2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
28 #include "transaction.h"
31 #include "inode-map.h"
33 #include "dev-replace.h"
35 #define BTRFS_ROOT_TRANS_TAG 0
37 static unsigned int btrfs_blocked_trans_types
[TRANS_STATE_MAX
] = {
38 [TRANS_STATE_RUNNING
] = 0U,
39 [TRANS_STATE_BLOCKED
] = (__TRANS_USERSPACE
|
41 [TRANS_STATE_COMMIT_START
] = (__TRANS_USERSPACE
|
44 [TRANS_STATE_COMMIT_DOING
] = (__TRANS_USERSPACE
|
48 [TRANS_STATE_UNBLOCKED
] = (__TRANS_USERSPACE
|
53 [TRANS_STATE_COMPLETED
] = (__TRANS_USERSPACE
|
60 void btrfs_put_transaction(struct btrfs_transaction
*transaction
)
62 WARN_ON(atomic_read(&transaction
->use_count
) == 0);
63 if (atomic_dec_and_test(&transaction
->use_count
)) {
64 BUG_ON(!list_empty(&transaction
->list
));
65 WARN_ON(!RB_EMPTY_ROOT(&transaction
->delayed_refs
.href_root
));
66 while (!list_empty(&transaction
->pending_chunks
)) {
67 struct extent_map
*em
;
69 em
= list_first_entry(&transaction
->pending_chunks
,
70 struct extent_map
, list
);
71 list_del_init(&em
->list
);
74 kmem_cache_free(btrfs_transaction_cachep
, transaction
);
78 static noinline
void switch_commit_roots(struct btrfs_transaction
*trans
,
79 struct btrfs_fs_info
*fs_info
)
81 struct btrfs_root
*root
, *tmp
;
83 down_write(&fs_info
->commit_root_sem
);
84 list_for_each_entry_safe(root
, tmp
, &trans
->switch_commits
,
86 list_del_init(&root
->dirty_list
);
87 free_extent_buffer(root
->commit_root
);
88 root
->commit_root
= btrfs_root_node(root
);
89 if (is_fstree(root
->objectid
))
90 btrfs_unpin_free_ino(root
);
92 up_write(&fs_info
->commit_root_sem
);
95 static inline void extwriter_counter_inc(struct btrfs_transaction
*trans
,
98 if (type
& TRANS_EXTWRITERS
)
99 atomic_inc(&trans
->num_extwriters
);
102 static inline void extwriter_counter_dec(struct btrfs_transaction
*trans
,
105 if (type
& TRANS_EXTWRITERS
)
106 atomic_dec(&trans
->num_extwriters
);
109 static inline void extwriter_counter_init(struct btrfs_transaction
*trans
,
112 atomic_set(&trans
->num_extwriters
, ((type
& TRANS_EXTWRITERS
) ? 1 : 0));
115 static inline int extwriter_counter_read(struct btrfs_transaction
*trans
)
117 return atomic_read(&trans
->num_extwriters
);
121 * either allocate a new transaction or hop into the existing one
123 static noinline
int join_transaction(struct btrfs_root
*root
, unsigned int type
)
125 struct btrfs_transaction
*cur_trans
;
126 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
128 spin_lock(&fs_info
->trans_lock
);
130 /* The file system has been taken offline. No new transactions. */
131 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
132 spin_unlock(&fs_info
->trans_lock
);
136 cur_trans
= fs_info
->running_transaction
;
138 if (cur_trans
->aborted
) {
139 spin_unlock(&fs_info
->trans_lock
);
140 return cur_trans
->aborted
;
142 if (btrfs_blocked_trans_types
[cur_trans
->state
] & type
) {
143 spin_unlock(&fs_info
->trans_lock
);
146 atomic_inc(&cur_trans
->use_count
);
147 atomic_inc(&cur_trans
->num_writers
);
148 extwriter_counter_inc(cur_trans
, type
);
149 spin_unlock(&fs_info
->trans_lock
);
152 spin_unlock(&fs_info
->trans_lock
);
155 * If we are ATTACH, we just want to catch the current transaction,
156 * and commit it. If there is no transaction, just return ENOENT.
158 if (type
== TRANS_ATTACH
)
162 * JOIN_NOLOCK only happens during the transaction commit, so
163 * it is impossible that ->running_transaction is NULL
165 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
167 cur_trans
= kmem_cache_alloc(btrfs_transaction_cachep
, GFP_NOFS
);
171 spin_lock(&fs_info
->trans_lock
);
172 if (fs_info
->running_transaction
) {
174 * someone started a transaction after we unlocked. Make sure
175 * to redo the checks above
177 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
179 } else if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
180 spin_unlock(&fs_info
->trans_lock
);
181 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
185 atomic_set(&cur_trans
->num_writers
, 1);
186 extwriter_counter_init(cur_trans
, type
);
187 init_waitqueue_head(&cur_trans
->writer_wait
);
188 init_waitqueue_head(&cur_trans
->commit_wait
);
189 cur_trans
->state
= TRANS_STATE_RUNNING
;
191 * One for this trans handle, one so it will live on until we
192 * commit the transaction.
194 atomic_set(&cur_trans
->use_count
, 2);
195 cur_trans
->start_time
= get_seconds();
197 cur_trans
->delayed_refs
.href_root
= RB_ROOT
;
198 atomic_set(&cur_trans
->delayed_refs
.num_entries
, 0);
199 cur_trans
->delayed_refs
.num_heads_ready
= 0;
200 cur_trans
->delayed_refs
.num_heads
= 0;
201 cur_trans
->delayed_refs
.flushing
= 0;
202 cur_trans
->delayed_refs
.run_delayed_start
= 0;
205 * although the tree mod log is per file system and not per transaction,
206 * the log must never go across transaction boundaries.
209 if (!list_empty(&fs_info
->tree_mod_seq_list
))
210 WARN(1, KERN_ERR
"BTRFS: tree_mod_seq_list not empty when "
211 "creating a fresh transaction\n");
212 if (!RB_EMPTY_ROOT(&fs_info
->tree_mod_log
))
213 WARN(1, KERN_ERR
"BTRFS: tree_mod_log rb tree not empty when "
214 "creating a fresh transaction\n");
215 atomic64_set(&fs_info
->tree_mod_seq
, 0);
217 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
219 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
220 INIT_LIST_HEAD(&cur_trans
->ordered_operations
);
221 INIT_LIST_HEAD(&cur_trans
->pending_chunks
);
222 INIT_LIST_HEAD(&cur_trans
->switch_commits
);
223 list_add_tail(&cur_trans
->list
, &fs_info
->trans_list
);
224 extent_io_tree_init(&cur_trans
->dirty_pages
,
225 fs_info
->btree_inode
->i_mapping
);
226 fs_info
->generation
++;
227 cur_trans
->transid
= fs_info
->generation
;
228 fs_info
->running_transaction
= cur_trans
;
229 cur_trans
->aborted
= 0;
230 spin_unlock(&fs_info
->trans_lock
);
236 * this does all the record keeping required to make sure that a reference
237 * counted root is properly recorded in a given transaction. This is required
238 * to make sure the old root from before we joined the transaction is deleted
239 * when the transaction commits
241 static int record_root_in_trans(struct btrfs_trans_handle
*trans
,
242 struct btrfs_root
*root
)
244 if (root
->ref_cows
&& root
->last_trans
< trans
->transid
) {
245 WARN_ON(root
== root
->fs_info
->extent_root
);
246 WARN_ON(root
->commit_root
!= root
->node
);
249 * see below for in_trans_setup usage rules
250 * we have the reloc mutex held now, so there
251 * is only one writer in this function
253 root
->in_trans_setup
= 1;
255 /* make sure readers find in_trans_setup before
256 * they find our root->last_trans update
260 spin_lock(&root
->fs_info
->fs_roots_radix_lock
);
261 if (root
->last_trans
== trans
->transid
) {
262 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
265 radix_tree_tag_set(&root
->fs_info
->fs_roots_radix
,
266 (unsigned long)root
->root_key
.objectid
,
267 BTRFS_ROOT_TRANS_TAG
);
268 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
269 root
->last_trans
= trans
->transid
;
271 /* this is pretty tricky. We don't want to
272 * take the relocation lock in btrfs_record_root_in_trans
273 * unless we're really doing the first setup for this root in
276 * Normally we'd use root->last_trans as a flag to decide
277 * if we want to take the expensive mutex.
