ALSA: hda - Fix bad dereference of jack object
[linux/fpc-iii.git] / kernel / auditsc.c
blob9fb9d1cb83ce2b19997be912aefdfd2c2a4fae3d
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/tty.h>
67 #include <linux/binfmts.h>
68 #include <linux/highmem.h>
69 #include <linux/syscalls.h>
70 #include <asm/syscall.h>
71 #include <linux/capability.h>
72 #include <linux/fs_struct.h>
73 #include <linux/compat.h>
74 #include <linux/ctype.h>
75 #include <linux/string.h>
76 #include <uapi/linux/limits.h>
78 #include "audit.h"
80 /* flags stating the success for a syscall */
81 #define AUDITSC_INVALID 0
82 #define AUDITSC_SUCCESS 1
83 #define AUDITSC_FAILURE 2
85 /* no execve audit message should be longer than this (userspace limits) */
86 #define MAX_EXECVE_AUDIT_LEN 7500
88 /* max length to print of cmdline/proctitle value during audit */
89 #define MAX_PROCTITLE_AUDIT_LEN 128
91 /* number of audit rules */
92 int audit_n_rules;
94 /* determines whether we collect data for signals sent */
95 int audit_signals;
97 struct audit_aux_data {
98 struct audit_aux_data *next;
99 int type;
102 #define AUDIT_AUX_IPCPERM 0
104 /* Number of target pids per aux struct. */
105 #define AUDIT_AUX_PIDS 16
107 struct audit_aux_data_pids {
108 struct audit_aux_data d;
109 pid_t target_pid[AUDIT_AUX_PIDS];
110 kuid_t target_auid[AUDIT_AUX_PIDS];
111 kuid_t target_uid[AUDIT_AUX_PIDS];
112 unsigned int target_sessionid[AUDIT_AUX_PIDS];
113 u32 target_sid[AUDIT_AUX_PIDS];
114 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
115 int pid_count;
118 struct audit_aux_data_bprm_fcaps {
119 struct audit_aux_data d;
120 struct audit_cap_data fcap;
121 unsigned int fcap_ver;
122 struct audit_cap_data old_pcap;
123 struct audit_cap_data new_pcap;
126 struct audit_tree_refs {
127 struct audit_tree_refs *next;
128 struct audit_chunk *c[31];
131 static int audit_match_perm(struct audit_context *ctx, int mask)
133 unsigned n;
134 if (unlikely(!ctx))
135 return 0;
136 n = ctx->major;
138 switch (audit_classify_syscall(ctx->arch, n)) {
139 case 0: /* native */
140 if ((mask & AUDIT_PERM_WRITE) &&
141 audit_match_class(AUDIT_CLASS_WRITE, n))
142 return 1;
143 if ((mask & AUDIT_PERM_READ) &&
144 audit_match_class(AUDIT_CLASS_READ, n))
145 return 1;
146 if ((mask & AUDIT_PERM_ATTR) &&
147 audit_match_class(AUDIT_CLASS_CHATTR, n))
148 return 1;
149 return 0;
150 case 1: /* 32bit on biarch */
151 if ((mask & AUDIT_PERM_WRITE) &&
152 audit_match_class(AUDIT_CLASS_WRITE_32, n))
153 return 1;
154 if ((mask & AUDIT_PERM_READ) &&
155 audit_match_class(AUDIT_CLASS_READ_32, n))
156 return 1;
157 if ((mask & AUDIT_PERM_ATTR) &&
158 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
159 return 1;
160 return 0;
161 case 2: /* open */
162 return mask & ACC_MODE(ctx->argv[1]);
163 case 3: /* openat */
164 return mask & ACC_MODE(ctx->argv[2]);
165 case 4: /* socketcall */
166 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
167 case 5: /* execve */
168 return mask & AUDIT_PERM_EXEC;
169 default:
170 return 0;
174 static int audit_match_filetype(struct audit_context *ctx, int val)
176 struct audit_names *n;
177 umode_t mode = (umode_t)val;
179 if (unlikely(!ctx))
180 return 0;
182 list_for_each_entry(n, &ctx->names_list, list) {
183 if ((n->ino != -1) &&
184 ((n->mode & S_IFMT) == mode))
185 return 1;
188 return 0;
192 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
193 * ->first_trees points to its beginning, ->trees - to the current end of data.
194 * ->tree_count is the number of free entries in array pointed to by ->trees.
195 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
196 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
197 * it's going to remain 1-element for almost any setup) until we free context itself.
198 * References in it _are_ dropped - at the same time we free/drop aux stuff.
201 #ifdef CONFIG_AUDIT_TREE
202 static void audit_set_auditable(struct audit_context *ctx)
204 if (!ctx->prio) {
205 ctx->prio = 1;
206 ctx->current_state = AUDIT_RECORD_CONTEXT;
210 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
212 struct audit_tree_refs *p = ctx->trees;
213 int left = ctx->tree_count;
214 if (likely(left)) {
215 p->c[--left] = chunk;
216 ctx->tree_count = left;
217 return 1;
219 if (!p)
220 return 0;
221 p = p->next;
222 if (p) {
223 p->c[30] = chunk;
224 ctx->trees = p;
225 ctx->tree_count = 30;
226 return 1;
228 return 0;
231 static int grow_tree_refs(struct audit_context *ctx)
233 struct audit_tree_refs *p = ctx->trees;
234 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
235 if (!ctx->trees) {
236 ctx->trees = p;
237 return 0;
239 if (p)
240 p->next = ctx->trees;
241 else
242 ctx->first_trees = ctx->trees;
243 ctx->tree_count = 31;
244 return 1;
246 #endif
248 static void unroll_tree_refs(struct audit_context *ctx,
249 struct audit_tree_refs *p, int count)
251 #ifdef CONFIG_AUDIT_TREE
252 struct audit_tree_refs *q;
253 int n;
254 if (!p) {
255 /* we started with empty chain */
256 p = ctx->first_trees;
257 count = 31;
258 /* if the very first allocation has failed, nothing to do */
259 if (!p)
260 return;
262 n = count;
263 for (q = p; q != ctx->trees; q = q->next, n = 31) {
264 while (n--) {
265 audit_put_chunk(q->c[n]);
266 q->c[n] = NULL;
269 while (n-- > ctx->tree_count) {
270 audit_put_chunk(q->c[n]);
271 q->c[n] = NULL;
273 ctx->trees = p;
274 ctx->tree_count = count;
275 #endif
278 static void free_tree_refs(struct audit_context *ctx)
280 struct audit_tree_refs *p, *q;
281 for (p = ctx->first_trees; p; p = q) {
282 q = p->next;
283 kfree(p);
287 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
289 #ifdef CONFIG_AUDIT_TREE
290 struct audit_tree_refs *p;
291 int n;
292 if (!tree)
293 return 0;
294 /* full ones */
295 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
296 for (n = 0; n < 31; n++)
297 if (audit_tree_match(p->c[n], tree))
298 return 1;
300 /* partial */
301 if (p) {
302 for (n = ctx->tree_count; n < 31; n++)
303 if (audit_tree_match(p->c[n], tree))
304 return 1;
306 #endif
307 return 0;
310 static int audit_compare_uid(kuid_t uid,
311 struct audit_names *name,
312 struct audit_field *f,
313 struct audit_context *ctx)
315 struct audit_names *n;
316 int rc;
318 if (name) {
319 rc = audit_uid_comparator(uid, f->op, name->uid);
320 if (rc)
321 return rc;
324 if (ctx) {
325 list_for_each_entry(n, &ctx->names_list, list) {
326 rc = audit_uid_comparator(uid, f->op, n->uid);
327 if (rc)
328 return rc;
331 return 0;
334 static int audit_compare_gid(kgid_t gid,
335 struct audit_names *name,
336 struct audit_field *f,
337 struct audit_context *ctx)
339 struct audit_names *n;
340 int rc;
342 if (name) {
343 rc = audit_gid_comparator(gid, f->op, name->gid);
344 if (rc)
345 return rc;
348 if (ctx) {
349 list_for_each_entry(n, &ctx->names_list, list) {
350 rc = audit_gid_comparator(gid, f->op, n->gid);
351 if (rc)
352 return rc;
355 return 0;
358 static int audit_field_compare(struct task_struct *tsk,
359 const struct cred *cred,
360 struct audit_field *f,
361 struct audit_context *ctx,
362 struct audit_names *name)
364 switch (f->val) {
365 /* process to file object comparisons */
366 case AUDIT_COMPARE_UID_TO_OBJ_UID:
367 return audit_compare_uid(cred->uid, name, f, ctx);
368 case AUDIT_COMPARE_GID_TO_OBJ_GID:
369 return audit_compare_gid(cred->gid, name, f, ctx);
370 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
371 return audit_compare_uid(cred->euid, name, f, ctx);
372 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
373 return audit_compare_gid(cred->egid, name, f, ctx);
374 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
375 return audit_compare_uid(tsk->loginuid, name, f, ctx);
376 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
377 return audit_compare_uid(cred->suid, name, f, ctx);
378 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
379 return audit_compare_gid(cred->sgid, name, f, ctx);
380 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
381 return audit_compare_uid(cred->fsuid, name, f, ctx);
382 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
383 return audit_compare_gid(cred->fsgid, name, f, ctx);
384 /* uid comparisons */
385 case AUDIT_COMPARE_UID_TO_AUID:
386 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
387 case AUDIT_COMPARE_UID_TO_EUID:
388 return audit_uid_comparator(cred->uid, f->op, cred->euid);
389 case AUDIT_COMPARE_UID_TO_SUID:
390 return audit_uid_comparator(cred->uid, f->op, cred->suid);
391 case AUDIT_COMPARE_UID_TO_FSUID:
392 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
393 /* auid comparisons */
394 case AUDIT_COMPARE_AUID_TO_EUID:
395 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
396 case AUDIT_COMPARE_AUID_TO_SUID:
397 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
398 case AUDIT_COMPARE_AUID_TO_FSUID:
399 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
400 /* euid comparisons */
401 case AUDIT_COMPARE_EUID_TO_SUID:
402 return audit_uid_comparator(cred->euid, f->op, cred->suid);
403 case AUDIT_COMPARE_EUID_TO_FSUID:
404 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
405 /* suid comparisons */
406 case AUDIT_COMPARE_SUID_TO_FSUID:
407 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
408 /* gid comparisons */
409 case AUDIT_COMPARE_GID_TO_EGID:
410 return audit_gid_comparator(cred->gid, f->op, cred->egid);
411 case AUDIT_COMPARE_GID_TO_SGID:
412 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
413 case AUDIT_COMPARE_GID_TO_FSGID:
414 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
415 /* egid comparisons */
416 case AUDIT_COMPARE_EGID_TO_SGID:
417 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
418 case AUDIT_COMPARE_EGID_TO_FSGID:
419 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
420 /* sgid comparison */
421 case AUDIT_COMPARE_SGID_TO_FSGID:
422 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
423 default:
424 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
425 return 0;
427 return 0;
430 /* Determine if any context name data matches a rule's watch data */
431 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
432 * otherwise.
434 * If task_creation is true, this is an explicit indication that we are
435 * filtering a task rule at task creation time. This and tsk == current are
436 * the only situations where tsk->cred may be accessed without an rcu read lock.
438 static int audit_filter_rules(struct task_struct *tsk,
439 struct audit_krule *rule,
440 struct audit_context *ctx,
441 struct audit_names *name,
442 enum audit_state *state,
443 bool task_creation)
445 const struct cred *cred;
446 int i, need_sid = 1;
447 u32 sid;
449 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
451 for (i = 0; i < rule->field_count; i++) {
452 struct audit_field *f = &rule->fields[i];
453 struct audit_names *n;
454 int result = 0;
455 pid_t pid;
457 switch (f->type) {
458 case AUDIT_PID:
459 pid = task_pid_nr(tsk);
460 result = audit_comparator(pid, f->op, f->val);
461 break;
462 case AUDIT_PPID:
463 if (ctx) {
464 if (!ctx->ppid)
465 ctx->ppid = task_ppid_nr(tsk);
466 result = audit_comparator(ctx->ppid, f->op, f->val);
468 break;
469 case AUDIT_UID:
470 result = audit_uid_comparator(cred->uid, f->op, f->uid);
471 break;
472 case AUDIT_EUID:
473 result = audit_uid_comparator(cred->euid, f->op, f->uid);
474 break;
475 case AUDIT_SUID:
476 result = audit_uid_comparator(cred->suid, f->op, f->uid);
477 break;
478 case AUDIT_FSUID:
479 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
480 break;
481 case AUDIT_GID:
482 result = audit_gid_comparator(cred->gid, f->op, f->gid);
483 if (f->op == Audit_equal) {
484 if (!result)
485 result = in_group_p(f->gid);
486 } else if (f->op == Audit_not_equal) {
487 if (result)
488 result = !in_group_p(f->gid);
490 break;
491 case AUDIT_EGID:
492 result = audit_gid_comparator(cred->egid, f->op, f->gid);
493 if (f->op == Audit_equal) {
494 if (!result)
495 result = in_egroup_p(f->gid);
496 } else if (f->op == Audit_not_equal) {
497 if (result)
498 result = !in_egroup_p(f->gid);
500 break;
501 case AUDIT_SGID:
502 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
503 break;
504 case AUDIT_FSGID:
505 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
506 break;
507 case AUDIT_PERS:
508 result = audit_comparator(tsk->personality, f->op, f->val);
509 break;
510 case AUDIT_ARCH:
511 if (ctx)
512 result = audit_comparator(ctx->arch, f->op, f->val);
513 break;
515 case AUDIT_EXIT:
516 if (ctx && ctx->return_valid)
517 result = audit_comparator(ctx->return_code, f->op, f->val);
518 break;
519 case AUDIT_SUCCESS:
520 if (ctx && ctx->return_valid) {
521 if (f->val)
522 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
523 else
524 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
526 break;
527 case AUDIT_DEVMAJOR:
528 if (name) {
529 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
530 audit_comparator(MAJOR(name->rdev), f->op, f->val))
531 ++result;
532 } else if (ctx) {
533 list_for_each_entry(n, &ctx->names_list, list) {
534 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
535 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
536 ++result;
537 break;
541 break;
542 case AUDIT_DEVMINOR:
543 if (name) {
544 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
545 audit_comparator(MINOR(name->rdev), f->op, f->val))
546 ++result;
547 } else if (ctx) {
548 list_for_each_entry(n, &ctx->names_list, list) {
549 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
550 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
551 ++result;
552 break;
556 break;
557 case AUDIT_INODE:
558 if (name)
559 result = audit_comparator(name->ino, f->op, f->val);
560 else if (ctx) {
561 list_for_each_entry(n, &ctx->names_list, list) {
562 if (audit_comparator(n->ino, f->op, f->val)) {
563 ++result;
564 break;
568 break;
569 case AUDIT_OBJ_UID:
570 if (name) {
571 result = audit_uid_comparator(name->uid, f->op, f->uid);
572 } else if (ctx) {
573 list_for_each_entry(n, &ctx->names_list, list) {
574 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
575 ++result;
576 break;
580 break;
581 case AUDIT_OBJ_GID:
582 if (name) {
583 result = audit_gid_comparator(name->gid, f->op, f->gid);
584 } else if (ctx) {
585 list_for_each_entry(n, &ctx->names_list, list) {
586 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
587 ++result;
588 break;
592 break;
593 case AUDIT_WATCH:
594 if (name)
595 result = audit_watch_compare(rule->watch, name->ino, name->dev);
596 break;
597 case AUDIT_DIR:
598 if (ctx)
599 result = match_tree_refs(ctx, rule->tree);
600 break;
601 case AUDIT_LOGINUID:
602 result = 0;
603 if (ctx)
604 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
605 break;
606 case AUDIT_LOGINUID_SET:
607 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
608 break;
609 case AUDIT_SUBJ_USER:
610 case AUDIT_SUBJ_ROLE:
611 case AUDIT_SUBJ_TYPE:
612 case AUDIT_SUBJ_SEN:
613 case AUDIT_SUBJ_CLR:
614 /* NOTE: this may return negative values indicating
615 a temporary error. We simply treat this as a
616 match for now to avoid losing information that
617 may be wanted. An error message will also be
618 logged upon error */
619 if (f->lsm_rule) {
620 if (need_sid) {
621 security_task_getsecid(tsk, &sid);
622 need_sid = 0;
624 result = security_audit_rule_match(sid, f->type,
625 f->op,
626 f->lsm_rule,
627 ctx);
629 break;
630 case AUDIT_OBJ_USER:
631 case AUDIT_OBJ_ROLE:
632 case AUDIT_OBJ_TYPE:
633 case AUDIT_OBJ_LEV_LOW:
634 case AUDIT_OBJ_LEV_HIGH:
635 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
636 also applies here */
637 if (f->lsm_rule) {
638 /* Find files that match */
639 if (name) {
640 result = security_audit_rule_match(
641 name->osid, f->type, f->op,
642 f->lsm_rule, ctx);
643 } else if (ctx) {
644 list_for_each_entry(n, &ctx->names_list, list) {
645 if (security_audit_rule_match(n->osid, f->type,
646 f->op, f->lsm_rule,
647 ctx)) {
648 ++result;
649 break;
653 /* Find ipc objects that match */
654 if (!ctx || ctx->type != AUDIT_IPC)
655 break;
656 if (security_audit_rule_match(ctx->ipc.osid,
657 f->type, f->op,
658 f->lsm_rule, ctx))
659 ++result;
661 break;
662 case AUDIT_ARG0:
663 case AUDIT_ARG1:
664 case AUDIT_ARG2:
665 case AUDIT_ARG3:
666 if (ctx)
667 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
668 break;
669 case AUDIT_FILTERKEY:
670 /* ignore this field for filtering */
671 result = 1;
672 break;
673 case AUDIT_PERM:
674 result = audit_match_perm(ctx, f->val);
675 break;
676 case AUDIT_FILETYPE:
677 result = audit_match_filetype(ctx, f->val);
678 break;
679 case AUDIT_FIELD_COMPARE:
680 result = audit_field_compare(tsk, cred, f, ctx, name);
681 break;
683 if (!result)
684 return 0;
687 if (ctx) {
688 if (rule->prio <= ctx->prio)
689 return 0;
690 if (rule->filterkey) {
691 kfree(ctx->filterkey);
692 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
694 ctx->prio = rule->prio;
696 switch (rule->action) {
697 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
698 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
700 return 1;
703 /* At process creation time, we can determine if system-call auditing is
704 * completely disabled for this task. Since we only have the task
705 * structure at this point, we can only check uid and gid.
