2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/aio.h>
28 #include <linux/falloc.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/statfs.h>
32 #include <linux/compat.h>
33 #include <linux/slab.h>
34 #include <linux/btrfs.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
44 static struct kmem_cache
*btrfs_inode_defrag_cachep
;
46 * when auto defrag is enabled we
47 * queue up these defrag structs to remember which
48 * inodes need defragging passes
51 struct rb_node rb_node
;
55 * transid where the defrag was added, we search for
56 * extents newer than this
63 /* last offset we were able to defrag */
66 /* if we've wrapped around back to zero once already */
70 static int __compare_inode_defrag(struct inode_defrag
*defrag1
,
71 struct inode_defrag
*defrag2
)
73 if (defrag1
->root
> defrag2
->root
)
75 else if (defrag1
->root
< defrag2
->root
)
77 else if (defrag1
->ino
> defrag2
->ino
)
79 else if (defrag1
->ino
< defrag2
->ino
)
85 /* pop a record for an inode into the defrag tree. The lock
86 * must be held already
88 * If you're inserting a record for an older transid than an
89 * existing record, the transid already in the tree is lowered
91 * If an existing record is found the defrag item you
94 static int __btrfs_add_inode_defrag(struct inode
*inode
,
95 struct inode_defrag
*defrag
)
97 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
98 struct inode_defrag
*entry
;
100 struct rb_node
*parent
= NULL
;
103 p
= &root
->fs_info
->defrag_inodes
.rb_node
;
106 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
108 ret
= __compare_inode_defrag(defrag
, entry
);
110 p
= &parent
->rb_left
;
112 p
= &parent
->rb_right
;
114 /* if we're reinserting an entry for
115 * an old defrag run, make sure to
116 * lower the transid of our existing record
118 if (defrag
->transid
< entry
->transid
)
119 entry
->transid
= defrag
->transid
;
120 if (defrag
->last_offset
> entry
->last_offset
)
121 entry
->last_offset
= defrag
->last_offset
;
125 set_bit(BTRFS_INODE_IN_DEFRAG
, &BTRFS_I(inode
)->runtime_flags
);
126 rb_link_node(&defrag
->rb_node
, parent
, p
);
127 rb_insert_color(&defrag
->rb_node
, &root
->fs_info
->defrag_inodes
);
131 static inline int __need_auto_defrag(struct btrfs_root
*root
)
133 if (!btrfs_test_opt(root
, AUTO_DEFRAG
))
136 if (btrfs_fs_closing(root
->fs_info
))
143 * insert a defrag record for this inode if auto defrag is
146 int btrfs_add_inode_defrag(struct btrfs_trans_handle
*trans
,
149 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
150 struct inode_defrag
*defrag
;
154 if (!__need_auto_defrag(root
))
157 if (test_bit(BTRFS_INODE_IN_DEFRAG
, &BTRFS_I(inode
)->runtime_flags
))
161 transid
= trans
->transid
;
163 transid
= BTRFS_I(inode
)->root
->last_trans
;
165 defrag
= kmem_cache_zalloc(btrfs_inode_defrag_cachep
, GFP_NOFS
);
169 defrag
->ino
= btrfs_ino(inode
);
170 defrag
->transid
= transid
;
171 defrag
->root
= root
->root_key
.objectid
;
173 spin_lock(&root
->fs_info
->defrag_inodes_lock
);
174 if (!test_bit(BTRFS_INODE_IN_DEFRAG
, &BTRFS_I(inode
)->runtime_flags
)) {
176 * If we set IN_DEFRAG flag and evict the inode from memory,
177 * and then re-read this inode, this new inode doesn't have
178 * IN_DEFRAG flag. At the case, we may find the existed defrag.
180 ret
= __btrfs_add_inode_defrag(inode
, defrag
);
182 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
184 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
186 spin_unlock(&root
->fs_info
->defrag_inodes_lock
);
191 * Requeue the defrag object. If there is a defrag object that points to
192 * the same inode in the tree, we will merge them together (by
193 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
195 static void btrfs_requeue_inode_defrag(struct inode
*inode
,
196 struct inode_defrag
*defrag
)
198 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
201 if (!__need_auto_defrag(root
))
205 * Here we don't check the IN_DEFRAG flag, because we need merge
208 spin_lock(&root
->fs_info
->defrag_inodes_lock
);
209 ret
= __btrfs_add_inode_defrag(inode
, defrag
);
210 spin_unlock(&root
->fs_info
->defrag_inodes_lock
);
215 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
219 * pick the defragable inode that we want, if it doesn't exist, we will get
222 static struct inode_defrag
*
223 btrfs_pick_defrag_inode(struct btrfs_fs_info
*fs_info
, u64 root
, u64 ino
)
225 struct inode_defrag
*entry
= NULL
;
226 struct inode_defrag tmp
;
228 struct rb_node
*parent
= NULL
;
234 spin_lock(&fs_info
->defrag_inodes_lock
);
235 p
= fs_info
->defrag_inodes
.rb_node
;
238 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
240 ret
= __compare_inode_defrag(&tmp
, entry
);
244 p
= parent
->rb_right
;
249 if (parent
&& __compare_inode_defrag(&tmp
, entry
) > 0) {
250 parent
= rb_next(parent
);
252 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
258 rb_erase(parent
, &fs_info
->defrag_inodes
);
259 spin_unlock(&fs_info
->defrag_inodes_lock
);
263 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info
*fs_info
)
265 struct inode_defrag
*defrag
;
266 struct rb_node
*node
;
268 spin_lock(&fs_info
->defrag_inodes_lock
);
269 node
= rb_first(&fs_info
->defrag_inodes
);
271 rb_erase(node
, &fs_info
->defrag_inodes
);
272 defrag
= rb_entry(node
, struct inode_defrag
, rb_node
);
273 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
275 if (need_resched()) {
276 spin_unlock(&fs_info
->defrag_inodes_lock
);
278 spin_lock(&fs_info
->defrag_inodes_lock
);
281 node
= rb_first(&fs_info
->defrag_inodes
);
283 spin_unlock(&fs_info
->defrag_inodes_lock
);
286 #define BTRFS_DEFRAG_BATCH 1024
288 static int __btrfs_run_defrag_inode(struct btrfs_fs_info
*fs_info
,
289 struct inode_defrag
*defrag
)
291 struct btrfs_root
*inode_root
;
293 struct btrfs_key key
;
294 struct btrfs_ioctl_defrag_range_args range
;
300 key
.objectid
= defrag
->root
;
301 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
302 key
.offset
= (u64
)-1;
304 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
306 inode_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
307 if (IS_ERR(inode_root
)) {
308 ret
= PTR_ERR(inode_root
);
312 key
.objectid
= defrag
->ino
;
313 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
315 inode
= btrfs_iget(fs_info
->sb
, &key
, inode_root
, NULL
);
317 ret
= PTR_ERR(inode
);
320 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
322 /* do a chunk of defrag */
323 clear_bit(BTRFS_INODE_IN_DEFRAG
, &BTRFS_I(inode
)->runtime_flags
);
324 memset(&range
, 0, sizeof(range
));
326 range
.start
= defrag
->last_offset
;
328 sb_start_write(fs_info
->sb
);
329 num_defrag
= btrfs_defrag_file(inode
, NULL
, &range
, defrag
->transid
,
331 sb_end_write(fs_info
->sb
);
333 * if we filled the whole defrag batch, there
334 * must be more work to do. Queue this defrag
337 if (num_defrag
== BTRFS_DEFRAG_BATCH
) {
338 defrag
->last_offset
= range
.start
;
339 btrfs_requeue_inode_defrag(inode
, defrag
);
340 } else if (defrag
->last_offset
&& !defrag
->cycled
) {
342 * we didn't fill our defrag batch, but
343 * we didn't start at zero. Make sure we loop
344 * around to the start of the file.
346 defrag
->last_offset
= 0;
348 btrfs_requeue_inode_defrag(inode
, defrag
);
350 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
356 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
357 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
362 * run through the list of inodes in the FS that need
365 int btrfs_run_defrag_inodes(struct btrfs_fs_info
*fs_info
)
367 struct inode_defrag
*defrag
;
369 u64 root_objectid
= 0;
371 atomic_inc(&fs_info
->defrag_running
);
373 /* Pause the auto defragger. */
374 if (test_bit(BTRFS_FS_STATE_REMOUNTING
,
378 if (!__need_auto_defrag(fs_info
->tree_root
))
381 /* find an inode to defrag */
382 defrag
= btrfs_pick_defrag_inode(fs_info
, root_objectid
,
385 if (root_objectid
|| first_ino
) {
394 first_ino
= defrag
->ino
+ 1;
395 root_objectid
= defrag
->root
;
397 __btrfs_run_defrag_inode(fs_info
, defrag
);
399 atomic_dec(&fs_info
->defrag_running
);
402 * during unmount, we use the transaction_wait queue to
403 * wait for the defragger to stop
405 wake_up(&fs_info
->transaction_wait
);
409 /* simple helper to fault in pages and copy. This should go away
410 * and be replaced with calls into generic code.