279 * But, we have to set root->last_trans before we
280 * init the relocation root, otherwise, we trip over warnings
281 * in ctree.c. The solution used here is to flag ourselves
282 * with root->in_trans_setup. When this is 1, we're still
283 * fixing up the reloc trees and everyone must wait.
285 * When this is zero, they can trust root->last_trans and fly
286 * through btrfs_record_root_in_trans without having to take the
287 * lock. smp_wmb() makes sure that all the writes above are
288 * done before we pop in the zero below
290 btrfs_init_reloc_root(trans
, root
);
292 root
->in_trans_setup
= 0;
298 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
299 struct btrfs_root
*root
)
305 * see record_root_in_trans for comments about in_trans_setup usage
309 if (root
->last_trans
== trans
->transid
&&
310 !root
->in_trans_setup
)
313 mutex_lock(&root
->fs_info
->reloc_mutex
);
314 record_root_in_trans(trans
, root
);
315 mutex_unlock(&root
->fs_info
->reloc_mutex
);
320 static inline int is_transaction_blocked(struct btrfs_transaction
*trans
)
322 return (trans
->state
>= TRANS_STATE_BLOCKED
&&
323 trans
->state
< TRANS_STATE_UNBLOCKED
&&
327 /* wait for commit against the current transaction to become unblocked
328 * when this is done, it is safe to start a new transaction, but the current
329 * transaction might not be fully on disk.
331 static void wait_current_trans(struct btrfs_root
*root
)
333 struct btrfs_transaction
*cur_trans
;
335 spin_lock(&root
->fs_info
->trans_lock
);
336 cur_trans
= root
->fs_info
->running_transaction
;
337 if (cur_trans
&& is_transaction_blocked(cur_trans
)) {
338 atomic_inc(&cur_trans
->use_count
);
339 spin_unlock(&root
->fs_info
->trans_lock
);
341 wait_event(root
->fs_info
->transaction_wait
,
342 cur_trans
->state
>= TRANS_STATE_UNBLOCKED
||
344 btrfs_put_transaction(cur_trans
);
346 spin_unlock(&root
->fs_info
->trans_lock
);
350 static int may_wait_transaction(struct btrfs_root
*root
, int type
)
352 if (root
->fs_info
->log_root_recovering
)
355 if (type
== TRANS_USERSPACE
)
358 if (type
== TRANS_START
&&
359 !atomic_read(&root
->fs_info
->open_ioctl_trans
))
365 static inline bool need_reserve_reloc_root(struct btrfs_root
*root
)
367 if (!root
->fs_info
->reloc_ctl
||
369 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
376 static struct btrfs_trans_handle
*
377 start_transaction(struct btrfs_root
*root
, u64 num_items
, unsigned int type
,
378 enum btrfs_reserve_flush_enum flush
)
380 struct btrfs_trans_handle
*h
;
381 struct btrfs_transaction
*cur_trans
;
383 u64 qgroup_reserved
= 0;
384 bool reloc_reserved
= false;
387 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
))
388 return ERR_PTR(-EROFS
);
390 if (current
->journal_info
&&
391 current
->journal_info
!= (void *)BTRFS_SEND_TRANS_STUB
) {
392 WARN_ON(type
& TRANS_EXTWRITERS
);
393 h
= current
->journal_info
;
395 WARN_ON(h
->use_count
> 2);
396 h
->orig_rsv
= h
->block_rsv
;
402 * Do the reservation before we join the transaction so we can do all
403 * the appropriate flushing if need be.
405 if (num_items
> 0 && root
!= root
->fs_info
->chunk_root
) {
406 if (root
->fs_info
->quota_enabled
&&
407 is_fstree(root
->root_key
.objectid
)) {
408 qgroup_reserved
= num_items
* root
->leafsize
;
409 ret
= btrfs_qgroup_reserve(root
, qgroup_reserved
);
414 num_bytes
= btrfs_calc_trans_metadata_size(root
, num_items
);
416 * Do the reservation for the relocation root creation
418 if (unlikely(need_reserve_reloc_root(root
))) {
419 num_bytes
+= root
->nodesize
;
420 reloc_reserved
= true;
423 ret
= btrfs_block_rsv_add(root
,
424 &root
->fs_info
->trans_block_rsv
,
430 h
= kmem_cache_alloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
437 * If we are JOIN_NOLOCK we're already committing a transaction and
438 * waiting on this guy, so we don't need to do the sb_start_intwrite
439 * because we're already holding a ref. We need this because we could
440 * have raced in and did an fsync() on a file which can kick a commit
441 * and then we deadlock with somebody doing a freeze.
443 * If we are ATTACH, it means we just want to catch the current
444 * transaction and commit it, so we needn't do sb_start_intwrite().
446 if (type
& __TRANS_FREEZABLE
)
447 sb_start_intwrite(root
->fs_info
->sb
);
449 if (may_wait_transaction(root
, type
))
450 wait_current_trans(root
);
453 ret
= join_transaction(root
, type
);
455 wait_current_trans(root
);
456 if (unlikely(type
== TRANS_ATTACH
))
459 } while (ret
== -EBUSY
);
462 /* We must get the transaction if we are JOIN_NOLOCK. */
463 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
467 cur_trans
= root
->fs_info
->running_transaction
;
469 h
->transid
= cur_trans
->transid
;
470 h
->transaction
= cur_trans
;
472 h
->bytes_reserved
= 0;
474 h
->delayed_ref_updates
= 0;
480 h
->qgroup_reserved
= 0;
481 h
->delayed_ref_elem
.seq
= 0;
483 h
->allocating_chunk
= false;
484 h
->reloc_reserved
= false;
486 INIT_LIST_HEAD(&h
->qgroup_ref_list
);
487 INIT_LIST_HEAD(&h
->new_bgs
);
490 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
&&
491 may_wait_transaction(root
, type
)) {
492 btrfs_commit_transaction(h
, root
);
497 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
498 h
->transid
, num_bytes
, 1);
499 h
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
500 h
->bytes_reserved
= num_bytes
;
501 h
->reloc_reserved
= reloc_reserved
;
503 h
->qgroup_reserved
= qgroup_reserved
;
506 btrfs_record_root_in_trans(h
, root
);
508 if (!current
->journal_info
&& type
!= TRANS_USERSPACE
)
509 current
->journal_info
= h
;
513 if (type
& __TRANS_FREEZABLE
)
514 sb_end_intwrite(root
->fs_info
->sb
);
515 kmem_cache_free(btrfs_trans_handle_cachep
, h
);
518 btrfs_block_rsv_release(root
, &root
->fs_info
->trans_block_rsv
,
522 btrfs_qgroup_free(root
, qgroup_reserved
);
526 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
529 return start_transaction(root
, num_items
, TRANS_START
,
530 BTRFS_RESERVE_FLUSH_ALL
);
533 struct btrfs_trans_handle
*btrfs_start_transaction_lflush(
534 struct btrfs_root
*root
, int num_items
)
536 return start_transaction(root
, num_items
, TRANS_START
,
537 BTRFS_RESERVE_FLUSH_LIMIT
);
540 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
)
542 return start_transaction(root
, 0, TRANS_JOIN
, 0);
545 struct btrfs_trans_handle
*btrfs_join_transaction_nolock(struct btrfs_root
*root
)
547 return start_transaction(root
, 0, TRANS_JOIN_NOLOCK
, 0);
550 struct btrfs_trans_handle
*btrfs_start_ioctl_transaction(struct btrfs_root
*root
)
552 return start_transaction(root
, 0, TRANS_USERSPACE
, 0);
556 * btrfs_attach_transaction() - catch the running transaction
558 * It is used when we want to commit the current the transaction, but
559 * don't want to start a new one.