707 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
709 struct audit_entry *e;
710 enum audit_state state;
712 rcu_read_lock();
713 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
714 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
715 &state, true)) {
716 if (state == AUDIT_RECORD_CONTEXT)
717 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
718 rcu_read_unlock();
719 return state;
722 rcu_read_unlock();
723 return AUDIT_BUILD_CONTEXT;
726 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
728 int word, bit;
730 if (val > 0xffffffff)
731 return false;
733 word = AUDIT_WORD(val);
734 if (word >= AUDIT_BITMASK_SIZE)
735 return false;
737 bit = AUDIT_BIT(val);
739 return rule->mask[word] & bit;
742 /* At syscall entry and exit time, this filter is called if the
743 * audit_state is not low enough that auditing cannot take place, but is
744 * also not high enough that we already know we have to write an audit
745 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
747 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
748 struct audit_context *ctx,
749 struct list_head *list)
751 struct audit_entry *e;
752 enum audit_state state;
754 if (audit_pid && tsk->tgid == audit_pid)
755 return AUDIT_DISABLED;
757 rcu_read_lock();
758 if (!list_empty(list)) {
759 list_for_each_entry_rcu(e, list, list) {
760 if (audit_in_mask(&e->rule, ctx->major) &&
761 audit_filter_rules(tsk, &e->rule, ctx, NULL,
762 &state, false)) {
763 rcu_read_unlock();
764 ctx->current_state = state;
765 return state;
769 rcu_read_unlock();
770 return AUDIT_BUILD_CONTEXT;
774 * Given an audit_name check the inode hash table to see if they match.
775 * Called holding the rcu read lock to protect the use of audit_inode_hash
777 static int audit_filter_inode_name(struct task_struct *tsk,
778 struct audit_names *n,
779 struct audit_context *ctx) {
780 int h = audit_hash_ino((u32)n->ino);
781 struct list_head *list = &audit_inode_hash[h];
782 struct audit_entry *e;
783 enum audit_state state;
785 if (list_empty(list))
786 return 0;
788 list_for_each_entry_rcu(e, list, list) {
789 if (audit_in_mask(&e->rule, ctx->major) &&
790 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
791 ctx->current_state = state;
792 return 1;
796 return 0;
799 /* At syscall exit time, this filter is called if any audit_names have been
800 * collected during syscall processing. We only check rules in sublists at hash
801 * buckets applicable to the inode numbers in audit_names.
802 * Regarding audit_state, same rules apply as for audit_filter_syscall().
804 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
806 struct audit_names *n;
808 if (audit_pid && tsk->tgid == audit_pid)
809 return;
811 rcu_read_lock();
813 list_for_each_entry(n, &ctx->names_list, list) {
814 if (audit_filter_inode_name(tsk, n, ctx))
815 break;
817 rcu_read_unlock();
820 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
821 static inline struct audit_context *audit_take_context(struct task_struct *tsk,
822 int return_valid,
823 long return_code)
825 struct audit_context *context = tsk->audit_context;
827 if (!context)
828 return NULL;
829 context->return_valid = return_valid;
832 * we need to fix up the return code in the audit logs if the actual
833 * return codes are later going to be fixed up by the arch specific
834 * signal handlers
836 * This is actually a test for:
837 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
838 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
840 * but is faster than a bunch of ||
842 if (unlikely(return_code <= -ERESTARTSYS) &&
843 (return_code >= -ERESTART_RESTARTBLOCK) &&
844 (return_code != -ENOIOCTLCMD))
845 context->return_code = -EINTR;
846 else
847 context->return_code = return_code;
849 if (context->in_syscall && !context->dummy) {
850 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
851 audit_filter_inodes(tsk, context);
854 tsk->audit_context = NULL;
855 return context;
858 static inline void audit_proctitle_free(struct audit_context *context)
860 kfree(context->proctitle.value);
861 context->proctitle.value = NULL;
862 context->proctitle.len = 0;
865 static inline void audit_free_names(struct audit_context *context)
867 struct audit_names *n, *next;
869 list_for_each_entry_safe(n, next, &context->names_list, list) {
870 list_del(&n->list);
871 if (n->name)
872 putname(n->name);
873 if (n->should_free)
874 kfree(n);
876 context->name_count = 0;
877 path_put(&context->pwd);
878 context->pwd.dentry = NULL;
879 context->pwd.mnt = NULL;
882 static inline void audit_free_aux(struct audit_context *context)
884 struct audit_aux_data *aux;
886 while ((aux = context->aux)) {
887 context->aux = aux->next;
888 kfree(aux);
890 while ((aux = context->aux_pids)) {
891 context->aux_pids = aux->next;
892 kfree(aux);
896 static inline struct audit_context *audit_alloc_context(enum audit_state state)
898 struct audit_context *context;
900 context = kzalloc(sizeof(*context), GFP_KERNEL);
901 if (!context)
902 return NULL;
903 context->state = state;
904 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
905 INIT_LIST_HEAD(&context->killed_trees);
906 INIT_LIST_HEAD(&context->names_list);
907 return context;
911 * audit_alloc - allocate an audit context block for a task
912 * @tsk: task
914 * Filter on the task information and allocate a per-task audit context
915 * if necessary. Doing so turns on system call auditing for the
916 * specified task. This is called from copy_process, so no lock is
917 * needed.
