2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include <linux/slab.h>
41 #include <linux/ratelimit.h>
42 #include <linux/mount.h>
43 #include <linux/btrfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/posix_acl_xattr.h>
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
55 #include "compression.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
63 struct btrfs_iget_args
{
64 struct btrfs_key
*location
;
65 struct btrfs_root
*root
;
68 static const struct inode_operations btrfs_dir_inode_operations
;
69 static const struct inode_operations btrfs_symlink_inode_operations
;
70 static const struct inode_operations btrfs_dir_ro_inode_operations
;
71 static const struct inode_operations btrfs_special_inode_operations
;
72 static const struct inode_operations btrfs_file_inode_operations
;
73 static const struct address_space_operations btrfs_aops
;
74 static const struct address_space_operations btrfs_symlink_aops
;
75 static const struct file_operations btrfs_dir_file_operations
;
76 static struct extent_io_ops btrfs_extent_io_ops
;
78 static struct kmem_cache
*btrfs_inode_cachep
;
79 static struct kmem_cache
*btrfs_delalloc_work_cachep
;
80 struct kmem_cache
*btrfs_trans_handle_cachep
;
81 struct kmem_cache
*btrfs_transaction_cachep
;
82 struct kmem_cache
*btrfs_path_cachep
;
83 struct kmem_cache
*btrfs_free_space_cachep
;
86 static unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
87 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
88 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
89 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
90 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
91 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
92 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
93 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
96 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
);
97 static int btrfs_truncate(struct inode
*inode
);
98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
);
99 static noinline
int cow_file_range(struct inode
*inode
,
100 struct page
*locked_page
,
101 u64 start
, u64 end
, int *page_started
,
102 unsigned long *nr_written
, int unlock
);
103 static struct extent_map
*create_pinned_em(struct inode
*inode
, u64 start
,
104 u64 len
, u64 orig_start
,
105 u64 block_start
, u64 block_len
,
106 u64 orig_block_len
, u64 ram_bytes
,
109 static int btrfs_dirty_inode(struct inode
*inode
);
111 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
112 struct inode
*inode
, struct inode
*dir
,
113 const struct qstr
*qstr
)
117 err
= btrfs_init_acl(trans
, inode
, dir
);
119 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
128 static noinline
int insert_inline_extent(struct btrfs_trans_handle
*trans
,
129 struct btrfs_path
*path
, int extent_inserted
,
130 struct btrfs_root
*root
, struct inode
*inode
,
131 u64 start
, size_t size
, size_t compressed_size
,
133 struct page
**compressed_pages
)
135 struct extent_buffer
*leaf
;
136 struct page
*page
= NULL
;
139 struct btrfs_file_extent_item
*ei
;
142 size_t cur_size
= size
;
143 unsigned long offset
;
145 if (compressed_size
&& compressed_pages
)
146 cur_size
= compressed_size
;
148 inode_add_bytes(inode
, size
);
150 if (!extent_inserted
) {
151 struct btrfs_key key
;
154 key
.objectid
= btrfs_ino(inode
);
156 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
158 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
159 path
->leave_spinning
= 1;
160 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
167 leaf
= path
->nodes
[0];
168 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
169 struct btrfs_file_extent_item
);
170 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
171 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
172 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
173 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
174 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
175 ptr
= btrfs_file_extent_inline_start(ei
);
177 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
180 while (compressed_size
> 0) {
181 cpage
= compressed_pages
[i
];
182 cur_size
= min_t(unsigned long, compressed_size
,
185 kaddr
= kmap_atomic(cpage
);
186 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
187 kunmap_atomic(kaddr
);
191 compressed_size
-= cur_size
;
193 btrfs_set_file_extent_compression(leaf
, ei
,
196 page
= find_get_page(inode
->i_mapping
,
197 start
>> PAGE_CACHE_SHIFT
);
198 btrfs_set_file_extent_compression(leaf
, ei
, 0);
199 kaddr
= kmap_atomic(page
);
200 offset
= start
& (PAGE_CACHE_SIZE
- 1);
201 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
202 kunmap_atomic(kaddr
);
203 page_cache_release(page
);
205 btrfs_mark_buffer_dirty(leaf
);
206 btrfs_release_path(path
);
209 * we're an inline extent, so nobody can
210 * extend the file past i_size without locking
211 * a page we already have locked.
213 * We must do any isize and inode updates
214 * before we unlock the pages. Otherwise we
215 * could end up racing with unlink.
217 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
218 ret
= btrfs_update_inode(trans
, root
, inode
);
227 * conditionally insert an inline extent into the file. This
228 * does the checks required to make sure the data is small enough
229 * to fit as an inline extent.
231 static noinline
int cow_file_range_inline(struct btrfs_root
*root
,
232 struct inode
*inode
, u64 start
,
233 u64 end
, size_t compressed_size
,
235 struct page
**compressed_pages
)
237 struct btrfs_trans_handle
*trans
;
238 u64 isize
= i_size_read(inode
);
239 u64 actual_end
= min(end
+ 1, isize
);
240 u64 inline_len
= actual_end
- start
;
241 u64 aligned_end
= ALIGN(end
, root
->sectorsize
);
242 u64 data_len
= inline_len
;
244 struct btrfs_path
*path
;
245 int extent_inserted
= 0;
246 u32 extent_item_size
;
249 data_len
= compressed_size
;
252 actual_end
>= PAGE_CACHE_SIZE
||
253 data_len
>= BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
255 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
257 data_len
> root
->fs_info
->max_inline
) {
261 path
= btrfs_alloc_path();
265 trans
= btrfs_join_transaction(root
);
267 btrfs_free_path(path
);
268 return PTR_ERR(trans
);
270 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
272 if (compressed_size
&& compressed_pages
)
273 extent_item_size
= btrfs_file_extent_calc_inline_size(
276 extent_item_size
= btrfs_file_extent_calc_inline_size(
279 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
,
280 start
, aligned_end
, NULL
,
281 1, 1, extent_item_size
, &extent_inserted
);
283 btrfs_abort_transaction(trans
, root
, ret
);
287 if (isize
> actual_end
)
288 inline_len
= min_t(u64
, isize
, actual_end
);
289 ret
= insert_inline_extent(trans
, path
, extent_inserted
,
291 inline_len
, compressed_size
,
292 compress_type
, compressed_pages
);
293 if (ret
&& ret
!= -ENOSPC
) {
294 btrfs_abort_transaction(trans
, root
, ret
);
296 } else if (ret
== -ENOSPC
) {
301 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
302 btrfs_delalloc_release_metadata(inode
, end
+ 1 - start
);
303 btrfs_drop_extent_cache(inode
, start
, aligned_end
- 1, 0);
305 btrfs_free_path(path
);
306 btrfs_end_transaction(trans
, root
);
310 struct async_extent
{
315 unsigned long nr_pages
;
317 struct list_head list
;
322 struct btrfs_root
*root
;
323 struct page
*locked_page
;
326 struct list_head extents
;
327 struct btrfs_work work
;
330 static noinline
int add_async_extent(struct async_cow
*cow
,
331 u64 start
, u64 ram_size
,
334 unsigned long nr_pages
,
337 struct async_extent
*async_extent
;
339 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
340 BUG_ON(!async_extent
); /* -ENOMEM */
341 async_extent
->start
= start
;
342 async_extent
->ram_size
= ram_size
;
343 async_extent
->compressed_size
= compressed_size
;
344 async_extent
->pages
= pages
;
345 async_extent
->nr_pages
= nr_pages
;
346 async_extent
->compress_type
= compress_type
;
347 list_add_tail(&async_extent
->list
, &cow
->extents
);
352 * we create compressed extents in two phases. The first
353 * phase compresses a range of pages that have already been
354 * locked (both pages and state bits are locked).
356 * This is done inside an ordered work queue, and the compression
357 * is spread across many cpus. The actual IO submission is step
358 * two, and the ordered work queue takes care of making sure that
359 * happens in the same order things were put onto the queue by
360 * writepages and friends.
362 * If this code finds it can't get good compression, it puts an
363 * entry onto the work queue to write the uncompressed bytes. This
364 * makes sure that both compressed inodes and uncompressed inodes
365 * are written in the same order that the flusher thread sent them
368 static noinline
int compress_file_range(struct inode
*inode
,
369 struct page
*locked_page
,
371 struct async_cow
*async_cow
,
374 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
376 u64 blocksize
= root
->sectorsize
;
378 u64 isize
= i_size_read(inode
);
380 struct page
**pages
= NULL
;
381 unsigned long nr_pages
;
382 unsigned long nr_pages_ret
= 0;
383 unsigned long total_compressed
= 0;
384 unsigned long total_in
= 0;
385 unsigned long max_compressed
= 128 * 1024;
386 unsigned long max_uncompressed
= 128 * 1024;
389 int compress_type
= root
->fs_info
->compress_type
;
392 /* if this is a small write inside eof, kick off a defrag */
393 if ((end
- start
+ 1) < 16 * 1024 &&
394 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
395 btrfs_add_inode_defrag(NULL
, inode
);
398 * skip compression for a small file range(<=blocksize) that
399 * isn't an inline extent, since it dosen't save disk space at all.
401 if ((end
- start
+ 1) <= blocksize
&&
402 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
403 goto cleanup_and_bail_uncompressed
;
405 actual_end
= min_t(u64
, isize
, end
+ 1);
408 nr_pages
= (end
>> PAGE_CACHE_SHIFT
) - (start
>> PAGE_CACHE_SHIFT
) + 1;
409 nr_pages
= min(nr_pages
, (128 * 1024UL) / PAGE_CACHE_SIZE
);
412 * we don't want to send crud past the end of i_size through
413 * compression, that's just a waste of CPU time. So, if the
414 * end of the file is before the start of our current
415 * requested range of bytes, we bail out to the uncompressed
416 * cleanup code that can deal with all of this.
418 * It isn't really the fastest way to fix things, but this is a
419 * very uncommon corner.
421 if (actual_end
<= start
)
422 goto cleanup_and_bail_uncompressed
;
424 total_compressed
= actual_end
- start
;
426 /* we want to make sure that amount of ram required to uncompress
427 * an extent is reasonable, so we limit the total size in ram
428 * of a compressed extent to 128k. This is a crucial number
429 * because it also controls how easily we can spread reads across
430 * cpus for decompression.
432 * We also want to make sure the amount of IO required to do
433 * a random read is reasonably small, so we limit the size of
434 * a compressed extent to 128k.
436 total_compressed
= min(total_compressed
, max_uncompressed
);
437 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
438 num_bytes
= max(blocksize
, num_bytes
);
443 * we do compression for mount -o compress and when the
444 * inode has not been flagged as nocompress. This flag can
445 * change at any time if we discover bad compression ratios.
447 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
) &&
448 (btrfs_test_opt(root
, COMPRESS
) ||
449 (BTRFS_I(inode
)->force_compress
) ||
450 (BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
))) {
452 pages
= kzalloc(sizeof(struct page
*) * nr_pages
, GFP_NOFS
);
454 /* just bail out to the uncompressed code */
458 if (BTRFS_I(inode
)->force_compress
)
459 compress_type
= BTRFS_I(inode
)->force_compress
;
462 * we need to call clear_page_dirty_for_io on each
463 * page in the range. Otherwise applications with the file
464 * mmap'd can wander in and change the page contents while
465 * we are compressing them.
467 * If the compression fails for any reason, we set the pages
468 * dirty again later on.
470 extent_range_clear_dirty_for_io(inode
, start
, end
);
472 ret
= btrfs_compress_pages(compress_type
,
473 inode
->i_mapping
, start
,
474 total_compressed
, pages
,
475 nr_pages
, &nr_pages_ret
,
481 unsigned long offset
= total_compressed
&
482 (PAGE_CACHE_SIZE
- 1);
483 struct page
*page
= pages
[nr_pages_ret
- 1];
486 /* zero the tail end of the last page, we might be
487 * sending it down to disk
490 kaddr
= kmap_atomic(page
);
491 memset(kaddr
+ offset
, 0,
492 PAGE_CACHE_SIZE
- offset
);
493 kunmap_atomic(kaddr
);
500 /* lets try to make an inline extent */
501 if (ret
|| total_in
< (actual_end
- start
)) {
502 /* we didn't compress the entire range, try
503 * to make an uncompressed inline extent.
505 ret
= cow_file_range_inline(root
, inode
, start
, end
,
508 /* try making a compressed inline extent */
509 ret
= cow_file_range_inline(root
, inode
, start
, end
,
511 compress_type
, pages
);
514 unsigned long clear_flags
= EXTENT_DELALLOC
|
516 clear_flags
|= (ret
< 0) ? EXTENT_DO_ACCOUNTING
: 0;
519 * inline extent creation worked or returned error,
520 * we don't need to create any more async work items.
521 * Unlock and free up our temp pages.
523 extent_clear_unlock_delalloc(inode
, start
, end
, NULL
,
524 clear_flags
, PAGE_UNLOCK
|
534 * we aren't doing an inline extent round the compressed size
535 * up to a block size boundary so the allocator does sane
538 total_compressed
= ALIGN(total_compressed
, blocksize
);
541 * one last check to make sure the compression is really a
542 * win, compare the page count read with the blocks on disk
544 total_in
= ALIGN(total_in
, PAGE_CACHE_SIZE
);
545 if (total_compressed
>= total_in
) {
548 num_bytes
= total_in
;
551 if (!will_compress
&& pages
) {
553 * the compression code ran but failed to make things smaller,
554 * free any pages it allocated and our page pointer array
556 for (i
= 0; i
< nr_pages_ret
; i
++) {
557 WARN_ON(pages
[i
]->mapping
);
558 page_cache_release(pages
[i
]);
562 total_compressed
= 0;
565 /* flag the file so we don't compress in the future */
566 if (!btrfs_test_opt(root
, FORCE_COMPRESS
) &&
567 !(BTRFS_I(inode
)->force_compress
)) {
568 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
574 /* the async work queues will take care of doing actual
575 * allocation on disk for these compressed pages,
576 * and will submit them to the elevator.
578 add_async_extent(async_cow
, start
, num_bytes
,
579 total_compressed
, pages
, nr_pages_ret
,
582 if (start
+ num_bytes
< end
) {
589 cleanup_and_bail_uncompressed
:
591 * No compression, but we still need to write the pages in
592 * the file we've been given so far. redirty the locked
593 * page if it corresponds to our extent and set things up
594 * for the async work queue to run cow_file_range to do
595 * the normal delalloc dance
597 if (page_offset(locked_page
) >= start
&&
598 page_offset(locked_page
) <= end
) {
599 __set_page_dirty_nobuffers(locked_page
);
600 /* unlocked later on in the async handlers */
603 extent_range_redirty_for_io(inode
, start
, end
);
604 add_async_extent(async_cow
, start
, end
- start
+ 1,
605 0, NULL
, 0, BTRFS_COMPRESS_NONE
);
613 for (i
= 0; i
< nr_pages_ret
; i
++) {
614 WARN_ON(pages
[i
]->mapping
);
615 page_cache_release(pages
[i
]);
623 * phase two of compressed writeback. This is the ordered portion
624 * of the code, which only gets called in the order the work was
625 * queued. We walk all the async extents created by compress_file_range
626 * and send them down to the disk.
628 static noinline
int submit_compressed_extents(struct inode
*inode
,
629 struct async_cow
*async_cow
)
631 struct async_extent
*async_extent
;
633 struct btrfs_key ins
;
634 struct extent_map
*em
;
635 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
636 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
637 struct extent_io_tree
*io_tree
;
640 if (list_empty(&async_cow
->extents
))
644 while (!list_empty(&async_cow
->extents
)) {
645 async_extent
= list_entry(async_cow
->extents
.next
,
646 struct async_extent
, list
);
647 list_del(&async_extent
->list
);
649 io_tree
= &BTRFS_I(inode
)->io_tree
;
652 /* did the compression code fall back to uncompressed IO? */
653 if (!async_extent
->pages
) {
654 int page_started
= 0;
655 unsigned long nr_written
= 0;
657 lock_extent(io_tree
, async_extent
->start
,
658 async_extent
->start
+
659 async_extent
->ram_size
- 1);
661 /* allocate blocks */
662 ret
= cow_file_range(inode
, async_cow
->locked_page
,
664 async_extent
->start
+
665 async_extent
->ram_size
- 1,
666 &page_started
, &nr_written
, 0);
671 * if page_started, cow_file_range inserted an
672 * inline extent and took care of all the unlocking
673 * and IO for us. Otherwise, we need to submit
674 * all those pages down to the drive.
676 if (!page_started
&& !ret
)
677 extent_write_locked_range(io_tree
,
678 inode
, async_extent
->start
,
679 async_extent
->start
+
680 async_extent
->ram_size
- 1,
684 unlock_page(async_cow
->locked_page
);
690 lock_extent(io_tree
, async_extent
->start
,
691 async_extent
->start
+ async_extent
->ram_size
- 1);
693 ret
= btrfs_reserve_extent(root
,
694 async_extent
->compressed_size
,
695 async_extent
->compressed_size
,
696 0, alloc_hint
, &ins
, 1);
700 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
701 WARN_ON(async_extent
->pages
[i
]->mapping
);
702 page_cache_release(async_extent
->pages
[i
]);
704 kfree(async_extent
->pages
);
705 async_extent
->nr_pages
= 0;
706 async_extent
->pages
= NULL
;
708 if (ret
== -ENOSPC
) {
709 unlock_extent(io_tree
, async_extent
->start
,
710 async_extent
->start
+
711 async_extent
->ram_size
- 1);
718 * here we're doing allocation and writeback of the
721 btrfs_drop_extent_cache(inode
, async_extent
->start
,
722 async_extent
->start
+
723 async_extent
->ram_size
- 1, 0);
725 em
= alloc_extent_map();
728 goto out_free_reserve
;
730 em
->start
= async_extent
->start
;
731 em
->len
= async_extent
->ram_size
;
732 em
->orig_start
= em
->start
;
733 em
->mod_start
= em
->start
;
734 em
->mod_len
= em
->len
;
736 em
->block_start
= ins
.objectid
;
737 em
->block_len
= ins
.offset
;
738 em
->orig_block_len
= ins
.offset
;
739 em
->ram_bytes
= async_extent
->ram_size
;
740 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
741 em
->compress_type
= async_extent
->compress_type
;
742 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
743 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
747 write_lock(&em_tree
->lock
);
748 ret
= add_extent_mapping(em_tree
, em
, 1);
749 write_unlock(&em_tree
->lock
);
750 if (ret
!= -EEXIST
) {
754 btrfs_drop_extent_cache(inode
, async_extent
->start
,
755 async_extent
->start
+
756 async_extent
->ram_size
- 1, 0);
760 goto out_free_reserve
;
762 ret
= btrfs_add_ordered_extent_compress(inode
,
765 async_extent
->ram_size
,
767 BTRFS_ORDERED_COMPRESSED
,
768 async_extent
->compress_type
);
770 goto out_free_reserve
;
773 * clear dirty, set writeback and unlock the pages.
775 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
776 async_extent
->start
+
777 async_extent
->ram_size
- 1,
778 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
,
779 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
781 ret
= btrfs_submit_compressed_write(inode
,
783 async_extent
->ram_size
,
785 ins
.offset
, async_extent
->pages
,
786 async_extent
->nr_pages
);
787 alloc_hint
= ins
.objectid
+ ins
.offset
;
797 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
);
799 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
800 async_extent
->start
+
801 async_extent
->ram_size
- 1,
802 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
|
803 EXTENT_DEFRAG
| EXTENT_DO_ACCOUNTING
,
804 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
805 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
);
810 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
813 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
814 struct extent_map
*em
;
817 read_lock(&em_tree
->lock
);
818 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
821 * if block start isn't an actual block number then find the
822 * first block in this inode and use that as a hint. If that
823 * block is also bogus then just don't worry about it.
825 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
827 em
= search_extent_mapping(em_tree
, 0, 0);
828 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
829 alloc_hint
= em
->block_start
;
833 alloc_hint
= em
->block_start
;
837 read_unlock(&em_tree
->lock
);
843 * when extent_io.c finds a delayed allocation range in the file,
844 * the call backs end up in this code. The basic idea is to
845 * allocate extents on disk for the range, and create ordered data structs
846 * in ram to track those extents.
848 * locked_page is the page that writepage had locked already. We use
849 * it to make sure we don't do extra locks or unlocks.
851 * *page_started is set to one if we unlock locked_page and do everything
852 * required to start IO on it. It may be clean and already done with
855 static noinline
int cow_file_range(struct inode
*inode
,
856 struct page
*locked_page
,
857 u64 start
, u64 end
, int *page_started
,
858 unsigned long *nr_written
,
861 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
864 unsigned long ram_size
;
867 u64 blocksize
= root
->sectorsize
;
868 struct btrfs_key ins
;
869 struct extent_map
*em
;
870 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
873 if (btrfs_is_free_space_inode(inode
)) {
879 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
880 num_bytes
= max(blocksize
, num_bytes
);
881 disk_num_bytes
= num_bytes
;
883 /* if this is a small write inside eof, kick off defrag */
884 if (num_bytes
< 64 * 1024 &&
885 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
886 btrfs_add_inode_defrag(NULL
, inode
);
889 /* lets try to make an inline extent */
890 ret
= cow_file_range_inline(root
, inode
, start
, end
, 0, 0,
893 extent_clear_unlock_delalloc(inode
, start
, end
, NULL
,
894 EXTENT_LOCKED
| EXTENT_DELALLOC
|
895 EXTENT_DEFRAG
, PAGE_UNLOCK
|
896 PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
899 *nr_written
= *nr_written
+
900 (end
- start
+ PAGE_CACHE_SIZE
) / PAGE_CACHE_SIZE
;
903 } else if (ret
< 0) {
908 BUG_ON(disk_num_bytes
>
909 btrfs_super_total_bytes(root
->fs_info
->super_copy
));
911 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
912 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
914 while (disk_num_bytes
> 0) {
917 cur_alloc_size
= disk_num_bytes
;
918 ret
= btrfs_reserve_extent(root
, cur_alloc_size
,
919 root
->sectorsize
, 0, alloc_hint
,
924 em
= alloc_extent_map();
930 em
->orig_start
= em
->start
;
931 ram_size
= ins
.offset
;
932 em
->len
= ins
.offset
;
933 em
->mod_start
= em
->start
;
934 em
->mod_len
= em
->len
;
936 em
->block_start
= ins
.objectid
;
937 em
->block_len
= ins
.offset
;
938 em
->orig_block_len
= ins
.offset
;
939 em
->ram_bytes
= ram_size
;
940 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
941 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
945 write_lock(&em_tree
->lock
);
946 ret
= add_extent_mapping(em_tree
, em
, 1);
947 write_unlock(&em_tree
->lock
);
948 if (ret
!= -EEXIST
) {
952 btrfs_drop_extent_cache(inode
, start
,
953 start
+ ram_size
- 1, 0);
958 cur_alloc_size
= ins
.offset
;
959 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
960 ram_size
, cur_alloc_size
, 0);
964 if (root
->root_key
.objectid
==
965 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
966 ret
= btrfs_reloc_clone_csums(inode
, start
,
972 if (disk_num_bytes
< cur_alloc_size
)
975 /* we're not doing compressed IO, don't unlock the first
976 * page (which the caller expects to stay locked), don't
977 * clear any dirty bits and don't set any writeback bits
979 * Do set the Private2 bit so we know this page was properly
980 * setup for writepage
982 op
= unlock
? PAGE_UNLOCK
: 0;
983 op
|= PAGE_SET_PRIVATE2
;
985 extent_clear_unlock_delalloc(inode
, start
,
986 start
+ ram_size
- 1, locked_page
,
987 EXTENT_LOCKED
| EXTENT_DELALLOC
,
989 disk_num_bytes
-= cur_alloc_size
;
990 num_bytes
-= cur_alloc_size
;
991 alloc_hint
= ins
.objectid
+ ins
.offset
;
992 start
+= cur_alloc_size
;
998 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
);
1000 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1001 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
1002 EXTENT_DELALLOC
| EXTENT_DEFRAG
,
1003 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
1004 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
);
1009 * work queue call back to started compression on a file and pages
1011 static noinline
void async_cow_start(struct btrfs_work
*work
)
1013 struct async_cow
*async_cow
;
1015 async_cow
= container_of(work
, struct async_cow
, work
);
1017 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
1018 async_cow
->start
, async_cow
->end
, async_cow
,
1020 if (num_added
== 0) {
1021 btrfs_add_delayed_iput(async_cow
->inode
);
1022 async_cow
->inode
= NULL
;
1027 * work queue call back to submit previously compressed pages
1029 static noinline
void async_cow_submit(struct btrfs_work
*work
)
1031 struct async_cow
*async_cow
;
1032 struct btrfs_root
*root
;
1033 unsigned long nr_pages
;
1035 async_cow
= container_of(work
, struct async_cow
, work
);
1037 root
= async_cow
->root
;
1038 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_CACHE_SIZE
) >>
1041 if (atomic_sub_return(nr_pages
, &root
->fs_info
->async_delalloc_pages
) <
1043 waitqueue_active(&root
->fs_info
->async_submit_wait
))
1044 wake_up(&root
->fs_info
->async_submit_wait
);
1046 if (async_cow
->inode
)
1047 submit_compressed_extents(async_cow
->inode
, async_cow
);
1050 static noinline
void async_cow_free(struct btrfs_work
*work
)
1052 struct async_cow
*async_cow
;
1053 async_cow
= container_of(work
, struct async_cow
, work
);
1054 if (async_cow
->inode
)
1055 btrfs_add_delayed_iput(async_cow
->inode
);
1059 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
1060 u64 start
, u64 end
, int *page_started
,
1061 unsigned long *nr_written
)
1063 struct async_cow
*async_cow
;
1064 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1065 unsigned long nr_pages
;
1067 int limit
= 10 * 1024 * 1024;
1069 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
1070 1, 0, NULL
, GFP_NOFS
);
1071 while (start
< end
) {
1072 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
1073 BUG_ON(!async_cow
); /* -ENOMEM */
1074 async_cow
->inode
= igrab(inode
);
1075 async_cow
->root
= root
;
1076 async_cow
->locked_page
= locked_page
;
1077 async_cow
->start
= start
;
1079 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
1082 cur_end
= min(end
, start
+ 512 * 1024 - 1);
1084 async_cow
->end
= cur_end
;
1085 INIT_LIST_HEAD(&async_cow
->extents
);
1087 btrfs_init_work(&async_cow
->work
, async_cow_start
,
1088 async_cow_submit
, async_cow_free
);
1090 nr_pages
= (cur_end
- start
+ PAGE_CACHE_SIZE
) >>
1092 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
1094 btrfs_queue_work(root
->fs_info
->delalloc_workers
,
1097 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
1098 wait_event(root
->fs_info
->async_submit_wait
,
1099 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
1103 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
1104 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
1105 wait_event(root
->fs_info
->async_submit_wait
,
1106 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
1110 *nr_written
+= nr_pages
;
1111 start
= cur_end
+ 1;
1117 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
1118 u64 bytenr
, u64 num_bytes
)
1121 struct btrfs_ordered_sum
*sums
;
1124 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
1125 bytenr
+ num_bytes
- 1, &list
, 0);
1126 if (ret
== 0 && list_empty(&list
))
1129 while (!list_empty(&list
)) {
1130 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1131 list_del(&sums
->list
);
1138 * when nowcow writeback call back. This checks for snapshots or COW copies
1139 * of the extents that exist in the file, and COWs the file as required.
