net/mlx4_core: Keep only one driver entry release mlx4_priv
[linux/fpc-iii.git] / fs / btrfs / extent-tree.c
blob5590af92094bb67ea61c8ae397cc393b58b75ae6
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "math.h"
38 #include "sysfs.h"
40 #undef SCRAMBLE_DELAYED_REFS
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
63 * Control how reservations are dealt with.
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
77 static int update_block_group(struct btrfs_root *root,
78 u64 bytenr, u64 num_bytes, int alloc);
79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
80 struct btrfs_root *root,
81 u64 bytenr, u64 num_bytes, u64 parent,
82 u64 root_objectid, u64 owner_objectid,
83 u64 owner_offset, int refs_to_drop,
84 struct btrfs_delayed_extent_op *extra_op);
85 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
86 struct extent_buffer *leaf,
87 struct btrfs_extent_item *ei);
88 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
89 struct btrfs_root *root,
90 u64 parent, u64 root_objectid,
91 u64 flags, u64 owner, u64 offset,
92 struct btrfs_key *ins, int ref_mod);
93 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
94 struct btrfs_root *root,
95 u64 parent, u64 root_objectid,
96 u64 flags, struct btrfs_disk_key *key,
97 int level, struct btrfs_key *ins);
98 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
99 struct btrfs_root *extent_root, u64 flags,
100 int force);
101 static int find_next_key(struct btrfs_path *path, int level,
102 struct btrfs_key *key);
103 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
104 int dump_block_groups);
105 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
106 u64 num_bytes, int reserve);
107 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
108 u64 num_bytes);
109 int btrfs_pin_extent(struct btrfs_root *root,
110 u64 bytenr, u64 num_bytes, int reserved);
112 static noinline int
113 block_group_cache_done(struct btrfs_block_group_cache *cache)
115 smp_mb();
116 return cache->cached == BTRFS_CACHE_FINISHED ||
117 cache->cached == BTRFS_CACHE_ERROR;
120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
122 return (cache->flags & bits) == bits;
125 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
127 atomic_inc(&cache->count);
130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
132 if (atomic_dec_and_test(&cache->count)) {
133 WARN_ON(cache->pinned > 0);
134 WARN_ON(cache->reserved > 0);
135 kfree(cache->free_space_ctl);
136 kfree(cache);
141 * this adds the block group to the fs_info rb tree for the block group
142 * cache
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145 struct btrfs_block_group_cache *block_group)
147 struct rb_node **p;
148 struct rb_node *parent = NULL;
149 struct btrfs_block_group_cache *cache;
151 spin_lock(&info->block_group_cache_lock);
152 p = &info->block_group_cache_tree.rb_node;
154 while (*p) {
155 parent = *p;
156 cache = rb_entry(parent, struct btrfs_block_group_cache,
157 cache_node);
158 if (block_group->key.objectid < cache->key.objectid) {
159 p = &(*p)->rb_left;
160 } else if (block_group->key.objectid > cache->key.objectid) {
161 p = &(*p)->rb_right;
162 } else {
163 spin_unlock(&info->block_group_cache_lock);
164 return -EEXIST;
168 rb_link_node(&block_group->cache_node, parent, p);
169 rb_insert_color(&block_group->cache_node,
170 &info->block_group_cache_tree);
172 if (info->first_logical_byte > block_group->key.objectid)
173 info->first_logical_byte = block_group->key.objectid;
175 spin_unlock(&info->block_group_cache_lock);
177 return 0;
181 * This will return the block group at or after bytenr if contains is 0, else
182 * it will return the block group that contains the bytenr
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 int contains)
188 struct btrfs_block_group_cache *cache, *ret = NULL;
189 struct rb_node *n;
190 u64 end, start;
192 spin_lock(&info->block_group_cache_lock);
193 n = info->block_group_cache_tree.rb_node;
195 while (n) {
196 cache = rb_entry(n, struct btrfs_block_group_cache,
197 cache_node);
198 end = cache->key.objectid + cache->key.offset - 1;
199 start = cache->key.objectid;
201 if (bytenr < start) {
202 if (!contains && (!ret || start < ret->key.objectid))
203 ret = cache;
204 n = n->rb_left;
205 } else if (bytenr > start) {
206 if (contains && bytenr <= end) {
207 ret = cache;
208 break;
210 n = n->rb_right;
211 } else {
212 ret = cache;
213 break;
216 if (ret) {
217 btrfs_get_block_group(ret);
218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 info->first_logical_byte = ret->key.objectid;
221 spin_unlock(&info->block_group_cache_lock);
223 return ret;
226 static int add_excluded_extent(struct btrfs_root *root,
227 u64 start, u64 num_bytes)
229 u64 end = start + num_bytes - 1;
230 set_extent_bits(&root->fs_info->freed_extents[0],
231 start, end, EXTENT_UPTODATE, GFP_NOFS);
232 set_extent_bits(&root->fs_info->freed_extents[1],
233 start, end, EXTENT_UPTODATE, GFP_NOFS);
234 return 0;
237 static void free_excluded_extents(struct btrfs_root *root,
238 struct btrfs_block_group_cache *cache)
240 u64 start, end;
242 start = cache->key.objectid;
243 end = start + cache->key.offset - 1;
245 clear_extent_bits(&root->fs_info->freed_extents[0],
246 start, end, EXTENT_UPTODATE, GFP_NOFS);
247 clear_extent_bits(&root->fs_info->freed_extents[1],
248 start, end, EXTENT_UPTODATE, GFP_NOFS);
251 static int exclude_super_stripes(struct btrfs_root *root,
252 struct btrfs_block_group_cache *cache)
254 u64 bytenr;
255 u64 *logical;
256 int stripe_len;
257 int i, nr, ret;
259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 cache->bytes_super += stripe_len;
262 ret = add_excluded_extent(root, cache->key.objectid,
263 stripe_len);
264 if (ret)
265 return ret;
268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 bytenr = btrfs_sb_offset(i);
270 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
271 cache->key.objectid, bytenr,
272 0, &logical, &nr, &stripe_len);
273 if (ret)
274 return ret;
276 while (nr--) {
277 u64 start, len;
279 if (logical[nr] > cache->key.objectid +
280 cache->key.offset)
281 continue;
283 if (logical[nr] + stripe_len <= cache->key.objectid)
284 continue;
286 start = logical[nr];
287 if (start < cache->key.objectid) {
288 start = cache->key.objectid;
289 len = (logical[nr] + stripe_len) - start;
290 } else {
291 len = min_t(u64, stripe_len,
292 cache->key.objectid +
293 cache->key.offset - start);
296 cache->bytes_super += len;
297 ret = add_excluded_extent(root, start, len);
298 if (ret) {
299 kfree(logical);
300 return ret;
304 kfree(logical);
306 return 0;
309 static struct btrfs_caching_control *
310 get_caching_control(struct btrfs_block_group_cache *cache)
312 struct btrfs_caching_control *ctl;
314 spin_lock(&cache->lock);
315 if (cache->cached != BTRFS_CACHE_STARTED) {
316 spin_unlock(&cache->lock);
317 return NULL;
320 /* We're loading it the fast way, so we don't have a caching_ctl. */
321 if (!cache->caching_ctl) {
322 spin_unlock(&cache->lock);
323 return NULL;
326 ctl = cache->caching_ctl;
327 atomic_inc(&ctl->count);
328 spin_unlock(&cache->lock);
329 return ctl;
332 static void put_caching_control(struct btrfs_caching_control *ctl)
334 if (atomic_dec_and_test(&ctl->count))
335 kfree(ctl);
339 * this is only called by cache_block_group, since we could have freed extents
340 * we need to check the pinned_extents for any extents that can't be used yet
341 * since their free space will be released as soon as the transaction commits.
343 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
344 struct btrfs_fs_info *info, u64 start, u64 end)
346 u64 extent_start, extent_end, size, total_added = 0;
347 int ret;
349 while (start < end) {
350 ret = find_first_extent_bit(info->pinned_extents, start,
351 &extent_start, &extent_end,
352 EXTENT_DIRTY | EXTENT_UPTODATE,
353 NULL);
354 if (ret)
355 break;
357 if (extent_start <= start) {
358 start = extent_end + 1;
359 } else if (extent_start > start && extent_start < end) {
360 size = extent_start - start;
361 total_added += size;
362 ret = btrfs_add_free_space(block_group, start,
363 size);
364 BUG_ON(ret); /* -ENOMEM or logic error */
365 start = extent_end + 1;
366 } else {
367 break;
371 if (start < end) {
372 size = end - start;
373 total_added += size;
374 ret = btrfs_add_free_space(block_group, start, size);
375 BUG_ON(ret); /* -ENOMEM or logic error */
378 return total_added;
381 static noinline void caching_thread(struct btrfs_work *work)
383 struct btrfs_block_group_cache *block_group;
384 struct btrfs_fs_info *fs_info;
385 struct btrfs_caching_control *caching_ctl;
386 struct btrfs_root *extent_root;
387 struct btrfs_path *path;
388 struct extent_buffer *leaf;
389 struct btrfs_key key;
390 u64 total_found = 0;
391 u64 last = 0;
392 u32 nritems;
393 int ret = -ENOMEM;
395 caching_ctl = container_of(work, struct btrfs_caching_control, work);
396 block_group = caching_ctl->block_group;
397 fs_info = block_group->fs_info;
398 extent_root = fs_info->extent_root;
400 path = btrfs_alloc_path();
401 if (!path)
402 goto out;
404 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
407 * We don't want to deadlock with somebody trying to allocate a new
408 * extent for the extent root while also trying to search the extent
409 * root to add free space. So we skip locking and search the commit
410 * root, since its read-only
412 path->skip_locking = 1;
413 path->search_commit_root = 1;
414 path->reada = 1;
416 key.objectid = last;
417 key.offset = 0;
418 key.type = BTRFS_EXTENT_ITEM_KEY;
419 again:
420 mutex_lock(&caching_ctl->mutex);
421 /* need to make sure the commit_root doesn't disappear */
422 down_read(&fs_info->commit_root_sem);
424 next:
425 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
426 if (ret < 0)
427 goto err;
429 leaf = path->nodes[0];
430 nritems = btrfs_header_nritems(leaf);
432 while (1) {
433 if (btrfs_fs_closing(fs_info) > 1) {
434 last = (u64)-1;
435 break;
438 if (path->slots[0] < nritems) {
439 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
440 } else {
441 ret = find_next_key(path, 0, &key);
442 if (ret)
443 break;
445 if (need_resched() ||
446 rwsem_is_contended(&fs_info->commit_root_sem)) {
447 caching_ctl->progress = last;
448 btrfs_release_path(path);
449 up_read(&fs_info->commit_root_sem);
450 mutex_unlock(&caching_ctl->mutex);
451 cond_resched();
452 goto again;
455 ret = btrfs_next_leaf(extent_root, path);
456 if (ret < 0)
457 goto err;
458 if (ret)
459 break;
460 leaf = path->nodes[0];
461 nritems = btrfs_header_nritems(leaf);
462 continue;
465 if (key.objectid < last) {
466 key.objectid = last;
467 key.offset = 0;
468 key.type = BTRFS_EXTENT_ITEM_KEY;
470 caching_ctl->progress = last;
471 btrfs_release_path(path);
472 goto next;
475 if (key.objectid < block_group->key.objectid) {
476 path->slots[0]++;
477 continue;
480 if (key.objectid >= block_group->key.objectid +
481 block_group->key.offset)
482 break;
484 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
485 key.type == BTRFS_METADATA_ITEM_KEY) {
486 total_found += add_new_free_space(block_group,
487 fs_info, last,
488 key.objectid);
489 if (key.type == BTRFS_METADATA_ITEM_KEY)
490 last = key.objectid +
491 fs_info->tree_root->leafsize;
492 else
493 last = key.objectid + key.offset;
495 if (total_found > (1024 * 1024 * 2)) {
496 total_found = 0;
497 wake_up(&caching_ctl->wait);
500 path->slots[0]++;
502 ret = 0;
504 total_found += add_new_free_space(block_group, fs_info, last,
505 block_group->key.objectid +
506 block_group->key.offset);
507 caching_ctl->progress = (u64)-1;
509 spin_lock(&block_group->lock);
510 block_group->caching_ctl = NULL;
511 block_group->cached = BTRFS_CACHE_FINISHED;
512 spin_unlock(&block_group->lock);
514 err:
515 btrfs_free_path(path);
516 up_read(&fs_info->commit_root_sem);
518 free_excluded_extents(extent_root, block_group);
520 mutex_unlock(&caching_ctl->mutex);
521 out:
522 if (ret) {
523 spin_lock(&block_group->lock);
524 block_group->caching_ctl = NULL;
525 block_group->cached = BTRFS_CACHE_ERROR;
526 spin_unlock(&block_group->lock);
528 wake_up(&caching_ctl->wait);
530 put_caching_control(caching_ctl);
531 btrfs_put_block_group(block_group);
534 static int cache_block_group(struct btrfs_block_group_cache *cache,
535 int load_cache_only)
537 DEFINE_WAIT(wait);
538 struct btrfs_fs_info *fs_info = cache->fs_info;
539 struct btrfs_caching_control *caching_ctl;
540 int ret = 0;
542 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
543 if (!caching_ctl)
544 return -ENOMEM;
546 INIT_LIST_HEAD(&caching_ctl->list);
547 mutex_init(&caching_ctl->mutex);
548 init_waitqueue_head(&caching_ctl->wait);
549 caching_ctl->block_group = cache;
550 caching_ctl->progress = cache->key.objectid;
551 atomic_set(&caching_ctl->count, 1);
552 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
554 spin_lock(&cache->lock);
556 * This should be a rare occasion, but this could happen I think in the
557 * case where one thread starts to load the space cache info, and then
558 * some other thread starts a transaction commit which tries to do an
559 * allocation while the other thread is still loading the space cache
560 * info. The previous loop should have kept us from choosing this block
561 * group, but if we've moved to the state where we will wait on caching
562 * block groups we need to first check if we're doing a fast load here,
563 * so we can wait for it to finish, otherwise we could end up allocating
564 * from a block group who's cache gets evicted for one reason or
565 * another.
567 while (cache->cached == BTRFS_CACHE_FAST) {
568 struct btrfs_caching_control *ctl;
570 ctl = cache->caching_ctl;
571 atomic_inc(&ctl->count);
572 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
573 spin_unlock(&cache->lock);
575 schedule();
577 finish_wait(&ctl->wait, &wait);
578 put_caching_control(ctl);
579 spin_lock(&cache->lock);
582 if (cache->cached != BTRFS_CACHE_NO) {
583 spin_unlock(&cache->lock);
584 kfree(caching_ctl);
585 return 0;
587 WARN_ON(cache->caching_ctl);
588 cache->caching_ctl = caching_ctl;
589 cache->cached = BTRFS_CACHE_FAST;
590 spin_unlock(&cache->lock);
592 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
593 ret = load_free_space_cache(fs_info, cache);
595 spin_lock(&cache->lock);
596 if (ret == 1) {
597 cache->caching_ctl = NULL;
598 cache->cached = BTRFS_CACHE_FINISHED;
599 cache->last_byte_to_unpin = (u64)-1;
600 } else {
601 if (load_cache_only) {
602 cache->caching_ctl = NULL;
603 cache->cached = BTRFS_CACHE_NO;
604 } else {
605 cache->cached = BTRFS_CACHE_STARTED;
608 spin_unlock(&cache->lock);
609 wake_up(&caching_ctl->wait);
610 if (ret == 1) {
611 put_caching_control(caching_ctl);
612 free_excluded_extents(fs_info->extent_root, cache);
613 return 0;
615 } else {
617 * We are not going to do the fast caching, set cached to the
618 * appropriate value and wakeup any waiters.
620 spin_lock(&cache->lock);
621 if (load_cache_only) {
622 cache->caching_ctl = NULL;
623 cache->cached = BTRFS_CACHE_NO;
624 } else {
625 cache->cached = BTRFS_CACHE_STARTED;
627 spin_unlock(&cache->lock);
628 wake_up(&caching_ctl->wait);
631 if (load_cache_only) {
632 put_caching_control(caching_ctl);
633 return 0;
636 down_write(&fs_info->commit_root_sem);
637 atomic_inc(&caching_ctl->count);
638 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
639 up_write(&fs_info->commit_root_sem);
641 btrfs_get_block_group(cache);
643 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
645 return ret;
649 * return the block group that starts at or after bytenr
651 static struct btrfs_block_group_cache *
652 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
654 struct btrfs_block_group_cache *cache;
656 cache = block_group_cache_tree_search(info, bytenr, 0);
658 return cache;
662 * return the block group that contains the given bytenr
664 struct btrfs_block_group_cache *btrfs_lookup_block_group(
665 struct btrfs_fs_info *info,
666 u64 bytenr)
668 struct btrfs_block_group_cache *cache;
670 cache = block_group_cache_tree_search(info, bytenr, 1);
672 return cache;
675 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
676 u64 flags)
678 struct list_head *head = &info->space_info;
679 struct btrfs_space_info *found;
681 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
683 rcu_read_lock();
684 list_for_each_entry_rcu(found, head, list) {
685 if (found->flags & flags) {
686 rcu_read_unlock();
687 return found;
690 rcu_read_unlock();
691 return NULL;
695 * after adding space to the filesystem, we need to clear the full flags
696 * on all the space infos.
698 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
700 struct list_head *head = &info->space_info;
701 struct btrfs_space_info *found;
703 rcu_read_lock();
704 list_for_each_entry_rcu(found, head, list)
705 found->full = 0;
706 rcu_read_unlock();
709 /* simple helper to search for an existing extent at a given offset */
710 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
712 int ret;
713 struct btrfs_key key;
714 struct btrfs_path *path;
716 path = btrfs_alloc_path();
717 if (!path)
718 return -ENOMEM;
720 key.objectid = start;
721 key.offset = len;
722 key.type = BTRFS_EXTENT_ITEM_KEY;
723 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
724 0, 0);
725 if (ret > 0) {
726 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
727 if (key.objectid == start &&
728 key.type == BTRFS_METADATA_ITEM_KEY)
729 ret = 0;
731 btrfs_free_path(path);
732 return ret;
736 * helper function to lookup reference count and flags of a tree block.
738 * the head node for delayed ref is used to store the sum of all the
739 * reference count modifications queued up in the rbtree. the head
740 * node may also store the extent flags to set. This way you can check
741 * to see what the reference count and extent flags would be if all of
742 * the delayed refs are not processed.
744 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
745 struct btrfs_root *root, u64 bytenr,
746 u64 offset, int metadata, u64 *refs, u64 *flags)
748 struct btrfs_delayed_ref_head *head;
749 struct btrfs_delayed_ref_root *delayed_refs;
750 struct btrfs_path *path;
751 struct btrfs_extent_item *ei;
752 struct extent_buffer *leaf;
753 struct btrfs_key key;
754 u32 item_size;
755 u64 num_refs;
756 u64 extent_flags;
757 int ret;
760 * If we don't have skinny metadata, don't bother doing anything
761 * different
763 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
764 offset = root->leafsize;
765 metadata = 0;
768 path = btrfs_alloc_path();
769 if (!path)
770 return -ENOMEM;
772 if (!trans) {
773 path->skip_locking = 1;
774 path->search_commit_root = 1;
777 search_again:
778 key.objectid = bytenr;
779 key.offset = offset;
780 if (metadata)
781 key.type = BTRFS_METADATA_ITEM_KEY;
782 else
783 key.type = BTRFS_EXTENT_ITEM_KEY;
785 again:
786 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
787 &key, path, 0, 0);
788 if (ret < 0)
789 goto out_free;
791 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
792 if (path->slots[0]) {
793 path->slots[0]--;
794 btrfs_item_key_to_cpu(path->nodes[0], &key,
795 path->slots[0]);
796 if (key.objectid == bytenr &&
797 key.type == BTRFS_EXTENT_ITEM_KEY &&
798 key.offset == root->leafsize)
799 ret = 0;
801 if (ret) {
802 key.objectid = bytenr;
803 key.type = BTRFS_EXTENT_ITEM_KEY;
804 key.offset = root->leafsize;
805 btrfs_release_path(path);
806 goto again;
810 if (ret == 0) {
811 leaf = path->nodes[0];
812 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
813 if (item_size >= sizeof(*ei)) {
814 ei = btrfs_item_ptr(leaf, path->slots[0],
815 struct btrfs_extent_item);
816 num_refs = btrfs_extent_refs(leaf, ei);
817 extent_flags = btrfs_extent_flags(leaf, ei);
818 } else {
819 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
820 struct btrfs_extent_item_v0 *ei0;
821 BUG_ON(item_size != sizeof(*ei0));
822 ei0 = btrfs_item_ptr(leaf, path->slots[0],
823 struct btrfs_extent_item_v0);
824 num_refs = btrfs_extent_refs_v0(leaf, ei0);
825 /* FIXME: this isn't correct for data */
826 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
827 #else
828 BUG();
829 #endif
831 BUG_ON(num_refs == 0);
832 } else {
833 num_refs = 0;
834 extent_flags = 0;
835 ret = 0;
838 if (!trans)
839 goto out;
841 delayed_refs = &trans->transaction->delayed_refs;
842 spin_lock(&delayed_refs->lock);
843 head = btrfs_find_delayed_ref_head(trans, bytenr);
844 if (head) {
845 if (!mutex_trylock(&head->mutex)) {
846 atomic_inc(&head->node.refs);
847 spin_unlock(&delayed_refs->lock);
849 btrfs_release_path(path);
852 * Mutex was contended, block until it's released and try
853 * again
855 mutex_lock(&head->mutex);
856 mutex_unlock(&head->mutex);
857 btrfs_put_delayed_ref(&head->node);
858 goto search_again;
860 spin_lock(&head->lock);
861 if (head->extent_op && head->extent_op->update_flags)
862 extent_flags |= head->extent_op->flags_to_set;
863 else
864 BUG_ON(num_refs == 0);
866 num_refs += head->node.ref_mod;
867 spin_unlock(&head->lock);
868 mutex_unlock(&head->mutex);
870 spin_unlock(&delayed_refs->lock);
871 out:
872 WARN_ON(num_refs == 0);
873 if (refs)
874 *refs = num_refs;
875 if (flags)
876 *flags = extent_flags;
877 out_free:
878 btrfs_free_path(path);
879 return ret;
883 * Back reference rules. Back refs have three main goals:
885 * 1) differentiate between all holders of references to an extent so that
886 * when a reference is dropped we can make sure it was a valid reference
887 * before freeing the extent.
889 * 2) Provide enough information to quickly find the holders of an extent
890 * if we notice a given block is corrupted or bad.
892 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
893 * maintenance. This is actually the same as #2, but with a slightly
894 * different use case.
896 * There are two kinds of back refs. The implicit back refs is optimized
897 * for pointers in non-shared tree blocks. For a given pointer in a block,
898 * back refs of this kind provide information about the block's owner tree
899 * and the pointer's key. These information allow us to find the block by
900 * b-tree searching. The full back refs is for pointers in tree blocks not
901 * referenced by their owner trees. The location of tree block is recorded
902 * in the back refs. Actually the full back refs is generic, and can be
903 * used in all cases the implicit back refs is used. The major shortcoming
904 * of the full back refs is its overhead. Every time a tree block gets
905 * COWed, we have to update back refs entry for all pointers in it.
907 * For a newly allocated tree block, we use implicit back refs for
908 * pointers in it. This means most tree related operations only involve
909 * implicit back refs. For a tree block created in old transaction, the
910 * only way to drop a reference to it is COW it. So we can detect the
911 * event that tree block loses its owner tree's reference and do the
912 * back refs conversion.
914 * When a tree block is COW'd through a tree, there are four cases:
916 * The reference count of the block is one and the tree is the block's
917 * owner tree. Nothing to do in this case.
919 * The reference count of the block is one and the tree is not the
920 * block's owner tree. In this case, full back refs is used for pointers
921 * in the block. Remove these full back refs, add implicit back refs for
922 * every pointers in the new block.
924 * The reference count of the block is greater than one and the tree is
925 * the block's owner tree. In this case, implicit back refs is used for
926 * pointers in the block. Add full back refs for every pointers in the
927 * block, increase lower level extents' reference counts. The original
928 * implicit back refs are entailed to the new block.
930 * The reference count of the block is greater than one and the tree is
931 * not the block's owner tree. Add implicit back refs for every pointer in
932 * the new block, increase lower level extents' reference count.
934 * Back Reference Key composing:
936 * The key objectid corresponds to the first byte in the extent,
937 * The key type is used to differentiate between types of back refs.
938 * There are different meanings of the key offset for different types
939 * of back refs.
941 * File extents can be referenced by:
943 * - multiple snapshots, subvolumes, or different generations in one subvol
944 * - different files inside a single subvolume
945 * - different offsets inside a file (bookend extents in file.c)
947 * The extent ref structure for the implicit back refs has fields for:
949 * - Objectid of the subvolume root
950 * - objectid of the file holding the reference
951 * - original offset in the file
952 * - how many bookend extents
954 * The key offset for the implicit back refs is hash of the first
955 * three fields.
957 * The extent ref structure for the full back refs has field for:
959 * - number of pointers in the tree leaf
961 * The key offset for the implicit back refs is the first byte of
962 * the tree leaf
964 * When a file extent is allocated, The implicit back refs is used.
965 * the fields are filled in:
967 * (root_key.objectid, inode objectid, offset in file, 1)
969 * When a file extent is removed file truncation, we find the
970 * corresponding implicit back refs and check the following fields:
972 * (btrfs_header_owner(leaf), inode objectid, offset in file)
974 * Btree extents can be referenced by:
976 * - Different subvolumes
978 * Both the implicit back refs and the full back refs for tree blocks
979 * only consist of key. The key offset for the implicit back refs is
980 * objectid of block's owner tree. The key offset for the full back refs
981 * is the first byte of parent block.
983 * When implicit back refs is used, information about the lowest key and
984 * level of the tree block are required. These information are stored in
985 * tree block info structure.