561 * Note: If this function return -ENOENT, it just means there is no
562 * running transaction. But it is possible that the inactive transaction
563 * is still in the memory, not fully on disk. If you hope there is no
564 * inactive transaction in the fs when -ENOENT is returned, you should
566 * btrfs_attach_transaction_barrier()
568 struct btrfs_trans_handle
*btrfs_attach_transaction(struct btrfs_root
*root
)
570 return start_transaction(root
, 0, TRANS_ATTACH
, 0);
574 * btrfs_attach_transaction_barrier() - catch the running transaction
576 * It is similar to the above function, the differentia is this one
577 * will wait for all the inactive transactions until they fully
580 struct btrfs_trans_handle
*
581 btrfs_attach_transaction_barrier(struct btrfs_root
*root
)
583 struct btrfs_trans_handle
*trans
;
585 trans
= start_transaction(root
, 0, TRANS_ATTACH
, 0);
586 if (IS_ERR(trans
) && PTR_ERR(trans
) == -ENOENT
)
587 btrfs_wait_for_commit(root
, 0);
592 /* wait for a transaction commit to be fully complete */
593 static noinline
void wait_for_commit(struct btrfs_root
*root
,
594 struct btrfs_transaction
*commit
)
596 wait_event(commit
->commit_wait
, commit
->state
== TRANS_STATE_COMPLETED
);
599 int btrfs_wait_for_commit(struct btrfs_root
*root
, u64 transid
)
601 struct btrfs_transaction
*cur_trans
= NULL
, *t
;
605 if (transid
<= root
->fs_info
->last_trans_committed
)
609 /* find specified transaction */
610 spin_lock(&root
->fs_info
->trans_lock
);
611 list_for_each_entry(t
, &root
->fs_info
->trans_list
, list
) {
612 if (t
->transid
== transid
) {
614 atomic_inc(&cur_trans
->use_count
);
618 if (t
->transid
> transid
) {
623 spin_unlock(&root
->fs_info
->trans_lock
);
624 /* The specified transaction doesn't exist */
628 /* find newest transaction that is committing | committed */
629 spin_lock(&root
->fs_info
->trans_lock
);
630 list_for_each_entry_reverse(t
, &root
->fs_info
->trans_list
,
632 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
633 if (t
->state
== TRANS_STATE_COMPLETED
)
636 atomic_inc(&cur_trans
->use_count
);
640 spin_unlock(&root
->fs_info
->trans_lock
);
642 goto out
; /* nothing committing|committed */
645 wait_for_commit(root
, cur_trans
);
646 btrfs_put_transaction(cur_trans
);
651 void btrfs_throttle(struct btrfs_root
*root
)
653 if (!atomic_read(&root
->fs_info
->open_ioctl_trans
))
654 wait_current_trans(root
);
657 static int should_end_transaction(struct btrfs_trans_handle
*trans
,
658 struct btrfs_root
*root
)
660 if (root
->fs_info
->global_block_rsv
.space_info
->full
&&
661 btrfs_check_space_for_delayed_refs(trans
, root
))
664 return !!btrfs_block_rsv_check(root
, &root
->fs_info
->global_block_rsv
, 5);
667 int btrfs_should_end_transaction(struct btrfs_trans_handle
*trans
,
668 struct btrfs_root
*root
)
670 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
675 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
||
676 cur_trans
->delayed_refs
.flushing
)
679 updates
= trans
->delayed_ref_updates
;
680 trans
->delayed_ref_updates
= 0;
682 err
= btrfs_run_delayed_refs(trans
, root
, updates
);
683 if (err
) /* Error code will also eval true */
687 return should_end_transaction(trans
, root
);
690 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
691 struct btrfs_root
*root
, int throttle
)
693 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
694 struct btrfs_fs_info
*info
= root
->fs_info
;
695 unsigned long cur
= trans
->delayed_ref_updates
;
696 int lock
= (trans
->type
!= TRANS_JOIN_NOLOCK
);
699 if (trans
->use_count
> 1) {
701 trans
->block_rsv
= trans
->orig_rsv
;
706 * do the qgroup accounting as early as possible
708 err
= btrfs_delayed_refs_qgroup_accounting(trans
, info
);
710 btrfs_trans_release_metadata(trans
, root
);
711 trans
->block_rsv
= NULL
;
713 if (trans
->qgroup_reserved
) {
715 * the same root has to be passed here between start_transaction
716 * and end_transaction. Subvolume quota depends on this.