1141 * If no cow copies or snapshots exist, we write directly to the existing
1144 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1145 struct page
*locked_page
,
1146 u64 start
, u64 end
, int *page_started
, int force
,
1147 unsigned long *nr_written
)
1149 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1150 struct btrfs_trans_handle
*trans
;
1151 struct extent_buffer
*leaf
;
1152 struct btrfs_path
*path
;
1153 struct btrfs_file_extent_item
*fi
;
1154 struct btrfs_key found_key
;
1169 u64 ino
= btrfs_ino(inode
);
1171 path
= btrfs_alloc_path();
1173 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1174 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1175 EXTENT_DO_ACCOUNTING
|
1176 EXTENT_DEFRAG
, PAGE_UNLOCK
|
1178 PAGE_SET_WRITEBACK
|
1179 PAGE_END_WRITEBACK
);
1183 nolock
= btrfs_is_free_space_inode(inode
);
1186 trans
= btrfs_join_transaction_nolock(root
);
1188 trans
= btrfs_join_transaction(root
);
1190 if (IS_ERR(trans
)) {
1191 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1192 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1193 EXTENT_DO_ACCOUNTING
|
1194 EXTENT_DEFRAG
, PAGE_UNLOCK
|
1196 PAGE_SET_WRITEBACK
|
1197 PAGE_END_WRITEBACK
);
1198 btrfs_free_path(path
);
1199 return PTR_ERR(trans
);
1202 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1204 cow_start
= (u64
)-1;
1207 ret
= btrfs_lookup_file_extent(trans
, root
, path
, ino
,
1211 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1212 leaf
= path
->nodes
[0];
1213 btrfs_item_key_to_cpu(leaf
, &found_key
,
1214 path
->slots
[0] - 1);
1215 if (found_key
.objectid
== ino
&&
1216 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1221 leaf
= path
->nodes
[0];
1222 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1223 ret
= btrfs_next_leaf(root
, path
);
1228 leaf
= path
->nodes
[0];
1234 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1236 if (found_key
.objectid
> ino
||
1237 found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1238 found_key
.offset
> end
)
1241 if (found_key
.offset
> cur_offset
) {
1242 extent_end
= found_key
.offset
;
1247 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1248 struct btrfs_file_extent_item
);
1249 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1251 ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
1252 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1253 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1254 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1255 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1256 extent_end
= found_key
.offset
+
1257 btrfs_file_extent_num_bytes(leaf
, fi
);
1259 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1260 if (extent_end
<= start
) {
1264 if (disk_bytenr
== 0)
1266 if (btrfs_file_extent_compression(leaf
, fi
) ||
1267 btrfs_file_extent_encryption(leaf
, fi
) ||
1268 btrfs_file_extent_other_encoding(leaf
, fi
))
1270 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1272 if (btrfs_extent_readonly(root
, disk_bytenr
))
1274 if (btrfs_cross_ref_exist(trans
, root
, ino
,
1276 extent_offset
, disk_bytenr
))
1278 disk_bytenr
+= extent_offset
;
1279 disk_bytenr
+= cur_offset
- found_key
.offset
;
1280 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1282 * if there are pending snapshots for this root,
1283 * we fall into common COW way.
1286 err
= btrfs_start_nocow_write(root
);
1291 * force cow if csum exists in the range.
1292 * this ensure that csum for a given extent are
1293 * either valid or do not exist.
1295 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1298 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1299 extent_end
= found_key
.offset
+
1300 btrfs_file_extent_inline_len(leaf
,
1301 path
->slots
[0], fi
);
1302 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1307 if (extent_end
<= start
) {
1309 if (!nolock
&& nocow
)
1310 btrfs_end_nocow_write(root
);
1314 if (cow_start
== (u64
)-1)
1315 cow_start
= cur_offset
;
1316 cur_offset
= extent_end
;
1317 if (cur_offset
> end
)
1323 btrfs_release_path(path
);
1324 if (cow_start
!= (u64
)-1) {
1325 ret
= cow_file_range(inode
, locked_page
,
1326 cow_start
, found_key
.offset
- 1,
1327 page_started
, nr_written
, 1);
1329 if (!nolock
&& nocow
)
1330 btrfs_end_nocow_write(root
);
1333 cow_start
= (u64
)-1;
1336 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1337 struct extent_map
*em
;
1338 struct extent_map_tree
*em_tree
;
1339 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1340 em
= alloc_extent_map();
1341 BUG_ON(!em
); /* -ENOMEM */
1342 em
->start
= cur_offset
;
1343 em
->orig_start
= found_key
.offset
- extent_offset
;
1344 em
->len
= num_bytes
;
1345 em
->block_len
= num_bytes
;
1346 em
->block_start
= disk_bytenr
;
1347 em
->orig_block_len
= disk_num_bytes
;
1348 em
->ram_bytes
= ram_bytes
;
1349 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1350 em
->mod_start
= em
->start
;
1351 em
->mod_len
= em
->len
;
1352 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1353 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
1354 em
->generation
= -1;
1356 write_lock(&em_tree
->lock
);
1357 ret
= add_extent_mapping(em_tree
, em
, 1);
1358 write_unlock(&em_tree
->lock
);
1359 if (ret
!= -EEXIST
) {
1360 free_extent_map(em
);
1363 btrfs_drop_extent_cache(inode
, em
->start
,
1364 em
->start
+ em
->len
- 1, 0);
1366 type
= BTRFS_ORDERED_PREALLOC
;
1368 type
= BTRFS_ORDERED_NOCOW
;
1371 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1372 num_bytes
, num_bytes
, type
);
1373 BUG_ON(ret
); /* -ENOMEM */
1375 if (root
->root_key
.objectid
==
1376 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1377 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1380 if (!nolock
&& nocow
)
1381 btrfs_end_nocow_write(root
);
1386 extent_clear_unlock_delalloc(inode
, cur_offset
,
1387 cur_offset
+ num_bytes
- 1,
1388 locked_page
, EXTENT_LOCKED
|
1389 EXTENT_DELALLOC
, PAGE_UNLOCK
|
1391 if (!nolock
&& nocow
)
1392 btrfs_end_nocow_write(root
);
1393 cur_offset
= extent_end
;
1394 if (cur_offset
> end
)
1397 btrfs_release_path(path
);
1399 if (cur_offset
<= end
&& cow_start
== (u64
)-1) {
1400 cow_start
= cur_offset
;
1404 if (cow_start
!= (u64
)-1) {
1405 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1406 page_started
, nr_written
, 1);
1412 err
= btrfs_end_transaction(trans
, root
);
1416 if (ret
&& cur_offset
< end
)
1417 extent_clear_unlock_delalloc(inode
, cur_offset
, end
,
1418 locked_page
, EXTENT_LOCKED
|
1419 EXTENT_DELALLOC
| EXTENT_DEFRAG
|
1420 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
1422 PAGE_SET_WRITEBACK
|
1423 PAGE_END_WRITEBACK
);
1424 btrfs_free_path(path
);
1429 * extent_io.c call back to do delayed allocation processing
1431 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1432 u64 start
, u64 end
, int *page_started
,
1433 unsigned long *nr_written
)
1436 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1438 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) {
1439 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1440 page_started
, 1, nr_written
);
1441 } else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
) {
1442 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1443 page_started
, 0, nr_written
);
1444 } else if (!btrfs_test_opt(root
, COMPRESS
) &&
1445 !(BTRFS_I(inode
)->force_compress
) &&
1446 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
)) {
1447 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1448 page_started
, nr_written
, 1);
1450 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1451 &BTRFS_I(inode
)->runtime_flags
);
1452 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1453 page_started
, nr_written
);
1458 static void btrfs_split_extent_hook(struct inode
*inode
,
1459 struct extent_state
*orig
, u64 split
)
1461 /* not delalloc, ignore it */
1462 if (!(orig
->state
& EXTENT_DELALLOC
))
1465 spin_lock(&BTRFS_I(inode
)->lock
);
1466 BTRFS_I(inode
)->outstanding_extents
++;
1467 spin_unlock(&BTRFS_I(inode
)->lock
);
1471 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1472 * extents so we can keep track of new extents that are just merged onto old
1473 * extents, such as when we are doing sequential writes, so we can properly
1474 * account for the metadata space we'll need.
1476 static void btrfs_merge_extent_hook(struct inode
*inode
,
1477 struct extent_state
*new,
1478 struct extent_state
*other
)
1480 /* not delalloc, ignore it */
1481 if (!(other
->state
& EXTENT_DELALLOC
))
1484 spin_lock(&BTRFS_I(inode
)->lock
);
1485 BTRFS_I(inode
)->outstanding_extents
--;
1486 spin_unlock(&BTRFS_I(inode
)->lock
);
1489 static void btrfs_add_delalloc_inodes(struct btrfs_root
*root
,
1490 struct inode
*inode
)
1492 spin_lock(&root
->delalloc_lock
);
1493 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1494 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1495 &root
->delalloc_inodes
);
1496 set_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1497 &BTRFS_I(inode
)->runtime_flags
);
1498 root
->nr_delalloc_inodes
++;
1499 if (root
->nr_delalloc_inodes
== 1) {
1500 spin_lock(&root
->fs_info
->delalloc_root_lock
);
1501 BUG_ON(!list_empty(&root
->delalloc_root
));
1502 list_add_tail(&root
->delalloc_root
,
1503 &root
->fs_info
->delalloc_roots
);
1504 spin_unlock(&root
->fs_info
->delalloc_root_lock
);
1507 spin_unlock(&root
->delalloc_lock
);
1510 static void btrfs_del_delalloc_inode(struct btrfs_root
*root
,
1511 struct inode
*inode
)
1513 spin_lock(&root
->delalloc_lock
);
1514 if (!list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1515 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1516 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1517 &BTRFS_I(inode
)->runtime_flags
);
1518 root
->nr_delalloc_inodes
--;
1519 if (!root
->nr_delalloc_inodes
) {
1520 spin_lock(&root
->fs_info
->delalloc_root_lock
);
1521 BUG_ON(list_empty(&root
->delalloc_root
));
1522 list_del_init(&root
->delalloc_root
);
1523 spin_unlock(&root
->fs_info
->delalloc_root_lock
);
1526 spin_unlock(&root
->delalloc_lock
);
1530 * extent_io.c set_bit_hook, used to track delayed allocation
1531 * bytes in this file, and to maintain the list of inodes that
1532 * have pending delalloc work to be done.
1534 static void btrfs_set_bit_hook(struct inode
*inode
,
1535 struct extent_state
*state
, unsigned long *bits
)
1539 * set_bit and clear bit hooks normally require _irqsave/restore
1540 * but in this case, we are only testing for the DELALLOC
1541 * bit, which is only set or cleared with irqs on
1543 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1544 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1545 u64 len
= state
->end
+ 1 - state
->start
;
1546 bool do_list
= !btrfs_is_free_space_inode(inode
);
1548 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1549 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1551 spin_lock(&BTRFS_I(inode
)->lock
);
1552 BTRFS_I(inode
)->outstanding_extents
++;
1553 spin_unlock(&BTRFS_I(inode
)->lock
);
1556 __percpu_counter_add(&root
->fs_info
->delalloc_bytes
, len
,
1557 root
->fs_info
->delalloc_batch
);
1558 spin_lock(&BTRFS_I(inode
)->lock
);
1559 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1560 if (do_list
&& !test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1561 &BTRFS_I(inode
)->runtime_flags
))
1562 btrfs_add_delalloc_inodes(root
, inode
);
1563 spin_unlock(&BTRFS_I(inode
)->lock
);
1568 * extent_io.c clear_bit_hook, see set_bit_hook for why
1570 static void btrfs_clear_bit_hook(struct inode
*inode
,
1571 struct extent_state
*state
,
1572 unsigned long *bits
)
1575 * set_bit and clear bit hooks normally require _irqsave/restore
1576 * but in this case, we are only testing for the DELALLOC
1577 * bit, which is only set or cleared with irqs on
1579 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1580 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1581 u64 len
= state
->end
+ 1 - state
->start
;
1582 bool do_list
= !btrfs_is_free_space_inode(inode
);
1584 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1585 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1586 } else if (!(*bits
& EXTENT_DO_ACCOUNTING
)) {
1587 spin_lock(&BTRFS_I(inode
)->lock
);
1588 BTRFS_I(inode
)->outstanding_extents
--;
1589 spin_unlock(&BTRFS_I(inode
)->lock
);
1593 * We don't reserve metadata space for space cache inodes so we
1594 * don't need to call dellalloc_release_metadata if there is an
1597 if (*bits
& EXTENT_DO_ACCOUNTING
&&
1598 root
!= root
->fs_info
->tree_root
)
1599 btrfs_delalloc_release_metadata(inode
, len
);
1601 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
1602 && do_list
&& !(state
->state
& EXTENT_NORESERVE
))
1603 btrfs_free_reserved_data_space(inode
, len
);
1605 __percpu_counter_add(&root
->fs_info
->delalloc_bytes
, -len
,
1606 root
->fs_info
->delalloc_batch
);
1607 spin_lock(&BTRFS_I(inode
)->lock
);
1608 BTRFS_I(inode
)->delalloc_bytes
-= len
;
1609 if (do_list
&& BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1610 test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1611 &BTRFS_I(inode
)->runtime_flags
))
1612 btrfs_del_delalloc_inode(root
, inode
);
1613 spin_unlock(&BTRFS_I(inode
)->lock
);
1618 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1619 * we don't create bios that span stripes or chunks
1621 int btrfs_merge_bio_hook(int rw
, struct page
*page
, unsigned long offset
,
1622 size_t size
, struct bio
*bio
,
1623 unsigned long bio_flags
)
1625 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1626 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
1631 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1634 length
= bio
->bi_iter
.bi_size
;
1635 map_length
= length
;
1636 ret
= btrfs_map_block(root
->fs_info
, rw
, logical
,
1637 &map_length
, NULL
, 0);
1638 /* Will always return 0 with map_multi == NULL */
1640 if (map_length
< length
+ size
)
1646 * in order to insert checksums into the metadata in large chunks,
1647 * we wait until bio submission time. All the pages in the bio are
1648 * checksummed and sums are attached onto the ordered extent record.
1650 * At IO completion time the cums attached on the ordered extent record
1651 * are inserted into the btree
1653 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1654 struct bio
*bio
, int mirror_num
,
1655 unsigned long bio_flags
,
1658 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1661 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1662 BUG_ON(ret
); /* -ENOMEM */
1667 * in order to insert checksums into the metadata in large chunks,
1668 * we wait until bio submission time. All the pages in the bio are
1669 * checksummed and sums are attached onto the ordered extent record.
1671 * At IO completion time the cums attached on the ordered extent record
1672 * are inserted into the btree
1674 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1675 int mirror_num
, unsigned long bio_flags
,
1678 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1681 ret
= btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1683 bio_endio(bio
, ret
);
1688 * extent_io.c submission hook. This does the right thing for csum calculation
1689 * on write, or reading the csums from the tree before a read
1691 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1692 int mirror_num
, unsigned long bio_flags
,
1695 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1699 int async
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
1701 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1703 if (btrfs_is_free_space_inode(inode
))
1706 if (!(rw
& REQ_WRITE
)) {
1707 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, metadata
);
1711 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1712 ret
= btrfs_submit_compressed_read(inode
, bio
,
1716 } else if (!skip_sum
) {
1717 ret
= btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1722 } else if (async
&& !skip_sum
) {
1723 /* csum items have already been cloned */
1724 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1726 /* we're doing a write, do the async checksumming */
1727 ret
= btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1728 inode
, rw
, bio
, mirror_num
,
1729 bio_flags
, bio_offset
,
1730 __btrfs_submit_bio_start
,
1731 __btrfs_submit_bio_done
);
1733 } else if (!skip_sum
) {
1734 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1740 ret
= btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1744 bio_endio(bio
, ret
);
1749 * given a list of ordered sums record them in the inode. This happens
1750 * at IO completion time based on sums calculated at bio submission time.
1752 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1753 struct inode
*inode
, u64 file_offset
,
1754 struct list_head
*list
)
1756 struct btrfs_ordered_sum
*sum
;
1758 list_for_each_entry(sum
, list
, list
) {
1759 trans
->adding_csums
= 1;
1760 btrfs_csum_file_blocks(trans
,
1761 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1762 trans
->adding_csums
= 0;
1767 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1768 struct extent_state
**cached_state
)
1770 WARN_ON((end
& (PAGE_CACHE_SIZE
- 1)) == 0);
1771 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1772 cached_state
, GFP_NOFS
);
1775 /* see btrfs_writepage_start_hook for details on why this is required */
1776 struct btrfs_writepage_fixup
{
1778 struct btrfs_work work
;
1781 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1783 struct btrfs_writepage_fixup
*fixup
;
1784 struct btrfs_ordered_extent
*ordered
;
1785 struct extent_state
*cached_state
= NULL
;
1787 struct inode
*inode
;
1792 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
1796 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
1797 ClearPageChecked(page
);
1801 inode
= page
->mapping
->host
;
1802 page_start
= page_offset(page
);
1803 page_end
= page_offset(page
) + PAGE_CACHE_SIZE
- 1;
1805 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, 0,
1808 /* already ordered? We're done */
1809 if (PagePrivate2(page
))
1812 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
1814 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
1815 page_end
, &cached_state
, GFP_NOFS
);
1817 btrfs_start_ordered_extent(inode
, ordered
, 1);
1818 btrfs_put_ordered_extent(ordered
);
1822 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
1824 mapping_set_error(page
->mapping
, ret
);
1825 end_extent_writepage(page
, ret
, page_start
, page_end
);
1826 ClearPageChecked(page
);
1830 btrfs_set_extent_delalloc(inode
, page_start
, page_end
, &cached_state
);
1831 ClearPageChecked(page
);
1832 set_page_dirty(page
);
1834 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
1835 &cached_state
, GFP_NOFS
);
1838 page_cache_release(page
);
1843 * There are a few paths in the higher layers of the kernel that directly
1844 * set the page dirty bit without asking the filesystem if it is a
1845 * good idea. This causes problems because we want to make sure COW
1846 * properly happens and the data=ordered rules are followed.
1848 * In our case any range that doesn't have the ORDERED bit set
1849 * hasn't been properly setup for IO. We kick off an async process
1850 * to fix it up. The async helper will wait for ordered extents, set
1851 * the delalloc bit and make it safe to write the page.
1853 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
1855 struct inode
*inode
= page
->mapping
->host
;
1856 struct btrfs_writepage_fixup
*fixup
;
1857 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1859 /* this page is properly in the ordered list */
1860 if (TestClearPagePrivate2(page
))
1863 if (PageChecked(page
))
1866 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
1870 SetPageChecked(page
);
1871 page_cache_get(page
);
1872 btrfs_init_work(&fixup
->work
, btrfs_writepage_fixup_worker
, NULL
, NULL
);
1874 btrfs_queue_work(root
->fs_info
->fixup_workers
, &fixup
->work
);
1878 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
1879 struct inode
*inode
, u64 file_pos
,
1880 u64 disk_bytenr
, u64 disk_num_bytes
,
1881 u64 num_bytes
, u64 ram_bytes
,
1882 u8 compression
, u8 encryption
,
1883 u16 other_encoding
, int extent_type
)
1885 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1886 struct btrfs_file_extent_item
*fi
;
1887 struct btrfs_path
*path
;
1888 struct extent_buffer
*leaf
;
1889 struct btrfs_key ins
;
1890 int extent_inserted
= 0;
1893 path
= btrfs_alloc_path();
1898 * we may be replacing one extent in the tree with another.
1899 * The new extent is pinned in the extent map, and we don't want
1900 * to drop it from the cache until it is completely in the btree.
1902 * So, tell btrfs_drop_extents to leave this extent in the cache.
1903 * the caller is expected to unpin it and allow it to be merged
1906 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
, file_pos
,
1907 file_pos
+ num_bytes
, NULL
, 0,
1908 1, sizeof(*fi
), &extent_inserted
);
1912 if (!extent_inserted
) {
1913 ins
.objectid
= btrfs_ino(inode
);
1914 ins
.offset
= file_pos
;
1915 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
1917 path
->leave_spinning
= 1;
1918 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
,
1923 leaf
= path
->nodes
[0];
1924 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1925 struct btrfs_file_extent_item
);
1926 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1927 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
1928 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
1929 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
1930 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1931 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1932 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
1933 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
1934 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
1935 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
1937 btrfs_mark_buffer_dirty(leaf
);
1938 btrfs_release_path(path
);
1940 inode_add_bytes(inode
, num_bytes
);
1942 ins
.objectid
= disk_bytenr
;
1943 ins
.offset
= disk_num_bytes
;
1944 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1945 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
1946 root
->root_key
.objectid
,
1947 btrfs_ino(inode
), file_pos
, &ins
);
1949 btrfs_free_path(path
);
1954 /* snapshot-aware defrag */
1955 struct sa_defrag_extent_backref
{
1956 struct rb_node node
;
1957 struct old_sa_defrag_extent
*old
;
1966 struct old_sa_defrag_extent
{
1967 struct list_head list
;
1968 struct new_sa_defrag_extent
*new;
1977 struct new_sa_defrag_extent
{
1978 struct rb_root root
;
1979 struct list_head head
;
1980 struct btrfs_path
*path
;
1981 struct inode
*inode
;
1989 static int backref_comp(struct sa_defrag_extent_backref
*b1
,
1990 struct sa_defrag_extent_backref
*b2
)
1992 if (b1
->root_id
< b2
->root_id
)
1994 else if (b1
->root_id
> b2
->root_id
)
1997 if (b1
->inum
< b2
->inum
)
1999 else if (b1
->inum
> b2
->inum
)
2002 if (b1
->file_pos
< b2
->file_pos
)
2004 else if (b1
->file_pos
> b2
->file_pos
)
2008 * [------------------------------] ===> (a range of space)
2009 * |<--->| |<---->| =============> (fs/file tree A)
2010 * |<---------------------------->| ===> (fs/file tree B)
2012 * A range of space can refer to two file extents in one tree while
2013 * refer to only one file extent in another tree.
2015 * So we may process a disk offset more than one time(two extents in A)
2016 * and locate at the same extent(one extent in B), then insert two same
2017 * backrefs(both refer to the extent in B).
2022 static void backref_insert(struct rb_root
*root
,
2023 struct sa_defrag_extent_backref
*backref
)
2025 struct rb_node
**p
= &root
->rb_node
;
2026 struct rb_node
*parent
= NULL
;
2027 struct sa_defrag_extent_backref
*entry
;
2032 entry
= rb_entry(parent
, struct sa_defrag_extent_backref
, node
);
2034 ret
= backref_comp(backref
, entry
);
2038 p
= &(*p
)->rb_right
;
2041 rb_link_node(&backref
->node
, parent
, p
);
2042 rb_insert_color(&backref
->node
, root
);
2046 * Note the backref might has changed, and in this case we just return 0.
2048 static noinline
int record_one_backref(u64 inum
, u64 offset
, u64 root_id
,
2051 struct btrfs_file_extent_item
*extent
;
2052 struct btrfs_fs_info
*fs_info
;
2053 struct old_sa_defrag_extent
*old
= ctx
;
2054 struct new_sa_defrag_extent
*new = old
->new;
2055 struct btrfs_path
*path
= new->path
;
2056 struct btrfs_key key
;
2057 struct btrfs_root
*root
;
2058 struct sa_defrag_extent_backref
*backref
;
2059 struct extent_buffer
*leaf
;
2060 struct inode
*inode
= new->inode
;
2066 if (BTRFS_I(inode
)->root
->root_key
.objectid
== root_id
&&
2067 inum
== btrfs_ino(inode
))
2070 key
.objectid
= root_id
;
2071 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2072 key
.offset
= (u64
)-1;
2074 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2075 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2077 if (PTR_ERR(root
) == -ENOENT
)
2080 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2081 inum
, offset
, root_id
);
2082 return PTR_ERR(root
);
2085 key
.objectid
= inum
;
2086 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2087 if (offset
> (u64
)-1 << 32)
2090 key
.offset
= offset
;
2092 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2093 if (WARN_ON(ret
< 0))
2100 leaf
= path
->nodes
[0];
2101 slot
= path
->slots
[0];
2103 if (slot
>= btrfs_header_nritems(leaf
)) {
2104 ret
= btrfs_next_leaf(root
, path
);
2107 } else if (ret
> 0) {
2116 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2118 if (key
.objectid
> inum
)
2121 if (key
.objectid
< inum
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2124 extent
= btrfs_item_ptr(leaf
, slot
,
2125 struct btrfs_file_extent_item
);
2127 if (btrfs_file_extent_disk_bytenr(leaf
, extent
) != old
->bytenr
)
2131 * 'offset' refers to the exact key.offset,
2132 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2133 * (key.offset - extent_offset).
2135 if (key
.offset
!= offset
)
2138 extent_offset
= btrfs_file_extent_offset(leaf
, extent
);
2139 num_bytes
= btrfs_file_extent_num_bytes(leaf
, extent
);
2141 if (extent_offset
>= old
->extent_offset
+ old
->offset
+
2142 old
->len
|| extent_offset
+ num_bytes
<=
2143 old
->extent_offset
+ old
->offset
)
2148 backref
= kmalloc(sizeof(*backref
), GFP_NOFS
);
2154 backref
->root_id
= root_id
;
2155 backref
->inum
= inum
;
2156 backref
->file_pos
= offset
;
2157 backref
->num_bytes
= num_bytes
;
2158 backref
->extent_offset
= extent_offset
;
2159 backref
->generation
= btrfs_file_extent_generation(leaf
, extent
);
2161 backref_insert(&new->root
, backref
);
2164 btrfs_release_path(path
);
2169 static noinline
bool record_extent_backrefs(struct btrfs_path
*path
,
2170 struct new_sa_defrag_extent
*new)
2172 struct btrfs_fs_info
*fs_info
= BTRFS_I(new->inode
)->root
->fs_info
;
2173 struct old_sa_defrag_extent
*old
, *tmp
;
2178 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2179 ret
= iterate_inodes_from_logical(old
->bytenr
+
2180 old
->extent_offset
, fs_info
,
2181 path
, record_one_backref
,
2183 if (ret
< 0 && ret
!= -ENOENT
)
2186 /* no backref to be processed for this extent */
2188 list_del(&old
->list
);
2193 if (list_empty(&new->head
))
2199 static int relink_is_mergable(struct extent_buffer
*leaf
,
2200 struct btrfs_file_extent_item
*fi
,
2201 struct new_sa_defrag_extent
*new)
2203 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) != new->bytenr
)
2206 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
)
2209 if (btrfs_file_extent_compression(leaf
, fi
) != new->compress_type
)
2212 if (btrfs_file_extent_encryption(leaf
, fi
) ||
2213 btrfs_file_extent_other_encoding(leaf
, fi
))
2220 * Note the backref might has changed, and in this case we just return 0.