412 static noinline
int btrfs_copy_from_user(loff_t pos
, int num_pages
,
414 struct page
**prepared_pages
,
418 size_t total_copied
= 0;
420 int offset
= pos
& (PAGE_CACHE_SIZE
- 1);
422 while (write_bytes
> 0) {
423 size_t count
= min_t(size_t,
424 PAGE_CACHE_SIZE
- offset
, write_bytes
);
425 struct page
*page
= prepared_pages
[pg
];
427 * Copy data from userspace to the current page
429 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, count
);
431 /* Flush processor's dcache for this page */
432 flush_dcache_page(page
);
435 * if we get a partial write, we can end up with
436 * partially up to date pages. These add
437 * a lot of complexity, so make sure they don't
438 * happen by forcing this copy to be retried.
440 * The rest of the btrfs_file_write code will fall
441 * back to page at a time copies after we return 0.
443 if (!PageUptodate(page
) && copied
< count
)
446 iov_iter_advance(i
, copied
);
447 write_bytes
-= copied
;
448 total_copied
+= copied
;
450 /* Return to btrfs_file_aio_write to fault page */
451 if (unlikely(copied
== 0))
454 if (unlikely(copied
< PAGE_CACHE_SIZE
- offset
)) {
465 * unlocks pages after btrfs_file_write is done with them
467 static void btrfs_drop_pages(struct page
**pages
, size_t num_pages
)
470 for (i
= 0; i
< num_pages
; i
++) {
471 /* page checked is some magic around finding pages that
472 * have been modified without going through btrfs_set_page_dirty
475 ClearPageChecked(pages
[i
]);
476 unlock_page(pages
[i
]);
477 mark_page_accessed(pages
[i
]);
478 page_cache_release(pages
[i
]);
483 * after copy_from_user, pages need to be dirtied and we need to make
484 * sure holes are created between the current EOF and the start of
485 * any next extents (if required).
487 * this also makes the decision about creating an inline extent vs
488 * doing real data extents, marking pages dirty and delalloc as required.
490 int btrfs_dirty_pages(struct btrfs_root
*root
, struct inode
*inode
,
491 struct page
**pages
, size_t num_pages
,
492 loff_t pos
, size_t write_bytes
,
493 struct extent_state
**cached
)
499 u64 end_of_last_block
;
500 u64 end_pos
= pos
+ write_bytes
;
501 loff_t isize
= i_size_read(inode
);
503 start_pos
= pos
& ~((u64
)root
->sectorsize
- 1);
504 num_bytes
= ALIGN(write_bytes
+ pos
- start_pos
, root
->sectorsize
);
506 end_of_last_block
= start_pos
+ num_bytes
- 1;
507 err
= btrfs_set_extent_delalloc(inode
, start_pos
, end_of_last_block
,
512 for (i
= 0; i
< num_pages
; i
++) {
513 struct page
*p
= pages
[i
];
520 * we've only changed i_size in ram, and we haven't updated
521 * the disk i_size. There is no need to log the inode
525 i_size_write(inode
, end_pos
);
530 * this drops all the extents in the cache that intersect the range
531 * [start, end]. Existing extents are split as required.
533 void btrfs_drop_extent_cache(struct inode
*inode
, u64 start
, u64 end
,
536 struct extent_map
*em
;
537 struct extent_map
*split
= NULL
;
538 struct extent_map
*split2
= NULL
;
539 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
540 u64 len
= end
- start
+ 1;
548 WARN_ON(end
< start
);
549 if (end
== (u64
)-1) {
558 split
= alloc_extent_map();
560 split2
= alloc_extent_map();
561 if (!split
|| !split2
)
564 write_lock(&em_tree
->lock
);
565 em
= lookup_extent_mapping(em_tree
, start
, len
);
567 write_unlock(&em_tree
->lock
);
571 gen
= em
->generation
;
572 if (skip_pinned
&& test_bit(EXTENT_FLAG_PINNED
, &em
->flags
)) {
573 if (testend
&& em
->start
+ em
->len
>= start
+ len
) {
575 write_unlock(&em_tree
->lock
);
578 start
= em
->start
+ em
->len
;
580 len
= start
+ len
- (em
->start
+ em
->len
);
582 write_unlock(&em_tree
->lock
);
585 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
586 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
587 clear_bit(EXTENT_FLAG_LOGGING
, &flags
);
588 modified
= !list_empty(&em
->list
);
592 if (em
->start
< start
) {
593 split
->start
= em
->start
;
594 split
->len
= start
- em
->start
;
596 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
597 split
->orig_start
= em
->orig_start
;
598 split
->block_start
= em
->block_start
;
601 split
->block_len
= em
->block_len
;
603 split
->block_len
= split
->len
;
604 split
->orig_block_len
= max(split
->block_len
,
606 split
->ram_bytes
= em
->ram_bytes
;
608 split
->orig_start
= split
->start
;
609 split
->block_len
= 0;
610 split
->block_start
= em
->block_start
;
611 split
->orig_block_len
= 0;
612 split
->ram_bytes
= split
->len
;
615 split
->generation
= gen
;
616 split
->bdev
= em
->bdev
;
617 split
->flags
= flags
;
618 split
->compress_type
= em
->compress_type
;
619 replace_extent_mapping(em_tree
, em
, split
, modified
);
620 free_extent_map(split
);
624 if (testend
&& em
->start
+ em
->len
> start
+ len
) {
625 u64 diff
= start
+ len
- em
->start
;
627 split
->start
= start
+ len
;
628 split
->len
= em
->start
+ em
->len
- (start
+ len
);
629 split
->bdev
= em
->bdev
;
630 split
->flags
= flags
;
631 split
->compress_type
= em
->compress_type
;
632 split
->generation
= gen
;
634 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
635 split
->orig_block_len
= max(em
->block_len
,
638 split
->ram_bytes
= em
->ram_bytes
;
640 split
->block_len
= em
->block_len
;
641 split
->block_start
= em
->block_start
;
642 split
->orig_start
= em
->orig_start
;
644 split
->block_len
= split
->len
;
645 split
->block_start
= em
->block_start
647 split
->orig_start
= em
->orig_start
;
650 split
->ram_bytes
= split
->len
;
651 split
->orig_start
= split
->start
;
652 split
->block_len
= 0;
653 split
->block_start
= em
->block_start
;
654 split
->orig_block_len
= 0;
657 if (extent_map_in_tree(em
)) {
658 replace_extent_mapping(em_tree
, em
, split
,
661 ret
= add_extent_mapping(em_tree
, split
,
663 ASSERT(ret
== 0); /* Logic error */
665 free_extent_map(split
);
669 if (extent_map_in_tree(em
))
670 remove_extent_mapping(em_tree
, em
);
671 write_unlock(&em_tree
->lock
);
675 /* once for the tree*/
679 free_extent_map(split
);
681 free_extent_map(split2
);
685 * this is very complex, but the basic idea is to drop all extents
686 * in the range start - end. hint_block is filled in with a block number
687 * that would be a good hint to the block allocator for this file.
689 * If an extent intersects the range but is not entirely inside the range
690 * it is either truncated or split. Anything entirely inside the range
691 * is deleted from the tree.