718 btrfs_qgroup_free(trans
->root
, trans
->qgroup_reserved
);
719 trans
->qgroup_reserved
= 0;
722 if (!list_empty(&trans
->new_bgs
))
723 btrfs_create_pending_block_groups(trans
, root
);
725 trans
->delayed_ref_updates
= 0;
726 if (!trans
->sync
&& btrfs_should_throttle_delayed_refs(trans
, root
)) {
727 cur
= max_t(unsigned long, cur
, 32);
728 trans
->delayed_ref_updates
= 0;
729 btrfs_run_delayed_refs(trans
, root
, cur
);
732 btrfs_trans_release_metadata(trans
, root
);
733 trans
->block_rsv
= NULL
;
735 if (!list_empty(&trans
->new_bgs
))
736 btrfs_create_pending_block_groups(trans
, root
);
738 if (lock
&& !atomic_read(&root
->fs_info
->open_ioctl_trans
) &&
739 should_end_transaction(trans
, root
) &&
740 ACCESS_ONCE(cur_trans
->state
) == TRANS_STATE_RUNNING
) {
741 spin_lock(&info
->trans_lock
);
742 if (cur_trans
->state
== TRANS_STATE_RUNNING
)
743 cur_trans
->state
= TRANS_STATE_BLOCKED
;
744 spin_unlock(&info
->trans_lock
);
747 if (lock
&& ACCESS_ONCE(cur_trans
->state
) == TRANS_STATE_BLOCKED
) {
749 return btrfs_commit_transaction(trans
, root
);
751 wake_up_process(info
->transaction_kthread
);
754 if (trans
->type
& __TRANS_FREEZABLE
)
755 sb_end_intwrite(root
->fs_info
->sb
);
757 WARN_ON(cur_trans
!= info
->running_transaction
);
758 WARN_ON(atomic_read(&cur_trans
->num_writers
) < 1);
759 atomic_dec(&cur_trans
->num_writers
);
760 extwriter_counter_dec(cur_trans
, trans
->type
);
763 if (waitqueue_active(&cur_trans
->writer_wait
))
764 wake_up(&cur_trans
->writer_wait
);
765 btrfs_put_transaction(cur_trans
);
767 if (current
->journal_info
== trans
)
768 current
->journal_info
= NULL
;
771 btrfs_run_delayed_iputs(root
);
773 if (trans
->aborted
||
774 test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
)) {
775 wake_up_process(info
->transaction_kthread
);
778 assert_qgroups_uptodate(trans
);
780 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
784 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
785 struct btrfs_root
*root
)
787 return __btrfs_end_transaction(trans
, root
, 0);
790 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
,
791 struct btrfs_root
*root
)
793 return __btrfs_end_transaction(trans
, root
, 1);
797 * when btree blocks are allocated, they have some corresponding bits set for
798 * them in one of two extent_io trees. This is used to make sure all of
799 * those extents are sent to disk but does not wait on them
801 int btrfs_write_marked_extents(struct btrfs_root
*root
,
802 struct extent_io_tree
*dirty_pages
, int mark
)
806 struct address_space
*mapping
= root
->fs_info
->btree_inode
->i_mapping
;
807 struct extent_state
*cached_state
= NULL
;
811 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
812 mark
, &cached_state
)) {
813 convert_extent_bit(dirty_pages
, start
, end
, EXTENT_NEED_WAIT
,
814 mark
, &cached_state
, GFP_NOFS
);
816 err
= filemap_fdatawrite_range(mapping
, start
, end
);
828 * when btree blocks are allocated, they have some corresponding bits set for
829 * them in one of two extent_io trees. This is used to make sure all of
830 * those extents are on disk for transaction or log commit. We wait
831 * on all the pages and clear them from the dirty pages state tree
833 int btrfs_wait_marked_extents(struct btrfs_root
*root
,
834 struct extent_io_tree
*dirty_pages
, int mark
)
838 struct address_space
*mapping
= root
->fs_info
->btree_inode
->i_mapping
;
839 struct extent_state
*cached_state
= NULL
;
843 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
844 EXTENT_NEED_WAIT
, &cached_state
)) {
845 clear_extent_bit(dirty_pages
, start
, end
, EXTENT_NEED_WAIT
,
846 0, 0, &cached_state
, GFP_NOFS
);
847 err
= filemap_fdatawait_range(mapping
, start
, end
);
859 * when btree blocks are allocated, they have some corresponding bits set for
860 * them in one of two extent_io trees. This is used to make sure all of
861 * those extents are on disk for transaction or log commit
863 static int btrfs_write_and_wait_marked_extents(struct btrfs_root
*root
,
864 struct extent_io_tree
*dirty_pages
, int mark
)
868 struct blk_plug plug
;
870 blk_start_plug(&plug
);
871 ret
= btrfs_write_marked_extents(root
, dirty_pages
, mark
);
872 blk_finish_plug(&plug
);
873 ret2
= btrfs_wait_marked_extents(root
, dirty_pages
, mark
);
882 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
,
883 struct btrfs_root
*root
)
885 if (!trans
|| !trans
->transaction
) {
886 struct inode
*btree_inode
;
887 btree_inode
= root
->fs_info
->btree_inode
;
888 return filemap_write_and_wait(btree_inode
->i_mapping
);
890 return btrfs_write_and_wait_marked_extents(root
,
891 &trans
->transaction
->dirty_pages
,
896 * this is used to update the root pointer in the tree of tree roots.
898 * But, in the case of the extent allocation tree, updating the root
899 * pointer may allocate blocks which may change the root of the extent
902 * So, this loops and repeats and makes sure the cowonly root didn't
903 * change while the root pointer was being updated in the metadata.
905 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
906 struct btrfs_root
*root
)
911 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
913 old_root_used
= btrfs_root_used(&root
->root_item
);
914 btrfs_write_dirty_block_groups(trans
, root
);
917 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
918 if (old_root_bytenr
== root
->node
->start
&&
919 old_root_used
== btrfs_root_used(&root
->root_item
))
922 btrfs_set_root_node(&root
->root_item
, root
->node
);
923 ret
= btrfs_update_root(trans
, tree_root
,
929 old_root_used
= btrfs_root_used(&root
->root_item
);
930 ret
= btrfs_write_dirty_block_groups(trans
, root
);
939 * update all the cowonly tree roots on disk
941 * The error handling in this function may not be obvious. Any of the
942 * failures will cause the file system to go offline. We still need
943 * to clean up the delayed refs.
945 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
,
946 struct btrfs_root
*root
)
948 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
949 struct list_head
*next
;
950 struct extent_buffer
*eb
;
953 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
957 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
958 ret
= btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
,
960 btrfs_tree_unlock(eb
);
961 free_extent_buffer(eb
);
966 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
970 ret
= btrfs_run_dev_stats(trans
, root
->fs_info
);
973 ret
= btrfs_run_dev_replace(trans
, root
->fs_info
);
976 ret
= btrfs_run_qgroups(trans
, root
->fs_info
);
980 /* run_qgroups might have added some more refs */
981 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
985 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
986 next
= fs_info
->dirty_cowonly_roots
.next
;
988 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
990 if (root
!= fs_info
->extent_root
)
991 list_add_tail(&root
->dirty_list
,
992 &trans
->transaction
->switch_commits
);
993 ret
= update_cowonly_root(trans
, root
);
998 list_add_tail(&fs_info
->extent_root
->dirty_list
,
999 &trans
->transaction
->switch_commits
);
1000 btrfs_after_dev_replace_commit(fs_info
);
1006 * dead roots are old snapshots that need to be deleted. This allocates
1007 * a dirty root struct and adds it into the list of dead roots that need to
1010 void btrfs_add_dead_root(struct btrfs_root
*root
)
1012 spin_lock(&root
->fs_info
->trans_lock
);
1013 if (list_empty(&root
->root_list
))
1014 list_add_tail(&root
->root_list
, &root
->fs_info
->dead_roots
);
1015 spin_unlock(&root
->fs_info
->trans_lock
);
1019 * update all the cowonly tree roots on disk
1021 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
,
1022 struct btrfs_root
*root
)
1024 struct btrfs_root
*gang
[8];
1025 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1030 spin_lock(&fs_info
->fs_roots_radix_lock
);
1032 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
1035 BTRFS_ROOT_TRANS_TAG
);
1038 for (i
= 0; i
< ret
; i
++) {
1040 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
1041 (unsigned long)root
->root_key
.objectid
,
1042 BTRFS_ROOT_TRANS_TAG
);
1043 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1045 btrfs_free_log(trans
, root
);
1046 btrfs_update_reloc_root(trans
, root
);
1047 btrfs_orphan_commit_root(trans
, root
);
1049 btrfs_save_ino_cache(root
, trans
);
1051 /* see comments in should_cow_block() */
1052 root
->force_cow
= 0;
1055 if (root
->commit_root
!= root
->node
) {
1056 list_add_tail(&root
->dirty_list
,
1057 &trans
->transaction
->switch_commits
);
1058 btrfs_set_root_node(&root
->root_item
,
1062 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
1065 spin_lock(&fs_info
->fs_roots_radix_lock
);
1070 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1075 * defrag a given btree.
