ARM: dts: imx27 cpufreq-cpu0 frequencies
[linux/fpc-iii.git] / fs / ubifs / recovery.c
blob065096e36ed9733a14f96090decb3131c0e0d184
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file implements functions needed to recover from unclean un-mounts.
25 * When UBIFS is mounted, it checks a flag on the master node to determine if
26 * an un-mount was completed successfully. If not, the process of mounting
27 * incorporates additional checking and fixing of on-flash data structures.
28 * UBIFS always cleans away all remnants of an unclean un-mount, so that
29 * errors do not accumulate. However UBIFS defers recovery if it is mounted
30 * read-only, and the flash is not modified in that case.
32 * The general UBIFS approach to the recovery is that it recovers from
33 * corruptions which could be caused by power cuts, but it refuses to recover
34 * from corruption caused by other reasons. And UBIFS tries to distinguish
35 * between these 2 reasons of corruptions and silently recover in the former
36 * case and loudly complain in the latter case.
38 * UBIFS writes only to erased LEBs, so it writes only to the flash space
39 * containing only 0xFFs. UBIFS also always writes strictly from the beginning
40 * of the LEB to the end. And UBIFS assumes that the underlying flash media
41 * writes in @c->max_write_size bytes at a time.
43 * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
44 * I/O unit corresponding to offset X to contain corrupted data, all the
45 * following min. I/O units have to contain empty space (all 0xFFs). If this is
46 * not true, the corruption cannot be the result of a power cut, and UBIFS
47 * refuses to mount.
50 #include <linux/crc32.h>
51 #include <linux/slab.h>
52 #include "ubifs.h"
54 /**
55 * is_empty - determine whether a buffer is empty (contains all 0xff).
56 * @buf: buffer to clean
57 * @len: length of buffer
59 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
60 * %0 is returned.
62 static int is_empty(void *buf, int len)
64 uint8_t *p = buf;
65 int i;
67 for (i = 0; i < len; i++)
68 if (*p++ != 0xff)
69 return 0;
70 return 1;
73 /**
74 * first_non_ff - find offset of the first non-0xff byte.
75 * @buf: buffer to search in
76 * @len: length of buffer
78 * This function returns offset of the first non-0xff byte in @buf or %-1 if
79 * the buffer contains only 0xff bytes.
81 static int first_non_ff(void *buf, int len)
83 uint8_t *p = buf;
84 int i;
86 for (i = 0; i < len; i++)
87 if (*p++ != 0xff)
88 return i;
89 return -1;
92 /**
93 * get_master_node - get the last valid master node allowing for corruption.
94 * @c: UBIFS file-system description object
95 * @lnum: LEB number
96 * @pbuf: buffer containing the LEB read, is returned here
97 * @mst: master node, if found, is returned here
98 * @cor: corruption, if found, is returned here
100 * This function allocates a buffer, reads the LEB into it, and finds and
101 * returns the last valid master node allowing for one area of corruption.
102 * The corrupt area, if there is one, must be consistent with the assumption
103 * that it is the result of an unclean unmount while the master node was being
104 * written. Under those circumstances, it is valid to use the previously written
105 * master node.
107 * This function returns %0 on success and a negative error code on failure.
109 static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
110 struct ubifs_mst_node **mst, void **cor)
112 const int sz = c->mst_node_alsz;
113 int err, offs, len;
114 void *sbuf, *buf;
116 sbuf = vmalloc(c->leb_size);
117 if (!sbuf)
118 return -ENOMEM;
120 err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0);
121 if (err && err != -EBADMSG)
122 goto out_free;
124 /* Find the first position that is definitely not a node */
125 offs = 0;
126 buf = sbuf;
127 len = c->leb_size;
128 while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
129 struct ubifs_ch *ch = buf;
131 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
132 break;
133 offs += sz;
134 buf += sz;
135 len -= sz;
137 /* See if there was a valid master node before that */
138 if (offs) {
139 int ret;
141 offs -= sz;
142 buf -= sz;
143 len += sz;
144 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
145 if (ret != SCANNED_A_NODE && offs) {
146 /* Could have been corruption so check one place back */
147 offs -= sz;
148 buf -= sz;
149 len += sz;
150 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
151 if (ret != SCANNED_A_NODE)
153 * We accept only one area of corruption because
154 * we are assuming that it was caused while
155 * trying to write a master node.
157 goto out_err;
159 if (ret == SCANNED_A_NODE) {
160 struct ubifs_ch *ch = buf;
162 if (ch->node_type != UBIFS_MST_NODE)
163 goto out_err;
164 dbg_rcvry("found a master node at %d:%d", lnum, offs);
165 *mst = buf;
166 offs += sz;
167 buf += sz;
168 len -= sz;
171 /* Check for corruption */
172 if (offs < c->leb_size) {
173 if (!is_empty(buf, min_t(int, len, sz))) {
174 *cor = buf;
175 dbg_rcvry("found corruption at %d:%d", lnum, offs);
177 offs += sz;
178 buf += sz;
179 len -= sz;
181 /* Check remaining empty space */
182 if (offs < c->leb_size)
183 if (!is_empty(buf, len))
184 goto out_err;
185 *pbuf = sbuf;
186 return 0;
188 out_err:
189 err = -EINVAL;
190 out_free:
191 vfree(sbuf);
192 *mst = NULL;
193 *cor = NULL;
194 return err;
198 * write_rcvrd_mst_node - write recovered master node.