2222 static noinline
int relink_extent_backref(struct btrfs_path
*path
,
2223 struct sa_defrag_extent_backref
*prev
,
2224 struct sa_defrag_extent_backref
*backref
)
2226 struct btrfs_file_extent_item
*extent
;
2227 struct btrfs_file_extent_item
*item
;
2228 struct btrfs_ordered_extent
*ordered
;
2229 struct btrfs_trans_handle
*trans
;
2230 struct btrfs_fs_info
*fs_info
;
2231 struct btrfs_root
*root
;
2232 struct btrfs_key key
;
2233 struct extent_buffer
*leaf
;
2234 struct old_sa_defrag_extent
*old
= backref
->old
;
2235 struct new_sa_defrag_extent
*new = old
->new;
2236 struct inode
*src_inode
= new->inode
;
2237 struct inode
*inode
;
2238 struct extent_state
*cached
= NULL
;
2247 if (prev
&& prev
->root_id
== backref
->root_id
&&
2248 prev
->inum
== backref
->inum
&&
2249 prev
->file_pos
+ prev
->num_bytes
== backref
->file_pos
)
2252 /* step 1: get root */
2253 key
.objectid
= backref
->root_id
;
2254 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2255 key
.offset
= (u64
)-1;
2257 fs_info
= BTRFS_I(src_inode
)->root
->fs_info
;
2258 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
2260 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2262 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2263 if (PTR_ERR(root
) == -ENOENT
)
2265 return PTR_ERR(root
);
2268 if (btrfs_root_readonly(root
)) {
2269 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2273 /* step 2: get inode */
2274 key
.objectid
= backref
->inum
;
2275 key
.type
= BTRFS_INODE_ITEM_KEY
;
2278 inode
= btrfs_iget(fs_info
->sb
, &key
, root
, NULL
);
2279 if (IS_ERR(inode
)) {
2280 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2284 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2286 /* step 3: relink backref */
2287 lock_start
= backref
->file_pos
;
2288 lock_end
= backref
->file_pos
+ backref
->num_bytes
- 1;
2289 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2292 ordered
= btrfs_lookup_first_ordered_extent(inode
, lock_end
);
2294 btrfs_put_ordered_extent(ordered
);
2298 trans
= btrfs_join_transaction(root
);
2299 if (IS_ERR(trans
)) {
2300 ret
= PTR_ERR(trans
);
2304 key
.objectid
= backref
->inum
;
2305 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2306 key
.offset
= backref
->file_pos
;
2308 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2311 } else if (ret
> 0) {
2316 extent
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2317 struct btrfs_file_extent_item
);
2319 if (btrfs_file_extent_generation(path
->nodes
[0], extent
) !=
2320 backref
->generation
)
2323 btrfs_release_path(path
);
2325 start
= backref
->file_pos
;
2326 if (backref
->extent_offset
< old
->extent_offset
+ old
->offset
)
2327 start
+= old
->extent_offset
+ old
->offset
-
2328 backref
->extent_offset
;
2330 len
= min(backref
->extent_offset
+ backref
->num_bytes
,
2331 old
->extent_offset
+ old
->offset
+ old
->len
);
2332 len
-= max(backref
->extent_offset
, old
->extent_offset
+ old
->offset
);
2334 ret
= btrfs_drop_extents(trans
, root
, inode
, start
,
2339 key
.objectid
= btrfs_ino(inode
);
2340 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2343 path
->leave_spinning
= 1;
2345 struct btrfs_file_extent_item
*fi
;
2347 struct btrfs_key found_key
;
2349 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2354 leaf
= path
->nodes
[0];
2355 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2357 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2358 struct btrfs_file_extent_item
);
2359 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
2361 if (extent_len
+ found_key
.offset
== start
&&
2362 relink_is_mergable(leaf
, fi
, new)) {
2363 btrfs_set_file_extent_num_bytes(leaf
, fi
,
2365 btrfs_mark_buffer_dirty(leaf
);
2366 inode_add_bytes(inode
, len
);
2372 btrfs_release_path(path
);
2377 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
2380 btrfs_abort_transaction(trans
, root
, ret
);
2384 leaf
= path
->nodes
[0];
2385 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2386 struct btrfs_file_extent_item
);
2387 btrfs_set_file_extent_disk_bytenr(leaf
, item
, new->bytenr
);
2388 btrfs_set_file_extent_disk_num_bytes(leaf
, item
, new->disk_len
);
2389 btrfs_set_file_extent_offset(leaf
, item
, start
- new->file_pos
);
2390 btrfs_set_file_extent_num_bytes(leaf
, item
, len
);
2391 btrfs_set_file_extent_ram_bytes(leaf
, item
, new->len
);
2392 btrfs_set_file_extent_generation(leaf
, item
, trans
->transid
);
2393 btrfs_set_file_extent_type(leaf
, item
, BTRFS_FILE_EXTENT_REG
);
2394 btrfs_set_file_extent_compression(leaf
, item
, new->compress_type
);
2395 btrfs_set_file_extent_encryption(leaf
, item
, 0);
2396 btrfs_set_file_extent_other_encoding(leaf
, item
, 0);
2398 btrfs_mark_buffer_dirty(leaf
);
2399 inode_add_bytes(inode
, len
);
2400 btrfs_release_path(path
);
2402 ret
= btrfs_inc_extent_ref(trans
, root
, new->bytenr
,
2404 backref
->root_id
, backref
->inum
,
2405 new->file_pos
, 0); /* start - extent_offset */
2407 btrfs_abort_transaction(trans
, root
, ret
);
2413 btrfs_release_path(path
);
2414 path
->leave_spinning
= 0;
2415 btrfs_end_transaction(trans
, root
);
2417 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2423 static void free_sa_defrag_extent(struct new_sa_defrag_extent
*new)
2425 struct old_sa_defrag_extent
*old
, *tmp
;
2430 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2431 list_del(&old
->list
);
2437 static void relink_file_extents(struct new_sa_defrag_extent
*new)
2439 struct btrfs_path
*path
;
2440 struct sa_defrag_extent_backref
*backref
;
2441 struct sa_defrag_extent_backref
*prev
= NULL
;
2442 struct inode
*inode
;
2443 struct btrfs_root
*root
;
2444 struct rb_node
*node
;
2448 root
= BTRFS_I(inode
)->root
;
2450 path
= btrfs_alloc_path();
2454 if (!record_extent_backrefs(path
, new)) {
2455 btrfs_free_path(path
);
2458 btrfs_release_path(path
);
2461 node
= rb_first(&new->root
);
2464 rb_erase(node
, &new->root
);
2466 backref
= rb_entry(node
, struct sa_defrag_extent_backref
, node
);
2468 ret
= relink_extent_backref(path
, prev
, backref
);
2481 btrfs_free_path(path
);
2483 free_sa_defrag_extent(new);
2485 atomic_dec(&root
->fs_info
->defrag_running
);
2486 wake_up(&root
->fs_info
->transaction_wait
);
2489 static struct new_sa_defrag_extent
*
2490 record_old_file_extents(struct inode
*inode
,
2491 struct btrfs_ordered_extent
*ordered
)
2493 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2494 struct btrfs_path
*path
;
2495 struct btrfs_key key
;
2496 struct old_sa_defrag_extent
*old
;
2497 struct new_sa_defrag_extent
*new;
2500 new = kmalloc(sizeof(*new), GFP_NOFS
);
2505 new->file_pos
= ordered
->file_offset
;
2506 new->len
= ordered
->len
;
2507 new->bytenr
= ordered
->start
;
2508 new->disk_len
= ordered
->disk_len
;
2509 new->compress_type
= ordered
->compress_type
;
2510 new->root
= RB_ROOT
;
2511 INIT_LIST_HEAD(&new->head
);
2513 path
= btrfs_alloc_path();
2517 key
.objectid
= btrfs_ino(inode
);
2518 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2519 key
.offset
= new->file_pos
;
2521 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2524 if (ret
> 0 && path
->slots
[0] > 0)
2527 /* find out all the old extents for the file range */
2529 struct btrfs_file_extent_item
*extent
;
2530 struct extent_buffer
*l
;
2539 slot
= path
->slots
[0];
2541 if (slot
>= btrfs_header_nritems(l
)) {
2542 ret
= btrfs_next_leaf(root
, path
);
2550 btrfs_item_key_to_cpu(l
, &key
, slot
);
2552 if (key
.objectid
!= btrfs_ino(inode
))
2554 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2556 if (key
.offset
>= new->file_pos
+ new->len
)
2559 extent
= btrfs_item_ptr(l
, slot
, struct btrfs_file_extent_item
);
2561 num_bytes
= btrfs_file_extent_num_bytes(l
, extent
);
2562 if (key
.offset
+ num_bytes
< new->file_pos
)
2565 disk_bytenr
= btrfs_file_extent_disk_bytenr(l
, extent
);
2569 extent_offset
= btrfs_file_extent_offset(l
, extent
);
2571 old
= kmalloc(sizeof(*old
), GFP_NOFS
);
2575 offset
= max(new->file_pos
, key
.offset
);
2576 end
= min(new->file_pos
+ new->len
, key
.offset
+ num_bytes
);
2578 old
->bytenr
= disk_bytenr
;
2579 old
->extent_offset
= extent_offset
;
2580 old
->offset
= offset
- key
.offset
;
2581 old
->len
= end
- offset
;
2584 list_add_tail(&old
->list
, &new->head
);
2590 btrfs_free_path(path
);
2591 atomic_inc(&root
->fs_info
->defrag_running
);
2596 btrfs_free_path(path
);
2598 free_sa_defrag_extent(new);
2602 /* as ordered data IO finishes, this gets called so we can finish
2603 * an ordered extent if the range of bytes in the file it covers are
2606 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
)
2608 struct inode
*inode
= ordered_extent
->inode
;
2609 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2610 struct btrfs_trans_handle
*trans
= NULL
;
2611 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2612 struct extent_state
*cached_state
= NULL
;
2613 struct new_sa_defrag_extent
*new = NULL
;
2614 int compress_type
= 0;
2616 u64 logical_len
= ordered_extent
->len
;
2618 bool truncated
= false;
2620 nolock
= btrfs_is_free_space_inode(inode
);
2622 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered_extent
->flags
)) {
2627 if (test_bit(BTRFS_ORDERED_TRUNCATED
, &ordered_extent
->flags
)) {
2629 logical_len
= ordered_extent
->truncated_len
;
2630 /* Truncated the entire extent, don't bother adding */
2635 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
2636 BUG_ON(!list_empty(&ordered_extent
->list
)); /* Logic error */
2637 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
2639 trans
= btrfs_join_transaction_nolock(root
);
2641 trans
= btrfs_join_transaction(root
);
2642 if (IS_ERR(trans
)) {
2643 ret
= PTR_ERR(trans
);
2647 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
2648 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
2649 if (ret
) /* -ENOMEM or corruption */
2650 btrfs_abort_transaction(trans
, root
, ret
);
2654 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
2655 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2658 ret
= test_range_bit(io_tree
, ordered_extent
->file_offset
,
2659 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2660 EXTENT_DEFRAG
, 1, cached_state
);
2662 u64 last_snapshot
= btrfs_root_last_snapshot(&root
->root_item
);
2663 if (0 && last_snapshot
>= BTRFS_I(inode
)->generation
)
2664 /* the inode is shared */
2665 new = record_old_file_extents(inode
, ordered_extent
);
2667 clear_extent_bit(io_tree
, ordered_extent
->file_offset
,
2668 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2669 EXTENT_DEFRAG
, 0, 0, &cached_state
, GFP_NOFS
);
2673 trans
= btrfs_join_transaction_nolock(root
);
2675 trans
= btrfs_join_transaction(root
);
2676 if (IS_ERR(trans
)) {
2677 ret
= PTR_ERR(trans
);
2681 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
2683 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
2684 compress_type
= ordered_extent
->compress_type
;
2685 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
2686 BUG_ON(compress_type
);
2687 ret
= btrfs_mark_extent_written(trans
, inode
,
2688 ordered_extent
->file_offset
,
2689 ordered_extent
->file_offset
+
2692 BUG_ON(root
== root
->fs_info
->tree_root
);
2693 ret
= insert_reserved_file_extent(trans
, inode
,
2694 ordered_extent
->file_offset
,
2695 ordered_extent
->start
,
2696 ordered_extent
->disk_len
,
2697 logical_len
, logical_len
,
2698 compress_type
, 0, 0,
2699 BTRFS_FILE_EXTENT_REG
);
2701 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
2702 ordered_extent
->file_offset
, ordered_extent
->len
,
2705 btrfs_abort_transaction(trans
, root
, ret
);
2709 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
2710 &ordered_extent
->list
);
2712 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
2713 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
2714 if (ret
) { /* -ENOMEM or corruption */
2715 btrfs_abort_transaction(trans
, root
, ret
);
2720 unlock_extent_cached(io_tree
, ordered_extent
->file_offset
,
2721 ordered_extent
->file_offset
+
2722 ordered_extent
->len
- 1, &cached_state
, GFP_NOFS
);
2724 if (root
!= root
->fs_info
->tree_root
)
2725 btrfs_delalloc_release_metadata(inode
, ordered_extent
->len
);
2727 btrfs_end_transaction(trans
, root
);
2729 if (ret
|| truncated
) {
2733 start
= ordered_extent
->file_offset
+ logical_len
;
2735 start
= ordered_extent
->file_offset
;
2736 end
= ordered_extent
->file_offset
+ ordered_extent
->len
- 1;
2737 clear_extent_uptodate(io_tree
, start
, end
, NULL
, GFP_NOFS
);
2739 /* Drop the cache for the part of the extent we didn't write. */
2740 btrfs_drop_extent_cache(inode
, start
, end
, 0);
2743 * If the ordered extent had an IOERR or something else went
2744 * wrong we need to return the space for this ordered extent
2745 * back to the allocator. We only free the extent in the
2746 * truncated case if we didn't write out the extent at all.
2748 if ((ret
|| !logical_len
) &&
2749 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
2750 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
))
2751 btrfs_free_reserved_extent(root
, ordered_extent
->start
,
2752 ordered_extent
->disk_len
);
2757 * This needs to be done to make sure anybody waiting knows we are done
2758 * updating everything for this ordered extent.
2760 btrfs_remove_ordered_extent(inode
, ordered_extent
);
2762 /* for snapshot-aware defrag */
2765 free_sa_defrag_extent(new);
2766 atomic_dec(&root
->fs_info
->defrag_running
);
2768 relink_file_extents(new);
2773 btrfs_put_ordered_extent(ordered_extent
);
2774 /* once for the tree */
2775 btrfs_put_ordered_extent(ordered_extent
);
2780 static void finish_ordered_fn(struct btrfs_work
*work
)
2782 struct btrfs_ordered_extent
*ordered_extent
;
2783 ordered_extent
= container_of(work
, struct btrfs_ordered_extent
, work
);
2784 btrfs_finish_ordered_io(ordered_extent
);
2787 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
2788 struct extent_state
*state
, int uptodate
)
2790 struct inode
*inode
= page
->mapping
->host
;
2791 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2792 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
2793 struct btrfs_workqueue
*workers
;
2795 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
2797 ClearPagePrivate2(page
);
2798 if (!btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
2799 end
- start
+ 1, uptodate
))
2802 btrfs_init_work(&ordered_extent
->work
, finish_ordered_fn
, NULL
, NULL
);
2804 if (btrfs_is_free_space_inode(inode
))
2805 workers
= root
->fs_info
->endio_freespace_worker
;
2807 workers
= root
->fs_info
->endio_write_workers
;
2808 btrfs_queue_work(workers
, &ordered_extent
->work
);
2814 * when reads are done, we need to check csums to verify the data is correct
2815 * if there's a match, we allow the bio to finish. If not, the code in
2816 * extent_io.c will try to find good copies for us.
2818 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
2819 u64 phy_offset
, struct page
*page
,
2820 u64 start
, u64 end
, int mirror
)
2822 size_t offset
= start
- page_offset(page
);
2823 struct inode
*inode
= page
->mapping
->host
;
2824 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2826 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2829 static DEFINE_RATELIMIT_STATE(_rs
, DEFAULT_RATELIMIT_INTERVAL
,
2830 DEFAULT_RATELIMIT_BURST
);
2832 if (PageChecked(page
)) {
2833 ClearPageChecked(page
);
2837 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
2840 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
2841 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
2842 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
,
2847 phy_offset
>>= inode
->i_sb
->s_blocksize_bits
;
2848 csum_expected
= *(((u32
*)io_bio
->csum
) + phy_offset
);
2850 kaddr
= kmap_atomic(page
);
2851 csum
= btrfs_csum_data(kaddr
+ offset
, csum
, end
- start
+ 1);
2852 btrfs_csum_final(csum
, (char *)&csum
);
2853 if (csum
!= csum_expected
)
2856 kunmap_atomic(kaddr
);
2861 if (__ratelimit(&_rs
))
2862 btrfs_info(root
->fs_info
, "csum failed ino %llu off %llu csum %u expected csum %u",
2863 btrfs_ino(page
->mapping
->host
), start
, csum
, csum_expected
);
2864 memset(kaddr
+ offset
, 1, end
- start
+ 1);
2865 flush_dcache_page(page
);
2866 kunmap_atomic(kaddr
);
2867 if (csum_expected
== 0)
2872 struct delayed_iput
{
2873 struct list_head list
;
2874 struct inode
*inode
;
2877 /* JDM: If this is fs-wide, why can't we add a pointer to
2878 * btrfs_inode instead and avoid the allocation? */
2879 void btrfs_add_delayed_iput(struct inode
*inode
)
2881 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2882 struct delayed_iput
*delayed
;
2884 if (atomic_add_unless(&inode
->i_count
, -1, 1))
2887 delayed
= kmalloc(sizeof(*delayed
), GFP_NOFS
| __GFP_NOFAIL
);
2888 delayed
->inode
= inode
;
2890 spin_lock(&fs_info
->delayed_iput_lock
);
2891 list_add_tail(&delayed
->list
, &fs_info
->delayed_iputs
);
2892 spin_unlock(&fs_info
->delayed_iput_lock
);
2895 void btrfs_run_delayed_iputs(struct btrfs_root
*root
)
2898 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2899 struct delayed_iput
*delayed
;
2902 spin_lock(&fs_info
->delayed_iput_lock
);
2903 empty
= list_empty(&fs_info
->delayed_iputs
);
2904 spin_unlock(&fs_info
->delayed_iput_lock
);
2908 spin_lock(&fs_info
->delayed_iput_lock
);
2909 list_splice_init(&fs_info
->delayed_iputs
, &list
);
2910 spin_unlock(&fs_info
->delayed_iput_lock
);
2912 while (!list_empty(&list
)) {
2913 delayed
= list_entry(list
.next
, struct delayed_iput
, list
);
2914 list_del(&delayed
->list
);
2915 iput(delayed
->inode
);
2921 * This is called in transaction commit time. If there are no orphan
2922 * files in the subvolume, it removes orphan item and frees block_rsv
2925 void btrfs_orphan_commit_root(struct btrfs_trans_handle
*trans
,
2926 struct btrfs_root
*root
)
2928 struct btrfs_block_rsv
*block_rsv
;
2931 if (atomic_read(&root
->orphan_inodes
) ||
2932 root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
)
2935 spin_lock(&root
->orphan_lock
);
2936 if (atomic_read(&root
->orphan_inodes
)) {
2937 spin_unlock(&root
->orphan_lock
);
2941 if (root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
) {
2942 spin_unlock(&root
->orphan_lock
);
2946 block_rsv
= root
->orphan_block_rsv
;
2947 root
->orphan_block_rsv
= NULL
;
2948 spin_unlock(&root
->orphan_lock
);
2950 if (root
->orphan_item_inserted
&&
2951 btrfs_root_refs(&root
->root_item
) > 0) {
2952 ret
= btrfs_del_orphan_item(trans
, root
->fs_info
->tree_root
,
2953 root
->root_key
.objectid
);
2955 btrfs_abort_transaction(trans
, root
, ret
);
2957 root
->orphan_item_inserted
= 0;
2961 WARN_ON(block_rsv
->size
> 0);
2962 btrfs_free_block_rsv(root
, block_rsv
);
2967 * This creates an orphan entry for the given inode in case something goes
2968 * wrong in the middle of an unlink/truncate.
2970 * NOTE: caller of this function should reserve 5 units of metadata for
2973 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2975 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2976 struct btrfs_block_rsv
*block_rsv
= NULL
;
2981 if (!root
->orphan_block_rsv
) {
2982 block_rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
2987 spin_lock(&root
->orphan_lock
);
2988 if (!root
->orphan_block_rsv
) {
2989 root
->orphan_block_rsv
= block_rsv
;
2990 } else if (block_rsv
) {
2991 btrfs_free_block_rsv(root
, block_rsv
);
2995 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
2996 &BTRFS_I(inode
)->runtime_flags
)) {
2999 * For proper ENOSPC handling, we should do orphan
3000 * cleanup when mounting. But this introduces backward
3001 * compatibility issue.
3003 if (!xchg(&root
->orphan_item_inserted
, 1))
3009 atomic_inc(&root
->orphan_inodes
);
3012 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3013 &BTRFS_I(inode
)->runtime_flags
))
3015 spin_unlock(&root
->orphan_lock
);
3017 /* grab metadata reservation from transaction handle */
3019 ret
= btrfs_orphan_reserve_metadata(trans
, inode
);
3020 BUG_ON(ret
); /* -ENOSPC in reservation; Logic error? JDM */
3023 /* insert an orphan item to track this unlinked/truncated file */
3025 ret
= btrfs_insert_orphan_item(trans
, root
, btrfs_ino(inode
));
3027 atomic_dec(&root
->orphan_inodes
);
3029 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3030 &BTRFS_I(inode
)->runtime_flags
);
3031 btrfs_orphan_release_metadata(inode
);
3033 if (ret
!= -EEXIST
) {
3034 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3035 &BTRFS_I(inode
)->runtime_flags
);
3036 btrfs_abort_transaction(trans
, root
, ret
);
3043 /* insert an orphan item to track subvolume contains orphan files */
3045 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
3046 root
->root_key
.objectid
);
3047 if (ret
&& ret
!= -EEXIST
) {
3048 btrfs_abort_transaction(trans
, root
, ret
);
3056 * We have done the truncate/delete so we can go ahead and remove the orphan
3057 * item for this particular inode.
3059 static int btrfs_orphan_del(struct btrfs_trans_handle
*trans
,
3060 struct inode
*inode
)
3062 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3063 int delete_item
= 0;
3064 int release_rsv
= 0;
3067 spin_lock(&root
->orphan_lock
);
3068 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3069 &BTRFS_I(inode
)->runtime_flags
))
3072 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3073 &BTRFS_I(inode
)->runtime_flags
))
3075 spin_unlock(&root
->orphan_lock
);
3078 atomic_dec(&root
->orphan_inodes
);
3080 ret
= btrfs_del_orphan_item(trans
, root
,
3085 btrfs_orphan_release_metadata(inode
);
3091 * this cleans up any orphans that may be left on the list from the last use
3094 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
3096 struct btrfs_path
*path
;
3097 struct extent_buffer
*leaf
;
3098 struct btrfs_key key
, found_key
;
3099 struct btrfs_trans_handle
*trans
;
3100 struct inode
*inode
;
3101 u64 last_objectid
= 0;
3102 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
3104 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
3107 path
= btrfs_alloc_path();
3114 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
3115 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
3116 key
.offset
= (u64
)-1;
3119 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3124 * if ret == 0 means we found what we were searching for, which
3125 * is weird, but possible, so only screw with path if we didn't
3126 * find the key and see if we have stuff that matches
3130 if (path
->slots
[0] == 0)
3135 /* pull out the item */
3136 leaf
= path
->nodes
[0];
3137 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3139 /* make sure the item matches what we want */
3140 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
3142 if (btrfs_key_type(&found_key
) != BTRFS_ORPHAN_ITEM_KEY
)
3145 /* release the path since we're done with it */
3146 btrfs_release_path(path
);
3149 * this is where we are basically btrfs_lookup, without the
3150 * crossing root thing. we store the inode number in the
3151 * offset of the orphan item.
3154 if (found_key
.offset
== last_objectid
) {
3155 btrfs_err(root
->fs_info
,
3156 "Error removing orphan entry, stopping orphan cleanup");
3161 last_objectid
= found_key
.offset
;
3163 found_key
.objectid
= found_key
.offset
;
3164 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
3165 found_key
.offset
= 0;
3166 inode
= btrfs_iget(root
->fs_info
->sb
, &found_key
, root
, NULL
);
3167 ret
= PTR_ERR_OR_ZERO(inode
);
3168 if (ret
&& ret
!= -ESTALE
)
3171 if (ret
== -ESTALE
&& root
== root
->fs_info
->tree_root
) {
3172 struct btrfs_root
*dead_root
;
3173 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3174 int is_dead_root
= 0;
3177 * this is an orphan in the tree root. Currently these
3178 * could come from 2 sources:
3179 * a) a snapshot deletion in progress
3180 * b) a free space cache inode
3181 * We need to distinguish those two, as the snapshot
3182 * orphan must not get deleted.
3183 * find_dead_roots already ran before us, so if this
3184 * is a snapshot deletion, we should find the root
3185 * in the dead_roots list
3187 spin_lock(&fs_info
->trans_lock
);
3188 list_for_each_entry(dead_root
, &fs_info
->dead_roots
,
3190 if (dead_root
->root_key
.objectid
==
3191 found_key
.objectid
) {
3196 spin_unlock(&fs_info
->trans_lock
);
3198 /* prevent this orphan from being found again */
3199 key
.offset
= found_key
.objectid
- 1;
3204 * Inode is already gone but the orphan item is still there,
3205 * kill the orphan item.
3207 if (ret
== -ESTALE
) {
3208 trans
= btrfs_start_transaction(root
, 1);
3209 if (IS_ERR(trans
)) {
3210 ret
= PTR_ERR(trans
);
3213 btrfs_debug(root
->fs_info
, "auto deleting %Lu",
3214 found_key
.objectid
);
3215 ret
= btrfs_del_orphan_item(trans
, root
,
3216 found_key
.objectid
);
3217 btrfs_end_transaction(trans
, root
);
3224 * add this inode to the orphan list so btrfs_orphan_del does
3225 * the proper thing when we hit it
3227 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3228 &BTRFS_I(inode
)->runtime_flags
);
3229 atomic_inc(&root
->orphan_inodes
);
3231 /* if we have links, this was a truncate, lets do that */
3232 if (inode
->i_nlink
) {
3233 if (WARN_ON(!S_ISREG(inode
->i_mode
))) {
3239 /* 1 for the orphan item deletion. */
3240 trans
= btrfs_start_transaction(root
, 1);
3241 if (IS_ERR(trans
)) {
3243 ret
= PTR_ERR(trans
);
3246 ret
= btrfs_orphan_add(trans
, inode
);
3247 btrfs_end_transaction(trans
, root
);
3253 ret
= btrfs_truncate(inode
);
3255 btrfs_orphan_del(NULL
, inode
);
3260 /* this will do delete_inode and everything for us */
3265 /* release the path since we're done with it */
3266 btrfs_release_path(path
);
3268 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
3270 if (root
->orphan_block_rsv
)
3271 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
,
3274 if (root
->orphan_block_rsv
|| root
->orphan_item_inserted
) {
3275 trans
= btrfs_join_transaction(root
);
3277 btrfs_end_transaction(trans
, root
);
3281 btrfs_debug(root
->fs_info
, "unlinked %d orphans", nr_unlink
);
3283 btrfs_debug(root
->fs_info
, "truncated %d orphans", nr_truncate
);
3287 btrfs_crit(root
->fs_info
,
3288 "could not do orphan cleanup %d", ret
);
3289 btrfs_free_path(path
);
3294 * very simple check to peek ahead in the leaf looking for xattrs. If we
3295 * don't find any xattrs, we know there can't be any acls.
