ALSA: usb-audio: fix sign unintended sign extension on left shifts
[linux/fpc-iii.git] / fs / namespace.c
blob1fce41ba353570a8d84a5fcde9b8ea4d03438d80
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
30 #include "pnode.h"
31 #include "internal.h"
33 /* Maximum number of mounts in a mount namespace */
34 unsigned int sysctl_mount_max __read_mostly = 100000;
36 static unsigned int m_hash_mask __read_mostly;
37 static unsigned int m_hash_shift __read_mostly;
38 static unsigned int mp_hash_mask __read_mostly;
39 static unsigned int mp_hash_shift __read_mostly;
41 static __initdata unsigned long mhash_entries;
42 static int __init set_mhash_entries(char *str)
44 if (!str)
45 return 0;
46 mhash_entries = simple_strtoul(str, &str, 0);
47 return 1;
49 __setup("mhash_entries=", set_mhash_entries);
51 static __initdata unsigned long mphash_entries;
52 static int __init set_mphash_entries(char *str)
54 if (!str)
55 return 0;
56 mphash_entries = simple_strtoul(str, &str, 0);
57 return 1;
59 __setup("mphash_entries=", set_mphash_entries);
61 static u64 event;
62 static DEFINE_IDA(mnt_id_ida);
63 static DEFINE_IDA(mnt_group_ida);
65 static struct hlist_head *mount_hashtable __read_mostly;
66 static struct hlist_head *mountpoint_hashtable __read_mostly;
67 static struct kmem_cache *mnt_cache __read_mostly;
68 static DECLARE_RWSEM(namespace_sem);
70 /* /sys/fs */
71 struct kobject *fs_kobj;
72 EXPORT_SYMBOL_GPL(fs_kobj);
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
77 * up the tree.
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
88 tmp = tmp + (tmp >> m_hash_shift);
89 return &mount_hashtable[tmp & m_hash_mask];
92 static inline struct hlist_head *mp_hash(struct dentry *dentry)
94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 tmp = tmp + (tmp >> mp_hash_shift);
96 return &mountpoint_hashtable[tmp & mp_hash_mask];
99 static int mnt_alloc_id(struct mount *mnt)
101 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
103 if (res < 0)
104 return res;
105 mnt->mnt_id = res;
106 return 0;
109 static void mnt_free_id(struct mount *mnt)
111 ida_free(&mnt_id_ida, mnt->mnt_id);
115 * Allocate a new peer group ID
117 static int mnt_alloc_group_id(struct mount *mnt)
119 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
121 if (res < 0)
122 return res;
123 mnt->mnt_group_id = res;
124 return 0;
128 * Release a peer group ID
130 void mnt_release_group_id(struct mount *mnt)
132 ida_free(&mnt_group_ida, mnt->mnt_group_id);
133 mnt->mnt_group_id = 0;
137 * vfsmount lock must be held for read
139 static inline void mnt_add_count(struct mount *mnt, int n)
141 #ifdef CONFIG_SMP
142 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
143 #else
144 preempt_disable();
145 mnt->mnt_count += n;
146 preempt_enable();
147 #endif
151 * vfsmount lock must be held for write
153 unsigned int mnt_get_count(struct mount *mnt)
155 #ifdef CONFIG_SMP
156 unsigned int count = 0;
157 int cpu;
159 for_each_possible_cpu(cpu) {
160 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
163 return count;
164 #else
165 return mnt->mnt_count;
166 #endif
169 static void drop_mountpoint(struct fs_pin *p)
171 struct mount *m = container_of(p, struct mount, mnt_umount);
172 dput(m->mnt_ex_mountpoint);
173 pin_remove(p);
174 mntput(&m->mnt);
177 static struct mount *alloc_vfsmnt(const char *name)
179 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
180 if (mnt) {
181 int err;
183 err = mnt_alloc_id(mnt);
184 if (err)
185 goto out_free_cache;
187 if (name) {
188 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
189 if (!mnt->mnt_devname)
190 goto out_free_id;
193 #ifdef CONFIG_SMP
194 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
195 if (!mnt->mnt_pcp)
196 goto out_free_devname;
198 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
199 #else
200 mnt->mnt_count = 1;
201 mnt->mnt_writers = 0;
202 #endif
204 INIT_HLIST_NODE(&mnt->mnt_hash);
205 INIT_LIST_HEAD(&mnt->mnt_child);
206 INIT_LIST_HEAD(&mnt->mnt_mounts);
207 INIT_LIST_HEAD(&mnt->mnt_list);
208 INIT_LIST_HEAD(&mnt->mnt_expire);
209 INIT_LIST_HEAD(&mnt->mnt_share);
210 INIT_LIST_HEAD(&mnt->mnt_slave_list);
211 INIT_LIST_HEAD(&mnt->mnt_slave);
212 INIT_HLIST_NODE(&mnt->mnt_mp_list);
213 INIT_LIST_HEAD(&mnt->mnt_umounting);
214 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
216 return mnt;
218 #ifdef CONFIG_SMP
219 out_free_devname:
220 kfree_const(mnt->mnt_devname);
221 #endif
222 out_free_id:
223 mnt_free_id(mnt);
224 out_free_cache:
225 kmem_cache_free(mnt_cache, mnt);
226 return NULL;
230 * Most r/o checks on a fs are for operations that take
231 * discrete amounts of time, like a write() or unlink().
232 * We must keep track of when those operations start
233 * (for permission checks) and when they end, so that
234 * we can determine when writes are able to occur to
235 * a filesystem.
238 * __mnt_is_readonly: check whether a mount is read-only
239 * @mnt: the mount to check for its write status
241 * This shouldn't be used directly ouside of the VFS.
242 * It does not guarantee that the filesystem will stay
243 * r/w, just that it is right *now*. This can not and
244 * should not be used in place of IS_RDONLY(inode).
245 * mnt_want/drop_write() will _keep_ the filesystem
246 * r/w.
248 int __mnt_is_readonly(struct vfsmount *mnt)
250 if (mnt->mnt_flags & MNT_READONLY)
251 return 1;
252 if (sb_rdonly(mnt->mnt_sb))
253 return 1;
254 return 0;
256 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
258 static inline void mnt_inc_writers(struct mount *mnt)
260 #ifdef CONFIG_SMP
261 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
262 #else
263 mnt->mnt_writers++;
264 #endif
267 static inline void mnt_dec_writers(struct mount *mnt)
269 #ifdef CONFIG_SMP
270 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
271 #else
272 mnt->mnt_writers--;
273 #endif
276 static unsigned int mnt_get_writers(struct mount *mnt)
278 #ifdef CONFIG_SMP
279 unsigned int count = 0;
280 int cpu;
282 for_each_possible_cpu(cpu) {
283 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
286 return count;
287 #else
288 return mnt->mnt_writers;
289 #endif
292 static int mnt_is_readonly(struct vfsmount *mnt)
294 if (mnt->mnt_sb->s_readonly_remount)
295 return 1;
296 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
297 smp_rmb();
298 return __mnt_is_readonly(mnt);
302 * Most r/o & frozen checks on a fs are for operations that take discrete
303 * amounts of time, like a write() or unlink(). We must keep track of when
304 * those operations start (for permission checks) and when they end, so that we
305 * can determine when writes are able to occur to a filesystem.
308 * __mnt_want_write - get write access to a mount without freeze protection
309 * @m: the mount on which to take a write
311 * This tells the low-level filesystem that a write is about to be performed to
312 * it, and makes sure that writes are allowed (mnt it read-write) before
313 * returning success. This operation does not protect against filesystem being
314 * frozen. When the write operation is finished, __mnt_drop_write() must be
315 * called. This is effectively a refcount.
317 int __mnt_want_write(struct vfsmount *m)
319 struct mount *mnt = real_mount(m);
320 int ret = 0;
322 preempt_disable();
323 mnt_inc_writers(mnt);
325 * The store to mnt_inc_writers must be visible before we pass
326 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
327 * incremented count after it has set MNT_WRITE_HOLD.
329 smp_mb();
330 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
331 cpu_relax();
333 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
334 * be set to match its requirements. So we must not load that until
335 * MNT_WRITE_HOLD is cleared.
337 smp_rmb();
338 if (mnt_is_readonly(m)) {
339 mnt_dec_writers(mnt);
340 ret = -EROFS;
342 preempt_enable();
344 return ret;
348 * mnt_want_write - get write access to a mount
349 * @m: the mount on which to take a write
351 * This tells the low-level filesystem that a write is about to be performed to
352 * it, and makes sure that writes are allowed (mount is read-write, filesystem
353 * is not frozen) before returning success. When the write operation is
354 * finished, mnt_drop_write() must be called. This is effectively a refcount.
356 int mnt_want_write(struct vfsmount *m)
358 int ret;
360 sb_start_write(m->mnt_sb);
361 ret = __mnt_want_write(m);
362 if (ret)
363 sb_end_write(m->mnt_sb);
364 return ret;
366 EXPORT_SYMBOL_GPL(mnt_want_write);
369 * mnt_clone_write - get write access to a mount
370 * @mnt: the mount on which to take a write
372 * This is effectively like mnt_want_write, except
373 * it must only be used to take an extra write reference
374 * on a mountpoint that we already know has a write reference
375 * on it. This allows some optimisation.
377 * After finished, mnt_drop_write must be called as usual to
378 * drop the reference.
380 int mnt_clone_write(struct vfsmount *mnt)
382 /* superblock may be r/o */
383 if (__mnt_is_readonly(mnt))
384 return -EROFS;
385 preempt_disable();
386 mnt_inc_writers(real_mount(mnt));
387 preempt_enable();
388 return 0;
390 EXPORT_SYMBOL_GPL(mnt_clone_write);
393 * __mnt_want_write_file - get write access to a file's mount
394 * @file: the file who's mount on which to take a write
396 * This is like __mnt_want_write, but it takes a file and can
397 * do some optimisations if the file is open for write already
399 int __mnt_want_write_file(struct file *file)
401 if (!(file->f_mode & FMODE_WRITER))
402 return __mnt_want_write(file->f_path.mnt);
403 else
404 return mnt_clone_write(file->f_path.mnt);
408 * mnt_want_write_file - get write access to a file's mount
409 * @file: the file who's mount on which to take a write
411 * This is like mnt_want_write, but it takes a file and can
412 * do some optimisations if the file is open for write already
414 int mnt_want_write_file(struct file *file)
416 int ret;
418 sb_start_write(file_inode(file)->i_sb);
419 ret = __mnt_want_write_file(file);
420 if (ret)
421 sb_end_write(file_inode(file)->i_sb);
422 return ret;
424 EXPORT_SYMBOL_GPL(mnt_want_write_file);
427 * __mnt_drop_write - give up write access to a mount
428 * @mnt: the mount on which to give up write access
430 * Tells the low-level filesystem that we are done
431 * performing writes to it. Must be matched with
432 * __mnt_want_write() call above.
434 void __mnt_drop_write(struct vfsmount *mnt)
436 preempt_disable();
437 mnt_dec_writers(real_mount(mnt));
438 preempt_enable();
442 * mnt_drop_write - give up write access to a mount
443 * @mnt: the mount on which to give up write access
445 * Tells the low-level filesystem that we are done performing writes to it and
446 * also allows filesystem to be frozen again. Must be matched with
447 * mnt_want_write() call above.
449 void mnt_drop_write(struct vfsmount *mnt)
451 __mnt_drop_write(mnt);
452 sb_end_write(mnt->mnt_sb);
454 EXPORT_SYMBOL_GPL(mnt_drop_write);
456 void __mnt_drop_write_file(struct file *file)
458 __mnt_drop_write(file->f_path.mnt);
461 void mnt_drop_write_file(struct file *file)
463 __mnt_drop_write_file(file);
464 sb_end_write(file_inode(file)->i_sb);
466 EXPORT_SYMBOL(mnt_drop_write_file);
468 static int mnt_make_readonly(struct mount *mnt)
470 int ret = 0;
472 lock_mount_hash();
473 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
475 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
476 * should be visible before we do.