693 int __btrfs_drop_extents(struct btrfs_trans_handle
*trans
,
694 struct btrfs_root
*root
, struct inode
*inode
,
695 struct btrfs_path
*path
, u64 start
, u64 end
,
696 u64
*drop_end
, int drop_cache
,
698 u32 extent_item_size
,
701 struct extent_buffer
*leaf
;
702 struct btrfs_file_extent_item
*fi
;
703 struct btrfs_key key
;
704 struct btrfs_key new_key
;
705 u64 ino
= btrfs_ino(inode
);
706 u64 search_start
= start
;
709 u64 extent_offset
= 0;
716 int modify_tree
= -1;
717 int update_refs
= (root
->ref_cows
|| root
== root
->fs_info
->tree_root
);
719 int leafs_visited
= 0;
722 btrfs_drop_extent_cache(inode
, start
, end
- 1, 0);
724 if (start
>= BTRFS_I(inode
)->disk_i_size
&& !replace_extent
)
729 ret
= btrfs_lookup_file_extent(trans
, root
, path
, ino
,
730 search_start
, modify_tree
);
733 if (ret
> 0 && path
->slots
[0] > 0 && search_start
== start
) {
734 leaf
= path
->nodes
[0];
735 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0] - 1);
736 if (key
.objectid
== ino
&&
737 key
.type
== BTRFS_EXTENT_DATA_KEY
)
743 leaf
= path
->nodes
[0];
744 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
746 ret
= btrfs_next_leaf(root
, path
);
754 leaf
= path
->nodes
[0];
758 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
759 if (key
.objectid
> ino
||
760 key
.type
> BTRFS_EXTENT_DATA_KEY
|| key
.offset
>= end
)
763 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
764 struct btrfs_file_extent_item
);
765 extent_type
= btrfs_file_extent_type(leaf
, fi
);
767 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
768 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
769 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
770 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
771 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
772 extent_end
= key
.offset
+
773 btrfs_file_extent_num_bytes(leaf
, fi
);
774 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
775 extent_end
= key
.offset
+
776 btrfs_file_extent_inline_len(leaf
,
780 extent_end
= search_start
;
783 if (extent_end
<= search_start
) {
789 search_start
= max(key
.offset
, start
);
790 if (recow
|| !modify_tree
) {
792 btrfs_release_path(path
);
797 * | - range to drop - |
798 * | -------- extent -------- |
800 if (start
> key
.offset
&& end
< extent_end
) {
802 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
807 memcpy(&new_key
, &key
, sizeof(new_key
));
808 new_key
.offset
= start
;
809 ret
= btrfs_duplicate_item(trans
, root
, path
,
811 if (ret
== -EAGAIN
) {
812 btrfs_release_path(path
);
818 leaf
= path
->nodes
[0];
819 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
820 struct btrfs_file_extent_item
);
821 btrfs_set_file_extent_num_bytes(leaf
, fi
,
824 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
825 struct btrfs_file_extent_item
);
827 extent_offset
+= start
- key
.offset
;
828 btrfs_set_file_extent_offset(leaf
, fi
, extent_offset
);
829 btrfs_set_file_extent_num_bytes(leaf
, fi
,
831 btrfs_mark_buffer_dirty(leaf
);
833 if (update_refs
&& disk_bytenr
> 0) {
834 ret
= btrfs_inc_extent_ref(trans
, root
,
835 disk_bytenr
, num_bytes
, 0,
836 root
->root_key
.objectid
,
838 start
- extent_offset
, 0);
839 BUG_ON(ret
); /* -ENOMEM */
844 * | ---- range to drop ----- |
845 * | -------- extent -------- |
847 if (start
<= key
.offset
&& end
< extent_end
) {
848 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
853 memcpy(&new_key
, &key
, sizeof(new_key
));
854 new_key
.offset
= end
;
855 btrfs_set_item_key_safe(root
, path
, &new_key
);
857 extent_offset
+= end
- key
.offset
;
858 btrfs_set_file_extent_offset(leaf
, fi
, extent_offset
);
859 btrfs_set_file_extent_num_bytes(leaf
, fi
,
861 btrfs_mark_buffer_dirty(leaf
);
862 if (update_refs
&& disk_bytenr
> 0)
863 inode_sub_bytes(inode
, end
- key
.offset
);
867 search_start
= extent_end
;
869 * | ---- range to drop ----- |
870 * | -------- extent -------- |
872 if (start
> key
.offset
&& end
>= extent_end
) {
874 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
879 btrfs_set_file_extent_num_bytes(leaf
, fi
,
881 btrfs_mark_buffer_dirty(leaf
);
882 if (update_refs
&& disk_bytenr
> 0)
883 inode_sub_bytes(inode
, extent_end
- start
);
884 if (end
== extent_end
)
892 * | ---- range to drop ----- |
893 * | ------ extent ------ |
895 if (start
<= key
.offset
&& end
>= extent_end
) {
897 del_slot
= path
->slots
[0];
900 BUG_ON(del_slot
+ del_nr
!= path
->slots
[0]);
905 extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
906 inode_sub_bytes(inode
,
907 extent_end
- key
.offset
);
908 extent_end
= ALIGN(extent_end
,
910 } else if (update_refs
&& disk_bytenr
> 0) {
911 ret
= btrfs_free_extent(trans
, root
,
912 disk_bytenr
, num_bytes
, 0,
913 root
->root_key
.objectid
,
914 key
.objectid
, key
.offset
-
916 BUG_ON(ret
); /* -ENOMEM */
917 inode_sub_bytes(inode
,
918 extent_end
- key
.offset
);
921 if (end
== extent_end
)
924 if (path
->slots
[0] + 1 < btrfs_header_nritems(leaf
)) {
929 ret
= btrfs_del_items(trans
, root
, path
, del_slot
,
932 btrfs_abort_transaction(trans
, root
, ret
);
939 btrfs_release_path(path
);
946 if (!ret
&& del_nr
> 0) {
948 * Set path->slots[0] to first slot, so that after the delete
949 * if items are move off from our leaf to its immediate left or
950 * right neighbor leafs, we end up with a correct and adjusted
951 * path->slots[0] for our insertion (if replace_extent != 0).
953 path
->slots
[0] = del_slot
;
954 ret
= btrfs_del_items(trans
, root
, path
, del_slot
, del_nr
);
956 btrfs_abort_transaction(trans
, root
, ret
);
959 leaf
= path
->nodes
[0];
961 * If btrfs_del_items() was called, it might have deleted a leaf, in
962 * which case it unlocked our path, so check path->locks[0] matches a
965 if (!ret
&& replace_extent
&& leafs_visited
== 1 &&
966 (path
->locks
[0] == BTRFS_WRITE_LOCK_BLOCKING
||
967 path
->locks
[0] == BTRFS_WRITE_LOCK
) &&
968 btrfs_leaf_free_space(root
, leaf
) >=
969 sizeof(struct btrfs_item
) + extent_item_size
) {
972 key
.type
= BTRFS_EXTENT_DATA_KEY
;
974 if (!del_nr
&& path
->slots
[0] < btrfs_header_nritems(leaf
)) {
975 struct btrfs_key slot_key
;
977 btrfs_item_key_to_cpu(leaf
, &slot_key
, path
->slots
[0]);
978 if (btrfs_comp_cpu_keys(&key
, &slot_key
) > 0)
981 setup_items_for_insert(root
, path
, &key
,
984 sizeof(struct btrfs_item
) +
985 extent_item_size
, 1);
989 if (!replace_extent
|| !(*key_inserted
))
990 btrfs_release_path(path
);
992 *drop_end
= found
? min(end
, extent_end
) : end
;
996 int btrfs_drop_extents(struct btrfs_trans_handle
*trans
,
997 struct btrfs_root
*root
, struct inode
*inode
, u64 start
,
998 u64 end
, int drop_cache
)
1000 struct btrfs_path
*path
;
1003 path
= btrfs_alloc_path();
1006 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
, start
, end
, NULL
,
1007 drop_cache
, 0, 0, NULL
);
1008 btrfs_free_path(path
);
1012 static int extent_mergeable(struct extent_buffer
*leaf
, int slot
,
1013 u64 objectid
, u64 bytenr
, u64 orig_offset
,
1014 u64
*start
, u64
*end
)
1016 struct btrfs_file_extent_item
*fi
;
1017 struct btrfs_key key
;
1020 if (slot
< 0 || slot
>= btrfs_header_nritems(leaf
))
1023 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
1024 if (key
.objectid
!= objectid
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
1027 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
1028 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
||
1029 btrfs_file_extent_disk_bytenr(leaf
, fi
) != bytenr
||
1030 btrfs_file_extent_offset(leaf
, fi
) != key
.offset
- orig_offset
||
1031 btrfs_file_extent_compression(leaf
, fi
) ||
1032 btrfs_file_extent_encryption(leaf
, fi
) ||
1033 btrfs_file_extent_other_encoding(leaf
, fi
))
1036 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
1037 if ((*start
&& *start
!= key
.offset
) || (*end
&& *end
!= extent_end
))
1040 *start
= key
.offset
;
1046 * Mark extent in the range start - end as written.