3297 * slot is the slot the inode is in, objectid is the objectid of the inode
3299 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
3300 int slot
, u64 objectid
,
3301 int *first_xattr_slot
)
3303 u32 nritems
= btrfs_header_nritems(leaf
);
3304 struct btrfs_key found_key
;
3305 static u64 xattr_access
= 0;
3306 static u64 xattr_default
= 0;
3309 if (!xattr_access
) {
3310 xattr_access
= btrfs_name_hash(POSIX_ACL_XATTR_ACCESS
,
3311 strlen(POSIX_ACL_XATTR_ACCESS
));
3312 xattr_default
= btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT
,
3313 strlen(POSIX_ACL_XATTR_DEFAULT
));
3317 *first_xattr_slot
= -1;
3318 while (slot
< nritems
) {
3319 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3321 /* we found a different objectid, there must not be acls */
3322 if (found_key
.objectid
!= objectid
)
3325 /* we found an xattr, assume we've got an acl */
3326 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
3327 if (*first_xattr_slot
== -1)
3328 *first_xattr_slot
= slot
;
3329 if (found_key
.offset
== xattr_access
||
3330 found_key
.offset
== xattr_default
)
3335 * we found a key greater than an xattr key, there can't
3336 * be any acls later on
3338 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
3345 * it goes inode, inode backrefs, xattrs, extents,
3346 * so if there are a ton of hard links to an inode there can
3347 * be a lot of backrefs. Don't waste time searching too hard,
3348 * this is just an optimization
3353 /* we hit the end of the leaf before we found an xattr or
3354 * something larger than an xattr. We have to assume the inode
3357 if (*first_xattr_slot
== -1)
3358 *first_xattr_slot
= slot
;
3363 * read an inode from the btree into the in-memory inode
3365 static void btrfs_read_locked_inode(struct inode
*inode
)
3367 struct btrfs_path
*path
;
3368 struct extent_buffer
*leaf
;
3369 struct btrfs_inode_item
*inode_item
;
3370 struct btrfs_timespec
*tspec
;
3371 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3372 struct btrfs_key location
;
3377 bool filled
= false;
3378 int first_xattr_slot
;
3380 ret
= btrfs_fill_inode(inode
, &rdev
);
3384 path
= btrfs_alloc_path();
3388 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
3390 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
3394 leaf
= path
->nodes
[0];
3399 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3400 struct btrfs_inode_item
);
3401 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
3402 set_nlink(inode
, btrfs_inode_nlink(leaf
, inode_item
));
3403 i_uid_write(inode
, btrfs_inode_uid(leaf
, inode_item
));
3404 i_gid_write(inode
, btrfs_inode_gid(leaf
, inode_item
));
3405 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
3407 tspec
= btrfs_inode_atime(inode_item
);
3408 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
3409 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
3411 tspec
= btrfs_inode_mtime(inode_item
);
3412 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
3413 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
3415 tspec
= btrfs_inode_ctime(inode_item
);
3416 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
3417 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
3419 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
3420 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
3421 BTRFS_I(inode
)->last_trans
= btrfs_inode_transid(leaf
, inode_item
);
3424 * If we were modified in the current generation and evicted from memory
3425 * and then re-read we need to do a full sync since we don't have any
3426 * idea about which extents were modified before we were evicted from
3429 if (BTRFS_I(inode
)->last_trans
== root
->fs_info
->generation
)
3430 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3431 &BTRFS_I(inode
)->runtime_flags
);
3433 inode
->i_version
= btrfs_inode_sequence(leaf
, inode_item
);
3434 inode
->i_generation
= BTRFS_I(inode
)->generation
;
3436 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
3438 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
3439 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
3443 if (inode
->i_nlink
!= 1 ||
3444 path
->slots
[0] >= btrfs_header_nritems(leaf
))
3447 btrfs_item_key_to_cpu(leaf
, &location
, path
->slots
[0]);
3448 if (location
.objectid
!= btrfs_ino(inode
))
3451 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3452 if (location
.type
== BTRFS_INODE_REF_KEY
) {
3453 struct btrfs_inode_ref
*ref
;
3455 ref
= (struct btrfs_inode_ref
*)ptr
;
3456 BTRFS_I(inode
)->dir_index
= btrfs_inode_ref_index(leaf
, ref
);
3457 } else if (location
.type
== BTRFS_INODE_EXTREF_KEY
) {
3458 struct btrfs_inode_extref
*extref
;
3460 extref
= (struct btrfs_inode_extref
*)ptr
;
3461 BTRFS_I(inode
)->dir_index
= btrfs_inode_extref_index(leaf
,
3466 * try to precache a NULL acl entry for files that don't have
3467 * any xattrs or acls
3469 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
3470 btrfs_ino(inode
), &first_xattr_slot
);
3471 if (first_xattr_slot
!= -1) {
3472 path
->slots
[0] = first_xattr_slot
;
3473 ret
= btrfs_load_inode_props(inode
, path
);
3475 btrfs_err(root
->fs_info
,
3476 "error loading props for ino %llu (root %llu): %d\n",
3478 root
->root_key
.objectid
, ret
);
3480 btrfs_free_path(path
);
3483 cache_no_acl(inode
);
3485 switch (inode
->i_mode
& S_IFMT
) {
3487 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3488 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
3489 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
3490 inode
->i_fop
= &btrfs_file_operations
;
3491 inode
->i_op
= &btrfs_file_inode_operations
;
3494 inode
->i_fop
= &btrfs_dir_file_operations
;
3495 if (root
== root
->fs_info
->tree_root
)
3496 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
3498 inode
->i_op
= &btrfs_dir_inode_operations
;
3501 inode
->i_op
= &btrfs_symlink_inode_operations
;
3502 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
3503 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
3506 inode
->i_op
= &btrfs_special_inode_operations
;
3507 init_special_inode(inode
, inode
->i_mode
, rdev
);
3511 btrfs_update_iflags(inode
);
3515 btrfs_free_path(path
);
3516 make_bad_inode(inode
);
3520 * given a leaf and an inode, copy the inode fields into the leaf
3522 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3523 struct extent_buffer
*leaf
,
3524 struct btrfs_inode_item
*item
,
3525 struct inode
*inode
)
3527 struct btrfs_map_token token
;
3529 btrfs_init_map_token(&token
);
3531 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3532 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3533 btrfs_set_token_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
,
3535 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3536 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3538 btrfs_set_token_timespec_sec(leaf
, btrfs_inode_atime(item
),
3539 inode
->i_atime
.tv_sec
, &token
);
3540 btrfs_set_token_timespec_nsec(leaf
, btrfs_inode_atime(item
),
3541 inode
->i_atime
.tv_nsec
, &token
);
3543 btrfs_set_token_timespec_sec(leaf
, btrfs_inode_mtime(item
),
3544 inode
->i_mtime
.tv_sec
, &token
);
3545 btrfs_set_token_timespec_nsec(leaf
, btrfs_inode_mtime(item
),
3546 inode
->i_mtime
.tv_nsec
, &token
);
3548 btrfs_set_token_timespec_sec(leaf
, btrfs_inode_ctime(item
),
3549 inode
->i_ctime
.tv_sec
, &token
);
3550 btrfs_set_token_timespec_nsec(leaf
, btrfs_inode_ctime(item
),
3551 inode
->i_ctime
.tv_nsec
, &token
);
3553 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3555 btrfs_set_token_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
,
3557 btrfs_set_token_inode_sequence(leaf
, item
, inode
->i_version
, &token
);
3558 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3559 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3560 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3561 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3565 * copy everything in the in-memory inode into the btree.
3567 static noinline
int btrfs_update_inode_item(struct btrfs_trans_handle
*trans
,
3568 struct btrfs_root
*root
, struct inode
*inode
)
3570 struct btrfs_inode_item
*inode_item
;
3571 struct btrfs_path
*path
;
3572 struct extent_buffer
*leaf
;
3575 path
= btrfs_alloc_path();
3579 path
->leave_spinning
= 1;
3580 ret
= btrfs_lookup_inode(trans
, root
, path
, &BTRFS_I(inode
)->location
,
3588 leaf
= path
->nodes
[0];
3589 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3590 struct btrfs_inode_item
);
3592 fill_inode_item(trans
, leaf
, inode_item
, inode
);
3593 btrfs_mark_buffer_dirty(leaf
);
3594 btrfs_set_inode_last_trans(trans
, inode
);
3597 btrfs_free_path(path
);
3602 * copy everything in the in-memory inode into the btree.
3604 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
3605 struct btrfs_root
*root
, struct inode
*inode
)
3610 * If the inode is a free space inode, we can deadlock during commit
3611 * if we put it into the delayed code.
3613 * The data relocation inode should also be directly updated
3616 if (!btrfs_is_free_space_inode(inode
)
3617 && root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
) {
3618 btrfs_update_root_times(trans
, root
);
3620 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
3622 btrfs_set_inode_last_trans(trans
, inode
);
3626 return btrfs_update_inode_item(trans
, root
, inode
);
3629 noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
3630 struct btrfs_root
*root
,
3631 struct inode
*inode
)
3635 ret
= btrfs_update_inode(trans
, root
, inode
);
3637 return btrfs_update_inode_item(trans
, root
, inode
);
3642 * unlink helper that gets used here in inode.c and in the tree logging
3643 * recovery code. It remove a link in a directory with a given name, and
3644 * also drops the back refs in the inode to the directory
3646 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
3647 struct btrfs_root
*root
,
3648 struct inode
*dir
, struct inode
*inode
,
3649 const char *name
, int name_len
)
3651 struct btrfs_path
*path
;
3653 struct extent_buffer
*leaf
;
3654 struct btrfs_dir_item
*di
;
3655 struct btrfs_key key
;
3657 u64 ino
= btrfs_ino(inode
);
3658 u64 dir_ino
= btrfs_ino(dir
);
3660 path
= btrfs_alloc_path();
3666 path
->leave_spinning
= 1;
3667 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
3668 name
, name_len
, -1);
3677 leaf
= path
->nodes
[0];
3678 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
3679 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3682 btrfs_release_path(path
);
3685 * If we don't have dir index, we have to get it by looking up
3686 * the inode ref, since we get the inode ref, remove it directly,
3687 * it is unnecessary to do delayed deletion.
3689 * But if we have dir index, needn't search inode ref to get it.
3690 * Since the inode ref is close to the inode item, it is better
3691 * that we delay to delete it, and just do this deletion when
3692 * we update the inode item.
3694 if (BTRFS_I(inode
)->dir_index
) {
3695 ret
= btrfs_delayed_delete_inode_ref(inode
);
3697 index
= BTRFS_I(inode
)->dir_index
;
3702 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
3705 btrfs_info(root
->fs_info
,
3706 "failed to delete reference to %.*s, inode %llu parent %llu",
3707 name_len
, name
, ino
, dir_ino
);
3708 btrfs_abort_transaction(trans
, root
, ret
);
3712 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
3714 btrfs_abort_transaction(trans
, root
, ret
);
3718 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
3720 if (ret
!= 0 && ret
!= -ENOENT
) {
3721 btrfs_abort_transaction(trans
, root
, ret
);
3725 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
3730 btrfs_abort_transaction(trans
, root
, ret
);
3732 btrfs_free_path(path
);
3736 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
3737 inode_inc_iversion(inode
);
3738 inode_inc_iversion(dir
);
3739 inode
->i_ctime
= dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
3740 ret
= btrfs_update_inode(trans
, root
, dir
);
3745 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
3746 struct btrfs_root
*root
,
3747 struct inode
*dir
, struct inode
*inode
,
3748 const char *name
, int name_len
)
3751 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
3754 ret
= btrfs_update_inode(trans
, root
, inode
);
3760 * helper to start transaction for unlink and rmdir.
3762 * unlink and rmdir are special in btrfs, they do not always free space, so
3763 * if we cannot make our reservations the normal way try and see if there is
3764 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3765 * allow the unlink to occur.
3767 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
)
3769 struct btrfs_trans_handle
*trans
;
3770 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3774 * 1 for the possible orphan item
3775 * 1 for the dir item
3776 * 1 for the dir index
3777 * 1 for the inode ref
3780 trans
= btrfs_start_transaction(root
, 5);
3781 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
3784 if (PTR_ERR(trans
) == -ENOSPC
) {
3785 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 5);
3787 trans
= btrfs_start_transaction(root
, 0);
3790 ret
= btrfs_cond_migrate_bytes(root
->fs_info
,
3791 &root
->fs_info
->trans_block_rsv
,
3794 btrfs_end_transaction(trans
, root
);
3795 return ERR_PTR(ret
);
3797 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
3798 trans
->bytes_reserved
= num_bytes
;
3803 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
3805 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3806 struct btrfs_trans_handle
*trans
;
3807 struct inode
*inode
= dentry
->d_inode
;
3810 trans
= __unlink_start_trans(dir
);
3812 return PTR_ERR(trans
);
3814 btrfs_record_unlink_dir(trans
, dir
, dentry
->d_inode
, 0);
3816 ret
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
3817 dentry
->d_name
.name
, dentry
->d_name
.len
);
3821 if (inode
->i_nlink
== 0) {
3822 ret
= btrfs_orphan_add(trans
, inode
);
3828 btrfs_end_transaction(trans
, root
);
3829 btrfs_btree_balance_dirty(root
);
3833 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
3834 struct btrfs_root
*root
,
3835 struct inode
*dir
, u64 objectid
,
3836 const char *name
, int name_len
)
3838 struct btrfs_path
*path
;
3839 struct extent_buffer
*leaf
;
3840 struct btrfs_dir_item
*di
;
3841 struct btrfs_key key
;
3844 u64 dir_ino
= btrfs_ino(dir
);
3846 path
= btrfs_alloc_path();
3850 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
3851 name
, name_len
, -1);
3852 if (IS_ERR_OR_NULL(di
)) {
3860 leaf
= path
->nodes
[0];
3861 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
3862 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
3863 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3865 btrfs_abort_transaction(trans
, root
, ret
);
3868 btrfs_release_path(path
);
3870 ret
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
3871 objectid
, root
->root_key
.objectid
,
3872 dir_ino
, &index
, name
, name_len
);
3874 if (ret
!= -ENOENT
) {
3875 btrfs_abort_transaction(trans
, root
, ret
);
3878 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
3880 if (IS_ERR_OR_NULL(di
)) {
3885 btrfs_abort_transaction(trans
, root
, ret
);
3889 leaf
= path
->nodes
[0];
3890 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3891 btrfs_release_path(path
);
3894 btrfs_release_path(path
);
3896 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
3898 btrfs_abort_transaction(trans
, root
, ret
);
3902 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
3903 inode_inc_iversion(dir
);
3904 dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
3905 ret
= btrfs_update_inode_fallback(trans
, root
, dir
);
3907 btrfs_abort_transaction(trans
, root
, ret
);
3909 btrfs_free_path(path
);
3913 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
3915 struct inode
*inode
= dentry
->d_inode
;
3917 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3918 struct btrfs_trans_handle
*trans
;
3920 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
3922 if (btrfs_ino(inode
) == BTRFS_FIRST_FREE_OBJECTID
)
3925 trans
= __unlink_start_trans(dir
);
3927 return PTR_ERR(trans
);
3929 if (unlikely(btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
3930 err
= btrfs_unlink_subvol(trans
, root
, dir
,
3931 BTRFS_I(inode
)->location
.objectid
,
3932 dentry
->d_name
.name
,
3933 dentry
->d_name
.len
);
3937 err
= btrfs_orphan_add(trans
, inode
);
3941 /* now the directory is empty */
3942 err
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
3943 dentry
->d_name
.name
, dentry
->d_name
.len
);
3945 btrfs_i_size_write(inode
, 0);
3947 btrfs_end_transaction(trans
, root
);
3948 btrfs_btree_balance_dirty(root
);
3954 * this can truncate away extent items, csum items and directory items.
3955 * It starts at a high offset and removes keys until it can't find
3956 * any higher than new_size
3958 * csum items that cross the new i_size are truncated to the new size
3961 * min_type is the minimum key type to truncate down to. If set to 0, this
3962 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3964 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
3965 struct btrfs_root
*root
,
3966 struct inode
*inode
,
3967 u64 new_size
, u32 min_type
)
3969 struct btrfs_path
*path
;
3970 struct extent_buffer
*leaf
;
3971 struct btrfs_file_extent_item
*fi
;
3972 struct btrfs_key key
;
3973 struct btrfs_key found_key
;
3974 u64 extent_start
= 0;
3975 u64 extent_num_bytes
= 0;
3976 u64 extent_offset
= 0;
3978 u64 last_size
= (u64
)-1;
3979 u32 found_type
= (u8
)-1;
3982 int pending_del_nr
= 0;
3983 int pending_del_slot
= 0;
3984 int extent_type
= -1;
3987 u64 ino
= btrfs_ino(inode
);
3989 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
3991 path
= btrfs_alloc_path();
3997 * We want to drop from the next block forward in case this new size is
3998 * not block aligned since we will be keeping the last block of the
3999 * extent just the way it is.
4001 if (root
->ref_cows
|| root
== root
->fs_info
->tree_root
)
4002 btrfs_drop_extent_cache(inode
, ALIGN(new_size
,
4003 root
->sectorsize
), (u64
)-1, 0);
4006 * This function is also used to drop the items in the log tree before
4007 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4008 * it is used to drop the loged items. So we shouldn't kill the delayed
4011 if (min_type
== 0 && root
== BTRFS_I(inode
)->root
)
4012 btrfs_kill_delayed_inode_items(inode
);
4015 key
.offset
= (u64
)-1;
4019 path
->leave_spinning
= 1;
4020 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
4027 /* there are no items in the tree for us to truncate, we're
4030 if (path
->slots
[0] == 0)
4037 leaf
= path
->nodes
[0];
4038 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4039 found_type
= btrfs_key_type(&found_key
);
4041 if (found_key
.objectid
!= ino
)
4044 if (found_type
< min_type
)
4047 item_end
= found_key
.offset
;
4048 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
4049 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4050 struct btrfs_file_extent_item
);
4051 extent_type
= btrfs_file_extent_type(leaf
, fi
);
4052 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4054 btrfs_file_extent_num_bytes(leaf
, fi
);
4055 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4056 item_end
+= btrfs_file_extent_inline_len(leaf
,
4057 path
->slots
[0], fi
);
4061 if (found_type
> min_type
) {
4064 if (item_end
< new_size
)
4066 if (found_key
.offset
>= new_size
)
4072 /* FIXME, shrink the extent if the ref count is only 1 */
4073 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
4077 last_size
= found_key
.offset
;
4079 last_size
= new_size
;
4081 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4083 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
4085 u64 orig_num_bytes
=
4086 btrfs_file_extent_num_bytes(leaf
, fi
);
4087 extent_num_bytes
= ALIGN(new_size
-
4090 btrfs_set_file_extent_num_bytes(leaf
, fi
,
4092 num_dec
= (orig_num_bytes
-
4094 if (root
->ref_cows
&& extent_start
!= 0)
4095 inode_sub_bytes(inode
, num_dec
);
4096 btrfs_mark_buffer_dirty(leaf
);
4099 btrfs_file_extent_disk_num_bytes(leaf
,
4101 extent_offset
= found_key
.offset
-
4102 btrfs_file_extent_offset(leaf
, fi
);
4104 /* FIXME blocksize != 4096 */
4105 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
4106 if (extent_start
!= 0) {
4109 inode_sub_bytes(inode
, num_dec
);
4112 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4114 * we can't truncate inline items that have had
4118 btrfs_file_extent_compression(leaf
, fi
) == 0 &&
4119 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
4120 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
4121 u32 size
= new_size
- found_key
.offset
;
4123 if (root
->ref_cows
) {
4124 inode_sub_bytes(inode
, item_end
+ 1 -
4129 * update the ram bytes to properly reflect
4130 * the new size of our item
4132 btrfs_set_file_extent_ram_bytes(leaf
, fi
, size
);
4134 btrfs_file_extent_calc_inline_size(size
);
4135 btrfs_truncate_item(root
, path
, size
, 1);
4136 } else if (root
->ref_cows
) {
4137 inode_sub_bytes(inode
, item_end
+ 1 -
4143 if (!pending_del_nr
) {
4144 /* no pending yet, add ourselves */
4145 pending_del_slot
= path
->slots
[0];
4147 } else if (pending_del_nr
&&
4148 path
->slots
[0] + 1 == pending_del_slot
) {
4149 /* hop on the pending chunk */
4151 pending_del_slot
= path
->slots
[0];
4158 if (found_extent
&& (root
->ref_cows
||
4159 root
== root
->fs_info
->tree_root
)) {
4160 btrfs_set_path_blocking(path
);
4161 ret
= btrfs_free_extent(trans
, root
, extent_start
,
4162 extent_num_bytes
, 0,
4163 btrfs_header_owner(leaf
),
4164 ino
, extent_offset
, 0);
4168 if (found_type
== BTRFS_INODE_ITEM_KEY
)
4171 if (path
->slots
[0] == 0 ||
4172 path
->slots
[0] != pending_del_slot
) {
4173 if (pending_del_nr
) {
4174 ret
= btrfs_del_items(trans
, root
, path
,
4178 btrfs_abort_transaction(trans
,
4184 btrfs_release_path(path
);
4191 if (pending_del_nr
) {
4192 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
4195 btrfs_abort_transaction(trans
, root
, ret
);
4198 if (last_size
!= (u64
)-1)
4199 btrfs_ordered_update_i_size(inode
, last_size
, NULL
);
4200 btrfs_free_path(path
);
4205 * btrfs_truncate_page - read, zero a chunk and write a page
4206 * @inode - inode that we're zeroing
4207 * @from - the offset to start zeroing
4208 * @len - the length to zero, 0 to zero the entire range respective to the
4210 * @front - zero up to the offset instead of from the offset on
4212 * This will find the page for the "from" offset and cow the page and zero the
4213 * part we want to zero. This is used with truncate and hole punching.
4215 int btrfs_truncate_page(struct inode
*inode
, loff_t from
, loff_t len
,
4218 struct address_space
*mapping
= inode
->i_mapping
;
4219 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4220 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4221 struct btrfs_ordered_extent
*ordered
;
4222 struct extent_state
*cached_state
= NULL
;
4224 u32 blocksize
= root
->sectorsize
;
4225 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
4226 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
4228 gfp_t mask
= btrfs_alloc_write_mask(mapping
);
4233 if ((offset
& (blocksize
- 1)) == 0 &&
4234 (!len
|| ((len
& (blocksize
- 1)) == 0)))
4236 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
4241 page
= find_or_create_page(mapping
, index
, mask
);
4243 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
4248 page_start
= page_offset(page
);
4249 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
4251 if (!PageUptodate(page
)) {
4252 ret
= btrfs_readpage(NULL
, page
);
4254 if (page
->mapping
!= mapping
) {
4256 page_cache_release(page
);
4259 if (!PageUptodate(page
)) {
4264 wait_on_page_writeback(page
);
4266 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
);
4267 set_page_extent_mapped(page
);
4269 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
4271 unlock_extent_cached(io_tree
, page_start
, page_end
,
4272 &cached_state
, GFP_NOFS
);
4274 page_cache_release(page
);
4275 btrfs_start_ordered_extent(inode
, ordered
, 1);
4276 btrfs_put_ordered_extent(ordered
);
4280 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
4281 EXTENT_DIRTY
| EXTENT_DELALLOC
|
4282 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
4283 0, 0, &cached_state
, GFP_NOFS
);
4285 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
4288 unlock_extent_cached(io_tree
, page_start
, page_end
,
4289 &cached_state
, GFP_NOFS
);
4293 if (offset
!= PAGE_CACHE_SIZE
) {
4295 len
= PAGE_CACHE_SIZE
- offset
;
4298 memset(kaddr
, 0, offset
);
4300 memset(kaddr
+ offset
, 0, len
);
4301 flush_dcache_page(page
);
4304 ClearPageChecked(page
);
4305 set_page_dirty(page
);
4306 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
,
4311 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
4313 page_cache_release(page
);
4318 static int maybe_insert_hole(struct btrfs_root
*root
, struct inode
*inode
,
4319 u64 offset
, u64 len
)
4321 struct btrfs_trans_handle
*trans
;
4325 * Still need to make sure the inode looks like it's been updated so
4326 * that any holes get logged if we fsync.
4328 if (btrfs_fs_incompat(root
->fs_info
, NO_HOLES
)) {
4329 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
4330 BTRFS_I(inode
)->last_sub_trans
= root
->log_transid
;
4331 BTRFS_I(inode
)->last_log_commit
= root
->last_log_commit
;
4336 * 1 - for the one we're dropping
4337 * 1 - for the one we're adding
4338 * 1 - for updating the inode.
4340 trans
= btrfs_start_transaction(root
, 3);
4342 return PTR_ERR(trans
);
4344 ret
= btrfs_drop_extents(trans
, root
, inode
, offset
, offset
+ len
, 1);
4346 btrfs_abort_transaction(trans
, root
, ret
);
4347 btrfs_end_transaction(trans
, root
);
4351 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(inode
), offset
,
4352 0, 0, len
, 0, len
, 0, 0, 0);
4354 btrfs_abort_transaction(trans
, root
, ret
);
4356 btrfs_update_inode(trans
, root
, inode
);
4357 btrfs_end_transaction(trans
, root
);
4362 * This function puts in dummy file extents for the area we're creating a hole
4363 * for. So if we are truncating this file to a larger size we need to insert
4364 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4365 * the range between oldsize and size
4367 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
4369 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4370 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4371 struct extent_map
*em
= NULL
;
4372 struct extent_state
*cached_state
= NULL
;
4373 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4374 u64 hole_start
= ALIGN(oldsize
, root
->sectorsize
);
4375 u64 block_end
= ALIGN(size
, root
->sectorsize
);
4382 * If our size started in the middle of a page we need to zero out the
4383 * rest of the page before we expand the i_size, otherwise we could
4384 * expose stale data.
4386 err
= btrfs_truncate_page(inode
, oldsize
, 0, 0);
4390 if (size
<= hole_start
)
4394 struct btrfs_ordered_extent
*ordered
;
4396 lock_extent_bits(io_tree
, hole_start
, block_end
- 1, 0,
4398 ordered
= btrfs_lookup_ordered_range(inode
, hole_start
,
4399 block_end
- hole_start
);
4402 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
4403 &cached_state
, GFP_NOFS
);
4404 btrfs_start_ordered_extent(inode
, ordered
, 1);
4405 btrfs_put_ordered_extent(ordered
);
4408 cur_offset
= hole_start
;
4410 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
4411 block_end
- cur_offset
, 0);
4417 last_byte
= min(extent_map_end(em
), block_end
);
4418 last_byte
= ALIGN(last_byte
, root
->sectorsize
);
4419 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
4420 struct extent_map
*hole_em
;
4421 hole_size
= last_byte
- cur_offset
;
4423 err
= maybe_insert_hole(root
, inode
, cur_offset
,
4427 btrfs_drop_extent_cache(inode
, cur_offset
,
4428 cur_offset
+ hole_size
- 1, 0);
4429 hole_em
= alloc_extent_map();
4431 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4432 &BTRFS_I(inode
)->runtime_flags
);
4435 hole_em
->start
= cur_offset
;
4436 hole_em
->len
= hole_size
;
4437 hole_em
->orig_start
= cur_offset
;
4439 hole_em
->block_start
= EXTENT_MAP_HOLE
;
4440 hole_em
->block_len
= 0;
4441 hole_em
->orig_block_len
= 0;
4442 hole_em
->ram_bytes
= hole_size
;
4443 hole_em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4444 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
4445 hole_em
->generation
= root
->fs_info
->generation
;
4448 write_lock(&em_tree
->lock
);
4449 err
= add_extent_mapping(em_tree
, hole_em
, 1);
4450 write_unlock(&em_tree
->lock
);
4453 btrfs_drop_extent_cache(inode
, cur_offset
,
4457 free_extent_map(hole_em
);
4460 free_extent_map(em
);
4462 cur_offset
= last_byte
;
4463 if (cur_offset
>= block_end
)
4466 free_extent_map(em
);
4467 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
,
4472 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
)
4474 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4475 struct btrfs_trans_handle
*trans
;
4476 loff_t oldsize
= i_size_read(inode
);
4477 loff_t newsize
= attr
->ia_size
;
4478 int mask
= attr
->ia_valid
;
4482 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4483 * special case where we need to update the times despite not having
4484 * these flags set. For all other operations the VFS set these flags
4485 * explicitly if it wants a timestamp update.
4487 if (newsize
!= oldsize
) {
4488 inode_inc_iversion(inode
);
4489 if (!(mask
& (ATTR_CTIME
| ATTR_MTIME
)))
4490 inode
->i_ctime
= inode
->i_mtime
=
4491 current_fs_time(inode
->i_sb
);
4494 if (newsize
> oldsize
) {
4495 truncate_pagecache(inode
, newsize
);
4496 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
4500 trans
= btrfs_start_transaction(root
, 1);
4502 return PTR_ERR(trans
);
4504 i_size_write(inode
, newsize
);
4505 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
4506 ret
= btrfs_update_inode(trans
, root
, inode
);
4507 btrfs_end_transaction(trans
, root
);
4511 * We're truncating a file that used to have good data down to
4512 * zero. Make sure it gets into the ordered flush list so that
4513 * any new writes get down to disk quickly.
4516 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
4517 &BTRFS_I(inode
)->runtime_flags
);
4520 * 1 for the orphan item we're going to add
4521 * 1 for the orphan item deletion.
4523 trans
= btrfs_start_transaction(root
, 2);
4525 return PTR_ERR(trans
);
4528 * We need to do this in case we fail at _any_ point during the
4529 * actual truncate. Once we do the truncate_setsize we could
4530 * invalidate pages which forces any outstanding ordered io to
4531 * be instantly completed which will give us extents that need
4532 * to be truncated. If we fail to get an orphan inode down we
4533 * could have left over extents that were never meant to live,
4534 * so we need to garuntee from this point on that everything
4535 * will be consistent.
4537 ret
= btrfs_orphan_add(trans
, inode
);
4538 btrfs_end_transaction(trans
, root
);
4542 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4543 truncate_setsize(inode
, newsize
);
4545 /* Disable nonlocked read DIO to avoid the end less truncate */
4546 btrfs_inode_block_unlocked_dio(inode
);
4547 inode_dio_wait(inode
);
4548 btrfs_inode_resume_unlocked_dio(inode
);
4550 ret
= btrfs_truncate(inode
);
4551 if (ret
&& inode
->i_nlink
) {
4555 * failed to truncate, disk_i_size is only adjusted down
4556 * as we remove extents, so it should represent the true
4557 * size of the inode, so reset the in memory size and
4558 * delete our orphan entry.
4560 trans
= btrfs_join_transaction(root
);
4561 if (IS_ERR(trans
)) {
4562 btrfs_orphan_del(NULL
, inode
);
4565 i_size_write(inode
, BTRFS_I(inode
)->disk_i_size
);
4566 err
= btrfs_orphan_del(trans
, inode
);
4568 btrfs_abort_transaction(trans
, root
, err
);
4569 btrfs_end_transaction(trans
, root
);
4576 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
4578 struct inode
*inode
= dentry
->d_inode
;
4579 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4582 if (btrfs_root_readonly(root
))
4585 err
= inode_change_ok(inode
, attr
);
4589 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
4590 err
= btrfs_setsize(inode
, attr
);
4595 if (attr
->ia_valid
) {
4596 setattr_copy(inode
, attr
);
4597 inode_inc_iversion(inode
);
4598 err
= btrfs_dirty_inode(inode
);
4600 if (!err
&& attr
->ia_valid
& ATTR_MODE
)
4601 err
= posix_acl_chmod(inode
, inode
->i_mode
);
4608 * While truncating the inode pages during eviction, we get the VFS calling
4609 * btrfs_invalidatepage() against each page of the inode. This is slow because
4610 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4611 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4612 * extent_state structures over and over, wasting lots of time.