478 smp_mb();
481 * With writers on hold, if this value is zero, then there are
482 * definitely no active writers (although held writers may subsequently
483 * increment the count, they'll have to wait, and decrement it after
484 * seeing MNT_READONLY).
486 * It is OK to have counter incremented on one CPU and decremented on
487 * another: the sum will add up correctly. The danger would be when we
488 * sum up each counter, if we read a counter before it is incremented,
489 * but then read another CPU's count which it has been subsequently
490 * decremented from -- we would see more decrements than we should.
491 * MNT_WRITE_HOLD protects against this scenario, because
492 * mnt_want_write first increments count, then smp_mb, then spins on
493 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
494 * we're counting up here.
496 if (mnt_get_writers(mnt) > 0)
497 ret = -EBUSY;
498 else
499 mnt->mnt.mnt_flags |= MNT_READONLY;
501 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
502 * that become unheld will see MNT_READONLY.
504 smp_wmb();
505 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
506 unlock_mount_hash();
507 return ret;
510 static void __mnt_unmake_readonly(struct mount *mnt)
512 lock_mount_hash();
513 mnt->mnt.mnt_flags &= ~MNT_READONLY;
514 unlock_mount_hash();
517 int sb_prepare_remount_readonly(struct super_block *sb)
519 struct mount *mnt;
520 int err = 0;
522 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
523 if (atomic_long_read(&sb->s_remove_count))
524 return -EBUSY;
526 lock_mount_hash();
527 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
528 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
529 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
530 smp_mb();
531 if (mnt_get_writers(mnt) > 0) {
532 err = -EBUSY;
533 break;
537 if (!err && atomic_long_read(&sb->s_remove_count))
538 err = -EBUSY;
540 if (!err) {
541 sb->s_readonly_remount = 1;
542 smp_wmb();
544 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
545 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
546 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
548 unlock_mount_hash();
550 return err;
553 static void free_vfsmnt(struct mount *mnt)
555 kfree_const(mnt->mnt_devname);
556 #ifdef CONFIG_SMP
557 free_percpu(mnt->mnt_pcp);
558 #endif
559 kmem_cache_free(mnt_cache, mnt);
562 static void delayed_free_vfsmnt(struct rcu_head *head)
564 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
567 /* call under rcu_read_lock */
568 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
570 struct mount *mnt;
571 if (read_seqretry(&mount_lock, seq))
572 return 1;
573 if (bastard == NULL)
574 return 0;
575 mnt = real_mount(bastard);
576 mnt_add_count(mnt, 1);
577 smp_mb(); // see mntput_no_expire()
578 if (likely(!read_seqretry(&mount_lock, seq)))
579 return 0;
580 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
581 mnt_add_count(mnt, -1);
582 return 1;
584 lock_mount_hash();
585 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
586 mnt_add_count(mnt, -1);
587 unlock_mount_hash();
588 return 1;
590 unlock_mount_hash();
591 /* caller will mntput() */
592 return -1;
595 /* call under rcu_read_lock */
596 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
598 int res = __legitimize_mnt(bastard, seq);
599 if (likely(!res))
600 return true;
601 if (unlikely(res < 0)) {
602 rcu_read_unlock();
603 mntput(bastard);
604 rcu_read_lock();
606 return false;
610 * find the first mount at @dentry on vfsmount @mnt.
611 * call under rcu_read_lock()
613 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
615 struct hlist_head *head = m_hash(mnt, dentry);
616 struct mount *p;
618 hlist_for_each_entry_rcu(p, head, mnt_hash)
619 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
620 return p;
621 return NULL;
625 * lookup_mnt - Return the first child mount mounted at path
627 * "First" means first mounted chronologically. If you create the
628 * following mounts:
630 * mount /dev/sda1 /mnt
631 * mount /dev/sda2 /mnt
632 * mount /dev/sda3 /mnt
634 * Then lookup_mnt() on the base /mnt dentry in the root mount will
635 * return successively the root dentry and vfsmount of /dev/sda1, then
636 * /dev/sda2, then /dev/sda3, then NULL.
638 * lookup_mnt takes a reference to the found vfsmount.
640 struct vfsmount *lookup_mnt(const struct path *path)
642 struct mount *child_mnt;
643 struct vfsmount *m;
644 unsigned seq;
646 rcu_read_lock();
647 do {
648 seq = read_seqbegin(&mount_lock);
649 child_mnt = __lookup_mnt(path->mnt, path->dentry);
650 m = child_mnt ? &child_mnt->mnt : NULL;
651 } while (!legitimize_mnt(m, seq));
652 rcu_read_unlock();
653 return m;
657 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
658 * current mount namespace.
660 * The common case is dentries are not mountpoints at all and that
661 * test is handled inline. For the slow case when we are actually
662 * dealing with a mountpoint of some kind, walk through all of the
663 * mounts in the current mount namespace and test to see if the dentry
664 * is a mountpoint.
666 * The mount_hashtable is not usable in the context because we
667 * need to identify all mounts that may be in the current mount
668 * namespace not just a mount that happens to have some specified
669 * parent mount.
671 bool __is_local_mountpoint(struct dentry *dentry)
673 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
674 struct mount *mnt;
675 bool is_covered = false;
677 if (!d_mountpoint(dentry))
678 goto out;
680 down_read(&namespace_sem);
681 list_for_each_entry(mnt, &ns->list, mnt_list) {
682 is_covered = (mnt->mnt_mountpoint == dentry);
683 if (is_covered)
684 break;
686 up_read(&namespace_sem);
687 out:
688 return is_covered;
691 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
693 struct hlist_head *chain = mp_hash(dentry);
694 struct mountpoint *mp;
696 hlist_for_each_entry(mp, chain, m_hash) {
697 if (mp->m_dentry == dentry) {
698 mp->m_count++;
699 return mp;
702 return NULL;
705 static struct mountpoint *get_mountpoint(struct dentry *dentry)
707 struct mountpoint *mp, *new = NULL;
708 int ret;
710 if (d_mountpoint(dentry)) {
711 /* might be worth a WARN_ON() */
712 if (d_unlinked(dentry))
713 return ERR_PTR(-ENOENT);
714 mountpoint:
715 read_seqlock_excl(&mount_lock);
716 mp = lookup_mountpoint(dentry);
717 read_sequnlock_excl(&mount_lock);
718 if (mp)
719 goto done;
722 if (!new)
723 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
724 if (!new)
725 return ERR_PTR(-ENOMEM);
728 /* Exactly one processes may set d_mounted */
729 ret = d_set_mounted(dentry);
731 /* Someone else set d_mounted? */
732 if (ret == -EBUSY)
733 goto mountpoint;
735 /* The dentry is not available as a mountpoint? */
736 mp = ERR_PTR(ret);
737 if (ret)
738 goto done;
740 /* Add the new mountpoint to the hash table */
741 read_seqlock_excl(&mount_lock);
742 new->m_dentry = dentry;
743 new->m_count = 1;
744 hlist_add_head(&new->m_hash, mp_hash(dentry));
745 INIT_HLIST_HEAD(&new->m_list);
746 read_sequnlock_excl(&mount_lock);
748 mp = new;
749 new = NULL;
750 done:
751 kfree(new);
752 return mp;
755 static void put_mountpoint(struct mountpoint *mp)
757 if (!--mp->m_count) {
758 struct dentry *dentry = mp->m_dentry;
759 BUG_ON(!hlist_empty(&mp->m_list));
760 spin_lock(&dentry->d_lock);
761 dentry->d_flags &= ~DCACHE_MOUNTED;
762 spin_unlock(&dentry->d_lock);
763 hlist_del(&mp->m_hash);
764 kfree(mp);
768 static inline int check_mnt(struct mount *mnt)
770 return mnt->mnt_ns == current->nsproxy->mnt_ns;
774 * vfsmount lock must be held for write
776 static void touch_mnt_namespace(struct mnt_namespace *ns)
778 if (ns) {
779 ns->event = ++event;
780 wake_up_interruptible(&ns->poll);
785 * vfsmount lock must be held for write
787 static void __touch_mnt_namespace(struct mnt_namespace *ns)
789 if (ns && ns->event != event) {
790 ns->event = event;
791 wake_up_interruptible(&ns->poll);
796 * vfsmount lock must be held for write
798 static void unhash_mnt(struct mount *mnt)
800 mnt->mnt_parent = mnt;
801 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
802 list_del_init(&mnt->mnt_child);
803 hlist_del_init_rcu(&mnt->mnt_hash);
804 hlist_del_init(&mnt->mnt_mp_list);
805 put_mountpoint(mnt->mnt_mp);
806 mnt->mnt_mp = NULL;
810 * vfsmount lock must be held for write
812 static void detach_mnt(struct mount *mnt, struct path *old_path)
814 old_path->dentry = mnt->mnt_mountpoint;
815 old_path->mnt = &mnt->mnt_parent->mnt;
816 unhash_mnt(mnt);
820 * vfsmount lock must be held for write
822 static void umount_mnt(struct mount *mnt)
824 /* old mountpoint will be dropped when we can do that */
825 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
826 unhash_mnt(mnt);
830 * vfsmount lock must be held for write
832 void mnt_set_mountpoint(struct mount *mnt,
833 struct mountpoint *mp,
834 struct mount *child_mnt)
836 mp->m_count++;
837 mnt_add_count(mnt, 1); /* essentially, that's mntget */
838 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
839 child_mnt->mnt_parent = mnt;
840 child_mnt->mnt_mp = mp;
841 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
844 static void __attach_mnt(struct mount *mnt, struct mount *parent)
846 hlist_add_head_rcu(&mnt->mnt_hash,
847 m_hash(&parent->mnt, mnt->mnt_mountpoint));
848 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
852 * vfsmount lock must be held for write
854 static void attach_mnt(struct mount *mnt,
855 struct mount *parent,
856 struct mountpoint *mp)
858 mnt_set_mountpoint(parent, mp, mnt);
859 __attach_mnt(mnt, parent);
862 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
864 struct mountpoint *old_mp = mnt->mnt_mp;
865 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
866 struct mount *old_parent = mnt->mnt_parent;
868 list_del_init(&mnt->mnt_child);
869 hlist_del_init(&mnt->mnt_mp_list);
870 hlist_del_init_rcu(&mnt->mnt_hash);
872 attach_mnt(mnt, parent, mp);
874 put_mountpoint(old_mp);
877 * Safely avoid even the suggestion this code might sleep or
878 * lock the mount hash by taking advantage of the knowledge that
879 * mnt_change_mountpoint will not release the final reference
880 * to a mountpoint.
882 * During mounting, the mount passed in as the parent mount will
883 * continue to use the old mountpoint and during unmounting, the
884 * old mountpoint will continue to exist until namespace_unlock,
885 * which happens well after mnt_change_mountpoint.