1048 * This changes extent type from 'pre-allocated' to 'regular'. If only
1049 * part of extent is marked as written, the extent will be split into
1052 int btrfs_mark_extent_written(struct btrfs_trans_handle
*trans
,
1053 struct inode
*inode
, u64 start
, u64 end
)
1055 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1056 struct extent_buffer
*leaf
;
1057 struct btrfs_path
*path
;
1058 struct btrfs_file_extent_item
*fi
;
1059 struct btrfs_key key
;
1060 struct btrfs_key new_key
;
1072 u64 ino
= btrfs_ino(inode
);
1074 path
= btrfs_alloc_path();
1081 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1084 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1087 if (ret
> 0 && path
->slots
[0] > 0)
1090 leaf
= path
->nodes
[0];
1091 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1092 BUG_ON(key
.objectid
!= ino
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
);
1093 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1094 struct btrfs_file_extent_item
);
1095 BUG_ON(btrfs_file_extent_type(leaf
, fi
) !=
1096 BTRFS_FILE_EXTENT_PREALLOC
);
1097 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
1098 BUG_ON(key
.offset
> start
|| extent_end
< end
);
1100 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1101 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1102 orig_offset
= key
.offset
- btrfs_file_extent_offset(leaf
, fi
);
1103 memcpy(&new_key
, &key
, sizeof(new_key
));
1105 if (start
== key
.offset
&& end
< extent_end
) {
1108 if (extent_mergeable(leaf
, path
->slots
[0] - 1,
1109 ino
, bytenr
, orig_offset
,
1110 &other_start
, &other_end
)) {
1111 new_key
.offset
= end
;
1112 btrfs_set_item_key_safe(root
, path
, &new_key
);
1113 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1114 struct btrfs_file_extent_item
);
1115 btrfs_set_file_extent_generation(leaf
, fi
,
1117 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1119 btrfs_set_file_extent_offset(leaf
, fi
,
1121 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
1122 struct btrfs_file_extent_item
);
1123 btrfs_set_file_extent_generation(leaf
, fi
,
1125 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1127 btrfs_mark_buffer_dirty(leaf
);
1132 if (start
> key
.offset
&& end
== extent_end
) {
1135 if (extent_mergeable(leaf
, path
->slots
[0] + 1,
1136 ino
, bytenr
, orig_offset
,
1137 &other_start
, &other_end
)) {
1138 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1139 struct btrfs_file_extent_item
);
1140 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1141 start
- key
.offset
);
1142 btrfs_set_file_extent_generation(leaf
, fi
,
1145 new_key
.offset
= start
;
1146 btrfs_set_item_key_safe(root
, path
, &new_key
);
1148 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1149 struct btrfs_file_extent_item
);
1150 btrfs_set_file_extent_generation(leaf
, fi
,
1152 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1154 btrfs_set_file_extent_offset(leaf
, fi
,
1155 start
- orig_offset
);
1156 btrfs_mark_buffer_dirty(leaf
);
1161 while (start
> key
.offset
|| end
< extent_end
) {
1162 if (key
.offset
== start
)
1165 new_key
.offset
= split
;
1166 ret
= btrfs_duplicate_item(trans
, root
, path
, &new_key
);
1167 if (ret
== -EAGAIN
) {
1168 btrfs_release_path(path
);
1172 btrfs_abort_transaction(trans
, root
, ret
);
1176 leaf
= path
->nodes
[0];
1177 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
1178 struct btrfs_file_extent_item
);
1179 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1180 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1181 split
- key
.offset
);
1183 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1184 struct btrfs_file_extent_item
);
1186 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1187 btrfs_set_file_extent_offset(leaf
, fi
, split
- orig_offset
);
1188 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1189 extent_end
- split
);
1190 btrfs_mark_buffer_dirty(leaf
);
1192 ret
= btrfs_inc_extent_ref(trans
, root
, bytenr
, num_bytes
, 0,
1193 root
->root_key
.objectid
,
1194 ino
, orig_offset
, 0);
1195 BUG_ON(ret
); /* -ENOMEM */
1197 if (split
== start
) {
1200 BUG_ON(start
!= key
.offset
);
1209 if (extent_mergeable(leaf
, path
->slots
[0] + 1,
1210 ino
, bytenr
, orig_offset
,
1211 &other_start
, &other_end
)) {
1213 btrfs_release_path(path
);
1216 extent_end
= other_end
;
1217 del_slot
= path
->slots
[0] + 1;
1219 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
1220 0, root
->root_key
.objectid
,
1221 ino
, orig_offset
, 0);
1222 BUG_ON(ret
); /* -ENOMEM */
1226 if (extent_mergeable(leaf
, path
->slots
[0] - 1,
1227 ino
, bytenr
, orig_offset
,
1228 &other_start
, &other_end
)) {
1230 btrfs_release_path(path
);
1233 key
.offset
= other_start
;
1234 del_slot
= path
->slots
[0];
1236 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
1237 0, root
->root_key
.objectid
,
1238 ino
, orig_offset
, 0);
1239 BUG_ON(ret
); /* -ENOMEM */
1242 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1243 struct btrfs_file_extent_item
);
1244 btrfs_set_file_extent_type(leaf
, fi
,
1245 BTRFS_FILE_EXTENT_REG
);
1246 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1247 btrfs_mark_buffer_dirty(leaf
);
1249 fi
= btrfs_item_ptr(leaf
, del_slot
- 1,
1250 struct btrfs_file_extent_item
);
1251 btrfs_set_file_extent_type(leaf
, fi
,
1252 BTRFS_FILE_EXTENT_REG
);
1253 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1254 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1255 extent_end
- key
.offset
);
1256 btrfs_mark_buffer_dirty(leaf
);
1258 ret
= btrfs_del_items(trans
, root
, path
, del_slot
, del_nr
);
1260 btrfs_abort_transaction(trans
, root
, ret
);
1265 btrfs_free_path(path
);
1270 * on error we return an unlocked page and the error value
1271 * on success we return a locked page and 0
1273 static int prepare_uptodate_page(struct page
*page
, u64 pos
,
1274 bool force_uptodate
)
1278 if (((pos
& (PAGE_CACHE_SIZE
- 1)) || force_uptodate
) &&
1279 !PageUptodate(page
)) {
1280 ret
= btrfs_readpage(NULL
, page
);
1284 if (!PageUptodate(page
)) {
1293 * this just gets pages into the page cache and locks them down.
1295 static noinline
int prepare_pages(struct inode
*inode
, struct page
**pages
,
1296 size_t num_pages
, loff_t pos
,
1297 size_t write_bytes
, bool force_uptodate
)
1300 unsigned long index
= pos
>> PAGE_CACHE_SHIFT
;
1301 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
1305 for (i
= 0; i
< num_pages
; i
++) {
1306 pages
[i
] = find_or_create_page(inode
->i_mapping
, index
+ i
,
1307 mask
| __GFP_WRITE
);
1315 err
= prepare_uptodate_page(pages
[i
], pos
,
1317 if (i
== num_pages
- 1)
1318 err
= prepare_uptodate_page(pages
[i
],
1319 pos
+ write_bytes
, false);
1321 page_cache_release(pages
[i
]);
1325 wait_on_page_writeback(pages
[i
]);
1330 while (faili
>= 0) {
1331 unlock_page(pages
[faili
]);
1332 page_cache_release(pages
[faili
]);
1340 * This function locks the extent and properly waits for data=ordered extents
1341 * to finish before allowing the pages to be modified if need.