988 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
989 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
990 struct btrfs_root *root,
991 struct btrfs_path *path,
992 u64 owner, u32 extra_size)
994 struct btrfs_extent_item *item;
995 struct btrfs_extent_item_v0 *ei0;
996 struct btrfs_extent_ref_v0 *ref0;
997 struct btrfs_tree_block_info *bi;
998 struct extent_buffer *leaf;
999 struct btrfs_key key;
1000 struct btrfs_key found_key;
1001 u32 new_size = sizeof(*item);
1002 u64 refs;
1003 int ret;
1005 leaf = path->nodes[0];
1006 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1009 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1010 struct btrfs_extent_item_v0);
1011 refs = btrfs_extent_refs_v0(leaf, ei0);
1013 if (owner == (u64)-1) {
1014 while (1) {
1015 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1016 ret = btrfs_next_leaf(root, path);
1017 if (ret < 0)
1018 return ret;
1019 BUG_ON(ret > 0); /* Corruption */
1020 leaf = path->nodes[0];
1022 btrfs_item_key_to_cpu(leaf, &found_key,
1023 path->slots[0]);
1024 BUG_ON(key.objectid != found_key.objectid);
1025 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1026 path->slots[0]++;
1027 continue;
1029 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1030 struct btrfs_extent_ref_v0);
1031 owner = btrfs_ref_objectid_v0(leaf, ref0);
1032 break;
1035 btrfs_release_path(path);
1037 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1038 new_size += sizeof(*bi);
1040 new_size -= sizeof(*ei0);
1041 ret = btrfs_search_slot(trans, root, &key, path,
1042 new_size + extra_size, 1);
1043 if (ret < 0)
1044 return ret;
1045 BUG_ON(ret); /* Corruption */
1047 btrfs_extend_item(root, path, new_size);
1049 leaf = path->nodes[0];
1050 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1051 btrfs_set_extent_refs(leaf, item, refs);
1052 /* FIXME: get real generation */
1053 btrfs_set_extent_generation(leaf, item, 0);
1054 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1055 btrfs_set_extent_flags(leaf, item,
1056 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1057 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1058 bi = (struct btrfs_tree_block_info *)(item + 1);
1059 /* FIXME: get first key of the block */
1060 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1061 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1062 } else {
1063 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1065 btrfs_mark_buffer_dirty(leaf);
1066 return 0;
1068 #endif
1070 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1072 u32 high_crc = ~(u32)0;
1073 u32 low_crc = ~(u32)0;
1074 __le64 lenum;
1076 lenum = cpu_to_le64(root_objectid);
1077 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1078 lenum = cpu_to_le64(owner);
1079 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1080 lenum = cpu_to_le64(offset);
1081 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1083 return ((u64)high_crc << 31) ^ (u64)low_crc;
1086 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1087 struct btrfs_extent_data_ref *ref)
1089 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1090 btrfs_extent_data_ref_objectid(leaf, ref),
1091 btrfs_extent_data_ref_offset(leaf, ref));
1094 static int match_extent_data_ref(struct extent_buffer *leaf,
1095 struct btrfs_extent_data_ref *ref,
1096 u64 root_objectid, u64 owner, u64 offset)
1098 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1099 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1100 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1101 return 0;
1102 return 1;
1105 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1106 struct btrfs_root *root,
1107 struct btrfs_path *path,
1108 u64 bytenr, u64 parent,
1109 u64 root_objectid,
1110 u64 owner, u64 offset)
1112 struct btrfs_key key;
1113 struct btrfs_extent_data_ref *ref;
1114 struct extent_buffer *leaf;
1115 u32 nritems;
1116 int ret;
1117 int recow;
1118 int err = -ENOENT;
1120 key.objectid = bytenr;
1121 if (parent) {
1122 key.type = BTRFS_SHARED_DATA_REF_KEY;
1123 key.offset = parent;
1124 } else {
1125 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1126 key.offset = hash_extent_data_ref(root_objectid,
1127 owner, offset);
1129 again:
1130 recow = 0;
1131 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1132 if (ret < 0) {
1133 err = ret;
1134 goto fail;
1137 if (parent) {
1138 if (!ret)
1139 return 0;
1140 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1141 key.type = BTRFS_EXTENT_REF_V0_KEY;
1142 btrfs_release_path(path);
1143 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1144 if (ret < 0) {
1145 err = ret;
1146 goto fail;
1148 if (!ret)
1149 return 0;
1150 #endif
1151 goto fail;
1154 leaf = path->nodes[0];
1155 nritems = btrfs_header_nritems(leaf);
1156 while (1) {
1157 if (path->slots[0] >= nritems) {
1158 ret = btrfs_next_leaf(root, path);
1159 if (ret < 0)
1160 err = ret;
1161 if (ret)
1162 goto fail;
1164 leaf = path->nodes[0];
1165 nritems = btrfs_header_nritems(leaf);
1166 recow = 1;
1169 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1170 if (key.objectid != bytenr ||
1171 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1172 goto fail;
1174 ref = btrfs_item_ptr(leaf, path->slots[0],
1175 struct btrfs_extent_data_ref);
1177 if (match_extent_data_ref(leaf, ref, root_objectid,
1178 owner, offset)) {
1179 if (recow) {
1180 btrfs_release_path(path);
1181 goto again;
1183 err = 0;
1184 break;
1186 path->slots[0]++;
1188 fail:
1189 return err;
1192 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1193 struct btrfs_root *root,
1194 struct btrfs_path *path,
1195 u64 bytenr, u64 parent,
1196 u64 root_objectid, u64 owner,
1197 u64 offset, int refs_to_add)
1199 struct btrfs_key key;
1200 struct extent_buffer *leaf;
1201 u32 size;
1202 u32 num_refs;
1203 int ret;
1205 key.objectid = bytenr;
1206 if (parent) {
1207 key.type = BTRFS_SHARED_DATA_REF_KEY;
1208 key.offset = parent;
1209 size = sizeof(struct btrfs_shared_data_ref);
1210 } else {
1211 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1212 key.offset = hash_extent_data_ref(root_objectid,
1213 owner, offset);
1214 size = sizeof(struct btrfs_extent_data_ref);
1217 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1218 if (ret && ret != -EEXIST)
1219 goto fail;
1221 leaf = path->nodes[0];
1222 if (parent) {
1223 struct btrfs_shared_data_ref *ref;
1224 ref = btrfs_item_ptr(leaf, path->slots[0],
1225 struct btrfs_shared_data_ref);
1226 if (ret == 0) {
1227 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1228 } else {
1229 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1230 num_refs += refs_to_add;
1231 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1233 } else {
1234 struct btrfs_extent_data_ref *ref;
1235 while (ret == -EEXIST) {
1236 ref = btrfs_item_ptr(leaf, path->slots[0],
1237 struct btrfs_extent_data_ref);
1238 if (match_extent_data_ref(leaf, ref, root_objectid,
1239 owner, offset))
1240 break;
1241 btrfs_release_path(path);
1242 key.offset++;
1243 ret = btrfs_insert_empty_item(trans, root, path, &key,
1244 size);
1245 if (ret && ret != -EEXIST)
1246 goto fail;
1248 leaf = path->nodes[0];
1250 ref = btrfs_item_ptr(leaf, path->slots[0],
1251 struct btrfs_extent_data_ref);
1252 if (ret == 0) {
1253 btrfs_set_extent_data_ref_root(leaf, ref,
1254 root_objectid);
1255 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1256 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1257 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1258 } else {
1259 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1260 num_refs += refs_to_add;
1261 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1264 btrfs_mark_buffer_dirty(leaf);
1265 ret = 0;
1266 fail:
1267 btrfs_release_path(path);
1268 return ret;
1271 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1272 struct btrfs_root *root,
1273 struct btrfs_path *path,
1274 int refs_to_drop)
1276 struct btrfs_key key;
1277 struct btrfs_extent_data_ref *ref1 = NULL;
1278 struct btrfs_shared_data_ref *ref2 = NULL;
1279 struct extent_buffer *leaf;
1280 u32 num_refs = 0;
1281 int ret = 0;
1283 leaf = path->nodes[0];
1284 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1286 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1287 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_extent_data_ref);
1289 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1290 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1291 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1292 struct btrfs_shared_data_ref);
1293 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1294 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1295 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1296 struct btrfs_extent_ref_v0 *ref0;
1297 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1298 struct btrfs_extent_ref_v0);
1299 num_refs = btrfs_ref_count_v0(leaf, ref0);
1300 #endif
1301 } else {
1302 BUG();
1305 BUG_ON(num_refs < refs_to_drop);
1306 num_refs -= refs_to_drop;
1308 if (num_refs == 0) {
1309 ret = btrfs_del_item(trans, root, path);
1310 } else {
1311 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1312 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1313 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1314 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1315 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1316 else {
1317 struct btrfs_extent_ref_v0 *ref0;
1318 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1319 struct btrfs_extent_ref_v0);
1320 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1322 #endif
1323 btrfs_mark_buffer_dirty(leaf);
1325 return ret;
1328 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1329 struct btrfs_path *path,
1330 struct btrfs_extent_inline_ref *iref)
1332 struct btrfs_key key;
1333 struct extent_buffer *leaf;
1334 struct btrfs_extent_data_ref *ref1;
1335 struct btrfs_shared_data_ref *ref2;
1336 u32 num_refs = 0;
1338 leaf = path->nodes[0];
1339 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1340 if (iref) {
1341 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1342 BTRFS_EXTENT_DATA_REF_KEY) {
1343 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 } else {
1346 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1347 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1349 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1350 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1351 struct btrfs_extent_data_ref);
1352 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1353 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1354 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1355 struct btrfs_shared_data_ref);
1356 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1358 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1359 struct btrfs_extent_ref_v0 *ref0;
1360 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1361 struct btrfs_extent_ref_v0);
1362 num_refs = btrfs_ref_count_v0(leaf, ref0);
1363 #endif
1364 } else {
1365 WARN_ON(1);
1367 return num_refs;
1370 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1371 struct btrfs_root *root,
1372 struct btrfs_path *path,
1373 u64 bytenr, u64 parent,
1374 u64 root_objectid)
1376 struct btrfs_key key;
1377 int ret;
1379 key.objectid = bytenr;
1380 if (parent) {
1381 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1382 key.offset = parent;
1383 } else {
1384 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1385 key.offset = root_objectid;
1388 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1389 if (ret > 0)
1390 ret = -ENOENT;
1391 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1392 if (ret == -ENOENT && parent) {
1393 btrfs_release_path(path);
1394 key.type = BTRFS_EXTENT_REF_V0_KEY;
1395 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1396 if (ret > 0)
1397 ret = -ENOENT;
1399 #endif
1400 return ret;
1403 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1404 struct btrfs_root *root,
1405 struct btrfs_path *path,
1406 u64 bytenr, u64 parent,
1407 u64 root_objectid)
1409 struct btrfs_key key;
1410 int ret;
1412 key.objectid = bytenr;
1413 if (parent) {
1414 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1415 key.offset = parent;
1416 } else {
1417 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1418 key.offset = root_objectid;
1421 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1422 btrfs_release_path(path);
1423 return ret;
1426 static inline int extent_ref_type(u64 parent, u64 owner)
1428 int type;
1429 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1430 if (parent > 0)
1431 type = BTRFS_SHARED_BLOCK_REF_KEY;
1432 else
1433 type = BTRFS_TREE_BLOCK_REF_KEY;
1434 } else {
1435 if (parent > 0)
1436 type = BTRFS_SHARED_DATA_REF_KEY;
1437 else
1438 type = BTRFS_EXTENT_DATA_REF_KEY;
1440 return type;
1443 static int find_next_key(struct btrfs_path *path, int level,
1444 struct btrfs_key *key)
1447 for (; level < BTRFS_MAX_LEVEL; level++) {
1448 if (!path->nodes[level])
1449 break;
1450 if (path->slots[level] + 1 >=
1451 btrfs_header_nritems(path->nodes[level]))
1452 continue;
1453 if (level == 0)
1454 btrfs_item_key_to_cpu(path->nodes[level], key,
1455 path->slots[level] + 1);
1456 else
1457 btrfs_node_key_to_cpu(path->nodes[level], key,
1458 path->slots[level] + 1);
1459 return 0;
1461 return 1;
1465 * look for inline back ref. if back ref is found, *ref_ret is set
1466 * to the address of inline back ref, and 0 is returned.
1468 * if back ref isn't found, *ref_ret is set to the address where it
1469 * should be inserted, and -ENOENT is returned.
1471 * if insert is true and there are too many inline back refs, the path
1472 * points to the extent item, and -EAGAIN is returned.
1474 * NOTE: inline back refs are ordered in the same way that back ref
1475 * items in the tree are ordered.
1477 static noinline_for_stack
1478 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1479 struct btrfs_root *root,
1480 struct btrfs_path *path,
1481 struct btrfs_extent_inline_ref **ref_ret,
1482 u64 bytenr, u64 num_bytes,
1483 u64 parent, u64 root_objectid,
1484 u64 owner, u64 offset, int insert)
1486 struct btrfs_key key;
1487 struct extent_buffer *leaf;
1488 struct btrfs_extent_item *ei;
1489 struct btrfs_extent_inline_ref *iref;
1490 u64 flags;
1491 u64 item_size;
1492 unsigned long ptr;
1493 unsigned long end;
1494 int extra_size;
1495 int type;
1496 int want;
1497 int ret;
1498 int err = 0;
1499 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1500 SKINNY_METADATA);
1502 key.objectid = bytenr;
1503 key.type = BTRFS_EXTENT_ITEM_KEY;
1504 key.offset = num_bytes;
1506 want = extent_ref_type(parent, owner);
1507 if (insert) {
1508 extra_size = btrfs_extent_inline_ref_size(want);
1509 path->keep_locks = 1;
1510 } else
1511 extra_size = -1;
1514 * Owner is our parent level, so we can just add one to get the level
1515 * for the block we are interested in.
1517 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1518 key.type = BTRFS_METADATA_ITEM_KEY;
1519 key.offset = owner;
1522 again:
1523 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1524 if (ret < 0) {
1525 err = ret;
1526 goto out;
1530 * We may be a newly converted file system which still has the old fat
1531 * extent entries for metadata, so try and see if we have one of those.
1533 if (ret > 0 && skinny_metadata) {
1534 skinny_metadata = false;
1535 if (path->slots[0]) {
1536 path->slots[0]--;
1537 btrfs_item_key_to_cpu(path->nodes[0], &key,
1538 path->slots[0]);
1539 if (key.objectid == bytenr &&
1540 key.type == BTRFS_EXTENT_ITEM_KEY &&
1541 key.offset == num_bytes)
1542 ret = 0;
1544 if (ret) {
1545 key.objectid = bytenr;
1546 key.type = BTRFS_EXTENT_ITEM_KEY;
1547 key.offset = num_bytes;
1548 btrfs_release_path(path);
1549 goto again;
1553 if (ret && !insert) {
1554 err = -ENOENT;
1555 goto out;
1556 } else if (WARN_ON(ret)) {
1557 err = -EIO;
1558 goto out;
1561 leaf = path->nodes[0];
1562 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1563 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1564 if (item_size < sizeof(*ei)) {
1565 if (!insert) {
1566 err = -ENOENT;
1567 goto out;
1569 ret = convert_extent_item_v0(trans, root, path, owner,
1570 extra_size);
1571 if (ret < 0) {
1572 err = ret;
1573 goto out;
1575 leaf = path->nodes[0];
1576 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1578 #endif
1579 BUG_ON(item_size < sizeof(*ei));
1581 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1582 flags = btrfs_extent_flags(leaf, ei);
1584 ptr = (unsigned long)(ei + 1);
1585 end = (unsigned long)ei + item_size;
1587 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1588 ptr += sizeof(struct btrfs_tree_block_info);
1589 BUG_ON(ptr > end);
1592 err = -ENOENT;
1593 while (1) {
1594 if (ptr >= end) {
1595 WARN_ON(ptr > end);
1596 break;
1598 iref = (struct btrfs_extent_inline_ref *)ptr;
1599 type = btrfs_extent_inline_ref_type(leaf, iref);
1600 if (want < type)
1601 break;
1602 if (want > type) {
1603 ptr += btrfs_extent_inline_ref_size(type);
1604 continue;
1607 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1608 struct btrfs_extent_data_ref *dref;
1609 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1610 if (match_extent_data_ref(leaf, dref, root_objectid,
1611 owner, offset)) {
1612 err = 0;
1613 break;
1615 if (hash_extent_data_ref_item(leaf, dref) <
1616 hash_extent_data_ref(root_objectid, owner, offset))
1617 break;
1618 } else {
1619 u64 ref_offset;
1620 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1621 if (parent > 0) {
1622 if (parent == ref_offset) {
1623 err = 0;
1624 break;
1626 if (ref_offset < parent)
1627 break;
1628 } else {
1629 if (root_objectid == ref_offset) {
1630 err = 0;
1631 break;
1633 if (ref_offset < root_objectid)
1634 break;
1637 ptr += btrfs_extent_inline_ref_size(type);
1639 if (err == -ENOENT && insert) {
1640 if (item_size + extra_size >=
1641 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1642 err = -EAGAIN;
1643 goto out;
1646 * To add new inline back ref, we have to make sure
1647 * there is no corresponding back ref item.
1648 * For simplicity, we just do not add new inline back
1649 * ref if there is any kind of item for this block
1651 if (find_next_key(path, 0, &key) == 0 &&
1652 key.objectid == bytenr &&
1653 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1654 err = -EAGAIN;
1655 goto out;
1658 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1659 out:
1660 if (insert) {
1661 path->keep_locks = 0;
1662 btrfs_unlock_up_safe(path, 1);
1664 return err;
1668 * helper to add new inline back ref
1670 static noinline_for_stack
1671 void setup_inline_extent_backref(struct btrfs_root *root,
1672 struct btrfs_path *path,
1673 struct btrfs_extent_inline_ref *iref,
1674 u64 parent, u64 root_objectid,
1675 u64 owner, u64 offset, int refs_to_add,
1676 struct btrfs_delayed_extent_op *extent_op)
1678 struct extent_buffer *leaf;
1679 struct btrfs_extent_item *ei;
1680 unsigned long ptr;
1681 unsigned long end;
1682 unsigned long item_offset;
1683 u64 refs;
1684 int size;
1685 int type;
1687 leaf = path->nodes[0];
1688 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 item_offset = (unsigned long)iref - (unsigned long)ei;
1691 type = extent_ref_type(parent, owner);
1692 size = btrfs_extent_inline_ref_size(type);
1694 btrfs_extend_item(root, path, size);
1696 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1697 refs = btrfs_extent_refs(leaf, ei);
1698 refs += refs_to_add;
1699 btrfs_set_extent_refs(leaf, ei, refs);
1700 if (extent_op)
1701 __run_delayed_extent_op(extent_op, leaf, ei);
1703 ptr = (unsigned long)ei + item_offset;
1704 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1705 if (ptr < end - size)
1706 memmove_extent_buffer(leaf, ptr + size, ptr,
1707 end - size - ptr);
1709 iref = (struct btrfs_extent_inline_ref *)ptr;
1710 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1711 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1712 struct btrfs_extent_data_ref *dref;
1713 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1714 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1715 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1716 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1717 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1718 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1719 struct btrfs_shared_data_ref *sref;
1720 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1721 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1722 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1723 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1724 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1725 } else {
1726 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1728 btrfs_mark_buffer_dirty(leaf);
1731 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1732 struct btrfs_root *root,
1733 struct btrfs_path *path,
1734 struct btrfs_extent_inline_ref **ref_ret,
1735 u64 bytenr, u64 num_bytes, u64 parent,
1736 u64 root_objectid, u64 owner, u64 offset)
1738 int ret;
1740 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1741 bytenr, num_bytes, parent,
1742 root_objectid, owner, offset, 0);
1743 if (ret != -ENOENT)
1744 return ret;
1746 btrfs_release_path(path);
1747 *ref_ret = NULL;
1749 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1750 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1751 root_objectid);
1752 } else {
1753 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1754 root_objectid, owner, offset);
1756 return ret;
1760 * helper to update/remove inline back ref
1762 static noinline_for_stack
1763 void update_inline_extent_backref(struct btrfs_root *root,
1764 struct btrfs_path *path,
1765 struct btrfs_extent_inline_ref *iref,
1766 int refs_to_mod,
1767 struct btrfs_delayed_extent_op *extent_op)
1769 struct extent_buffer *leaf;
1770 struct btrfs_extent_item *ei;
1771 struct btrfs_extent_data_ref *dref = NULL;
1772 struct btrfs_shared_data_ref *sref = NULL;
1773 unsigned long ptr;
1774 unsigned long end;
1775 u32 item_size;
1776 int size;
1777 int type;
1778 u64 refs;
1780 leaf = path->nodes[0];
1781 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1782 refs = btrfs_extent_refs(leaf, ei);
1783 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1784 refs += refs_to_mod;
1785 btrfs_set_extent_refs(leaf, ei, refs);
1786 if (extent_op)
1787 __run_delayed_extent_op(extent_op, leaf, ei);
1789 type = btrfs_extent_inline_ref_type(leaf, iref);
1791 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1792 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1793 refs = btrfs_extent_data_ref_count(leaf, dref);
1794 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1795 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1796 refs = btrfs_shared_data_ref_count(leaf, sref);
1797 } else {
1798 refs = 1;
1799 BUG_ON(refs_to_mod != -1);
1802 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1803 refs += refs_to_mod;
1805 if (refs > 0) {
1806 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1807 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1808 else
1809 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1810 } else {
1811 size = btrfs_extent_inline_ref_size(type);
1812 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1813 ptr = (unsigned long)iref;
1814 end = (unsigned long)ei + item_size;
1815 if (ptr + size < end)
1816 memmove_extent_buffer(leaf, ptr, ptr + size,
1817 end - ptr - size);
1818 item_size -= size;
1819 btrfs_truncate_item(root, path, item_size, 1);
1821 btrfs_mark_buffer_dirty(leaf);
1824 static noinline_for_stack
1825 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1826 struct btrfs_root *root,
1827 struct btrfs_path *path,
1828 u64 bytenr, u64 num_bytes, u64 parent,
1829 u64 root_objectid, u64 owner,
1830 u64 offset, int refs_to_add,
1831 struct btrfs_delayed_extent_op *extent_op)
1833 struct btrfs_extent_inline_ref *iref;
1834 int ret;
1836 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1837 bytenr, num_bytes, parent,
1838 root_objectid, owner, offset, 1);
1839 if (ret == 0) {
1840 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1841 update_inline_extent_backref(root, path, iref,
1842 refs_to_add, extent_op);
1843 } else if (ret == -ENOENT) {
1844 setup_inline_extent_backref(root, path, iref, parent,
1845 root_objectid, owner, offset,
1846 refs_to_add, extent_op);
1847 ret = 0;
1849 return ret;
1852 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1853 struct btrfs_root *root,
1854 struct btrfs_path *path,
1855 u64 bytenr, u64 parent, u64 root_objectid,
1856 u64 owner, u64 offset, int refs_to_add)
1858 int ret;
1859 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1860 BUG_ON(refs_to_add != 1);
1861 ret = insert_tree_block_ref(trans, root, path, bytenr,
1862 parent, root_objectid);
1863 } else {
1864 ret = insert_extent_data_ref(trans, root, path, bytenr,
1865 parent, root_objectid,
1866 owner, offset, refs_to_add);
1868 return ret;
1871 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1872 struct btrfs_root *root,
1873 struct btrfs_path *path,
1874 struct btrfs_extent_inline_ref *iref,
1875 int refs_to_drop, int is_data)
1877 int ret = 0;
1879 BUG_ON(!is_data && refs_to_drop != 1);
1880 if (iref) {
1881 update_inline_extent_backref(root, path, iref,
1882 -refs_to_drop, NULL);
1883 } else if (is_data) {
1884 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1885 } else {
1886 ret = btrfs_del_item(trans, root, path);
1888 return ret;
1891 static int btrfs_issue_discard(struct block_device *bdev,
1892 u64 start, u64 len)
1894 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1897 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1898 u64 num_bytes, u64 *actual_bytes)
1900 int ret;
1901 u64 discarded_bytes = 0;
1902 struct btrfs_bio *bbio = NULL;
1905 /* Tell the block device(s) that the sectors can be discarded */
1906 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1907 bytenr, &num_bytes, &bbio, 0);
1908 /* Error condition is -ENOMEM */
1909 if (!ret) {
1910 struct btrfs_bio_stripe *stripe = bbio->stripes;
1911 int i;
1914 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1915 if (!stripe->dev->can_discard)
1916 continue;
1918 ret = btrfs_issue_discard(stripe->dev->bdev,
1919 stripe->physical,
1920 stripe->length);
1921 if (!ret)
1922 discarded_bytes += stripe->length;
1923 else if (ret != -EOPNOTSUPP)
1924 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1927 * Just in case we get back EOPNOTSUPP for some reason,
1928 * just ignore the return value so we don't screw up
1929 * people calling discard_extent.
1931 ret = 0;
1933 kfree(bbio);
1936 if (actual_bytes)
1937 *actual_bytes = discarded_bytes;
1940 if (ret == -EOPNOTSUPP)
1941 ret = 0;
1942 return ret;
1945 /* Can return -ENOMEM */
1946 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1947 struct btrfs_root *root,
1948 u64 bytenr, u64 num_bytes, u64 parent,
1949 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1951 int ret;
1952 struct btrfs_fs_info *fs_info = root->fs_info;
1954 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1955 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1957 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1958 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1959 num_bytes,
1960 parent, root_objectid, (int)owner,
1961 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1962 } else {
1963 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1964 num_bytes,
1965 parent, root_objectid, owner, offset,
1966 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1968 return ret;
1971 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1972 struct btrfs_root *root,
1973 u64 bytenr, u64 num_bytes,
1974 u64 parent, u64 root_objectid,
1975 u64 owner, u64 offset, int refs_to_add,
1976 struct btrfs_delayed_extent_op *extent_op)
1978 struct btrfs_path *path;
1979 struct extent_buffer *leaf;
1980 struct btrfs_extent_item *item;
1981 u64 refs;
1982 int ret;
1984 path = btrfs_alloc_path();
1985 if (!path)
1986 return -ENOMEM;
1988 path->reada = 1;
1989 path->leave_spinning = 1;
1990 /* this will setup the path even if it fails to insert the back ref */
1991 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1992 path, bytenr, num_bytes, parent,
1993 root_objectid, owner, offset,
1994 refs_to_add, extent_op);
1995 if (ret != -EAGAIN)
1996 goto out;
1998 leaf = path->nodes[0];
1999 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2000 refs = btrfs_extent_refs(leaf, item);
2001 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2002 if (extent_op)
2003 __run_delayed_extent_op(extent_op, leaf, item);
2005 btrfs_mark_buffer_dirty(leaf);
2006 btrfs_release_path(path);
2008 path->reada = 1;
2009 path->leave_spinning = 1;
2011 /* now insert the actual backref */
2012 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2013 path, bytenr, parent, root_objectid,
2014 owner, offset, refs_to_add);
2015 if (ret)
2016 btrfs_abort_transaction(trans, root, ret);
2017 out:
2018 btrfs_free_path(path);
2019 return ret;
2022 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2023 struct btrfs_root *root,
2024 struct btrfs_delayed_ref_node *node,
2025 struct btrfs_delayed_extent_op *extent_op,
2026 int insert_reserved)
2028 int ret = 0;
2029 struct btrfs_delayed_data_ref *ref;
2030 struct btrfs_key ins;
2031 u64 parent = 0;
2032 u64 ref_root = 0;
2033 u64 flags = 0;
2035 ins.objectid = node->bytenr;
2036 ins.offset = node->num_bytes;
2037 ins.type = BTRFS_EXTENT_ITEM_KEY;
2039 ref = btrfs_delayed_node_to_data_ref(node);
2040 trace_run_delayed_data_ref(node, ref, node->action);
2042 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2043 parent = ref->parent;
2044 else
2045 ref_root = ref->root;
2047 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2048 if (extent_op)
2049 flags |= extent_op->flags_to_set;
2050 ret = alloc_reserved_file_extent(trans, root,
2051 parent, ref_root, flags,
2052 ref->objectid, ref->offset,
2053 &ins, node->ref_mod);
2054 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2055 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2056 node->num_bytes, parent,
2057 ref_root, ref->objectid,
2058 ref->offset, node->ref_mod,
2059 extent_op);
2060 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2061 ret = __btrfs_free_extent(trans, root, node->bytenr,
2062 node->num_bytes, parent,
2063 ref_root, ref->objectid,
2064 ref->offset, node->ref_mod,
2065 extent_op);
2066 } else {
2067 BUG();
2069 return ret;
2072 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2073 struct extent_buffer *leaf,
2074 struct btrfs_extent_item *ei)
2076 u64 flags = btrfs_extent_flags(leaf, ei);
2077 if (extent_op->update_flags) {
2078 flags |= extent_op->flags_to_set;
2079 btrfs_set_extent_flags(leaf, ei, flags);
2082 if (extent_op->update_key) {
2083 struct btrfs_tree_block_info *bi;
2084 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2085 bi = (struct btrfs_tree_block_info *)(ei + 1);
2086 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2090 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2091 struct btrfs_root *root,
2092 struct btrfs_delayed_ref_node *node,
2093 struct btrfs_delayed_extent_op *extent_op)
2095 struct btrfs_key key;
2096 struct btrfs_path *path;
2097 struct btrfs_extent_item *ei;
2098 struct extent_buffer *leaf;
2099 u32 item_size;
2100 int ret;
2101 int err = 0;
2102 int metadata = !extent_op->is_data;
2104 if (trans->aborted)
2105 return 0;
2107 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2108 metadata = 0;
2110 path = btrfs_alloc_path();
2111 if (!path)
2112 return -ENOMEM;
2114 key.objectid = node->bytenr;
2116 if (metadata) {
2117 key.type = BTRFS_METADATA_ITEM_KEY;
2118 key.offset = extent_op->level;
2119 } else {
2120 key.type = BTRFS_EXTENT_ITEM_KEY;
2121 key.offset = node->num_bytes;
2124 again:
2125 path->reada = 1;
2126 path->leave_spinning = 1;
2127 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2128 path, 0, 1);
2129 if (ret < 0) {
2130 err = ret;
2131 goto out;
2133 if (ret > 0) {
2134 if (metadata) {
2135 if (path->slots[0] > 0) {
2136 path->slots[0]--;
2137 btrfs_item_key_to_cpu(path->nodes[0], &key,
2138 path->slots[0]);
2139 if (key.objectid == node->bytenr &&
2140 key.type == BTRFS_EXTENT_ITEM_KEY &&
2141 key.offset == node->num_bytes)
2142 ret = 0;
2144 if (ret > 0) {
2145 btrfs_release_path(path);
2146 metadata = 0;
2148 key.objectid = node->bytenr;
2149 key.offset = node->num_bytes;
2150 key.type = BTRFS_EXTENT_ITEM_KEY;
2151 goto again;
2153 } else {
2154 err = -EIO;
2155 goto out;
2159 leaf = path->nodes[0];
2160 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2161 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2162 if (item_size < sizeof(*ei)) {
2163 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2164 path, (u64)-1, 0);
2165 if (ret < 0) {
2166 err = ret;
2167 goto out;
2169 leaf = path->nodes[0];
2170 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2172 #endif
2173 BUG_ON(item_size < sizeof(*ei));
2174 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2175 __run_delayed_extent_op(extent_op, leaf, ei);
2177 btrfs_mark_buffer_dirty(leaf);
2178 out:
2179 btrfs_free_path(path);
2180 return err;
2183 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2184 struct btrfs_root *root,
2185 struct btrfs_delayed_ref_node *node,
2186 struct btrfs_delayed_extent_op *extent_op,
2187 int insert_reserved)
2189 int ret = 0;
2190 struct btrfs_delayed_tree_ref *ref;
2191 struct btrfs_key ins;
2192 u64 parent = 0;
2193 u64 ref_root = 0;
2194 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2195 SKINNY_METADATA);
2197 ref = btrfs_delayed_node_to_tree_ref(node);
2198 trace_run_delayed_tree_ref(node, ref, node->action);
2200 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2201 parent = ref->parent;
2202 else
2203 ref_root = ref->root;
2205 ins.objectid = node->bytenr;
2206 if (skinny_metadata) {
2207 ins.offset = ref->level;
2208 ins.type = BTRFS_METADATA_ITEM_KEY;
2209 } else {
2210 ins.offset = node->num_bytes;
2211 ins.type = BTRFS_EXTENT_ITEM_KEY;
2214 BUG_ON(node->ref_mod != 1);
2215 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2216 BUG_ON(!extent_op || !extent_op->update_flags);
2217 ret = alloc_reserved_tree_block(trans, root,
2218 parent, ref_root,
2219 extent_op->flags_to_set,
2220 &extent_op->key,
2221 ref->level, &ins);
2222 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2223 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2224 node->num_bytes, parent, ref_root,
2225 ref->level, 0, 1, extent_op);
2226 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2227 ret = __btrfs_free_extent(trans, root, node->bytenr,
2228 node->num_bytes, parent, ref_root,
2229 ref->level, 0, 1, extent_op);
2230 } else {
2231 BUG();
2233 return ret;
2236 /* helper function to actually process a single delayed ref entry */
2237 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2238 struct btrfs_root *root,
2239 struct btrfs_delayed_ref_node *node,
2240 struct btrfs_delayed_extent_op *extent_op,
2241 int insert_reserved)
2243 int ret = 0;
2245 if (trans->aborted) {
2246 if (insert_reserved)
2247 btrfs_pin_extent(root, node->bytenr,
2248 node->num_bytes, 1);
2249 return 0;
2252 if (btrfs_delayed_ref_is_head(node)) {
2253 struct btrfs_delayed_ref_head *head;
2255 * we've hit the end of the chain and we were supposed
2256 * to insert this extent into the tree. But, it got
2257 * deleted before we ever needed to insert it, so all
2258 * we have to do is clean up the accounting
2260 BUG_ON(extent_op);
2261 head = btrfs_delayed_node_to_head(node);
2262 trace_run_delayed_ref_head(node, head, node->action);
2264 if (insert_reserved) {
2265 btrfs_pin_extent(root, node->bytenr,
2266 node->num_bytes, 1);
2267 if (head->is_data) {
2268 ret = btrfs_del_csums(trans, root,
2269 node->bytenr,
2270 node->num_bytes);
2273 return ret;
2276 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2277 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2278 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2279 insert_reserved);
2280 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2281 node->type == BTRFS_SHARED_DATA_REF_KEY)
2282 ret = run_delayed_data_ref(trans, root, node, extent_op,
2283 insert_reserved);
2284 else
2285 BUG();
2286 return ret;
2289 static noinline struct btrfs_delayed_ref_node *
2290 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2292 struct rb_node *node;
2293 struct btrfs_delayed_ref_node *ref, *last = NULL;;
2296 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2297 * this prevents ref count from going down to zero when
2298 * there still are pending delayed ref.
2300 node = rb_first(&head->ref_root);
2301 while (node) {
2302 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2303 rb_node);
2304 if (ref->action == BTRFS_ADD_DELAYED_REF)
2305 return ref;
2306 else if (last == NULL)
2307 last = ref;
2308 node = rb_next(node);
2310 return last;
2314 * Returns 0 on success or if called with an already aborted transaction.
2315 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2317 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2318 struct btrfs_root *root,
2319 unsigned long nr)
2321 struct btrfs_delayed_ref_root *delayed_refs;
2322 struct btrfs_delayed_ref_node *ref;
2323 struct btrfs_delayed_ref_head *locked_ref = NULL;
2324 struct btrfs_delayed_extent_op *extent_op;
2325 struct btrfs_fs_info *fs_info = root->fs_info;
2326 ktime_t start = ktime_get();
2327 int ret;
2328 unsigned long count = 0;
2329 unsigned long actual_count = 0;
2330 int must_insert_reserved = 0;
2332 delayed_refs = &trans->transaction->delayed_refs;
2333 while (1) {
2334 if (!locked_ref) {
2335 if (count >= nr)
2336 break;
2338 spin_lock(&delayed_refs->lock);
2339 locked_ref = btrfs_select_ref_head(trans);
2340 if (!locked_ref) {
2341 spin_unlock(&delayed_refs->lock);
2342 break;
2345 /* grab the lock that says we are going to process
2346 * all the refs for this head */
2347 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2348 spin_unlock(&delayed_refs->lock);
2350 * we may have dropped the spin lock to get the head
2351 * mutex lock, and that might have given someone else
2352 * time to free the head. If that's true, it has been
2353 * removed from our list and we can move on.