4614 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4615 * those expensive operations on a per page basis and do only the ordered io
4616 * finishing, while we release here the extent_map and extent_state structures,
4617 * without the excessive merging and splitting.
4619 static void evict_inode_truncate_pages(struct inode
*inode
)
4621 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4622 struct extent_map_tree
*map_tree
= &BTRFS_I(inode
)->extent_tree
;
4623 struct rb_node
*node
;
4625 ASSERT(inode
->i_state
& I_FREEING
);
4626 truncate_inode_pages_final(&inode
->i_data
);
4628 write_lock(&map_tree
->lock
);
4629 while (!RB_EMPTY_ROOT(&map_tree
->map
)) {
4630 struct extent_map
*em
;
4632 node
= rb_first(&map_tree
->map
);
4633 em
= rb_entry(node
, struct extent_map
, rb_node
);
4634 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
4635 clear_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
4636 remove_extent_mapping(map_tree
, em
);
4637 free_extent_map(em
);
4639 write_unlock(&map_tree
->lock
);
4641 spin_lock(&io_tree
->lock
);
4642 while (!RB_EMPTY_ROOT(&io_tree
->state
)) {
4643 struct extent_state
*state
;
4644 struct extent_state
*cached_state
= NULL
;
4646 node
= rb_first(&io_tree
->state
);
4647 state
= rb_entry(node
, struct extent_state
, rb_node
);
4648 atomic_inc(&state
->refs
);
4649 spin_unlock(&io_tree
->lock
);
4651 lock_extent_bits(io_tree
, state
->start
, state
->end
,
4653 clear_extent_bit(io_tree
, state
->start
, state
->end
,
4654 EXTENT_LOCKED
| EXTENT_DIRTY
|
4655 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
|
4656 EXTENT_DEFRAG
, 1, 1,
4657 &cached_state
, GFP_NOFS
);
4658 free_extent_state(state
);
4660 spin_lock(&io_tree
->lock
);
4662 spin_unlock(&io_tree
->lock
);
4665 void btrfs_evict_inode(struct inode
*inode
)
4667 struct btrfs_trans_handle
*trans
;
4668 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4669 struct btrfs_block_rsv
*rsv
, *global_rsv
;
4670 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
4673 trace_btrfs_inode_evict(inode
);
4675 evict_inode_truncate_pages(inode
);
4677 if (inode
->i_nlink
&&
4678 ((btrfs_root_refs(&root
->root_item
) != 0 &&
4679 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
) ||
4680 btrfs_is_free_space_inode(inode
)))
4683 if (is_bad_inode(inode
)) {
4684 btrfs_orphan_del(NULL
, inode
);
4687 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4688 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
4690 if (root
->fs_info
->log_root_recovering
) {
4691 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
4692 &BTRFS_I(inode
)->runtime_flags
));
4696 if (inode
->i_nlink
> 0) {
4697 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0 &&
4698 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
);
4702 ret
= btrfs_commit_inode_delayed_inode(inode
);
4704 btrfs_orphan_del(NULL
, inode
);
4708 rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
4710 btrfs_orphan_del(NULL
, inode
);
4713 rsv
->size
= min_size
;
4715 global_rsv
= &root
->fs_info
->global_block_rsv
;
4717 btrfs_i_size_write(inode
, 0);
4720 * This is a bit simpler than btrfs_truncate since we've already
4721 * reserved our space for our orphan item in the unlink, so we just
4722 * need to reserve some slack space in case we add bytes and update
4723 * inode item when doing the truncate.
4726 ret
= btrfs_block_rsv_refill(root
, rsv
, min_size
,
4727 BTRFS_RESERVE_FLUSH_LIMIT
);
4730 * Try and steal from the global reserve since we will
4731 * likely not use this space anyway, we want to try as
4732 * hard as possible to get this to work.
4735 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, min_size
);
4738 btrfs_warn(root
->fs_info
,
4739 "Could not get space for a delete, will truncate on mount %d",
4741 btrfs_orphan_del(NULL
, inode
);
4742 btrfs_free_block_rsv(root
, rsv
);
4746 trans
= btrfs_join_transaction(root
);
4747 if (IS_ERR(trans
)) {
4748 btrfs_orphan_del(NULL
, inode
);
4749 btrfs_free_block_rsv(root
, rsv
);
4753 trans
->block_rsv
= rsv
;
4755 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
4759 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
4760 btrfs_end_transaction(trans
, root
);
4762 btrfs_btree_balance_dirty(root
);
4765 btrfs_free_block_rsv(root
, rsv
);
4768 * Errors here aren't a big deal, it just means we leave orphan items
4769 * in the tree. They will be cleaned up on the next mount.
4772 trans
->block_rsv
= root
->orphan_block_rsv
;
4773 btrfs_orphan_del(trans
, inode
);
4775 btrfs_orphan_del(NULL
, inode
);
4778 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
4779 if (!(root
== root
->fs_info
->tree_root
||
4780 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
))
4781 btrfs_return_ino(root
, btrfs_ino(inode
));
4783 btrfs_end_transaction(trans
, root
);
4784 btrfs_btree_balance_dirty(root
);
4786 btrfs_remove_delayed_node(inode
);
4792 * this returns the key found in the dir entry in the location pointer.
4793 * If no dir entries were found, location->objectid is 0.
4795 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
4796 struct btrfs_key
*location
)
4798 const char *name
= dentry
->d_name
.name
;
4799 int namelen
= dentry
->d_name
.len
;
4800 struct btrfs_dir_item
*di
;
4801 struct btrfs_path
*path
;
4802 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4805 path
= btrfs_alloc_path();
4809 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(dir
), name
,
4814 if (IS_ERR_OR_NULL(di
))
4817 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
4819 btrfs_free_path(path
);
4822 location
->objectid
= 0;
4827 * when we hit a tree root in a directory, the btrfs part of the inode
4828 * needs to be changed to reflect the root directory of the tree root. This
4829 * is kind of like crossing a mount point.
4831 static int fixup_tree_root_location(struct btrfs_root
*root
,
4833 struct dentry
*dentry
,
4834 struct btrfs_key
*location
,
4835 struct btrfs_root
**sub_root
)
4837 struct btrfs_path
*path
;
4838 struct btrfs_root
*new_root
;
4839 struct btrfs_root_ref
*ref
;
4840 struct extent_buffer
*leaf
;
4844 path
= btrfs_alloc_path();
4851 ret
= btrfs_find_item(root
->fs_info
->tree_root
, path
,
4852 BTRFS_I(dir
)->root
->root_key
.objectid
,
4853 location
->objectid
, BTRFS_ROOT_REF_KEY
, NULL
);
4860 leaf
= path
->nodes
[0];
4861 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
4862 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(dir
) ||
4863 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
4866 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
4867 (unsigned long)(ref
+ 1),
4868 dentry
->d_name
.len
);
4872 btrfs_release_path(path
);
4874 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, location
);
4875 if (IS_ERR(new_root
)) {
4876 err
= PTR_ERR(new_root
);
4880 *sub_root
= new_root
;
4881 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
4882 location
->type
= BTRFS_INODE_ITEM_KEY
;
4883 location
->offset
= 0;
4886 btrfs_free_path(path
);
4890 static void inode_tree_add(struct inode
*inode
)
4892 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4893 struct btrfs_inode
*entry
;
4895 struct rb_node
*parent
;
4896 struct rb_node
*new = &BTRFS_I(inode
)->rb_node
;
4897 u64 ino
= btrfs_ino(inode
);
4899 if (inode_unhashed(inode
))
4902 spin_lock(&root
->inode_lock
);
4903 p
= &root
->inode_tree
.rb_node
;
4906 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
4908 if (ino
< btrfs_ino(&entry
->vfs_inode
))
4909 p
= &parent
->rb_left
;
4910 else if (ino
> btrfs_ino(&entry
->vfs_inode
))
4911 p
= &parent
->rb_right
;
4913 WARN_ON(!(entry
->vfs_inode
.i_state
&
4914 (I_WILL_FREE
| I_FREEING
)));
4915 rb_replace_node(parent
, new, &root
->inode_tree
);
4916 RB_CLEAR_NODE(parent
);
4917 spin_unlock(&root
->inode_lock
);
4921 rb_link_node(new, parent
, p
);
4922 rb_insert_color(new, &root
->inode_tree
);
4923 spin_unlock(&root
->inode_lock
);
4926 static void inode_tree_del(struct inode
*inode
)
4928 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4931 spin_lock(&root
->inode_lock
);
4932 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
4933 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
4934 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
4935 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
4937 spin_unlock(&root
->inode_lock
);
4939 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0) {
4940 synchronize_srcu(&root
->fs_info
->subvol_srcu
);
4941 spin_lock(&root
->inode_lock
);
4942 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
4943 spin_unlock(&root
->inode_lock
);
4945 btrfs_add_dead_root(root
);
4949 void btrfs_invalidate_inodes(struct btrfs_root
*root
)
4951 struct rb_node
*node
;
4952 struct rb_node
*prev
;
4953 struct btrfs_inode
*entry
;
4954 struct inode
*inode
;
4957 if (!test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
))
4958 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
4960 spin_lock(&root
->inode_lock
);
4962 node
= root
->inode_tree
.rb_node
;
4966 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
4968 if (objectid
< btrfs_ino(&entry
->vfs_inode
))
4969 node
= node
->rb_left
;
4970 else if (objectid
> btrfs_ino(&entry
->vfs_inode
))
4971 node
= node
->rb_right
;
4977 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
4978 if (objectid
<= btrfs_ino(&entry
->vfs_inode
)) {
4982 prev
= rb_next(prev
);
4986 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
4987 objectid
= btrfs_ino(&entry
->vfs_inode
) + 1;
4988 inode
= igrab(&entry
->vfs_inode
);
4990 spin_unlock(&root
->inode_lock
);
4991 if (atomic_read(&inode
->i_count
) > 1)
4992 d_prune_aliases(inode
);
4994 * btrfs_drop_inode will have it removed from
4995 * the inode cache when its usage count
5000 spin_lock(&root
->inode_lock
);
5004 if (cond_resched_lock(&root
->inode_lock
))
5007 node
= rb_next(node
);
5009 spin_unlock(&root
->inode_lock
);
5012 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
5014 struct btrfs_iget_args
*args
= p
;
5015 inode
->i_ino
= args
->location
->objectid
;
5016 memcpy(&BTRFS_I(inode
)->location
, args
->location
,
5017 sizeof(*args
->location
));
5018 BTRFS_I(inode
)->root
= args
->root
;
5022 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
5024 struct btrfs_iget_args
*args
= opaque
;
5025 return args
->location
->objectid
== BTRFS_I(inode
)->location
.objectid
&&
5026 args
->root
== BTRFS_I(inode
)->root
;
5029 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
5030 struct btrfs_key
*location
,
5031 struct btrfs_root
*root
)
5033 struct inode
*inode
;
5034 struct btrfs_iget_args args
;
5035 unsigned long hashval
= btrfs_inode_hash(location
->objectid
, root
);
5037 args
.location
= location
;
5040 inode
= iget5_locked(s
, hashval
, btrfs_find_actor
,
5041 btrfs_init_locked_inode
,
5046 /* Get an inode object given its location and corresponding root.
5047 * Returns in *is_new if the inode was read from disk
5049 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
5050 struct btrfs_root
*root
, int *new)
5052 struct inode
*inode
;
5054 inode
= btrfs_iget_locked(s
, location
, root
);
5056 return ERR_PTR(-ENOMEM
);
5058 if (inode
->i_state
& I_NEW
) {
5059 btrfs_read_locked_inode(inode
);
5060 if (!is_bad_inode(inode
)) {
5061 inode_tree_add(inode
);
5062 unlock_new_inode(inode
);
5066 unlock_new_inode(inode
);
5068 inode
= ERR_PTR(-ESTALE
);
5075 static struct inode
*new_simple_dir(struct super_block
*s
,
5076 struct btrfs_key
*key
,
5077 struct btrfs_root
*root
)
5079 struct inode
*inode
= new_inode(s
);
5082 return ERR_PTR(-ENOMEM
);
5084 BTRFS_I(inode
)->root
= root
;
5085 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
5086 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
5088 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
5089 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
5090 inode
->i_fop
= &simple_dir_operations
;
5091 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
5092 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
5097 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
5099 struct inode
*inode
;
5100 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5101 struct btrfs_root
*sub_root
= root
;
5102 struct btrfs_key location
;
5106 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
5107 return ERR_PTR(-ENAMETOOLONG
);
5109 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
5111 return ERR_PTR(ret
);
5113 if (location
.objectid
== 0)
5114 return ERR_PTR(-ENOENT
);
5116 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
5117 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
5121 BUG_ON(location
.type
!= BTRFS_ROOT_ITEM_KEY
);
5123 index
= srcu_read_lock(&root
->fs_info
->subvol_srcu
);
5124 ret
= fixup_tree_root_location(root
, dir
, dentry
,
5125 &location
, &sub_root
);
5128 inode
= ERR_PTR(ret
);
5130 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
5132 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
5134 srcu_read_unlock(&root
->fs_info
->subvol_srcu
, index
);
5136 if (!IS_ERR(inode
) && root
!= sub_root
) {
5137 down_read(&root
->fs_info
->cleanup_work_sem
);
5138 if (!(inode
->i_sb
->s_flags
& MS_RDONLY
))
5139 ret
= btrfs_orphan_cleanup(sub_root
);
5140 up_read(&root
->fs_info
->cleanup_work_sem
);
5143 inode
= ERR_PTR(ret
);
5150 static int btrfs_dentry_delete(const struct dentry
*dentry
)
5152 struct btrfs_root
*root
;
5153 struct inode
*inode
= dentry
->d_inode
;
5155 if (!inode
&& !IS_ROOT(dentry
))
5156 inode
= dentry
->d_parent
->d_inode
;
5159 root
= BTRFS_I(inode
)->root
;
5160 if (btrfs_root_refs(&root
->root_item
) == 0)
5163 if (btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
5169 static void btrfs_dentry_release(struct dentry
*dentry
)
5171 if (dentry
->d_fsdata
)
5172 kfree(dentry
->d_fsdata
);
5175 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
5178 struct inode
*inode
;
5180 inode
= btrfs_lookup_dentry(dir
, dentry
);
5181 if (IS_ERR(inode
)) {
5182 if (PTR_ERR(inode
) == -ENOENT
)
5185 return ERR_CAST(inode
);
5188 return d_materialise_unique(dentry
, inode
);
5191 unsigned char btrfs_filetype_table
[] = {
5192 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
5195 static int btrfs_real_readdir(struct file
*file
, struct dir_context
*ctx
)
5197 struct inode
*inode
= file_inode(file
);
5198 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5199 struct btrfs_item
*item
;
5200 struct btrfs_dir_item
*di
;
5201 struct btrfs_key key
;
5202 struct btrfs_key found_key
;
5203 struct btrfs_path
*path
;
5204 struct list_head ins_list
;
5205 struct list_head del_list
;
5207 struct extent_buffer
*leaf
;
5209 unsigned char d_type
;
5214 int key_type
= BTRFS_DIR_INDEX_KEY
;
5218 int is_curr
= 0; /* ctx->pos points to the current index? */
5220 /* FIXME, use a real flag for deciding about the key type */
5221 if (root
->fs_info
->tree_root
== root
)
5222 key_type
= BTRFS_DIR_ITEM_KEY
;
5224 if (!dir_emit_dots(file
, ctx
))
5227 path
= btrfs_alloc_path();
5233 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
5234 INIT_LIST_HEAD(&ins_list
);
5235 INIT_LIST_HEAD(&del_list
);
5236 btrfs_get_delayed_items(inode
, &ins_list
, &del_list
);
5239 btrfs_set_key_type(&key
, key_type
);
5240 key
.offset
= ctx
->pos
;
5241 key
.objectid
= btrfs_ino(inode
);
5243 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5248 leaf
= path
->nodes
[0];
5249 slot
= path
->slots
[0];
5250 if (slot
>= btrfs_header_nritems(leaf
)) {
5251 ret
= btrfs_next_leaf(root
, path
);
5259 item
= btrfs_item_nr(slot
);
5260 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
5262 if (found_key
.objectid
!= key
.objectid
)
5264 if (btrfs_key_type(&found_key
) != key_type
)
5266 if (found_key
.offset
< ctx
->pos
)
5268 if (key_type
== BTRFS_DIR_INDEX_KEY
&&
5269 btrfs_should_delete_dir_index(&del_list
,
5273 ctx
->pos
= found_key
.offset
;
5276 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
5278 di_total
= btrfs_item_size(leaf
, item
);
5280 while (di_cur
< di_total
) {
5281 struct btrfs_key location
;
5283 if (verify_dir_item(root
, leaf
, di
))
5286 name_len
= btrfs_dir_name_len(leaf
, di
);
5287 if (name_len
<= sizeof(tmp_name
)) {
5288 name_ptr
= tmp_name
;
5290 name_ptr
= kmalloc(name_len
, GFP_NOFS
);
5296 read_extent_buffer(leaf
, name_ptr
,
5297 (unsigned long)(di
+ 1), name_len
);
5299 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
5300 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
5303 /* is this a reference to our own snapshot? If so
5306 * In contrast to old kernels, we insert the snapshot's
5307 * dir item and dir index after it has been created, so
5308 * we won't find a reference to our own snapshot. We
5309 * still keep the following code for backward
5312 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
5313 location
.objectid
== root
->root_key
.objectid
) {
5317 over
= !dir_emit(ctx
, name_ptr
, name_len
,
5318 location
.objectid
, d_type
);
5321 if (name_ptr
!= tmp_name
)
5326 di_len
= btrfs_dir_name_len(leaf
, di
) +
5327 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
5329 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
5335 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
5338 ret
= btrfs_readdir_delayed_dir_index(ctx
, &ins_list
);
5343 /* Reached end of directory/root. Bump pos past the last item. */
5347 * Stop new entries from being returned after we return the last
5350 * New directory entries are assigned a strictly increasing
5351 * offset. This means that new entries created during readdir
5352 * are *guaranteed* to be seen in the future by that readdir.
5353 * This has broken buggy programs which operate on names as
5354 * they're returned by readdir. Until we re-use freed offsets
5355 * we have this hack to stop new entries from being returned
5356 * under the assumption that they'll never reach this huge
5359 * This is being careful not to overflow 32bit loff_t unless the
5360 * last entry requires it because doing so has broken 32bit apps
5363 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
5364 if (ctx
->pos
>= INT_MAX
)
5365 ctx
->pos
= LLONG_MAX
;
5372 if (key_type
== BTRFS_DIR_INDEX_KEY
)
5373 btrfs_put_delayed_items(&ins_list
, &del_list
);
5374 btrfs_free_path(path
);
5378 int btrfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
5380 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5381 struct btrfs_trans_handle
*trans
;
5383 bool nolock
= false;
5385 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
5388 if (btrfs_fs_closing(root
->fs_info
) && btrfs_is_free_space_inode(inode
))
5391 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
5393 trans
= btrfs_join_transaction_nolock(root
);
5395 trans
= btrfs_join_transaction(root
);
5397 return PTR_ERR(trans
);
5398 ret
= btrfs_commit_transaction(trans
, root
);
5404 * This is somewhat expensive, updating the tree every time the
5405 * inode changes. But, it is most likely to find the inode in cache.
5406 * FIXME, needs more benchmarking...there are no reasons other than performance
5407 * to keep or drop this code.
5409 static int btrfs_dirty_inode(struct inode
*inode
)
5411 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5412 struct btrfs_trans_handle
*trans
;
5415 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
5418 trans
= btrfs_join_transaction(root
);
5420 return PTR_ERR(trans
);
5422 ret
= btrfs_update_inode(trans
, root
, inode
);
5423 if (ret
&& ret
== -ENOSPC
) {
5424 /* whoops, lets try again with the full transaction */
5425 btrfs_end_transaction(trans
, root
);
5426 trans
= btrfs_start_transaction(root
, 1);
5428 return PTR_ERR(trans
);
5430 ret
= btrfs_update_inode(trans
, root
, inode
);
5432 btrfs_end_transaction(trans
, root
);
5433 if (BTRFS_I(inode
)->delayed_node
)
5434 btrfs_balance_delayed_items(root
);
5440 * This is a copy of file_update_time. We need this so we can return error on
5441 * ENOSPC for updating the inode in the case of file write and mmap writes.
5443 static int btrfs_update_time(struct inode
*inode
, struct timespec
*now
,
5446 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5448 if (btrfs_root_readonly(root
))
5451 if (flags
& S_VERSION
)
5452 inode_inc_iversion(inode
);
5453 if (flags
& S_CTIME
)
5454 inode
->i_ctime
= *now
;
5455 if (flags
& S_MTIME
)
5456 inode
->i_mtime
= *now
;
5457 if (flags
& S_ATIME
)
5458 inode
->i_atime
= *now
;
5459 return btrfs_dirty_inode(inode
);
5463 * find the highest existing sequence number in a directory
5464 * and then set the in-memory index_cnt variable to reflect
5465 * free sequence numbers
5467 static int btrfs_set_inode_index_count(struct inode
*inode
)
5469 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5470 struct btrfs_key key
, found_key
;
5471 struct btrfs_path
*path
;
5472 struct extent_buffer
*leaf
;
5475 key
.objectid
= btrfs_ino(inode
);
5476 btrfs_set_key_type(&key
, BTRFS_DIR_INDEX_KEY
);
5477 key
.offset
= (u64
)-1;
5479 path
= btrfs_alloc_path();
5483 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5486 /* FIXME: we should be able to handle this */
5492 * MAGIC NUMBER EXPLANATION:
5493 * since we search a directory based on f_pos we have to start at 2
5494 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5495 * else has to start at 2
5497 if (path
->slots
[0] == 0) {
5498 BTRFS_I(inode
)->index_cnt
= 2;
5504 leaf
= path
->nodes
[0];
5505 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5507 if (found_key
.objectid
!= btrfs_ino(inode
) ||
5508 btrfs_key_type(&found_key
) != BTRFS_DIR_INDEX_KEY
) {
5509 BTRFS_I(inode
)->index_cnt
= 2;
5513 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
5515 btrfs_free_path(path
);
5520 * helper to find a free sequence number in a given directory. This current
5521 * code is very simple, later versions will do smarter things in the btree
5523 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
5527 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
5528 ret
= btrfs_inode_delayed_dir_index_count(dir
);
5530 ret
= btrfs_set_inode_index_count(dir
);
5536 *index
= BTRFS_I(dir
)->index_cnt
;
5537 BTRFS_I(dir
)->index_cnt
++;
5542 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
5543 struct btrfs_root
*root
,
5545 const char *name
, int name_len
,
5546 u64 ref_objectid
, u64 objectid
,
5547 umode_t mode
, u64
*index
)
5549 struct inode
*inode
;
5550 struct btrfs_inode_item
*inode_item
;
5551 struct btrfs_key
*location
;
5552 struct btrfs_path
*path
;
5553 struct btrfs_inode_ref
*ref
;
5554 struct btrfs_key key
[2];
5559 path
= btrfs_alloc_path();
5561 return ERR_PTR(-ENOMEM
);
5563 inode
= new_inode(root
->fs_info
->sb
);
5565 btrfs_free_path(path
);
5566 return ERR_PTR(-ENOMEM
);
5570 * we have to initialize this early, so we can reclaim the inode
5571 * number if we fail afterwards in this function.
5573 inode
->i_ino
= objectid
;
5576 trace_btrfs_inode_request(dir
);
5578 ret
= btrfs_set_inode_index(dir
, index
);
5580 btrfs_free_path(path
);
5582 return ERR_PTR(ret
);
5586 * index_cnt is ignored for everything but a dir,
5587 * btrfs_get_inode_index_count has an explanation for the magic
5590 BTRFS_I(inode
)->index_cnt
= 2;
5591 BTRFS_I(inode
)->dir_index
= *index
;
5592 BTRFS_I(inode
)->root
= root
;
5593 BTRFS_I(inode
)->generation
= trans
->transid
;
5594 inode
->i_generation
= BTRFS_I(inode
)->generation
;
5597 * We could have gotten an inode number from somebody who was fsynced
5598 * and then removed in this same transaction, so let's just set full
5599 * sync since it will be a full sync anyway and this will blow away the
5600 * old info in the log.
5602 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
5604 key
[0].objectid
= objectid
;
5605 btrfs_set_key_type(&key
[0], BTRFS_INODE_ITEM_KEY
);
5609 * Start new inodes with an inode_ref. This is slightly more
5610 * efficient for small numbers of hard links since they will
5611 * be packed into one item. Extended refs will kick in if we
5612 * add more hard links than can fit in the ref item.
5614 key
[1].objectid
= objectid
;
5615 btrfs_set_key_type(&key
[1], BTRFS_INODE_REF_KEY
);
5616 key
[1].offset
= ref_objectid
;
5618 sizes
[0] = sizeof(struct btrfs_inode_item
);
5619 sizes
[1] = name_len
+ sizeof(*ref
);
5621 path
->leave_spinning
= 1;
5622 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, 2);
5626 inode_init_owner(inode
, dir
, mode
);
5627 inode_set_bytes(inode
, 0);
5628 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
5629 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5630 struct btrfs_inode_item
);
5631 memset_extent_buffer(path
->nodes
[0], 0, (unsigned long)inode_item
,
5632 sizeof(*inode_item
));
5633 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
5635 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
5636 struct btrfs_inode_ref
);
5637 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
5638 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
5639 ptr
= (unsigned long)(ref
+ 1);
5640 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
5642 btrfs_mark_buffer_dirty(path
->nodes
[0]);
5643 btrfs_free_path(path
);
5645 location
= &BTRFS_I(inode
)->location
;
5646 location
->objectid
= objectid
;
5647 location
->offset
= 0;
5648 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
5650 btrfs_inherit_iflags(inode
, dir
);
5652 if (S_ISREG(mode
)) {
5653 if (btrfs_test_opt(root
, NODATASUM
))
5654 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
5655 if (btrfs_test_opt(root
, NODATACOW
))
5656 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
|
5657 BTRFS_INODE_NODATASUM
;
5660 btrfs_insert_inode_hash(inode
);
5661 inode_tree_add(inode
);
5663 trace_btrfs_inode_new(inode
);
5664 btrfs_set_inode_last_trans(trans
, inode
);
5666 btrfs_update_root_times(trans
, root
);
5668 ret
= btrfs_inode_inherit_props(trans
, inode
, dir
);
5670 btrfs_err(root
->fs_info
,
5671 "error inheriting props for ino %llu (root %llu): %d",
5672 btrfs_ino(inode
), root
->root_key
.objectid
, ret
);
5677 BTRFS_I(dir
)->index_cnt
--;
5678 btrfs_free_path(path
);
5680 return ERR_PTR(ret
);
5683 static inline u8
btrfs_inode_type(struct inode
*inode
)
5685 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
5689 * utility function to add 'inode' into 'parent_inode' with
5690 * a give name and a given sequence number.
5691 * if 'add_backref' is true, also insert a backref from the
5692 * inode to the parent directory.