887 spin_lock(&old_mountpoint->d_lock);
888 old_mountpoint->d_lockref.count--;
889 spin_unlock(&old_mountpoint->d_lock);
891 mnt_add_count(old_parent, -1);
895 * vfsmount lock must be held for write
897 static void commit_tree(struct mount *mnt)
899 struct mount *parent = mnt->mnt_parent;
900 struct mount *m;
901 LIST_HEAD(head);
902 struct mnt_namespace *n = parent->mnt_ns;
904 BUG_ON(parent == mnt);
906 list_add_tail(&head, &mnt->mnt_list);
907 list_for_each_entry(m, &head, mnt_list)
908 m->mnt_ns = n;
910 list_splice(&head, n->list.prev);
912 n->mounts += n->pending_mounts;
913 n->pending_mounts = 0;
915 __attach_mnt(mnt, parent);
916 touch_mnt_namespace(n);
919 static struct mount *next_mnt(struct mount *p, struct mount *root)
921 struct list_head *next = p->mnt_mounts.next;
922 if (next == &p->mnt_mounts) {
923 while (1) {
924 if (p == root)
925 return NULL;
926 next = p->mnt_child.next;
927 if (next != &p->mnt_parent->mnt_mounts)
928 break;
929 p = p->mnt_parent;
932 return list_entry(next, struct mount, mnt_child);
935 static struct mount *skip_mnt_tree(struct mount *p)
937 struct list_head *prev = p->mnt_mounts.prev;
938 while (prev != &p->mnt_mounts) {
939 p = list_entry(prev, struct mount, mnt_child);
940 prev = p->mnt_mounts.prev;
942 return p;
945 struct vfsmount *
946 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
948 struct mount *mnt;
949 struct dentry *root;
951 if (!type)
952 return ERR_PTR(-ENODEV);
954 mnt = alloc_vfsmnt(name);
955 if (!mnt)
956 return ERR_PTR(-ENOMEM);
958 if (flags & SB_KERNMOUNT)
959 mnt->mnt.mnt_flags = MNT_INTERNAL;
961 root = mount_fs(type, flags, name, data);
962 if (IS_ERR(root)) {
963 mnt_free_id(mnt);
964 free_vfsmnt(mnt);
965 return ERR_CAST(root);
968 mnt->mnt.mnt_root = root;
969 mnt->mnt.mnt_sb = root->d_sb;
970 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
971 mnt->mnt_parent = mnt;
972 lock_mount_hash();
973 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
974 unlock_mount_hash();
975 return &mnt->mnt;
977 EXPORT_SYMBOL_GPL(vfs_kern_mount);
979 struct vfsmount *
980 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
981 const char *name, void *data)
983 /* Until it is worked out how to pass the user namespace
984 * through from the parent mount to the submount don't support
985 * unprivileged mounts with submounts.
987 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
988 return ERR_PTR(-EPERM);
990 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
992 EXPORT_SYMBOL_GPL(vfs_submount);
994 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
995 int flag)
997 struct super_block *sb = old->mnt.mnt_sb;
998 struct mount *mnt;
999 int err;
1001 mnt = alloc_vfsmnt(old->mnt_devname);
1002 if (!mnt)
1003 return ERR_PTR(-ENOMEM);
1005 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1006 mnt->mnt_group_id = 0; /* not a peer of original */
1007 else
1008 mnt->mnt_group_id = old->mnt_group_id;
1010 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1011 err = mnt_alloc_group_id(mnt);
1012 if (err)
1013 goto out_free;
1016 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1017 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1018 /* Don't allow unprivileged users to change mount flags */
1019 if (flag & CL_UNPRIVILEGED) {
1020 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1022 if (mnt->mnt.mnt_flags & MNT_READONLY)
1023 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1025 if (mnt->mnt.mnt_flags & MNT_NODEV)
1026 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1028 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1029 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1031 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1032 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1035 /* Don't allow unprivileged users to reveal what is under a mount */
1036 if ((flag & CL_UNPRIVILEGED) &&
1037 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1038 mnt->mnt.mnt_flags |= MNT_LOCKED;
1040 atomic_inc(&sb->s_active);
1041 mnt->mnt.mnt_sb = sb;
1042 mnt->mnt.mnt_root = dget(root);
1043 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1044 mnt->mnt_parent = mnt;
1045 lock_mount_hash();
1046 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1047 unlock_mount_hash();
1049 if ((flag & CL_SLAVE) ||
1050 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1051 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1052 mnt->mnt_master = old;
1053 CLEAR_MNT_SHARED(mnt);
1054 } else if (!(flag & CL_PRIVATE)) {
1055 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1056 list_add(&mnt->mnt_share, &old->mnt_share);
1057 if (IS_MNT_SLAVE(old))
1058 list_add(&mnt->mnt_slave, &old->mnt_slave);
1059 mnt->mnt_master = old->mnt_master;
1060 } else {
1061 CLEAR_MNT_SHARED(mnt);
1063 if (flag & CL_MAKE_SHARED)
1064 set_mnt_shared(mnt);
1066 /* stick the duplicate mount on the same expiry list
1067 * as the original if that was on one */
1068 if (flag & CL_EXPIRE) {
1069 if (!list_empty(&old->mnt_expire))
1070 list_add(&mnt->mnt_expire, &old->mnt_expire);
1073 return mnt;
1075 out_free:
1076 mnt_free_id(mnt);
1077 free_vfsmnt(mnt);
1078 return ERR_PTR(err);
1081 static void cleanup_mnt(struct mount *mnt)
1084 * This probably indicates that somebody messed
1085 * up a mnt_want/drop_write() pair. If this
1086 * happens, the filesystem was probably unable
1087 * to make r/w->r/o transitions.
1090 * The locking used to deal with mnt_count decrement provides barriers,
1091 * so mnt_get_writers() below is safe.
1093 WARN_ON(mnt_get_writers(mnt));
1094 if (unlikely(mnt->mnt_pins.first))
1095 mnt_pin_kill(mnt);
1096 fsnotify_vfsmount_delete(&mnt->mnt);
1097 dput(mnt->mnt.mnt_root);
1098 deactivate_super(mnt->mnt.mnt_sb);
1099 mnt_free_id(mnt);
1100 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1103 static void __cleanup_mnt(struct rcu_head *head)
1105 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1108 static LLIST_HEAD(delayed_mntput_list);
1109 static void delayed_mntput(struct work_struct *unused)
1111 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1112 struct mount *m, *t;
1114 llist_for_each_entry_safe(m, t, node, mnt_llist)
1115 cleanup_mnt(m);
1117 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1119 static void mntput_no_expire(struct mount *mnt)
1121 rcu_read_lock();
1122 if (likely(READ_ONCE(mnt->mnt_ns))) {
1124 * Since we don't do lock_mount_hash() here,
1125 * ->mnt_ns can change under us. However, if it's
1126 * non-NULL, then there's a reference that won't
1127 * be dropped until after an RCU delay done after
1128 * turning ->mnt_ns NULL. So if we observe it
1129 * non-NULL under rcu_read_lock(), the reference
1130 * we are dropping is not the final one.
1132 mnt_add_count(mnt, -1);
1133 rcu_read_unlock();
1134 return;
1136 lock_mount_hash();
1138 * make sure that if __legitimize_mnt() has not seen us grab
1139 * mount_lock, we'll see their refcount increment here.
1141 smp_mb();
1142 mnt_add_count(mnt, -1);
1143 if (mnt_get_count(mnt)) {
1144 rcu_read_unlock();
1145 unlock_mount_hash();
1146 return;
1148 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1149 rcu_read_unlock();
1150 unlock_mount_hash();
1151 return;
1153 mnt->mnt.mnt_flags |= MNT_DOOMED;
1154 rcu_read_unlock();
1156 list_del(&mnt->mnt_instance);
1158 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1159 struct mount *p, *tmp;
1160 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1161 umount_mnt(p);
1164 unlock_mount_hash();
1166 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1167 struct task_struct *task = current;
1168 if (likely(!(task->flags & PF_KTHREAD))) {
1169 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1170 if (!task_work_add(task, &mnt->mnt_rcu, true))
1171 return;
1173 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1174 schedule_delayed_work(&delayed_mntput_work, 1);
1175 return;
1177 cleanup_mnt(mnt);
1180 void mntput(struct vfsmount *mnt)
1182 if (mnt) {
1183 struct mount *m = real_mount(mnt);
1184 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1185 if (unlikely(m->mnt_expiry_mark))
1186 m->mnt_expiry_mark = 0;
1187 mntput_no_expire(m);
1190 EXPORT_SYMBOL(mntput);
1192 struct vfsmount *mntget(struct vfsmount *mnt)
1194 if (mnt)
1195 mnt_add_count(real_mount(mnt), 1);
1196 return mnt;
1198 EXPORT_SYMBOL(mntget);
1200 /* path_is_mountpoint() - Check if path is a mount in the current
1201 * namespace.
1203 * d_mountpoint() can only be used reliably to establish if a dentry is
1204 * not mounted in any namespace and that common case is handled inline.
1205 * d_mountpoint() isn't aware of the possibility there may be multiple
1206 * mounts using a given dentry in a different namespace. This function
1207 * checks if the passed in path is a mountpoint rather than the dentry
1208 * alone.
1210 bool path_is_mountpoint(const struct path *path)
1212 unsigned seq;
1213 bool res;
1215 if (!d_mountpoint(path->dentry))
1216 return false;
1218 rcu_read_lock();
1219 do {
1220 seq = read_seqbegin(&mount_lock);
1221 res = __path_is_mountpoint(path);
1222 } while (read_seqretry(&mount_lock, seq));
1223 rcu_read_unlock();
1225 return res;
1227 EXPORT_SYMBOL(path_is_mountpoint);
1229 struct vfsmount *mnt_clone_internal(const struct path *path)
1231 struct mount *p;
1232 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1233 if (IS_ERR(p))
1234 return ERR_CAST(p);
1235 p->mnt.mnt_flags |= MNT_INTERNAL;
1236 return &p->mnt;
1239 #ifdef CONFIG_PROC_FS
1240 /* iterator; we want it to have access to namespace_sem, thus here... */
1241 static void *m_start(struct seq_file *m, loff_t *pos)
1243 struct proc_mounts *p = m->private;
1245 down_read(&namespace_sem);
1246 if (p->cached_event == p->ns->event) {
1247 void *v = p->cached_mount;
1248 if (*pos == p->cached_index)
1249 return v;
1250 if (*pos == p->cached_index + 1) {
1251 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1252 return p->cached_mount = v;
1256 p->cached_event = p->ns->event;
1257 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1258 p->cached_index = *pos;
1259 return p->cached_mount;
1262 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1264 struct proc_mounts *p = m->private;
1266 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1267 p->cached_index = *pos;
1268 return p->cached_mount;
1271 static void m_stop(struct seq_file *m, void *v)
1273 up_read(&namespace_sem);
1276 static int m_show(struct seq_file *m, void *v)
1278 struct proc_mounts *p = m->private;
1279 struct mount *r = list_entry(v, struct mount, mnt_list);
1280 return p->show(m, &r->mnt);
1283 const struct seq_operations mounts_op = {
1284 .start = m_start,
1285 .next = m_next,
1286 .stop = m_stop,
1287 .show = m_show,
1289 #endif /* CONFIG_PROC_FS */
1292 * may_umount_tree - check if a mount tree is busy
1293 * @mnt: root of mount tree
1295 * This is called to check if a tree of mounts has any
1296 * open files, pwds, chroots or sub mounts that are
1297 * busy.
1299 int may_umount_tree(struct vfsmount *m)
1301 struct mount *mnt = real_mount(m);
1302 int actual_refs = 0;
1303 int minimum_refs = 0;
1304 struct mount *p;
1305 BUG_ON(!m);
1307 /* write lock needed for mnt_get_count */
1308 lock_mount_hash();
1309 for (p = mnt; p; p = next_mnt(p, mnt)) {
1310 actual_refs += mnt_get_count(p);
1311 minimum_refs += 2;
1313 unlock_mount_hash();
1315 if (actual_refs > minimum_refs)
1316 return 0;
1318 return 1;
1321 EXPORT_SYMBOL(may_umount_tree);
1324 * may_umount - check if a mount point is busy
1325 * @mnt: root of mount
1327 * This is called to check if a mount point has any
1328 * open files, pwds, chroots or sub mounts. If the
1329 * mount has sub mounts this will return busy
1330 * regardless of whether the sub mounts are busy.