919 int audit_alloc(struct task_struct *tsk)
921 struct audit_context *context;
922 enum audit_state state;
923 char *key = NULL;
925 if (likely(!audit_ever_enabled))
926 return 0; /* Return if not auditing. */
928 state = audit_filter_task(tsk, &key);
929 if (state == AUDIT_DISABLED) {
930 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
931 return 0;
934 if (!(context = audit_alloc_context(state))) {
935 kfree(key);
936 audit_log_lost("out of memory in audit_alloc");
937 return -ENOMEM;
939 context->filterkey = key;
941 tsk->audit_context = context;
942 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
943 return 0;
946 static inline void audit_free_context(struct audit_context *context)
948 audit_free_names(context);
949 unroll_tree_refs(context, NULL, 0);
950 free_tree_refs(context);
951 audit_free_aux(context);
952 kfree(context->filterkey);
953 kfree(context->sockaddr);
954 audit_proctitle_free(context);
955 kfree(context);
958 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
959 kuid_t auid, kuid_t uid, unsigned int sessionid,
960 u32 sid, char *comm)
962 struct audit_buffer *ab;
963 char *ctx = NULL;
964 u32 len;
965 int rc = 0;
967 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
968 if (!ab)
969 return rc;
971 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
972 from_kuid(&init_user_ns, auid),
973 from_kuid(&init_user_ns, uid), sessionid);
974 if (sid) {
975 if (security_secid_to_secctx(sid, &ctx, &len)) {
976 audit_log_format(ab, " obj=(none)");
977 rc = 1;
978 } else {
979 audit_log_format(ab, " obj=%s", ctx);
980 security_release_secctx(ctx, len);
983 audit_log_format(ab, " ocomm=");
984 audit_log_untrustedstring(ab, comm);
985 audit_log_end(ab);
987 return rc;
991 * to_send and len_sent accounting are very loose estimates. We aren't
992 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
993 * within about 500 bytes (next page boundary)
995 * why snprintf? an int is up to 12 digits long. if we just assumed when
996 * logging that a[%d]= was going to be 16 characters long we would be wasting
997 * space in every audit message. In one 7500 byte message we can log up to
998 * about 1000 min size arguments. That comes down to about 50% waste of space
999 * if we didn't do the snprintf to find out how long arg_num_len was.
1001 static int audit_log_single_execve_arg(struct audit_context *context,
1002 struct audit_buffer **ab,
1003 int arg_num,
1004 size_t *len_sent,
1005 const char __user *p,
1006 char *buf)
1008 char arg_num_len_buf[12];
1009 const char __user *tmp_p = p;
1010 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1011 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1012 size_t len, len_left, to_send;
1013 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1014 unsigned int i, has_cntl = 0, too_long = 0;
1015 int ret;
1017 /* strnlen_user includes the null we don't want to send */
1018 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1021 * We just created this mm, if we can't find the strings
1022 * we just copied into it something is _very_ wrong. Similar
1023 * for strings that are too long, we should not have created
1024 * any.
1026 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1027 WARN_ON(1);
1028 send_sig(SIGKILL, current, 0);
1029 return -1;
1032 /* walk the whole argument looking for non-ascii chars */
1033 do {
1034 if (len_left > MAX_EXECVE_AUDIT_LEN)
1035 to_send = MAX_EXECVE_AUDIT_LEN;
1036 else
1037 to_send = len_left;
1038 ret = copy_from_user(buf, tmp_p, to_send);
1040 * There is no reason for this copy to be short. We just
1041 * copied them here, and the mm hasn't been exposed to user-
1042 * space yet.
1044 if (ret) {
1045 WARN_ON(1);
1046 send_sig(SIGKILL, current, 0);
1047 return -1;
1049 buf[to_send] = '\0';
1050 has_cntl = audit_string_contains_control(buf, to_send);
1051 if (has_cntl) {
1053 * hex messages get logged as 2 bytes, so we can only
1054 * send half as much in each message
1056 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1057 break;
1059 len_left -= to_send;
1060 tmp_p += to_send;
1061 } while (len_left > 0);
1063 len_left = len;
1065 if (len > max_execve_audit_len)
1066 too_long = 1;
1068 /* rewalk the argument actually logging the message */
1069 for (i = 0; len_left > 0; i++) {
1070 int room_left;
1072 if (len_left > max_execve_audit_len)
1073 to_send = max_execve_audit_len;
1074 else
1075 to_send = len_left;
1077 /* do we have space left to send this argument in this ab? */
1078 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1079 if (has_cntl)
1080 room_left -= (to_send * 2);
1081 else
1082 room_left -= to_send;
1083 if (room_left < 0) {
1084 *len_sent = 0;
1085 audit_log_end(*ab);
1086 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1087 if (!*ab)
1088 return 0;
1092 * first record needs to say how long the original string was
1093 * so we can be sure nothing was lost.
1095 if ((i == 0) && (too_long))
1096 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1097 has_cntl ? 2*len : len);
1100 * normally arguments are small enough to fit and we already
1101 * filled buf above when we checked for control characters
1102 * so don't bother with another copy_from_user
1104 if (len >= max_execve_audit_len)
1105 ret = copy_from_user(buf, p, to_send);
1106 else
1107 ret = 0;
1108 if (ret) {
1109 WARN_ON(1);
1110 send_sig(SIGKILL, current, 0);
1111 return -1;
1113 buf[to_send] = '\0';
1115 /* actually log it */
1116 audit_log_format(*ab, " a%d", arg_num);
1117 if (too_long)
1118 audit_log_format(*ab, "[%d]", i);
1119 audit_log_format(*ab, "=");
1120 if (has_cntl)
1121 audit_log_n_hex(*ab, buf, to_send);
1122 else
1123 audit_log_string(*ab, buf);
1125 p += to_send;
1126 len_left -= to_send;
1127 *len_sent += arg_num_len;
1128 if (has_cntl)
1129 *len_sent += to_send * 2;
1130 else
1131 *len_sent += to_send;
1133 /* include the null we didn't log */
1134 return len + 1;
1137 static void audit_log_execve_info(struct audit_context *context,
1138 struct audit_buffer **ab)
1140 int i, len;
1141 size_t len_sent = 0;
1142 const char __user *p;
1143 char *buf;
1145 p = (const char __user *)current->mm->arg_start;
1147 audit_log_format(*ab, "argc=%d", context->execve.argc);
1150 * we need some kernel buffer to hold the userspace args. Just
1151 * allocate one big one rather than allocating one of the right size
1152 * for every single argument inside audit_log_single_execve_arg()
1153 * should be <8k allocation so should be pretty safe.
1155 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1156 if (!buf) {
1157 audit_panic("out of memory for argv string");
1158 return;
1161 for (i = 0; i < context->execve.argc; i++) {
1162 len = audit_log_single_execve_arg(context, ab, i,
1163 &len_sent, p, buf);
1164 if (len <= 0)
1165 break;
1166 p += len;
1168 kfree(buf);
1171 static void show_special(struct audit_context *context, int *call_panic)
1173 struct audit_buffer *ab;
1174 int i;
1176 ab = audit_log_start(context, GFP_KERNEL, context->type);
1177 if (!ab)
1178 return;
1180 switch (context->type) {
1181 case AUDIT_SOCKETCALL: {
1182 int nargs = context->socketcall.nargs;
1183 audit_log_format(ab, "nargs=%d", nargs);
1184 for (i = 0; i < nargs; i++)
1185 audit_log_format(ab, " a%d=%lx", i,
1186 context->socketcall.args[i]);
1187 break; }
1188 case AUDIT_IPC: {
1189 u32 osid = context->ipc.osid;
1191 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1192 from_kuid(&init_user_ns, context->ipc.uid),
1193 from_kgid(&init_user_ns, context->ipc.gid),
1194 context->ipc.mode);
1195 if (osid) {
1196 char *ctx = NULL;
1197 u32 len;
1198 if (security_secid_to_secctx(osid, &ctx, &len)) {
1199 audit_log_format(ab, " osid=%u", osid);
1200 *call_panic = 1;
1201 } else {
1202 audit_log_format(ab, " obj=%s", ctx);
1203 security_release_secctx(ctx, len);
1206 if (context->ipc.has_perm) {
1207 audit_log_end(ab);
1208 ab = audit_log_start(context, GFP_KERNEL,
1209 AUDIT_IPC_SET_PERM);
1210 if (unlikely(!ab))
1211 return;
1212 audit_log_format(ab,
1213 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1214 context->ipc.qbytes,
1215 context->ipc.perm_uid,
1216 context->ipc.perm_gid,
1217 context->ipc.perm_mode);
1219 break; }
1220 case AUDIT_MQ_OPEN: {
1221 audit_log_format(ab,
1222 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1223 "mq_msgsize=%ld mq_curmsgs=%ld",
1224 context->mq_open.oflag, context->mq_open.mode,
1225 context->mq_open.attr.mq_flags,
1226 context->mq_open.attr.mq_maxmsg,
1227 context->mq_open.attr.mq_msgsize,
1228 context->mq_open.attr.mq_curmsgs);
1229 break; }
1230 case AUDIT_MQ_SENDRECV: {
1231 audit_log_format(ab,
1232 "mqdes=%d msg_len=%zd msg_prio=%u "
1233 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1234 context->mq_sendrecv.mqdes,
1235 context->mq_sendrecv.msg_len,
1236 context->mq_sendrecv.msg_prio,
1237 context->mq_sendrecv.abs_timeout.tv_sec,
1238 context->mq_sendrecv.abs_timeout.tv_nsec);
1239 break; }
1240 case AUDIT_MQ_NOTIFY: {