2355 if (ret == -EAGAIN) {
2356 locked_ref = NULL;
2357 count++;
2358 continue;
2363 * We need to try and merge add/drops of the same ref since we
2364 * can run into issues with relocate dropping the implicit ref
2365 * and then it being added back again before the drop can
2366 * finish. If we merged anything we need to re-loop so we can
2367 * get a good ref.
2369 spin_lock(&locked_ref->lock);
2370 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2371 locked_ref);
2374 * locked_ref is the head node, so we have to go one
2375 * node back for any delayed ref updates
2377 ref = select_delayed_ref(locked_ref);
2379 if (ref && ref->seq &&
2380 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2381 spin_unlock(&locked_ref->lock);
2382 btrfs_delayed_ref_unlock(locked_ref);
2383 spin_lock(&delayed_refs->lock);
2384 locked_ref->processing = 0;
2385 delayed_refs->num_heads_ready++;
2386 spin_unlock(&delayed_refs->lock);
2387 locked_ref = NULL;
2388 cond_resched();
2389 count++;
2390 continue;
2394 * record the must insert reserved flag before we
2395 * drop the spin lock.
2397 must_insert_reserved = locked_ref->must_insert_reserved;
2398 locked_ref->must_insert_reserved = 0;
2400 extent_op = locked_ref->extent_op;
2401 locked_ref->extent_op = NULL;
2403 if (!ref) {
2406 /* All delayed refs have been processed, Go ahead
2407 * and send the head node to run_one_delayed_ref,
2408 * so that any accounting fixes can happen
2410 ref = &locked_ref->node;
2412 if (extent_op && must_insert_reserved) {
2413 btrfs_free_delayed_extent_op(extent_op);
2414 extent_op = NULL;
2417 if (extent_op) {
2418 spin_unlock(&locked_ref->lock);
2419 ret = run_delayed_extent_op(trans, root,
2420 ref, extent_op);
2421 btrfs_free_delayed_extent_op(extent_op);
2423 if (ret) {
2425 * Need to reset must_insert_reserved if
2426 * there was an error so the abort stuff
2427 * can cleanup the reserved space
2428 * properly.
2430 if (must_insert_reserved)
2431 locked_ref->must_insert_reserved = 1;
2432 locked_ref->processing = 0;
2433 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2434 btrfs_delayed_ref_unlock(locked_ref);
2435 return ret;
2437 continue;
2441 * Need to drop our head ref lock and re-aqcuire the
2442 * delayed ref lock and then re-check to make sure
2443 * nobody got added.
2445 spin_unlock(&locked_ref->lock);
2446 spin_lock(&delayed_refs->lock);
2447 spin_lock(&locked_ref->lock);
2448 if (rb_first(&locked_ref->ref_root) ||
2449 locked_ref->extent_op) {
2450 spin_unlock(&locked_ref->lock);
2451 spin_unlock(&delayed_refs->lock);
2452 continue;
2454 ref->in_tree = 0;
2455 delayed_refs->num_heads--;
2456 rb_erase(&locked_ref->href_node,
2457 &delayed_refs->href_root);
2458 spin_unlock(&delayed_refs->lock);
2459 } else {
2460 actual_count++;
2461 ref->in_tree = 0;
2462 rb_erase(&ref->rb_node, &locked_ref->ref_root);
2464 atomic_dec(&delayed_refs->num_entries);
2466 if (!btrfs_delayed_ref_is_head(ref)) {
2468 * when we play the delayed ref, also correct the
2469 * ref_mod on head
2471 switch (ref->action) {
2472 case BTRFS_ADD_DELAYED_REF:
2473 case BTRFS_ADD_DELAYED_EXTENT:
2474 locked_ref->node.ref_mod -= ref->ref_mod;
2475 break;
2476 case BTRFS_DROP_DELAYED_REF:
2477 locked_ref->node.ref_mod += ref->ref_mod;
2478 break;
2479 default:
2480 WARN_ON(1);
2483 spin_unlock(&locked_ref->lock);
2485 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2486 must_insert_reserved);
2488 btrfs_free_delayed_extent_op(extent_op);
2489 if (ret) {
2490 locked_ref->processing = 0;
2491 btrfs_delayed_ref_unlock(locked_ref);
2492 btrfs_put_delayed_ref(ref);
2493 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2494 return ret;
2498 * If this node is a head, that means all the refs in this head
2499 * have been dealt with, and we will pick the next head to deal
2500 * with, so we must unlock the head and drop it from the cluster
2501 * list before we release it.
2503 if (btrfs_delayed_ref_is_head(ref)) {
2504 btrfs_delayed_ref_unlock(locked_ref);
2505 locked_ref = NULL;
2507 btrfs_put_delayed_ref(ref);
2508 count++;
2509 cond_resched();
2513 * We don't want to include ref heads since we can have empty ref heads
2514 * and those will drastically skew our runtime down since we just do
2515 * accounting, no actual extent tree updates.
2517 if (actual_count > 0) {
2518 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2519 u64 avg;
2522 * We weigh the current average higher than our current runtime
2523 * to avoid large swings in the average.
2525 spin_lock(&delayed_refs->lock);
2526 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2527 avg = div64_u64(avg, 4);
2528 fs_info->avg_delayed_ref_runtime = avg;
2529 spin_unlock(&delayed_refs->lock);
2531 return 0;
2534 #ifdef SCRAMBLE_DELAYED_REFS
2536 * Normally delayed refs get processed in ascending bytenr order. This
2537 * correlates in most cases to the order added. To expose dependencies on this
2538 * order, we start to process the tree in the middle instead of the beginning
2540 static u64 find_middle(struct rb_root *root)
2542 struct rb_node *n = root->rb_node;
2543 struct btrfs_delayed_ref_node *entry;
2544 int alt = 1;
2545 u64 middle;
2546 u64 first = 0, last = 0;
2548 n = rb_first(root);
2549 if (n) {
2550 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2551 first = entry->bytenr;
2553 n = rb_last(root);
2554 if (n) {
2555 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2556 last = entry->bytenr;
2558 n = root->rb_node;
2560 while (n) {
2561 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2562 WARN_ON(!entry->in_tree);
2564 middle = entry->bytenr;
2566 if (alt)
2567 n = n->rb_left;
2568 else
2569 n = n->rb_right;
2571 alt = 1 - alt;
2573 return middle;
2575 #endif
2577 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2578 struct btrfs_fs_info *fs_info)
2580 struct qgroup_update *qgroup_update;
2581 int ret = 0;
2583 if (list_empty(&trans->qgroup_ref_list) !=
2584 !trans->delayed_ref_elem.seq) {
2585 /* list without seq or seq without list */
2586 btrfs_err(fs_info,
2587 "qgroup accounting update error, list is%s empty, seq is %#x.%x",
2588 list_empty(&trans->qgroup_ref_list) ? "" : " not",
2589 (u32)(trans->delayed_ref_elem.seq >> 32),
2590 (u32)trans->delayed_ref_elem.seq);
2591 BUG();
2594 if (!trans->delayed_ref_elem.seq)
2595 return 0;
2597 while (!list_empty(&trans->qgroup_ref_list)) {
2598 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2599 struct qgroup_update, list);
2600 list_del(&qgroup_update->list);
2601 if (!ret)
2602 ret = btrfs_qgroup_account_ref(
2603 trans, fs_info, qgroup_update->node,
2604 qgroup_update->extent_op);
2605 kfree(qgroup_update);
2608 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2610 return ret;
2613 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2615 u64 num_bytes;
2617 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2618 sizeof(struct btrfs_extent_inline_ref));
2619 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2620 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2623 * We don't ever fill up leaves all the way so multiply by 2 just to be
2624 * closer to what we're really going to want to ouse.
2626 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2629 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2630 struct btrfs_root *root)
2632 struct btrfs_block_rsv *global_rsv;
2633 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2634 u64 num_bytes;
2635 int ret = 0;
2637 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2638 num_heads = heads_to_leaves(root, num_heads);
2639 if (num_heads > 1)
2640 num_bytes += (num_heads - 1) * root->leafsize;
2641 num_bytes <<= 1;
2642 global_rsv = &root->fs_info->global_block_rsv;
2645 * If we can't allocate any more chunks lets make sure we have _lots_ of
2646 * wiggle room since running delayed refs can create more delayed refs.
2648 if (global_rsv->space_info->full)
2649 num_bytes <<= 1;
2651 spin_lock(&global_rsv->lock);
2652 if (global_rsv->reserved <= num_bytes)
2653 ret = 1;
2654 spin_unlock(&global_rsv->lock);
2655 return ret;
2658 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2659 struct btrfs_root *root)
2661 struct btrfs_fs_info *fs_info = root->fs_info;
2662 u64 num_entries =
2663 atomic_read(&trans->transaction->delayed_refs.num_entries);
2664 u64 avg_runtime;
2666 smp_mb();
2667 avg_runtime = fs_info->avg_delayed_ref_runtime;
2668 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2669 return 1;
2671 return btrfs_check_space_for_delayed_refs(trans, root);
2675 * this starts processing the delayed reference count updates and
2676 * extent insertions we have queued up so far. count can be
2677 * 0, which means to process everything in the tree at the start
2678 * of the run (but not newly added entries), or it can be some target
2679 * number you'd like to process.
2681 * Returns 0 on success or if called with an aborted transaction
2682 * Returns <0 on error and aborts the transaction
2684 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2685 struct btrfs_root *root, unsigned long count)
2687 struct rb_node *node;
2688 struct btrfs_delayed_ref_root *delayed_refs;
2689 struct btrfs_delayed_ref_head *head;
2690 int ret;
2691 int run_all = count == (unsigned long)-1;
2692 int run_most = 0;
2694 /* We'll clean this up in btrfs_cleanup_transaction */
2695 if (trans->aborted)
2696 return 0;
2698 if (root == root->fs_info->extent_root)
2699 root = root->fs_info->tree_root;
2701 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2703 delayed_refs = &trans->transaction->delayed_refs;
2704 if (count == 0) {
2705 count = atomic_read(&delayed_refs->num_entries) * 2;
2706 run_most = 1;
2709 again:
2710 #ifdef SCRAMBLE_DELAYED_REFS
2711 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2712 #endif
2713 ret = __btrfs_run_delayed_refs(trans, root, count);
2714 if (ret < 0) {
2715 btrfs_abort_transaction(trans, root, ret);
2716 return ret;
2719 if (run_all) {
2720 if (!list_empty(&trans->new_bgs))
2721 btrfs_create_pending_block_groups(trans, root);
2723 spin_lock(&delayed_refs->lock);
2724 node = rb_first(&delayed_refs->href_root);
2725 if (!node) {
2726 spin_unlock(&delayed_refs->lock);
2727 goto out;
2729 count = (unsigned long)-1;
2731 while (node) {
2732 head = rb_entry(node, struct btrfs_delayed_ref_head,
2733 href_node);
2734 if (btrfs_delayed_ref_is_head(&head->node)) {
2735 struct btrfs_delayed_ref_node *ref;
2737 ref = &head->node;
2738 atomic_inc(&ref->refs);
2740 spin_unlock(&delayed_refs->lock);
2742 * Mutex was contended, block until it's
2743 * released and try again
2745 mutex_lock(&head->mutex);
2746 mutex_unlock(&head->mutex);
2748 btrfs_put_delayed_ref(ref);
2749 cond_resched();
2750 goto again;
2751 } else {
2752 WARN_ON(1);
2754 node = rb_next(node);
2756 spin_unlock(&delayed_refs->lock);
2757 cond_resched();
2758 goto again;
2760 out:
2761 assert_qgroups_uptodate(trans);
2762 return 0;
2765 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2766 struct btrfs_root *root,
2767 u64 bytenr, u64 num_bytes, u64 flags,
2768 int level, int is_data)
2770 struct btrfs_delayed_extent_op *extent_op;
2771 int ret;
2773 extent_op = btrfs_alloc_delayed_extent_op();
2774 if (!extent_op)
2775 return -ENOMEM;
2777 extent_op->flags_to_set = flags;
2778 extent_op->update_flags = 1;
2779 extent_op->update_key = 0;
2780 extent_op->is_data = is_data ? 1 : 0;
2781 extent_op->level = level;
2783 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2784 num_bytes, extent_op);
2785 if (ret)
2786 btrfs_free_delayed_extent_op(extent_op);
2787 return ret;
2790 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2791 struct btrfs_root *root,
2792 struct btrfs_path *path,
2793 u64 objectid, u64 offset, u64 bytenr)
2795 struct btrfs_delayed_ref_head *head;
2796 struct btrfs_delayed_ref_node *ref;
2797 struct btrfs_delayed_data_ref *data_ref;
2798 struct btrfs_delayed_ref_root *delayed_refs;
2799 struct rb_node *node;
2800 int ret = 0;
2802 delayed_refs = &trans->transaction->delayed_refs;
2803 spin_lock(&delayed_refs->lock);
2804 head = btrfs_find_delayed_ref_head(trans, bytenr);
2805 if (!head) {
2806 spin_unlock(&delayed_refs->lock);
2807 return 0;
2810 if (!mutex_trylock(&head->mutex)) {
2811 atomic_inc(&head->node.refs);
2812 spin_unlock(&delayed_refs->lock);
2814 btrfs_release_path(path);
2817 * Mutex was contended, block until it's released and let
2818 * caller try again
2820 mutex_lock(&head->mutex);
2821 mutex_unlock(&head->mutex);
2822 btrfs_put_delayed_ref(&head->node);
2823 return -EAGAIN;
2825 spin_unlock(&delayed_refs->lock);
2827 spin_lock(&head->lock);
2828 node = rb_first(&head->ref_root);
2829 while (node) {
2830 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2831 node = rb_next(node);
2833 /* If it's a shared ref we know a cross reference exists */
2834 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2835 ret = 1;
2836 break;
2839 data_ref = btrfs_delayed_node_to_data_ref(ref);
2842 * If our ref doesn't match the one we're currently looking at
2843 * then we have a cross reference.
2845 if (data_ref->root != root->root_key.objectid ||
2846 data_ref->objectid != objectid ||
2847 data_ref->offset != offset) {
2848 ret = 1;
2849 break;
2852 spin_unlock(&head->lock);
2853 mutex_unlock(&head->mutex);
2854 return ret;
2857 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2858 struct btrfs_root *root,
2859 struct btrfs_path *path,
2860 u64 objectid, u64 offset, u64 bytenr)
2862 struct btrfs_root *extent_root = root->fs_info->extent_root;
2863 struct extent_buffer *leaf;
2864 struct btrfs_extent_data_ref *ref;
2865 struct btrfs_extent_inline_ref *iref;
2866 struct btrfs_extent_item *ei;
2867 struct btrfs_key key;
2868 u32 item_size;
2869 int ret;
2871 key.objectid = bytenr;
2872 key.offset = (u64)-1;
2873 key.type = BTRFS_EXTENT_ITEM_KEY;
2875 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2876 if (ret < 0)
2877 goto out;
2878 BUG_ON(ret == 0); /* Corruption */
2880 ret = -ENOENT;
2881 if (path->slots[0] == 0)
2882 goto out;
2884 path->slots[0]--;
2885 leaf = path->nodes[0];
2886 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2888 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2889 goto out;
2891 ret = 1;
2892 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2893 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2894 if (item_size < sizeof(*ei)) {
2895 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2896 goto out;
2898 #endif
2899 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2901 if (item_size != sizeof(*ei) +
2902 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2903 goto out;
2905 if (btrfs_extent_generation(leaf, ei) <=
2906 btrfs_root_last_snapshot(&root->root_item))
2907 goto out;
2909 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2910 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2911 BTRFS_EXTENT_DATA_REF_KEY)
2912 goto out;
2914 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2915 if (btrfs_extent_refs(leaf, ei) !=
2916 btrfs_extent_data_ref_count(leaf, ref) ||
2917 btrfs_extent_data_ref_root(leaf, ref) !=
2918 root->root_key.objectid ||
2919 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2920 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2921 goto out;
2923 ret = 0;
2924 out:
2925 return ret;
2928 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2929 struct btrfs_root *root,
2930 u64 objectid, u64 offset, u64 bytenr)
2932 struct btrfs_path *path;
2933 int ret;
2934 int ret2;
2936 path = btrfs_alloc_path();
2937 if (!path)
2938 return -ENOENT;
2940 do {
2941 ret = check_committed_ref(trans, root, path, objectid,
2942 offset, bytenr);
2943 if (ret && ret != -ENOENT)
2944 goto out;
2946 ret2 = check_delayed_ref(trans, root, path, objectid,
2947 offset, bytenr);
2948 } while (ret2 == -EAGAIN);
2950 if (ret2 && ret2 != -ENOENT) {
2951 ret = ret2;
2952 goto out;
2955 if (ret != -ENOENT || ret2 != -ENOENT)
2956 ret = 0;
2957 out:
2958 btrfs_free_path(path);
2959 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2960 WARN_ON(ret > 0);
2961 return ret;
2964 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2965 struct btrfs_root *root,
2966 struct extent_buffer *buf,
2967 int full_backref, int inc, int for_cow)
2969 u64 bytenr;
2970 u64 num_bytes;
2971 u64 parent;
2972 u64 ref_root;
2973 u32 nritems;
2974 struct btrfs_key key;
2975 struct btrfs_file_extent_item *fi;
2976 int i;
2977 int level;
2978 int ret = 0;
2979 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2980 u64, u64, u64, u64, u64, u64, int);
2982 ref_root = btrfs_header_owner(buf);
2983 nritems = btrfs_header_nritems(buf);
2984 level = btrfs_header_level(buf);
2986 if (!root->ref_cows && level == 0)
2987 return 0;
2989 if (inc)
2990 process_func = btrfs_inc_extent_ref;
2991 else
2992 process_func = btrfs_free_extent;
2994 if (full_backref)
2995 parent = buf->start;
2996 else
2997 parent = 0;
2999 for (i = 0; i < nritems; i++) {
3000 if (level == 0) {
3001 btrfs_item_key_to_cpu(buf, &key, i);
3002 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3003 continue;
3004 fi = btrfs_item_ptr(buf, i,
3005 struct btrfs_file_extent_item);
3006 if (btrfs_file_extent_type(buf, fi) ==
3007 BTRFS_FILE_EXTENT_INLINE)
3008 continue;
3009 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3010 if (bytenr == 0)
3011 continue;
3013 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3014 key.offset -= btrfs_file_extent_offset(buf, fi);
3015 ret = process_func(trans, root, bytenr, num_bytes,
3016 parent, ref_root, key.objectid,
3017 key.offset, for_cow);
3018 if (ret)
3019 goto fail;
3020 } else {
3021 bytenr = btrfs_node_blockptr(buf, i);
3022 num_bytes = btrfs_level_size(root, level - 1);
3023 ret = process_func(trans, root, bytenr, num_bytes,
3024 parent, ref_root, level - 1, 0,
3025 for_cow);
3026 if (ret)
3027 goto fail;
3030 return 0;
3031 fail:
3032 return ret;
3035 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3036 struct extent_buffer *buf, int full_backref, int for_cow)
3038 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
3041 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3042 struct extent_buffer *buf, int full_backref, int for_cow)
3044 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
3047 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3048 struct btrfs_root *root,
3049 struct btrfs_path *path,
3050 struct btrfs_block_group_cache *cache)
3052 int ret;
3053 struct btrfs_root *extent_root = root->fs_info->extent_root;
3054 unsigned long bi;
3055 struct extent_buffer *leaf;
3057 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3058 if (ret < 0)
3059 goto fail;
3060 BUG_ON(ret); /* Corruption */
3062 leaf = path->nodes[0];
3063 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3064 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3065 btrfs_mark_buffer_dirty(leaf);
3066 btrfs_release_path(path);
3067 fail:
3068 if (ret) {
3069 btrfs_abort_transaction(trans, root, ret);
3070 return ret;
3072 return 0;
3076 static struct btrfs_block_group_cache *
3077 next_block_group(struct btrfs_root *root,
3078 struct btrfs_block_group_cache *cache)
3080 struct rb_node *node;
3081 spin_lock(&root->fs_info->block_group_cache_lock);
3082 node = rb_next(&cache->cache_node);
3083 btrfs_put_block_group(cache);
3084 if (node) {
3085 cache = rb_entry(node, struct btrfs_block_group_cache,
3086 cache_node);
3087 btrfs_get_block_group(cache);
3088 } else
3089 cache = NULL;
3090 spin_unlock(&root->fs_info->block_group_cache_lock);
3091 return cache;
3094 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3095 struct btrfs_trans_handle *trans,
3096 struct btrfs_path *path)
3098 struct btrfs_root *root = block_group->fs_info->tree_root;
3099 struct inode *inode = NULL;
3100 u64 alloc_hint = 0;
3101 int dcs = BTRFS_DC_ERROR;
3102 int num_pages = 0;
3103 int retries = 0;
3104 int ret = 0;
3107 * If this block group is smaller than 100 megs don't bother caching the
3108 * block group.
3110 if (block_group->key.offset < (100 * 1024 * 1024)) {
3111 spin_lock(&block_group->lock);
3112 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3113 spin_unlock(&block_group->lock);
3114 return 0;
3117 again:
3118 inode = lookup_free_space_inode(root, block_group, path);
3119 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3120 ret = PTR_ERR(inode);
3121 btrfs_release_path(path);
3122 goto out;
3125 if (IS_ERR(inode)) {
3126 BUG_ON(retries);
3127 retries++;
3129 if (block_group->ro)
3130 goto out_free;
3132 ret = create_free_space_inode(root, trans, block_group, path);
3133 if (ret)
3134 goto out_free;
3135 goto again;
3138 /* We've already setup this transaction, go ahead and exit */
3139 if (block_group->cache_generation == trans->transid &&
3140 i_size_read(inode)) {
3141 dcs = BTRFS_DC_SETUP;
3142 goto out_put;
3146 * We want to set the generation to 0, that way if anything goes wrong
3147 * from here on out we know not to trust this cache when we load up next
3148 * time.
3150 BTRFS_I(inode)->generation = 0;
3151 ret = btrfs_update_inode(trans, root, inode);
3152 WARN_ON(ret);
3154 if (i_size_read(inode) > 0) {
3155 ret = btrfs_check_trunc_cache_free_space(root,
3156 &root->fs_info->global_block_rsv);
3157 if (ret)
3158 goto out_put;
3160 ret = btrfs_truncate_free_space_cache(root, trans, inode);
3161 if (ret)
3162 goto out_put;
3165 spin_lock(&block_group->lock);
3166 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3167 !btrfs_test_opt(root, SPACE_CACHE)) {
3169 * don't bother trying to write stuff out _if_
3170 * a) we're not cached,
3171 * b) we're with nospace_cache mount option.
3173 dcs = BTRFS_DC_WRITTEN;
3174 spin_unlock(&block_group->lock);
3175 goto out_put;
3177 spin_unlock(&block_group->lock);
3180 * Try to preallocate enough space based on how big the block group is.
3181 * Keep in mind this has to include any pinned space which could end up
3182 * taking up quite a bit since it's not folded into the other space
3183 * cache.
3185 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3186 if (!num_pages)
3187 num_pages = 1;
3189 num_pages *= 16;
3190 num_pages *= PAGE_CACHE_SIZE;
3192 ret = btrfs_check_data_free_space(inode, num_pages);
3193 if (ret)
3194 goto out_put;
3196 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3197 num_pages, num_pages,
3198 &alloc_hint);
3199 if (!ret)
3200 dcs = BTRFS_DC_SETUP;
3201 btrfs_free_reserved_data_space(inode, num_pages);
3203 out_put:
3204 iput(inode);
3205 out_free:
3206 btrfs_release_path(path);
3207 out:
3208 spin_lock(&block_group->lock);
3209 if (!ret && dcs == BTRFS_DC_SETUP)
3210 block_group->cache_generation = trans->transid;
3211 block_group->disk_cache_state = dcs;
3212 spin_unlock(&block_group->lock);
3214 return ret;
3217 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3218 struct btrfs_root *root)
3220 struct btrfs_block_group_cache *cache;
3221 int err = 0;
3222 struct btrfs_path *path;
3223 u64 last = 0;
3225 path = btrfs_alloc_path();
3226 if (!path)
3227 return -ENOMEM;
3229 again:
3230 while (1) {
3231 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3232 while (cache) {
3233 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3234 break;
3235 cache = next_block_group(root, cache);
3237 if (!cache) {
3238 if (last == 0)
3239 break;
3240 last = 0;
3241 continue;
3243 err = cache_save_setup(cache, trans, path);
3244 last = cache->key.objectid + cache->key.offset;
3245 btrfs_put_block_group(cache);
3248 while (1) {
3249 if (last == 0) {
3250 err = btrfs_run_delayed_refs(trans, root,
3251 (unsigned long)-1);
3252 if (err) /* File system offline */
3253 goto out;
3256 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3257 while (cache) {
3258 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3259 btrfs_put_block_group(cache);
3260 goto again;
3263 if (cache->dirty)
3264 break;
3265 cache = next_block_group(root, cache);
3267 if (!cache) {
3268 if (last == 0)
3269 break;
3270 last = 0;
3271 continue;
3274 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3275 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3276 cache->dirty = 0;
3277 last = cache->key.objectid + cache->key.offset;
3279 err = write_one_cache_group(trans, root, path, cache);
3280 btrfs_put_block_group(cache);
3281 if (err) /* File system offline */
3282 goto out;
3285 while (1) {
3287 * I don't think this is needed since we're just marking our
3288 * preallocated extent as written, but just in case it can't
3289 * hurt.
3291 if (last == 0) {
3292 err = btrfs_run_delayed_refs(trans, root,
3293 (unsigned long)-1);
3294 if (err) /* File system offline */
3295 goto out;
3298 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3299 while (cache) {
3301 * Really this shouldn't happen, but it could if we
3302 * couldn't write the entire preallocated extent and
3303 * splitting the extent resulted in a new block.
3305 if (cache->dirty) {
3306 btrfs_put_block_group(cache);
3307 goto again;
3309 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3310 break;
3311 cache = next_block_group(root, cache);
3313 if (!cache) {
3314 if (last == 0)
3315 break;
3316 last = 0;
3317 continue;
3320 err = btrfs_write_out_cache(root, trans, cache, path);
3323 * If we didn't have an error then the cache state is still
3324 * NEED_WRITE, so we can set it to WRITTEN.
3326 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3327 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3328 last = cache->key.objectid + cache->key.offset;
3329 btrfs_put_block_group(cache);
3331 out:
3333 btrfs_free_path(path);
3334 return err;
3337 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3339 struct btrfs_block_group_cache *block_group;
3340 int readonly = 0;
3342 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3343 if (!block_group || block_group->ro)
3344 readonly = 1;
3345 if (block_group)
3346 btrfs_put_block_group(block_group);
3347 return readonly;
3350 static const char *alloc_name(u64 flags)
3352 switch (flags) {
3353 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3354 return "mixed";
3355 case BTRFS_BLOCK_GROUP_METADATA:
3356 return "metadata";
3357 case BTRFS_BLOCK_GROUP_DATA:
3358 return "data";
3359 case BTRFS_BLOCK_GROUP_SYSTEM:
3360 return "system";
3361 default:
3362 WARN_ON(1);
3363 return "invalid-combination";
3367 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3368 u64 total_bytes, u64 bytes_used,
3369 struct btrfs_space_info **space_info)
3371 struct btrfs_space_info *found;
3372 int i;
3373 int factor;
3374 int ret;
3376 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3377 BTRFS_BLOCK_GROUP_RAID10))
3378 factor = 2;
3379 else
3380 factor = 1;
3382 found = __find_space_info(info, flags);
3383 if (found) {
3384 spin_lock(&found->lock);
3385 found->total_bytes += total_bytes;
3386 found->disk_total += total_bytes * factor;
3387 found->bytes_used += bytes_used;
3388 found->disk_used += bytes_used * factor;
3389 found->full = 0;
3390 spin_unlock(&found->lock);
3391 *space_info = found;
3392 return 0;
3394 found = kzalloc(sizeof(*found), GFP_NOFS);
3395 if (!found)
3396 return -ENOMEM;
3398 ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3399 if (ret) {
3400 kfree(found);
3401 return ret;
3404 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
3405 INIT_LIST_HEAD(&found->block_groups[i]);
3406 kobject_init(&found->block_group_kobjs[i], &btrfs_raid_ktype);
3408 init_rwsem(&found->groups_sem);
3409 spin_lock_init(&found->lock);
3410 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3411 found->total_bytes = total_bytes;
3412 found->disk_total = total_bytes * factor;
3413 found->bytes_used = bytes_used;
3414 found->disk_used = bytes_used * factor;
3415 found->bytes_pinned = 0;
3416 found->bytes_reserved = 0;
3417 found->bytes_readonly = 0;
3418 found->bytes_may_use = 0;
3419 found->full = 0;
3420 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3421 found->chunk_alloc = 0;
3422 found->flush = 0;
3423 init_waitqueue_head(&found->wait);
3425 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3426 info->space_info_kobj, "%s",
3427 alloc_name(found->flags));
3428 if (ret) {
3429 kfree(found);
3430 return ret;
3433 *space_info = found;
3434 list_add_rcu(&found->list, &info->space_info);
3435 if (flags & BTRFS_BLOCK_GROUP_DATA)
3436 info->data_sinfo = found;
3438 return ret;
3441 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3443 u64 extra_flags = chunk_to_extended(flags) &
3444 BTRFS_EXTENDED_PROFILE_MASK;
3446 write_seqlock(&fs_info->profiles_lock);
3447 if (flags & BTRFS_BLOCK_GROUP_DATA)
3448 fs_info->avail_data_alloc_bits |= extra_flags;
3449 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3450 fs_info->avail_metadata_alloc_bits |= extra_flags;
3451 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3452 fs_info->avail_system_alloc_bits |= extra_flags;
3453 write_sequnlock(&fs_info->profiles_lock);
3457 * returns target flags in extended format or 0 if restripe for this
3458 * chunk_type is not in progress
3460 * should be called with either volume_mutex or balance_lock held
3462 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3464 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3465 u64 target = 0;
3467 if (!bctl)
3468 return 0;
3470 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3471 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3472 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3473 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3474 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3475 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3476 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3477 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3478 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3481 return target;
3485 * @flags: available profiles in extended format (see ctree.h)
3487 * Returns reduced profile in chunk format. If profile changing is in
3488 * progress (either running or paused) picks the target profile (if it's
3489 * already available), otherwise falls back to plain reducing.
3491 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3494 * we add in the count of missing devices because we want
3495 * to make sure that any RAID levels on a degraded FS
3496 * continue to be honored.