1076 * Every leaf in the btree is read and defragged.
1078 int btrfs_defrag_root(struct btrfs_root
*root
)
1080 struct btrfs_fs_info
*info
= root
->fs_info
;
1081 struct btrfs_trans_handle
*trans
;
1084 if (xchg(&root
->defrag_running
, 1))
1088 trans
= btrfs_start_transaction(root
, 0);
1090 return PTR_ERR(trans
);
1092 ret
= btrfs_defrag_leaves(trans
, root
);
1094 btrfs_end_transaction(trans
, root
);
1095 btrfs_btree_balance_dirty(info
->tree_root
);
1098 if (btrfs_fs_closing(root
->fs_info
) || ret
!= -EAGAIN
)
1101 if (btrfs_defrag_cancelled(root
->fs_info
)) {
1102 pr_debug("BTRFS: defrag_root cancelled\n");
1107 root
->defrag_running
= 0;
1112 * new snapshots need to be created at a very specific time in the
1113 * transaction commit. This does the actual creation.
1116 * If the error which may affect the commitment of the current transaction
1117 * happens, we should return the error number. If the error which just affect
1118 * the creation of the pending snapshots, just return 0.
1120 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
1121 struct btrfs_fs_info
*fs_info
,
1122 struct btrfs_pending_snapshot
*pending
)
1124 struct btrfs_key key
;
1125 struct btrfs_root_item
*new_root_item
;
1126 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1127 struct btrfs_root
*root
= pending
->root
;
1128 struct btrfs_root
*parent_root
;
1129 struct btrfs_block_rsv
*rsv
;
1130 struct inode
*parent_inode
;
1131 struct btrfs_path
*path
;
1132 struct btrfs_dir_item
*dir_item
;
1133 struct dentry
*dentry
;
1134 struct extent_buffer
*tmp
;
1135 struct extent_buffer
*old
;
1136 struct timespec cur_time
= CURRENT_TIME
;
1144 path
= btrfs_alloc_path();
1146 pending
->error
= -ENOMEM
;
1150 new_root_item
= kmalloc(sizeof(*new_root_item
), GFP_NOFS
);
1151 if (!new_root_item
) {
1152 pending
->error
= -ENOMEM
;
1153 goto root_item_alloc_fail
;
1156 pending
->error
= btrfs_find_free_objectid(tree_root
, &objectid
);
1158 goto no_free_objectid
;
1160 btrfs_reloc_pre_snapshot(trans
, pending
, &to_reserve
);
1162 if (to_reserve
> 0) {
1163 pending
->error
= btrfs_block_rsv_add(root
,
1164 &pending
->block_rsv
,
1166 BTRFS_RESERVE_NO_FLUSH
);
1168 goto no_free_objectid
;
1171 pending
->error
= btrfs_qgroup_inherit(trans
, fs_info
,
1172 root
->root_key
.objectid
,
1173 objectid
, pending
->inherit
);
1175 goto no_free_objectid
;
1177 key
.objectid
= objectid
;
1178 key
.offset
= (u64
)-1;
1179 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1181 rsv
= trans
->block_rsv
;
1182 trans
->block_rsv
= &pending
->block_rsv
;
1183 trans
->bytes_reserved
= trans
->block_rsv
->reserved
;
1185 dentry
= pending
->dentry
;
1186 parent_inode
= pending
->dir
;
1187 parent_root
= BTRFS_I(parent_inode
)->root
;
1188 record_root_in_trans(trans
, parent_root
);
1191 * insert the directory item
1193 ret
= btrfs_set_inode_index(parent_inode
, &index
);
1194 BUG_ON(ret
); /* -ENOMEM */
1196 /* check if there is a file/dir which has the same name. */
1197 dir_item
= btrfs_lookup_dir_item(NULL
, parent_root
, path
,
1198 btrfs_ino(parent_inode
),
1199 dentry
->d_name
.name
,
1200 dentry
->d_name
.len
, 0);
1201 if (dir_item
!= NULL
&& !IS_ERR(dir_item
)) {
1202 pending
->error
= -EEXIST
;
1203 goto dir_item_existed
;
1204 } else if (IS_ERR(dir_item
)) {
1205 ret
= PTR_ERR(dir_item
);
1206 btrfs_abort_transaction(trans
, root
, ret
);
1209 btrfs_release_path(path
);
1212 * pull in the delayed directory update
1213 * and the delayed inode item
1214 * otherwise we corrupt the FS during
1217 ret
= btrfs_run_delayed_items(trans
, root
);
1218 if (ret
) { /* Transaction aborted */
1219 btrfs_abort_transaction(trans
, root
, ret
);
1223 record_root_in_trans(trans
, root
);
1224 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
1225 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
1226 btrfs_check_and_init_root_item(new_root_item
);
1228 root_flags
= btrfs_root_flags(new_root_item
);
1229 if (pending
->readonly
)
1230 root_flags
|= BTRFS_ROOT_SUBVOL_RDONLY
;
1232 root_flags
&= ~BTRFS_ROOT_SUBVOL_RDONLY
;
1233 btrfs_set_root_flags(new_root_item
, root_flags
);
1235 btrfs_set_root_generation_v2(new_root_item
,
1237 uuid_le_gen(&new_uuid
);
1238 memcpy(new_root_item
->uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
1239 memcpy(new_root_item
->parent_uuid
, root
->root_item
.uuid
,
1241 if (!(root_flags
& BTRFS_ROOT_SUBVOL_RDONLY
)) {
1242 memset(new_root_item
->received_uuid
, 0,
1243 sizeof(new_root_item
->received_uuid
));
1244 memset(&new_root_item
->stime
, 0, sizeof(new_root_item
->stime
));
1245 memset(&new_root_item
->rtime
, 0, sizeof(new_root_item
->rtime
));
1246 btrfs_set_root_stransid(new_root_item
, 0);
1247 btrfs_set_root_rtransid(new_root_item
, 0);
1249 btrfs_set_stack_timespec_sec(&new_root_item
->otime
, cur_time
.tv_sec
);
1250 btrfs_set_stack_timespec_nsec(&new_root_item
->otime
, cur_time
.tv_nsec
);
1251 btrfs_set_root_otransid(new_root_item
, trans
->transid
);
1253 old
= btrfs_lock_root_node(root
);
1254 ret
= btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
);
1256 btrfs_tree_unlock(old
);
1257 free_extent_buffer(old
);
1258 btrfs_abort_transaction(trans
, root
, ret
);
1262 btrfs_set_lock_blocking(old
);
1264 ret
= btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
1265 /* clean up in any case */
1266 btrfs_tree_unlock(old
);
1267 free_extent_buffer(old
);
1269 btrfs_abort_transaction(trans
, root
, ret
);
1273 /* see comments in should_cow_block() */
1274 root
->force_cow
= 1;
1277 btrfs_set_root_node(new_root_item
, tmp
);
1278 /* record when the snapshot was created in key.offset */
1279 key
.offset
= trans
->transid
;
1280 ret
= btrfs_insert_root(trans
, tree_root
, &key
, new_root_item
);
1281 btrfs_tree_unlock(tmp
);
1282 free_extent_buffer(tmp
);
1284 btrfs_abort_transaction(trans
, root
, ret
);
1289 * insert root back/forward references
1291 ret
= btrfs_add_root_ref(trans
, tree_root
, objectid
,
1292 parent_root
->root_key
.objectid
,
1293 btrfs_ino(parent_inode
), index
,
1294 dentry
->d_name
.name
, dentry
->d_name
.len
);
1296 btrfs_abort_transaction(trans
, root
, ret
);
1300 key
.offset
= (u64
)-1;
1301 pending
->snap
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
1302 if (IS_ERR(pending
->snap
)) {
1303 ret
= PTR_ERR(pending
->snap
);
1304 btrfs_abort_transaction(trans