1241 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1242 context->mq_notify.mqdes,
1243 context->mq_notify.sigev_signo);
1244 break; }
1245 case AUDIT_MQ_GETSETATTR: {
1246 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1247 audit_log_format(ab,
1248 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1249 "mq_curmsgs=%ld ",
1250 context->mq_getsetattr.mqdes,
1251 attr->mq_flags, attr->mq_maxmsg,
1252 attr->mq_msgsize, attr->mq_curmsgs);
1253 break; }
1254 case AUDIT_CAPSET: {
1255 audit_log_format(ab, "pid=%d", context->capset.pid);
1256 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1257 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1258 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1259 break; }
1260 case AUDIT_MMAP: {
1261 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1262 context->mmap.flags);
1263 break; }
1264 case AUDIT_EXECVE: {
1265 audit_log_execve_info(context, &ab);
1266 break; }
1268 audit_log_end(ab);
1271 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1273 char *end = proctitle + len - 1;
1274 while (end > proctitle && !isprint(*end))
1275 end--;
1277 /* catch the case where proctitle is only 1 non-print character */
1278 len = end - proctitle + 1;
1279 len -= isprint(proctitle[len-1]) == 0;
1280 return len;
1283 static void audit_log_proctitle(struct task_struct *tsk,
1284 struct audit_context *context)
1286 int res;
1287 char *buf;
1288 char *msg = "(null)";
1289 int len = strlen(msg);
1290 struct audit_buffer *ab;
1292 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1293 if (!ab)
1294 return; /* audit_panic or being filtered */
1296 audit_log_format(ab, "proctitle=");
1298 /* Not cached */
1299 if (!context->proctitle.value) {
1300 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1301 if (!buf)
1302 goto out;
1303 /* Historically called this from procfs naming */
1304 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1305 if (res == 0) {
1306 kfree(buf);
1307 goto out;
1309 res = audit_proctitle_rtrim(buf, res);
1310 if (res == 0) {
1311 kfree(buf);
1312 goto out;
1314 context->proctitle.value = buf;
1315 context->proctitle.len = res;
1317 msg = context->proctitle.value;
1318 len = context->proctitle.len;
1319 out:
1320 audit_log_n_untrustedstring(ab, msg, len);
1321 audit_log_end(ab);
1324 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1326 int i, call_panic = 0;
1327 struct audit_buffer *ab;
1328 struct audit_aux_data *aux;
1329 struct audit_names *n;
1331 /* tsk == current */
1332 context->personality = tsk->personality;
1334 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1335 if (!ab)
1336 return; /* audit_panic has been called */
1337 audit_log_format(ab, "arch=%x syscall=%d",
1338 context->arch, context->major);
1339 if (context->personality != PER_LINUX)
1340 audit_log_format(ab, " per=%lx", context->personality);
1341 if (context->return_valid)
1342 audit_log_format(ab, " success=%s exit=%ld",
1343 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1344 context->return_code);
1346 audit_log_format(ab,
1347 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1348 context->argv[0],
1349 context->argv[1],
1350 context->argv[2],
1351 context->argv[3],
1352 context->name_count);
1354 audit_log_task_info(ab, tsk);
1355 audit_log_key(ab, context->filterkey);
1356 audit_log_end(ab);
1358 for (aux = context->aux; aux; aux = aux->next) {
1360 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1361 if (!ab)
1362 continue; /* audit_panic has been called */
1364 switch (aux->type) {
1366 case AUDIT_BPRM_FCAPS: {
1367 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1368 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1369 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1370 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1371 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1372 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1373 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1374 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1375 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1376 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1377 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1378 break; }
1381 audit_log_end(ab);
1384 if (context->type)
1385 show_special(context, &call_panic);
1387 if (context->fds[0] >= 0) {
1388 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1389 if (ab) {
1390 audit_log_format(ab, "fd0=%d fd1=%d",
1391 context->fds[0], context->fds[1]);
1392 audit_log_end(ab);
1396 if (context->sockaddr_len) {
1397 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1398 if (ab) {
1399 audit_log_format(ab, "saddr=");
1400 audit_log_n_hex(ab, (void *)context->sockaddr,
1401 context->sockaddr_len);
1402 audit_log_end(ab);
1406 for (aux = context->aux_pids; aux; aux = aux->next) {
1407 struct audit_aux_data_pids *axs = (void *)aux;
1409 for (i = 0; i < axs->pid_count; i++)
1410 if (audit_log_pid_context(context, axs->target_pid[i],
1411 axs->target_auid[i],
1412 axs->target_uid[i],
1413 axs->target_sessionid[i],
1414 axs->target_sid[i],
1415 axs->target_comm[i]))
1416 call_panic = 1;
1419 if (context->target_pid &&
1420 audit_log_pid_context(context, context->target_pid,
1421 context->target_auid, context->target_uid,
1422 context->target_sessionid,
1423 context->target_sid, context->target_comm))
1424 call_panic = 1;
1426 if (context->pwd.dentry && context->pwd.mnt) {
1427 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1428 if (ab) {
1429 audit_log_d_path(ab, " cwd=", &context->pwd);
1430 audit_log_end(ab);
1434 i = 0;
1435 list_for_each_entry(n, &context->names_list, list) {
1436 if (n->hidden)
1437 continue;
1438 audit_log_name(context, n, NULL, i++, &call_panic);
1441 audit_log_proctitle(tsk, context);
1443 /* Send end of event record to help user space know we are finished */
1444 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1445 if (ab)
1446 audit_log_end(ab);
1447 if (call_panic)
1448 audit_panic("error converting sid to string");
1452 * audit_free - free a per-task audit context
1453 * @tsk: task whose audit context block to free
1455 * Called from copy_process and do_exit
1457 void __audit_free(struct task_struct *tsk)
1459 struct audit_context *context;
1461 context = audit_take_context(tsk, 0, 0);
1462 if (!context)
1463 return;
1465 /* Check for system calls that do not go through the exit
1466 * function (e.g., exit_group), then free context block.
1467 * We use GFP_ATOMIC here because we might be doing this
1468 * in the context of the idle thread */
1469 /* that can happen only if we are called from do_exit() */
1470 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1471 audit_log_exit(context, tsk);
1472 if (!list_empty(&context->killed_trees))
1473 audit_kill_trees(&context->killed_trees);
1475 audit_free_context(context);
1479 * audit_syscall_entry - fill in an audit record at syscall entry
1480 * @major: major syscall type (function)
1481 * @a1: additional syscall register 1
1482 * @a2: additional syscall register 2
1483 * @a3: additional syscall register 3
1484 * @a4: additional syscall register 4
1486 * Fill in audit context at syscall entry. This only happens if the
1487 * audit context was created when the task was created and the state or
1488 * filters demand the audit context be built. If the state from the
1489 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1490 * then the record will be written at syscall exit time (otherwise, it
1491 * will only be written if another part of the kernel requests that it
1492 * be written).
1494 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1495 unsigned long a3, unsigned long a4)
1497 struct task_struct *tsk = current;
1498 struct audit_context *context = tsk->audit_context;
1499 enum audit_state state;
1501 if (!context)
1502 return;
1504 BUG_ON(context->in_syscall || context->name_count);
1506 if (!audit_enabled)
1507 return;
1509 context->arch = syscall_get_arch();
1510 context->major = major;
1511 context->argv[0] = a1;
1512 context->argv[1] = a2;
1513 context->argv[2] = a3;
1514 context->argv[3] = a4;
1516 state = context->state;
1517 context->dummy = !audit_n_rules;
1518 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1519 context->prio = 0;
1520 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1522 if (state == AUDIT_DISABLED)
1523 return;
1525 context->serial = 0;
1526 context->ctime = CURRENT_TIME;
1527 context->in_syscall = 1;
1528 context->current_state = state;
1529 context->ppid = 0;
1533 * audit_syscall_exit - deallocate audit context after a system call
1534 * @success: success value of the syscall
1535 * @return_code: return value of the syscall
1537 * Tear down after system call. If the audit context has been marked as
1538 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1539 * filtering, or because some other part of the kernel wrote an audit
1540 * message), then write out the syscall information. In call cases,
1541 * free the names stored from getname().