1332 * Doesn't take quota and stuff into account. IOW, in some cases it will
1333 * give false negatives. The main reason why it's here is that we need
1334 * a non-destructive way to look for easily umountable filesystems.
1336 int may_umount(struct vfsmount *mnt)
1338 int ret = 1;
1339 down_read(&namespace_sem);
1340 lock_mount_hash();
1341 if (propagate_mount_busy(real_mount(mnt), 2))
1342 ret = 0;
1343 unlock_mount_hash();
1344 up_read(&namespace_sem);
1345 return ret;
1348 EXPORT_SYMBOL(may_umount);
1350 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1352 static void namespace_unlock(void)
1354 struct hlist_head head;
1356 hlist_move_list(&unmounted, &head);
1358 up_write(&namespace_sem);
1360 if (likely(hlist_empty(&head)))
1361 return;
1363 synchronize_rcu();
1365 group_pin_kill(&head);
1368 static inline void namespace_lock(void)
1370 down_write(&namespace_sem);
1373 enum umount_tree_flags {
1374 UMOUNT_SYNC = 1,
1375 UMOUNT_PROPAGATE = 2,
1376 UMOUNT_CONNECTED = 4,
1379 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1381 /* Leaving mounts connected is only valid for lazy umounts */
1382 if (how & UMOUNT_SYNC)
1383 return true;
1385 /* A mount without a parent has nothing to be connected to */
1386 if (!mnt_has_parent(mnt))
1387 return true;
1389 /* Because the reference counting rules change when mounts are
1390 * unmounted and connected, umounted mounts may not be
1391 * connected to mounted mounts.
1393 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1394 return true;
1396 /* Has it been requested that the mount remain connected? */
1397 if (how & UMOUNT_CONNECTED)
1398 return false;
1400 /* Is the mount locked such that it needs to remain connected? */
1401 if (IS_MNT_LOCKED(mnt))
1402 return false;
1404 /* By default disconnect the mount */
1405 return true;
1409 * mount_lock must be held
1410 * namespace_sem must be held for write
1412 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1414 LIST_HEAD(tmp_list);
1415 struct mount *p;
1417 if (how & UMOUNT_PROPAGATE)
1418 propagate_mount_unlock(mnt);
1420 /* Gather the mounts to umount */
1421 for (p = mnt; p; p = next_mnt(p, mnt)) {
1422 p->mnt.mnt_flags |= MNT_UMOUNT;
1423 list_move(&p->mnt_list, &tmp_list);
1426 /* Hide the mounts from mnt_mounts */
1427 list_for_each_entry(p, &tmp_list, mnt_list) {
1428 list_del_init(&p->mnt_child);
1431 /* Add propogated mounts to the tmp_list */
1432 if (how & UMOUNT_PROPAGATE)
1433 propagate_umount(&tmp_list);
1435 while (!list_empty(&tmp_list)) {
1436 struct mnt_namespace *ns;
1437 bool disconnect;
1438 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1439 list_del_init(&p->mnt_expire);
1440 list_del_init(&p->mnt_list);
1441 ns = p->mnt_ns;
1442 if (ns) {
1443 ns->mounts--;
1444 __touch_mnt_namespace(ns);
1446 p->mnt_ns = NULL;
1447 if (how & UMOUNT_SYNC)
1448 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1450 disconnect = disconnect_mount(p, how);
1452 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1453 disconnect ? &unmounted : NULL);
1454 if (mnt_has_parent(p)) {
1455 mnt_add_count(p->mnt_parent, -1);
1456 if (!disconnect) {
1457 /* Don't forget about p */
1458 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1459 } else {
1460 umount_mnt(p);
1463 change_mnt_propagation(p, MS_PRIVATE);
1467 static void shrink_submounts(struct mount *mnt);
1469 static int do_umount(struct mount *mnt, int flags)
1471 struct super_block *sb = mnt->mnt.mnt_sb;
1472 int retval;
1474 retval = security_sb_umount(&mnt->mnt, flags);
1475 if (retval)
1476 return retval;
1479 * Allow userspace to request a mountpoint be expired rather than
1480 * unmounting unconditionally. Unmount only happens if:
1481 * (1) the mark is already set (the mark is cleared by mntput())
1482 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1484 if (flags & MNT_EXPIRE) {
1485 if (&mnt->mnt == current->fs->root.mnt ||
1486 flags & (MNT_FORCE | MNT_DETACH))
1487 return -EINVAL;
1490 * probably don't strictly need the lock here if we examined
1491 * all race cases, but it's a slowpath.
1493 lock_mount_hash();
1494 if (mnt_get_count(mnt) != 2) {
1495 unlock_mount_hash();
1496 return -EBUSY;
1498 unlock_mount_hash();
1500 if (!xchg(&mnt->mnt_expiry_mark, 1))
1501 return -EAGAIN;
1505 * If we may have to abort operations to get out of this
1506 * mount, and they will themselves hold resources we must
1507 * allow the fs to do things. In the Unix tradition of
1508 * 'Gee thats tricky lets do it in userspace' the umount_begin
1509 * might fail to complete on the first run through as other tasks
1510 * must return, and the like. Thats for the mount program to worry
1511 * about for the moment.
1514 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1515 sb->s_op->umount_begin(sb);
1519 * No sense to grab the lock for this test, but test itself looks
1520 * somewhat bogus. Suggestions for better replacement?
1521 * Ho-hum... In principle, we might treat that as umount + switch
1522 * to rootfs. GC would eventually take care of the old vfsmount.
1523 * Actually it makes sense, especially if rootfs would contain a
1524 * /reboot - static binary that would close all descriptors and
1525 * call reboot(9). Then init(8) could umount root and exec /reboot.
1527 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1529 * Special case for "unmounting" root ...
1530 * we just try to remount it readonly.
1532 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1533 return -EPERM;
1534 down_write(&sb->s_umount);
1535 if (!sb_rdonly(sb))
1536 retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1537 up_write(&sb->s_umount);
1538 return retval;
1541 namespace_lock();
1542 lock_mount_hash();
1544 /* Recheck MNT_LOCKED with the locks held */
1545 retval = -EINVAL;
1546 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1547 goto out;
1549 event++;
1550 if (flags & MNT_DETACH) {
1551 if (!list_empty(&mnt->mnt_list))
1552 umount_tree(mnt, UMOUNT_PROPAGATE);
1553 retval = 0;
1554 } else {
1555 shrink_submounts(mnt);
1556 retval = -EBUSY;
1557 if (!propagate_mount_busy(mnt, 2)) {
1558 if (!list_empty(&mnt->mnt_list))
1559 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1560 retval = 0;
1563 out:
1564 unlock_mount_hash();
1565 namespace_unlock();
1566 return retval;
1570 * __detach_mounts - lazily unmount all mounts on the specified dentry
1572 * During unlink, rmdir, and d_drop it is possible to loose the path
1573 * to an existing mountpoint, and wind up leaking the mount.
1574 * detach_mounts allows lazily unmounting those mounts instead of
1575 * leaking them.
1577 * The caller may hold dentry->d_inode->i_mutex.
1579 void __detach_mounts(struct dentry *dentry)
1581 struct mountpoint *mp;
1582 struct mount *mnt;
1584 namespace_lock();
1585 lock_mount_hash();
1586 mp = lookup_mountpoint(dentry);
1587 if (IS_ERR_OR_NULL(mp))
1588 goto out_unlock;
1590 event++;
1591 while (!hlist_empty(&mp->m_list)) {
1592 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1593 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1594 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1595 umount_mnt(mnt);
1597 else umount_tree(mnt, UMOUNT_CONNECTED);
1599 put_mountpoint(mp);
1600 out_unlock:
1601 unlock_mount_hash();
1602 namespace_unlock();
1606 * Is the caller allowed to modify his namespace?
1608 static inline bool may_mount(void)
1610 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1613 static inline bool may_mandlock(void)
1615 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1616 return false;
1617 #endif
1618 return capable(CAP_SYS_ADMIN);
1622 * Now umount can handle mount points as well as block devices.
1623 * This is important for filesystems which use unnamed block devices.
1625 * We now support a flag for forced unmount like the other 'big iron'
1626 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1629 int ksys_umount(char __user *name, int flags)
1631 struct path path;
1632 struct mount *mnt;
1633 int retval;
1634 int lookup_flags = 0;
1636 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1637 return -EINVAL;
1639 if (!may_mount())
1640 return -EPERM;
1642 if (!(flags & UMOUNT_NOFOLLOW))
1643 lookup_flags |= LOOKUP_FOLLOW;
1645 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1646 if (retval)
1647 goto out;
1648 mnt = real_mount(path.mnt);
1649 retval = -EINVAL;
1650 if (path.dentry != path.mnt->mnt_root)
1651 goto dput_and_out;
1652 if (!check_mnt(mnt))
1653 goto dput_and_out;
1654 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1655 goto dput_and_out;
1656 retval = -EPERM;
1657 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1658 goto dput_and_out;
1660 retval = do_umount(mnt, flags);
1661 dput_and_out:
1662 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1663 dput(path.dentry);
1664 mntput_no_expire(mnt);
1665 out:
1666 return retval;
1669 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1671 return ksys_umount(name, flags);
1674 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1677 * The 2.0 compatible umount. No flags.
1679 SYSCALL_DEFINE1(oldumount, char __user *, name)
1681 return ksys_umount(name, 0);
1684 #endif
1686 static bool is_mnt_ns_file(struct dentry *dentry)
1688 /* Is this a proxy for a mount namespace? */
1689 return dentry->d_op == &ns_dentry_operations &&
1690 dentry->d_fsdata == &mntns_operations;
1693 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1695 return container_of(ns, struct mnt_namespace, ns);
1698 static bool mnt_ns_loop(struct dentry *dentry)
1700 /* Could bind mounting the mount namespace inode cause a
1701 * mount namespace loop?
1703 struct mnt_namespace *mnt_ns;
1704 if (!is_mnt_ns_file(dentry))
1705 return false;
1707 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1708 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1711 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1712 int flag)
1714 struct mount *res, *p, *q, *r, *parent;
1716 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1717 return ERR_PTR(-EINVAL);
1719 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1720 return ERR_PTR(-EINVAL);
1722 res = q = clone_mnt(mnt, dentry, flag);
1723 if (IS_ERR(q))
1724 return q;
1726 q->mnt_mountpoint = mnt->mnt_mountpoint;
1728 p = mnt;
1729 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1730 struct mount *s;
1731 if (!is_subdir(r->mnt_mountpoint, dentry))
1732 continue;
1734 for (s = r; s; s = next_mnt(s, r)) {
1735 if (!(flag & CL_COPY_UNBINDABLE) &&
1736 IS_MNT_UNBINDABLE(s)) {
1737 if (s->mnt.mnt_flags & MNT_LOCKED) {
1738 /* Both unbindable and locked. */
1739 q = ERR_PTR(-EPERM);
1740 goto out;
1741 } else {
1742 s = skip_mnt_tree(s);
1743 continue;
1746 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1747 is_mnt_ns_file(s->mnt.mnt_root)) {
1748 s = skip_mnt_tree(s);
1749 continue;
1751 while (p != s->mnt_parent) {
1752 p = p->mnt_parent;
1753 q = q->mnt_parent;
1755 p = s;
1756 parent = q;
1757 q = clone_mnt(p, p->mnt.mnt_root, flag);
1758 if (IS_ERR(q))
1759 goto out;
1760 lock_mount_hash();
1761 list_add_tail(&q->mnt_list, &res->mnt_list);
1762 attach_mnt(q, parent, p->mnt_mp);
1763 unlock_mount_hash();
1766 return res;
1767 out:
1768 if (res) {
1769 lock_mount_hash();
1770 umount_tree(res, UMOUNT_SYNC);
1771 unlock_mount_hash();
1773 return q;
1776 /* Caller should check returned pointer for errors */
1778 struct vfsmount *collect_mounts(const struct path *path)
1780 struct mount *tree;
1781 namespace_lock();
1782 if (!check_mnt(real_mount(path->mnt)))
1783 tree = ERR_PTR(-EINVAL);
1784 else
1785 tree = copy_tree(real_mount(path->mnt), path->dentry,
1786 CL_COPY_ALL | CL_PRIVATE);
1787 namespace_unlock();
1788 if (IS_ERR(tree))
1789 return ERR_CAST(tree);
1790 return &tree->mnt;
1793 void drop_collected_mounts(struct vfsmount *mnt)
1795 namespace_lock();
1796 lock_mount_hash();
1797 umount_tree(real_mount(mnt), 0);
1798 unlock_mount_hash();
1799 namespace_unlock();
1803 * clone_private_mount - create a private clone of a path
1805 * This creates a new vfsmount, which will be the clone of @path. The new will
1806 * not be attached anywhere in the namespace and will be private (i.e. changes
1807 * to the originating mount won't be propagated into this).