, root
, ret
);
1308 ret
= btrfs_reloc_post_snapshot(trans
, pending
);
1310 btrfs_abort_transaction(trans
, root
, ret
);
1314 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1316 btrfs_abort_transaction(trans
, root
, ret
);
1320 ret
= btrfs_insert_dir_item(trans
, parent_root
,
1321 dentry
->d_name
.name
, dentry
->d_name
.len
,
1323 BTRFS_FT_DIR
, index
);
1324 /* We have check then name at the beginning, so it is impossible. */
1325 BUG_ON(ret
== -EEXIST
|| ret
== -EOVERFLOW
);
1327 btrfs_abort_transaction(trans
, root
, ret
);
1331 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
1332 dentry
->d_name
.len
* 2);
1333 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
1334 ret
= btrfs_update_inode_fallback(trans
, parent_root
, parent_inode
);
1336 btrfs_abort_transaction(trans
, root
, ret
);
1339 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
, new_uuid
.b
,
1340 BTRFS_UUID_KEY_SUBVOL
, objectid
);
1342 btrfs_abort_transaction(trans
, root
, ret
);
1345 if (!btrfs_is_empty_uuid(new_root_item
->received_uuid
)) {
1346 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
1347 new_root_item
->received_uuid
,
1348 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
1350 if (ret
&& ret
!= -EEXIST
) {
1351 btrfs_abort_transaction(trans
, root
, ret
);
1356 pending
->error
= ret
;
1358 trans
->block_rsv
= rsv
;
1359 trans
->bytes_reserved
= 0;
1361 kfree(new_root_item
);
1362 root_item_alloc_fail
:
1363 btrfs_free_path(path
);
1368 * create all the snapshots we've scheduled for creation
1370 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
,
1371 struct btrfs_fs_info
*fs_info
)
1373 struct btrfs_pending_snapshot
*pending
, *next
;
1374 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1377 list_for_each_entry_safe(pending
, next
, head
, list
) {
1378 list_del(&pending
->list
);
1379 ret
= create_pending_snapshot(trans
, fs_info
, pending
);
1386 static void update_super_roots(struct btrfs_root
*root
)
1388 struct btrfs_root_item
*root_item
;
1389 struct btrfs_super_block
*super
;
1391 super
= root
->fs_info
->super_copy
;
1393 root_item
= &root
->fs_info
->chunk_root
->root_item
;
1394 super
->chunk_root
= root_item
->bytenr
;
1395 super
->chunk_root_generation
= root_item
->generation
;
1396 super
->chunk_root_level
= root_item
->level
;
1398 root_item
= &root
->fs_info
->tree_root
->root_item
;
1399 super
->root
= root_item
->bytenr
;
1400 super
->generation
= root_item
->generation
;
1401 super
->root_level
= root_item
->level
;
1402 if (btrfs_test_opt(root
, SPACE_CACHE
))
1403 super
->cache_generation
= root_item
->generation
;
1404 if (root
->fs_info
->update_uuid_tree_gen
)
1405 super
->uuid_tree_generation
= root_item
->generation
;
1408 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
1410 struct btrfs_transaction
*trans
;
1413 spin_lock(&info
->trans_lock
);
1414 trans
= info
->running_transaction
;
1416 ret
= (trans
->state
>= TRANS_STATE_COMMIT_START
);
1417 spin_unlock(&info
->trans_lock
);
1421 int btrfs_transaction_blocked(struct btrfs_fs_info
*info
)
1423 struct btrfs_transaction
*trans
;
1426 spin_lock(&info
->trans_lock
);
1427 trans
= info
->running_transaction
;
1429 ret
= is_transaction_blocked(trans
);
1430 spin_unlock(&info
->trans_lock
);
1435 * wait for the current transaction commit to start and block subsequent
1438 static void wait_current_trans_commit_start(struct btrfs_root
*root
,
1439 struct btrfs_transaction
*trans
)
1441 wait_event(root
->fs_info
->transaction_blocked_wait
,
1442 trans
->state
>= TRANS_STATE_COMMIT_START
||
1447 * wait for the current transaction to start and then become unblocked.
1450 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root
*root
,
1451 struct btrfs_transaction
*trans
)
1453 wait_event(root
->fs_info
->transaction_wait
,
1454 trans
->state
>= TRANS_STATE_UNBLOCKED
||
1459 * commit transactions asynchronously. once btrfs_commit_transaction_async
1460 * returns, any subsequent transaction will not be allowed to join.
1462 struct btrfs_async_commit
{
1463 struct btrfs_trans_handle
*newtrans
;
1464 struct btrfs_root
*root
;
1465 struct work_struct work
;
1468 static void do_async_commit(struct work_struct
*work
)
1470 struct btrfs_async_commit
*ac
=
1471 container_of(work
, struct btrfs_async_commit
, work
);
1474 * We've got freeze protection passed with the transaction.
1475 * Tell lockdep about it.
1477 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1479 &ac
->root
->fs_info
->sb
->s_writers
.lock_map
[SB_FREEZE_FS
-1],
1482 current
->journal_info
= ac
->newtrans
;
1484 btrfs_commit_transaction(ac
->newtrans
, ac
->root
);
1488 int btrfs_commit_transaction_async(struct btrfs_trans_handle
*trans
,
1489 struct btrfs_root
*root
,
1490 int wait_for_unblock
)
1492 struct btrfs_async_commit
*ac
;
1493 struct btrfs_transaction
*cur_trans
;
1495 ac
= kmalloc(sizeof(*ac
), GFP_NOFS
);
1499 INIT_WORK(&ac
->work
, do_async_commit
);
1501 ac
->newtrans
= btrfs_join_transaction(root
);
1502 if (IS_ERR(ac
->newtrans
)) {
1503 int err
= PTR_ERR(ac
->newtrans
);
1508 /* take transaction reference */
1509 cur_trans
= trans
->transaction
;
1510 atomic_inc(&cur_trans
->use_count
);
1512 btrfs_end_transaction(trans
, root
);
1515 * Tell lockdep we've released the freeze rwsem, since the
1516 * async commit thread will be the one to unlock it.
1518 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1520 &root
->fs_info
->sb
->s_writers
.lock_map
[SB_FREEZE_FS
-1],
1523 schedule_work(&ac
->work
);
1525 /* wait for transaction to start and unblock */
1526 if (wait_for_unblock
)
1527 wait_current_trans_commit_start_and_unblock(root
, cur_trans
);
1529 wait_current_trans_commit_start(root
, cur_trans
);
1531 if (current
->journal_info
== trans
)
1532 current
->journal_info
= NULL
;
1534 btrfs_put_transaction(cur_trans
);
1539 static void cleanup_transaction(struct btrfs_trans_handle
*trans
,
1540 struct btrfs_root
*root
, int err
)
1542 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1545 WARN_ON(trans
->use_count
> 1);
1547 btrfs_abort_transaction(trans
, root
, err
);
1549 spin_lock(&root
->fs_info
->trans_lock
);
1552 * If the transaction is removed from the list, it means this
1553 * transaction has been committed successfully, so it is impossible
1554 * to call the cleanup function.