1344 * 1 - the extent is locked
1345 * 0 - the extent is not locked, and everything is OK
1346 * -EAGAIN - need re-prepare the pages
1347 * the other < 0 number - Something wrong happens
1350 lock_and_cleanup_extent_if_need(struct inode
*inode
, struct page
**pages
,
1351 size_t num_pages
, loff_t pos
,
1352 u64
*lockstart
, u64
*lockend
,
1353 struct extent_state
**cached_state
)
1360 start_pos
= pos
& ~((u64
)PAGE_CACHE_SIZE
- 1);
1361 last_pos
= start_pos
+ ((u64
)num_pages
<< PAGE_CACHE_SHIFT
) - 1;
1363 if (start_pos
< inode
->i_size
) {
1364 struct btrfs_ordered_extent
*ordered
;
1365 lock_extent_bits(&BTRFS_I(inode
)->io_tree
,
1366 start_pos
, last_pos
, 0, cached_state
);
1367 ordered
= btrfs_lookup_ordered_range(inode
, start_pos
,
1368 last_pos
- start_pos
+ 1);
1370 ordered
->file_offset
+ ordered
->len
> start_pos
&&
1371 ordered
->file_offset
<= last_pos
) {
1372 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1373 start_pos
, last_pos
,
1374 cached_state
, GFP_NOFS
);
1375 for (i
= 0; i
< num_pages
; i
++) {
1376 unlock_page(pages
[i
]);
1377 page_cache_release(pages
[i
]);
1379 btrfs_start_ordered_extent(inode
, ordered
, 1);
1380 btrfs_put_ordered_extent(ordered
);
1384 btrfs_put_ordered_extent(ordered
);
1386 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start_pos
,
1387 last_pos
, EXTENT_DIRTY
| EXTENT_DELALLOC
|
1388 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
1389 0, 0, cached_state
, GFP_NOFS
);
1390 *lockstart
= start_pos
;
1391 *lockend
= last_pos
;
1395 for (i
= 0; i
< num_pages
; i
++) {
1396 if (clear_page_dirty_for_io(pages
[i
]))
1397 account_page_redirty(pages
[i
]);
1398 set_page_extent_mapped(pages
[i
]);
1399 WARN_ON(!PageLocked(pages
[i
]));
1405 static noinline
int check_can_nocow(struct inode
*inode
, loff_t pos
,
1406 size_t *write_bytes
)
1408 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1409 struct btrfs_ordered_extent
*ordered
;
1410 u64 lockstart
, lockend
;
1414 ret
= btrfs_start_nocow_write(root
);
1418 lockstart
= round_down(pos
, root
->sectorsize
);
1419 lockend
= round_up(pos
+ *write_bytes
, root
->sectorsize
) - 1;
1422 lock_extent(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
);
1423 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
1424 lockend
- lockstart
+ 1);
1428 unlock_extent(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
);
1429 btrfs_start_ordered_extent(inode
, ordered
, 1);
1430 btrfs_put_ordered_extent(ordered
);
1433 num_bytes
= lockend
- lockstart
+ 1;
1434 ret
= can_nocow_extent(inode
, lockstart
, &num_bytes
, NULL
, NULL
, NULL
);
1437 btrfs_end_nocow_write(root
);
1439 *write_bytes
= min_t(size_t, *write_bytes
,
1440 num_bytes
- pos
+ lockstart
);
1443 unlock_extent(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
);
1448 static noinline ssize_t
__btrfs_buffered_write(struct file
*file
,
1452 struct inode
*inode
= file_inode(file
);
1453 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1454 struct page
**pages
= NULL
;
1455 struct extent_state
*cached_state
= NULL
;
1456 u64 release_bytes
= 0;
1459 unsigned long first_index
;
1460 size_t num_written
= 0;
1463 bool only_release_metadata
= false;
1464 bool force_page_uptodate
= false;
1467 nrptrs
= min((iov_iter_count(i
) + PAGE_CACHE_SIZE
- 1) /
1468 PAGE_CACHE_SIZE
, PAGE_CACHE_SIZE
/
1469 (sizeof(struct page
*)));
1470 nrptrs
= min(nrptrs
, current
->nr_dirtied_pause
- current
->nr_dirtied
);
1471 nrptrs
= max(nrptrs
, 8);
1472 pages
= kmalloc(nrptrs
* sizeof(struct page
*), GFP_KERNEL
);
1476 first_index
= pos
>> PAGE_CACHE_SHIFT
;
1478 while (iov_iter_count(i
) > 0) {
1479 size_t offset
= pos
& (PAGE_CACHE_SIZE
- 1);
1480 size_t write_bytes
= min(iov_iter_count(i
),
1481 nrptrs
* (size_t)PAGE_CACHE_SIZE
-
1483 size_t num_pages
= (write_bytes
+ offset
+
1484 PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1485 size_t reserve_bytes
;
1489 WARN_ON(num_pages
> nrptrs
);
1492 * Fault pages before locking them in prepare_pages
1493 * to avoid recursive lock
1495 if (unlikely(iov_iter_fault_in_readable(i
, write_bytes
))) {
1500 reserve_bytes
= num_pages
<< PAGE_CACHE_SHIFT
;
1501 ret
= btrfs_check_data_free_space(inode
, reserve_bytes
);
1502 if (ret
== -ENOSPC
&&
1503 (BTRFS_I(inode
)->flags
& (BTRFS_INODE_NODATACOW
|
1504 BTRFS_INODE_PREALLOC
))) {
1505 ret
= check_can_nocow(inode
, pos
, &write_bytes
);
1507 only_release_metadata
= true;
1509 * our prealloc extent may be smaller than
1510 * write_bytes, so scale down.
1512 num_pages
= (write_bytes
+ offset
+
1513 PAGE_CACHE_SIZE
- 1) >>
1515 reserve_bytes
= num_pages
<< PAGE_CACHE_SHIFT
;
1525 ret
= btrfs_delalloc_reserve_metadata(inode
, reserve_bytes
);
1527 if (!only_release_metadata
)
1528 btrfs_free_reserved_data_space(inode
,
1531 btrfs_end_nocow_write(root
);
1535 release_bytes
= reserve_bytes
;
1536 need_unlock
= false;
1539 * This is going to setup the pages array with the number of
1540 * pages we want, so we don't really need to worry about the
1541 * contents of pages from loop to loop
1543 ret
= prepare_pages(inode
, pages
, num_pages
,
1545 force_page_uptodate
);
1549 ret
= lock_and_cleanup_extent_if_need(inode
, pages
, num_pages
,
1550 pos
, &lockstart
, &lockend
,
1556 } else if (ret
> 0) {
1561 copied
= btrfs_copy_from_user(pos
, num_pages
,
1562 write_bytes
, pages
, i
);
1565 * if we have trouble faulting in the pages, fall
1566 * back to one page at a time
1568 if (copied
< write_bytes
)
1572 force_page_uptodate
= true;
1575 force_page_uptodate
= false;
1576 dirty_pages
= (copied
+ offset
+
1577 PAGE_CACHE_SIZE
- 1) >>
1582 * If we had a short copy we need to release the excess delaloc
1583 * bytes we reserved. We need to increment outstanding_extents
1584 * because btrfs_delalloc_release_space will decrement it, but
1585 * we still have an outstanding extent for the chunk we actually
1588 if (num_pages
> dirty_pages
) {
1589 release_bytes
= (num_pages
- dirty_pages
) <<
1592 spin_lock(&BTRFS_I(inode
)->lock
);
1593 BTRFS_I(inode
)->outstanding_extents
++;
1594 spin_unlock(&BTRFS_I(inode
)->lock
);
1596 if (only_release_metadata
)
1597 btrfs_delalloc_release_metadata(inode
,
1600 btrfs_delalloc_release_space(inode
,
1604 release_bytes
= dirty_pages
<< PAGE_CACHE_SHIFT
;
1607 ret
= btrfs_dirty_pages(root
, inode
, pages
,
1608 dirty_pages
, pos
, copied
,
1611 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1612 lockstart
, lockend
, &cached_state
,
1615 btrfs_drop_pages(pages
, num_pages
);
1620 if (only_release_metadata
)
1621 btrfs_end_nocow_write(root
);
1623 if (only_release_metadata
&& copied
> 0) {
1624 u64 lockstart
= round_down(pos
, root
->sectorsize
);
1625 u64 lockend
= lockstart
+
1626 (dirty_pages
<< PAGE_CACHE_SHIFT
) - 1;
1628 set_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
1629 lockend
, EXTENT_NORESERVE
, NULL
,
1631 only_release_metadata
= false;
1634 btrfs_drop_pages(pages
, num_pages
);
1638 balance_dirty_pages_ratelimited(inode
->i_mapping
);
1639 if (dirty_pages
< (root
->leafsize
>> PAGE_CACHE_SHIFT
) + 1)
1640 btrfs_btree_balance_dirty(root
);
1643 num_written
+= copied
;
1648 if (release_bytes
) {
1649 if (only_release_metadata
) {
1650 btrfs_end_nocow_write(root
);
1651 btrfs_delalloc_release_metadata(inode
, release_bytes
);
1653 btrfs_delalloc_release_space(inode
, release_bytes
);
1657 return num_written
? num_written
: ret
;
1660 static ssize_t
__btrfs_direct_write(struct kiocb
*iocb
,
1661 const struct iovec
*iov
,
1662 unsigned long nr_segs
, loff_t pos
,
1663 size_t count
, size_t ocount
)
1665 struct file
*file
= iocb
->ki_filp
;
1668 ssize_t written_buffered
;
1672 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, pos
,
1675 if (written
< 0 || written
== count
)
1680 iov_iter_init(&i
, iov
, nr_segs
, count
, written
);
1681 written_buffered
= __btrfs_buffered_write(file
, &i
, pos
);
1682 if (written_buffered
< 0) {
1683 err
= written_buffered
;
1686 endbyte
= pos
+ written_buffered
- 1;
1687 err
= filemap_write_and_wait_range(file
->f_mapping
, pos
, endbyte
);
1690 written
+= written_buffered
;
1691 iocb
->ki_pos
= pos
+ written_buffered
;
1692 invalidate_mapping_pages(file
->f_mapping
, pos
>> PAGE_CACHE_SHIFT
,
1693 endbyte
>> PAGE_CACHE_SHIFT
);
1695 return written
? written
: err
;
1698 static void update_time_for_write(struct inode
*inode
)
1700 struct timespec now
;
1702 if (IS_NOCMTIME(inode
))
1705 now
= current_fs_time(inode
->i_sb
);
1706 if (!timespec_equal(&inode
->i_mtime
, &now
))
1707 inode
->i_mtime
= now
;
1709 if (!timespec_equal(&inode
->i_ctime
, &now
))
1710 inode
->i_ctime
= now
;
1712 if (IS_I_VERSION(inode
))
1713 inode_inc_iversion(inode
);
1716 static ssize_t
btrfs_file_aio_write(struct kiocb
*iocb
,
1717 const struct iovec
*iov
,
1718 unsigned long nr_segs
, loff_t pos
)
1720 struct file
*file
= iocb
->ki_filp
;
1721 struct inode
*inode
= file_inode(file
);
1722 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1725 ssize_t num_written
= 0;
1727 size_t count
, ocount
;
1728 bool sync
= (file
->f_flags
& O_DSYNC
) || IS_SYNC(file
->f_mapping
->host
);
1730 mutex_lock(&inode
->i_mutex
);
1732 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
1734 mutex_unlock(&inode
->i_mutex
);
1739 current
->backing_dev_info
= inode
->i_mapping
->backing_dev_info
;
1740 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
1742 mutex_unlock(&inode
->i_mutex
);
1747 mutex_unlock(&inode
->i_mutex
);
1751 err
= file_remove_suid(file
);
1753 mutex_unlock(&inode
->i_mutex
);
1758 * If BTRFS flips readonly due to some impossible error
1759 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1760 * although we have opened a file as writable, we have
1761 * to stop this write operation to ensure FS consistency.