1809 * Release with mntput().
1811 struct vfsmount *clone_private_mount(const struct path *path)
1813 struct mount *old_mnt = real_mount(path->mnt);
1814 struct mount *new_mnt;
1816 if (IS_MNT_UNBINDABLE(old_mnt))
1817 return ERR_PTR(-EINVAL);
1819 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1820 if (IS_ERR(new_mnt))
1821 return ERR_CAST(new_mnt);
1823 return &new_mnt->mnt;
1825 EXPORT_SYMBOL_GPL(clone_private_mount);
1827 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1828 struct vfsmount *root)
1830 struct mount *mnt;
1831 int res = f(root, arg);
1832 if (res)
1833 return res;
1834 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1835 res = f(&mnt->mnt, arg);
1836 if (res)
1837 return res;
1839 return 0;
1842 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1844 struct mount *p;
1846 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1847 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1848 mnt_release_group_id(p);
1852 static int invent_group_ids(struct mount *mnt, bool recurse)
1854 struct mount *p;
1856 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1857 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1858 int err = mnt_alloc_group_id(p);
1859 if (err) {
1860 cleanup_group_ids(mnt, p);
1861 return err;
1866 return 0;
1869 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1871 unsigned int max = READ_ONCE(sysctl_mount_max);
1872 unsigned int mounts = 0, old, pending, sum;
1873 struct mount *p;
1875 for (p = mnt; p; p = next_mnt(p, mnt))
1876 mounts++;
1878 old = ns->mounts;
1879 pending = ns->pending_mounts;
1880 sum = old + pending;
1881 if ((old > sum) ||
1882 (pending > sum) ||
1883 (max < sum) ||
1884 (mounts > (max - sum)))
1885 return -ENOSPC;
1887 ns->pending_mounts = pending + mounts;
1888 return 0;
1892 * @source_mnt : mount tree to be attached
1893 * @nd : place the mount tree @source_mnt is attached
1894 * @parent_nd : if non-null, detach the source_mnt from its parent and
1895 * store the parent mount and mountpoint dentry.
1896 * (done when source_mnt is moved)
1898 * NOTE: in the table below explains the semantics when a source mount
1899 * of a given type is attached to a destination mount of a given type.
1900 * ---------------------------------------------------------------------------
1901 * | BIND MOUNT OPERATION |
1902 * |**************************************************************************
1903 * | source-->| shared | private | slave | unbindable |
1904 * | dest | | | | |
1905 * | | | | | | |
1906 * | v | | | | |
1907 * |**************************************************************************
1908 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1909 * | | | | | |
1910 * |non-shared| shared (+) | private | slave (*) | invalid |
1911 * ***************************************************************************
1912 * A bind operation clones the source mount and mounts the clone on the
1913 * destination mount.
1915 * (++) the cloned mount is propagated to all the mounts in the propagation
1916 * tree of the destination mount and the cloned mount is added to
1917 * the peer group of the source mount.
1918 * (+) the cloned mount is created under the destination mount and is marked
1919 * as shared. The cloned mount is added to the peer group of the source
1920 * mount.
1921 * (+++) the mount is propagated to all the mounts in the propagation tree
1922 * of the destination mount and the cloned mount is made slave
1923 * of the same master as that of the source mount. The cloned mount
1924 * is marked as 'shared and slave'.
1925 * (*) the cloned mount is made a slave of the same master as that of the
1926 * source mount.
1928 * ---------------------------------------------------------------------------
1929 * | MOVE MOUNT OPERATION |
1930 * |**************************************************************************
1931 * | source-->| shared | private | slave | unbindable |
1932 * | dest | | | | |
1933 * | | | | | | |
1934 * | v | | | | |
1935 * |**************************************************************************
1936 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1937 * | | | | | |
1938 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1939 * ***************************************************************************
1941 * (+) the mount is moved to the destination. And is then propagated to
1942 * all the mounts in the propagation tree of the destination mount.
1943 * (+*) the mount is moved to the destination.
1944 * (+++) the mount is moved to the destination and is then propagated to
1945 * all the mounts belonging to the destination mount's propagation tree.
1946 * the mount is marked as 'shared and slave'.
1947 * (*) the mount continues to be a slave at the new location.
1949 * if the source mount is a tree, the operations explained above is
1950 * applied to each mount in the tree.
1951 * Must be called without spinlocks held, since this function can sleep
1952 * in allocations.
1954 static int attach_recursive_mnt(struct mount *source_mnt,
1955 struct mount *dest_mnt,
1956 struct mountpoint *dest_mp,
1957 struct path *parent_path)
1959 HLIST_HEAD(tree_list);
1960 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1961 struct mountpoint *smp;
1962 struct mount *child, *p;
1963 struct hlist_node *n;
1964 int err;
1966 /* Preallocate a mountpoint in case the new mounts need
1967 * to be tucked under other mounts.
1969 smp = get_mountpoint(source_mnt->mnt.mnt_root);
1970 if (IS_ERR(smp))
1971 return PTR_ERR(smp);
1973 /* Is there space to add these mounts to the mount namespace? */
1974 if (!parent_path) {
1975 err = count_mounts(ns, source_mnt);
1976 if (err)
1977 goto out;
1980 if (IS_MNT_SHARED(dest_mnt)) {
1981 err = invent_group_ids(source_mnt, true);
1982 if (err)
1983 goto out;
1984 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1985 lock_mount_hash();
1986 if (err)
1987 goto out_cleanup_ids;
1988 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1989 set_mnt_shared(p);
1990 } else {
1991 lock_mount_hash();
1993 if (parent_path) {
1994 detach_mnt(source_mnt, parent_path);
1995 attach_mnt(source_mnt, dest_mnt, dest_mp);
1996 touch_mnt_namespace(source_mnt->mnt_ns);
1997 } else {
1998 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1999 commit_tree(source_mnt);
2002 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2003 struct mount *q;
2004 hlist_del_init(&child->mnt_hash);
2005 q = __lookup_mnt(&child->mnt_parent->mnt,
2006 child->mnt_mountpoint);
2007 if (q)
2008 mnt_change_mountpoint(child, smp, q);
2009 commit_tree(child);
2011 put_mountpoint(smp);
2012 unlock_mount_hash();
2014 return 0;
2016 out_cleanup_ids:
2017 while (!hlist_empty(&tree_list)) {
2018 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2019 child->mnt_parent->mnt_ns->pending_mounts = 0;
2020 umount_tree(child, UMOUNT_SYNC);
2022 unlock_mount_hash();
2023 cleanup_group_ids(source_mnt, NULL);
2024 out:
2025 ns->pending_mounts = 0;
2027 read_seqlock_excl(&mount_lock);
2028 put_mountpoint(smp);
2029 read_sequnlock_excl(&mount_lock);
2031 return err;
2034 static struct mountpoint *lock_mount(struct path *path)
2036 struct vfsmount *mnt;
2037 struct dentry *dentry = path->dentry;
2038 retry:
2039 inode_lock(dentry->d_inode);
2040 if (unlikely(cant_mount(dentry))) {
2041 inode_unlock(dentry->d_inode);
2042 return ERR_PTR(-ENOENT);
2044 namespace_lock();
2045 mnt = lookup_mnt(path);
2046 if (likely(!mnt)) {
2047 struct mountpoint *mp = get_mountpoint(dentry);
2048 if (IS_ERR(mp)) {
2049 namespace_unlock();
2050 inode_unlock(dentry->d_inode);
2051 return mp;
2053 return mp;
2055 namespace_unlock();
2056 inode_unlock(path->dentry->d_inode);
2057 path_put(path);
2058 path->mnt = mnt;
2059 dentry = path->dentry = dget(mnt->mnt_root);
2060 goto retry;
2063 static void unlock_mount(struct mountpoint *where)
2065 struct dentry *dentry = where->m_dentry;
2067 read_seqlock_excl(&mount_lock);
2068 put_mountpoint(where);
2069 read_sequnlock_excl(&mount_lock);
2071 namespace_unlock();
2072 inode_unlock(dentry->d_inode);
2075 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2077 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2078 return -EINVAL;
2080 if (d_is_dir(mp->m_dentry) !=
2081 d_is_dir(mnt->mnt.mnt_root))
2082 return -ENOTDIR;
2084 return attach_recursive_mnt(mnt, p, mp, NULL);
2088 * Sanity check the flags to change_mnt_propagation.
2091 static int flags_to_propagation_type(int ms_flags)
2093 int type = ms_flags & ~(MS_REC | MS_SILENT);
2095 /* Fail if any non-propagation flags are set */
2096 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2097 return 0;
2098 /* Only one propagation flag should be set */
2099 if (!is_power_of_2(type))
2100 return 0;
2101 return type;
2105 * recursively change the type of the mountpoint.
2107 static int do_change_type(struct path *path, int ms_flags)
2109 struct mount *m;
2110 struct mount *mnt = real_mount(path->mnt);
2111 int recurse = ms_flags & MS_REC;
2112 int type;
2113 int err = 0;
2115 if (path->dentry != path->mnt->mnt_root)
2116 return -EINVAL;
2118 type = flags_to_propagation_type(ms_flags);
2119 if (!type)
2120 return -EINVAL;
2122 namespace_lock();
2123 if (type == MS_SHARED) {
2124 err = invent_group_ids(mnt, recurse);
2125 if (err)
2126 goto out_unlock;
2129 lock_mount_hash();
2130 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2131 change_mnt_propagation(m, type);
2132 unlock_mount_hash();
2134 out_unlock:
2135 namespace_unlock();
2136 return err;
2139 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2141 struct mount *child;
2142 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2143 if (!is_subdir(child->mnt_mountpoint, dentry))
2144 continue;
2146 if (child->mnt.mnt_flags & MNT_LOCKED)
2147 return true;
2149 return false;
2153 * do loopback mount.