3498 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3499 root->fs_info->fs_devices->missing_devices;
3500 u64 target;
3501 u64 tmp;
3504 * see if restripe for this chunk_type is in progress, if so
3505 * try to reduce to the target profile
3507 spin_lock(&root->fs_info->balance_lock);
3508 target = get_restripe_target(root->fs_info, flags);
3509 if (target) {
3510 /* pick target profile only if it's already available */
3511 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3512 spin_unlock(&root->fs_info->balance_lock);
3513 return extended_to_chunk(target);
3516 spin_unlock(&root->fs_info->balance_lock);
3518 /* First, mask out the RAID levels which aren't possible */
3519 if (num_devices == 1)
3520 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3521 BTRFS_BLOCK_GROUP_RAID5);
3522 if (num_devices < 3)
3523 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3524 if (num_devices < 4)
3525 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3527 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3528 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3529 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3530 flags &= ~tmp;
3532 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3533 tmp = BTRFS_BLOCK_GROUP_RAID6;
3534 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3535 tmp = BTRFS_BLOCK_GROUP_RAID5;
3536 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3537 tmp = BTRFS_BLOCK_GROUP_RAID10;
3538 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3539 tmp = BTRFS_BLOCK_GROUP_RAID1;
3540 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3541 tmp = BTRFS_BLOCK_GROUP_RAID0;
3543 return extended_to_chunk(flags | tmp);
3546 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3548 unsigned seq;
3549 u64 flags;
3551 do {
3552 flags = orig_flags;
3553 seq = read_seqbegin(&root->fs_info->profiles_lock);
3555 if (flags & BTRFS_BLOCK_GROUP_DATA)
3556 flags |= root->fs_info->avail_data_alloc_bits;
3557 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3558 flags |= root->fs_info->avail_system_alloc_bits;
3559 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3560 flags |= root->fs_info->avail_metadata_alloc_bits;
3561 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3563 return btrfs_reduce_alloc_profile(root, flags);
3566 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3568 u64 flags;
3569 u64 ret;
3571 if (data)
3572 flags = BTRFS_BLOCK_GROUP_DATA;
3573 else if (root == root->fs_info->chunk_root)
3574 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3575 else
3576 flags = BTRFS_BLOCK_GROUP_METADATA;
3578 ret = get_alloc_profile(root, flags);
3579 return ret;
3583 * This will check the space that the inode allocates from to make sure we have
3584 * enough space for bytes.
3586 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3588 struct btrfs_space_info *data_sinfo;
3589 struct btrfs_root *root = BTRFS_I(inode)->root;
3590 struct btrfs_fs_info *fs_info = root->fs_info;
3591 u64 used;
3592 int ret = 0, committed = 0, alloc_chunk = 1;
3594 /* make sure bytes are sectorsize aligned */
3595 bytes = ALIGN(bytes, root->sectorsize);
3597 if (btrfs_is_free_space_inode(inode)) {
3598 committed = 1;
3599 ASSERT(current->journal_info);
3602 data_sinfo = fs_info->data_sinfo;
3603 if (!data_sinfo)
3604 goto alloc;
3606 again:
3607 /* make sure we have enough space to handle the data first */
3608 spin_lock(&data_sinfo->lock);
3609 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3610 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3611 data_sinfo->bytes_may_use;
3613 if (used + bytes > data_sinfo->total_bytes) {
3614 struct btrfs_trans_handle *trans;
3617 * if we don't have enough free bytes in this space then we need
3618 * to alloc a new chunk.
3620 if (!data_sinfo->full && alloc_chunk) {
3621 u64 alloc_target;
3623 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3624 spin_unlock(&data_sinfo->lock);
3625 alloc:
3626 alloc_target = btrfs_get_alloc_profile(root, 1);
3628 * It is ugly that we don't call nolock join
3629 * transaction for the free space inode case here.
3630 * But it is safe because we only do the data space
3631 * reservation for the free space cache in the
3632 * transaction context, the common join transaction
3633 * just increase the counter of the current transaction
3634 * handler, doesn't try to acquire the trans_lock of
3635 * the fs.
3637 trans = btrfs_join_transaction(root);
3638 if (IS_ERR(trans))
3639 return PTR_ERR(trans);
3641 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3642 alloc_target,
3643 CHUNK_ALLOC_NO_FORCE);
3644 btrfs_end_transaction(trans, root);
3645 if (ret < 0) {
3646 if (ret != -ENOSPC)
3647 return ret;
3648 else
3649 goto commit_trans;
3652 if (!data_sinfo)
3653 data_sinfo = fs_info->data_sinfo;
3655 goto again;
3659 * If we don't have enough pinned space to deal with this
3660 * allocation don't bother committing the transaction.
3662 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3663 bytes) < 0)
3664 committed = 1;
3665 spin_unlock(&data_sinfo->lock);
3667 /* commit the current transaction and try again */
3668 commit_trans:
3669 if (!committed &&
3670 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3671 committed = 1;
3673 trans = btrfs_join_transaction(root);
3674 if (IS_ERR(trans))
3675 return PTR_ERR(trans);
3676 ret = btrfs_commit_transaction(trans, root);
3677 if (ret)
3678 return ret;
3679 goto again;
3682 trace_btrfs_space_reservation(root->fs_info,
3683 "space_info:enospc",
3684 data_sinfo->flags, bytes, 1);
3685 return -ENOSPC;
3687 data_sinfo->bytes_may_use += bytes;
3688 trace_btrfs_space_reservation(root->fs_info, "space_info",
3689 data_sinfo->flags, bytes, 1);
3690 spin_unlock(&data_sinfo->lock);
3692 return 0;
3696 * Called if we need to clear a data reservation for this inode.
3698 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3700 struct btrfs_root *root = BTRFS_I(inode)->root;
3701 struct btrfs_space_info *data_sinfo;
3703 /* make sure bytes are sectorsize aligned */
3704 bytes = ALIGN(bytes, root->sectorsize);
3706 data_sinfo = root->fs_info->data_sinfo;
3707 spin_lock(&data_sinfo->lock);
3708 WARN_ON(data_sinfo->bytes_may_use < bytes);
3709 data_sinfo->bytes_may_use -= bytes;
3710 trace_btrfs_space_reservation(root->fs_info, "space_info",
3711 data_sinfo->flags, bytes, 0);
3712 spin_unlock(&data_sinfo->lock);
3715 static void force_metadata_allocation(struct btrfs_fs_info *info)
3717 struct list_head *head = &info->space_info;
3718 struct btrfs_space_info *found;
3720 rcu_read_lock();
3721 list_for_each_entry_rcu(found, head, list) {
3722 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3723 found->force_alloc = CHUNK_ALLOC_FORCE;
3725 rcu_read_unlock();
3728 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3730 return (global->size << 1);
3733 static int should_alloc_chunk(struct btrfs_root *root,
3734 struct btrfs_space_info *sinfo, int force)
3736 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3737 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3738 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3739 u64 thresh;
3741 if (force == CHUNK_ALLOC_FORCE)
3742 return 1;
3745 * We need to take into account the global rsv because for all intents
3746 * and purposes it's used space. Don't worry about locking the
3747 * global_rsv, it doesn't change except when the transaction commits.
3749 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3750 num_allocated += calc_global_rsv_need_space(global_rsv);
3753 * in limited mode, we want to have some free space up to
3754 * about 1% of the FS size.
3756 if (force == CHUNK_ALLOC_LIMITED) {
3757 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3758 thresh = max_t(u64, 64 * 1024 * 1024,
3759 div_factor_fine(thresh, 1));
3761 if (num_bytes - num_allocated < thresh)
3762 return 1;
3765 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3766 return 0;
3767 return 1;
3770 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3772 u64 num_dev;
3774 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3775 BTRFS_BLOCK_GROUP_RAID0 |
3776 BTRFS_BLOCK_GROUP_RAID5 |
3777 BTRFS_BLOCK_GROUP_RAID6))
3778 num_dev = root->fs_info->fs_devices->rw_devices;
3779 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3780 num_dev = 2;
3781 else
3782 num_dev = 1; /* DUP or single */
3784 /* metadata for updaing devices and chunk tree */
3785 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3788 static void check_system_chunk(struct btrfs_trans_handle *trans,
3789 struct btrfs_root *root, u64 type)
3791 struct btrfs_space_info *info;
3792 u64 left;
3793 u64 thresh;
3795 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3796 spin_lock(&info->lock);
3797 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3798 info->bytes_reserved - info->bytes_readonly;
3799 spin_unlock(&info->lock);
3801 thresh = get_system_chunk_thresh(root, type);
3802 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3803 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3804 left, thresh, type);
3805 dump_space_info(info, 0, 0);
3808 if (left < thresh) {
3809 u64 flags;
3811 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3812 btrfs_alloc_chunk(trans, root, flags);
3816 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3817 struct btrfs_root *extent_root, u64 flags, int force)
3819 struct btrfs_space_info *space_info;
3820 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3821 int wait_for_alloc = 0;
3822 int ret = 0;
3824 /* Don't re-enter if we're already allocating a chunk */
3825 if (trans->allocating_chunk)
3826 return -ENOSPC;
3828 space_info = __find_space_info(extent_root->fs_info, flags);
3829 if (!space_info) {
3830 ret = update_space_info(extent_root->fs_info, flags,
3831 0, 0, &space_info);
3832 BUG_ON(ret); /* -ENOMEM */
3834 BUG_ON(!space_info); /* Logic error */
3836 again:
3837 spin_lock(&space_info->lock);
3838 if (force < space_info->force_alloc)
3839 force = space_info->force_alloc;
3840 if (space_info->full) {
3841 if (should_alloc_chunk(extent_root, space_info, force))
3842 ret = -ENOSPC;
3843 else
3844 ret = 0;
3845 spin_unlock(&space_info->lock);
3846 return ret;
3849 if (!should_alloc_chunk(extent_root, space_info, force)) {
3850 spin_unlock(&space_info->lock);
3851 return 0;
3852 } else if (space_info->chunk_alloc) {
3853 wait_for_alloc = 1;
3854 } else {
3855 space_info->chunk_alloc = 1;
3858 spin_unlock(&space_info->lock);
3860 mutex_lock(&fs_info->chunk_mutex);
3863 * The chunk_mutex is held throughout the entirety of a chunk
3864 * allocation, so once we've acquired the chunk_mutex we know that the
3865 * other guy is done and we need to recheck and see if we should
3866 * allocate.
3868 if (wait_for_alloc) {
3869 mutex_unlock(&fs_info->chunk_mutex);
3870 wait_for_alloc = 0;
3871 goto again;
3874 trans->allocating_chunk = true;
3877 * If we have mixed data/metadata chunks we want to make sure we keep
3878 * allocating mixed chunks instead of individual chunks.
3880 if (btrfs_mixed_space_info(space_info))
3881 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3884 * if we're doing a data chunk, go ahead and make sure that
3885 * we keep a reasonable number of metadata chunks allocated in the
3886 * FS as well.
3888 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3889 fs_info->data_chunk_allocations++;
3890 if (!(fs_info->data_chunk_allocations %
3891 fs_info->metadata_ratio))
3892 force_metadata_allocation(fs_info);
3896 * Check if we have enough space in SYSTEM chunk because we may need
3897 * to update devices.
3899 check_system_chunk(trans, extent_root, flags);
3901 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3902 trans->allocating_chunk = false;
3904 spin_lock(&space_info->lock);
3905 if (ret < 0 && ret != -ENOSPC)
3906 goto out;
3907 if (ret)
3908 space_info->full = 1;
3909 else
3910 ret = 1;
3912 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3913 out:
3914 space_info->chunk_alloc = 0;
3915 spin_unlock(&space_info->lock);
3916 mutex_unlock(&fs_info->chunk_mutex);
3917 return ret;
3920 static int can_overcommit(struct btrfs_root *root,
3921 struct btrfs_space_info *space_info, u64 bytes,
3922 enum btrfs_reserve_flush_enum flush)
3924 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3925 u64 profile = btrfs_get_alloc_profile(root, 0);
3926 u64 space_size;
3927 u64 avail;
3928 u64 used;
3930 used = space_info->bytes_used + space_info->bytes_reserved +
3931 space_info->bytes_pinned + space_info->bytes_readonly;
3934 * We only want to allow over committing if we have lots of actual space
3935 * free, but if we don't have enough space to handle the global reserve
3936 * space then we could end up having a real enospc problem when trying
3937 * to allocate a chunk or some other such important allocation.
3939 spin_lock(&global_rsv->lock);
3940 space_size = calc_global_rsv_need_space(global_rsv);
3941 spin_unlock(&global_rsv->lock);
3942 if (used + space_size >= space_info->total_bytes)
3943 return 0;
3945 used += space_info->bytes_may_use;
3947 spin_lock(&root->fs_info->free_chunk_lock);
3948 avail = root->fs_info->free_chunk_space;
3949 spin_unlock(&root->fs_info->free_chunk_lock);
3952 * If we have dup, raid1 or raid10 then only half of the free
3953 * space is actually useable. For raid56, the space info used
3954 * doesn't include the parity drive, so we don't have to
3955 * change the math
3957 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3958 BTRFS_BLOCK_GROUP_RAID1 |
3959 BTRFS_BLOCK_GROUP_RAID10))
3960 avail >>= 1;
3963 * If we aren't flushing all things, let us overcommit up to
3964 * 1/2th of the space. If we can flush, don't let us overcommit
3965 * too much, let it overcommit up to 1/8 of the space.
3967 if (flush == BTRFS_RESERVE_FLUSH_ALL)
3968 avail >>= 3;
3969 else
3970 avail >>= 1;
3972 if (used + bytes < space_info->total_bytes + avail)
3973 return 1;
3974 return 0;
3977 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3978 unsigned long nr_pages, int nr_items)
3980 struct super_block *sb = root->fs_info->sb;
3982 if (down_read_trylock(&sb->s_umount)) {
3983 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
3984 up_read(&sb->s_umount);
3985 } else {
3987 * We needn't worry the filesystem going from r/w to r/o though
3988 * we don't acquire ->s_umount mutex, because the filesystem
3989 * should guarantee the delalloc inodes list be empty after
3990 * the filesystem is readonly(all dirty pages are written to
3991 * the disk).
3993 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
3994 if (!current->journal_info)
3995 btrfs_wait_ordered_roots(root->fs_info, nr_items);
3999 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4001 u64 bytes;
4002 int nr;
4004 bytes = btrfs_calc_trans_metadata_size(root, 1);
4005 nr = (int)div64_u64(to_reclaim, bytes);
4006 if (!nr)
4007 nr = 1;
4008 return nr;
4011 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4014 * shrink metadata reservation for delalloc
4016 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4017 bool wait_ordered)
4019 struct btrfs_block_rsv *block_rsv;
4020 struct btrfs_space_info *space_info;
4021 struct btrfs_trans_handle *trans;
4022 u64 delalloc_bytes;
4023 u64 max_reclaim;
4024 long time_left;
4025 unsigned long nr_pages;
4026 int loops;
4027 int items;
4028 enum btrfs_reserve_flush_enum flush;
4030 /* Calc the number of the pages we need flush for space reservation */
4031 items = calc_reclaim_items_nr(root, to_reclaim);
4032 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4034 trans = (struct btrfs_trans_handle *)current->journal_info;
4035 block_rsv = &root->fs_info->delalloc_block_rsv;
4036 space_info = block_rsv->space_info;
4038 delalloc_bytes = percpu_counter_sum_positive(
4039 &root->fs_info->delalloc_bytes);
4040 if (delalloc_bytes == 0) {
4041 if (trans)
4042 return;
4043 if (wait_ordered)
4044 btrfs_wait_ordered_roots(root->fs_info, items);
4045 return;
4048 loops = 0;
4049 while (delalloc_bytes && loops < 3) {
4050 max_reclaim = min(delalloc_bytes, to_reclaim);
4051 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4052 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4054 * We need to wait for the async pages to actually start before
4055 * we do anything.
4057 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4058 if (!max_reclaim)
4059 goto skip_async;
4061 if (max_reclaim <= nr_pages)
4062 max_reclaim = 0;
4063 else
4064 max_reclaim -= nr_pages;
4066 wait_event(root->fs_info->async_submit_wait,
4067 atomic_read(&root->fs_info->async_delalloc_pages) <=
4068 (int)max_reclaim);
4069 skip_async:
4070 if (!trans)
4071 flush = BTRFS_RESERVE_FLUSH_ALL;
4072 else
4073 flush = BTRFS_RESERVE_NO_FLUSH;
4074 spin_lock(&space_info->lock);
4075 if (can_overcommit(root, space_info, orig, flush)) {
4076 spin_unlock(&space_info->lock);
4077 break;
4079 spin_unlock(&space_info->lock);
4081 loops++;
4082 if (wait_ordered && !trans) {
4083 btrfs_wait_ordered_roots(root->fs_info, items);
4084 } else {
4085 time_left = schedule_timeout_killable(1);
4086 if (time_left)
4087 break;
4089 delalloc_bytes = percpu_counter_sum_positive(
4090 &root->fs_info->delalloc_bytes);
4095 * maybe_commit_transaction - possibly commit the transaction if its ok to
4096 * @root - the root we're allocating for
4097 * @bytes - the number of bytes we want to reserve
4098 * @force - force the commit
4100 * This will check to make sure that committing the transaction will actually
4101 * get us somewhere and then commit the transaction if it does. Otherwise it
4102 * will return -ENOSPC.
4104 static int may_commit_transaction(struct btrfs_root *root,
4105 struct btrfs_space_info *space_info,
4106 u64 bytes, int force)
4108 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4109 struct btrfs_trans_handle *trans;
4111 trans = (struct btrfs_trans_handle *)current->journal_info;
4112 if (trans)
4113 return -EAGAIN;
4115 if (force)
4116 goto commit;
4118 /* See if there is enough pinned space to make this reservation */
4119 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4120 bytes) >= 0)
4121 goto commit;
4124 * See if there is some space in the delayed insertion reservation for
4125 * this reservation.
4127 if (space_info != delayed_rsv->space_info)
4128 return -ENOSPC;
4130 spin_lock(&delayed_rsv->lock);
4131 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4132 bytes - delayed_rsv->size) >= 0) {
4133 spin_unlock(&delayed_rsv->lock);
4134 return -ENOSPC;
4136 spin_unlock(&delayed_rsv->lock);
4138 commit:
4139 trans = btrfs_join_transaction(root);
4140 if (IS_ERR(trans))
4141 return -ENOSPC;
4143 return btrfs_commit_transaction(trans, root);
4146 enum flush_state {
4147 FLUSH_DELAYED_ITEMS_NR = 1,
4148 FLUSH_DELAYED_ITEMS = 2,
4149 FLUSH_DELALLOC = 3,
4150 FLUSH_DELALLOC_WAIT = 4,
4151 ALLOC_CHUNK = 5,
4152 COMMIT_TRANS = 6,
4155 static int flush_space(struct btrfs_root *root,
4156 struct btrfs_space_info *space_info, u64 num_bytes,
4157 u64 orig_bytes, int state)
4159 struct btrfs_trans_handle *trans;
4160 int nr;
4161 int ret = 0;
4163 switch (state) {
4164 case FLUSH_DELAYED_ITEMS_NR:
4165 case FLUSH_DELAYED_ITEMS:
4166 if (state == FLUSH_DELAYED_ITEMS_NR)
4167 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4168 else
4169 nr = -1;
4171 trans = btrfs_join_transaction(root);
4172 if (IS_ERR(trans)) {
4173 ret = PTR_ERR(trans);
4174 break;
4176 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4177 btrfs_end_transaction(trans, root);
4178 break;
4179 case FLUSH_DELALLOC:
4180 case FLUSH_DELALLOC_WAIT:
4181 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4182 state == FLUSH_DELALLOC_WAIT);
4183 break;
4184 case ALLOC_CHUNK:
4185 trans = btrfs_join_transaction(root);
4186 if (IS_ERR(trans)) {
4187 ret = PTR_ERR(trans);
4188 break;
4190 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4191 btrfs_get_alloc_profile(root, 0),
4192 CHUNK_ALLOC_NO_FORCE);
4193 btrfs_end_transaction(trans, root);
4194 if (ret == -ENOSPC)
4195 ret = 0;
4196 break;
4197 case COMMIT_TRANS:
4198 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4199 break;
4200 default:
4201 ret = -ENOSPC;
4202 break;
4205 return ret;
4208 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4209 * @root - the root we're allocating for
4210 * @block_rsv - the block_rsv we're allocating for
4211 * @orig_bytes - the number of bytes we want
4212 * @flush - whether or not we can flush to make our reservation
4214 * This will reserve orgi_bytes number of bytes from the space info associated
4215 * with the block_rsv. If there is not enough space it will make an attempt to
4216 * flush out space to make room. It will do this by flushing delalloc if
4217 * possible or committing the transaction. If flush is 0 then no attempts to
4218 * regain reservations will be made and this will fail if there is not enough
4219 * space already.
4221 static int reserve_metadata_bytes(struct btrfs_root *root,
4222 struct btrfs_block_rsv *block_rsv,
4223 u64 orig_bytes,
4224 enum btrfs_reserve_flush_enum flush)
4226 struct btrfs_space_info *space_info = block_rsv->space_info;
4227 u64 used;
4228 u64 num_bytes = orig_bytes;
4229 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4230 int ret = 0;
4231 bool flushing = false;
4233 again:
4234 ret = 0;
4235 spin_lock(&space_info->lock);
4237 * We only want to wait if somebody other than us is flushing and we
4238 * are actually allowed to flush all things.
4240 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4241 space_info->flush) {
4242 spin_unlock(&space_info->lock);
4244 * If we have a trans handle we can't wait because the flusher
4245 * may have to commit the transaction, which would mean we would
4246 * deadlock since we are waiting for the flusher to finish, but
4247 * hold the current transaction open.
4249 if (current->journal_info)
4250 return -EAGAIN;
4251 ret = wait_event_killable(space_info->wait, !space_info->flush);
4252 /* Must have been killed, return */
4253 if (ret)
4254 return -EINTR;
4256 spin_lock(&space_info->lock);
4259 ret = -ENOSPC;
4260 used = space_info->bytes_used + space_info->bytes_reserved +
4261 space_info->bytes_pinned + space_info->bytes_readonly +
4262 space_info->bytes_may_use;
4265 * The idea here is that we've not already over-reserved the block group
4266 * then we can go ahead and save our reservation first and then start
4267 * flushing if we need to. Otherwise if we've already overcommitted
4268 * lets start flushing stuff first and then come back and try to make
4269 * our reservation.
4271 if (used <= space_info->total_bytes) {
4272 if (used + orig_bytes <= space_info->total_bytes) {
4273 space_info->bytes_may_use += orig_bytes;
4274 trace_btrfs_space_reservation(root->fs_info,
4275 "space_info", space_info->flags, orig_bytes, 1);
4276 ret = 0;
4277 } else {
4279 * Ok set num_bytes to orig_bytes since we aren't
4280 * overocmmitted, this way we only try and reclaim what
4281 * we need.
4283 num_bytes = orig_bytes;
4285 } else {
4287 * Ok we're over committed, set num_bytes to the overcommitted
4288 * amount plus the amount of bytes that we need for this
4289 * reservation.
4291 num_bytes = used - space_info->total_bytes +
4292 (orig_bytes * 2);
4295 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4296 space_info->bytes_may_use += orig_bytes;
4297 trace_btrfs_space_reservation(root->fs_info, "space_info",
4298 space_info->flags, orig_bytes,
4300 ret = 0;
4304 * Couldn't make our reservation, save our place so while we're trying
4305 * to reclaim space we can actually use it instead of somebody else
4306 * stealing it from us.
4308 * We make the other tasks wait for the flush only when we can flush
4309 * all things.
4311 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4312 flushing = true;
4313 space_info->flush = 1;
4316 spin_unlock(&space_info->lock);
4318 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4319 goto out;
4321 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4322 flush_state);
4323 flush_state++;
4326 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4327 * would happen. So skip delalloc flush.
4329 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4330 (flush_state == FLUSH_DELALLOC ||
4331 flush_state == FLUSH_DELALLOC_WAIT))
4332 flush_state = ALLOC_CHUNK;
4334 if (!ret)
4335 goto again;
4336 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4337 flush_state < COMMIT_TRANS)
4338 goto again;
4339 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4340 flush_state <= COMMIT_TRANS)
4341 goto again;
4343 out:
4344 if (ret == -ENOSPC &&
4345 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4346 struct btrfs_block_rsv *global_rsv =
4347 &root->fs_info->global_block_rsv;
4349 if (block_rsv != global_rsv &&
4350 !block_rsv_use_bytes(global_rsv, orig_bytes))
4351 ret = 0;
4353 if (ret == -ENOSPC)
4354 trace_btrfs_space_reservation(root->fs_info,
4355 "space_info:enospc",
4356 space_info->flags, orig_bytes, 1);
4357 if (flushing) {
4358 spin_lock(&space_info->lock);
4359 space_info->flush = 0;
4360 wake_up_all(&space_info->wait);
4361 spin_unlock(&space_info->lock);
4363 return ret;
4366 static struct btrfs_block_rsv *get_block_rsv(
4367 const struct btrfs_trans_handle *trans,
4368 const struct btrfs_root *root)
4370 struct btrfs_block_rsv *block_rsv = NULL;
4372 if (root->ref_cows)
4373 block_rsv = trans->block_rsv;
4375 if (root == root->fs_info->csum_root && trans->adding_csums)
4376 block_rsv = trans->block_rsv;
4378 if (root == root->fs_info->uuid_root)
4379 block_rsv = trans->block_rsv;
4381 if (!block_rsv)
4382 block_rsv = root->block_rsv;
4384 if (!block_rsv)
4385 block_rsv = &root->fs_info->empty_block_rsv;
4387 return block_rsv;
4390 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4391 u64 num_bytes)
4393 int ret = -ENOSPC;
4394 spin_lock(&block_rsv->lock);
4395 if (block_rsv->reserved >= num_bytes) {
4396 block_rsv->reserved -= num_bytes;
4397 if (block_rsv->reserved < block_rsv->size)
4398 block_rsv->full = 0;
4399 ret = 0;
4401 spin_unlock(&block_rsv->lock);
4402 return ret;
4405 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4406 u64 num_bytes, int update_size)
4408 spin_lock(&block_rsv->lock);
4409 block_rsv->reserved += num_bytes;
4410 if (update_size)
4411 block_rsv->size += num_bytes;
4412 else if (block_rsv->reserved >= block_rsv->size)
4413 block_rsv->full = 1;
4414 spin_unlock(&block_rsv->lock);
4417 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4418 struct btrfs_block_rsv *dest, u64 num_bytes,
4419 int min_factor)
4421 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4422 u64 min_bytes;
4424 if (global_rsv->space_info != dest->space_info)
4425 return -ENOSPC;
4427 spin_lock(&global_rsv->lock);
4428 min_bytes = div_factor(global_rsv->size, min_factor);
4429 if (global_rsv->reserved < min_bytes + num_bytes) {
4430 spin_unlock(&global_rsv->lock);
4431 return -ENOSPC;
4433 global_rsv->reserved -= num_bytes;
4434 if (global_rsv->reserved < global_rsv->size)
4435 global_rsv->full = 0;
4436 spin_unlock(&global_rsv->lock);
4438 block_rsv_add_bytes(dest, num_bytes, 1);
4439 return 0;
4442 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4443 struct btrfs_block_rsv *block_rsv,
4444 struct btrfs_block_rsv *dest, u64 num_bytes)
4446 struct btrfs_space_info *space_info = block_rsv->space_info;
4448 spin_lock(&block_rsv->lock);
4449 if (num_bytes == (u64)-1)
4450 num_bytes = block_rsv->size;
4451 block_rsv->size -= num_bytes;
4452 if (block_rsv->reserved >= block_rsv->size) {
4453 num_bytes = block_rsv->reserved - block_rsv->size;
4454 block_rsv->reserved = block_rsv->size;
4455 block_rsv->full = 1;
4456 } else {
4457 num_bytes = 0;
4459 spin_unlock(&block_rsv->lock);
4461 if (num_bytes > 0) {
4462 if (dest) {
4463 spin_lock(&dest->lock);
4464 if (!dest->full) {
4465 u64 bytes_to_add;
4467 bytes_to_add = dest->size - dest->reserved;
4468 bytes_to_add = min(num_bytes, bytes_to_add);
4469 dest->reserved += bytes_to_add;
4470 if (dest->reserved >= dest->size)
4471 dest->full = 1;
4472 num_bytes -= bytes_to_add;
4474 spin_unlock(&dest->lock);
4476 if (num_bytes) {
4477 spin_lock(&space_info->lock);
4478 space_info->bytes_may_use -= num_bytes;
4479 trace_btrfs_space_reservation(fs_info, "space_info",
4480 space_info->flags, num_bytes, 0);
4481 spin_unlock(&space_info->lock);
4486 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4487 struct btrfs_block_rsv *dst, u64 num_bytes)
4489 int ret;
4491 ret = block_rsv_use_bytes(src, num_bytes);
4492 if (ret)
4493 return ret;
4495 block_rsv_add_bytes(dst, num_bytes, 1);
4496 return 0;
4499 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4501 memset(rsv, 0, sizeof(*rsv));
4502 spin_lock_init(&rsv->lock);
4503 rsv->type = type;
4506 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4507 unsigned short type)
4509 struct btrfs_block_rsv *block_rsv;
4510 struct btrfs_fs_info *fs_info = root->fs_info;
4512 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4513 if (!block_rsv)
4514 return NULL;
4516 btrfs_init_block_rsv(block_rsv, type);
4517 block_rsv->space_info = __find_space_info(fs_info,
4518 BTRFS_BLOCK_GROUP_METADATA);
4519 return block_rsv;
4522 void btrfs_free_block_rsv(struct btrfs_root *root,
4523 struct btrfs_block_rsv *rsv)
4525 if (!rsv)
4526 return;
4527 btrfs_block_rsv_release(root, rsv, (u64)-1);
4528 kfree(rsv);
4531 int btrfs_block_rsv_add(struct btrfs_root *root,
4532 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4533 enum btrfs_reserve_flush_enum flush)
4535 int ret;
4537 if (num_bytes == 0)
4538 return 0;
4540 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4541 if (!ret) {
4542 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4543 return 0;
4546 return ret;
4549 int btrfs_block_rsv_check(struct btrfs_root *root,
4550 struct btrfs_block_rsv *block_rsv, int min_factor)
4552 u64 num_bytes = 0;
4553 int ret = -ENOSPC;
4555 if (!block_rsv)
4556 return 0;
4558 spin_lock(&block_rsv->lock);
4559 num_bytes = div_factor(block_rsv->size, min_factor);
4560 if (block_rsv->reserved >= num_bytes)
4561 ret = 0;
4562 spin_unlock(&block_rsv->lock);
4564 return ret;
4567 int btrfs_block_rsv_refill(struct btrfs_root *root,
4568 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4569 enum btrfs_reserve_flush_enum flush)
4571 u64 num_bytes = 0;
4572 int ret = -ENOSPC;
4574 if (!block_rsv)
4575 return 0;
4577 spin_lock(&block_rsv->lock);
4578 num_bytes = min_reserved;
4579 if (block_rsv->reserved >= num_bytes)
4580 ret = 0;
4581 else
4582 num_bytes -= block_rsv->reserved;
4583 spin_unlock(&block_rsv->lock);
4585 if (!ret)
4586 return 0;
4588 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4589 if (!ret) {
4590 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4591 return 0;
4594 return ret;
4597 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4598 struct btrfs_block_rsv *dst_rsv,
4599 u64 num_bytes)
4601 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4604 void btrfs_block_rsv_release(struct btrfs_root *root,
4605 struct btrfs_block_rsv *block_rsv,
4606 u64 num_bytes)
4608 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4609 if (global_rsv == block_rsv ||
4610 block_rsv->space_info != global_rsv->space_info)
4611 global_rsv = NULL;
4612 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4613 num_bytes);
4617 * helper to calculate size of global block reservation.