1543 void __audit_syscall_exit(int success, long return_code)
1545 struct task_struct *tsk = current;
1546 struct audit_context *context;
1548 if (success)
1549 success = AUDITSC_SUCCESS;
1550 else
1551 success = AUDITSC_FAILURE;
1553 context = audit_take_context(tsk, success, return_code);
1554 if (!context)
1555 return;
1557 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1558 audit_log_exit(context, tsk);
1560 context->in_syscall = 0;
1561 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1563 if (!list_empty(&context->killed_trees))
1564 audit_kill_trees(&context->killed_trees);
1566 audit_free_names(context);
1567 unroll_tree_refs(context, NULL, 0);
1568 audit_free_aux(context);
1569 context->aux = NULL;
1570 context->aux_pids = NULL;
1571 context->target_pid = 0;
1572 context->target_sid = 0;
1573 context->sockaddr_len = 0;
1574 context->type = 0;
1575 context->fds[0] = -1;
1576 if (context->state != AUDIT_RECORD_CONTEXT) {
1577 kfree(context->filterkey);
1578 context->filterkey = NULL;
1580 tsk->audit_context = context;
1583 static inline void handle_one(const struct inode *inode)
1585 #ifdef CONFIG_AUDIT_TREE
1586 struct audit_context *context;
1587 struct audit_tree_refs *p;
1588 struct audit_chunk *chunk;
1589 int count;
1590 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1591 return;
1592 context = current->audit_context;
1593 p = context->trees;
1594 count = context->tree_count;
1595 rcu_read_lock();
1596 chunk = audit_tree_lookup(inode);
1597 rcu_read_unlock();
1598 if (!chunk)
1599 return;
1600 if (likely(put_tree_ref(context, chunk)))
1601 return;
1602 if (unlikely(!grow_tree_refs(context))) {
1603 pr_warn("out of memory, audit has lost a tree reference\n");
1604 audit_set_auditable(context);
1605 audit_put_chunk(chunk);
1606 unroll_tree_refs(context, p, count);
1607 return;
1609 put_tree_ref(context, chunk);
1610 #endif
1613 static void handle_path(const struct dentry *dentry)
1615 #ifdef CONFIG_AUDIT_TREE
1616 struct audit_context *context;
1617 struct audit_tree_refs *p;
1618 const struct dentry *d, *parent;
1619 struct audit_chunk *drop;
1620 unsigned long seq;
1621 int count;
1623 context = current->audit_context;
1624 p = context->trees;
1625 count = context->tree_count;
1626 retry:
1627 drop = NULL;
1628 d = dentry;
1629 rcu_read_lock();
1630 seq = read_seqbegin(&rename_lock);
1631 for(;;) {
1632 struct inode *inode = d_backing_inode(d);
1633 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1634 struct audit_chunk *chunk;
1635 chunk = audit_tree_lookup(inode);
1636 if (chunk) {
1637 if (unlikely(!put_tree_ref(context, chunk))) {
1638 drop = chunk;
1639 break;
1643 parent = d->d_parent;
1644 if (parent == d)
1645 break;
1646 d = parent;
1648 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1649 rcu_read_unlock();
1650 if (!drop) {
1651 /* just a race with rename */
1652 unroll_tree_refs(context, p, count);
1653 goto retry;
1655 audit_put_chunk(drop);
1656 if (grow_tree_refs(context)) {
1657 /* OK, got more space */
1658 unroll_tree_refs(context, p, count);
1659 goto retry;
1661 /* too bad */
1662 pr_warn("out of memory, audit has lost a tree reference\n");
1663 unroll_tree_refs(context, p, count);
1664 audit_set_auditable(context);
1665 return;
1667 rcu_read_unlock();
1668 #endif
1671 static struct audit_names *audit_alloc_name(struct audit_context *context,
1672 unsigned char type)
1674 struct audit_names *aname;
1676 if (context->name_count < AUDIT_NAMES) {
1677 aname = &context->preallocated_names[context->name_count];
1678 memset(aname, 0, sizeof(*aname));
1679 } else {
1680 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1681 if (!aname)
1682 return NULL;
1683 aname->should_free = true;
1686 aname->ino = (unsigned long)-1;
1687 aname->type = type;
1688 list_add_tail(&aname->list, &context->names_list);
1690 context->name_count++;
1691 return aname;
1695 * audit_reusename - fill out filename with info from existing entry
1696 * @uptr: userland ptr to pathname
1698 * Search the audit_names list for the current audit context. If there is an
1699 * existing entry with a matching "uptr" then return the filename
1700 * associated with that audit_name. If not, return NULL.
1702 struct filename *
1703 __audit_reusename(const __user char *uptr)
1705 struct audit_context *context = current->audit_context;
1706 struct audit_names *n;
1708 list_for_each_entry(n, &context->names_list, list) {
1709 if (!n->name)
1710 continue;
1711 if (n->name->uptr == uptr) {
1712 n->name->refcnt++;
1713 return n->name;
1716 return NULL;
1720 * audit_getname - add a name to the list
1721 * @name: name to add
1723 * Add a name to the list of audit names for this context.
1724 * Called from fs/namei.c:getname().
1726 void __audit_getname(struct filename *name)
1728 struct audit_context *context = current->audit_context;
1729 struct audit_names *n;
1731 if (!context->in_syscall)
1732 return;
1734 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1735 if (!n)
1736 return;
1738 n->name = name;
1739 n->name_len = AUDIT_NAME_FULL;
1740 name->aname = n;
1741 name->refcnt++;
1743 if (!context->pwd.dentry)
1744 get_fs_pwd(current->fs, &context->pwd);
1748 * __audit_inode - store the inode and device from a lookup
1749 * @name: name being audited
1750 * @dentry: dentry being audited
1751 * @flags: attributes for this particular entry
1753 void __audit_inode(struct filename *name, const struct dentry *dentry,
1754 unsigned int flags)
1756 struct audit_context *context = current->audit_context;
1757 const struct inode *inode = d_backing_inode(dentry);
1758 struct audit_names *n;
1759 bool parent = flags & AUDIT_INODE_PARENT;
1761 if (!context->in_syscall)
1762 return;
1764 if (!name)
1765 goto out_alloc;
1768 * If we have a pointer to an audit_names entry already, then we can
1769 * just use it directly if the type is correct.
1771 n = name->aname;
1772 if (n) {
1773 if (parent) {
1774 if (n->type == AUDIT_TYPE_PARENT ||
1775 n->type == AUDIT_TYPE_UNKNOWN)
1776 goto out;
1777 } else {
1778 if (n->type != AUDIT_TYPE_PARENT)
1779 goto out;
1783 list_for_each_entry_reverse(n, &context->names_list, list) {
1784 if (n->ino) {
1785 /* valid inode number, use that for the comparison */
1786 if (n->ino != inode->i_ino ||
1787 n->dev != inode->i_sb->s_dev)
1788 continue;
1789 } else if (n->name) {
1790 /* inode number has not been set, check the name */
1791 if (strcmp(n->name->name, name->name))
1792 continue;
1793 } else
1794 /* no inode and no name (?!) ... this is odd ... */
1795 continue;
1797 /* match the correct record type */
1798 if (parent) {
1799 if (n->type == AUDIT_TYPE_PARENT ||
1800 n->type == AUDIT_TYPE_UNKNOWN)
1801 goto out;
1802 } else {
1803 if (n->type != AUDIT_TYPE_PARENT)
1804 goto out;
1808 out_alloc:
1809 /* unable to find an entry with both a matching name and type */
1810 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1811 if (!n)
1812 return;
1813 if (name) {
1814 n->name = name;
1815 name->refcnt++;
1818 out:
1819 if (parent) {
1820 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1821 n->type = AUDIT_TYPE_PARENT;
1822 if (flags & AUDIT_INODE_HIDDEN)
1823 n->hidden = true;
1824 } else {
1825 n->name_len = AUDIT_NAME_FULL;
1826 n->type = AUDIT_TYPE_NORMAL;
1828 handle_path(dentry);
1829 audit_copy_inode(n, dentry, inode);
1832 void __audit_file(const struct file *file)
1834 __audit_inode(NULL, file->f_path.dentry, 0);
1838 * __audit_inode_child - collect inode info for created/removed objects
1839 * @parent: inode of dentry parent
1840 * @dentry: dentry being audited
1841 * @type: AUDIT_TYPE_* value that we're looking for
1843 * For syscalls that create or remove filesystem objects, audit_inode
1844 * can only collect information for the filesystem object's parent.