1763 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
)) {
1764 mutex_unlock(&inode
->i_mutex
);
1770 * We reserve space for updating the inode when we reserve space for the
1771 * extent we are going to write, so we will enospc out there. We don't
1772 * need to start yet another transaction to update the inode as we will
1773 * update the inode when we finish writing whatever data we write.
1775 update_time_for_write(inode
);
1777 start_pos
= round_down(pos
, root
->sectorsize
);
1778 if (start_pos
> i_size_read(inode
)) {
1779 /* Expand hole size to cover write data, preventing empty gap */
1780 end_pos
= round_up(pos
+ count
, root
->sectorsize
);
1781 err
= btrfs_cont_expand(inode
, i_size_read(inode
), end_pos
);
1783 mutex_unlock(&inode
->i_mutex
);
1789 atomic_inc(&BTRFS_I(inode
)->sync_writers
);
1791 if (unlikely(file
->f_flags
& O_DIRECT
)) {
1792 num_written
= __btrfs_direct_write(iocb
, iov
, nr_segs
,
1793 pos
, count
, ocount
);
1797 iov_iter_init(&i
, iov
, nr_segs
, count
, num_written
);
1799 num_written
= __btrfs_buffered_write(file
, &i
, pos
);
1800 if (num_written
> 0)
1801 iocb
->ki_pos
= pos
+ num_written
;
1804 mutex_unlock(&inode
->i_mutex
);
1807 * we want to make sure fsync finds this change
1808 * but we haven't joined a transaction running right now.
1810 * Later on, someone is sure to update the inode and get the
1811 * real transid recorded.
1813 * We set last_trans now to the fs_info generation + 1,
1814 * this will either be one more than the running transaction
1815 * or the generation used for the next transaction if there isn't
1816 * one running right now.
1818 * We also have to set last_sub_trans to the current log transid,
1819 * otherwise subsequent syncs to a file that's been synced in this
1820 * transaction will appear to have already occured.
1822 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
+ 1;
1823 BTRFS_I(inode
)->last_sub_trans
= root
->log_transid
;
1824 if (num_written
> 0) {
1825 err
= generic_write_sync(file
, pos
, num_written
);
1831 atomic_dec(&BTRFS_I(inode
)->sync_writers
);
1833 current
->backing_dev_info
= NULL
;
1834 return num_written
? num_written
: err
;
1837 int btrfs_release_file(struct inode
*inode
, struct file
*filp
)
1840 * ordered_data_close is set by settattr when we are about to truncate
1841 * a file from a non-zero size to a zero size. This tries to
1842 * flush down new bytes that may have been written if the
1843 * application were using truncate to replace a file in place.
1845 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
1846 &BTRFS_I(inode
)->runtime_flags
)) {
1847 struct btrfs_trans_handle
*trans
;
1848 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1851 * We need to block on a committing transaction to keep us from
1852 * throwing a ordered operation on to the list and causing
1853 * something like sync to deadlock trying to flush out this
1856 trans
= btrfs_start_transaction(root
, 0);
1858 return PTR_ERR(trans
);
1859 btrfs_add_ordered_operation(trans
, BTRFS_I(inode
)->root
, inode
);
1860 btrfs_end_transaction(trans
, root
);
1861 if (inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
1862 filemap_flush(inode
->i_mapping
);
1864 if (filp
->private_data
)
1865 btrfs_ioctl_trans_end(filp
);
1870 * fsync call for both files and directories. This logs the inode into
1871 * the tree log instead of forcing full commits whenever possible.
1873 * It needs to call filemap_fdatawait so that all ordered extent updates are
1874 * in the metadata btree are up to date for copying to the log.
1876 * It drops the inode mutex before doing the tree log commit. This is an
1877 * important optimization for directories because holding the mutex prevents
1878 * new operations on the dir while we write to disk.
1880 int btrfs_sync_file(struct file
*file
, loff_t start
, loff_t end
, int datasync
)
1882 struct dentry
*dentry
= file
->f_path
.dentry
;
1883 struct inode
*inode
= dentry
->d_inode
;
1884 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1885 struct btrfs_trans_handle
*trans
;
1886 struct btrfs_log_ctx ctx
;
1890 trace_btrfs_sync_file(file
, datasync
);
1893 * We write the dirty pages in the range and wait until they complete
1894 * out of the ->i_mutex. If so, we can flush the dirty pages by
1895 * multi-task, and make the performance up. See
1896 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1898 atomic_inc(&BTRFS_I(inode
)->sync_writers
);
1899 ret
= filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
1900 if (!ret
&& test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1901 &BTRFS_I(inode
)->runtime_flags
))
1902 ret
= filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
1903 atomic_dec(&BTRFS_I(inode
)->sync_writers
);
1907 mutex_lock(&inode
->i_mutex
);
1910 * We flush the dirty pages again to avoid some dirty pages in the
1913 atomic_inc(&root
->log_batch
);
1914 full_sync
= test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
1915 &BTRFS_I(inode
)->runtime_flags
);
1917 ret
= btrfs_wait_ordered_range(inode
, start
, end
- start
+ 1);
1919 mutex_unlock(&inode
->i_mutex
);
1923 atomic_inc(&root
->log_batch
);
1926 * check the transaction that last modified this inode
1927 * and see if its already been committed
1929 if (!BTRFS_I(inode
)->last_trans
) {
1930 mutex_unlock(&inode
->i_mutex
);
1935 * if the last transaction that changed this file was before
1936 * the current transaction, we can bail out now without any
1940 if (btrfs_inode_in_log(inode
, root
->fs_info
->generation
) ||
1941 BTRFS_I(inode
)->last_trans
<=
1942 root
->fs_info
->last_trans_committed
) {
1943 BTRFS_I(inode
)->last_trans
= 0;
1946 * We'v had everything committed since the last time we were
1947 * modified so clear this flag in case it was set for whatever
1948 * reason, it's no longer relevant.
1950 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
1951 &BTRFS_I(inode
)->runtime_flags
);
1952 mutex_unlock(&inode
->i_mutex
);
1957 * ok we haven't committed the transaction yet, lets do a commit
1959 if (file
->private_data
)
1960 btrfs_ioctl_trans_end(file
);
1963 * We use start here because we will need to wait on the IO to complete
1964 * in btrfs_sync_log, which could require joining a transaction (for
1965 * example checking cross references in the nocow path). If we use join
1966 * here we could get into a situation where we're waiting on IO to
1967 * happen that is blocked on a transaction trying to commit. With start
1968 * we inc the extwriter counter, so we wait for all extwriters to exit
1969 * before we start blocking join'ers. This comment is to keep somebody
1970 * from thinking they are super smart and changing this to
1971 * btrfs_join_transaction *cough*Josef*cough*.
1973 trans
= btrfs_start_transaction(root
, 0);
1974 if (IS_ERR(trans
)) {
1975 ret
= PTR_ERR(trans
);
1976 mutex_unlock(&inode
->i_mutex
);
1981 btrfs_init_log_ctx(&ctx
);
1983 ret
= btrfs_log_dentry_safe(trans
, root
, dentry
, &ctx
);
1985 /* Fallthrough and commit/free transaction. */
1989 /* we've logged all the items and now have a consistent
1990 * version of the file in the log. It is possible that
1991 * someone will come in and modify the file, but that's
1992 * fine because the log is consistent on disk, and we
1993 * have references to all of the file's extents
1995 * It is possible that someone will come in and log the
1996 * file again, but that will end up using the synchronization
1997 * inside btrfs_sync_log to keep things safe.