4618 * the desired value is sum of space used by extent tree,
4619 * checksum tree and root tree
4621 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4623 struct btrfs_space_info *sinfo;
4624 u64 num_bytes;
4625 u64 meta_used;
4626 u64 data_used;
4627 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4629 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4630 spin_lock(&sinfo->lock);
4631 data_used = sinfo->bytes_used;
4632 spin_unlock(&sinfo->lock);
4634 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4635 spin_lock(&sinfo->lock);
4636 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4637 data_used = 0;
4638 meta_used = sinfo->bytes_used;
4639 spin_unlock(&sinfo->lock);
4641 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4642 csum_size * 2;
4643 num_bytes += div64_u64(data_used + meta_used, 50);
4645 if (num_bytes * 3 > meta_used)
4646 num_bytes = div64_u64(meta_used, 3);
4648 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4651 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4653 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4654 struct btrfs_space_info *sinfo = block_rsv->space_info;
4655 u64 num_bytes;
4657 num_bytes = calc_global_metadata_size(fs_info);
4659 spin_lock(&sinfo->lock);
4660 spin_lock(&block_rsv->lock);
4662 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4664 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4665 sinfo->bytes_reserved + sinfo->bytes_readonly +
4666 sinfo->bytes_may_use;
4668 if (sinfo->total_bytes > num_bytes) {
4669 num_bytes = sinfo->total_bytes - num_bytes;
4670 block_rsv->reserved += num_bytes;
4671 sinfo->bytes_may_use += num_bytes;
4672 trace_btrfs_space_reservation(fs_info, "space_info",
4673 sinfo->flags, num_bytes, 1);
4676 if (block_rsv->reserved >= block_rsv->size) {
4677 num_bytes = block_rsv->reserved - block_rsv->size;
4678 sinfo->bytes_may_use -= num_bytes;
4679 trace_btrfs_space_reservation(fs_info, "space_info",
4680 sinfo->flags, num_bytes, 0);
4681 block_rsv->reserved = block_rsv->size;
4682 block_rsv->full = 1;
4685 spin_unlock(&block_rsv->lock);
4686 spin_unlock(&sinfo->lock);
4689 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4691 struct btrfs_space_info *space_info;
4693 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4694 fs_info->chunk_block_rsv.space_info = space_info;
4696 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4697 fs_info->global_block_rsv.space_info = space_info;
4698 fs_info->delalloc_block_rsv.space_info = space_info;
4699 fs_info->trans_block_rsv.space_info = space_info;
4700 fs_info->empty_block_rsv.space_info = space_info;
4701 fs_info->delayed_block_rsv.space_info = space_info;
4703 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4704 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4705 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4706 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4707 if (fs_info->quota_root)
4708 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4709 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4711 update_global_block_rsv(fs_info);
4714 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4716 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4717 (u64)-1);
4718 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4719 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4720 WARN_ON(fs_info->trans_block_rsv.size > 0);
4721 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4722 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4723 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4724 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4725 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4728 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4729 struct btrfs_root *root)
4731 if (!trans->block_rsv)
4732 return;
4734 if (!trans->bytes_reserved)
4735 return;
4737 trace_btrfs_space_reservation(root->fs_info, "transaction",
4738 trans->transid, trans->bytes_reserved, 0);
4739 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4740 trans->bytes_reserved = 0;
4743 /* Can only return 0 or -ENOSPC */
4744 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4745 struct inode *inode)
4747 struct btrfs_root *root = BTRFS_I(inode)->root;
4748 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4749 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4752 * We need to hold space in order to delete our orphan item once we've
4753 * added it, so this takes the reservation so we can release it later
4754 * when we are truly done with the orphan item.
4756 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4757 trace_btrfs_space_reservation(root->fs_info, "orphan",
4758 btrfs_ino(inode), num_bytes, 1);
4759 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4762 void btrfs_orphan_release_metadata(struct inode *inode)
4764 struct btrfs_root *root = BTRFS_I(inode)->root;
4765 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4766 trace_btrfs_space_reservation(root->fs_info, "orphan",
4767 btrfs_ino(inode), num_bytes, 0);
4768 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4772 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4773 * root: the root of the parent directory
4774 * rsv: block reservation
4775 * items: the number of items that we need do reservation
4776 * qgroup_reserved: used to return the reserved size in qgroup
4778 * This function is used to reserve the space for snapshot/subvolume
4779 * creation and deletion. Those operations are different with the
4780 * common file/directory operations, they change two fs/file trees
4781 * and root tree, the number of items that the qgroup reserves is
4782 * different with the free space reservation. So we can not use
4783 * the space reseravtion mechanism in start_transaction().
4785 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4786 struct btrfs_block_rsv *rsv,
4787 int items,
4788 u64 *qgroup_reserved,
4789 bool use_global_rsv)
4791 u64 num_bytes;
4792 int ret;
4793 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4795 if (root->fs_info->quota_enabled) {
4796 /* One for parent inode, two for dir entries */
4797 num_bytes = 3 * root->leafsize;
4798 ret = btrfs_qgroup_reserve(root, num_bytes);
4799 if (ret)
4800 return ret;
4801 } else {
4802 num_bytes = 0;
4805 *qgroup_reserved = num_bytes;
4807 num_bytes = btrfs_calc_trans_metadata_size(root, items);
4808 rsv->space_info = __find_space_info(root->fs_info,
4809 BTRFS_BLOCK_GROUP_METADATA);
4810 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4811 BTRFS_RESERVE_FLUSH_ALL);
4813 if (ret == -ENOSPC && use_global_rsv)
4814 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4816 if (ret) {
4817 if (*qgroup_reserved)
4818 btrfs_qgroup_free(root, *qgroup_reserved);
4821 return ret;
4824 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4825 struct btrfs_block_rsv *rsv,
4826 u64 qgroup_reserved)
4828 btrfs_block_rsv_release(root, rsv, (u64)-1);
4829 if (qgroup_reserved)
4830 btrfs_qgroup_free(root, qgroup_reserved);
4834 * drop_outstanding_extent - drop an outstanding extent
4835 * @inode: the inode we're dropping the extent for
4837 * This is called when we are freeing up an outstanding extent, either called
4838 * after an error or after an extent is written. This will return the number of
4839 * reserved extents that need to be freed. This must be called with
4840 * BTRFS_I(inode)->lock held.
4842 static unsigned drop_outstanding_extent(struct inode *inode)
4844 unsigned drop_inode_space = 0;
4845 unsigned dropped_extents = 0;
4847 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4848 BTRFS_I(inode)->outstanding_extents--;
4850 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4851 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4852 &BTRFS_I(inode)->runtime_flags))
4853 drop_inode_space = 1;
4856 * If we have more or the same amount of outsanding extents than we have
4857 * reserved then we need to leave the reserved extents count alone.
4859 if (BTRFS_I(inode)->outstanding_extents >=
4860 BTRFS_I(inode)->reserved_extents)
4861 return drop_inode_space;
4863 dropped_extents = BTRFS_I(inode)->reserved_extents -
4864 BTRFS_I(inode)->outstanding_extents;
4865 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4866 return dropped_extents + drop_inode_space;
4870 * calc_csum_metadata_size - return the amount of metada space that must be
4871 * reserved/free'd for the given bytes.
4872 * @inode: the inode we're manipulating
4873 * @num_bytes: the number of bytes in question
4874 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4876 * This adjusts the number of csum_bytes in the inode and then returns the
4877 * correct amount of metadata that must either be reserved or freed. We
4878 * calculate how many checksums we can fit into one leaf and then divide the
4879 * number of bytes that will need to be checksumed by this value to figure out
4880 * how many checksums will be required. If we are adding bytes then the number
4881 * may go up and we will return the number of additional bytes that must be
4882 * reserved. If it is going down we will return the number of bytes that must
4883 * be freed.
4885 * This must be called with BTRFS_I(inode)->lock held.
4887 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4888 int reserve)
4890 struct btrfs_root *root = BTRFS_I(inode)->root;
4891 u64 csum_size;
4892 int num_csums_per_leaf;
4893 int num_csums;
4894 int old_csums;
4896 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4897 BTRFS_I(inode)->csum_bytes == 0)
4898 return 0;
4900 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4901 if (reserve)
4902 BTRFS_I(inode)->csum_bytes += num_bytes;
4903 else
4904 BTRFS_I(inode)->csum_bytes -= num_bytes;
4905 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4906 num_csums_per_leaf = (int)div64_u64(csum_size,
4907 sizeof(struct btrfs_csum_item) +
4908 sizeof(struct btrfs_disk_key));
4909 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4910 num_csums = num_csums + num_csums_per_leaf - 1;
4911 num_csums = num_csums / num_csums_per_leaf;
4913 old_csums = old_csums + num_csums_per_leaf - 1;
4914 old_csums = old_csums / num_csums_per_leaf;
4916 /* No change, no need to reserve more */
4917 if (old_csums == num_csums)
4918 return 0;
4920 if (reserve)
4921 return btrfs_calc_trans_metadata_size(root,
4922 num_csums - old_csums);
4924 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4927 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4929 struct btrfs_root *root = BTRFS_I(inode)->root;
4930 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4931 u64 to_reserve = 0;
4932 u64 csum_bytes;
4933 unsigned nr_extents = 0;
4934 int extra_reserve = 0;
4935 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4936 int ret = 0;
4937 bool delalloc_lock = true;
4938 u64 to_free = 0;
4939 unsigned dropped;
4941 /* If we are a free space inode we need to not flush since we will be in
4942 * the middle of a transaction commit. We also don't need the delalloc
4943 * mutex since we won't race with anybody. We need this mostly to make
4944 * lockdep shut its filthy mouth.
4946 if (btrfs_is_free_space_inode(inode)) {
4947 flush = BTRFS_RESERVE_NO_FLUSH;
4948 delalloc_lock = false;
4951 if (flush != BTRFS_RESERVE_NO_FLUSH &&
4952 btrfs_transaction_in_commit(root->fs_info))
4953 schedule_timeout(1);
4955 if (delalloc_lock)
4956 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4958 num_bytes = ALIGN(num_bytes, root->sectorsize);
4960 spin_lock(&BTRFS_I(inode)->lock);
4961 BTRFS_I(inode)->outstanding_extents++;
4963 if (BTRFS_I(inode)->outstanding_extents >
4964 BTRFS_I(inode)->reserved_extents)
4965 nr_extents = BTRFS_I(inode)->outstanding_extents -
4966 BTRFS_I(inode)->reserved_extents;
4969 * Add an item to reserve for updating the inode when we complete the
4970 * delalloc io.
4972 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4973 &BTRFS_I(inode)->runtime_flags)) {
4974 nr_extents++;
4975 extra_reserve = 1;
4978 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4979 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4980 csum_bytes = BTRFS_I(inode)->csum_bytes;
4981 spin_unlock(&BTRFS_I(inode)->lock);
4983 if (root->fs_info->quota_enabled) {
4984 ret = btrfs_qgroup_reserve(root, num_bytes +
4985 nr_extents * root->leafsize);
4986 if (ret)
4987 goto out_fail;
4990 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4991 if (unlikely(ret)) {
4992 if (root->fs_info->quota_enabled)
4993 btrfs_qgroup_free(root, num_bytes +
4994 nr_extents * root->leafsize);
4995 goto out_fail;
4998 spin_lock(&BTRFS_I(inode)->lock);
4999 if (extra_reserve) {
5000 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5001 &BTRFS_I(inode)->runtime_flags);
5002 nr_extents--;
5004 BTRFS_I(inode)->reserved_extents += nr_extents;
5005 spin_unlock(&BTRFS_I(inode)->lock);
5007 if (delalloc_lock)
5008 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5010 if (to_reserve)
5011 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5012 btrfs_ino(inode), to_reserve, 1);
5013 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5015 return 0;
5017 out_fail:
5018 spin_lock(&BTRFS_I(inode)->lock);
5019 dropped = drop_outstanding_extent(inode);
5021 * If the inodes csum_bytes is the same as the original
5022 * csum_bytes then we know we haven't raced with any free()ers
5023 * so we can just reduce our inodes csum bytes and carry on.
5025 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5026 calc_csum_metadata_size(inode, num_bytes, 0);
5027 } else {
5028 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5029 u64 bytes;
5032 * This is tricky, but first we need to figure out how much we
5033 * free'd from any free-ers that occured during this
5034 * reservation, so we reset ->csum_bytes to the csum_bytes
5035 * before we dropped our lock, and then call the free for the
5036 * number of bytes that were freed while we were trying our
5037 * reservation.
5039 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5040 BTRFS_I(inode)->csum_bytes = csum_bytes;
5041 to_free = calc_csum_metadata_size(inode, bytes, 0);
5045 * Now we need to see how much we would have freed had we not
5046 * been making this reservation and our ->csum_bytes were not
5047 * artificially inflated.
5049 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5050 bytes = csum_bytes - orig_csum_bytes;
5051 bytes = calc_csum_metadata_size(inode, bytes, 0);
5054 * Now reset ->csum_bytes to what it should be. If bytes is
5055 * more than to_free then we would have free'd more space had we
5056 * not had an artificially high ->csum_bytes, so we need to free
5057 * the remainder. If bytes is the same or less then we don't
5058 * need to do anything, the other free-ers did the correct
5059 * thing.
5061 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5062 if (bytes > to_free)
5063 to_free = bytes - to_free;
5064 else
5065 to_free = 0;
5067 spin_unlock(&BTRFS_I(inode)->lock);
5068 if (dropped)
5069 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5071 if (to_free) {
5072 btrfs_block_rsv_release(root, block_rsv, to_free);
5073 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5074 btrfs_ino(inode), to_free, 0);
5076 if (delalloc_lock)
5077 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5078 return ret;
5082 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5083 * @inode: the inode to release the reservation for
5084 * @num_bytes: the number of bytes we're releasing
5086 * This will release the metadata reservation for an inode. This can be called
5087 * once we complete IO for a given set of bytes to release their metadata
5088 * reservations.
5090 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5092 struct btrfs_root *root = BTRFS_I(inode)->root;
5093 u64 to_free = 0;
5094 unsigned dropped;
5096 num_bytes = ALIGN(num_bytes, root->sectorsize);
5097 spin_lock(&BTRFS_I(inode)->lock);
5098 dropped = drop_outstanding_extent(inode);
5100 if (num_bytes)
5101 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5102 spin_unlock(&BTRFS_I(inode)->lock);
5103 if (dropped > 0)
5104 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5106 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5107 btrfs_ino(inode), to_free, 0);
5108 if (root->fs_info->quota_enabled) {
5109 btrfs_qgroup_free(root, num_bytes +
5110 dropped * root->leafsize);
5113 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5114 to_free);
5118 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5119 * @inode: inode we're writing to
5120 * @num_bytes: the number of bytes we want to allocate
5122 * This will do the following things
5124 * o reserve space in the data space info for num_bytes
5125 * o reserve space in the metadata space info based on number of outstanding
5126 * extents and how much csums will be needed
5127 * o add to the inodes ->delalloc_bytes
5128 * o add it to the fs_info's delalloc inodes list.
5130 * This will return 0 for success and -ENOSPC if there is no space left.
5132 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5134 int ret;
5136 ret = btrfs_check_data_free_space(inode, num_bytes);
5137 if (ret)
5138 return ret;
5140 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5141 if (ret) {
5142 btrfs_free_reserved_data_space(inode, num_bytes);
5143 return ret;
5146 return 0;
5150 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5151 * @inode: inode we're releasing space for
5152 * @num_bytes: the number of bytes we want to free up
5154 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5155 * called in the case that we don't need the metadata AND data reservations
5156 * anymore. So if there is an error or we insert an inline extent.
5158 * This function will release the metadata space that was not used and will
5159 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5160 * list if there are no delalloc bytes left.
5162 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5164 btrfs_delalloc_release_metadata(inode, num_bytes);
5165 btrfs_free_reserved_data_space(inode, num_bytes);
5168 static int update_block_group(struct btrfs_root *root,
5169 u64 bytenr, u64 num_bytes, int alloc)
5171 struct btrfs_block_group_cache *cache = NULL;
5172 struct btrfs_fs_info *info = root->fs_info;
5173 u64 total = num_bytes;
5174 u64 old_val;
5175 u64 byte_in_group;
5176 int factor;
5178 /* block accounting for super block */
5179 spin_lock(&info->delalloc_root_lock);
5180 old_val = btrfs_super_bytes_used(info->super_copy);
5181 if (alloc)
5182 old_val += num_bytes;
5183 else
5184 old_val -= num_bytes;
5185 btrfs_set_super_bytes_used(info->super_copy, old_val);
5186 spin_unlock(&info->delalloc_root_lock);
5188 while (total) {
5189 cache = btrfs_lookup_block_group(info, bytenr);
5190 if (!cache)
5191 return -ENOENT;
5192 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5193 BTRFS_BLOCK_GROUP_RAID1 |
5194 BTRFS_BLOCK_GROUP_RAID10))
5195 factor = 2;
5196 else
5197 factor = 1;
5199 * If this block group has free space cache written out, we
5200 * need to make sure to load it if we are removing space. This
5201 * is because we need the unpinning stage to actually add the
5202 * space back to the block group, otherwise we will leak space.
5204 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5205 cache_block_group(cache, 1);
5207 byte_in_group = bytenr - cache->key.objectid;
5208 WARN_ON(byte_in_group > cache->key.offset);
5210 spin_lock(&cache->space_info->lock);
5211 spin_lock(&cache->lock);
5213 if (btrfs_test_opt(root, SPACE_CACHE) &&
5214 cache->disk_cache_state < BTRFS_DC_CLEAR)
5215 cache->disk_cache_state = BTRFS_DC_CLEAR;
5217 cache->dirty = 1;
5218 old_val = btrfs_block_group_used(&cache->item);
5219 num_bytes = min(total, cache->key.offset - byte_in_group);
5220 if (alloc) {
5221 old_val += num_bytes;
5222 btrfs_set_block_group_used(&cache->item, old_val);
5223 cache->reserved -= num_bytes;
5224 cache->space_info->bytes_reserved -= num_bytes;
5225 cache->space_info->bytes_used += num_bytes;
5226 cache->space_info->disk_used += num_bytes * factor;
5227 spin_unlock(&cache->lock);
5228 spin_unlock(&cache->space_info->lock);
5229 } else {
5230 old_val -= num_bytes;
5231 btrfs_set_block_group_used(&cache->item, old_val);
5232 cache->pinned += num_bytes;
5233 cache->space_info->bytes_pinned += num_bytes;
5234 cache->space_info->bytes_used -= num_bytes;
5235 cache->space_info->disk_used -= num_bytes * factor;
5236 spin_unlock(&cache->lock);
5237 spin_unlock(&cache->space_info->lock);
5239 set_extent_dirty(info->pinned_extents,
5240 bytenr, bytenr + num_bytes - 1,
5241 GFP_NOFS | __GFP_NOFAIL);
5243 btrfs_put_block_group(cache);
5244 total -= num_bytes;
5245 bytenr += num_bytes;
5247 return 0;
5250 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5252 struct btrfs_block_group_cache *cache;
5253 u64 bytenr;
5255 spin_lock(&root->fs_info->block_group_cache_lock);
5256 bytenr = root->fs_info->first_logical_byte;
5257 spin_unlock(&root->fs_info->block_group_cache_lock);
5259 if (bytenr < (u64)-1)
5260 return bytenr;
5262 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5263 if (!cache)
5264 return 0;
5266 bytenr = cache->key.objectid;
5267 btrfs_put_block_group(cache);
5269 return bytenr;
5272 static int pin_down_extent(struct btrfs_root *root,
5273 struct btrfs_block_group_cache *cache,
5274 u64 bytenr, u64 num_bytes, int reserved)
5276 spin_lock(&cache->space_info->lock);
5277 spin_lock(&cache->lock);
5278 cache->pinned += num_bytes;
5279 cache->space_info->bytes_pinned += num_bytes;
5280 if (reserved) {
5281 cache->reserved -= num_bytes;
5282 cache->space_info->bytes_reserved -= num_bytes;
5284 spin_unlock(&cache->lock);
5285 spin_unlock(&cache->space_info->lock);
5287 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5288 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5289 if (reserved)
5290 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5291 return 0;
5295 * this function must be called within transaction
5297 int btrfs_pin_extent(struct btrfs_root *root,
5298 u64 bytenr, u64 num_bytes, int reserved)
5300 struct btrfs_block_group_cache *cache;
5302 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5303 BUG_ON(!cache); /* Logic error */
5305 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5307 btrfs_put_block_group(cache);
5308 return 0;
5312 * this function must be called within transaction
5314 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5315 u64 bytenr, u64 num_bytes)
5317 struct btrfs_block_group_cache *cache;
5318 int ret;
5320 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5321 if (!cache)
5322 return -EINVAL;
5325 * pull in the free space cache (if any) so that our pin
5326 * removes the free space from the cache. We have load_only set
5327 * to one because the slow code to read in the free extents does check
5328 * the pinned extents.
5330 cache_block_group(cache, 1);
5332 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5334 /* remove us from the free space cache (if we're there at all) */
5335 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5336 btrfs_put_block_group(cache);
5337 return ret;
5340 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5342 int ret;
5343 struct btrfs_block_group_cache *block_group;
5344 struct btrfs_caching_control *caching_ctl;
5346 block_group = btrfs_lookup_block_group(root->fs_info, start);
5347 if (!block_group)
5348 return -EINVAL;
5350 cache_block_group(block_group, 0);
5351 caching_ctl = get_caching_control(block_group);
5353 if (!caching_ctl) {
5354 /* Logic error */
5355 BUG_ON(!block_group_cache_done(block_group));
5356 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5357 } else {
5358 mutex_lock(&caching_ctl->mutex);
5360 if (start >= caching_ctl->progress) {
5361 ret = add_excluded_extent(root, start, num_bytes);
5362 } else if (start + num_bytes <= caching_ctl->progress) {
5363 ret = btrfs_remove_free_space(block_group,
5364 start, num_bytes);
5365 } else {
5366 num_bytes = caching_ctl->progress - start;
5367 ret = btrfs_remove_free_space(block_group,
5368 start, num_bytes);
5369 if (ret)
5370 goto out_lock;
5372 num_bytes = (start + num_bytes) -
5373 caching_ctl->progress;
5374 start = caching_ctl->progress;
5375 ret = add_excluded_extent(root, start, num_bytes);
5377 out_lock:
5378 mutex_unlock(&caching_ctl->mutex);
5379 put_caching_control(caching_ctl);
5381 btrfs_put_block_group(block_group);
5382 return ret;
5385 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5386 struct extent_buffer *eb)
5388 struct btrfs_file_extent_item *item;
5389 struct btrfs_key key;
5390 int found_type;
5391 int i;
5393 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5394 return 0;
5396 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5397 btrfs_item_key_to_cpu(eb, &key, i);
5398 if (key.type != BTRFS_EXTENT_DATA_KEY)
5399 continue;
5400 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5401 found_type = btrfs_file_extent_type(eb, item);
5402 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5403 continue;
5404 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5405 continue;
5406 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5407 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5408 __exclude_logged_extent(log, key.objectid, key.offset);
5411 return 0;
5415 * btrfs_update_reserved_bytes - update the block_group and space info counters
5416 * @cache: The cache we are manipulating
5417 * @num_bytes: The number of bytes in question
5418 * @reserve: One of the reservation enums
5420 * This is called by the allocator when it reserves space, or by somebody who is
5421 * freeing space that was never actually used on disk. For example if you
5422 * reserve some space for a new leaf in transaction A and before transaction A
5423 * commits you free that leaf, you call this with reserve set to 0 in order to
5424 * clear the reservation.
5426 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5427 * ENOSPC accounting. For data we handle the reservation through clearing the
5428 * delalloc bits in the io_tree. We have to do this since we could end up
5429 * allocating less disk space for the amount of data we have reserved in the
5430 * case of compression.
5432 * If this is a reservation and the block group has become read only we cannot
5433 * make the reservation and return -EAGAIN, otherwise this function always
5434 * succeeds.
5436 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5437 u64 num_bytes, int reserve)
5439 struct btrfs_space_info *space_info = cache->space_info;
5440 int ret = 0;
5442 spin_lock(&space_info->lock);
5443 spin_lock(&cache->lock);
5444 if (reserve != RESERVE_FREE) {
5445 if (cache->ro) {
5446 ret = -EAGAIN;
5447 } else {
5448 cache->reserved += num_bytes;
5449 space_info->bytes_reserved += num_bytes;
5450 if (reserve == RESERVE_ALLOC) {
5451 trace_btrfs_space_reservation(cache->fs_info,
5452 "space_info", space_info->flags,
5453 num_bytes, 0);
5454 space_info->bytes_may_use -= num_bytes;
5457 } else {
5458 if (cache->ro)
5459 space_info->bytes_readonly += num_bytes;
5460 cache->reserved -= num_bytes;
5461 space_info->bytes_reserved -= num_bytes;
5463 spin_unlock(&cache->lock);
5464 spin_unlock(&space_info->lock);
5465 return ret;
5468 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5469 struct btrfs_root *root)
5471 struct btrfs_fs_info *fs_info = root->fs_info;
5472 struct btrfs_caching_control *next;
5473 struct btrfs_caching_control *caching_ctl;
5474 struct btrfs_block_group_cache *cache;
5475 struct btrfs_space_info *space_info;
5477 down_write(&fs_info->commit_root_sem);
5479 list_for_each_entry_safe(caching_ctl, next,
5480 &fs_info->caching_block_groups, list) {
5481 cache = caching_ctl->block_group;
5482 if (block_group_cache_done(cache)) {
5483 cache->last_byte_to_unpin = (u64)-1;
5484 list_del_init(&caching_ctl->list);
5485 put_caching_control(caching_ctl);
5486 } else {
5487 cache->last_byte_to_unpin = caching_ctl->progress;
5491 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5492 fs_info->pinned_extents = &fs_info->freed_extents[1];
5493 else
5494 fs_info->pinned_extents = &fs_info->freed_extents[0];
5496 up_write(&fs_info->commit_root_sem);
5498 list_for_each_entry_rcu(space_info, &fs_info->space_info, list)
5499 percpu_counter_set(&space_info->total_bytes_pinned, 0);
5501 update_global_block_rsv(fs_info);
5504 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5506 struct btrfs_fs_info *fs_info = root->fs_info;
5507 struct btrfs_block_group_cache *cache = NULL;
5508 struct btrfs_space_info *space_info;
5509 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5510 u64 len;
5511 bool readonly;
5513 while (start <= end) {
5514 readonly = false;
5515 if (!cache ||
5516 start >= cache->key.objectid + cache->key.offset) {
5517 if (cache)
5518 btrfs_put_block_group(cache);
5519 cache = btrfs_lookup_block_group(fs_info, start);
5520 BUG_ON(!cache); /* Logic error */
5523 len = cache->key.objectid + cache->key.offset - start;
5524 len = min(len, end + 1 - start);
5526 if (start < cache->last_byte_to_unpin) {
5527 len = min(len, cache->last_byte_to_unpin - start);
5528 btrfs_add_free_space(cache, start, len);
5531 start += len;
5532 space_info = cache->space_info;
5534 spin_lock(&space_info->lock);
5535 spin_lock(&cache->lock);
5536 cache->pinned -= len;
5537 space_info->bytes_pinned -= len;
5538 if (cache->ro) {
5539 space_info->bytes_readonly += len;
5540 readonly = true;
5542 spin_unlock(&cache->lock);
5543 if (!readonly && global_rsv->space_info == space_info) {
5544 spin_lock(&global_rsv->lock);
5545 if (!global_rsv->full) {
5546 len = min(len, global_rsv->size -
5547 global_rsv->reserved);
5548 global_rsv->reserved += len;
5549 space_info->bytes_may_use += len;
5550 if (global_rsv->reserved >= global_rsv->size)
5551 global_rsv->full = 1;
5553 spin_unlock(&global_rsv->lock);
5555 spin_unlock(&space_info->lock);
5558 if (cache)
5559 btrfs_put_block_group(cache);
5560 return 0;
5563 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5564 struct btrfs_root *root)
5566 struct btrfs_fs_info *fs_info = root->fs_info;
5567 struct extent_io_tree *unpin;
5568 u64 start;
5569 u64 end;
5570 int ret;
5572 if (trans->aborted)
5573 return 0;
5575 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5576 unpin = &fs_info->freed_extents[1];
5577 else
5578 unpin = &fs_info->freed_extents[0];
5580 while (1) {
5581 ret = find_first_extent_bit(unpin, 0, &start, &end,
5582 EXTENT_DIRTY, NULL);
5583 if (ret)
5584 break;
5586 if (btrfs_test_opt(root, DISCARD))
5587 ret = btrfs_discard_extent(root, start,
5588 end + 1 - start, NULL);
5590 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5591 unpin_extent_range(root, start, end);
5592 cond_resched();
5595 return 0;
5598 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5599 u64 owner, u64 root_objectid)
5601 struct btrfs_space_info *space_info;
5602 u64 flags;
5604 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5605 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5606 flags = BTRFS_BLOCK_GROUP_SYSTEM;
5607 else
5608 flags = BTRFS_BLOCK_GROUP_METADATA;
5609 } else {
5610 flags = BTRFS_BLOCK_GROUP_DATA;
5613 space_info = __find_space_info(fs_info, flags);
5614 BUG_ON(!space_info); /* Logic bug */
5615 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5619 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5620 struct btrfs_root *root,
5621 u64 bytenr, u64 num_bytes, u64 parent,
5622 u64 root_objectid, u64 owner_objectid,
5623 u64 owner_offset, int refs_to_drop,
5624 struct btrfs_delayed_extent_op *extent_op)
5626 struct btrfs_key key;
5627 struct btrfs_path *path;
5628 struct btrfs_fs_info *info = root->fs_info;
5629 struct btrfs_root *extent_root = info->extent_root;
5630 struct extent_buffer *leaf;
5631 struct btrfs_extent_item *ei;
5632 struct btrfs_extent_inline_ref *iref;
5633 int ret;
5634 int is_data;
5635 int extent_slot = 0;
5636 int found_extent = 0;
5637 int num_to_del = 1;
5638 u32 item_size;
5639 u64 refs;
5640 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5641 SKINNY_METADATA);
5643 path = btrfs_alloc_path();
5644 if (!path)
5645 return -ENOMEM;
5647 path->reada = 1;
5648 path->leave_spinning = 1;
5650 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5651 BUG_ON(!is_data && refs_to_drop != 1);
5653 if (is_data)
5654 skinny_metadata = 0;
5656 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5657 bytenr, num_bytes, parent,
5658 root_objectid, owner_objectid,
5659 owner_offset);
5660 if (ret == 0) {
5661 extent_slot = path->slots[0];
5662 while (extent_slot >= 0) {
5663 btrfs_item_key_to_cpu(path->nodes[0], &key,
5664 extent_slot);
5665 if (key.objectid != bytenr)
5666 break;
5667 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5668 key.offset == num_bytes) {
5669 found_extent = 1;
5670 break;
5672 if (key.type == BTRFS_METADATA_ITEM_KEY &&
5673 key.offset == owner_objectid) {
5674 found_extent = 1;
5675 break;
5677 if (path->slots[0] - extent_slot > 5)
5678 break;
5679 extent_slot--;
5681 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5682 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5683 if (found_extent && item_size < sizeof(*ei))
5684 found_extent = 0;
5685 #endif
5686 if (!found_extent) {
5687 BUG_ON(iref);
5688 ret = remove_extent_backref(trans, extent_root, path,
5689 NULL, refs_to_drop,
5690 is_data);
5691 if (ret) {
5692 btrfs_abort_transaction(trans, extent_root, ret);
5693 goto out;
5695 btrfs_release_path(path);
5696 path->leave_spinning = 1;
5698 key.objectid = bytenr;
5699 key.type = BTRFS_EXTENT_ITEM_KEY;
5700 key.offset = num_bytes;
5702 if (!is_data && skinny_metadata) {
5703 key.type = BTRFS_METADATA_ITEM_KEY;
5704 key.offset = owner_objectid;
5707 ret = btrfs_search_slot(trans, extent_root,
5708 &key, path, -1, 1);
5709 if (ret > 0 && skinny_metadata && path->slots[0]) {
5711 * Couldn't find our skinny metadata item,
5712 * see if we have ye olde extent item.