1845 * This call updates the audit context with the child's information.
1846 * Syscalls that create a new filesystem object must be hooked after
1847 * the object is created. Syscalls that remove a filesystem object
1848 * must be hooked prior, in order to capture the target inode during
1849 * unsuccessful attempts.
1851 void __audit_inode_child(const struct inode *parent,
1852 const struct dentry *dentry,
1853 const unsigned char type)
1855 struct audit_context *context = current->audit_context;
1856 const struct inode *inode = d_backing_inode(dentry);
1857 const char *dname = dentry->d_name.name;
1858 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1860 if (!context->in_syscall)
1861 return;
1863 if (inode)
1864 handle_one(inode);
1866 /* look for a parent entry first */
1867 list_for_each_entry(n, &context->names_list, list) {
1868 if (!n->name ||
1869 (n->type != AUDIT_TYPE_PARENT &&
1870 n->type != AUDIT_TYPE_UNKNOWN))
1871 continue;
1873 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1874 !audit_compare_dname_path(dname,
1875 n->name->name, n->name_len)) {
1876 if (n->type == AUDIT_TYPE_UNKNOWN)
1877 n->type = AUDIT_TYPE_PARENT;
1878 found_parent = n;
1879 break;
1883 /* is there a matching child entry? */
1884 list_for_each_entry(n, &context->names_list, list) {
1885 /* can only match entries that have a name */
1886 if (!n->name ||
1887 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1888 continue;
1890 if (!strcmp(dname, n->name->name) ||
1891 !audit_compare_dname_path(dname, n->name->name,
1892 found_parent ?
1893 found_parent->name_len :
1894 AUDIT_NAME_FULL)) {
1895 if (n->type == AUDIT_TYPE_UNKNOWN)
1896 n->type = type;
1897 found_child = n;
1898 break;
1902 if (!found_parent) {
1903 /* create a new, "anonymous" parent record */
1904 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1905 if (!n)
1906 return;
1907 audit_copy_inode(n, NULL, parent);
1910 if (!found_child) {
1911 found_child = audit_alloc_name(context, type);
1912 if (!found_child)
1913 return;
1915 /* Re-use the name belonging to the slot for a matching parent
1916 * directory. All names for this context are relinquished in
1917 * audit_free_names() */
1918 if (found_parent) {
1919 found_child->name = found_parent->name;
1920 found_child->name_len = AUDIT_NAME_FULL;
1921 found_child->name->refcnt++;
1925 if (inode)
1926 audit_copy_inode(found_child, dentry, inode);
1927 else
1928 found_child->ino = (unsigned long)-1;
1930 EXPORT_SYMBOL_GPL(__audit_inode_child);
1933 * auditsc_get_stamp - get local copies of audit_context values
1934 * @ctx: audit_context for the task
1935 * @t: timespec to store time recorded in the audit_context
1936 * @serial: serial value that is recorded in the audit_context
1938 * Also sets the context as auditable.
1940 int auditsc_get_stamp(struct audit_context *ctx,
1941 struct timespec *t, unsigned int *serial)
1943 if (!ctx->in_syscall)
1944 return 0;
1945 if (!ctx->serial)
1946 ctx->serial = audit_serial();
1947 t->tv_sec = ctx->ctime.tv_sec;
1948 t->tv_nsec = ctx->ctime.tv_nsec;
1949 *serial = ctx->serial;
1950 if (!ctx->prio) {
1951 ctx->prio = 1;
1952 ctx->current_state = AUDIT_RECORD_CONTEXT;
1954 return 1;
1957 /* global counter which is incremented every time something logs in */
1958 static atomic_t session_id = ATOMIC_INIT(0);
1960 static int audit_set_loginuid_perm(kuid_t loginuid)
1962 /* if we are unset, we don't need privs */
1963 if (!audit_loginuid_set(current))
1964 return 0;
1965 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1966 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
1967 return -EPERM;
1968 /* it is set, you need permission */
1969 if (!capable(CAP_AUDIT_CONTROL))
1970 return -EPERM;
1971 /* reject if this is not an unset and we don't allow that */
1972 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
1973 return -EPERM;
1974 return 0;
1977 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
1978 unsigned int oldsessionid, unsigned int sessionid,
1979 int rc)
1981 struct audit_buffer *ab;
1982 uid_t uid, oldloginuid, loginuid;
1984 if (!audit_enabled)
1985 return;
1987 uid = from_kuid(&init_user_ns, task_uid(current));
1988 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
1989 loginuid = from_kuid(&init_user_ns, kloginuid),
1991 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1992 if (!ab)
1993 return;
1994 audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid);
1995 audit_log_task_context(ab);
1996 audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d",
1997 oldloginuid, loginuid, oldsessionid, sessionid, !rc);
1998 audit_log_end(ab);
2002 * audit_set_loginuid - set current task's audit_context loginuid
2003 * @loginuid: loginuid value
2005 * Returns 0.
2007 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2009 int audit_set_loginuid(kuid_t loginuid)
2011 struct task_struct *task = current;
2012 unsigned int oldsessionid, sessionid = (unsigned int)-1;
2013 kuid_t oldloginuid;
2014 int rc;
2016 oldloginuid = audit_get_loginuid(current);
2017 oldsessionid = audit_get_sessionid(current);
2019 rc = audit_set_loginuid_perm(loginuid);
2020 if (rc)
2021 goto out;
2023 /* are we setting or clearing? */
2024 if (uid_valid(loginuid))
2025 sessionid = (unsigned int)atomic_inc_return(&session_id);
2027 task->sessionid = sessionid;
2028 task->loginuid = loginuid;
2029 out:
2030 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2031 return rc;
2035 * __audit_mq_open - record audit data for a POSIX MQ open
2036 * @oflag: open flag
2037 * @mode: mode bits
2038 * @attr: queue attributes
2041 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2043 struct audit_context *context = current->audit_context;
2045 if (attr)
2046 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2047 else
2048 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2050 context->mq_open.oflag = oflag;
2051 context->mq_open.mode = mode;
2053 context->type = AUDIT_MQ_OPEN;
2057 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2058 * @mqdes: MQ descriptor
2059 * @msg_len: Message length
2060 * @msg_prio: Message priority
2061 * @abs_timeout: Message timeout in absolute time
2064 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2065 const struct timespec *abs_timeout)
2067 struct audit_context *context = current->audit_context;
2068 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2070 if (abs_timeout)
2071 memcpy(p, abs_timeout, sizeof(struct timespec));
2072 else
2073 memset(p, 0, sizeof(struct timespec));
2075 context->mq_sendrecv.mqdes = mqdes;
2076 context->mq_sendrecv.msg_len = msg_len;
2077 context->mq_sendrecv.msg_prio = msg_prio;
2079 context->type = AUDIT_MQ_SENDRECV;
2083 * __audit_mq_notify - record audit data for a POSIX MQ notify
2084 * @mqdes: MQ descriptor
2085 * @notification: Notification event
2089 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2091 struct audit_context *context = current->audit_context;
2093 if (notification)
2094 context->mq_notify.sigev_signo = notification->sigev_signo;
2095 else
2096 context->mq_notify.sigev_signo = 0;
2098 context->mq_notify.mqdes = mqdes;
2099 context->type = AUDIT_MQ_NOTIFY;
2103 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2104 * @mqdes: MQ descriptor
2105 * @mqstat: MQ flags
2108 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2110 struct audit_context *context = current->audit_context;
2111 context->mq_getsetattr.mqdes = mqdes;
2112 context->mq_getsetattr.mqstat = *mqstat;
2113 context->type = AUDIT_MQ_GETSETATTR;
2117 * audit_ipc_obj - record audit data for ipc object
2118 * @ipcp: ipc permissions
2121 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2123 struct audit_context *context = current->audit_context;
2124 context->ipc.uid = ipcp->uid;
2125 context->ipc.gid = ipcp->gid;
2126 context->ipc.mode = ipcp->mode;
2127 context->ipc.has_perm = 0;
2128 security_ipc_getsecid(ipcp, &context->ipc.osid);
2129 context->type = AUDIT_IPC;
2133 * audit_ipc_set_perm - record audit data for new ipc permissions
2134 * @qbytes: msgq bytes
2135 * @uid: msgq user id
2136 * @gid: msgq group id
2137 * @mode: msgq mode (permissions)
2139 * Called only after audit_ipc_obj().