5694 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
5695 struct inode
*parent_inode
, struct inode
*inode
,
5696 const char *name
, int name_len
, int add_backref
, u64 index
)
5699 struct btrfs_key key
;
5700 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
5701 u64 ino
= btrfs_ino(inode
);
5702 u64 parent_ino
= btrfs_ino(parent_inode
);
5704 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
5705 memcpy(&key
, &BTRFS_I(inode
)->root
->root_key
, sizeof(key
));
5708 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
5712 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
5713 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
5714 key
.objectid
, root
->root_key
.objectid
,
5715 parent_ino
, index
, name
, name_len
);
5716 } else if (add_backref
) {
5717 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
5721 /* Nothing to clean up yet */
5725 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
5727 btrfs_inode_type(inode
), index
);
5728 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
)
5731 btrfs_abort_transaction(trans
, root
, ret
);
5735 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
5737 inode_inc_iversion(parent_inode
);
5738 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
5739 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
5741 btrfs_abort_transaction(trans
, root
, ret
);
5745 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
5748 err
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
5749 key
.objectid
, root
->root_key
.objectid
,
5750 parent_ino
, &local_index
, name
, name_len
);
5752 } else if (add_backref
) {
5756 err
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
5757 ino
, parent_ino
, &local_index
);
5762 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
5763 struct inode
*dir
, struct dentry
*dentry
,
5764 struct inode
*inode
, int backref
, u64 index
)
5766 int err
= btrfs_add_link(trans
, dir
, inode
,
5767 dentry
->d_name
.name
, dentry
->d_name
.len
,
5774 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
5775 umode_t mode
, dev_t rdev
)
5777 struct btrfs_trans_handle
*trans
;
5778 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5779 struct inode
*inode
= NULL
;
5785 if (!new_valid_dev(rdev
))
5789 * 2 for inode item and ref
5791 * 1 for xattr if selinux is on
5793 trans
= btrfs_start_transaction(root
, 5);
5795 return PTR_ERR(trans
);
5797 err
= btrfs_find_free_ino(root
, &objectid
);
5801 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
5802 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
5804 if (IS_ERR(inode
)) {
5805 err
= PTR_ERR(inode
);
5809 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
5816 * If the active LSM wants to access the inode during
5817 * d_instantiate it needs these. Smack checks to see
5818 * if the filesystem supports xattrs by looking at the
5822 inode
->i_op
= &btrfs_special_inode_operations
;
5823 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
5827 init_special_inode(inode
, inode
->i_mode
, rdev
);
5828 btrfs_update_inode(trans
, root
, inode
);
5829 d_instantiate(dentry
, inode
);
5832 btrfs_end_transaction(trans
, root
);
5833 btrfs_balance_delayed_items(root
);
5834 btrfs_btree_balance_dirty(root
);
5836 inode_dec_link_count(inode
);
5842 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
5843 umode_t mode
, bool excl
)
5845 struct btrfs_trans_handle
*trans
;
5846 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5847 struct inode
*inode
= NULL
;
5848 int drop_inode_on_err
= 0;
5854 * 2 for inode item and ref
5856 * 1 for xattr if selinux is on
5858 trans
= btrfs_start_transaction(root
, 5);
5860 return PTR_ERR(trans
);
5862 err
= btrfs_find_free_ino(root
, &objectid
);
5866 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
5867 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
5869 if (IS_ERR(inode
)) {
5870 err
= PTR_ERR(inode
);
5873 drop_inode_on_err
= 1;
5875 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
5879 err
= btrfs_update_inode(trans
, root
, inode
);
5884 * If the active LSM wants to access the inode during
5885 * d_instantiate it needs these. Smack checks to see
5886 * if the filesystem supports xattrs by looking at the
5889 inode
->i_fop
= &btrfs_file_operations
;
5890 inode
->i_op
= &btrfs_file_inode_operations
;
5892 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
5896 inode
->i_mapping
->a_ops
= &btrfs_aops
;
5897 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
5898 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
5899 d_instantiate(dentry
, inode
);
5902 btrfs_end_transaction(trans
, root
);
5903 if (err
&& drop_inode_on_err
) {
5904 inode_dec_link_count(inode
);
5907 btrfs_balance_delayed_items(root
);
5908 btrfs_btree_balance_dirty(root
);
5912 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
5913 struct dentry
*dentry
)
5915 struct btrfs_trans_handle
*trans
;
5916 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5917 struct inode
*inode
= old_dentry
->d_inode
;
5922 /* do not allow sys_link's with other subvols of the same device */
5923 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
5926 if (inode
->i_nlink
>= BTRFS_LINK_MAX
)
5929 err
= btrfs_set_inode_index(dir
, &index
);
5934 * 2 items for inode and inode ref
5935 * 2 items for dir items
5936 * 1 item for parent inode
5938 trans
= btrfs_start_transaction(root
, 5);
5939 if (IS_ERR(trans
)) {
5940 err
= PTR_ERR(trans
);
5944 /* There are several dir indexes for this inode, clear the cache. */
5945 BTRFS_I(inode
)->dir_index
= 0ULL;
5947 inode_inc_iversion(inode
);
5948 inode
->i_ctime
= CURRENT_TIME
;
5950 set_bit(BTRFS_INODE_COPY_EVERYTHING
, &BTRFS_I(inode
)->runtime_flags
);
5952 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 1, index
);
5957 struct dentry
*parent
= dentry
->d_parent
;
5958 err
= btrfs_update_inode(trans
, root
, inode
);
5961 d_instantiate(dentry
, inode
);
5962 btrfs_log_new_name(trans
, inode
, NULL
, parent
);
5965 btrfs_end_transaction(trans
, root
);
5966 btrfs_balance_delayed_items(root
);
5969 inode_dec_link_count(inode
);
5972 btrfs_btree_balance_dirty(root
);
5976 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
5978 struct inode
*inode
= NULL
;
5979 struct btrfs_trans_handle
*trans
;
5980 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5982 int drop_on_err
= 0;
5987 * 2 items for inode and ref
5988 * 2 items for dir items
5989 * 1 for xattr if selinux is on
5991 trans
= btrfs_start_transaction(root
, 5);
5993 return PTR_ERR(trans
);
5995 err
= btrfs_find_free_ino(root
, &objectid
);
5999 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6000 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
6001 S_IFDIR
| mode
, &index
);
6002 if (IS_ERR(inode
)) {
6003 err
= PTR_ERR(inode
);
6009 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6013 inode
->i_op
= &btrfs_dir_inode_operations
;
6014 inode
->i_fop
= &btrfs_dir_file_operations
;
6016 btrfs_i_size_write(inode
, 0);
6017 err
= btrfs_update_inode(trans
, root
, inode
);
6021 err
= btrfs_add_link(trans
, dir
, inode
, dentry
->d_name
.name
,
6022 dentry
->d_name
.len
, 0, index
);
6026 d_instantiate(dentry
, inode
);
6030 btrfs_end_transaction(trans
, root
);
6033 btrfs_balance_delayed_items(root
);
6034 btrfs_btree_balance_dirty(root
);
6038 /* helper for btfs_get_extent. Given an existing extent in the tree,
6039 * and an extent that you want to insert, deal with overlap and insert
6040 * the new extent into the tree.
6042 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
6043 struct extent_map
*existing
,
6044 struct extent_map
*em
,
6045 u64 map_start
, u64 map_len
)
6049 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
6050 start_diff
= map_start
- em
->start
;
6051 em
->start
= map_start
;
6053 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
6054 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
6055 em
->block_start
+= start_diff
;
6056 em
->block_len
-= start_diff
;
6058 return add_extent_mapping(em_tree
, em
, 0);
6061 static noinline
int uncompress_inline(struct btrfs_path
*path
,
6062 struct inode
*inode
, struct page
*page
,
6063 size_t pg_offset
, u64 extent_offset
,
6064 struct btrfs_file_extent_item
*item
)
6067 struct extent_buffer
*leaf
= path
->nodes
[0];
6070 unsigned long inline_size
;
6074 WARN_ON(pg_offset
!= 0);
6075 compress_type
= btrfs_file_extent_compression(leaf
, item
);
6076 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
6077 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
6078 btrfs_item_nr(path
->slots
[0]));
6079 tmp
= kmalloc(inline_size
, GFP_NOFS
);
6082 ptr
= btrfs_file_extent_inline_start(item
);
6084 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
6086 max_size
= min_t(unsigned long, PAGE_CACHE_SIZE
, max_size
);
6087 ret
= btrfs_decompress(compress_type
, tmp
, page
,
6088 extent_offset
, inline_size
, max_size
);
6090 char *kaddr
= kmap_atomic(page
);
6091 unsigned long copy_size
= min_t(u64
,
6092 PAGE_CACHE_SIZE
- pg_offset
,
6093 max_size
- extent_offset
);
6094 memset(kaddr
+ pg_offset
, 0, copy_size
);
6095 kunmap_atomic(kaddr
);
6102 * a bit scary, this does extent mapping from logical file offset to the disk.
6103 * the ugly parts come from merging extents from the disk with the in-ram
6104 * representation. This gets more complex because of the data=ordered code,
6105 * where the in-ram extents might be locked pending data=ordered completion.
6107 * This also copies inline extents directly into the page.
6110 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
6111 size_t pg_offset
, u64 start
, u64 len
,
6117 u64 extent_start
= 0;
6119 u64 objectid
= btrfs_ino(inode
);
6121 struct btrfs_path
*path
= NULL
;
6122 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6123 struct btrfs_file_extent_item
*item
;
6124 struct extent_buffer
*leaf
;
6125 struct btrfs_key found_key
;
6126 struct extent_map
*em
= NULL
;
6127 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
6128 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6129 struct btrfs_trans_handle
*trans
= NULL
;
6133 read_lock(&em_tree
->lock
);
6134 em
= lookup_extent_mapping(em_tree
, start
, len
);
6136 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
6137 read_unlock(&em_tree
->lock
);
6140 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
6141 free_extent_map(em
);
6142 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
6143 free_extent_map(em
);
6147 em
= alloc_extent_map();
6152 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
6153 em
->start
= EXTENT_MAP_HOLE
;
6154 em
->orig_start
= EXTENT_MAP_HOLE
;
6156 em
->block_len
= (u64
)-1;
6159 path
= btrfs_alloc_path();
6165 * Chances are we'll be called again, so go ahead and do
6171 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
6172 objectid
, start
, trans
!= NULL
);
6179 if (path
->slots
[0] == 0)
6184 leaf
= path
->nodes
[0];
6185 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
6186 struct btrfs_file_extent_item
);
6187 /* are we inside the extent that was found? */
6188 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6189 found_type
= btrfs_key_type(&found_key
);
6190 if (found_key
.objectid
!= objectid
||
6191 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
6193 * If we backup past the first extent we want to move forward
6194 * and see if there is an extent in front of us, otherwise we'll
6195 * say there is a hole for our whole search range which can
6202 found_type
= btrfs_file_extent_type(leaf
, item
);
6203 extent_start
= found_key
.offset
;
6204 compress_type
= btrfs_file_extent_compression(leaf
, item
);
6205 if (found_type
== BTRFS_FILE_EXTENT_REG
||
6206 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6207 extent_end
= extent_start
+
6208 btrfs_file_extent_num_bytes(leaf
, item
);
6209 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
6211 size
= btrfs_file_extent_inline_len(leaf
, path
->slots
[0], item
);
6212 extent_end
= ALIGN(extent_start
+ size
, root
->sectorsize
);
6215 if (start
>= extent_end
) {
6217 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
6218 ret
= btrfs_next_leaf(root
, path
);
6225 leaf
= path
->nodes
[0];
6227 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6228 if (found_key
.objectid
!= objectid
||
6229 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6231 if (start
+ len
<= found_key
.offset
)
6234 em
->orig_start
= start
;
6235 em
->len
= found_key
.offset
- start
;
6239 em
->ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, item
);
6240 if (found_type
== BTRFS_FILE_EXTENT_REG
||
6241 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6242 em
->start
= extent_start
;
6243 em
->len
= extent_end
- extent_start
;
6244 em
->orig_start
= extent_start
-
6245 btrfs_file_extent_offset(leaf
, item
);
6246 em
->orig_block_len
= btrfs_file_extent_disk_num_bytes(leaf
,
6248 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, item
);
6250 em
->block_start
= EXTENT_MAP_HOLE
;
6253 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
6254 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
6255 em
->compress_type
= compress_type
;
6256 em
->block_start
= bytenr
;
6257 em
->block_len
= em
->orig_block_len
;
6259 bytenr
+= btrfs_file_extent_offset(leaf
, item
);
6260 em
->block_start
= bytenr
;
6261 em
->block_len
= em
->len
;
6262 if (found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
6263 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
6266 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
6270 size_t extent_offset
;
6273 em
->block_start
= EXTENT_MAP_INLINE
;
6274 if (!page
|| create
) {
6275 em
->start
= extent_start
;
6276 em
->len
= extent_end
- extent_start
;
6280 size
= btrfs_file_extent_inline_len(leaf
, path
->slots
[0], item
);
6281 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
6282 copy_size
= min_t(u64
, PAGE_CACHE_SIZE
- pg_offset
,
6283 size
- extent_offset
);
6284 em
->start
= extent_start
+ extent_offset
;
6285 em
->len
= ALIGN(copy_size
, root
->sectorsize
);
6286 em
->orig_block_len
= em
->len
;
6287 em
->orig_start
= em
->start
;
6288 if (compress_type
) {
6289 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
6290 em
->compress_type
= compress_type
;
6292 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
6293 if (create
== 0 && !PageUptodate(page
)) {
6294 if (btrfs_file_extent_compression(leaf
, item
) !=
6295 BTRFS_COMPRESS_NONE
) {
6296 ret
= uncompress_inline(path
, inode
, page
,
6298 extent_offset
, item
);
6299 BUG_ON(ret
); /* -ENOMEM */
6302 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
6304 if (pg_offset
+ copy_size
< PAGE_CACHE_SIZE
) {
6305 memset(map
+ pg_offset
+ copy_size
, 0,
6306 PAGE_CACHE_SIZE
- pg_offset
-
6311 flush_dcache_page(page
);
6312 } else if (create
&& PageUptodate(page
)) {
6316 free_extent_map(em
);
6319 btrfs_release_path(path
);
6320 trans
= btrfs_join_transaction(root
);
6323 return ERR_CAST(trans
);
6327 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
6330 btrfs_mark_buffer_dirty(leaf
);
6332 set_extent_uptodate(io_tree
, em
->start
,
6333 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
6336 WARN(1, KERN_ERR
"btrfs unknown found_type %d\n", found_type
);
6340 em
->orig_start
= start
;
6343 em
->block_start
= EXTENT_MAP_HOLE
;
6344 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
6346 btrfs_release_path(path
);
6347 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
6348 btrfs_err(root
->fs_info
, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6349 em
->start
, em
->len
, start
, len
);
6355 write_lock(&em_tree
->lock
);
6356 ret
= add_extent_mapping(em_tree
, em
, 0);
6357 /* it is possible that someone inserted the extent into the tree
6358 * while we had the lock dropped. It is also possible that
6359 * an overlapping map exists in the tree
6361 if (ret
== -EEXIST
) {
6362 struct extent_map
*existing
;
6366 existing
= lookup_extent_mapping(em_tree
, start
, len
);
6367 if (existing
&& (existing
->start
> start
||
6368 existing
->start
+ existing
->len
<= start
)) {
6369 free_extent_map(existing
);
6373 existing
= lookup_extent_mapping(em_tree
, em
->start
,
6376 err
= merge_extent_mapping(em_tree
, existing
,
6379 free_extent_map(existing
);
6381 free_extent_map(em
);
6386 free_extent_map(em
);
6390 free_extent_map(em
);
6395 write_unlock(&em_tree
->lock
);
6398 trace_btrfs_get_extent(root
, em
);
6401 btrfs_free_path(path
);
6403 ret
= btrfs_end_transaction(trans
, root
);
6408 free_extent_map(em
);
6409 return ERR_PTR(err
);
6411 BUG_ON(!em
); /* Error is always set */
6415 struct extent_map
*btrfs_get_extent_fiemap(struct inode
*inode
, struct page
*page
,
6416 size_t pg_offset
, u64 start
, u64 len
,
6419 struct extent_map
*em
;
6420 struct extent_map
*hole_em
= NULL
;
6421 u64 range_start
= start
;
6427 em
= btrfs_get_extent(inode
, page
, pg_offset
, start
, len
, create
);
6434 * - a pre-alloc extent,
6435 * there might actually be delalloc bytes behind it.
6437 if (em
->block_start
!= EXTENT_MAP_HOLE
&&
6438 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
6444 /* check to see if we've wrapped (len == -1 or similar) */
6453 /* ok, we didn't find anything, lets look for delalloc */
6454 found
= count_range_bits(&BTRFS_I(inode
)->io_tree
, &range_start
,
6455 end
, len
, EXTENT_DELALLOC
, 1);
6456 found_end
= range_start
+ found
;
6457 if (found_end
< range_start
)
6458 found_end
= (u64
)-1;
6461 * we didn't find anything useful, return
6462 * the original results from get_extent()
6464 if (range_start
> end
|| found_end
<= start
) {
6470 /* adjust the range_start to make sure it doesn't
6471 * go backwards from the start they passed in
6473 range_start
= max(start
, range_start
);
6474 found
= found_end
- range_start
;
6477 u64 hole_start
= start
;
6480 em
= alloc_extent_map();
6486 * when btrfs_get_extent can't find anything it
6487 * returns one huge hole
6489 * make sure what it found really fits our range, and
6490 * adjust to make sure it is based on the start from
6494 u64 calc_end
= extent_map_end(hole_em
);
6496 if (calc_end
<= start
|| (hole_em
->start
> end
)) {
6497 free_extent_map(hole_em
);
6500 hole_start
= max(hole_em
->start
, start
);
6501 hole_len
= calc_end
- hole_start
;
6505 if (hole_em
&& range_start
> hole_start
) {
6506 /* our hole starts before our delalloc, so we
6507 * have to return just the parts of the hole
6508 * that go until the delalloc starts
6510 em
->len
= min(hole_len
,
6511 range_start
- hole_start
);
6512 em
->start
= hole_start
;
6513 em
->orig_start
= hole_start
;
6515 * don't adjust block start at all,
6516 * it is fixed at EXTENT_MAP_HOLE
6518 em
->block_start
= hole_em
->block_start
;
6519 em
->block_len
= hole_len
;
6520 if (test_bit(EXTENT_FLAG_PREALLOC
, &hole_em
->flags
))
6521 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
6523 em
->start
= range_start
;
6525 em
->orig_start
= range_start
;
6526 em
->block_start
= EXTENT_MAP_DELALLOC
;
6527 em
->block_len
= found
;
6529 } else if (hole_em
) {
6534 free_extent_map(hole_em
);
6536 free_extent_map(em
);
6537 return ERR_PTR(err
);
6542 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
6545 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6546 struct extent_map
*em
;
6547 struct btrfs_key ins
;
6551 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
6552 ret
= btrfs_reserve_extent(root
, len
, root
->sectorsize
, 0,
6553 alloc_hint
, &ins
, 1);
6555 return ERR_PTR(ret
);
6557 em
= create_pinned_em(inode
, start
, ins
.offset
, start
, ins
.objectid
,
6558 ins
.offset
, ins
.offset
, ins
.offset
, 0);
6560 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
);
6564 ret
= btrfs_add_ordered_extent_dio(inode
, start
, ins
.objectid
,
6565 ins
.offset
, ins
.offset
, 0);
6567 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
);
6568 free_extent_map(em
);
6569 return ERR_PTR(ret
);
6576 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6577 * block must be cow'd
6579 noinline
int can_nocow_extent(struct inode
*inode
, u64 offset
, u64
*len
,
6580 u64
*orig_start
, u64
*orig_block_len
,
6583 struct btrfs_trans_handle
*trans
;
6584 struct btrfs_path
*path
;
6586 struct extent_buffer
*leaf
;
6587 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6588 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6589 struct btrfs_file_extent_item
*fi
;
6590 struct btrfs_key key
;
6597 bool nocow
= (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
);
6599 path
= btrfs_alloc_path();
6603 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, btrfs_ino(inode
),
6608 slot
= path
->slots
[0];
6611 /* can't find the item, must cow */
6618 leaf
= path
->nodes
[0];
6619 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
6620 if (key
.objectid
!= btrfs_ino(inode
) ||
6621 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
6622 /* not our file or wrong item type, must cow */
6626 if (key
.offset
> offset
) {
6627 /* Wrong offset, must cow */
6631 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
6632 found_type
= btrfs_file_extent_type(leaf
, fi
);
6633 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
6634 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
6635 /* not a regular extent, must cow */
6639 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_REG
)
6642 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
6643 if (extent_end
<= offset
)
6646 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
6647 if (disk_bytenr
== 0)
6650 if (btrfs_file_extent_compression(leaf
, fi
) ||
6651 btrfs_file_extent_encryption(leaf
, fi
) ||
6652 btrfs_file_extent_other_encoding(leaf
, fi
))
6655 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
6658 *orig_start
= key
.offset
- backref_offset
;
6659 *orig_block_len
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
6660 *ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
6663 if (btrfs_extent_readonly(root
, disk_bytenr
))
6666 num_bytes
= min(offset
+ *len
, extent_end
) - offset
;
6667 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6670 range_end
= round_up(offset
+ num_bytes
, root
->sectorsize
) - 1;
6671 ret
= test_range_bit(io_tree
, offset
, range_end
,
6672 EXTENT_DELALLOC
, 0, NULL
);
6679 btrfs_release_path(path
);
6682 * look for other files referencing this extent, if we
6683 * find any we must cow
6685 trans
= btrfs_join_transaction(root
);
6686 if (IS_ERR(trans
)) {
6691 ret
= btrfs_cross_ref_exist(trans
, root
, btrfs_ino(inode
),
6692 key
.offset
- backref_offset
, disk_bytenr
);
6693 btrfs_end_transaction(trans
, root
);
6700 * adjust disk_bytenr and num_bytes to cover just the bytes
6701 * in this extent we are about to write. If there
6702 * are any csums in that range we have to cow in order
6703 * to keep the csums correct
6705 disk_bytenr
+= backref_offset
;
6706 disk_bytenr
+= offset
- key
.offset
;
6707 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
6710 * all of the above have passed, it is safe to overwrite this extent
6716 btrfs_free_path(path
);
6720 static int lock_extent_direct(struct inode
*inode
, u64 lockstart
, u64 lockend
,
6721 struct extent_state
**cached_state
, int writing
)
6723 struct btrfs_ordered_extent
*ordered
;
6727 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6730 * We're concerned with the entire range that we're going to be
6731 * doing DIO to, so we need to make sure theres no ordered
6732 * extents in this range.
6734 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
6735 lockend
- lockstart
+ 1);
6738 * We need to make sure there are no buffered pages in this
6739 * range either, we could have raced between the invalidate in
6740 * generic_file_direct_write and locking the extent. The
6741 * invalidate needs to happen so that reads after a write do not
6744 if (!ordered
&& (!writing
||
6745 !test_range_bit(&BTRFS_I(inode
)->io_tree
,
6746 lockstart
, lockend
, EXTENT_UPTODATE
, 0,
6750 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6751 cached_state
, GFP_NOFS
);
6754 btrfs_start_ordered_extent(inode
, ordered
, 1);
6755 btrfs_put_ordered_extent(ordered
);
6757 /* Screw you mmap */
6758 ret
= filemap_write_and_wait_range(inode
->i_mapping
,
6765 * If we found a page that couldn't be invalidated just
6766 * fall back to buffered.
6768 ret
= invalidate_inode_pages2_range(inode
->i_mapping
,
6769 lockstart
>> PAGE_CACHE_SHIFT
,
6770 lockend
>> PAGE_CACHE_SHIFT
);
6781 static struct extent_map
*create_pinned_em(struct inode
*inode
, u64 start
,
6782 u64 len
, u64 orig_start
,
6783 u64 block_start
, u64 block_len
,
6784 u64 orig_block_len
, u64 ram_bytes
,
6787 struct extent_map_tree
*em_tree
;
6788 struct extent_map
*em
;
6789 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6792 em_tree
= &BTRFS_I(inode
)->extent_tree
;
6793 em
= alloc_extent_map();
6795 return ERR_PTR(-ENOMEM
);
6798 em
->orig_start
= orig_start
;
6799 em
->mod_start
= start
;
6802 em
->block_len
= block_len
;
6803 em
->block_start
= block_start
;
6804 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
6805 em
->orig_block_len
= orig_block_len
;
6806 em
->ram_bytes
= ram_bytes
;
6807 em
->generation
= -1;
6808 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
6809 if (type
== BTRFS_ORDERED_PREALLOC
)
6810 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
6813 btrfs_drop_extent_cache(inode
, em
->start
,
6814 em
->start
+ em
->len
- 1, 0);
6815 write_lock(&em_tree
->lock
);
6816 ret
= add_extent_mapping(em_tree
, em
, 1);
6817 write_unlock(&em_tree
->lock
);
6818 } while (ret
== -EEXIST
);
6821 free_extent_map(em
);
6822 return ERR_PTR(ret
);
6829 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
6830 struct buffer_head
*bh_result
, int create
)
6832 struct extent_map
*em
;
6833 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6834 struct extent_state
*cached_state
= NULL
;
6835 u64 start
= iblock
<< inode
->i_blkbits
;
6836 u64 lockstart
, lockend
;
6837 u64 len
= bh_result
->b_size
;
6838 int unlock_bits
= EXTENT_LOCKED
;
6842 unlock_bits
|= EXTENT_DELALLOC
| EXTENT_DIRTY
;
6844 len
= min_t(u64
, len
, root
->sectorsize
);
6847 lockend
= start
+ len
- 1;
6850 * If this errors out it's because we couldn't invalidate pagecache for
6851 * this range and we need to fallback to buffered.
6853 if (lock_extent_direct(inode
, lockstart
, lockend
, &cached_state
, create
))
6856 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
6863 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6864 * io. INLINE is special, and we could probably kludge it in here, but
6865 * it's still buffered so for safety lets just fall back to the generic
6868 * For COMPRESSED we _have_ to read the entire extent in so we can
6869 * decompress it, so there will be buffering required no matter what we
6870 * do, so go ahead and fallback to buffered.
6872 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6873 * to buffered IO. Don't blame me, this is the price we pay for using
6876 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
6877 em
->block_start
== EXTENT_MAP_INLINE
) {
6878 free_extent_map(em
);
6883 /* Just a good old fashioned hole, return */
6884 if (!create
&& (em
->block_start
== EXTENT_MAP_HOLE
||
6885 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
6886 free_extent_map(em
);
6891 * We don't allocate a new extent in the following cases
6893 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6895 * 2) The extent is marked as PREALLOC. We're good to go here and can
6896 * just use the extent.
6900 len
= min(len
, em
->len
- (start
- em
->start
));
6901 lockstart
= start
+ len
;
6905 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
6906 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
6907 em
->block_start
!= EXTENT_MAP_HOLE
)) {
6910 u64 block_start
, orig_start
, orig_block_len
, ram_bytes
;
6912 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
6913 type
= BTRFS_ORDERED_PREALLOC
;
6915 type
= BTRFS_ORDERED_NOCOW
;
6916 len
= min(len
, em
->len
- (start
- em
->start
));
6917 block_start
= em
->block_start
+ (start
- em
->start
);
6919 if (can_nocow_extent(inode
, start
, &len
, &orig_start
,
6920 &orig_block_len
, &ram_bytes
) == 1) {
6921 if (type
== BTRFS_ORDERED_PREALLOC
) {
6922 free_extent_map(em
);
6923 em
= create_pinned_em(inode
, start
, len
,
6932 ret
= btrfs_add_ordered_extent_dio(inode
, start
,
6933 block_start
, len
, len
, type
);
6935 free_extent_map(em
);
6943 * this will cow the extent, reset the len in case we changed
6946 len
= bh_result
->b_size
;
6947 free_extent_map(em
);
6948 em
= btrfs_new_extent_direct(inode
, start
, len
);
6953 len
= min(len
, em
->len
- (start
- em
->start
));
6955 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
6957 bh_result
->b_size
= len
;
6958 bh_result
->b_bdev
= em
->bdev
;
6959 set_buffer_mapped(bh_result
);
6961 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
6962 set_buffer_new(bh_result
);
6965 * Need to update the i_size under the extent lock so buffered
6966 * readers will get the updated i_size when we unlock.
6968 if (start
+ len
> i_size_read(inode
))
6969 i_size_write(inode
, start
+ len
);
6971 spin_lock(&BTRFS_I(inode
)->lock
);
6972 BTRFS_I(inode
)->outstanding_extents
++;
6973 spin_unlock(&BTRFS_I(inode
)->lock
);
6975 ret
= set_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
6976 lockstart
+ len
- 1, EXTENT_DELALLOC
, NULL
,
6977 &cached_state
, GFP_NOFS
);
6982 * In the case of write we need to clear and unlock the entire range,
6983 * in the case of read we need to unlock only the end area that we
6984 * aren't using if there is any left over space.