2155 static int do_loopback(struct path *path, const char *old_name,
2156 int recurse)
2158 struct path old_path;
2159 struct mount *mnt = NULL, *old, *parent;
2160 struct mountpoint *mp;
2161 int err;
2162 if (!old_name || !*old_name)
2163 return -EINVAL;
2164 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2165 if (err)
2166 return err;
2168 err = -EINVAL;
2169 if (mnt_ns_loop(old_path.dentry))
2170 goto out;
2172 mp = lock_mount(path);
2173 err = PTR_ERR(mp);
2174 if (IS_ERR(mp))
2175 goto out;
2177 old = real_mount(old_path.mnt);
2178 parent = real_mount(path->mnt);
2180 err = -EINVAL;
2181 if (IS_MNT_UNBINDABLE(old))
2182 goto out2;
2184 if (!check_mnt(parent))
2185 goto out2;
2187 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2188 goto out2;
2190 if (!recurse && has_locked_children(old, old_path.dentry))
2191 goto out2;
2193 if (recurse)
2194 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2195 else
2196 mnt = clone_mnt(old, old_path.dentry, 0);
2198 if (IS_ERR(mnt)) {
2199 err = PTR_ERR(mnt);
2200 goto out2;
2203 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2205 err = graft_tree(mnt, parent, mp);
2206 if (err) {
2207 lock_mount_hash();
2208 umount_tree(mnt, UMOUNT_SYNC);
2209 unlock_mount_hash();
2211 out2:
2212 unlock_mount(mp);
2213 out:
2214 path_put(&old_path);
2215 return err;
2218 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2220 int error = 0;
2221 int readonly_request = 0;
2223 if (ms_flags & MS_RDONLY)
2224 readonly_request = 1;
2225 if (readonly_request == __mnt_is_readonly(mnt))
2226 return 0;
2228 if (readonly_request)
2229 error = mnt_make_readonly(real_mount(mnt));
2230 else
2231 __mnt_unmake_readonly(real_mount(mnt));
2232 return error;
2236 * change filesystem flags. dir should be a physical root of filesystem.
2237 * If you've mounted a non-root directory somewhere and want to do remount
2238 * on it - tough luck.
2240 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2241 int mnt_flags, void *data)
2243 int err;
2244 struct super_block *sb = path->mnt->mnt_sb;
2245 struct mount *mnt = real_mount(path->mnt);
2247 if (!check_mnt(mnt))
2248 return -EINVAL;
2250 if (path->dentry != path->mnt->mnt_root)
2251 return -EINVAL;
2253 /* Don't allow changing of locked mnt flags.
2255 * No locks need to be held here while testing the various
2256 * MNT_LOCK flags because those flags can never be cleared
2257 * once they are set.
2259 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2260 !(mnt_flags & MNT_READONLY)) {
2261 return -EPERM;
2263 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2264 !(mnt_flags & MNT_NODEV)) {
2265 return -EPERM;
2267 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2268 !(mnt_flags & MNT_NOSUID)) {
2269 return -EPERM;
2271 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2272 !(mnt_flags & MNT_NOEXEC)) {
2273 return -EPERM;
2275 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2276 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2277 return -EPERM;
2280 err = security_sb_remount(sb, data);
2281 if (err)
2282 return err;
2284 down_write(&sb->s_umount);
2285 if (ms_flags & MS_BIND)
2286 err = change_mount_flags(path->mnt, ms_flags);
2287 else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2288 err = -EPERM;
2289 else
2290 err = do_remount_sb(sb, sb_flags, data, 0);
2291 if (!err) {
2292 lock_mount_hash();
2293 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2294 mnt->mnt.mnt_flags = mnt_flags;
2295 touch_mnt_namespace(mnt->mnt_ns);
2296 unlock_mount_hash();
2298 up_write(&sb->s_umount);
2299 return err;
2302 static inline int tree_contains_unbindable(struct mount *mnt)
2304 struct mount *p;
2305 for (p = mnt; p; p = next_mnt(p, mnt)) {
2306 if (IS_MNT_UNBINDABLE(p))
2307 return 1;
2309 return 0;
2312 static int do_move_mount(struct path *path, const char *old_name)
2314 struct path old_path, parent_path;
2315 struct mount *p;
2316 struct mount *old;
2317 struct mountpoint *mp;
2318 int err;
2319 if (!old_name || !*old_name)
2320 return -EINVAL;
2321 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2322 if (err)
2323 return err;
2325 mp = lock_mount(path);
2326 err = PTR_ERR(mp);
2327 if (IS_ERR(mp))
2328 goto out;
2330 old = real_mount(old_path.mnt);
2331 p = real_mount(path->mnt);
2333 err = -EINVAL;
2334 if (!check_mnt(p) || !check_mnt(old))
2335 goto out1;
2337 if (old->mnt.mnt_flags & MNT_LOCKED)
2338 goto out1;
2340 err = -EINVAL;
2341 if (old_path.dentry != old_path.mnt->mnt_root)
2342 goto out1;
2344 if (!mnt_has_parent(old))
2345 goto out1;
2347 if (d_is_dir(path->dentry) !=
2348 d_is_dir(old_path.dentry))
2349 goto out1;
2351 * Don't move a mount residing in a shared parent.
2353 if (IS_MNT_SHARED(old->mnt_parent))
2354 goto out1;
2356 * Don't move a mount tree containing unbindable mounts to a destination
2357 * mount which is shared.
2359 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2360 goto out1;
2361 err = -ELOOP;
2362 for (; mnt_has_parent(p); p = p->mnt_parent)
2363 if (p == old)
2364 goto out1;
2366 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2367 if (err)
2368 goto out1;
2370 /* if the mount is moved, it should no longer be expire
2371 * automatically */
2372 list_del_init(&old->mnt_expire);
2373 out1:
2374 unlock_mount(mp);
2375 out:
2376 if (!err)
2377 path_put(&parent_path);
2378 path_put(&old_path);
2379 return err;
2382 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2384 int err;
2385 const char *subtype = strchr(fstype, '.');
2386 if (subtype) {
2387 subtype++;
2388 err = -EINVAL;
2389 if (!subtype[0])
2390 goto err;
2391 } else
2392 subtype = "";
2394 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2395 err = -ENOMEM;
2396 if (!mnt->mnt_sb->s_subtype)
2397 goto err;
2398 return mnt;
2400 err:
2401 mntput(mnt);
2402 return ERR_PTR(err);
2406 * add a mount into a namespace's mount tree
2408 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2410 struct mountpoint *mp;
2411 struct mount *parent;
2412 int err;
2414 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2416 mp = lock_mount(path);
2417 if (IS_ERR(mp))
2418 return PTR_ERR(mp);
2420 parent = real_mount(path->mnt);
2421 err = -EINVAL;
2422 if (unlikely(!check_mnt(parent))) {
2423 /* that's acceptable only for automounts done in private ns */
2424 if (!(mnt_flags & MNT_SHRINKABLE))
2425 goto unlock;
2426 /* ... and for those we'd better have mountpoint still alive */
2427 if (!parent->mnt_ns)
2428 goto unlock;
2431 /* Refuse the same filesystem on the same mount point */
2432 err = -EBUSY;
2433 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2434 path->mnt->mnt_root == path->dentry)
2435 goto unlock;
2437 err = -EINVAL;
2438 if (d_is_symlink(newmnt->mnt.mnt_root))
2439 goto unlock;
2441 newmnt->mnt.mnt_flags = mnt_flags;
2442 err = graft_tree(newmnt, parent, mp);
2444 unlock:
2445 unlock_mount(mp);
2446 return err;
2449 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2452 * create a new mount for userspace and request it to be added into the
2453 * namespace's tree
2455 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2456 int mnt_flags, const char *name, void *data)
2458 struct file_system_type *type;
2459 struct vfsmount *mnt;
2460 int err;
2462 if (!fstype)
2463 return -EINVAL;
2465 type = get_fs_type(fstype);
2466 if (!type)
2467 return -ENODEV;
2469 mnt = vfs_kern_mount(type, sb_flags, name, data);
2470 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2471 !mnt->mnt_sb->s_subtype)
2472 mnt = fs_set_subtype(mnt, fstype);
2474 put_filesystem(type);
2475 if (IS_ERR(mnt))
2476 return PTR_ERR(mnt);
2478 if (mount_too_revealing(mnt, &mnt_flags)) {
2479 mntput(mnt);
2480 return -EPERM;
2483 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2484 if (err)
2485 mntput(mnt);
2486 return err;
2489 int finish_automount(struct vfsmount *m, struct path *path)
2491 struct mount *mnt = real_mount(m);
2492 int err;
2493 /* The new mount record should have at least 2 refs to prevent it being
2494 * expired before we get a chance to add it
2496 BUG_ON(mnt_get_count(mnt) < 2);
2498 if (m->mnt_sb == path->mnt->mnt_sb &&
2499 m->mnt_root == path->dentry) {
2500 err = -ELOOP;
2501 goto fail;
2504 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2505 if (!err)
2506 return 0;
2507 fail:
2508 /* remove m from any expiration list it may be on */
2509 if (!list_empty(&mnt->mnt_expire)) {
2510 namespace_lock();
2511 list_del_init(&mnt->mnt_expire);
2512 namespace_unlock();
2514 mntput(m);
2515 mntput(m);
2516 return err;
2520 * mnt_set_expiry - Put a mount on an expiration list
2521 * @mnt: The mount to list.
2522 * @expiry_list: The list to add the mount to.
2524 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2526 namespace_lock();
2528 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2530 namespace_unlock();
2532 EXPORT_SYMBOL(mnt_set_expiry);
2535 * process a list of expirable mountpoints with the intent of discarding any
2536 * mountpoints that aren't in use and haven't been touched since last we came
2537 * here
2539 void mark_mounts_for_expiry(struct list_head *mounts)
2541 struct mount *mnt, *next;
2542 LIST_HEAD(graveyard);
2544 if (list_empty(mounts))
2545 return;
2547 namespace_lock();
2548 lock_mount_hash();
2550 /* extract from the expiration list every vfsmount that matches the
2551 * following criteria:
2552 * - only referenced by its parent vfsmount
2553 * - still marked for expiry (marked on the last call here; marks are
2554 * cleared by mntput())
2556 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2557 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2558 propagate_mount_busy(mnt, 1))
2559 continue;
2560 list_move(&mnt->mnt_expire, &graveyard);
2562 while (!list_empty(&graveyard)) {
2563 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2564 touch_mnt_namespace(mnt->mnt_ns);
2565 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2567 unlock_mount_hash();
2568 namespace_unlock();
2571 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2574 * Ripoff of 'select_parent()'
2576 * search the list of submounts for a given mountpoint, and move any
2577 * shrinkable submounts to the 'graveyard' list.
2579 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2581 struct mount *this_parent = parent;
2582 struct list_head *next;
2583 int found = 0;
2585 repeat:
2586 next = this_parent->mnt_mounts.next;
2587 resume:
2588 while (next != &this_parent->mnt_mounts) {
2589 struct list_head *tmp = next;
2590 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2592 next = tmp->next;
2593 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2594 continue;
2596 * Descend a level if the d_mounts list is non-empty.
2598 if (!list_empty(&mnt->mnt_mounts)) {
2599 this_parent = mnt;
2600 goto repeat;
2603 if (!propagate_mount_busy(mnt, 1)) {
2604 list_move_tail(&mnt->mnt_expire, graveyard);
2605 found++;
2609 * All done at this level ... ascend and resume the search
2611 if (this_parent != parent) {
2612 next = this_parent->mnt_child.next;
2613 this_parent = this_parent->mnt_parent;
2614 goto resume;
2616 return found;
2620 * process a list of expirable mountpoints with the intent of discarding any
2621 * submounts of a specific parent mountpoint
2623 * mount_lock must be held for write
2625 static void shrink_submounts(struct mount *mnt)
2627 LIST_HEAD(graveyard);
2628 struct mount *m;
2630 /* extract submounts of 'mountpoint' from the expiration list */
2631 while (select_submounts(mnt, &graveyard)) {
2632 while (!list_empty(&graveyard)) {
2633 m = list_first_entry(&graveyard, struct mount,
2634 mnt_expire);
2635 touch_mnt_namespace(m->mnt_ns);
2636 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2642 * Some copy_from_user() implementations do not return the exact number of
2643 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2644 * Note that this function differs from copy_from_user() in that it will oops
2645 * on bad values of `to', rather than returning a short copy.