1556 BUG_ON(list_empty(&cur_trans
->list
));
1558 list_del_init(&cur_trans
->list
);
1559 if (cur_trans
== root
->fs_info
->running_transaction
) {
1560 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1561 spin_unlock(&root
->fs_info
->trans_lock
);
1562 wait_event(cur_trans
->writer_wait
,
1563 atomic_read(&cur_trans
->num_writers
) == 1);
1565 spin_lock(&root
->fs_info
->trans_lock
);
1567 spin_unlock(&root
->fs_info
->trans_lock
);
1569 btrfs_cleanup_one_transaction(trans
->transaction
, root
);
1571 spin_lock(&root
->fs_info
->trans_lock
);
1572 if (cur_trans
== root
->fs_info
->running_transaction
)
1573 root
->fs_info
->running_transaction
= NULL
;
1574 spin_unlock(&root
->fs_info
->trans_lock
);
1576 if (trans
->type
& __TRANS_FREEZABLE
)
1577 sb_end_intwrite(root
->fs_info
->sb
);
1578 btrfs_put_transaction(cur_trans
);
1579 btrfs_put_transaction(cur_trans
);
1581 trace_btrfs_transaction_commit(root
);
1583 if (current
->journal_info
== trans
)
1584 current
->journal_info
= NULL
;
1585 btrfs_scrub_cancel(root
->fs_info
);
1587 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1590 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle
*trans
,
1591 struct btrfs_root
*root
)
1595 ret
= btrfs_run_delayed_items(trans
, root
);
1597 * running the delayed items may have added new refs. account
1598 * them now so that they hinder processing of more delayed refs
1599 * as little as possible.
1602 btrfs_delayed_refs_qgroup_accounting(trans
, root
->fs_info
);
1606 ret
= btrfs_delayed_refs_qgroup_accounting(trans
, root
->fs_info
);
1611 * rename don't use btrfs_join_transaction, so, once we
1612 * set the transaction to blocked above, we aren't going
1613 * to get any new ordered operations. We can safely run
1614 * it here and no for sure that nothing new will be added
1617 ret
= btrfs_run_ordered_operations(trans
, root
, 1);
1622 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info
*fs_info
)
1624 if (btrfs_test_opt(fs_info
->tree_root
, FLUSHONCOMMIT
))
1625 return btrfs_start_delalloc_roots(fs_info
, 1, -1);
1629 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info
*fs_info
)
1631 if (btrfs_test_opt(fs_info
->tree_root
, FLUSHONCOMMIT
))
1632 btrfs_wait_ordered_roots(fs_info
, -1);
1635 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
,
1636 struct btrfs_root
*root
)
1638 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1639 struct btrfs_transaction
*prev_trans
= NULL
;
1642 ret
= btrfs_run_ordered_operations(trans
, root
, 0);
1644 btrfs_abort_transaction(trans
, root
, ret
);
1645 btrfs_end_transaction(trans
, root
);
1649 /* Stop the commit early if ->aborted is set */
1650 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1651 ret
= cur_trans
->aborted
;
1652 btrfs_end_transaction(trans
, root
);
1656 /* make a pass through all the delayed refs we have so far
1657 * any runnings procs may add more while we are here
1659 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1661 btrfs_end_transaction(trans
, root
);
1665 btrfs_trans_release_metadata(trans
, root
);
1666 trans
->block_rsv
= NULL
;
1667 if (trans
->qgroup_reserved
) {
1668 btrfs_qgroup_free(root
, trans
->qgroup_reserved
);
1669 trans
->qgroup_reserved
= 0;
1672 cur_trans
= trans
->transaction
;
1675 * set the flushing flag so procs in this transaction have to
1676 * start sending their work down.
1678 cur_trans
->delayed_refs
.flushing
= 1;
1681 if (!list_empty(&trans
->new_bgs
))
1682 btrfs_create_pending_block_groups(trans
, root
);
1684 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1686 btrfs_end_transaction(trans
, root
);
1690 spin_lock(&root
->fs_info
->trans_lock
);
1691 if (cur_trans
->state
>= TRANS_STATE_COMMIT_START
) {
1692 spin_unlock(&root
->fs_info
->trans_lock
);
1693 atomic_inc(&cur_trans
->use_count
);
1694 ret
= btrfs_end_transaction(trans
, root
);
1696 wait_for_commit(root
, cur_trans
);
1698 btrfs_put_transaction(cur_trans
);
1703 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
1704 wake_up(&root
->fs_info
->transaction_blocked_wait
);
1706 if (cur_trans
->list
.prev
!= &root
->fs_info
->trans_list
) {
1707 prev_trans
= list_entry(cur_trans
->list
.prev
,
1708 struct btrfs_transaction
, list
);
1709 if (prev_trans
->state
!= TRANS_STATE_COMPLETED
) {
1710 atomic_inc(&prev_trans
->use_count
);
1711 spin_unlock(&root
->fs_info
->trans_lock
);
1713 wait_for_commit(root
, prev_trans
);
1715 btrfs_put_transaction(prev_trans
);
1717 spin_unlock(&root
->fs_info
->trans_lock
);
1720 spin_unlock(&root
->fs_info
->trans_lock
);
1723 extwriter_counter_dec(cur_trans
, trans
->type
);
1725 ret
= btrfs_start_delalloc_flush(root
->fs_info
);
1727 goto cleanup_transaction
;
1729 ret
= btrfs_flush_all_pending_stuffs(trans
, root
);
1731 goto cleanup_transaction
;
1733 wait_event(cur_trans
->writer_wait
,
1734 extwriter_counter_read(cur_trans
) == 0);
1736 /* some pending stuffs might be added after the previous flush. */
1737 ret
= btrfs_flush_all_pending_stuffs(trans
, root
);
1739 goto cleanup_transaction
;
1741 btrfs_wait_delalloc_flush(root
->fs_info
);
1743 btrfs_scrub_pause(root
);
1745 * Ok now we need to make sure to block out any other joins while we
1746 * commit the transaction. We could have started a join before setting
1747 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1749 spin_lock(&root
->fs_info
->trans_lock
);
1750 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1751 spin_unlock(&root
->fs_info
->trans_lock
);
1752 wait_event(cur_trans
->writer_wait
,
1753 atomic_read(&cur_trans
->num_writers
) == 1);
1755 /* ->aborted might be set after the previous check, so check it */
1756 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1757 ret
= cur_trans
->aborted
;
1758 goto scrub_continue
;
1761 * the reloc mutex makes sure that we stop
1762 * the balancing code from coming in and moving
1763 * extents around in the middle of the commit
1765 mutex_lock(&root
->fs_info
->reloc_mutex
);
1768 * We needn't worry about the delayed items because we will
1769 * deal with them in create_pending_snapshot(), which is the
1770 * core function of the snapshot creation.
1772 ret
= create_pending_snapshots(trans
, root
->fs_info
);
1774 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1775 goto scrub_continue
;
1779 * We insert the dir indexes of the snapshots and update the inode
1780 * of the snapshots' parents after the snapshot creation, so there
1781 * are some delayed items which are not dealt with. Now deal with
1784 * We needn't worry that this operation will corrupt the snapshots,
1785 * because all the tree which are snapshoted will be forced to COW
1786 * the nodes and leaves.