6986 if (lockstart
< lockend
) {
6987 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
6988 lockend
, unlock_bits
, 1, 0,
6989 &cached_state
, GFP_NOFS
);
6991 free_extent_state(cached_state
);
6994 free_extent_map(em
);
6999 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7000 unlock_bits
, 1, 0, &cached_state
, GFP_NOFS
);
7004 static void btrfs_endio_direct_read(struct bio
*bio
, int err
)
7006 struct btrfs_dio_private
*dip
= bio
->bi_private
;
7007 struct bio_vec
*bvec
;
7008 struct inode
*inode
= dip
->inode
;
7009 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7010 struct bio
*dio_bio
;
7011 u32
*csums
= (u32
*)dip
->csum
;
7015 start
= dip
->logical_offset
;
7016 bio_for_each_segment_all(bvec
, bio
, i
) {
7017 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
7018 struct page
*page
= bvec
->bv_page
;
7021 unsigned long flags
;
7023 local_irq_save(flags
);
7024 kaddr
= kmap_atomic(page
);
7025 csum
= btrfs_csum_data(kaddr
+ bvec
->bv_offset
,
7026 csum
, bvec
->bv_len
);
7027 btrfs_csum_final(csum
, (char *)&csum
);
7028 kunmap_atomic(kaddr
);
7029 local_irq_restore(flags
);
7031 flush_dcache_page(bvec
->bv_page
);
7032 if (csum
!= csums
[i
]) {
7033 btrfs_err(root
->fs_info
, "csum failed ino %llu off %llu csum %u expected csum %u",
7034 btrfs_ino(inode
), start
, csum
,
7040 start
+= bvec
->bv_len
;
7043 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
7044 dip
->logical_offset
+ dip
->bytes
- 1);
7045 dio_bio
= dip
->dio_bio
;
7049 /* If we had a csum failure make sure to clear the uptodate flag */
7051 clear_bit(BIO_UPTODATE
, &dio_bio
->bi_flags
);
7052 dio_end_io(dio_bio
, err
);
7056 static void btrfs_endio_direct_write(struct bio
*bio
, int err
)
7058 struct btrfs_dio_private
*dip
= bio
->bi_private
;
7059 struct inode
*inode
= dip
->inode
;
7060 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7061 struct btrfs_ordered_extent
*ordered
= NULL
;
7062 u64 ordered_offset
= dip
->logical_offset
;
7063 u64 ordered_bytes
= dip
->bytes
;
7064 struct bio
*dio_bio
;
7070 ret
= btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
7072 ordered_bytes
, !err
);
7076 btrfs_init_work(&ordered
->work
, finish_ordered_fn
, NULL
, NULL
);
7077 btrfs_queue_work(root
->fs_info
->endio_write_workers
,
7081 * our bio might span multiple ordered extents. If we haven't
7082 * completed the accounting for the whole dio, go back and try again
7084 if (ordered_offset
< dip
->logical_offset
+ dip
->bytes
) {
7085 ordered_bytes
= dip
->logical_offset
+ dip
->bytes
-
7091 dio_bio
= dip
->dio_bio
;
7095 /* If we had an error make sure to clear the uptodate flag */
7097 clear_bit(BIO_UPTODATE
, &dio_bio
->bi_flags
);
7098 dio_end_io(dio_bio
, err
);
7102 static int __btrfs_submit_bio_start_direct_io(struct inode
*inode
, int rw
,
7103 struct bio
*bio
, int mirror_num
,
7104 unsigned long bio_flags
, u64 offset
)
7107 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7108 ret
= btrfs_csum_one_bio(root
, inode
, bio
, offset
, 1);
7109 BUG_ON(ret
); /* -ENOMEM */
7113 static void btrfs_end_dio_bio(struct bio
*bio
, int err
)
7115 struct btrfs_dio_private
*dip
= bio
->bi_private
;
7118 btrfs_err(BTRFS_I(dip
->inode
)->root
->fs_info
,
7119 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7120 btrfs_ino(dip
->inode
), bio
->bi_rw
,
7121 (unsigned long long)bio
->bi_iter
.bi_sector
,
7122 bio
->bi_iter
.bi_size
, err
);
7126 * before atomic variable goto zero, we must make sure
7127 * dip->errors is perceived to be set.
7129 smp_mb__before_atomic_dec();
7132 /* if there are more bios still pending for this dio, just exit */
7133 if (!atomic_dec_and_test(&dip
->pending_bios
))
7137 bio_io_error(dip
->orig_bio
);
7139 set_bit(BIO_UPTODATE
, &dip
->dio_bio
->bi_flags
);
7140 bio_endio(dip
->orig_bio
, 0);
7146 static struct bio
*btrfs_dio_bio_alloc(struct block_device
*bdev
,
7147 u64 first_sector
, gfp_t gfp_flags
)
7149 int nr_vecs
= bio_get_nr_vecs(bdev
);
7150 return btrfs_bio_alloc(bdev
, first_sector
, nr_vecs
, gfp_flags
);
7153 static inline int __btrfs_submit_dio_bio(struct bio
*bio
, struct inode
*inode
,
7154 int rw
, u64 file_offset
, int skip_sum
,
7157 struct btrfs_dio_private
*dip
= bio
->bi_private
;
7158 int write
= rw
& REQ_WRITE
;
7159 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7163 async_submit
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
7168 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
7176 if (write
&& async_submit
) {
7177 ret
= btrfs_wq_submit_bio(root
->fs_info
,
7178 inode
, rw
, bio
, 0, 0,
7180 __btrfs_submit_bio_start_direct_io
,
7181 __btrfs_submit_bio_done
);
7185 * If we aren't doing async submit, calculate the csum of the
7188 ret
= btrfs_csum_one_bio(root
, inode
, bio
, file_offset
, 1);
7191 } else if (!skip_sum
) {
7192 ret
= btrfs_lookup_bio_sums_dio(root
, inode
, dip
, bio
,
7199 ret
= btrfs_map_bio(root
, rw
, bio
, 0, async_submit
);
7205 static int btrfs_submit_direct_hook(int rw
, struct btrfs_dio_private
*dip
,
7208 struct inode
*inode
= dip
->inode
;
7209 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7211 struct bio
*orig_bio
= dip
->orig_bio
;
7212 struct bio_vec
*bvec
= orig_bio
->bi_io_vec
;
7213 u64 start_sector
= orig_bio
->bi_iter
.bi_sector
;
7214 u64 file_offset
= dip
->logical_offset
;
7219 int async_submit
= 0;
7221 map_length
= orig_bio
->bi_iter
.bi_size
;
7222 ret
= btrfs_map_block(root
->fs_info
, rw
, start_sector
<< 9,
7223 &map_length
, NULL
, 0);
7229 if (map_length
>= orig_bio
->bi_iter
.bi_size
) {
7234 /* async crcs make it difficult to collect full stripe writes. */
7235 if (btrfs_get_alloc_profile(root
, 1) &
7236 (BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
))
7241 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
, start_sector
, GFP_NOFS
);
7244 bio
->bi_private
= dip
;
7245 bio
->bi_end_io
= btrfs_end_dio_bio
;
7246 atomic_inc(&dip
->pending_bios
);
7248 while (bvec
<= (orig_bio
->bi_io_vec
+ orig_bio
->bi_vcnt
- 1)) {
7249 if (unlikely(map_length
< submit_len
+ bvec
->bv_len
||
7250 bio_add_page(bio
, bvec
->bv_page
, bvec
->bv_len
,
7251 bvec
->bv_offset
) < bvec
->bv_len
)) {
7253 * inc the count before we submit the bio so
7254 * we know the end IO handler won't happen before
7255 * we inc the count. Otherwise, the dip might get freed
7256 * before we're done setting it up
7258 atomic_inc(&dip
->pending_bios
);
7259 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
,
7260 file_offset
, skip_sum
,
7264 atomic_dec(&dip
->pending_bios
);
7268 start_sector
+= submit_len
>> 9;
7269 file_offset
+= submit_len
;
7274 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
,
7275 start_sector
, GFP_NOFS
);
7278 bio
->bi_private
= dip
;
7279 bio
->bi_end_io
= btrfs_end_dio_bio
;
7281 map_length
= orig_bio
->bi_iter
.bi_size
;
7282 ret
= btrfs_map_block(root
->fs_info
, rw
,
7284 &map_length
, NULL
, 0);
7290 submit_len
+= bvec
->bv_len
;
7297 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
, file_offset
, skip_sum
,
7306 * before atomic variable goto zero, we must
7307 * make sure dip->errors is perceived to be set.
7309 smp_mb__before_atomic_dec();
7310 if (atomic_dec_and_test(&dip
->pending_bios
))
7311 bio_io_error(dip
->orig_bio
);
7313 /* bio_end_io() will handle error, so we needn't return it */
7317 static void btrfs_submit_direct(int rw
, struct bio
*dio_bio
,
7318 struct inode
*inode
, loff_t file_offset
)
7320 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7321 struct btrfs_dio_private
*dip
;
7325 int write
= rw
& REQ_WRITE
;
7329 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
7331 io_bio
= btrfs_bio_clone(dio_bio
, GFP_NOFS
);
7337 if (!skip_sum
&& !write
) {
7338 csum_size
= btrfs_super_csum_size(root
->fs_info
->super_copy
);
7339 sum_len
= dio_bio
->bi_iter
.bi_size
>>
7340 inode
->i_sb
->s_blocksize_bits
;
7341 sum_len
*= csum_size
;
7346 dip
= kmalloc(sizeof(*dip
) + sum_len
, GFP_NOFS
);
7352 dip
->private = dio_bio
->bi_private
;
7354 dip
->logical_offset
= file_offset
;
7355 dip
->bytes
= dio_bio
->bi_iter
.bi_size
;
7356 dip
->disk_bytenr
= (u64
)dio_bio
->bi_iter
.bi_sector
<< 9;
7357 io_bio
->bi_private
= dip
;
7359 dip
->orig_bio
= io_bio
;
7360 dip
->dio_bio
= dio_bio
;
7361 atomic_set(&dip
->pending_bios
, 0);
7364 io_bio
->bi_end_io
= btrfs_endio_direct_write
;
7366 io_bio
->bi_end_io
= btrfs_endio_direct_read
;
7368 ret
= btrfs_submit_direct_hook(rw
, dip
, skip_sum
);
7377 * If this is a write, we need to clean up the reserved space and kill
7378 * the ordered extent.
7381 struct btrfs_ordered_extent
*ordered
;
7382 ordered
= btrfs_lookup_ordered_extent(inode
, file_offset
);
7383 if (!test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
) &&
7384 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
))
7385 btrfs_free_reserved_extent(root
, ordered
->start
,
7387 btrfs_put_ordered_extent(ordered
);
7388 btrfs_put_ordered_extent(ordered
);
7390 bio_endio(dio_bio
, ret
);
7393 static ssize_t
check_direct_IO(struct btrfs_root
*root
, int rw
, struct kiocb
*iocb
,
7394 const struct iovec
*iov
, loff_t offset
,
7395 unsigned long nr_segs
)
7401 unsigned blocksize_mask
= root
->sectorsize
- 1;
7402 ssize_t retval
= -EINVAL
;
7403 loff_t end
= offset
;
7405 if (offset
& blocksize_mask
)
7408 /* Check the memory alignment. Blocks cannot straddle pages */
7409 for (seg
= 0; seg
< nr_segs
; seg
++) {
7410 addr
= (unsigned long)iov
[seg
].iov_base
;
7411 size
= iov
[seg
].iov_len
;
7413 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
))
7416 /* If this is a write we don't need to check anymore */
7421 * Check to make sure we don't have duplicate iov_base's in this
7422 * iovec, if so return EINVAL, otherwise we'll get csum errors
7423 * when reading back.
7425 for (i
= seg
+ 1; i
< nr_segs
; i
++) {
7426 if (iov
[seg
].iov_base
== iov
[i
].iov_base
)
7435 static ssize_t
btrfs_direct_IO(int rw
, struct kiocb
*iocb
,
7436 const struct iovec
*iov
, loff_t offset
,
7437 unsigned long nr_segs
)
7439 struct file
*file
= iocb
->ki_filp
;
7440 struct inode
*inode
= file
->f_mapping
->host
;
7444 bool relock
= false;
7447 if (check_direct_IO(BTRFS_I(inode
)->root
, rw
, iocb
, iov
,
7451 atomic_inc(&inode
->i_dio_count
);
7452 smp_mb__after_atomic_inc();
7455 * The generic stuff only does filemap_write_and_wait_range, which
7456 * isn't enough if we've written compressed pages to this area, so
7457 * we need to flush the dirty pages again to make absolutely sure
7458 * that any outstanding dirty pages are on disk.
7460 count
= iov_length(iov
, nr_segs
);
7461 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
7462 &BTRFS_I(inode
)->runtime_flags
))
7463 filemap_fdatawrite_range(inode
->i_mapping
, offset
, count
);
7467 * If the write DIO is beyond the EOF, we need update
7468 * the isize, but it is protected by i_mutex. So we can
7469 * not unlock the i_mutex at this case.
7471 if (offset
+ count
<= inode
->i_size
) {
7472 mutex_unlock(&inode
->i_mutex
);
7475 ret
= btrfs_delalloc_reserve_space(inode
, count
);
7478 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK
,
7479 &BTRFS_I(inode
)->runtime_flags
))) {
7480 inode_dio_done(inode
);
7481 flags
= DIO_LOCKING
| DIO_SKIP_HOLES
;
7485 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
7486 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
,
7487 iov
, offset
, nr_segs
, btrfs_get_blocks_direct
, NULL
,
7488 btrfs_submit_direct
, flags
);
7490 if (ret
< 0 && ret
!= -EIOCBQUEUED
)
7491 btrfs_delalloc_release_space(inode
, count
);
7492 else if (ret
>= 0 && (size_t)ret
< count
)
7493 btrfs_delalloc_release_space(inode
,
7494 count
- (size_t)ret
);
7496 btrfs_delalloc_release_metadata(inode
, 0);
7500 inode_dio_done(inode
);
7502 mutex_lock(&inode
->i_mutex
);
7507 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
7509 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
7510 __u64 start
, __u64 len
)
7514 ret
= fiemap_check_flags(fieinfo
, BTRFS_FIEMAP_FLAGS
);
7518 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent_fiemap
);
7521 int btrfs_readpage(struct file
*file
, struct page
*page
)
7523 struct extent_io_tree
*tree
;
7524 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
7525 return extent_read_full_page(tree
, page
, btrfs_get_extent
, 0);
7528 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
7530 struct extent_io_tree
*tree
;
7533 if (current
->flags
& PF_MEMALLOC
) {
7534 redirty_page_for_writepage(wbc
, page
);
7538 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
7539 return extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
7542 static int btrfs_writepages(struct address_space
*mapping
,
7543 struct writeback_control
*wbc
)
7545 struct extent_io_tree
*tree
;
7547 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
7548 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
7552 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
7553 struct list_head
*pages
, unsigned nr_pages
)
7555 struct extent_io_tree
*tree
;
7556 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
7557 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
7560 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
7562 struct extent_io_tree
*tree
;
7563 struct extent_map_tree
*map
;
7566 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
7567 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
7568 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
7570 ClearPagePrivate(page
);
7571 set_page_private(page
, 0);
7572 page_cache_release(page
);
7577 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
7579 if (PageWriteback(page
) || PageDirty(page
))
7581 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
7584 static void btrfs_invalidatepage(struct page
*page
, unsigned int offset
,
7585 unsigned int length
)
7587 struct inode
*inode
= page
->mapping
->host
;
7588 struct extent_io_tree
*tree
;
7589 struct btrfs_ordered_extent
*ordered
;
7590 struct extent_state
*cached_state
= NULL
;
7591 u64 page_start
= page_offset(page
);
7592 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
7593 int inode_evicting
= inode
->i_state
& I_FREEING
;
7596 * we have the page locked, so new writeback can't start,
7597 * and the dirty bit won't be cleared while we are here.
7599 * Wait for IO on this page so that we can safely clear
7600 * the PagePrivate2 bit and do ordered accounting
7602 wait_on_page_writeback(page
);
7604 tree
= &BTRFS_I(inode
)->io_tree
;
7606 btrfs_releasepage(page
, GFP_NOFS
);
7610 if (!inode_evicting
)
7611 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
);
7612 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
7615 * IO on this page will never be started, so we need
7616 * to account for any ordered extents now
7618 if (!inode_evicting
)
7619 clear_extent_bit(tree
, page_start
, page_end
,
7620 EXTENT_DIRTY
| EXTENT_DELALLOC
|
7621 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
7622 EXTENT_DEFRAG
, 1, 0, &cached_state
,
7625 * whoever cleared the private bit is responsible
7626 * for the finish_ordered_io
7628 if (TestClearPagePrivate2(page
)) {
7629 struct btrfs_ordered_inode_tree
*tree
;
7632 tree
= &BTRFS_I(inode
)->ordered_tree
;
7634 spin_lock_irq(&tree
->lock
);
7635 set_bit(BTRFS_ORDERED_TRUNCATED
, &ordered
->flags
);
7636 new_len
= page_start
- ordered
->file_offset
;
7637 if (new_len
< ordered
->truncated_len
)
7638 ordered
->truncated_len
= new_len
;
7639 spin_unlock_irq(&tree
->lock
);
7641 if (btrfs_dec_test_ordered_pending(inode
, &ordered
,
7643 PAGE_CACHE_SIZE
, 1))
7644 btrfs_finish_ordered_io(ordered
);
7646 btrfs_put_ordered_extent(ordered
);
7647 if (!inode_evicting
) {
7648 cached_state
= NULL
;
7649 lock_extent_bits(tree
, page_start
, page_end
, 0,
7654 if (!inode_evicting
) {
7655 clear_extent_bit(tree
, page_start
, page_end
,
7656 EXTENT_LOCKED
| EXTENT_DIRTY
|
7657 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
|
7658 EXTENT_DEFRAG
, 1, 1,
7659 &cached_state
, GFP_NOFS
);
7661 __btrfs_releasepage(page
, GFP_NOFS
);
7664 ClearPageChecked(page
);
7665 if (PagePrivate(page
)) {
7666 ClearPagePrivate(page
);
7667 set_page_private(page
, 0);
7668 page_cache_release(page
);
7673 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7674 * called from a page fault handler when a page is first dirtied. Hence we must
7675 * be careful to check for EOF conditions here. We set the page up correctly
7676 * for a written page which means we get ENOSPC checking when writing into
7677 * holes and correct delalloc and unwritten extent mapping on filesystems that
7678 * support these features.
7680 * We are not allowed to take the i_mutex here so we have to play games to
7681 * protect against truncate races as the page could now be beyond EOF. Because
7682 * vmtruncate() writes the inode size before removing pages, once we have the
7683 * page lock we can determine safely if the page is beyond EOF. If it is not
7684 * beyond EOF, then the page is guaranteed safe against truncation until we
7687 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
7689 struct page
*page
= vmf
->page
;
7690 struct inode
*inode
= file_inode(vma
->vm_file
);
7691 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7692 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
7693 struct btrfs_ordered_extent
*ordered
;
7694 struct extent_state
*cached_state
= NULL
;
7696 unsigned long zero_start
;
7703 sb_start_pagefault(inode
->i_sb
);
7704 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
7706 ret
= file_update_time(vma
->vm_file
);
7712 else /* -ENOSPC, -EIO, etc */
7713 ret
= VM_FAULT_SIGBUS
;
7719 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
7722 size
= i_size_read(inode
);
7723 page_start
= page_offset(page
);
7724 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
7726 if ((page
->mapping
!= inode
->i_mapping
) ||
7727 (page_start
>= size
)) {
7728 /* page got truncated out from underneath us */
7731 wait_on_page_writeback(page
);
7733 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
);
7734 set_page_extent_mapped(page
);
7737 * we can't set the delalloc bits if there are pending ordered
7738 * extents. Drop our locks and wait for them to finish
7740 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
7742 unlock_extent_cached(io_tree
, page_start
, page_end
,
7743 &cached_state
, GFP_NOFS
);
7745 btrfs_start_ordered_extent(inode
, ordered
, 1);
7746 btrfs_put_ordered_extent(ordered
);
7751 * XXX - page_mkwrite gets called every time the page is dirtied, even
7752 * if it was already dirty, so for space accounting reasons we need to
7753 * clear any delalloc bits for the range we are fixing to save. There
7754 * is probably a better way to do this, but for now keep consistent with
7755 * prepare_pages in the normal write path.
7757 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
7758 EXTENT_DIRTY
| EXTENT_DELALLOC
|
7759 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
7760 0, 0, &cached_state
, GFP_NOFS
);
7762 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
7765 unlock_extent_cached(io_tree
, page_start
, page_end
,
7766 &cached_state
, GFP_NOFS
);
7767 ret
= VM_FAULT_SIGBUS
;
7772 /* page is wholly or partially inside EOF */
7773 if (page_start
+ PAGE_CACHE_SIZE
> size
)
7774 zero_start
= size
& ~PAGE_CACHE_MASK
;
7776 zero_start
= PAGE_CACHE_SIZE
;
7778 if (zero_start
!= PAGE_CACHE_SIZE
) {
7780 memset(kaddr
+ zero_start
, 0, PAGE_CACHE_SIZE
- zero_start
);
7781 flush_dcache_page(page
);
7784 ClearPageChecked(page
);
7785 set_page_dirty(page
);
7786 SetPageUptodate(page
);
7788 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
7789 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
7790 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->root
->last_log_commit
;
7792 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
, GFP_NOFS
);
7796 sb_end_pagefault(inode
->i_sb
);
7797 return VM_FAULT_LOCKED
;
7801 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
7803 sb_end_pagefault(inode
->i_sb
);
7807 static int btrfs_truncate(struct inode
*inode
)
7809 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7810 struct btrfs_block_rsv
*rsv
;
7813 struct btrfs_trans_handle
*trans
;
7814 u64 mask
= root
->sectorsize
- 1;
7815 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
7817 ret
= btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
),
7823 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
7824 * 3 things going on here
7826 * 1) We need to reserve space for our orphan item and the space to
7827 * delete our orphan item. Lord knows we don't want to have a dangling
7828 * orphan item because we didn't reserve space to remove it.
7830 * 2) We need to reserve space to update our inode.
7832 * 3) We need to have something to cache all the space that is going to
7833 * be free'd up by the truncate operation, but also have some slack
7834 * space reserved in case it uses space during the truncate (thank you
7835 * very much snapshotting).
7837 * And we need these to all be seperate. The fact is we can use alot of
7838 * space doing the truncate, and we have no earthly idea how much space
7839 * we will use, so we need the truncate reservation to be seperate so it
7840 * doesn't end up using space reserved for updating the inode or
7841 * removing the orphan item. We also need to be able to stop the
7842 * transaction and start a new one, which means we need to be able to
7843 * update the inode several times, and we have no idea of knowing how
7844 * many times that will be, so we can't just reserve 1 item for the
7845 * entirety of the opration, so that has to be done seperately as well.
7846 * Then there is the orphan item, which does indeed need to be held on
7847 * to for the whole operation, and we need nobody to touch this reserved
7848 * space except the orphan code.
7850 * So that leaves us with
7852 * 1) root->orphan_block_rsv - for the orphan deletion.
7853 * 2) rsv - for the truncate reservation, which we will steal from the
7854 * transaction reservation.
7855 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7856 * updating the inode.
7858 rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
7861 rsv
->size
= min_size
;
7865 * 1 for the truncate slack space
7866 * 1 for updating the inode.
7868 trans
= btrfs_start_transaction(root
, 2);
7869 if (IS_ERR(trans
)) {
7870 err
= PTR_ERR(trans
);
7874 /* Migrate the slack space for the truncate to our reserve */
7875 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
, rsv
,
7880 * setattr is responsible for setting the ordered_data_close flag,
7881 * but that is only tested during the last file release. That
7882 * could happen well after the next commit, leaving a great big
7883 * window where new writes may get lost if someone chooses to write
7884 * to this file after truncating to zero
7886 * The inode doesn't have any dirty data here, and so if we commit
7887 * this is a noop. If someone immediately starts writing to the inode
7888 * it is very likely we'll catch some of their writes in this
7889 * transaction, and the commit will find this file on the ordered
7890 * data list with good things to send down.
7892 * This is a best effort solution, there is still a window where
7893 * using truncate to replace the contents of the file will
7894 * end up with a zero length file after a crash.
7896 if (inode
->i_size
== 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
7897 &BTRFS_I(inode
)->runtime_flags
))
7898 btrfs_add_ordered_operation(trans
, root
, inode
);
7901 * So if we truncate and then write and fsync we normally would just
7902 * write the extents that changed, which is a problem if we need to
7903 * first truncate that entire inode. So set this flag so we write out
7904 * all of the extents in the inode to the sync log so we're completely
7907 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
7908 trans
->block_rsv
= rsv
;
7911 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
7913 BTRFS_EXTENT_DATA_KEY
);
7914 if (ret
!= -ENOSPC
) {
7919 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
7920 ret
= btrfs_update_inode(trans
, root
, inode
);
7926 btrfs_end_transaction(trans
, root
);
7927 btrfs_btree_balance_dirty(root
);
7929 trans
= btrfs_start_transaction(root
, 2);
7930 if (IS_ERR(trans
)) {
7931 ret
= err
= PTR_ERR(trans
);
7936 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
,
7938 BUG_ON(ret
); /* shouldn't happen */
7939 trans
->block_rsv
= rsv
;
7942 if (ret
== 0 && inode
->i_nlink
> 0) {
7943 trans
->block_rsv
= root
->orphan_block_rsv
;
7944 ret
= btrfs_orphan_del(trans
, inode
);
7950 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
7951 ret
= btrfs_update_inode(trans
, root
, inode
);
7955 ret
= btrfs_end_transaction(trans
, root
);
7956 btrfs_btree_balance_dirty(root
);
7960 btrfs_free_block_rsv(root
, rsv
);
7969 * create a new subvolume directory/inode (helper for the ioctl).