2647 static long exact_copy_from_user(void *to, const void __user * from,
2648 unsigned long n)
2650 char *t = to;
2651 const char __user *f = from;
2652 char c;
2654 if (!access_ok(VERIFY_READ, from, n))
2655 return n;
2657 while (n) {
2658 if (__get_user(c, f)) {
2659 memset(t, 0, n);
2660 break;
2662 *t++ = c;
2663 f++;
2664 n--;
2666 return n;
2669 void *copy_mount_options(const void __user * data)
2671 int i;
2672 unsigned long size;
2673 char *copy;
2675 if (!data)
2676 return NULL;
2678 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2679 if (!copy)
2680 return ERR_PTR(-ENOMEM);
2682 /* We only care that *some* data at the address the user
2683 * gave us is valid. Just in case, we'll zero
2684 * the remainder of the page.
2686 /* copy_from_user cannot cross TASK_SIZE ! */
2687 size = TASK_SIZE - (unsigned long)data;
2688 if (size > PAGE_SIZE)
2689 size = PAGE_SIZE;
2691 i = size - exact_copy_from_user(copy, data, size);
2692 if (!i) {
2693 kfree(copy);
2694 return ERR_PTR(-EFAULT);
2696 if (i != PAGE_SIZE)
2697 memset(copy + i, 0, PAGE_SIZE - i);
2698 return copy;
2701 char *copy_mount_string(const void __user *data)
2703 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2707 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2708 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2710 * data is a (void *) that can point to any structure up to
2711 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2712 * information (or be NULL).
2714 * Pre-0.97 versions of mount() didn't have a flags word.
2715 * When the flags word was introduced its top half was required
2716 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2717 * Therefore, if this magic number is present, it carries no information
2718 * and must be discarded.
2720 long do_mount(const char *dev_name, const char __user *dir_name,
2721 const char *type_page, unsigned long flags, void *data_page)
2723 struct path path;
2724 unsigned int mnt_flags = 0, sb_flags;
2725 int retval = 0;
2727 /* Discard magic */
2728 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2729 flags &= ~MS_MGC_MSK;
2731 /* Basic sanity checks */
2732 if (data_page)
2733 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2735 if (flags & MS_NOUSER)
2736 return -EINVAL;
2738 /* ... and get the mountpoint */
2739 retval = user_path(dir_name, &path);
2740 if (retval)
2741 return retval;
2743 retval = security_sb_mount(dev_name, &path,
2744 type_page, flags, data_page);
2745 if (!retval && !may_mount())
2746 retval = -EPERM;
2747 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
2748 retval = -EPERM;
2749 if (retval)
2750 goto dput_out;
2752 /* Default to relatime unless overriden */
2753 if (!(flags & MS_NOATIME))
2754 mnt_flags |= MNT_RELATIME;
2756 /* Separate the per-mountpoint flags */
2757 if (flags & MS_NOSUID)
2758 mnt_flags |= MNT_NOSUID;
2759 if (flags & MS_NODEV)
2760 mnt_flags |= MNT_NODEV;
2761 if (flags & MS_NOEXEC)
2762 mnt_flags |= MNT_NOEXEC;
2763 if (flags & MS_NOATIME)
2764 mnt_flags |= MNT_NOATIME;
2765 if (flags & MS_NODIRATIME)
2766 mnt_flags |= MNT_NODIRATIME;
2767 if (flags & MS_STRICTATIME)
2768 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2769 if (flags & MS_RDONLY)
2770 mnt_flags |= MNT_READONLY;
2772 /* The default atime for remount is preservation */
2773 if ((flags & MS_REMOUNT) &&
2774 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2775 MS_STRICTATIME)) == 0)) {
2776 mnt_flags &= ~MNT_ATIME_MASK;
2777 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2780 sb_flags = flags & (SB_RDONLY |
2781 SB_SYNCHRONOUS |
2782 SB_MANDLOCK |
2783 SB_DIRSYNC |
2784 SB_SILENT |
2785 SB_POSIXACL |
2786 SB_LAZYTIME |
2787 SB_I_VERSION);
2789 if (flags & MS_REMOUNT)
2790 retval = do_remount(&path, flags, sb_flags, mnt_flags,
2791 data_page);
2792 else if (flags & MS_BIND)
2793 retval = do_loopback(&path, dev_name, flags & MS_REC);
2794 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2795 retval = do_change_type(&path, flags);
2796 else if (flags & MS_MOVE)
2797 retval = do_move_mount(&path, dev_name);
2798 else
2799 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
2800 dev_name, data_page);
2801 dput_out:
2802 path_put(&path);
2803 return retval;
2806 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2808 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2811 static void dec_mnt_namespaces(struct ucounts *ucounts)
2813 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2816 static void free_mnt_ns(struct mnt_namespace *ns)
2818 ns_free_inum(&ns->ns);
2819 dec_mnt_namespaces(ns->ucounts);
2820 put_user_ns(ns->user_ns);
2821 kfree(ns);
2825 * Assign a sequence number so we can detect when we attempt to bind
2826 * mount a reference to an older mount namespace into the current
2827 * mount namespace, preventing reference counting loops. A 64bit
2828 * number incrementing at 10Ghz will take 12,427 years to wrap which
2829 * is effectively never, so we can ignore the possibility.
2831 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2833 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2835 struct mnt_namespace *new_ns;
2836 struct ucounts *ucounts;
2837 int ret;
2839 ucounts = inc_mnt_namespaces(user_ns);
2840 if (!ucounts)
2841 return ERR_PTR(-ENOSPC);
2843 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2844 if (!new_ns) {
2845 dec_mnt_namespaces(ucounts);
2846 return ERR_PTR(-ENOMEM);
2848 ret = ns_alloc_inum(&new_ns->ns);
2849 if (ret) {
2850 kfree(new_ns);
2851 dec_mnt_namespaces(ucounts);
2852 return ERR_PTR(ret);
2854 new_ns->ns.ops = &mntns_operations;
2855 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2856 atomic_set(&new_ns->count, 1);
2857 new_ns->root = NULL;
2858 INIT_LIST_HEAD(&new_ns->list);
2859 init_waitqueue_head(&new_ns->poll);
2860 new_ns->event = 0;
2861 new_ns->user_ns = get_user_ns(user_ns);
2862 new_ns->ucounts = ucounts;
2863 new_ns->mounts = 0;
2864 new_ns->pending_mounts = 0;
2865 return new_ns;
2868 __latent_entropy
2869 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2870 struct user_namespace *user_ns, struct fs_struct *new_fs)
2872 struct mnt_namespace *new_ns;
2873 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2874 struct mount *p, *q;
2875 struct mount *old;
2876 struct mount *new;
2877 int copy_flags;
2879 BUG_ON(!ns);
2881 if (likely(!(flags & CLONE_NEWNS))) {
2882 get_mnt_ns(ns);
2883 return ns;
2886 old = ns->root;
2888 new_ns = alloc_mnt_ns(user_ns);
2889 if (IS_ERR(new_ns))
2890 return new_ns;
2892 namespace_lock();
2893 /* First pass: copy the tree topology */
2894 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2895 if (user_ns != ns->user_ns)
2896 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2897 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2898 if (IS_ERR(new)) {
2899 namespace_unlock();
2900 free_mnt_ns(new_ns);
2901 return ERR_CAST(new);
2903 new_ns->root = new;
2904 list_add_tail(&new_ns->list, &new->mnt_list);
2907 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2908 * as belonging to new namespace. We have already acquired a private
2909 * fs_struct, so tsk->fs->lock is not needed.
2911 p = old;
2912 q = new;
2913 while (p) {
2914 q->mnt_ns = new_ns;
2915 new_ns->mounts++;
2916 if (new_fs) {
2917 if (&p->mnt == new_fs->root.mnt) {
2918 new_fs->root.mnt = mntget(&q->mnt);
2919 rootmnt = &p->mnt;
2921 if (&p->mnt == new_fs->pwd.mnt) {
2922 new_fs->pwd.mnt = mntget(&q->mnt);
2923 pwdmnt = &p->mnt;
2926 p = next_mnt(p, old);
2927 q = next_mnt(q, new);
2928 if (!q)
2929 break;
2930 while (p->mnt.mnt_root != q->mnt.mnt_root)
2931 p = next_mnt(p, old);
2933 namespace_unlock();
2935 if (rootmnt)
2936 mntput(rootmnt);
2937 if (pwdmnt)
2938 mntput(pwdmnt);
2940 return new_ns;
2944 * create_mnt_ns - creates a private namespace and adds a root filesystem
2945 * @mnt: pointer to the new root filesystem mountpoint
2947 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2949 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2950 if (!IS_ERR(new_ns)) {
2951 struct mount *mnt = real_mount(m);
2952 mnt->mnt_ns = new_ns;
2953 new_ns->root = mnt;
2954 new_ns->mounts++;
2955 list_add(&mnt->mnt_list, &new_ns->list);
2956 } else {
2957 mntput(m);
2959 return new_ns;
2962 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2964 struct mnt_namespace *ns;
2965 struct super_block *s;
2966 struct path path;
2967 int err;
2969 ns = create_mnt_ns(mnt);
2970 if (IS_ERR(ns))
2971 return ERR_CAST(ns);
2973 err = vfs_path_lookup(mnt->mnt_root, mnt,
2974 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2976 put_mnt_ns(ns);
2978 if (err)
2979 return ERR_PTR(err);
2981 /* trade a vfsmount reference for active sb one */
2982 s = path.mnt->mnt_sb;
2983 atomic_inc(&s->s_active);
2984 mntput(path.mnt);
2985 /* lock the sucker */
2986 down_write(&s->s_umount);
2987 /* ... and return the root of (sub)tree on it */
2988 return path.dentry;
2990 EXPORT_SYMBOL(mount_subtree);
2992 int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
2993 unsigned long flags, void __user *data)
2995 int ret;
2996 char *kernel_type;
2997 char *kernel_dev;
2998 void *options;
3000 kernel_type = copy_mount_string(type);
3001 ret = PTR_ERR(kernel_type);
3002 if (IS_ERR(kernel_type))
3003 goto out_type;
3005 kernel_dev = copy_mount_string(dev_name);
3006 ret = PTR_ERR(kernel_dev);
3007 if (IS_ERR(kernel_dev))
3008 goto out_dev;
3010 options = copy_mount_options(data);
3011 ret = PTR_ERR(options);
3012 if (IS_ERR(options))
3013 goto out_data;
3015 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3017 kfree(options);
3018 out_data:
3019 kfree(kernel_dev);
3020 out_dev:
3021 kfree(kernel_type);
3022 out_type:
3023 return ret;
3026 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3027 char __user *, type, unsigned long, flags, void __user *, data)
3029 return ksys_mount(dev_name, dir_name, type, flags, data);
3033 * Return true if path is reachable from root
3035 * namespace_sem or mount_lock is held
3037 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3038 const struct path *root)
3040 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3041 dentry = mnt->mnt_mountpoint;
3042 mnt = mnt->mnt_parent;
3044 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3047 bool path_is_under(const struct path *path1, const struct path *path2)
3049 bool res;
3050 read_seqlock_excl(&mount_lock);
3051 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3052 read_sequnlock_excl(&mount_lock);
3053 return res;
3055 EXPORT_SYMBOL(path_is_under);
3058 * pivot_root Semantics:
3059 * Moves the root file system of the current process to the directory put_old,
3060 * makes new_root as the new root file system of the current process, and sets
3061 * root/cwd of all processes which had them on the current root to new_root.