1999 mutex_unlock(&inode
->i_mutex
);
2001 if (ret
!= BTRFS_NO_LOG_SYNC
) {
2003 ret
= btrfs_sync_log(trans
, root
, &ctx
);
2005 ret
= btrfs_end_transaction(trans
, root
);
2010 ret
= btrfs_wait_ordered_range(inode
, start
,
2015 ret
= btrfs_commit_transaction(trans
, root
);
2017 ret
= btrfs_end_transaction(trans
, root
);
2020 return ret
> 0 ? -EIO
: ret
;
2023 static const struct vm_operations_struct btrfs_file_vm_ops
= {
2024 .fault
= filemap_fault
,
2025 .map_pages
= filemap_map_pages
,
2026 .page_mkwrite
= btrfs_page_mkwrite
,
2027 .remap_pages
= generic_file_remap_pages
,
2030 static int btrfs_file_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
2032 struct address_space
*mapping
= filp
->f_mapping
;
2034 if (!mapping
->a_ops
->readpage
)
2037 file_accessed(filp
);
2038 vma
->vm_ops
= &btrfs_file_vm_ops
;
2043 static int hole_mergeable(struct inode
*inode
, struct extent_buffer
*leaf
,
2044 int slot
, u64 start
, u64 end
)
2046 struct btrfs_file_extent_item
*fi
;
2047 struct btrfs_key key
;
2049 if (slot
< 0 || slot
>= btrfs_header_nritems(leaf
))
2052 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2053 if (key
.objectid
!= btrfs_ino(inode
) ||
2054 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2057 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
2059 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
)
2062 if (btrfs_file_extent_disk_bytenr(leaf
, fi
))
2065 if (key
.offset
== end
)
2067 if (key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
) == start
)
2072 static int fill_holes(struct btrfs_trans_handle
*trans
, struct inode
*inode
,
2073 struct btrfs_path
*path
, u64 offset
, u64 end
)
2075 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2076 struct extent_buffer
*leaf
;
2077 struct btrfs_file_extent_item
*fi
;
2078 struct extent_map
*hole_em
;
2079 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
2080 struct btrfs_key key
;
2083 if (btrfs_fs_incompat(root
->fs_info
, NO_HOLES
))
2086 key
.objectid
= btrfs_ino(inode
);
2087 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2088 key
.offset
= offset
;
2090 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2095 leaf
= path
->nodes
[0];
2096 if (hole_mergeable(inode
, leaf
, path
->slots
[0]-1, offset
, end
)) {
2100 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2101 struct btrfs_file_extent_item
);
2102 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
) +
2104 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2105 btrfs_set_file_extent_ram_bytes(leaf
, fi
, num_bytes
);
2106 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2107 btrfs_mark_buffer_dirty(leaf
);
2111 if (hole_mergeable(inode
, leaf
, path
->slots
[0]+1, offset
, end
)) {
2115 key
.offset
= offset
;
2116 btrfs_set_item_key_safe(root
, path
, &key
);
2117 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2118 struct btrfs_file_extent_item
);
2119 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
) + end
-
2121 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2122 btrfs_set_file_extent_ram_bytes(leaf
, fi
, num_bytes
);
2123 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2124 btrfs_mark_buffer_dirty(leaf
);
2127 btrfs_release_path(path
);
2129 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(inode
), offset
,
2130 0, 0, end
- offset
, 0, end
- offset
,
2136 btrfs_release_path(path
);
2138 hole_em
= alloc_extent_map();
2140 btrfs_drop_extent_cache(inode
, offset
, end
- 1, 0);
2141 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
2142 &BTRFS_I(inode
)->runtime_flags
);
2144 hole_em
->start
= offset
;
2145 hole_em
->len
= end
- offset
;
2146 hole_em
->ram_bytes
= hole_em
->len
;
2147 hole_em
->orig_start
= offset
;
2149 hole_em
->block_start
= EXTENT_MAP_HOLE
;
2150 hole_em
->block_len
= 0;
2151 hole_em
->orig_block_len
= 0;
2152 hole_em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
2153 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
2154 hole_em
->generation
= trans
->transid
;
2157 btrfs_drop_extent_cache(inode
, offset
, end
- 1, 0);
2158 write_lock(&em_tree
->lock
);
2159 ret
= add_extent_mapping(em_tree
, hole_em
, 1);
2160 write_unlock(&em_tree
->lock
);
2161 } while (ret
== -EEXIST
);
2162 free_extent_map(hole_em
);
2164 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
2165 &BTRFS_I(inode
)->runtime_flags
);
2171 static int btrfs_punch_hole(struct inode
*inode
, loff_t offset
, loff_t len
)
2173 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2174 struct extent_state
*cached_state
= NULL
;
2175 struct btrfs_path
*path
;
2176 struct btrfs_block_rsv
*rsv
;
2177 struct btrfs_trans_handle
*trans
;
2178 u64 lockstart
= round_up(offset
, BTRFS_I(inode
)->root
->sectorsize
);
2179 u64 lockend
= round_down(offset
+ len
,
2180 BTRFS_I(inode
)->root
->sectorsize
) - 1;
2181 u64 cur_offset
= lockstart
;
2182 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
2187 bool same_page
= ((offset
>> PAGE_CACHE_SHIFT
) ==
2188 ((offset
+ len
- 1) >> PAGE_CACHE_SHIFT
));
2189 bool no_holes
= btrfs_fs_incompat(root
->fs_info
, NO_HOLES
);
2190 u64 ino_size
= round_up(inode
->i_size
, PAGE_CACHE_SIZE
);
2192 ret
= btrfs_wait_ordered_range(inode
, offset
, len
);
2196 mutex_lock(&inode
->i_mutex
);
2198 * We needn't truncate any page which is beyond the end of the file
2199 * because we are sure there is no data there.
2202 * Only do this if we are in the same page and we aren't doing the
2205 if (same_page
&& len
< PAGE_CACHE_SIZE
) {
2206 if (offset
< ino_size
)
2207 ret
= btrfs_truncate_page(inode
, offset
, len
, 0);
2208 mutex_unlock(&inode
->i_mutex
);
2212 /* zero back part of the first page */
2213 if (offset
< ino_size
) {
2214 ret
= btrfs_truncate_page(inode
, offset
, 0, 0);
2216 mutex_unlock(&inode
->i_mutex
);
2221 /* zero the front end of the last page */
2222 if (offset
+ len
< ino_size
) {
2223 ret
= btrfs_truncate_page(inode
, offset
+ len
, 0, 1);
2225 mutex_unlock(&inode
->i_mutex
);
2230 if (lockend
< lockstart
) {
2231 mutex_unlock(&inode
->i_mutex
);
2236 struct btrfs_ordered_extent
*ordered
;
2238 truncate_pagecache_range(inode
, lockstart
, lockend
);
2240 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
2242 ordered
= btrfs_lookup_first_ordered_extent(inode
, lockend
);
2245 * We need to make sure we have no ordered extents in this range
2246 * and nobody raced in and read a page in this range, if we did
2247 * we need to try again.
