnt_sb
->s_iflags
;
3381 if (!(s_iflags
& SB_I_USERNS_VISIBLE
))
3384 if ((s_iflags
& required_iflags
) != required_iflags
) {
3385 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3390 return !mnt_already_visible(ns
, mnt
, new_mnt_flags
);
3393 bool mnt_may_suid(struct vfsmount
*mnt
)
3396 * Foreign mounts (accessed via fchdir or through /proc
3397 * symlinks) are always treated as if they are nosuid. This
3398 * prevents namespaces from trusting potentially unsafe
3399 * suid/sgid bits, file caps, or security labels that originate
3400 * in other namespaces.
3402 return !(mnt
->mnt_flags
& MNT_NOSUID
) && check_mnt(real_mount(mnt
)) &&
3403 current_in_userns(mnt
->mnt_sb
->s_user_ns
);
3406 static struct ns_common
*mntns_get(struct task_struct
*task
)
3408 struct ns_common
*ns
= NULL
;
3409 struct nsproxy
*nsproxy
;
3412 nsproxy
= task
->nsproxy
;
3414 ns
= &nsproxy
->mnt_ns
->ns
;
3415 get_mnt_ns(to_mnt_ns(ns
));
3422 static void mntns_put(struct ns_common
*ns
)
3424 put_mnt_ns(to_mnt_ns(ns
));
3427 static int mntns_install(struct nsproxy
*nsproxy
, struct ns_common
*ns
)
3429 struct fs_struct
*fs
= current
->fs
;
3430 struct mnt_namespace
*mnt_ns
= to_mnt_ns(ns
), *old_mnt_ns
;
3434 if (!ns_capable(mnt_ns
->user_ns
, CAP_SYS_ADMIN
) ||
3435 !ns_capable(current_user_ns(), CAP_SYS_CHROOT
) ||
3436 !ns_capable(current_user_ns(), CAP_SYS_ADMIN
))
3443 old_mnt_ns
= nsproxy
->mnt_ns
;
3444 nsproxy
->mnt_ns
= mnt_ns
;
3447 err
= vfs_path_lookup(mnt_ns
->root
->mnt
.mnt_root
, &mnt_ns
->root
->mnt
,
3448 "/", LOOKUP_DOWN
, &root
);
3450 /* revert to old namespace */
3451 nsproxy
->mnt_ns
= old_mnt_ns
;
3456 put_mnt_ns(old_mnt_ns
);
3458 /* Update the pwd and root */
3459 set_fs_pwd(fs
, &root
);
3460 set_fs_root(fs
, &root
);
3466 static struct user_namespace
*mntns_owner(struct ns_common
*ns
)
3468 return to_mnt_ns(ns
)->user_ns
;
3471 const struct proc_ns_operations mntns_operations
= {
3473 .type
= CLONE_NEWNS
,
3476 .install
= mntns_install
,
3477 .owner
= mntns_owner
,