3063 * Restrictions:
3064 * The new_root and put_old must be directories, and must not be on the
3065 * same file system as the current process root. The put_old must be
3066 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3067 * pointed to by put_old must yield the same directory as new_root. No other
3068 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3070 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3071 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3072 * in this situation.
3074 * Notes:
3075 * - we don't move root/cwd if they are not at the root (reason: if something
3076 * cared enough to change them, it's probably wrong to force them elsewhere)
3077 * - it's okay to pick a root that isn't the root of a file system, e.g.
3078 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3079 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3080 * first.
3082 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3083 const char __user *, put_old)
3085 struct path new, old, parent_path, root_parent, root;
3086 struct mount *new_mnt, *root_mnt, *old_mnt;
3087 struct mountpoint *old_mp, *root_mp;
3088 int error;
3090 if (!may_mount())
3091 return -EPERM;
3093 error = user_path_dir(new_root, &new);
3094 if (error)
3095 goto out0;
3097 error = user_path_dir(put_old, &old);
3098 if (error)
3099 goto out1;
3101 error = security_sb_pivotroot(&old, &new);
3102 if (error)
3103 goto out2;
3105 get_fs_root(current->fs, &root);
3106 old_mp = lock_mount(&old);
3107 error = PTR_ERR(old_mp);
3108 if (IS_ERR(old_mp))
3109 goto out3;
3111 error = -EINVAL;
3112 new_mnt = real_mount(new.mnt);
3113 root_mnt = real_mount(root.mnt);
3114 old_mnt = real_mount(old.mnt);
3115 if (IS_MNT_SHARED(old_mnt) ||
3116 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3117 IS_MNT_SHARED(root_mnt->mnt_parent))
3118 goto out4;
3119 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3120 goto out4;
3121 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3122 goto out4;
3123 error = -ENOENT;
3124 if (d_unlinked(new.dentry))
3125 goto out4;
3126 error = -EBUSY;
3127 if (new_mnt == root_mnt || old_mnt == root_mnt)
3128 goto out4; /* loop, on the same file system */
3129 error = -EINVAL;
3130 if (root.mnt->mnt_root != root.dentry)
3131 goto out4; /* not a mountpoint */
3132 if (!mnt_has_parent(root_mnt))
3133 goto out4; /* not attached */
3134 root_mp = root_mnt->mnt_mp;
3135 if (new.mnt->mnt_root != new.dentry)
3136 goto out4; /* not a mountpoint */
3137 if (!mnt_has_parent(new_mnt))
3138 goto out4; /* not attached */
3139 /* make sure we can reach put_old from new_root */
3140 if (!is_path_reachable(old_mnt, old.dentry, &new))
3141 goto out4;
3142 /* make certain new is below the root */
3143 if (!is_path_reachable(new_mnt, new.dentry, &root))
3144 goto out4;
3145 root_mp->m_count++; /* pin it so it won't go away */
3146 lock_mount_hash();
3147 detach_mnt(new_mnt, &parent_path);
3148 detach_mnt(root_mnt, &root_parent);
3149 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3150 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3151 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3153 /* mount old root on put_old */
3154 attach_mnt(root_mnt, old_mnt, old_mp);
3155 /* mount new_root on / */
3156 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3157 touch_mnt_namespace(current->nsproxy->mnt_ns);
3158 /* A moved mount should not expire automatically */
3159 list_del_init(&new_mnt->mnt_expire);
3160 put_mountpoint(root_mp);
3161 unlock_mount_hash();
3162 chroot_fs_refs(&root, &new);
3163 error = 0;
3164 out4:
3165 unlock_mount(old_mp);
3166 if (!error) {
3167 path_put(&root_parent);
3168 path_put(&parent_path);
3170 out3:
3171 path_put(&root);
3172 out2:
3173 path_put(&old);
3174 out1:
3175 path_put(&new);
3176 out0:
3177 return error;
3180 static void __init init_mount_tree(void)
3182 struct vfsmount *mnt;
3183 struct mnt_namespace *ns;
3184 struct path root;
3185 struct file_system_type *type;
3187 type = get_fs_type("rootfs");
3188 if (!type)
3189 panic("Can't find rootfs type");
3190 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3191 put_filesystem(type);
3192 if (IS_ERR(mnt))
3193 panic("Can't create rootfs");
3195 ns = create_mnt_ns(mnt);
3196 if (IS_ERR(ns))
3197 panic("Can't allocate initial namespace");
3199 init_task.nsproxy->mnt_ns = ns;
3200 get_mnt_ns(ns);
3202 root.mnt = mnt;
3203 root.dentry = mnt->mnt_root;
3204 mnt->mnt_flags |= MNT_LOCKED;
3206 set_fs_pwd(current->fs, &root);
3207 set_fs_root(current->fs, &root);
3210 void __init mnt_init(void)
3212 int err;
3214 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3215 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3217 mount_hashtable = alloc_large_system_hash("Mount-cache",
3218 sizeof(struct hlist_head),
3219 mhash_entries, 19,
3220 HASH_ZERO,
3221 &m_hash_shift, &m_hash_mask, 0, 0);
3222 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3223 sizeof(struct hlist_head),
3224 mphash_entries, 19,
3225 HASH_ZERO,
3226 &mp_hash_shift, &mp_hash_mask, 0, 0);
3228 if (!mount_hashtable || !mountpoint_hashtable)
3229 panic("Failed to allocate mount hash table\n");
3231 kernfs_init();
3233 err = sysfs_init();
3234 if (err)
3235 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3236 __func__, err);
3237 fs_kobj = kobject_create_and_add("fs", NULL);
3238 if (!fs_kobj)
3239 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3240 init_rootfs();
3241 init_mount_tree();
3244 void put_mnt_ns(struct mnt_namespace *ns)
3246 if (!atomic_dec_and_test(&ns->count))
3247 return;
3248 drop_collected_mounts(&ns->root->mnt);
3249 free_mnt_ns(ns);
3252 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3254 struct vfsmount *mnt;
3255 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
3256 if (!IS_ERR(mnt)) {
3258 * it is a longterm mount, don't release mnt until
3259 * we unmount before file sys is unregistered
3261 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3263 return mnt;
3265 EXPORT_SYMBOL_GPL(kern_mount_data);
3267 void kern_unmount(struct vfsmount *mnt)
3269 /* release long term mount so mount point can be released */
3270 if (!IS_ERR_OR_NULL(mnt)) {
3271 real_mount(mnt)->mnt_ns = NULL;
3272 synchronize_rcu(); /* yecchhh... */
3273 mntput(mnt);
3276 EXPORT_SYMBOL(kern_unmount);
3278 bool our_mnt(struct vfsmount *mnt)
3280 return check_mnt(real_mount(mnt));
3283 bool current_chrooted(void)
3285 /* Does the current process have a non-standard root */
3286 struct path ns_root;
3287 struct path fs_root;
3288 bool chrooted;
3290 /* Find the namespace root */
3291 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3292 ns_root.dentry = ns_root.mnt->mnt_root;
3293 path_get(&ns_root);
3294 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3297 get_fs_root(current->fs, &fs_root);
3299 chrooted = !path_equal(&fs_root, &ns_root);
3301 path_put(&fs_root);
3302 path_put(&ns_root);
3304 return chrooted;
3307 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3308 int *new_mnt_flags)
3310 int new_flags = *new_mnt_flags;
3311 struct mount *mnt;
3312 bool visible = false;
3314 down_read(&namespace_sem);
3315 list_for_each_entry(mnt, &ns->list, mnt_list) {
3316 struct mount *child;
3317 int mnt_flags;
3319 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3320 continue;
3322 /* This mount is not fully visible if it's root directory
3323 * is not the root directory of the filesystem.
3325 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3326 continue;
3328 /* A local view of the mount flags */
3329 mnt_flags = mnt->mnt.mnt_flags;
3331 /* Don't miss readonly hidden in the superblock flags */
3332 if (sb_rdonly(mnt->mnt.mnt_sb))
3333 mnt_flags |= MNT_LOCK_READONLY;
3335 /* Verify the mount flags are equal to or more permissive
3336 * than the proposed new mount.
3338 if ((mnt_flags & MNT_LOCK_READONLY) &&
3339 !(new_flags & MNT_READONLY))
3340 continue;
3341 if ((mnt_flags & MNT_LOCK_ATIME) &&
3342 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3343 continue;
3345 /* This mount is not fully visible if there are any
3346 * locked child mounts that cover anything except for
3347 * empty directories.
3349 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3350 struct inode *inode = child->mnt_mountpoint->d_inode;
3351 /* Only worry about locked mounts */
3352 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3353 continue;
3354 /* Is the directory permanetly empty? */
3355 if (!is_empty_dir_inode(inode))
3356 goto next;
3358 /* Preserve the locked attributes */
3359 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3360 MNT_LOCK_ATIME);
3361 visible = true;
3362 goto found;
3363 next: ;
3365 found:
3366 up_read(&namespace_sem);
3367 return visible;
3370 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3372 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3373 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3374 unsigned long s_iflags;
3376 if (ns->user_ns == &init_user_ns)
3377 return false;
3379 /* Can this filesystem be too revealing? */
3380 s_iflags = mnt->mnt_sb->s_iflags;
3381 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3382 return false;
3384 if ((s_iflags & required_iflags) != required_iflags) {
3385 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3386 required_iflags);
3387 return true;
3390 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3393 bool mnt_may_suid(struct vfsmount *mnt)
3396 * Foreign mounts (accessed via fchdir or through /proc
3397 * symlinks) are always treated as if they are nosuid. This
3398 * prevents namespaces from trusting potentially unsafe
3399 * suid/sgid bits, file caps, or security labels that originate
3400 * in other namespaces.
3402 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3403 current_in_userns(mnt->mnt_sb->s_user_ns);
3406 static struct ns_common *mntns_get(struct task_struct *task)
3408 struct ns_common *ns = NULL;
3409 struct nsproxy *nsproxy;
3411 task_lock(task);
3412 nsproxy = task->nsproxy;
3413 if (nsproxy) {
3414 ns = &nsproxy->mnt_ns->ns;
3415 get_mnt_ns(to_mnt_ns(ns));
3417 task_unlock(task);
3419 return ns;
3422 static void mntns_put(struct ns_common *ns)
3424 put_mnt_ns(to_mnt_ns(ns));
3427 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3429 struct fs_struct *fs = current->fs;
3430 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3431 struct path root;
3432 int err;
3434 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3435 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3436 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3437 return -EPERM;
3439 if (fs->users != 1)
3440 return -EINVAL;
3442 get_mnt_ns(mnt_ns);
3443 old_mnt_ns = nsproxy->mnt_ns;
3444 nsproxy->mnt_ns = mnt_ns;
3446 /* Find the root */
3447 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3448 "/", LOOKUP_DOWN, &root);
3449 if (err) {
3450 /* revert to old namespace */
3451 nsproxy->mnt_ns = old_mnt_ns;
3452 put_mnt_ns(mnt_ns);
3453 return err;
3456 put_mnt_ns(old_mnt_ns);
3458 /* Update the pwd and root */
3459 set_fs_pwd(fs, &root);
3460 set_fs_root(fs, &root);
3462 path_put(&root);
3463 return 0;
3466 static struct user_namespace *mntns_owner(struct ns_common *ns)
3468 return to_mnt_ns(ns)->user_ns;
3471 const struct proc_ns_operations mntns_operations = {
3472 .name = "mnt",
3473 .type = CLONE_NEWNS,
3474 .get = mntns_get,
3475 .put = mntns_put,
3476 .install = mntns_install,
3477 .owner = mntns_owner,