5714 path->slots[0]--;
5715 btrfs_item_key_to_cpu(path->nodes[0], &key,
5716 path->slots[0]);
5717 if (key.objectid == bytenr &&
5718 key.type == BTRFS_EXTENT_ITEM_KEY &&
5719 key.offset == num_bytes)
5720 ret = 0;
5723 if (ret > 0 && skinny_metadata) {
5724 skinny_metadata = false;
5725 key.objectid = bytenr;
5726 key.type = BTRFS_EXTENT_ITEM_KEY;
5727 key.offset = num_bytes;
5728 btrfs_release_path(path);
5729 ret = btrfs_search_slot(trans, extent_root,
5730 &key, path, -1, 1);
5733 if (ret) {
5734 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5735 ret, bytenr);
5736 if (ret > 0)
5737 btrfs_print_leaf(extent_root,
5738 path->nodes[0]);
5740 if (ret < 0) {
5741 btrfs_abort_transaction(trans, extent_root, ret);
5742 goto out;
5744 extent_slot = path->slots[0];
5746 } else if (WARN_ON(ret == -ENOENT)) {
5747 btrfs_print_leaf(extent_root, path->nodes[0]);
5748 btrfs_err(info,
5749 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5750 bytenr, parent, root_objectid, owner_objectid,
5751 owner_offset);
5752 btrfs_abort_transaction(trans, extent_root, ret);
5753 goto out;
5754 } else {
5755 btrfs_abort_transaction(trans, extent_root, ret);
5756 goto out;
5759 leaf = path->nodes[0];
5760 item_size = btrfs_item_size_nr(leaf, extent_slot);
5761 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5762 if (item_size < sizeof(*ei)) {
5763 BUG_ON(found_extent || extent_slot != path->slots[0]);
5764 ret = convert_extent_item_v0(trans, extent_root, path,
5765 owner_objectid, 0);
5766 if (ret < 0) {
5767 btrfs_abort_transaction(trans, extent_root, ret);
5768 goto out;
5771 btrfs_release_path(path);
5772 path->leave_spinning = 1;
5774 key.objectid = bytenr;
5775 key.type = BTRFS_EXTENT_ITEM_KEY;
5776 key.offset = num_bytes;
5778 ret = btrfs_search_slot(trans, extent_root, &key, path,
5779 -1, 1);
5780 if (ret) {
5781 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5782 ret, bytenr);
5783 btrfs_print_leaf(extent_root, path->nodes[0]);
5785 if (ret < 0) {
5786 btrfs_abort_transaction(trans, extent_root, ret);
5787 goto out;
5790 extent_slot = path->slots[0];
5791 leaf = path->nodes[0];
5792 item_size = btrfs_item_size_nr(leaf, extent_slot);
5794 #endif
5795 BUG_ON(item_size < sizeof(*ei));
5796 ei = btrfs_item_ptr(leaf, extent_slot,
5797 struct btrfs_extent_item);
5798 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5799 key.type == BTRFS_EXTENT_ITEM_KEY) {
5800 struct btrfs_tree_block_info *bi;
5801 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5802 bi = (struct btrfs_tree_block_info *)(ei + 1);
5803 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5806 refs = btrfs_extent_refs(leaf, ei);
5807 if (refs < refs_to_drop) {
5808 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5809 "for bytenr %Lu\n", refs_to_drop, refs, bytenr);
5810 ret = -EINVAL;
5811 btrfs_abort_transaction(trans, extent_root, ret);
5812 goto out;
5814 refs -= refs_to_drop;
5816 if (refs > 0) {
5817 if (extent_op)
5818 __run_delayed_extent_op(extent_op, leaf, ei);
5820 * In the case of inline back ref, reference count will
5821 * be updated by remove_extent_backref
5823 if (iref) {
5824 BUG_ON(!found_extent);
5825 } else {
5826 btrfs_set_extent_refs(leaf, ei, refs);
5827 btrfs_mark_buffer_dirty(leaf);
5829 if (found_extent) {
5830 ret = remove_extent_backref(trans, extent_root, path,
5831 iref, refs_to_drop,
5832 is_data);
5833 if (ret) {
5834 btrfs_abort_transaction(trans, extent_root, ret);
5835 goto out;
5838 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
5839 root_objectid);
5840 } else {
5841 if (found_extent) {
5842 BUG_ON(is_data && refs_to_drop !=
5843 extent_data_ref_count(root, path, iref));
5844 if (iref) {
5845 BUG_ON(path->slots[0] != extent_slot);
5846 } else {
5847 BUG_ON(path->slots[0] != extent_slot + 1);
5848 path->slots[0] = extent_slot;
5849 num_to_del = 2;
5853 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5854 num_to_del);
5855 if (ret) {
5856 btrfs_abort_transaction(trans, extent_root, ret);
5857 goto out;
5859 btrfs_release_path(path);
5861 if (is_data) {
5862 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5863 if (ret) {
5864 btrfs_abort_transaction(trans, extent_root, ret);
5865 goto out;
5869 ret = update_block_group(root, bytenr, num_bytes, 0);
5870 if (ret) {
5871 btrfs_abort_transaction(trans, extent_root, ret);
5872 goto out;
5875 out:
5876 btrfs_free_path(path);
5877 return ret;
5881 * when we free an block, it is possible (and likely) that we free the last
5882 * delayed ref for that extent as well. This searches the delayed ref tree for
5883 * a given extent, and if there are no other delayed refs to be processed, it
5884 * removes it from the tree.
5886 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5887 struct btrfs_root *root, u64 bytenr)
5889 struct btrfs_delayed_ref_head *head;
5890 struct btrfs_delayed_ref_root *delayed_refs;
5891 int ret = 0;
5893 delayed_refs = &trans->transaction->delayed_refs;
5894 spin_lock(&delayed_refs->lock);
5895 head = btrfs_find_delayed_ref_head(trans, bytenr);
5896 if (!head)
5897 goto out_delayed_unlock;
5899 spin_lock(&head->lock);
5900 if (rb_first(&head->ref_root))
5901 goto out;
5903 if (head->extent_op) {
5904 if (!head->must_insert_reserved)
5905 goto out;
5906 btrfs_free_delayed_extent_op(head->extent_op);
5907 head->extent_op = NULL;
5911 * waiting for the lock here would deadlock. If someone else has it
5912 * locked they are already in the process of dropping it anyway
5914 if (!mutex_trylock(&head->mutex))
5915 goto out;
5918 * at this point we have a head with no other entries. Go
5919 * ahead and process it.
5921 head->node.in_tree = 0;
5922 rb_erase(&head->href_node, &delayed_refs->href_root);
5924 atomic_dec(&delayed_refs->num_entries);
5927 * we don't take a ref on the node because we're removing it from the
5928 * tree, so we just steal the ref the tree was holding.
5930 delayed_refs->num_heads--;
5931 if (head->processing == 0)
5932 delayed_refs->num_heads_ready--;
5933 head->processing = 0;
5934 spin_unlock(&head->lock);
5935 spin_unlock(&delayed_refs->lock);
5937 BUG_ON(head->extent_op);
5938 if (head->must_insert_reserved)
5939 ret = 1;
5941 mutex_unlock(&head->mutex);
5942 btrfs_put_delayed_ref(&head->node);
5943 return ret;
5944 out:
5945 spin_unlock(&head->lock);
5947 out_delayed_unlock:
5948 spin_unlock(&delayed_refs->lock);
5949 return 0;
5952 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5953 struct btrfs_root *root,
5954 struct extent_buffer *buf,
5955 u64 parent, int last_ref)
5957 struct btrfs_block_group_cache *cache = NULL;
5958 int pin = 1;
5959 int ret;
5961 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5962 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5963 buf->start, buf->len,
5964 parent, root->root_key.objectid,
5965 btrfs_header_level(buf),
5966 BTRFS_DROP_DELAYED_REF, NULL, 0);
5967 BUG_ON(ret); /* -ENOMEM */
5970 if (!last_ref)
5971 return;
5973 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5975 if (btrfs_header_generation(buf) == trans->transid) {
5976 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5977 ret = check_ref_cleanup(trans, root, buf->start);
5978 if (!ret)
5979 goto out;
5982 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5983 pin_down_extent(root, cache, buf->start, buf->len, 1);
5984 goto out;
5987 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5989 btrfs_add_free_space(cache, buf->start, buf->len);
5990 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5991 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
5992 pin = 0;
5994 out:
5995 if (pin)
5996 add_pinned_bytes(root->fs_info, buf->len,
5997 btrfs_header_level(buf),
5998 root->root_key.objectid);
6001 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6002 * anymore.
6004 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6005 btrfs_put_block_group(cache);
6008 /* Can return -ENOMEM */
6009 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6010 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6011 u64 owner, u64 offset, int for_cow)
6013 int ret;
6014 struct btrfs_fs_info *fs_info = root->fs_info;
6016 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6019 * tree log blocks never actually go into the extent allocation
6020 * tree, just update pinning info and exit early.
6022 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6023 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6024 /* unlocks the pinned mutex */
6025 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6026 ret = 0;
6027 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6028 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6029 num_bytes,
6030 parent, root_objectid, (int)owner,
6031 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
6032 } else {
6033 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6034 num_bytes,
6035 parent, root_objectid, owner,
6036 offset, BTRFS_DROP_DELAYED_REF,
6037 NULL, for_cow);
6039 return ret;
6042 static u64 stripe_align(struct btrfs_root *root,
6043 struct btrfs_block_group_cache *cache,
6044 u64 val, u64 num_bytes)
6046 u64 ret = ALIGN(val, root->stripesize);
6047 return ret;
6051 * when we wait for progress in the block group caching, its because
6052 * our allocation attempt failed at least once. So, we must sleep
6053 * and let some progress happen before we try again.
6055 * This function will sleep at least once waiting for new free space to
6056 * show up, and then it will check the block group free space numbers
6057 * for our min num_bytes. Another option is to have it go ahead
6058 * and look in the rbtree for a free extent of a given size, but this
6059 * is a good start.
6061 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6062 * any of the information in this block group.
6064 static noinline void
6065 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6066 u64 num_bytes)
6068 struct btrfs_caching_control *caching_ctl;
6070 caching_ctl = get_caching_control(cache);
6071 if (!caching_ctl)
6072 return;
6074 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6075 (cache->free_space_ctl->free_space >= num_bytes));
6077 put_caching_control(caching_ctl);
6080 static noinline int
6081 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6083 struct btrfs_caching_control *caching_ctl;
6084 int ret = 0;
6086 caching_ctl = get_caching_control(cache);
6087 if (!caching_ctl)
6088 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6090 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6091 if (cache->cached == BTRFS_CACHE_ERROR)
6092 ret = -EIO;
6093 put_caching_control(caching_ctl);
6094 return ret;
6097 int __get_raid_index(u64 flags)
6099 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6100 return BTRFS_RAID_RAID10;
6101 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6102 return BTRFS_RAID_RAID1;
6103 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6104 return BTRFS_RAID_DUP;
6105 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6106 return BTRFS_RAID_RAID0;
6107 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6108 return BTRFS_RAID_RAID5;
6109 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6110 return BTRFS_RAID_RAID6;
6112 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6115 int get_block_group_index(struct btrfs_block_group_cache *cache)
6117 return __get_raid_index(cache->flags);
6120 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6121 [BTRFS_RAID_RAID10] = "raid10",
6122 [BTRFS_RAID_RAID1] = "raid1",
6123 [BTRFS_RAID_DUP] = "dup",
6124 [BTRFS_RAID_RAID0] = "raid0",
6125 [BTRFS_RAID_SINGLE] = "single",
6126 [BTRFS_RAID_RAID5] = "raid5",
6127 [BTRFS_RAID_RAID6] = "raid6",
6130 static const char *get_raid_name(enum btrfs_raid_types type)
6132 if (type >= BTRFS_NR_RAID_TYPES)
6133 return NULL;
6135 return btrfs_raid_type_names[type];
6138 enum btrfs_loop_type {
6139 LOOP_CACHING_NOWAIT = 0,
6140 LOOP_CACHING_WAIT = 1,
6141 LOOP_ALLOC_CHUNK = 2,
6142 LOOP_NO_EMPTY_SIZE = 3,
6146 * walks the btree of allocated extents and find a hole of a given size.
6147 * The key ins is changed to record the hole:
6148 * ins->objectid == start position
6149 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6150 * ins->offset == the size of the hole.
6151 * Any available blocks before search_start are skipped.
6153 * If there is no suitable free space, we will record the max size of
6154 * the free space extent currently.
6156 static noinline int find_free_extent(struct btrfs_root *orig_root,
6157 u64 num_bytes, u64 empty_size,
6158 u64 hint_byte, struct btrfs_key *ins,
6159 u64 flags)
6161 int ret = 0;
6162 struct btrfs_root *root = orig_root->fs_info->extent_root;
6163 struct btrfs_free_cluster *last_ptr = NULL;
6164 struct btrfs_block_group_cache *block_group = NULL;
6165 u64 search_start = 0;
6166 u64 max_extent_size = 0;
6167 int empty_cluster = 2 * 1024 * 1024;
6168 struct btrfs_space_info *space_info;
6169 int loop = 0;
6170 int index = __get_raid_index(flags);
6171 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6172 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6173 bool failed_cluster_refill = false;
6174 bool failed_alloc = false;
6175 bool use_cluster = true;
6176 bool have_caching_bg = false;
6178 WARN_ON(num_bytes < root->sectorsize);
6179 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6180 ins->objectid = 0;
6181 ins->offset = 0;
6183 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6185 space_info = __find_space_info(root->fs_info, flags);
6186 if (!space_info) {
6187 btrfs_err(root->fs_info, "No space info for %llu", flags);
6188 return -ENOSPC;
6192 * If the space info is for both data and metadata it means we have a
6193 * small filesystem and we can't use the clustering stuff.
6195 if (btrfs_mixed_space_info(space_info))
6196 use_cluster = false;
6198 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6199 last_ptr = &root->fs_info->meta_alloc_cluster;
6200 if (!btrfs_test_opt(root, SSD))
6201 empty_cluster = 64 * 1024;
6204 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6205 btrfs_test_opt(root, SSD)) {
6206 last_ptr = &root->fs_info->data_alloc_cluster;
6209 if (last_ptr) {
6210 spin_lock(&last_ptr->lock);
6211 if (last_ptr->block_group)
6212 hint_byte = last_ptr->window_start;
6213 spin_unlock(&last_ptr->lock);
6216 search_start = max(search_start, first_logical_byte(root, 0));
6217 search_start = max(search_start, hint_byte);
6219 if (!last_ptr)
6220 empty_cluster = 0;
6222 if (search_start == hint_byte) {
6223 block_group = btrfs_lookup_block_group(root->fs_info,
6224 search_start);
6226 * we don't want to use the block group if it doesn't match our
6227 * allocation bits, or if its not cached.
6229 * However if we are re-searching with an ideal block group
6230 * picked out then we don't care that the block group is cached.
6232 if (block_group && block_group_bits(block_group, flags) &&
6233 block_group->cached != BTRFS_CACHE_NO) {
6234 down_read(&space_info->groups_sem);
6235 if (list_empty(&block_group->list) ||
6236 block_group->ro) {
6238 * someone is removing this block group,
6239 * we can't jump into the have_block_group
6240 * target because our list pointers are not
6241 * valid
6243 btrfs_put_block_group(block_group);
6244 up_read(&space_info->groups_sem);
6245 } else {
6246 index = get_block_group_index(block_group);
6247 goto have_block_group;
6249 } else if (block_group) {
6250 btrfs_put_block_group(block_group);
6253 search:
6254 have_caching_bg = false;
6255 down_read(&space_info->groups_sem);
6256 list_for_each_entry(block_group, &space_info->block_groups[index],
6257 list) {
6258 u64 offset;
6259 int cached;
6261 btrfs_get_block_group(block_group);
6262 search_start = block_group->key.objectid;
6265 * this can happen if we end up cycling through all the
6266 * raid types, but we want to make sure we only allocate
6267 * for the proper type.
6269 if (!block_group_bits(block_group, flags)) {
6270 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6271 BTRFS_BLOCK_GROUP_RAID1 |
6272 BTRFS_BLOCK_GROUP_RAID5 |
6273 BTRFS_BLOCK_GROUP_RAID6 |
6274 BTRFS_BLOCK_GROUP_RAID10;
6277 * if they asked for extra copies and this block group
6278 * doesn't provide them, bail. This does allow us to
6279 * fill raid0 from raid1.
6281 if ((flags & extra) && !(block_group->flags & extra))
6282 goto loop;
6285 have_block_group:
6286 cached = block_group_cache_done(block_group);
6287 if (unlikely(!cached)) {
6288 ret = cache_block_group(block_group, 0);
6289 BUG_ON(ret < 0);
6290 ret = 0;
6293 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6294 goto loop;
6295 if (unlikely(block_group->ro))
6296 goto loop;
6299 * Ok we want to try and use the cluster allocator, so
6300 * lets look there
6302 if (last_ptr) {
6303 struct btrfs_block_group_cache *used_block_group;
6304 unsigned long aligned_cluster;
6306 * the refill lock keeps out other
6307 * people trying to start a new cluster
6309 spin_lock(&last_ptr->refill_lock);
6310 used_block_group = last_ptr->block_group;
6311 if (used_block_group != block_group &&
6312 (!used_block_group ||
6313 used_block_group->ro ||
6314 !block_group_bits(used_block_group, flags)))
6315 goto refill_cluster;
6317 if (used_block_group != block_group)
6318 btrfs_get_block_group(used_block_group);
6320 offset = btrfs_alloc_from_cluster(used_block_group,
6321 last_ptr,
6322 num_bytes,
6323 used_block_group->key.objectid,
6324 &max_extent_size);
6325 if (offset) {
6326 /* we have a block, we're done */
6327 spin_unlock(&last_ptr->refill_lock);
6328 trace_btrfs_reserve_extent_cluster(root,
6329 used_block_group,
6330 search_start, num_bytes);
6331 if (used_block_group != block_group) {
6332 btrfs_put_block_group(block_group);
6333 block_group = used_block_group;
6335 goto checks;
6338 WARN_ON(last_ptr->block_group != used_block_group);
6339 if (used_block_group != block_group)
6340 btrfs_put_block_group(used_block_group);
6341 refill_cluster:
6342 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6343 * set up a new clusters, so lets just skip it
6344 * and let the allocator find whatever block
6345 * it can find. If we reach this point, we
6346 * will have tried the cluster allocator
6347 * plenty of times and not have found
6348 * anything, so we are likely way too
6349 * fragmented for the clustering stuff to find
6350 * anything.
6352 * However, if the cluster is taken from the
6353 * current block group, release the cluster
6354 * first, so that we stand a better chance of
6355 * succeeding in the unclustered
6356 * allocation. */
6357 if (loop >= LOOP_NO_EMPTY_SIZE &&
6358 last_ptr->block_group != block_group) {
6359 spin_unlock(&last_ptr->refill_lock);
6360 goto unclustered_alloc;
6364 * this cluster didn't work out, free it and
6365 * start over
6367 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6369 if (loop >= LOOP_NO_EMPTY_SIZE) {
6370 spin_unlock(&last_ptr->refill_lock);
6371 goto unclustered_alloc;
6374 aligned_cluster = max_t(unsigned long,
6375 empty_cluster + empty_size,
6376 block_group->full_stripe_len);
6378 /* allocate a cluster in this block group */
6379 ret = btrfs_find_space_cluster(root, block_group,
6380 last_ptr, search_start,
6381 num_bytes,
6382 aligned_cluster);
6383 if (ret == 0) {
6385 * now pull our allocation out of this
6386 * cluster
6388 offset = btrfs_alloc_from_cluster(block_group,
6389 last_ptr,
6390 num_bytes,
6391 search_start,
6392 &max_extent_size);
6393 if (offset) {
6394 /* we found one, proceed */
6395 spin_unlock(&last_ptr->refill_lock);
6396 trace_btrfs_reserve_extent_cluster(root,
6397 block_group, search_start,
6398 num_bytes);
6399 goto checks;
6401 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6402 && !failed_cluster_refill) {
6403 spin_unlock(&last_ptr->refill_lock);
6405 failed_cluster_refill = true;
6406 wait_block_group_cache_progress(block_group,
6407 num_bytes + empty_cluster + empty_size);
6408 goto have_block_group;
6412 * at this point we either didn't find a cluster
6413 * or we weren't able to allocate a block from our
6414 * cluster. Free the cluster we've been trying
6415 * to use, and go to the next block group
6417 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6418 spin_unlock(&last_ptr->refill_lock);
6419 goto loop;
6422 unclustered_alloc:
6423 spin_lock(&block_group->free_space_ctl->tree_lock);
6424 if (cached &&
6425 block_group->free_space_ctl->free_space <
6426 num_bytes + empty_cluster + empty_size) {
6427 if (block_group->free_space_ctl->free_space >
6428 max_extent_size)
6429 max_extent_size =
6430 block_group->free_space_ctl->free_space;
6431 spin_unlock(&block_group->free_space_ctl->tree_lock);
6432 goto loop;
6434 spin_unlock(&block_group->free_space_ctl->tree_lock);
6436 offset = btrfs_find_space_for_alloc(block_group, search_start,
6437 num_bytes, empty_size,
6438 &max_extent_size);
6440 * If we didn't find a chunk, and we haven't failed on this
6441 * block group before, and this block group is in the middle of
6442 * caching and we are ok with waiting, then go ahead and wait
6443 * for progress to be made, and set failed_alloc to true.
6445 * If failed_alloc is true then we've already waited on this
6446 * block group once and should move on to the next block group.
6448 if (!offset && !failed_alloc && !cached &&
6449 loop > LOOP_CACHING_NOWAIT) {
6450 wait_block_group_cache_progress(block_group,
6451 num_bytes + empty_size);
6452 failed_alloc = true;
6453 goto have_block_group;
6454 } else if (!offset) {
6455 if (!cached)
6456 have_caching_bg = true;
6457 goto loop;
6459 checks:
6460 search_start = stripe_align(root, block_group,
6461 offset, num_bytes);
6463 /* move on to the next group */
6464 if (search_start + num_bytes >
6465 block_group->key.objectid + block_group->key.offset) {
6466 btrfs_add_free_space(block_group, offset, num_bytes);
6467 goto loop;
6470 if (offset < search_start)
6471 btrfs_add_free_space(block_group, offset,
6472 search_start - offset);
6473 BUG_ON(offset > search_start);
6475 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6476 alloc_type);
6477 if (ret == -EAGAIN) {
6478 btrfs_add_free_space(block_group, offset, num_bytes);
6479 goto loop;
6482 /* we are all good, lets return */
6483 ins->objectid = search_start;
6484 ins->offset = num_bytes;
6486 trace_btrfs_reserve_extent(orig_root, block_group,
6487 search_start, num_bytes);
6488 btrfs_put_block_group(block_group);
6489 break;
6490 loop:
6491 failed_cluster_refill = false;
6492 failed_alloc = false;
6493 BUG_ON(index != get_block_group_index(block_group));
6494 btrfs_put_block_group(block_group);
6496 up_read(&space_info->groups_sem);
6498 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6499 goto search;
6501 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6502 goto search;
6505 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6506 * caching kthreads as we move along
6507 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6508 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6509 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6510 * again
6512 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6513 index = 0;
6514 loop++;
6515 if (loop == LOOP_ALLOC_CHUNK) {
6516 struct btrfs_trans_handle *trans;
6518 trans = btrfs_join_transaction(root);
6519 if (IS_ERR(trans)) {
6520 ret = PTR_ERR(trans);
6521 goto out;
6524 ret = do_chunk_alloc(trans, root, flags,
6525 CHUNK_ALLOC_FORCE);
6527 * Do not bail out on ENOSPC since we
6528 * can do more things.
6530 if (ret < 0 && ret != -ENOSPC)
6531 btrfs_abort_transaction(trans,
6532 root, ret);
6533 else
6534 ret = 0;
6535 btrfs_end_transaction(trans, root);
6536 if (ret)
6537 goto out;
6540 if (loop == LOOP_NO_EMPTY_SIZE) {
6541 empty_size = 0;
6542 empty_cluster = 0;
6545 goto search;
6546 } else if (!ins->objectid) {
6547 ret = -ENOSPC;
6548 } else if (ins->objectid) {
6549 ret = 0;
6551 out:
6552 if (ret == -ENOSPC)
6553 ins->offset = max_extent_size;
6554 return ret;
6557 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6558 int dump_block_groups)
6560 struct btrfs_block_group_cache *cache;
6561 int index = 0;
6563 spin_lock(&info->lock);
6564 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6565 info->flags,
6566 info->total_bytes - info->bytes_used - info->bytes_pinned -
6567 info->bytes_reserved - info->bytes_readonly,
6568 (info->full) ? "" : "not ");
6569 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6570 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6571 info->total_bytes, info->bytes_used, info->bytes_pinned,
6572 info->bytes_reserved, info->bytes_may_use,
6573 info->bytes_readonly);
6574 spin_unlock(&info->lock);
6576 if (!dump_block_groups)
6577 return;
6579 down_read(&info->groups_sem);
6580 again:
6581 list_for_each_entry(cache, &info->block_groups[index], list) {
6582 spin_lock(&cache->lock);
6583 printk(KERN_INFO "BTRFS: "
6584 "block group %llu has %llu bytes, "
6585 "%llu used %llu pinned %llu reserved %s\n",
6586 cache->key.objectid, cache->key.offset,
6587 btrfs_block_group_used(&cache->item), cache->pinned,
6588 cache->reserved, cache->ro ? "[readonly]" : "");
6589 btrfs_dump_free_space(cache, bytes);
6590 spin_unlock(&cache->lock);
6592 if (++index < BTRFS_NR_RAID_TYPES)
6593 goto again;
6594 up_read(&info->groups_sem);
6597 int btrfs_reserve_extent(struct btrfs_root *root,
6598 u64 num_bytes, u64 min_alloc_size,
6599 u64 empty_size, u64 hint_byte,
6600 struct btrfs_key *ins, int is_data)
6602 bool final_tried = false;
6603 u64 flags;
6604 int ret;
6606 flags = btrfs_get_alloc_profile(root, is_data);
6607 again:
6608 WARN_ON(num_bytes < root->sectorsize);
6609 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6610 flags);
6612 if (ret == -ENOSPC) {
6613 if (!final_tried && ins->offset) {
6614 num_bytes = min(num_bytes >> 1, ins->offset);
6615 num_bytes = round_down(num_bytes, root->sectorsize);
6616 num_bytes = max(num_bytes, min_alloc_size);
6617 if (num_bytes == min_alloc_size)
6618 final_tried = true;
6619 goto again;
6620 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6621 struct btrfs_space_info *sinfo;
6623 sinfo = __find_space_info(root->fs_info, flags);
6624 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6625 flags, num_bytes);
6626 if (sinfo)
6627 dump_space_info(sinfo, num_bytes, 1);
6631 return ret;
6634 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6635 u64 start, u64 len, int pin)
6637 struct btrfs_block_group_cache *cache;
6638 int ret = 0;
6640 cache = btrfs_lookup_block_group(root->fs_info, start);
6641 if (!cache) {
6642 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6643 start);
6644 return -ENOSPC;
6647 if (btrfs_test_opt(root, DISCARD))
6648 ret = btrfs_discard_extent(root, start, len, NULL);
6650 if (pin)
6651 pin_down_extent(root, cache, start, len, 1);
6652 else {
6653 btrfs_add_free_space(cache, start, len);
6654 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6656 btrfs_put_block_group(cache);
6658 trace_btrfs_reserved_extent_free(root, start, len);
6660 return ret;
6663 int btrfs_free_reserved_extent(struct btrfs_root *root,
6664 u64 start, u64 len)
6666 return __btrfs_free_reserved_extent(root, start, len, 0);
6669 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6670 u64 start, u64 len)
6672 return __btrfs_free_reserved_extent(root, start, len, 1);
6675 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6676 struct btrfs_root *root,
6677 u64 parent, u64 root_objectid,
6678 u64 flags, u64 owner, u64 offset,
6679 struct btrfs_key *ins, int ref_mod)
6681 int ret;
6682 struct btrfs_fs_info *fs_info = root->fs_info;
6683 struct btrfs_extent_item *extent_item;
6684 struct btrfs_extent_inline_ref *iref;
6685 struct btrfs_path *path;
6686 struct extent_buffer *leaf;
6687 int type;
6688 u32 size;
6690 if (parent > 0)
6691 type = BTRFS_SHARED_DATA_REF_KEY;
6692 else
6693 type = BTRFS_EXTENT_DATA_REF_KEY;
6695 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6697 path = btrfs_alloc_path();
6698 if (!path)
6699 return -ENOMEM;
6701 path->leave_spinning = 1;
6702 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6703 ins, size);
6704 if (ret) {
6705 btrfs_free_path(path);
6706 return ret;
6709 leaf = path->nodes[0];
6710 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6711 struct btrfs_extent_item);
6712 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6713 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6714 btrfs_set_extent_flags(leaf, extent_item,
6715 flags | BTRFS_EXTENT_FLAG_DATA);
6717 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6718 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6719 if (parent > 0) {
6720 struct btrfs_shared_data_ref *ref;
6721 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6722 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6723 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6724 } else {
6725 struct btrfs_extent_data_ref *ref;
6726 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6727 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6728 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6729 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6730 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6733 btrfs_mark_buffer_dirty(path->nodes[0]);
6734 btrfs_free_path(path);
6736 ret = update_block_group(root, ins->objectid, ins->offset, 1);
6737 if (ret) { /* -ENOENT, logic error */
6738 btrfs_err(fs_info, "update block group failed for %llu %llu",
6739 ins->objectid, ins->offset);
6740 BUG();
6742 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6743 return ret;
6746 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6747 struct btrfs_root *root,
6748 u64 parent, u64 root_objectid,
6749 u64 flags, struct btrfs_disk_key *key,
6750 int level, struct btrfs_key *ins)
6752 int ret;
6753 struct btrfs_fs_info *fs_info = root->fs_info;
6754 struct btrfs_extent_item *extent_item;
6755 struct btrfs_tree_block_info *block_info;
6756 struct btrfs_extent_inline_ref *iref;
6757 struct btrfs_path *path;
6758 struct extent_buffer *leaf;
6759 u32 size = sizeof(*extent_item) + sizeof(*iref);
6760 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6761 SKINNY_METADATA);
6763 if (!skinny_metadata)
6764 size += sizeof(*block_info);
6766 path = btrfs_alloc_path();
6767 if (!path) {
6768 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6769 root->leafsize);
6770 return -ENOMEM;
6773 path->leave_spinning = 1;
6774 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6775 ins, size);
6776 if (ret) {
6777 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6778 root->leafsize);
6779 btrfs_free_path(path);
6780 return ret;
6783 leaf = path->nodes[0];
6784 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6785 struct btrfs_extent_item);
6786 btrfs_set_extent_refs(leaf, extent_item, 1);
6787 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6788 btrfs_set_extent_flags(leaf, extent_item,
6789 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6791 if (skinny_metadata) {
6792 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6793 } else {
6794 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6795 btrfs_set_tree_block_key(leaf, block_info, key);
6796 btrfs_set_tree_block_level(leaf, block_info, level);
6797 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6800 if (parent > 0) {
6801 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6802 btrfs_set_extent_inline_ref_type(leaf, iref,
6803 BTRFS_SHARED_BLOCK_REF_KEY);
6804 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6805 } else {
6806 btrfs_set_extent_inline_ref_type(leaf, iref,
6807 BTRFS_TREE_BLOCK_REF_KEY);
6808 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6811 btrfs_mark_buffer_dirty(leaf);
6812 btrfs_free_path(path);
6814 ret = update_block_group(root, ins->objectid, root->leafsize, 1);
6815 if (ret) { /* -ENOENT, logic error */
6816 btrfs_err(fs_info, "update block group failed for %llu %llu",
6817 ins->objectid, ins->offset);
6818 BUG();
6821 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->leafsize);
6822 return ret;
6825 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6826 struct btrfs_root *root,
6827 u64 root_objectid, u64 owner,
6828 u64 offset, struct btrfs_key *ins)
6830 int ret;
6832 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6834 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6835 ins->offset, 0,
6836 root_objectid, owner, offset,
6837 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6838 return ret;
6842 * this is used by the tree logging recovery code. It records that
6843 * an extent has been allocated and makes sure to clear the free
6844 * space cache bits as well
6846 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6847 struct btrfs_root *root,
6848 u64 root_objectid, u64 owner, u64 offset,
6849 struct btrfs_key *ins)
6851 int ret;
6852 struct btrfs_block_group_cache *block_group;
6855 * Mixed block groups will exclude before processing the log so we only
6856 * need to do the exlude dance if this fs isn't mixed.