7971 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
7972 struct btrfs_root
*new_root
,
7973 struct btrfs_root
*parent_root
,
7976 struct inode
*inode
;
7980 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2,
7981 new_dirid
, new_dirid
,
7982 S_IFDIR
| (~current_umask() & S_IRWXUGO
),
7985 return PTR_ERR(inode
);
7986 inode
->i_op
= &btrfs_dir_inode_operations
;
7987 inode
->i_fop
= &btrfs_dir_file_operations
;
7989 set_nlink(inode
, 1);
7990 btrfs_i_size_write(inode
, 0);
7992 err
= btrfs_subvol_inherit_props(trans
, new_root
, parent_root
);
7994 btrfs_err(new_root
->fs_info
,
7995 "error inheriting subvolume %llu properties: %d\n",
7996 new_root
->root_key
.objectid
, err
);
7998 err
= btrfs_update_inode(trans
, new_root
, inode
);
8004 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
8006 struct btrfs_inode
*ei
;
8007 struct inode
*inode
;
8009 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
8016 ei
->last_sub_trans
= 0;
8017 ei
->logged_trans
= 0;
8018 ei
->delalloc_bytes
= 0;
8019 ei
->disk_i_size
= 0;
8022 ei
->index_cnt
= (u64
)-1;
8024 ei
->last_unlink_trans
= 0;
8025 ei
->last_log_commit
= 0;
8027 spin_lock_init(&ei
->lock
);
8028 ei
->outstanding_extents
= 0;
8029 ei
->reserved_extents
= 0;
8031 ei
->runtime_flags
= 0;
8032 ei
->force_compress
= BTRFS_COMPRESS_NONE
;
8034 ei
->delayed_node
= NULL
;
8036 inode
= &ei
->vfs_inode
;
8037 extent_map_tree_init(&ei
->extent_tree
);
8038 extent_io_tree_init(&ei
->io_tree
, &inode
->i_data
);
8039 extent_io_tree_init(&ei
->io_failure_tree
, &inode
->i_data
);
8040 ei
->io_tree
.track_uptodate
= 1;
8041 ei
->io_failure_tree
.track_uptodate
= 1;
8042 atomic_set(&ei
->sync_writers
, 0);
8043 mutex_init(&ei
->log_mutex
);
8044 mutex_init(&ei
->delalloc_mutex
);
8045 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
8046 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
8047 INIT_LIST_HEAD(&ei
->ordered_operations
);
8048 RB_CLEAR_NODE(&ei
->rb_node
);
8053 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8054 void btrfs_test_destroy_inode(struct inode
*inode
)
8056 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
8057 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
8061 static void btrfs_i_callback(struct rcu_head
*head
)
8063 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
8064 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
8067 void btrfs_destroy_inode(struct inode
*inode
)
8069 struct btrfs_ordered_extent
*ordered
;
8070 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8072 WARN_ON(!hlist_empty(&inode
->i_dentry
));
8073 WARN_ON(inode
->i_data
.nrpages
);
8074 WARN_ON(BTRFS_I(inode
)->outstanding_extents
);
8075 WARN_ON(BTRFS_I(inode
)->reserved_extents
);
8076 WARN_ON(BTRFS_I(inode
)->delalloc_bytes
);
8077 WARN_ON(BTRFS_I(inode
)->csum_bytes
);
8080 * This can happen where we create an inode, but somebody else also
8081 * created the same inode and we need to destroy the one we already
8088 * Make sure we're properly removed from the ordered operation
8092 if (!list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
8093 spin_lock(&root
->fs_info
->ordered_root_lock
);
8094 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
8095 spin_unlock(&root
->fs_info
->ordered_root_lock
);
8098 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
8099 &BTRFS_I(inode
)->runtime_flags
)) {
8100 btrfs_info(root
->fs_info
, "inode %llu still on the orphan list",
8102 atomic_dec(&root
->orphan_inodes
);
8106 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
8110 btrfs_err(root
->fs_info
, "found ordered extent %llu %llu on inode cleanup",
8111 ordered
->file_offset
, ordered
->len
);
8112 btrfs_remove_ordered_extent(inode
, ordered
);
8113 btrfs_put_ordered_extent(ordered
);
8114 btrfs_put_ordered_extent(ordered
);
8117 inode_tree_del(inode
);
8118 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
8120 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
8123 int btrfs_drop_inode(struct inode
*inode
)
8125 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8130 /* the snap/subvol tree is on deleting */
8131 if (btrfs_root_refs(&root
->root_item
) == 0)
8134 return generic_drop_inode(inode
);
8137 static void init_once(void *foo
)
8139 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
8141 inode_init_once(&ei
->vfs_inode
);
8144 void btrfs_destroy_cachep(void)
8147 * Make sure all delayed rcu free inodes are flushed before we
8151 if (btrfs_inode_cachep
)
8152 kmem_cache_destroy(btrfs_inode_cachep
);
8153 if (btrfs_trans_handle_cachep
)
8154 kmem_cache_destroy(btrfs_trans_handle_cachep
);
8155 if (btrfs_transaction_cachep
)
8156 kmem_cache_destroy(btrfs_transaction_cachep
);
8157 if (btrfs_path_cachep
)
8158 kmem_cache_destroy(btrfs_path_cachep
);
8159 if (btrfs_free_space_cachep
)
8160 kmem_cache_destroy(btrfs_free_space_cachep
);
8161 if (btrfs_delalloc_work_cachep
)
8162 kmem_cache_destroy(btrfs_delalloc_work_cachep
);
8165 int btrfs_init_cachep(void)
8167 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode",
8168 sizeof(struct btrfs_inode
), 0,
8169 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, init_once
);
8170 if (!btrfs_inode_cachep
)
8173 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle",
8174 sizeof(struct btrfs_trans_handle
), 0,
8175 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
8176 if (!btrfs_trans_handle_cachep
)
8179 btrfs_transaction_cachep
= kmem_cache_create("btrfs_transaction",
8180 sizeof(struct btrfs_transaction
), 0,
8181 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
8182 if (!btrfs_transaction_cachep
)
8185 btrfs_path_cachep
= kmem_cache_create("btrfs_path",
8186 sizeof(struct btrfs_path
), 0,
8187 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
8188 if (!btrfs_path_cachep
)
8191 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space",
8192 sizeof(struct btrfs_free_space
), 0,
8193 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
8194 if (!btrfs_free_space_cachep
)
8197 btrfs_delalloc_work_cachep
= kmem_cache_create("btrfs_delalloc_work",
8198 sizeof(struct btrfs_delalloc_work
), 0,
8199 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
8201 if (!btrfs_delalloc_work_cachep
)
8206 btrfs_destroy_cachep();
8210 static int btrfs_getattr(struct vfsmount
*mnt
,
8211 struct dentry
*dentry
, struct kstat
*stat
)
8214 struct inode
*inode
= dentry
->d_inode
;
8215 u32 blocksize
= inode
->i_sb
->s_blocksize
;
8217 generic_fillattr(inode
, stat
);
8218 stat
->dev
= BTRFS_I(inode
)->root
->anon_dev
;
8219 stat
->blksize
= PAGE_CACHE_SIZE
;
8221 spin_lock(&BTRFS_I(inode
)->lock
);
8222 delalloc_bytes
= BTRFS_I(inode
)->delalloc_bytes
;
8223 spin_unlock(&BTRFS_I(inode
)->lock
);
8224 stat
->blocks
= (ALIGN(inode_get_bytes(inode
), blocksize
) +
8225 ALIGN(delalloc_bytes
, blocksize
)) >> 9;
8229 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
8230 struct inode
*new_dir
, struct dentry
*new_dentry
)
8232 struct btrfs_trans_handle
*trans
;
8233 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
8234 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
8235 struct inode
*new_inode
= new_dentry
->d_inode
;
8236 struct inode
*old_inode
= old_dentry
->d_inode
;
8237 struct timespec ctime
= CURRENT_TIME
;
8241 u64 old_ino
= btrfs_ino(old_inode
);
8243 if (btrfs_ino(new_dir
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
8246 /* we only allow rename subvolume link between subvolumes */
8247 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
8250 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
8251 (new_inode
&& btrfs_ino(new_inode
) == BTRFS_FIRST_FREE_OBJECTID
))
8254 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
8255 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
8259 /* check for collisions, even if the name isn't there */
8260 ret
= btrfs_check_dir_item_collision(dest
, new_dir
->i_ino
,
8261 new_dentry
->d_name
.name
,
8262 new_dentry
->d_name
.len
);
8265 if (ret
== -EEXIST
) {
8267 * eexist without a new_inode */
8268 if (WARN_ON(!new_inode
)) {
8272 /* maybe -EOVERFLOW */
8279 * we're using rename to replace one file with another.
8280 * and the replacement file is large. Start IO on it now so
8281 * we don't add too much work to the end of the transaction
8283 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
&&
8284 old_inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
8285 filemap_flush(old_inode
->i_mapping
);
8287 /* close the racy window with snapshot create/destroy ioctl */
8288 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
8289 down_read(&root
->fs_info
->subvol_sem
);
8291 * We want to reserve the absolute worst case amount of items. So if
8292 * both inodes are subvols and we need to unlink them then that would
8293 * require 4 item modifications, but if they are both normal inodes it
8294 * would require 5 item modifications, so we'll assume their normal
8295 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8296 * should cover the worst case number of items we'll modify.
8298 trans
= btrfs_start_transaction(root
, 11);
8299 if (IS_ERR(trans
)) {
8300 ret
= PTR_ERR(trans
);
8305 btrfs_record_root_in_trans(trans
, dest
);
8307 ret
= btrfs_set_inode_index(new_dir
, &index
);
8311 BTRFS_I(old_inode
)->dir_index
= 0ULL;
8312 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
8313 /* force full log commit if subvolume involved. */
8314 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
8316 ret
= btrfs_insert_inode_ref(trans
, dest
,
8317 new_dentry
->d_name
.name
,
8318 new_dentry
->d_name
.len
,
8320 btrfs_ino(new_dir
), index
);
8324 * this is an ugly little race, but the rename is required
8325 * to make sure that if we crash, the inode is either at the
8326 * old name or the new one. pinning the log transaction lets
8327 * us make sure we don't allow a log commit to come in after
8328 * we unlink the name but before we add the new name back in.
8330 btrfs_pin_log_trans(root
);
8333 * make sure the inode gets flushed if it is replacing
8336 if (new_inode
&& new_inode
->i_size
&& S_ISREG(old_inode
->i_mode
))
8337 btrfs_add_ordered_operation(trans
, root
, old_inode
);
8339 inode_inc_iversion(old_dir
);
8340 inode_inc_iversion(new_dir
);
8341 inode_inc_iversion(old_inode
);
8342 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
8343 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
8344 old_inode
->i_ctime
= ctime
;
8346 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
8347 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
8349 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
8350 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
8351 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
8352 old_dentry
->d_name
.name
,
8353 old_dentry
->d_name
.len
);
8355 ret
= __btrfs_unlink_inode(trans
, root
, old_dir
,
8356 old_dentry
->d_inode
,
8357 old_dentry
->d_name
.name
,
8358 old_dentry
->d_name
.len
);
8360 ret
= btrfs_update_inode(trans
, root
, old_inode
);
8363 btrfs_abort_transaction(trans
, root
, ret
);
8368 inode_inc_iversion(new_inode
);
8369 new_inode
->i_ctime
= CURRENT_TIME
;
8370 if (unlikely(btrfs_ino(new_inode
) ==
8371 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
8372 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
8373 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
8375 new_dentry
->d_name
.name
,
8376 new_dentry
->d_name
.len
);
8377 BUG_ON(new_inode
->i_nlink
== 0);
8379 ret
= btrfs_unlink_inode(trans
, dest
, new_dir
,
8380 new_dentry
->d_inode
,
8381 new_dentry
->d_name
.name
,
8382 new_dentry
->d_name
.len
);
8384 if (!ret
&& new_inode
->i_nlink
== 0)
8385 ret
= btrfs_orphan_add(trans
, new_dentry
->d_inode
);
8387 btrfs_abort_transaction(trans
, root
, ret
);
8392 ret
= btrfs_add_link(trans
, new_dir
, old_inode
,
8393 new_dentry
->d_name
.name
,
8394 new_dentry
->d_name
.len
, 0, index
);
8396 btrfs_abort_transaction(trans
, root
, ret
);
8400 if (old_inode
->i_nlink
== 1)
8401 BTRFS_I(old_inode
)->dir_index
= index
;
8403 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
8404 struct dentry
*parent
= new_dentry
->d_parent
;
8405 btrfs_log_new_name(trans
, old_inode
, old_dir
, parent
);
8406 btrfs_end_log_trans(root
);
8409 btrfs_end_transaction(trans
, root
);
8411 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
8412 up_read(&root
->fs_info
->subvol_sem
);
8417 static void btrfs_run_delalloc_work(struct btrfs_work
*work
)
8419 struct btrfs_delalloc_work
*delalloc_work
;
8420 struct inode
*inode
;
8422 delalloc_work
= container_of(work
, struct btrfs_delalloc_work
,
8424 inode
= delalloc_work
->inode
;
8425 if (delalloc_work
->wait
) {
8426 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
8428 filemap_flush(inode
->i_mapping
);
8429 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
8430 &BTRFS_I(inode
)->runtime_flags
))
8431 filemap_flush(inode
->i_mapping
);
8434 if (delalloc_work
->delay_iput
)
8435 btrfs_add_delayed_iput(inode
);
8438 complete(&delalloc_work
->completion
);
8441 struct btrfs_delalloc_work
*btrfs_alloc_delalloc_work(struct inode
*inode
,
8442 int wait
, int delay_iput
)
8444 struct btrfs_delalloc_work
*work
;
8446 work
= kmem_cache_zalloc(btrfs_delalloc_work_cachep
, GFP_NOFS
);
8450 init_completion(&work
->completion
);
8451 INIT_LIST_HEAD(&work
->list
);
8452 work
->inode
= inode
;
8454 work
->delay_iput
= delay_iput
;
8455 btrfs_init_work(&work
->work
, btrfs_run_delalloc_work
, NULL
, NULL
);
8460 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work
*work
)
8462 wait_for_completion(&work
->completion
);
8463 kmem_cache_free(btrfs_delalloc_work_cachep
, work
);
8467 * some fairly slow code that needs optimization. This walks the list
8468 * of all the inodes with pending delalloc and forces them to disk.
8470 static int __start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
,
8473 struct btrfs_inode
*binode
;
8474 struct inode
*inode
;
8475 struct btrfs_delalloc_work
*work
, *next
;
8476 struct list_head works
;
8477 struct list_head splice
;
8480 INIT_LIST_HEAD(&works
);
8481 INIT_LIST_HEAD(&splice
);
8483 mutex_lock(&root
->delalloc_mutex
);
8484 spin_lock(&root
->delalloc_lock
);
8485 list_splice_init(&root
->delalloc_inodes
, &splice
);
8486 while (!list_empty(&splice
)) {
8487 binode
= list_entry(splice
.next
, struct btrfs_inode
,
8490 list_move_tail(&binode
->delalloc_inodes
,
8491 &root
->delalloc_inodes
);
8492 inode
= igrab(&binode
->vfs_inode
);
8494 cond_resched_lock(&root
->delalloc_lock
);
8497 spin_unlock(&root
->delalloc_lock
);
8499 work
= btrfs_alloc_delalloc_work(inode
, 0, delay_iput
);
8500 if (unlikely(!work
)) {
8502 btrfs_add_delayed_iput(inode
);
8508 list_add_tail(&work
->list
, &works
);
8509 btrfs_queue_work(root
->fs_info
->flush_workers
,
8512 if (nr
!= -1 && ret
>= nr
)
8515 spin_lock(&root
->delalloc_lock
);
8517 spin_unlock(&root
->delalloc_lock
);
8520 list_for_each_entry_safe(work
, next
, &works
, list
) {
8521 list_del_init(&work
->list
);
8522 btrfs_wait_and_free_delalloc_work(work
);
8525 if (!list_empty_careful(&splice
)) {
8526 spin_lock(&root
->delalloc_lock
);
8527 list_splice_tail(&splice
, &root
->delalloc_inodes
);
8528 spin_unlock(&root
->delalloc_lock
);
8530 mutex_unlock(&root
->delalloc_mutex
);
8534 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
8538 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
))
8541 ret
= __start_delalloc_inodes(root
, delay_iput
, -1);
8545 * the filemap_flush will queue IO into the worker threads, but
8546 * we have to make sure the IO is actually started and that
8547 * ordered extents get created before we return
8549 atomic_inc(&root
->fs_info
->async_submit_draining
);
8550 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
8551 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
8552 wait_event(root
->fs_info
->async_submit_wait
,
8553 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
8554 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
8556 atomic_dec(&root
->fs_info
->async_submit_draining
);
8560 int btrfs_start_delalloc_roots(struct btrfs_fs_info
*fs_info
, int delay_iput
,
8563 struct btrfs_root
*root
;
8564 struct list_head splice
;
8567 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
8570 INIT_LIST_HEAD(&splice
);
8572 mutex_lock(&fs_info
->delalloc_root_mutex
);
8573 spin_lock(&fs_info
->delalloc_root_lock
);
8574 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
8575 while (!list_empty(&splice
) && nr
) {
8576 root
= list_first_entry(&splice
, struct btrfs_root
,
8578 root
= btrfs_grab_fs_root(root
);
8580 list_move_tail(&root
->delalloc_root
,
8581 &fs_info
->delalloc_roots
);
8582 spin_unlock(&fs_info
->delalloc_root_lock
);
8584 ret
= __start_delalloc_inodes(root
, delay_iput
, nr
);
8585 btrfs_put_fs_root(root
);
8593 spin_lock(&fs_info
->delalloc_root_lock
);
8595 spin_unlock(&fs_info
->delalloc_root_lock
);
8598 atomic_inc(&fs_info
->async_submit_draining
);
8599 while (atomic_read(&fs_info
->nr_async_submits
) ||
8600 atomic_read(&fs_info
->async_delalloc_pages
)) {
8601 wait_event(fs_info
->async_submit_wait
,
8602 (atomic_read(&fs_info
->nr_async_submits
) == 0 &&
8603 atomic_read(&fs_info
->async_delalloc_pages
) == 0));
8605 atomic_dec(&fs_info
->async_submit_draining
);
8607 if (!list_empty_careful(&splice
)) {
8608 spin_lock(&fs_info
->delalloc_root_lock
);
8609 list_splice_tail(&splice
, &fs_info
->delalloc_roots
);
8610 spin_unlock(&fs_info
->delalloc_root_lock
);
8612 mutex_unlock(&fs_info
->delalloc_root_mutex
);
8616 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
8617 const char *symname
)
8619 struct btrfs_trans_handle
*trans
;
8620 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
8621 struct btrfs_path
*path
;
8622 struct btrfs_key key
;
8623 struct inode
*inode
= NULL
;
8631 struct btrfs_file_extent_item
*ei
;
8632 struct extent_buffer
*leaf
;
8634 name_len
= strlen(symname
);
8635 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
8636 return -ENAMETOOLONG
;
8639 * 2 items for inode item and ref
8640 * 2 items for dir items
8641 * 1 item for xattr if selinux is on
8643 trans
= btrfs_start_transaction(root
, 5);
8645 return PTR_ERR(trans
);
8647 err
= btrfs_find_free_ino(root
, &objectid
);
8651 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
8652 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
8653 S_IFLNK
|S_IRWXUGO
, &index
);
8654 if (IS_ERR(inode
)) {
8655 err
= PTR_ERR(inode
);
8659 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
8666 * If the active LSM wants to access the inode during
8667 * d_instantiate it needs these. Smack checks to see
8668 * if the filesystem supports xattrs by looking at the
8671 inode
->i_fop
= &btrfs_file_operations
;
8672 inode
->i_op
= &btrfs_file_inode_operations
;
8674 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
8678 inode
->i_mapping
->a_ops
= &btrfs_aops
;
8679 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
8680 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
8685 path
= btrfs_alloc_path();
8691 key
.objectid
= btrfs_ino(inode
);
8693 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
8694 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
8695 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
8699 btrfs_free_path(path
);
8702 leaf
= path
->nodes
[0];
8703 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
8704 struct btrfs_file_extent_item
);
8705 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
8706 btrfs_set_file_extent_type(leaf
, ei
,
8707 BTRFS_FILE_EXTENT_INLINE
);
8708 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
8709 btrfs_set_file_extent_compression(leaf
, ei
, 0);
8710 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
8711 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
8713 ptr
= btrfs_file_extent_inline_start(ei
);
8714 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
8715 btrfs_mark_buffer_dirty(leaf
);
8716 btrfs_free_path(path
);
8718 inode
->i_op
= &btrfs_symlink_inode_operations
;
8719 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
8720 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
8721 inode_set_bytes(inode
, name_len
);
8722 btrfs_i_size_write(inode
, name_len
);
8723 err
= btrfs_update_inode(trans
, root
, inode
);
8729 d_instantiate(dentry
, inode
);
8730 btrfs_end_transaction(trans
, root
);
8732 inode_dec_link_count(inode
);
8735 btrfs_btree_balance_dirty(root
);
8739 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
8740 u64 start
, u64 num_bytes
, u64 min_size
,
8741 loff_t actual_len
, u64
*alloc_hint
,
8742 struct btrfs_trans_handle
*trans
)
8744 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
8745 struct extent_map
*em
;
8746 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8747 struct btrfs_key ins
;
8748 u64 cur_offset
= start
;
8752 bool own_trans
= true;
8756 while (num_bytes
> 0) {
8758 trans
= btrfs_start_transaction(root
, 3);
8759 if (IS_ERR(trans
)) {
8760 ret
= PTR_ERR(trans
);
8765 cur_bytes
= min(num_bytes
, 256ULL * 1024 * 1024);
8766 cur_bytes
= max(cur_bytes
, min_size
);
8767 ret
= btrfs_reserve_extent(root
, cur_bytes
, min_size
, 0,
8768 *alloc_hint
, &ins
, 1);
8771 btrfs_end_transaction(trans
, root
);
8775 ret
= insert_reserved_file_extent(trans
, inode
,
8776 cur_offset
, ins
.objectid
,
8777 ins
.offset
, ins
.offset
,
8778 ins
.offset
, 0, 0, 0,
8779 BTRFS_FILE_EXTENT_PREALLOC
);
8781 btrfs_free_reserved_extent(root
, ins
.objectid
,
8783 btrfs_abort_transaction(trans
, root
, ret
);
8785 btrfs_end_transaction(trans
, root
);
8788 btrfs_drop_extent_cache(inode
, cur_offset
,
8789 cur_offset
+ ins
.offset
-1, 0);
8791 em
= alloc_extent_map();
8793 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
8794 &BTRFS_I(inode
)->runtime_flags
);
8798 em
->start
= cur_offset
;
8799 em
->orig_start
= cur_offset
;
8800 em
->len
= ins
.offset
;
8801 em
->block_start
= ins
.objectid
;
8802 em
->block_len
= ins
.offset
;
8803 em
->orig_block_len
= ins
.offset
;
8804 em
->ram_bytes
= ins
.offset
;
8805 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
8806 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
8807 em
->generation
= trans
->transid
;
8810 write_lock(&em_tree
->lock
);
8811 ret
= add_extent_mapping(em_tree
, em
, 1);
8812 write_unlock(&em_tree
->lock
);
8815 btrfs_drop_extent_cache(inode
, cur_offset
,
8816 cur_offset
+ ins
.offset
- 1,
8819 free_extent_map(em
);
8821 num_bytes
-= ins
.offset
;
8822 cur_offset
+= ins
.offset
;
8823 *alloc_hint
= ins
.objectid
+ ins
.offset
;
8825 inode_inc_iversion(inode
);
8826 inode
->i_ctime
= CURRENT_TIME
;
8827 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
8828 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
8829 (actual_len
> inode
->i_size
) &&
8830 (cur_offset
> inode
->i_size
)) {
8831 if (cur_offset
> actual_len
)
8832 i_size
= actual_len
;
8834 i_size
= cur_offset
;
8835 i_size_write(inode
, i_size
);
8836 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
8839 ret
= btrfs_update_inode(trans
, root
, inode
);
8842 btrfs_abort_transaction(trans
, root
, ret
);
8844 btrfs_end_transaction(trans
, root
);
8849 btrfs_end_transaction(trans
, root
);
8854 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
8855 u64 start
, u64 num_bytes
, u64 min_size
,
8856 loff_t actual_len
, u64
*alloc_hint
)
8858 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
8859 min_size
, actual_len
, alloc_hint
,
8863 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
8864 struct btrfs_trans_handle
*trans
, int mode
,
8865 u64 start
, u64 num_bytes
, u64 min_size
,
8866 loff_t actual_len
, u64
*alloc_hint
)
8868 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
8869 min_size
, actual_len
, alloc_hint
, trans
);
8872 static int btrfs_set_page_dirty(struct page
*page
)
8874 return __set_page_dirty_nobuffers(page
);
8877 static int btrfs_permission(struct inode
*inode
, int mask
)
8879 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8880 umode_t mode
= inode
->i_mode
;
8882 if (mask
& MAY_WRITE
&&
8883 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
))) {
8884 if (btrfs_root_readonly(root
))
8886 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
)
8889 return generic_permission(inode
, mask
);
8892 static const struct inode_operations btrfs_dir_inode_operations
= {
8893 .getattr
= btrfs_getattr
,
8894 .lookup
= btrfs_lookup
,
8895 .create
= btrfs_create
,
8896 .unlink
= btrfs_unlink
,
8898 .mkdir
= btrfs_mkdir
,
8899 .rmdir
= btrfs_rmdir
,
8900 .rename
= btrfs_rename
,
8901 .symlink
= btrfs_symlink
,
8902 .setattr
= btrfs_setattr
,
8903 .mknod
= btrfs_mknod
,
8904 .setxattr
= btrfs_setxattr
,
8905 .getxattr
= btrfs_getxattr
,
8906 .listxattr
= btrfs_listxattr
,
8907 .removexattr
= btrfs_removexattr
,
8908 .permission
= btrfs_permission
,
8909 .get_acl
= btrfs_get_acl
,
8910 .set_acl
= btrfs_set_acl
,
8911 .update_time
= btrfs_update_time
,
8913 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
8914 .lookup
= btrfs_lookup
,
8915 .permission
= btrfs_permission
,
8916 .get_acl
= btrfs_get_acl
,
8917 .set_acl
= btrfs_set_acl
,
8918 .update_time
= btrfs_update_time
,
8921 static const struct file_operations btrfs_dir_file_operations
= {
8922 .llseek
= generic_file_llseek
,
8923 .read
= generic_read_dir
,
8924 .iterate
= btrfs_real_readdir
,
8925 .unlocked_ioctl
= btrfs_ioctl
,
8926 #ifdef CONFIG_COMPAT
8927 .compat_ioctl
= btrfs_ioctl
,
8929 .release
= btrfs_release_file
,
8930 .fsync
= btrfs_sync_file
,
8933 static struct extent_io_ops btrfs_extent_io_ops
= {
8934 .fill_delalloc
= run_delalloc_range
,
8935 .submit_bio_hook
= btrfs_submit_bio_hook
,
8936 .merge_bio_hook
= btrfs_merge_bio_hook
,
8937 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
8938 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
8939 .writepage_start_hook
= btrfs_writepage_start_hook
,
8940 .set_bit_hook
= btrfs_set_bit_hook
,
8941 .clear_bit_hook
= btrfs_clear_bit_hook
,
8942 .merge_extent_hook
= btrfs_merge_extent_hook
,
8943 .split_extent_hook
= btrfs_split_extent_hook
,
8947 * btrfs doesn't support the bmap operation because swapfiles
8948 * use bmap to make a mapping of extents in the file. They assume
8949 * these extents won't change over the life of the file and they
8950 * use the bmap result to do IO directly to the drive.
8952 * the btrfs bmap call would return logical addresses that aren't
8953 * suitable for IO and they also will change frequently as COW
8954 * operations happen. So, swapfile + btrfs == corruption.
8956 * For now we're avoiding this by dropping bmap.
8958 static const struct address_space_operations btrfs_aops
= {
8959 .readpage
= btrfs_readpage
,
8960 .writepage
= btrfs_writepage
,
8961 .writepages
= btrfs_writepages
,
8962 .readpages
= btrfs_readpages
,
8963 .direct_IO
= btrfs_direct_IO
,
8964 .invalidatepage
= btrfs_invalidatepage
,
8965 .releasepage
= btrfs_releasepage
,
8966 .set_page_dirty
= btrfs_set_page_dirty
,
8967 .error_remove_page
= generic_error_remove_page
,
8970 static const struct address_space_operations btrfs_symlink_aops
= {
8971 .readpage
= btrfs_readpage
,
8972 .writepage
= btrfs_writepage
,
8973 .invalidatepage
= btrfs_invalidatepage
,
8974 .releasepage
= btrfs_releasepage
,
8977 static const struct inode_operations btrfs_file_inode_operations
= {
8978 .getattr
= btrfs_getattr
,
8979 .setattr
= btrfs_setattr
,
8980 .setxattr
= btrfs_setxattr
,
8981 .getxattr
= btrfs_getxattr
,
8982 .listxattr
= btrfs_listxattr
,
8983 .removexattr
= btrfs_removexattr
,
8984 .permission
= btrfs_permission
,
8985 .fiemap
= btrfs_fiemap
,
8986 .get_acl
= btrfs_get_acl
,
8987 .set_acl
= btrfs_set_acl
,
8988 .update_time
= btrfs_update_time
,
8990 static const struct inode_operations btrfs_special_inode_operations
= {
8991 .getattr
= btrfs_getattr
,
8992 .setattr
= btrfs_setattr
,
8993 .permission
= btrfs_permission
,
8994 .setxattr
= btrfs_setxattr
,
8995 .getxattr
= btrfs_getxattr
,
8996 .listxattr
= btrfs_listxattr
,
8997 .removexattr
= btrfs_removexattr
,
8998 .get_acl
= btrfs_get_acl
,
8999 .set_acl
= btrfs_set_acl
,
9000 .update_time
= btrfs_update_time
,
9002 static const struct inode_operations btrfs_symlink_inode_operations
= {
9003 .readlink
= generic_readlink
,
9004 .follow_link
= page_follow_link_light
,
9005 .put_link
= page_put_link
,
9006 .getattr
= btrfs_getattr
,
9007 .setattr
= btrfs_setattr
,
9008 .permission
= btrfs_permission
,
9009 .setxattr
= btrfs_setxattr
,
9010 .getxattr
= btrfs_getxattr
,
9011 .listxattr
= btrfs_listxattr
,
9012 .removexattr
= btrfs_removexattr
,
9013 .update_time
= btrfs_update_time
,
9016 const struct dentry_operations btrfs_dentry_operations
= {
9017 .d_delete
= btrfs_dentry_delete
,
9018 .d_release
= btrfs_dentry_release
,