2250 (ordered
->file_offset
+ ordered
->len
<= lockstart
||
2251 ordered
->file_offset
> lockend
)) &&
2252 !test_range_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
2253 lockend
, EXTENT_UPTODATE
, 0,
2256 btrfs_put_ordered_extent(ordered
);
2260 btrfs_put_ordered_extent(ordered
);
2261 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
,
2262 lockend
, &cached_state
, GFP_NOFS
);
2263 ret
= btrfs_wait_ordered_range(inode
, lockstart
,
2264 lockend
- lockstart
+ 1);
2266 mutex_unlock(&inode
->i_mutex
);
2271 path
= btrfs_alloc_path();
2277 rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
2282 rsv
->size
= btrfs_calc_trunc_metadata_size(root
, 1);
2286 * 1 - update the inode
2287 * 1 - removing the extents in the range
2288 * 1 - adding the hole extent if no_holes isn't set
2290 rsv_count
= no_holes
? 2 : 3;
2291 trans
= btrfs_start_transaction(root
, rsv_count
);
2292 if (IS_ERR(trans
)) {
2293 err
= PTR_ERR(trans
);
2297 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
, rsv
,
2300 trans
->block_rsv
= rsv
;
2302 while (cur_offset
< lockend
) {
2303 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
,
2304 cur_offset
, lockend
+ 1,
2305 &drop_end
, 1, 0, 0, NULL
);
2309 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
2311 if (cur_offset
< ino_size
) {
2312 ret
= fill_holes(trans
, inode
, path
, cur_offset
,
2320 cur_offset
= drop_end
;
2322 ret
= btrfs_update_inode(trans
, root
, inode
);
2328 btrfs_end_transaction(trans
, root
);
2329 btrfs_btree_balance_dirty(root
);
2331 trans
= btrfs_start_transaction(root
, rsv_count
);
2332 if (IS_ERR(trans
)) {
2333 ret
= PTR_ERR(trans
);
2338 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
,
2340 BUG_ON(ret
); /* shouldn't happen */
2341 trans
->block_rsv
= rsv
;
2349 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
2350 if (cur_offset
< ino_size
) {
2351 ret
= fill_holes(trans
, inode
, path
, cur_offset
, drop_end
);
2362 inode_inc_iversion(inode
);
2363 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
2365 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
2366 ret
= btrfs_update_inode(trans
, root
, inode
);
2367 btrfs_end_transaction(trans
, root
);
2368 btrfs_btree_balance_dirty(root
);
2370 btrfs_free_path(path
);
2371 btrfs_free_block_rsv(root
, rsv
);
2373 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
2374 &cached_state
, GFP_NOFS
);
2375 mutex_unlock(&inode
->i_mutex
);
2381 static long btrfs_fallocate(struct file
*file
, int mode
,
2382 loff_t offset
, loff_t len
)
2384 struct inode
*inode
= file_inode(file
);
2385 struct extent_state
*cached_state
= NULL
;
2386 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2393 struct extent_map
*em
;
2394 int blocksize
= BTRFS_I(inode
)->root
->sectorsize
;
2397 alloc_start
= round_down(offset
, blocksize
);
2398 alloc_end
= round_up(offset
+ len
, blocksize
);
2400 /* Make sure we aren't being give some crap mode */
2401 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2404 if (mode
& FALLOC_FL_PUNCH_HOLE
)
2405 return btrfs_punch_hole(inode
, offset
, len
);
2408 * Make sure we have enough space before we do the
2411 ret
= btrfs_check_data_free_space(inode
, alloc_end
- alloc_start
);
2414 if (root
->fs_info
->quota_enabled
) {
2415 ret
= btrfs_qgroup_reserve(root
, alloc_end
- alloc_start
);
2417 goto out_reserve_fail
;
2420 mutex_lock(&inode
->i_mutex
);
2421 ret
= inode_newsize_ok(inode
, alloc_end
);
2425 if (alloc_start
> inode
->i_size
) {
2426 ret
= btrfs_cont_expand(inode
, i_size_read(inode
),
2432 * If we are fallocating from the end of the file onward we
2433 * need to zero out the end of the page if i_size lands in the
2436 ret
= btrfs_truncate_page(inode
, inode
->i_size
, 0, 0);
2442 * wait for ordered IO before we have any locks. We'll loop again
2443 * below with the locks held.
2445 ret
= btrfs_wait_ordered_range(inode
, alloc_start
,
2446 alloc_end
- alloc_start
);
2450 locked_end
= alloc_end
- 1;
2452 struct btrfs_ordered_extent
*ordered
;
2454 /* the extent lock is ordered inside the running
2457 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, alloc_start
,
2458 locked_end
, 0, &cached_state
);
2459 ordered
= btrfs_lookup_first_ordered_extent(inode
,
2462 ordered
->file_offset
+ ordered
->len
> alloc_start
&&
2463 ordered
->file_offset
< alloc_end
) {
2464 btrfs_put_ordered_extent(ordered
);
2465 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
2466 alloc_start
, locked_end
,
2467 &cached_state
, GFP_NOFS
);
2469 * we can't wait on the range with the transaction
2470 * running or with the extent lock held
2472 ret
= btrfs_wait_ordered_range(inode
, alloc_start
,
2473 alloc_end
- alloc_start
);
2478 btrfs_put_ordered_extent(ordered
);
2483 cur_offset
= alloc_start
;
2487 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
2488 alloc_end
- cur_offset
, 0);
2489 if (IS_ERR_OR_NULL(em
)) {
2496 last_byte
= min(extent_map_end(em
), alloc_end
);
2497 actual_end
= min_t(u64
, extent_map_end(em
), offset
+ len
);
2498 last_byte
= ALIGN(last_byte
, blocksize
);
2500 if (em
->block_start
== EXTENT_MAP_HOLE
||
2501 (cur_offset
>= inode
->i_size
&&
2502 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
2503 ret
= btrfs_prealloc_file_range(inode
, mode
, cur_offset
,
2504 last_byte
- cur_offset
,
2505 1 << inode
->i_blkbits
,
2510 free_extent_map(em
);
2513 } else if (actual_end
> inode
->i_size
&&
2514 !(mode
& FALLOC_FL_KEEP_SIZE
)) {
2516 * We didn't need to allocate any more space, but we
2517 * still extended the size of the file so we need to
2520 inode
->i_ctime
= CURRENT_TIME
;
2521 i_size_write(inode
, actual_end
);
2522 btrfs_ordered_update_i_size(inode
, actual_end
, NULL
);
2524 free_extent_map(em
);
2526 cur_offset
= last_byte
;
2527 if (cur_offset
>= alloc_end
) {
2532 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, alloc_start
, locked_end
,
2533 &cached_state
, GFP_NOFS
);
2535 mutex_unlock(&inode
->i_mutex
);
2536 if (root
->fs_info
->quota_enabled
)
2537 btrfs_qgroup_free(root
, alloc_end
- alloc_start
);
2539 /* Let go of our reservation. */
2540 btrfs_free_reserved_data_space(inode
, alloc_end
- alloc_start
);
2544 static int find_desired_extent(struct inode
*inode
, loff_t
*offset
, int whence
)
2546 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2547 struct extent_map
*em
= NULL
;
2548 struct extent_state
*cached_state
= NULL
;
2549 u64 lockstart
= *offset
;
2550 u64 lockend
= i_size_read(inode
);
2551 u64 start
= *offset
;
2552 u64 len
= i_size_read(inode
);
2555 lockend
= max_t(u64
, root
->sectorsize
, lockend
);
2556 if (lockend
<= lockstart
)
2557 lockend
= lockstart
+ root
->sectorsize
;
2560 len
= lockend
- lockstart
+ 1;
2562 len
= max_t(u64
, len
, root
->sectorsize
);
2563 if (inode
->i_size
== 0)
2566 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
, 0,
2569 while (start
< inode
->i_size
) {
2570 em
= btrfs_get_extent_fiemap(inode
, NULL
, 0, start
, len
, 0);
2577 if (whence
== SEEK_HOLE
&&
2578 (em
->block_start
== EXTENT_MAP_HOLE
||
2579 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)))
2581 else if (whence
== SEEK_DATA
&&
2582 (em
->block_start
!= EXTENT_MAP_HOLE
&&
2583 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)))
2586 start
= em
->start
+ em
->len
;
2587 free_extent_map(em
);
2591 free_extent_map(em
);
2593 if (whence
== SEEK_DATA
&& start
>= inode
->i_size
)
2596 *offset
= min_t(loff_t
, start
, inode
->i_size
);
2598 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
2599 &cached_state
, GFP_NOFS
);
2603 static loff_t
btrfs_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2605 struct inode
*inode
= file
->f_mapping
->host
;
2608 mutex_lock(&inode
->i_mutex
);
2612 offset
= generic_file_llseek(file
, offset
, whence
);
2616 if (offset
>= i_size_read(inode
)) {
2617 mutex_unlock(&inode
->i_mutex
);
2621 ret
= find_desired_extent(inode
, &offset
, whence
);
2623 mutex_unlock(&inode
->i_mutex
);
2628 offset
= vfs_setpos(file
, offset
, inode
->i_sb
->s_maxbytes
);
2630 mutex_unlock(&inode
->i_mutex
);
2634 const struct file_operations btrfs_file_operations
= {
2635 .llseek
= btrfs_file_llseek
,
2636 .read
= do_sync_read
,
2637 .write
= do_sync_write
,
2638 .aio_read
= generic_file_aio_read
,
2639 .splice_read
= generic_file_splice_read
,
2640 .aio_write
= btrfs_file_aio_write
,
2641 .mmap
= btrfs_file_mmap
,
2642 .open
= generic_file_open
,
2643 .release
= btrfs_release_file
,
2644 .fsync
= btrfs_sync_file
,
2645 .fallocate
= btrfs_fallocate
,
2646 .unlocked_ioctl
= btrfs_ioctl
,
2647 #ifdef CONFIG_COMPAT
2648 .compat_ioctl
= btrfs_ioctl
,
2652 void btrfs_auto_defrag_exit(void)
2654 if (btrfs_inode_defrag_cachep
)
2655 kmem_cache_destroy(btrfs_inode_defrag_cachep
);
2658 int btrfs_auto_defrag_init(void)
2660 btrfs_inode_defrag_cachep
= kmem_cache_create("btrfs_inode_defrag",
2661 sizeof(struct inode_defrag
), 0,
2662 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
2664 if (!btrfs_inode_defrag_cachep
)