6858 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
6859 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
6860 if (ret)
6861 return ret;
6864 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6865 if (!block_group)
6866 return -EINVAL;
6868 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6869 RESERVE_ALLOC_NO_ACCOUNT);
6870 BUG_ON(ret); /* logic error */
6871 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6872 0, owner, offset, ins, 1);
6873 btrfs_put_block_group(block_group);
6874 return ret;
6877 static struct extent_buffer *
6878 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6879 u64 bytenr, u32 blocksize, int level)
6881 struct extent_buffer *buf;
6883 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6884 if (!buf)
6885 return ERR_PTR(-ENOMEM);
6886 btrfs_set_header_generation(buf, trans->transid);
6887 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6888 btrfs_tree_lock(buf);
6889 clean_tree_block(trans, root, buf);
6890 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6892 btrfs_set_lock_blocking(buf);
6893 btrfs_set_buffer_uptodate(buf);
6895 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6897 * we allow two log transactions at a time, use different
6898 * EXENT bit to differentiate dirty pages.
6900 if (root->log_transid % 2 == 0)
6901 set_extent_dirty(&root->dirty_log_pages, buf->start,
6902 buf->start + buf->len - 1, GFP_NOFS);
6903 else
6904 set_extent_new(&root->dirty_log_pages, buf->start,
6905 buf->start + buf->len - 1, GFP_NOFS);
6906 } else {
6907 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6908 buf->start + buf->len - 1, GFP_NOFS);
6910 trans->blocks_used++;
6911 /* this returns a buffer locked for blocking */
6912 return buf;
6915 static struct btrfs_block_rsv *
6916 use_block_rsv(struct btrfs_trans_handle *trans,
6917 struct btrfs_root *root, u32 blocksize)
6919 struct btrfs_block_rsv *block_rsv;
6920 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6921 int ret;
6922 bool global_updated = false;
6924 block_rsv = get_block_rsv(trans, root);
6926 if (unlikely(block_rsv->size == 0))
6927 goto try_reserve;
6928 again:
6929 ret = block_rsv_use_bytes(block_rsv, blocksize);
6930 if (!ret)
6931 return block_rsv;
6933 if (block_rsv->failfast)
6934 return ERR_PTR(ret);
6936 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
6937 global_updated = true;
6938 update_global_block_rsv(root->fs_info);
6939 goto again;
6942 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6943 static DEFINE_RATELIMIT_STATE(_rs,
6944 DEFAULT_RATELIMIT_INTERVAL * 10,
6945 /*DEFAULT_RATELIMIT_BURST*/ 1);
6946 if (__ratelimit(&_rs))
6947 WARN(1, KERN_DEBUG
6948 "BTRFS: block rsv returned %d\n", ret);
6950 try_reserve:
6951 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6952 BTRFS_RESERVE_NO_FLUSH);
6953 if (!ret)
6954 return block_rsv;
6956 * If we couldn't reserve metadata bytes try and use some from
6957 * the global reserve if its space type is the same as the global
6958 * reservation.
6960 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
6961 block_rsv->space_info == global_rsv->space_info) {
6962 ret = block_rsv_use_bytes(global_rsv, blocksize);
6963 if (!ret)
6964 return global_rsv;
6966 return ERR_PTR(ret);
6969 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6970 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6972 block_rsv_add_bytes(block_rsv, blocksize, 0);
6973 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6977 * finds a free extent and does all the dirty work required for allocation
6978 * returns the key for the extent through ins, and a tree buffer for
6979 * the first block of the extent through buf.
6981 * returns the tree buffer or NULL.
6983 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6984 struct btrfs_root *root, u32 blocksize,
6985 u64 parent, u64 root_objectid,
6986 struct btrfs_disk_key *key, int level,
6987 u64 hint, u64 empty_size)
6989 struct btrfs_key ins;
6990 struct btrfs_block_rsv *block_rsv;
6991 struct extent_buffer *buf;
6992 u64 flags = 0;
6993 int ret;
6994 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6995 SKINNY_METADATA);
6997 block_rsv = use_block_rsv(trans, root, blocksize);
6998 if (IS_ERR(block_rsv))
6999 return ERR_CAST(block_rsv);
7001 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7002 empty_size, hint, &ins, 0);
7003 if (ret) {
7004 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7005 return ERR_PTR(ret);
7008 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
7009 blocksize, level);
7010 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7012 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7013 if (parent == 0)
7014 parent = ins.objectid;
7015 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7016 } else
7017 BUG_ON(parent > 0);
7019 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7020 struct btrfs_delayed_extent_op *extent_op;
7021 extent_op = btrfs_alloc_delayed_extent_op();
7022 BUG_ON(!extent_op); /* -ENOMEM */
7023 if (key)
7024 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7025 else
7026 memset(&extent_op->key, 0, sizeof(extent_op->key));
7027 extent_op->flags_to_set = flags;
7028 if (skinny_metadata)
7029 extent_op->update_key = 0;
7030 else
7031 extent_op->update_key = 1;
7032 extent_op->update_flags = 1;
7033 extent_op->is_data = 0;
7034 extent_op->level = level;
7036 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7037 ins.objectid,
7038 ins.offset, parent, root_objectid,
7039 level, BTRFS_ADD_DELAYED_EXTENT,
7040 extent_op, 0);
7041 BUG_ON(ret); /* -ENOMEM */
7043 return buf;
7046 struct walk_control {
7047 u64 refs[BTRFS_MAX_LEVEL];
7048 u64 flags[BTRFS_MAX_LEVEL];
7049 struct btrfs_key update_progress;
7050 int stage;
7051 int level;
7052 int shared_level;
7053 int update_ref;
7054 int keep_locks;
7055 int reada_slot;
7056 int reada_count;
7057 int for_reloc;
7060 #define DROP_REFERENCE 1
7061 #define UPDATE_BACKREF 2
7063 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7064 struct btrfs_root *root,
7065 struct walk_control *wc,
7066 struct btrfs_path *path)
7068 u64 bytenr;
7069 u64 generation;
7070 u64 refs;
7071 u64 flags;
7072 u32 nritems;
7073 u32 blocksize;
7074 struct btrfs_key key;
7075 struct extent_buffer *eb;
7076 int ret;
7077 int slot;
7078 int nread = 0;
7080 if (path->slots[wc->level] < wc->reada_slot) {
7081 wc->reada_count = wc->reada_count * 2 / 3;
7082 wc->reada_count = max(wc->reada_count, 2);
7083 } else {
7084 wc->reada_count = wc->reada_count * 3 / 2;
7085 wc->reada_count = min_t(int, wc->reada_count,
7086 BTRFS_NODEPTRS_PER_BLOCK(root));
7089 eb = path->nodes[wc->level];
7090 nritems = btrfs_header_nritems(eb);
7091 blocksize = btrfs_level_size(root, wc->level - 1);
7093 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7094 if (nread >= wc->reada_count)
7095 break;
7097 cond_resched();
7098 bytenr = btrfs_node_blockptr(eb, slot);
7099 generation = btrfs_node_ptr_generation(eb, slot);
7101 if (slot == path->slots[wc->level])
7102 goto reada;
7104 if (wc->stage == UPDATE_BACKREF &&
7105 generation <= root->root_key.offset)
7106 continue;
7108 /* We don't lock the tree block, it's OK to be racy here */
7109 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7110 wc->level - 1, 1, &refs,
7111 &flags);
7112 /* We don't care about errors in readahead. */
7113 if (ret < 0)
7114 continue;
7115 BUG_ON(refs == 0);
7117 if (wc->stage == DROP_REFERENCE) {
7118 if (refs == 1)
7119 goto reada;
7121 if (wc->level == 1 &&
7122 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7123 continue;
7124 if (!wc->update_ref ||
7125 generation <= root->root_key.offset)
7126 continue;
7127 btrfs_node_key_to_cpu(eb, &key, slot);
7128 ret = btrfs_comp_cpu_keys(&key,
7129 &wc->update_progress);
7130 if (ret < 0)
7131 continue;
7132 } else {
7133 if (wc->level == 1 &&
7134 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7135 continue;
7137 reada:
7138 ret = readahead_tree_block(root, bytenr, blocksize,
7139 generation);
7140 if (ret)
7141 break;
7142 nread++;
7144 wc->reada_slot = slot;
7148 * helper to process tree block while walking down the tree.
7150 * when wc->stage == UPDATE_BACKREF, this function updates
7151 * back refs for pointers in the block.
7153 * NOTE: return value 1 means we should stop walking down.
7155 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7156 struct btrfs_root *root,
7157 struct btrfs_path *path,
7158 struct walk_control *wc, int lookup_info)
7160 int level = wc->level;
7161 struct extent_buffer *eb = path->nodes[level];
7162 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7163 int ret;
7165 if (wc->stage == UPDATE_BACKREF &&
7166 btrfs_header_owner(eb) != root->root_key.objectid)
7167 return 1;
7170 * when reference count of tree block is 1, it won't increase
7171 * again. once full backref flag is set, we never clear it.
7173 if (lookup_info &&
7174 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7175 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7176 BUG_ON(!path->locks[level]);
7177 ret = btrfs_lookup_extent_info(trans, root,
7178 eb->start, level, 1,
7179 &wc->refs[level],
7180 &wc->flags[level]);
7181 BUG_ON(ret == -ENOMEM);
7182 if (ret)
7183 return ret;
7184 BUG_ON(wc->refs[level] == 0);
7187 if (wc->stage == DROP_REFERENCE) {
7188 if (wc->refs[level] > 1)
7189 return 1;
7191 if (path->locks[level] && !wc->keep_locks) {
7192 btrfs_tree_unlock_rw(eb, path->locks[level]);
7193 path->locks[level] = 0;
7195 return 0;
7198 /* wc->stage == UPDATE_BACKREF */
7199 if (!(wc->flags[level] & flag)) {
7200 BUG_ON(!path->locks[level]);
7201 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
7202 BUG_ON(ret); /* -ENOMEM */
7203 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
7204 BUG_ON(ret); /* -ENOMEM */
7205 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7206 eb->len, flag,
7207 btrfs_header_level(eb), 0);
7208 BUG_ON(ret); /* -ENOMEM */
7209 wc->flags[level] |= flag;
7213 * the block is shared by multiple trees, so it's not good to
7214 * keep the tree lock
7216 if (path->locks[level] && level > 0) {
7217 btrfs_tree_unlock_rw(eb, path->locks[level]);
7218 path->locks[level] = 0;
7220 return 0;
7224 * helper to process tree block pointer.
7226 * when wc->stage == DROP_REFERENCE, this function checks
7227 * reference count of the block pointed to. if the block
7228 * is shared and we need update back refs for the subtree
7229 * rooted at the block, this function changes wc->stage to
7230 * UPDATE_BACKREF. if the block is shared and there is no
7231 * need to update back, this function drops the reference
7232 * to the block.
7234 * NOTE: return value 1 means we should stop walking down.
7236 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7237 struct btrfs_root *root,
7238 struct btrfs_path *path,
7239 struct walk_control *wc, int *lookup_info)
7241 u64 bytenr;
7242 u64 generation;
7243 u64 parent;
7244 u32 blocksize;
7245 struct btrfs_key key;
7246 struct extent_buffer *next;
7247 int level = wc->level;
7248 int reada = 0;
7249 int ret = 0;
7251 generation = btrfs_node_ptr_generation(path->nodes[level],
7252 path->slots[level]);
7254 * if the lower level block was created before the snapshot
7255 * was created, we know there is no need to update back refs
7256 * for the subtree
7258 if (wc->stage == UPDATE_BACKREF &&
7259 generation <= root->root_key.offset) {
7260 *lookup_info = 1;
7261 return 1;
7264 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7265 blocksize = btrfs_level_size(root, level - 1);
7267 next = btrfs_find_tree_block(root, bytenr, blocksize);
7268 if (!next) {
7269 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7270 if (!next)
7271 return -ENOMEM;
7272 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7273 level - 1);
7274 reada = 1;
7276 btrfs_tree_lock(next);
7277 btrfs_set_lock_blocking(next);
7279 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7280 &wc->refs[level - 1],
7281 &wc->flags[level - 1]);
7282 if (ret < 0) {
7283 btrfs_tree_unlock(next);
7284 return ret;
7287 if (unlikely(wc->refs[level - 1] == 0)) {
7288 btrfs_err(root->fs_info, "Missing references.");
7289 BUG();
7291 *lookup_info = 0;
7293 if (wc->stage == DROP_REFERENCE) {
7294 if (wc->refs[level - 1] > 1) {
7295 if (level == 1 &&
7296 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7297 goto skip;
7299 if (!wc->update_ref ||
7300 generation <= root->root_key.offset)
7301 goto skip;
7303 btrfs_node_key_to_cpu(path->nodes[level], &key,
7304 path->slots[level]);
7305 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7306 if (ret < 0)
7307 goto skip;
7309 wc->stage = UPDATE_BACKREF;
7310 wc->shared_level = level - 1;
7312 } else {
7313 if (level == 1 &&
7314 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7315 goto skip;
7318 if (!btrfs_buffer_uptodate(next, generation, 0)) {
7319 btrfs_tree_unlock(next);
7320 free_extent_buffer(next);
7321 next = NULL;
7322 *lookup_info = 1;
7325 if (!next) {
7326 if (reada && level == 1)
7327 reada_walk_down(trans, root, wc, path);
7328 next = read_tree_block(root, bytenr, blocksize, generation);
7329 if (!next || !extent_buffer_uptodate(next)) {
7330 free_extent_buffer(next);
7331 return -EIO;
7333 btrfs_tree_lock(next);
7334 btrfs_set_lock_blocking(next);
7337 level--;
7338 BUG_ON(level != btrfs_header_level(next));
7339 path->nodes[level] = next;
7340 path->slots[level] = 0;
7341 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7342 wc->level = level;
7343 if (wc->level == 1)
7344 wc->reada_slot = 0;
7345 return 0;
7346 skip:
7347 wc->refs[level - 1] = 0;
7348 wc->flags[level - 1] = 0;
7349 if (wc->stage == DROP_REFERENCE) {
7350 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7351 parent = path->nodes[level]->start;
7352 } else {
7353 BUG_ON(root->root_key.objectid !=
7354 btrfs_header_owner(path->nodes[level]));
7355 parent = 0;
7358 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7359 root->root_key.objectid, level - 1, 0, 0);
7360 BUG_ON(ret); /* -ENOMEM */
7362 btrfs_tree_unlock(next);
7363 free_extent_buffer(next);
7364 *lookup_info = 1;
7365 return 1;
7369 * helper to process tree block while walking up the tree.
7371 * when wc->stage == DROP_REFERENCE, this function drops
7372 * reference count on the block.
7374 * when wc->stage == UPDATE_BACKREF, this function changes
7375 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7376 * to UPDATE_BACKREF previously while processing the block.
7378 * NOTE: return value 1 means we should stop walking up.
7380 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7381 struct btrfs_root *root,
7382 struct btrfs_path *path,
7383 struct walk_control *wc)
7385 int ret;
7386 int level = wc->level;
7387 struct extent_buffer *eb = path->nodes[level];
7388 u64 parent = 0;
7390 if (wc->stage == UPDATE_BACKREF) {
7391 BUG_ON(wc->shared_level < level);
7392 if (level < wc->shared_level)
7393 goto out;
7395 ret = find_next_key(path, level + 1, &wc->update_progress);
7396 if (ret > 0)
7397 wc->update_ref = 0;
7399 wc->stage = DROP_REFERENCE;
7400 wc->shared_level = -1;
7401 path->slots[level] = 0;
7404 * check reference count again if the block isn't locked.
7405 * we should start walking down the tree again if reference
7406 * count is one.
7408 if (!path->locks[level]) {
7409 BUG_ON(level == 0);
7410 btrfs_tree_lock(eb);
7411 btrfs_set_lock_blocking(eb);
7412 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7414 ret = btrfs_lookup_extent_info(trans, root,
7415 eb->start, level, 1,
7416 &wc->refs[level],
7417 &wc->flags[level]);
7418 if (ret < 0) {
7419 btrfs_tree_unlock_rw(eb, path->locks[level]);
7420 path->locks[level] = 0;
7421 return ret;
7423 BUG_ON(wc->refs[level] == 0);
7424 if (wc->refs[level] == 1) {
7425 btrfs_tree_unlock_rw(eb, path->locks[level]);
7426 path->locks[level] = 0;
7427 return 1;
7432 /* wc->stage == DROP_REFERENCE */
7433 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7435 if (wc->refs[level] == 1) {
7436 if (level == 0) {
7437 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7438 ret = btrfs_dec_ref(trans, root, eb, 1,
7439 wc->for_reloc);
7440 else
7441 ret = btrfs_dec_ref(trans, root, eb, 0,
7442 wc->for_reloc);
7443 BUG_ON(ret); /* -ENOMEM */
7445 /* make block locked assertion in clean_tree_block happy */
7446 if (!path->locks[level] &&
7447 btrfs_header_generation(eb) == trans->transid) {
7448 btrfs_tree_lock(eb);
7449 btrfs_set_lock_blocking(eb);
7450 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7452 clean_tree_block(trans, root, eb);
7455 if (eb == root->node) {
7456 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7457 parent = eb->start;
7458 else
7459 BUG_ON(root->root_key.objectid !=
7460 btrfs_header_owner(eb));
7461 } else {
7462 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7463 parent = path->nodes[level + 1]->start;
7464 else
7465 BUG_ON(root->root_key.objectid !=
7466 btrfs_header_owner(path->nodes[level + 1]));
7469 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7470 out:
7471 wc->refs[level] = 0;
7472 wc->flags[level] = 0;
7473 return 0;
7476 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7477 struct btrfs_root *root,
7478 struct btrfs_path *path,
7479 struct walk_control *wc)
7481 int level = wc->level;
7482 int lookup_info = 1;
7483 int ret;
7485 while (level >= 0) {
7486 ret = walk_down_proc(trans, root, path, wc, lookup_info);
7487 if (ret > 0)
7488 break;
7490 if (level == 0)
7491 break;
7493 if (path->slots[level] >=
7494 btrfs_header_nritems(path->nodes[level]))
7495 break;
7497 ret = do_walk_down(trans, root, path, wc, &lookup_info);
7498 if (ret > 0) {
7499 path->slots[level]++;
7500 continue;
7501 } else if (ret < 0)
7502 return ret;
7503 level = wc->level;
7505 return 0;
7508 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7509 struct btrfs_root *root,
7510 struct btrfs_path *path,
7511 struct walk_control *wc, int max_level)
7513 int level = wc->level;
7514 int ret;
7516 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7517 while (level < max_level && path->nodes[level]) {
7518 wc->level = level;
7519 if (path->slots[level] + 1 <
7520 btrfs_header_nritems(path->nodes[level])) {
7521 path->slots[level]++;
7522 return 0;
7523 } else {
7524 ret = walk_up_proc(trans, root, path, wc);
7525 if (ret > 0)
7526 return 0;
7528 if (path->locks[level]) {
7529 btrfs_tree_unlock_rw(path->nodes[level],
7530 path->locks[level]);
7531 path->locks[level] = 0;
7533 free_extent_buffer(path->nodes[level]);
7534 path->nodes[level] = NULL;
7535 level++;
7538 return 1;
7542 * drop a subvolume tree.
7544 * this function traverses the tree freeing any blocks that only
7545 * referenced by the tree.
7547 * when a shared tree block is found. this function decreases its
7548 * reference count by one. if update_ref is true, this function
7549 * also make sure backrefs for the shared block and all lower level
7550 * blocks are properly updated.
7552 * If called with for_reloc == 0, may exit early with -EAGAIN
7554 int btrfs_drop_snapshot(struct btrfs_root *root,
7555 struct btrfs_block_rsv *block_rsv, int update_ref,
7556 int for_reloc)
7558 struct btrfs_path *path;
7559 struct btrfs_trans_handle *trans;
7560 struct btrfs_root *tree_root = root->fs_info->tree_root;
7561 struct btrfs_root_item *root_item = &root->root_item;
7562 struct walk_control *wc;
7563 struct btrfs_key key;
7564 int err = 0;
7565 int ret;
7566 int level;
7567 bool root_dropped = false;
7569 path = btrfs_alloc_path();
7570 if (!path) {
7571 err = -ENOMEM;
7572 goto out;
7575 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7576 if (!wc) {
7577 btrfs_free_path(path);
7578 err = -ENOMEM;
7579 goto out;
7582 trans = btrfs_start_transaction(tree_root, 0);
7583 if (IS_ERR(trans)) {
7584 err = PTR_ERR(trans);
7585 goto out_free;
7588 if (block_rsv)
7589 trans->block_rsv = block_rsv;
7591 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7592 level = btrfs_header_level(root->node);
7593 path->nodes[level] = btrfs_lock_root_node(root);
7594 btrfs_set_lock_blocking(path->nodes[level]);
7595 path->slots[level] = 0;
7596 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7597 memset(&wc->update_progress, 0,
7598 sizeof(wc->update_progress));
7599 } else {
7600 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7601 memcpy(&wc->update_progress, &key,
7602 sizeof(wc->update_progress));
7604 level = root_item->drop_level;
7605 BUG_ON(level == 0);
7606 path->lowest_level = level;
7607 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7608 path->lowest_level = 0;
7609 if (ret < 0) {
7610 err = ret;
7611 goto out_end_trans;
7613 WARN_ON(ret > 0);
7616 * unlock our path, this is safe because only this
7617 * function is allowed to delete this snapshot
7619 btrfs_unlock_up_safe(path, 0);
7621 level = btrfs_header_level(root->node);
7622 while (1) {
7623 btrfs_tree_lock(path->nodes[level]);
7624 btrfs_set_lock_blocking(path->nodes[level]);
7625 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7627 ret = btrfs_lookup_extent_info(trans, root,
7628 path->nodes[level]->start,
7629 level, 1, &wc->refs[level],
7630 &wc->flags[level]);
7631 if (ret < 0) {
7632 err = ret;
7633 goto out_end_trans;
7635 BUG_ON(wc->refs[level] == 0);
7637 if (level == root_item->drop_level)
7638 break;
7640 btrfs_tree_unlock(path->nodes[level]);
7641 path->locks[level] = 0;
7642 WARN_ON(wc->refs[level] != 1);
7643 level--;
7647 wc->level = level;
7648 wc->shared_level = -1;
7649 wc->stage = DROP_REFERENCE;
7650 wc->update_ref = update_ref;
7651 wc->keep_locks = 0;
7652 wc->for_reloc = for_reloc;
7653 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7655 while (1) {
7657 ret = walk_down_tree(trans, root, path, wc);
7658 if (ret < 0) {
7659 err = ret;
7660 break;
7663 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7664 if (ret < 0) {
7665 err = ret;
7666 break;
7669 if (ret > 0) {
7670 BUG_ON(wc->stage != DROP_REFERENCE);
7671 break;
7674 if (wc->stage == DROP_REFERENCE) {
7675 level = wc->level;
7676 btrfs_node_key(path->nodes[level],
7677 &root_item->drop_progress,
7678 path->slots[level]);
7679 root_item->drop_level = level;
7682 BUG_ON(wc->level == 0);
7683 if (btrfs_should_end_transaction(trans, tree_root) ||
7684 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
7685 ret = btrfs_update_root(trans, tree_root,
7686 &root->root_key,
7687 root_item);
7688 if (ret) {
7689 btrfs_abort_transaction(trans, tree_root, ret);
7690 err = ret;
7691 goto out_end_trans;
7694 btrfs_end_transaction_throttle(trans, tree_root);
7695 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
7696 pr_debug("BTRFS: drop snapshot early exit\n");
7697 err = -EAGAIN;
7698 goto out_free;
7701 trans = btrfs_start_transaction(tree_root, 0);
7702 if (IS_ERR(trans)) {
7703 err = PTR_ERR(trans);
7704 goto out_free;
7706 if (block_rsv)
7707 trans->block_rsv = block_rsv;
7710 btrfs_release_path(path);
7711 if (err)
7712 goto out_end_trans;
7714 ret = btrfs_del_root(trans, tree_root, &root->root_key);
7715 if (ret) {
7716 btrfs_abort_transaction(trans, tree_root, ret);
7717 goto out_end_trans;
7720 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7721 ret = btrfs_find_root(tree_root, &root->root_key, path,
7722 NULL, NULL);
7723 if (ret < 0) {
7724 btrfs_abort_transaction(trans, tree_root, ret);
7725 err = ret;
7726 goto out_end_trans;
7727 } else if (ret > 0) {
7728 /* if we fail to delete the orphan item this time
7729 * around, it'll get picked up the next time.
7731 * The most common failure here is just -ENOENT.
7733 btrfs_del_orphan_item(trans, tree_root,
7734 root->root_key.objectid);
7738 if (root->in_radix) {
7739 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
7740 } else {
7741 free_extent_buffer(root->node);
7742 free_extent_buffer(root->commit_root);
7743 btrfs_put_fs_root(root);
7745 root_dropped = true;
7746 out_end_trans:
7747 btrfs_end_transaction_throttle(trans, tree_root);
7748 out_free:
7749 kfree(wc);
7750 btrfs_free_path(path);
7751 out:
7753 * So if we need to stop dropping the snapshot for whatever reason we
7754 * need to make sure to add it back to the dead root list so that we
7755 * keep trying to do the work later. This also cleans up roots if we
7756 * don't have it in the radix (like when we recover after a power fail
7757 * or unmount) so we don't leak memory.
7759 if (!for_reloc && root_dropped == false)
7760 btrfs_add_dead_root(root);
7761 if (err && err != -EAGAIN)
7762 btrfs_std_error(root->fs_info, err);
7763 return err;
7767 * drop subtree rooted at tree block 'node'.
7769 * NOTE: this function will unlock and release tree block 'node'
7770 * only used by relocation code
7772 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7773 struct btrfs_root *root,
7774 struct extent_buffer *node,
7775 struct extent_buffer *parent)
7777 struct btrfs_path *path;
7778 struct walk_control *wc;
7779 int level;
7780 int parent_level;
7781 int ret = 0;
7782 int wret;
7784 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7786 path = btrfs_alloc_path();
7787 if (!path)
7788 return -ENOMEM;
7790 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7791 if (!wc) {
7792 btrfs_free_path(path);
7793 return -ENOMEM;
7796 btrfs_assert_tree_locked(parent);
7797 parent_level = btrfs_header_level(parent);
7798 extent_buffer_get(parent);
7799 path->nodes[parent_level] = parent;
7800 path->slots[parent_level] = btrfs_header_nritems(parent);
7802 btrfs_assert_tree_locked(node);
7803 level = btrfs_header_level(node);
7804 path->nodes[level] = node;
7805 path->slots[level] = 0;
7806 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7808 wc->refs[parent_level] = 1;
7809 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7810 wc->level = level;
7811 wc->shared_level = -1;
7812 wc->stage = DROP_REFERENCE;
7813 wc->update_ref = 0;
7814 wc->keep_locks = 1;
7815 wc->for_reloc = 1;
7816 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7818 while (1) {
7819 wret = walk_down_tree(trans, root, path, wc);
7820 if (wret < 0) {
7821 ret = wret;
7822 break;
7825 wret = walk_up_tree(trans, root, path, wc, parent_level);
7826 if (wret < 0)
7827 ret = wret;
7828 if (wret != 0)
7829 break;
7832 kfree(wc);
7833 btrfs_free_path(path);
7834 return ret;
7837 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7839 u64 num_devices;
7840 u64 stripped;
7843 * if restripe for this chunk_type is on pick target profile and
7844 * return, otherwise do the usual balance
7846 stripped = get_restripe_target(root->fs_info, flags);
7847 if (stripped)
7848 return extended_to_chunk(stripped);
7851 * we add in the count of missing devices because we want
7852 * to make sure that any RAID levels on a degraded FS
7853 * continue to be honored.
7855 num_devices = root->fs_info->fs_devices->rw_devices +
7856 root->fs_info->fs_devices->missing_devices;
7858 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7859 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7860 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7862 if (num_devices == 1) {
7863 stripped |= BTRFS_BLOCK_GROUP_DUP;
7864 stripped = flags & ~stripped;
7866 /* turn raid0 into single device chunks */
7867 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7868 return stripped;
7870 /* turn mirroring into duplication */
7871 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7872 BTRFS_BLOCK_GROUP_RAID10))
7873 return stripped | BTRFS_BLOCK_GROUP_DUP;
7874 } else {
7875 /* they already had raid on here, just return */
7876 if (flags & stripped)
7877 return flags;
7879 stripped |= BTRFS_BLOCK_GROUP_DUP;
7880 stripped = flags & ~stripped;
7882 /* switch duplicated blocks with raid1 */
7883 if (flags & BTRFS_BLOCK_GROUP_DUP)
7884 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7886 /* this is drive concat, leave it alone */
7889 return flags;
7892 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7894 struct btrfs_space_info *sinfo = cache->space_info;
7895 u64 num_bytes;
7896 u64 min_allocable_bytes;
7897 int ret = -ENOSPC;
7901 * We need some metadata space and system metadata space for
7902 * allocating chunks in some corner cases until we force to set
7903 * it to be readonly.