1788 ret
= btrfs_run_delayed_items(trans
, root
);
1790 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1791 goto scrub_continue
;
1794 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1796 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1797 goto scrub_continue
;
1801 * make sure none of the code above managed to slip in a
1804 btrfs_assert_delayed_root_empty(root
);
1806 WARN_ON(cur_trans
!= trans
->transaction
);
1808 /* btrfs_commit_tree_roots is responsible for getting the
1809 * various roots consistent with each other. Every pointer
1810 * in the tree of tree roots has to point to the most up to date
1811 * root for every subvolume and other tree. So, we have to keep
1812 * the tree logging code from jumping in and changing any
1815 * At this point in the commit, there can't be any tree-log
1816 * writers, but a little lower down we drop the trans mutex
1817 * and let new people in. By holding the tree_log_mutex
1818 * from now until after the super is written, we avoid races
1819 * with the tree-log code.
1821 mutex_lock(&root
->fs_info
->tree_log_mutex
);
1823 ret
= commit_fs_roots(trans
, root
);
1825 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1826 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1827 goto scrub_continue
;
1831 * Since the transaction is done, we should set the inode map cache flag
1832 * before any other comming transaction.
1834 if (btrfs_test_opt(root
, CHANGE_INODE_CACHE
))
1835 btrfs_set_opt(root
->fs_info
->mount_opt
, INODE_MAP_CACHE
);
1837 btrfs_clear_opt(root
->fs_info
->mount_opt
, INODE_MAP_CACHE
);
1839 /* commit_fs_roots gets rid of all the tree log roots, it is now
1840 * safe to free the root of tree log roots
1842 btrfs_free_log_root_tree(trans
, root
->fs_info
);
1844 ret
= commit_cowonly_roots(trans
, root
);
1846 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1847 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1848 goto scrub_continue
;
1852 * The tasks which save the space cache and inode cache may also
1853 * update ->aborted, check it.
1855 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1856 ret
= cur_trans
->aborted
;
1857 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1858 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1859 goto scrub_continue
;
1862 btrfs_prepare_extent_commit(trans
, root
);
1864 cur_trans
= root
->fs_info
->running_transaction
;
1866 btrfs_set_root_node(&root
->fs_info
->tree_root
->root_item
,
1867 root
->fs_info
->tree_root
->node
);
1868 list_add_tail(&root
->fs_info
->tree_root
->dirty_list
,
1869 &cur_trans
->switch_commits
);
1871 btrfs_set_root_node(&root
->fs_info
->chunk_root
->root_item
,
1872 root
->fs_info
->chunk_root
->node
);
1873 list_add_tail(&root
->fs_info
->chunk_root
->dirty_list
,
1874 &cur_trans
->switch_commits
);
1876 switch_commit_roots(cur_trans
, root
->fs_info
);
1878 assert_qgroups_uptodate(trans
);
1879 update_super_roots(root
);
1881 btrfs_set_super_log_root(root
->fs_info
->super_copy
, 0);
1882 btrfs_set_super_log_root_level(root
->fs_info
->super_copy
, 0);
1883 memcpy(root
->fs_info
->super_for_commit
, root
->fs_info
->super_copy
,
1884 sizeof(*root
->fs_info
->super_copy
));
1886 spin_lock(&root
->fs_info
->trans_lock
);
1887 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
1888 root
->fs_info
->running_transaction
= NULL
;
1889 spin_unlock(&root
->fs_info
->trans_lock
);
1890 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1892 wake_up(&root
->fs_info
->transaction_wait
);
1894 ret
= btrfs_write_and_wait_transaction(trans
, root
);
1896 btrfs_error(root
->fs_info
, ret
,
1897 "Error while writing out transaction");
1898 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1899 goto scrub_continue
;
1902 ret
= write_ctree_super(trans
, root
, 0);
1904 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1905 goto scrub_continue
;
1909 * the super is written, we can safely allow the tree-loggers
1910 * to go about their business
1912 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1914 btrfs_finish_extent_commit(trans
, root
);
1916 root
->fs_info
->last_trans_committed
= cur_trans
->transid
;
1918 * We needn't acquire the lock here because there is no other task
1919 * which can change it.
1921 cur_trans
->state
= TRANS_STATE_COMPLETED
;
1922 wake_up(&cur_trans
->commit_wait
);
1924 spin_lock(&root
->fs_info
->trans_lock
);
1925 list_del_init(&cur_trans
->list
);
1926 spin_unlock(&root
->fs_info
->trans_lock
);
1928 btrfs_put_transaction(cur_trans
);
1929 btrfs_put_transaction(cur_trans
);
1931 if (trans
->type
& __TRANS_FREEZABLE
)
1932 sb_end_intwrite(root
->fs_info
->sb
);
1934 trace_btrfs_transaction_commit(root
);
1936 btrfs_scrub_continue(root
);
1938 if (current
->journal_info
== trans
)
1939 current
->journal_info
= NULL
;
1941 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1943 if (current
!= root
->fs_info
->transaction_kthread
)
1944 btrfs_run_delayed_iputs(root
);
1949 btrfs_scrub_continue(root
);
1950 cleanup_transaction
:
1951 btrfs_trans_release_metadata(trans
, root
);
1952 trans
->block_rsv
= NULL
;
1953 if (trans
->qgroup_reserved
) {
1954 btrfs_qgroup_free(root
, trans
->qgroup_reserved
);
1955 trans
->qgroup_reserved
= 0;
1957 btrfs_warn(root
->fs_info
, "Skipping commit of aborted transaction.");
1958 if (current
->journal_info
== trans
)
1959 current
->journal_info
= NULL
;
1960 cleanup_transaction(trans
, root
, ret
);
1966 * return < 0 if error
1967 * 0 if there are no more dead_roots at the time of call
1968 * 1 there are more to be processed, call me again
1970 * The return value indicates there are certainly more snapshots to delete, but
1971 * if there comes a new one during processing, it may return 0. We don't mind,
1972 * because btrfs_commit_super will poke cleaner thread and it will process it a
1973 * few seconds later.
1975 int btrfs_clean_one_deleted_snapshot(struct btrfs_root
*root
)
1978 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1980 spin_lock(&fs_info
->trans_lock
);
1981 if (list_empty(&fs_info
->dead_roots
)) {
1982 spin_unlock(&fs_info
->trans_lock
);
1985 root
= list_first_entry(&fs_info
->dead_roots
,
1986 struct btrfs_root
, root_list
);
1988 * Make sure root is not involved in send,
1989 * if we fail with first root, we return
1990 * directly rather than continue.
1992 spin_lock(&root
->root_item_lock
);
1993 if (root
->send_in_progress
) {
1994 spin_unlock(&fs_info
->trans_lock
);
1995 spin_unlock(&root
->root_item_lock
);
1998 spin_unlock(&root
->root_item_lock
);
2000 list_del_init(&root
->root_list
);
2001 spin_unlock(&fs_info
->trans_lock
);
2003 pr_debug("BTRFS: cleaner removing %llu\n", root
->objectid
);
2005 btrfs_kill_all_delayed_nodes(root
);
2007 if (btrfs_header_backref_rev(root
->node
) <
2008 BTRFS_MIXED_BACKREF_REV
)
2009 ret
= btrfs_drop_snapshot(root
, NULL
, 0, 0);
2011 ret
= btrfs_drop_snapshot(root
, NULL
, 1, 0);
2013 * If we encounter a transaction abort during snapshot cleaning, we
2014 * don't want to crash here
2016 return (ret
< 0) ? 0 : 1;