2141 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2143 struct audit_context *context = current->audit_context;
2145 context->ipc.qbytes = qbytes;
2146 context->ipc.perm_uid = uid;
2147 context->ipc.perm_gid = gid;
2148 context->ipc.perm_mode = mode;
2149 context->ipc.has_perm = 1;
2152 void __audit_bprm(struct linux_binprm *bprm)
2154 struct audit_context *context = current->audit_context;
2156 context->type = AUDIT_EXECVE;
2157 context->execve.argc = bprm->argc;
2162 * audit_socketcall - record audit data for sys_socketcall
2163 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2164 * @args: args array
2167 int __audit_socketcall(int nargs, unsigned long *args)
2169 struct audit_context *context = current->audit_context;
2171 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2172 return -EINVAL;
2173 context->type = AUDIT_SOCKETCALL;
2174 context->socketcall.nargs = nargs;
2175 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2176 return 0;
2180 * __audit_fd_pair - record audit data for pipe and socketpair
2181 * @fd1: the first file descriptor
2182 * @fd2: the second file descriptor
2185 void __audit_fd_pair(int fd1, int fd2)
2187 struct audit_context *context = current->audit_context;
2188 context->fds[0] = fd1;
2189 context->fds[1] = fd2;
2193 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2194 * @len: data length in user space
2195 * @a: data address in kernel space
2197 * Returns 0 for success or NULL context or < 0 on error.
2199 int __audit_sockaddr(int len, void *a)
2201 struct audit_context *context = current->audit_context;
2203 if (!context->sockaddr) {
2204 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2205 if (!p)
2206 return -ENOMEM;
2207 context->sockaddr = p;
2210 context->sockaddr_len = len;
2211 memcpy(context->sockaddr, a, len);
2212 return 0;
2215 void __audit_ptrace(struct task_struct *t)
2217 struct audit_context *context = current->audit_context;
2219 context->target_pid = task_pid_nr(t);
2220 context->target_auid = audit_get_loginuid(t);
2221 context->target_uid = task_uid(t);
2222 context->target_sessionid = audit_get_sessionid(t);
2223 security_task_getsecid(t, &context->target_sid);
2224 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2228 * audit_signal_info - record signal info for shutting down audit subsystem
2229 * @sig: signal value
2230 * @t: task being signaled
2232 * If the audit subsystem is being terminated, record the task (pid)
2233 * and uid that is doing that.
2235 int __audit_signal_info(int sig, struct task_struct *t)
2237 struct audit_aux_data_pids *axp;
2238 struct task_struct *tsk = current;
2239 struct audit_context *ctx = tsk->audit_context;
2240 kuid_t uid = current_uid(), t_uid = task_uid(t);
2242 if (audit_pid && t->tgid == audit_pid) {
2243 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2244 audit_sig_pid = task_pid_nr(tsk);
2245 if (uid_valid(tsk->loginuid))
2246 audit_sig_uid = tsk->loginuid;
2247 else
2248 audit_sig_uid = uid;
2249 security_task_getsecid(tsk, &audit_sig_sid);
2251 if (!audit_signals || audit_dummy_context())
2252 return 0;
2255 /* optimize the common case by putting first signal recipient directly
2256 * in audit_context */
2257 if (!ctx->target_pid) {
2258 ctx->target_pid = task_tgid_nr(t);
2259 ctx->target_auid = audit_get_loginuid(t);
2260 ctx->target_uid = t_uid;
2261 ctx->target_sessionid = audit_get_sessionid(t);
2262 security_task_getsecid(t, &ctx->target_sid);
2263 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2264 return 0;
2267 axp = (void *)ctx->aux_pids;
2268 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2269 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2270 if (!axp)
2271 return -ENOMEM;
2273 axp->d.type = AUDIT_OBJ_PID;
2274 axp->d.next = ctx->aux_pids;
2275 ctx->aux_pids = (void *)axp;
2277 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2279 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2280 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2281 axp->target_uid[axp->pid_count] = t_uid;
2282 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2283 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2284 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2285 axp->pid_count++;
2287 return 0;
2291 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2292 * @bprm: pointer to the bprm being processed
2293 * @new: the proposed new credentials
2294 * @old: the old credentials
2296 * Simply check if the proc already has the caps given by the file and if not
2297 * store the priv escalation info for later auditing at the end of the syscall
2299 * -Eric
2301 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2302 const struct cred *new, const struct cred *old)
2304 struct audit_aux_data_bprm_fcaps *ax;
2305 struct audit_context *context = current->audit_context;
2306 struct cpu_vfs_cap_data vcaps;
2308 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2309 if (!ax)
2310 return -ENOMEM;
2312 ax->d.type = AUDIT_BPRM_FCAPS;
2313 ax->d.next = context->aux;
2314 context->aux = (void *)ax;
2316 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2318 ax->fcap.permitted = vcaps.permitted;
2319 ax->fcap.inheritable = vcaps.inheritable;
2320 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2321 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2323 ax->old_pcap.permitted = old->cap_permitted;
2324 ax->old_pcap.inheritable = old->cap_inheritable;
2325 ax->old_pcap.effective = old->cap_effective;
2327 ax->new_pcap.permitted = new->cap_permitted;
2328 ax->new_pcap.inheritable = new->cap_inheritable;
2329 ax->new_pcap.effective = new->cap_effective;
2330 return 0;
2334 * __audit_log_capset - store information about the arguments to the capset syscall
2335 * @new: the new credentials
2336 * @old: the old (current) credentials
2338 * Record the arguments userspace sent to sys_capset for later printing by the
2339 * audit system if applicable
2341 void __audit_log_capset(const struct cred *new, const struct cred *old)
2343 struct audit_context *context = current->audit_context;
2344 context->capset.pid = task_pid_nr(current);
2345 context->capset.cap.effective = new->cap_effective;
2346 context->capset.cap.inheritable = new->cap_effective;
2347 context->capset.cap.permitted = new->cap_permitted;
2348 context->type = AUDIT_CAPSET;
2351 void __audit_mmap_fd(int fd, int flags)
2353 struct audit_context *context = current->audit_context;
2354 context->mmap.fd = fd;
2355 context->mmap.flags = flags;
2356 context->type = AUDIT_MMAP;
2359 static void audit_log_task(struct audit_buffer *ab)
2361 kuid_t auid, uid;
2362 kgid_t gid;
2363 unsigned int sessionid;
2364 char comm[sizeof(current->comm)];
2366 auid = audit_get_loginuid(current);
2367 sessionid = audit_get_sessionid(current);
2368 current_uid_gid(&uid, &gid);
2370 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2371 from_kuid(&init_user_ns, auid),
2372 from_kuid(&init_user_ns, uid),
2373 from_kgid(&init_user_ns, gid),
2374 sessionid);
2375 audit_log_task_context(ab);
2376 audit_log_format(ab, " pid=%d comm=", task_pid_nr(current));
2377 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2378 audit_log_d_path_exe(ab, current->mm);
2382 * audit_core_dumps - record information about processes that end abnormally
2383 * @signr: signal value
2385 * If a process ends with a core dump, something fishy is going on and we
2386 * should record the event for investigation.
2388 void audit_core_dumps(long signr)
2390 struct audit_buffer *ab;
2392 if (!audit_enabled)
2393 return;
2395 if (signr == SIGQUIT) /* don't care for those */
2396 return;
2398 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2399 if (unlikely(!ab))
2400 return;
2401 audit_log_task(ab);
2402 audit_log_format(ab, " sig=%ld", signr);
2403 audit_log_end(ab);
2406 void __audit_seccomp(unsigned long syscall, long signr, int code)
2408 struct audit_buffer *ab;
2410 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2411 if (unlikely(!ab))
2412 return;
2413 audit_log_task(ab);
2414 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2415 signr, syscall_get_arch(), syscall, is_compat_task(),
2416 KSTK_EIP(current), code);
2417 audit_log_end(ab);
2420 struct list_head *audit_killed_trees(void)
2422 struct audit_context *ctx = current->audit_context;
2423 if (likely(!ctx || !ctx->in_syscall))
2424 return NULL;
2425 return &ctx->killed_trees;