7905 if ((sinfo->flags &
7906 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7907 !force)
7908 min_allocable_bytes = 1 * 1024 * 1024;
7909 else
7910 min_allocable_bytes = 0;
7912 spin_lock(&sinfo->lock);
7913 spin_lock(&cache->lock);
7915 if (cache->ro) {
7916 ret = 0;
7917 goto out;
7920 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7921 cache->bytes_super - btrfs_block_group_used(&cache->item);
7923 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7924 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7925 min_allocable_bytes <= sinfo->total_bytes) {
7926 sinfo->bytes_readonly += num_bytes;
7927 cache->ro = 1;
7928 ret = 0;
7930 out:
7931 spin_unlock(&cache->lock);
7932 spin_unlock(&sinfo->lock);
7933 return ret;
7936 int btrfs_set_block_group_ro(struct btrfs_root *root,
7937 struct btrfs_block_group_cache *cache)
7940 struct btrfs_trans_handle *trans;
7941 u64 alloc_flags;
7942 int ret;
7944 BUG_ON(cache->ro);
7946 trans = btrfs_join_transaction(root);
7947 if (IS_ERR(trans))
7948 return PTR_ERR(trans);
7950 alloc_flags = update_block_group_flags(root, cache->flags);
7951 if (alloc_flags != cache->flags) {
7952 ret = do_chunk_alloc(trans, root, alloc_flags,
7953 CHUNK_ALLOC_FORCE);
7954 if (ret < 0)
7955 goto out;
7958 ret = set_block_group_ro(cache, 0);
7959 if (!ret)
7960 goto out;
7961 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7962 ret = do_chunk_alloc(trans, root, alloc_flags,
7963 CHUNK_ALLOC_FORCE);
7964 if (ret < 0)
7965 goto out;
7966 ret = set_block_group_ro(cache, 0);
7967 out:
7968 btrfs_end_transaction(trans, root);
7969 return ret;
7972 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7973 struct btrfs_root *root, u64 type)
7975 u64 alloc_flags = get_alloc_profile(root, type);
7976 return do_chunk_alloc(trans, root, alloc_flags,
7977 CHUNK_ALLOC_FORCE);
7981 * helper to account the unused space of all the readonly block group in the
7982 * list. takes mirrors into account.
7984 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7986 struct btrfs_block_group_cache *block_group;
7987 u64 free_bytes = 0;
7988 int factor;
7990 list_for_each_entry(block_group, groups_list, list) {
7991 spin_lock(&block_group->lock);
7993 if (!block_group->ro) {
7994 spin_unlock(&block_group->lock);
7995 continue;
7998 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7999 BTRFS_BLOCK_GROUP_RAID10 |
8000 BTRFS_BLOCK_GROUP_DUP))
8001 factor = 2;
8002 else
8003 factor = 1;
8005 free_bytes += (block_group->key.offset -
8006 btrfs_block_group_used(&block_group->item)) *
8007 factor;
8009 spin_unlock(&block_group->lock);
8012 return free_bytes;
8016 * helper to account the unused space of all the readonly block group in the
8017 * space_info. takes mirrors into account.
8019 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8021 int i;
8022 u64 free_bytes = 0;
8024 spin_lock(&sinfo->lock);
8026 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
8027 if (!list_empty(&sinfo->block_groups[i]))
8028 free_bytes += __btrfs_get_ro_block_group_free_space(
8029 &sinfo->block_groups[i]);
8031 spin_unlock(&sinfo->lock);
8033 return free_bytes;
8036 void btrfs_set_block_group_rw(struct btrfs_root *root,
8037 struct btrfs_block_group_cache *cache)
8039 struct btrfs_space_info *sinfo = cache->space_info;
8040 u64 num_bytes;
8042 BUG_ON(!cache->ro);
8044 spin_lock(&sinfo->lock);
8045 spin_lock(&cache->lock);
8046 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8047 cache->bytes_super - btrfs_block_group_used(&cache->item);
8048 sinfo->bytes_readonly -= num_bytes;
8049 cache->ro = 0;
8050 spin_unlock(&cache->lock);
8051 spin_unlock(&sinfo->lock);
8055 * checks to see if its even possible to relocate this block group.
8057 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8058 * ok to go ahead and try.
8060 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8062 struct btrfs_block_group_cache *block_group;
8063 struct btrfs_space_info *space_info;
8064 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8065 struct btrfs_device *device;
8066 struct btrfs_trans_handle *trans;
8067 u64 min_free;
8068 u64 dev_min = 1;
8069 u64 dev_nr = 0;
8070 u64 target;
8071 int index;
8072 int full = 0;
8073 int ret = 0;
8075 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8077 /* odd, couldn't find the block group, leave it alone */
8078 if (!block_group)
8079 return -1;
8081 min_free = btrfs_block_group_used(&block_group->item);
8083 /* no bytes used, we're good */
8084 if (!min_free)
8085 goto out;
8087 space_info = block_group->space_info;
8088 spin_lock(&space_info->lock);
8090 full = space_info->full;
8093 * if this is the last block group we have in this space, we can't
8094 * relocate it unless we're able to allocate a new chunk below.
8096 * Otherwise, we need to make sure we have room in the space to handle
8097 * all of the extents from this block group. If we can, we're good
8099 if ((space_info->total_bytes != block_group->key.offset) &&
8100 (space_info->bytes_used + space_info->bytes_reserved +
8101 space_info->bytes_pinned + space_info->bytes_readonly +
8102 min_free < space_info->total_bytes)) {
8103 spin_unlock(&space_info->lock);
8104 goto out;
8106 spin_unlock(&space_info->lock);
8109 * ok we don't have enough space, but maybe we have free space on our
8110 * devices to allocate new chunks for relocation, so loop through our
8111 * alloc devices and guess if we have enough space. if this block
8112 * group is going to be restriped, run checks against the target
8113 * profile instead of the current one.
8115 ret = -1;
8118 * index:
8119 * 0: raid10
8120 * 1: raid1
8121 * 2: dup
8122 * 3: raid0
8123 * 4: single
8125 target = get_restripe_target(root->fs_info, block_group->flags);
8126 if (target) {
8127 index = __get_raid_index(extended_to_chunk(target));
8128 } else {
8130 * this is just a balance, so if we were marked as full
8131 * we know there is no space for a new chunk
8133 if (full)
8134 goto out;
8136 index = get_block_group_index(block_group);
8139 if (index == BTRFS_RAID_RAID10) {
8140 dev_min = 4;
8141 /* Divide by 2 */
8142 min_free >>= 1;
8143 } else if (index == BTRFS_RAID_RAID1) {
8144 dev_min = 2;
8145 } else if (index == BTRFS_RAID_DUP) {
8146 /* Multiply by 2 */
8147 min_free <<= 1;
8148 } else if (index == BTRFS_RAID_RAID0) {
8149 dev_min = fs_devices->rw_devices;
8150 do_div(min_free, dev_min);
8153 /* We need to do this so that we can look at pending chunks */
8154 trans = btrfs_join_transaction(root);
8155 if (IS_ERR(trans)) {
8156 ret = PTR_ERR(trans);
8157 goto out;
8160 mutex_lock(&root->fs_info->chunk_mutex);
8161 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8162 u64 dev_offset;
8165 * check to make sure we can actually find a chunk with enough
8166 * space to fit our block group in.
8168 if (device->total_bytes > device->bytes_used + min_free &&
8169 !device->is_tgtdev_for_dev_replace) {
8170 ret = find_free_dev_extent(trans, device, min_free,
8171 &dev_offset, NULL);
8172 if (!ret)
8173 dev_nr++;
8175 if (dev_nr >= dev_min)
8176 break;
8178 ret = -1;
8181 mutex_unlock(&root->fs_info->chunk_mutex);
8182 btrfs_end_transaction(trans, root);
8183 out:
8184 btrfs_put_block_group(block_group);
8185 return ret;
8188 static int find_first_block_group(struct btrfs_root *root,
8189 struct btrfs_path *path, struct btrfs_key *key)
8191 int ret = 0;
8192 struct btrfs_key found_key;
8193 struct extent_buffer *leaf;
8194 int slot;
8196 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8197 if (ret < 0)
8198 goto out;
8200 while (1) {
8201 slot = path->slots[0];
8202 leaf = path->nodes[0];
8203 if (slot >= btrfs_header_nritems(leaf)) {
8204 ret = btrfs_next_leaf(root, path);
8205 if (ret == 0)
8206 continue;
8207 if (ret < 0)
8208 goto out;
8209 break;
8211 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8213 if (found_key.objectid >= key->objectid &&
8214 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8215 ret = 0;
8216 goto out;
8218 path->slots[0]++;
8220 out:
8221 return ret;
8224 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8226 struct btrfs_block_group_cache *block_group;
8227 u64 last = 0;
8229 while (1) {
8230 struct inode *inode;
8232 block_group = btrfs_lookup_first_block_group(info, last);
8233 while (block_group) {
8234 spin_lock(&block_group->lock);
8235 if (block_group->iref)
8236 break;
8237 spin_unlock(&block_group->lock);
8238 block_group = next_block_group(info->tree_root,
8239 block_group);
8241 if (!block_group) {
8242 if (last == 0)
8243 break;
8244 last = 0;
8245 continue;
8248 inode = block_group->inode;
8249 block_group->iref = 0;
8250 block_group->inode = NULL;
8251 spin_unlock(&block_group->lock);
8252 iput(inode);
8253 last = block_group->key.objectid + block_group->key.offset;
8254 btrfs_put_block_group(block_group);
8258 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8260 struct btrfs_block_group_cache *block_group;
8261 struct btrfs_space_info *space_info;
8262 struct btrfs_caching_control *caching_ctl;
8263 struct rb_node *n;
8265 down_write(&info->commit_root_sem);
8266 while (!list_empty(&info->caching_block_groups)) {
8267 caching_ctl = list_entry(info->caching_block_groups.next,
8268 struct btrfs_caching_control, list);
8269 list_del(&caching_ctl->list);
8270 put_caching_control(caching_ctl);
8272 up_write(&info->commit_root_sem);
8274 spin_lock(&info->block_group_cache_lock);
8275 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8276 block_group = rb_entry(n, struct btrfs_block_group_cache,
8277 cache_node);
8278 rb_erase(&block_group->cache_node,
8279 &info->block_group_cache_tree);
8280 spin_unlock(&info->block_group_cache_lock);
8282 down_write(&block_group->space_info->groups_sem);
8283 list_del(&block_group->list);
8284 up_write(&block_group->space_info->groups_sem);
8286 if (block_group->cached == BTRFS_CACHE_STARTED)
8287 wait_block_group_cache_done(block_group);
8290 * We haven't cached this block group, which means we could
8291 * possibly have excluded extents on this block group.
8293 if (block_group->cached == BTRFS_CACHE_NO ||
8294 block_group->cached == BTRFS_CACHE_ERROR)
8295 free_excluded_extents(info->extent_root, block_group);
8297 btrfs_remove_free_space_cache(block_group);
8298 btrfs_put_block_group(block_group);
8300 spin_lock(&info->block_group_cache_lock);
8302 spin_unlock(&info->block_group_cache_lock);
8304 /* now that all the block groups are freed, go through and
8305 * free all the space_info structs. This is only called during
8306 * the final stages of unmount, and so we know nobody is
8307 * using them. We call synchronize_rcu() once before we start,
8308 * just to be on the safe side.
8310 synchronize_rcu();
8312 release_global_block_rsv(info);
8314 while (!list_empty(&info->space_info)) {
8315 int i;
8317 space_info = list_entry(info->space_info.next,
8318 struct btrfs_space_info,
8319 list);
8320 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8321 if (WARN_ON(space_info->bytes_pinned > 0 ||
8322 space_info->bytes_reserved > 0 ||
8323 space_info->bytes_may_use > 0)) {
8324 dump_space_info(space_info, 0, 0);
8327 list_del(&space_info->list);
8328 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8329 struct kobject *kobj;
8330 kobj = &space_info->block_group_kobjs[i];
8331 if (kobj->parent) {
8332 kobject_del(kobj);
8333 kobject_put(kobj);
8336 kobject_del(&space_info->kobj);
8337 kobject_put(&space_info->kobj);
8339 return 0;
8342 static void __link_block_group(struct btrfs_space_info *space_info,
8343 struct btrfs_block_group_cache *cache)
8345 int index = get_block_group_index(cache);
8346 bool first = false;
8348 down_write(&space_info->groups_sem);
8349 if (list_empty(&space_info->block_groups[index]))
8350 first = true;
8351 list_add_tail(&cache->list, &space_info->block_groups[index]);
8352 up_write(&space_info->groups_sem);
8354 if (first) {
8355 struct kobject *kobj = &space_info->block_group_kobjs[index];
8356 int ret;
8358 kobject_get(&space_info->kobj); /* put in release */
8359 ret = kobject_add(kobj, &space_info->kobj, "%s",
8360 get_raid_name(index));
8361 if (ret) {
8362 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8363 kobject_put(&space_info->kobj);
8368 static struct btrfs_block_group_cache *
8369 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8371 struct btrfs_block_group_cache *cache;
8373 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8374 if (!cache)
8375 return NULL;
8377 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8378 GFP_NOFS);
8379 if (!cache->free_space_ctl) {
8380 kfree(cache);
8381 return NULL;
8384 cache->key.objectid = start;
8385 cache->key.offset = size;
8386 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8388 cache->sectorsize = root->sectorsize;
8389 cache->fs_info = root->fs_info;
8390 cache->full_stripe_len = btrfs_full_stripe_len(root,
8391 &root->fs_info->mapping_tree,
8392 start);
8393 atomic_set(&cache->count, 1);
8394 spin_lock_init(&cache->lock);
8395 INIT_LIST_HEAD(&cache->list);
8396 INIT_LIST_HEAD(&cache->cluster_list);
8397 INIT_LIST_HEAD(&cache->new_bg_list);
8398 btrfs_init_free_space_ctl(cache);
8400 return cache;
8403 int btrfs_read_block_groups(struct btrfs_root *root)
8405 struct btrfs_path *path;
8406 int ret;
8407 struct btrfs_block_group_cache *cache;
8408 struct btrfs_fs_info *info = root->fs_info;
8409 struct btrfs_space_info *space_info;
8410 struct btrfs_key key;
8411 struct btrfs_key found_key;
8412 struct extent_buffer *leaf;
8413 int need_clear = 0;
8414 u64 cache_gen;
8416 root = info->extent_root;
8417 key.objectid = 0;
8418 key.offset = 0;
8419 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8420 path = btrfs_alloc_path();
8421 if (!path)
8422 return -ENOMEM;
8423 path->reada = 1;
8425 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8426 if (btrfs_test_opt(root, SPACE_CACHE) &&
8427 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8428 need_clear = 1;
8429 if (btrfs_test_opt(root, CLEAR_CACHE))
8430 need_clear = 1;
8432 while (1) {
8433 ret = find_first_block_group(root, path, &key);
8434 if (ret > 0)
8435 break;
8436 if (ret != 0)
8437 goto error;
8439 leaf = path->nodes[0];
8440 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8442 cache = btrfs_create_block_group_cache(root, found_key.objectid,
8443 found_key.offset);
8444 if (!cache) {
8445 ret = -ENOMEM;
8446 goto error;
8449 if (need_clear) {
8451 * When we mount with old space cache, we need to
8452 * set BTRFS_DC_CLEAR and set dirty flag.
8454 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8455 * truncate the old free space cache inode and
8456 * setup a new one.
8457 * b) Setting 'dirty flag' makes sure that we flush
8458 * the new space cache info onto disk.
8460 cache->disk_cache_state = BTRFS_DC_CLEAR;
8461 if (btrfs_test_opt(root, SPACE_CACHE))
8462 cache->dirty = 1;
8465 read_extent_buffer(leaf, &cache->item,
8466 btrfs_item_ptr_offset(leaf, path->slots[0]),
8467 sizeof(cache->item));
8468 cache->flags = btrfs_block_group_flags(&cache->item);
8470 key.objectid = found_key.objectid + found_key.offset;
8471 btrfs_release_path(path);
8474 * We need to exclude the super stripes now so that the space
8475 * info has super bytes accounted for, otherwise we'll think
8476 * we have more space than we actually do.
8478 ret = exclude_super_stripes(root, cache);
8479 if (ret) {
8481 * We may have excluded something, so call this just in
8482 * case.
8484 free_excluded_extents(root, cache);
8485 btrfs_put_block_group(cache);
8486 goto error;
8490 * check for two cases, either we are full, and therefore
8491 * don't need to bother with the caching work since we won't
8492 * find any space, or we are empty, and we can just add all
8493 * the space in and be done with it. This saves us _alot_ of
8494 * time, particularly in the full case.
8496 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8497 cache->last_byte_to_unpin = (u64)-1;
8498 cache->cached = BTRFS_CACHE_FINISHED;
8499 free_excluded_extents(root, cache);
8500 } else if (btrfs_block_group_used(&cache->item) == 0) {
8501 cache->last_byte_to_unpin = (u64)-1;
8502 cache->cached = BTRFS_CACHE_FINISHED;
8503 add_new_free_space(cache, root->fs_info,
8504 found_key.objectid,
8505 found_key.objectid +
8506 found_key.offset);
8507 free_excluded_extents(root, cache);
8510 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8511 if (ret) {
8512 btrfs_remove_free_space_cache(cache);
8513 btrfs_put_block_group(cache);
8514 goto error;
8517 ret = update_space_info(info, cache->flags, found_key.offset,
8518 btrfs_block_group_used(&cache->item),
8519 &space_info);
8520 if (ret) {
8521 btrfs_remove_free_space_cache(cache);
8522 spin_lock(&info->block_group_cache_lock);
8523 rb_erase(&cache->cache_node,
8524 &info->block_group_cache_tree);
8525 spin_unlock(&info->block_group_cache_lock);
8526 btrfs_put_block_group(cache);
8527 goto error;
8530 cache->space_info = space_info;
8531 spin_lock(&cache->space_info->lock);
8532 cache->space_info->bytes_readonly += cache->bytes_super;
8533 spin_unlock(&cache->space_info->lock);
8535 __link_block_group(space_info, cache);
8537 set_avail_alloc_bits(root->fs_info, cache->flags);
8538 if (btrfs_chunk_readonly(root, cache->key.objectid))
8539 set_block_group_ro(cache, 1);
8542 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8543 if (!(get_alloc_profile(root, space_info->flags) &
8544 (BTRFS_BLOCK_GROUP_RAID10 |
8545 BTRFS_BLOCK_GROUP_RAID1 |
8546 BTRFS_BLOCK_GROUP_RAID5 |
8547 BTRFS_BLOCK_GROUP_RAID6 |
8548 BTRFS_BLOCK_GROUP_DUP)))
8549 continue;
8551 * avoid allocating from un-mirrored block group if there are
8552 * mirrored block groups.
8554 list_for_each_entry(cache,
8555 &space_info->block_groups[BTRFS_RAID_RAID0],
8556 list)
8557 set_block_group_ro(cache, 1);
8558 list_for_each_entry(cache,
8559 &space_info->block_groups[BTRFS_RAID_SINGLE],
8560 list)
8561 set_block_group_ro(cache, 1);
8564 init_global_block_rsv(info);
8565 ret = 0;
8566 error:
8567 btrfs_free_path(path);
8568 return ret;
8571 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8572 struct btrfs_root *root)
8574 struct btrfs_block_group_cache *block_group, *tmp;
8575 struct btrfs_root *extent_root = root->fs_info->extent_root;
8576 struct btrfs_block_group_item item;
8577 struct btrfs_key key;
8578 int ret = 0;
8580 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8581 new_bg_list) {
8582 list_del_init(&block_group->new_bg_list);
8584 if (ret)
8585 continue;
8587 spin_lock(&block_group->lock);
8588 memcpy(&item, &block_group->item, sizeof(item));
8589 memcpy(&key, &block_group->key, sizeof(key));
8590 spin_unlock(&block_group->lock);
8592 ret = btrfs_insert_item(trans, extent_root, &key, &item,
8593 sizeof(item));
8594 if (ret)
8595 btrfs_abort_transaction(trans, extent_root, ret);
8596 ret = btrfs_finish_chunk_alloc(trans, extent_root,
8597 key.objectid, key.offset);
8598 if (ret)
8599 btrfs_abort_transaction(trans, extent_root, ret);
8603 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8604 struct btrfs_root *root, u64 bytes_used,
8605 u64 type, u64 chunk_objectid, u64 chunk_offset,
8606 u64 size)
8608 int ret;
8609 struct btrfs_root *extent_root;
8610 struct btrfs_block_group_cache *cache;
8612 extent_root = root->fs_info->extent_root;
8614 root->fs_info->last_trans_log_full_commit = trans->transid;
8616 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
8617 if (!cache)
8618 return -ENOMEM;
8620 btrfs_set_block_group_used(&cache->item, bytes_used);
8621 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8622 btrfs_set_block_group_flags(&cache->item, type);
8624 cache->flags = type;
8625 cache->last_byte_to_unpin = (u64)-1;
8626 cache->cached = BTRFS_CACHE_FINISHED;
8627 ret = exclude_super_stripes(root, cache);
8628 if (ret) {
8630 * We may have excluded something, so call this just in
8631 * case.
8633 free_excluded_extents(root, cache);
8634 btrfs_put_block_group(cache);
8635 return ret;
8638 add_new_free_space(cache, root->fs_info, chunk_offset,
8639 chunk_offset + size);
8641 free_excluded_extents(root, cache);
8643 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8644 if (ret) {
8645 btrfs_remove_free_space_cache(cache);
8646 btrfs_put_block_group(cache);
8647 return ret;
8650 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8651 &cache->space_info);
8652 if (ret) {
8653 btrfs_remove_free_space_cache(cache);
8654 spin_lock(&root->fs_info->block_group_cache_lock);
8655 rb_erase(&cache->cache_node,
8656 &root->fs_info->block_group_cache_tree);
8657 spin_unlock(&root->fs_info->block_group_cache_lock);
8658 btrfs_put_block_group(cache);
8659 return ret;
8661 update_global_block_rsv(root->fs_info);
8663 spin_lock(&cache->space_info->lock);
8664 cache->space_info->bytes_readonly += cache->bytes_super;
8665 spin_unlock(&cache->space_info->lock);
8667 __link_block_group(cache->space_info, cache);
8669 list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8671 set_avail_alloc_bits(extent_root->fs_info, type);
8673 return 0;
8676 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8678 u64 extra_flags = chunk_to_extended(flags) &
8679 BTRFS_EXTENDED_PROFILE_MASK;
8681 write_seqlock(&fs_info->profiles_lock);
8682 if (flags & BTRFS_BLOCK_GROUP_DATA)
8683 fs_info->avail_data_alloc_bits &= ~extra_flags;
8684 if (flags & BTRFS_BLOCK_GROUP_METADATA)
8685 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8686 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8687 fs_info->avail_system_alloc_bits &= ~extra_flags;
8688 write_sequnlock(&fs_info->profiles_lock);
8691 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8692 struct btrfs_root *root, u64 group_start)
8694 struct btrfs_path *path;
8695 struct btrfs_block_group_cache *block_group;
8696 struct btrfs_free_cluster *cluster;
8697 struct btrfs_root *tree_root = root->fs_info->tree_root;
8698 struct btrfs_key key;
8699 struct inode *inode;
8700 int ret;
8701 int index;
8702 int factor;
8704 root = root->fs_info->extent_root;
8706 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8707 BUG_ON(!block_group);
8708 BUG_ON(!block_group->ro);
8711 * Free the reserved super bytes from this block group before
8712 * remove it.
8714 free_excluded_extents(root, block_group);
8716 memcpy(&key, &block_group->key, sizeof(key));
8717 index = get_block_group_index(block_group);
8718 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8719 BTRFS_BLOCK_GROUP_RAID1 |
8720 BTRFS_BLOCK_GROUP_RAID10))
8721 factor = 2;
8722 else
8723 factor = 1;
8725 /* make sure this block group isn't part of an allocation cluster */
8726 cluster = &root->fs_info->data_alloc_cluster;
8727 spin_lock(&cluster->refill_lock);
8728 btrfs_return_cluster_to_free_space(block_group, cluster);
8729 spin_unlock(&cluster->refill_lock);
8732 * make sure this block group isn't part of a metadata
8733 * allocation cluster
8735 cluster = &root->fs_info->meta_alloc_cluster;
8736 spin_lock(&cluster->refill_lock);
8737 btrfs_return_cluster_to_free_space(block_group, cluster);
8738 spin_unlock(&cluster->refill_lock);
8740 path = btrfs_alloc_path();
8741 if (!path) {
8742 ret = -ENOMEM;
8743 goto out;
8746 inode = lookup_free_space_inode(tree_root, block_group, path);
8747 if (!IS_ERR(inode)) {
8748 ret = btrfs_orphan_add(trans, inode);
8749 if (ret) {
8750 btrfs_add_delayed_iput(inode);
8751 goto out;
8753 clear_nlink(inode);
8754 /* One for the block groups ref */
8755 spin_lock(&block_group->lock);
8756 if (block_group->iref) {
8757 block_group->iref = 0;
8758 block_group->inode = NULL;
8759 spin_unlock(&block_group->lock);
8760 iput(inode);
8761 } else {
8762 spin_unlock(&block_group->lock);
8764 /* One for our lookup ref */
8765 btrfs_add_delayed_iput(inode);
8768 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8769 key.offset = block_group->key.objectid;
8770 key.type = 0;
8772 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8773 if (ret < 0)
8774 goto out;
8775 if (ret > 0)
8776 btrfs_release_path(path);
8777 if (ret == 0) {
8778 ret = btrfs_del_item(trans, tree_root, path);
8779 if (ret)
8780 goto out;
8781 btrfs_release_path(path);
8784 spin_lock(&root->fs_info->block_group_cache_lock);
8785 rb_erase(&block_group->cache_node,
8786 &root->fs_info->block_group_cache_tree);
8788 if (root->fs_info->first_logical_byte == block_group->key.objectid)
8789 root->fs_info->first_logical_byte = (u64)-1;
8790 spin_unlock(&root->fs_info->block_group_cache_lock);
8792 down_write(&block_group->space_info->groups_sem);
8794 * we must use list_del_init so people can check to see if they
8795 * are still on the list after taking the semaphore
8797 list_del_init(&block_group->list);
8798 if (list_empty(&block_group->space_info->block_groups[index])) {
8799 kobject_del(&block_group->space_info->block_group_kobjs[index]);
8800 kobject_put(&block_group->space_info->block_group_kobjs[index]);
8801 clear_avail_alloc_bits(root->fs_info, block_group->flags);
8803 up_write(&block_group->space_info->groups_sem);
8805 if (block_group->cached == BTRFS_CACHE_STARTED)
8806 wait_block_group_cache_done(block_group);
8808 btrfs_remove_free_space_cache(block_group);
8810 spin_lock(&block_group->space_info->lock);
8811 block_group->space_info->total_bytes -= block_group->key.offset;
8812 block_group->space_info->bytes_readonly -= block_group->key.offset;
8813 block_group->space_info->disk_total -= block_group->key.offset * factor;
8814 spin_unlock(&block_group->space_info->lock);
8816 memcpy(&key, &block_group->key, sizeof(key));
8818 btrfs_clear_space_info_full(root->fs_info);
8820 btrfs_put_block_group(block_group);
8821 btrfs_put_block_group(block_group);
8823 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8824 if (ret > 0)
8825 ret = -EIO;
8826 if (ret < 0)
8827 goto out;
8829 ret = btrfs_del_item(trans, root, path);
8830 out:
8831 btrfs_free_path(path);
8832 return ret;
8835 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8837 struct btrfs_space_info *space_info;
8838 struct btrfs_super_block *disk_super;
8839 u64 features;
8840 u64 flags;
8841 int mixed = 0;
8842 int ret;
8844 disk_super = fs_info->super_copy;
8845 if (!btrfs_super_root(disk_super))
8846 return 1;
8848 features = btrfs_super_incompat_flags(disk_super);
8849 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8850 mixed = 1;
8852 flags = BTRFS_BLOCK_GROUP_SYSTEM;
8853 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8854 if (ret)
8855 goto out;
8857 if (mixed) {
8858 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8859 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8860 } else {
8861 flags = BTRFS_BLOCK_GROUP_METADATA;
8862 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8863 if (ret)
8864 goto out;
8866 flags = BTRFS_BLOCK_GROUP_DATA;
8867 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8869 out:
8870 return ret;
8873 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8875 return unpin_extent_range(root, start, end);
8878 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8879 u64 num_bytes, u64 *actual_bytes)
8881 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8884 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8886 struct btrfs_fs_info *fs_info = root->fs_info;
8887 struct btrfs_block_group_cache *cache = NULL;
8888 u64 group_trimmed;
8889 u64 start;
8890 u64 end;
8891 u64 trimmed = 0;
8892 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8893 int ret = 0;
8896 * try to trim all FS space, our block group may start from non-zero.
8898 if (range->len == total_bytes)
8899 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8900 else
8901 cache = btrfs_lookup_block_group(fs_info, range->start);
8903 while (cache) {
8904 if (cache->key.objectid >= (range->start + range->len)) {
8905 btrfs_put_block_group(cache);
8906 break;
8909 start = max(range->start, cache->key.objectid);
8910 end = min(range->start + range->len,
8911 cache->key.objectid + cache->key.offset);
8913 if (end - start >= range->minlen) {
8914 if (!block_group_cache_done(cache)) {
8915 ret = cache_block_group(cache, 0);
8916 if (ret) {
8917 btrfs_put_block_group(cache);
8918 break;
8920 ret = wait_block_group_cache_done(cache);
8921 if (ret) {
8922 btrfs_put_block_group(cache);
8923 break;
8926 ret = btrfs_trim_block_group(cache,
8927 &group_trimmed,
8928 start,
8929 end,
8930 range->minlen);
8932 trimmed += group_trimmed;
8933 if (ret) {
8934 btrfs_put_block_group(cache);
8935 break;
8939 cache = next_block_group(fs_info->tree_root, cache);
8942 range->len = trimmed;
8943 return ret;
8947 * btrfs_{start,end}_write() is similar to mnt_{want, drop}_write(),
8948 * they are used to prevent the some tasks writing data into the page cache
8949 * by nocow before the subvolume is snapshoted, but flush the data into
8950 * the disk after the snapshot creation.
8952 void btrfs_end_nocow_write(struct btrfs_root *root)
8954 percpu_counter_dec(&root->subv_writers->counter);
8956 * Make sure counter is updated before we wake up
8957 * waiters.
8959 smp_mb();
8960 if (waitqueue_active(&root->subv_writers->wait))
8961 wake_up(&root->subv_writers->wait);
8964 int btrfs_start_nocow_write(struct btrfs_root *root)
8966 if (unlikely(atomic_read(&root->will_be_snapshoted)))
8967 return 0;
8969 percpu_counter_inc(&root->subv_writers->counter);
8971 * Make sure counter is updated before we check for snapshot creation.
8973 smp_mb();
8974 if (unlikely(atomic_read(&root->will_be_snapshoted))) {
8975 btrfs_end_nocow_write(root);
8976 return 0;
8978 return 1;