199 * @c: UBIFS file-system description object
200 * @mst: master node
202 * This function returns %0 on success and a negative error code on failure.
204 static int write_rcvrd_mst_node(struct ubifs_info *c,
205 struct ubifs_mst_node *mst)
207 int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
208 __le32 save_flags;
210 dbg_rcvry("recovery");
212 save_flags = mst->flags;
213 mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
215 ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
216 err = ubifs_leb_change(c, lnum, mst, sz);
217 if (err)
218 goto out;
219 err = ubifs_leb_change(c, lnum + 1, mst, sz);
220 if (err)
221 goto out;
222 out:
223 mst->flags = save_flags;
224 return err;
228 * ubifs_recover_master_node - recover the master node.
229 * @c: UBIFS file-system description object
231 * This function recovers the master node from corruption that may occur due to
232 * an unclean unmount.
234 * This function returns %0 on success and a negative error code on failure.
236 int ubifs_recover_master_node(struct ubifs_info *c)
238 void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
239 struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
240 const int sz = c->mst_node_alsz;
241 int err, offs1, offs2;
243 dbg_rcvry("recovery");
245 err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
246 if (err)
247 goto out_free;
249 err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
250 if (err)
251 goto out_free;
253 if (mst1) {
254 offs1 = (void *)mst1 - buf1;
255 if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
256 (offs1 == 0 && !cor1)) {
258 * mst1 was written by recovery at offset 0 with no
259 * corruption.
261 dbg_rcvry("recovery recovery");
262 mst = mst1;
263 } else if (mst2) {
264 offs2 = (void *)mst2 - buf2;
265 if (offs1 == offs2) {
266 /* Same offset, so must be the same */
267 if (memcmp((void *)mst1 + UBIFS_CH_SZ,
268 (void *)mst2 + UBIFS_CH_SZ,
269 UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
270 goto out_err;
271 mst = mst1;
272 } else if (offs2 + sz == offs1) {
273 /* 1st LEB was written, 2nd was not */
274 if (cor1)
275 goto out_err;
276 mst = mst1;
277 } else if (offs1 == 0 &&
278 c->leb_size - offs2 - sz < sz) {
279 /* 1st LEB was unmapped and written, 2nd not */
280 if (cor1)
281 goto out_err;
282 mst = mst1;
283 } else
284 goto out_err;
285 } else {
287 * 2nd LEB was unmapped and about to be written, so
288 * there must be only one master node in the first LEB
289 * and no corruption.
291 if (offs1 != 0 || cor1)
292 goto out_err;
293 mst = mst1;
295 } else {
296 if (!mst2)
297 goto out_err;
299 * 1st LEB was unmapped and about to be written, so there must
300 * be no room left in 2nd LEB.
302 offs2 = (void *)mst2 - buf2;
303 if (offs2 + sz + sz <= c->leb_size)
304 goto out_err;
305 mst = mst2;
308 ubifs_msg("recovered master node from LEB %d",
309 (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
311 memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
313 if (c->ro_mount) {
314 /* Read-only mode. Keep a copy for switching to rw mode */
315 c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
316 if (!c->rcvrd_mst_node) {
317 err = -ENOMEM;
318 goto out_free;
320 memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
323 * We had to recover the master node, which means there was an
324 * unclean reboot. However, it is possible that the master node
325 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
326 * E.g., consider the following chain of events:
328 * 1. UBIFS was cleanly unmounted, so the master node is clean
329 * 2. UBIFS is being mounted R/W and starts changing the master
330 * node in the first (%UBIFS_MST_LNUM). A power cut happens,
331 * so this LEB ends up with some amount of garbage at the
332 * end.
333 * 3. UBIFS is being mounted R/O. We reach this place and
334 * recover the master node from the second LEB
335 * (%UBIFS_MST_LNUM + 1). But we cannot update the media
336 * because we are being mounted R/O. We have to defer the
337 * operation.
338 * 4. However, this master node (@c->mst_node) is marked as
339 * clean (since the step 1). And if we just return, the
340 * mount code will be confused and won't recover the master
341 * node when it is re-mounter R/W later.
343 * Thus, to force the recovery by marking the master node as
344 * dirty.
346 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
347 } else {
348 /* Write the recovered master node */
349 c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
350 err = write_rcvrd_mst_node(c, c->mst_node);
351 if (err)
352 goto out_free;
355 vfree(buf2);
356 vfree(buf1);
358 return 0;
360 out_err:
361 err = -EINVAL;
362 out_free:
363 ubifs_err("failed to recover master node");
364 if (mst1) {
365 ubifs_err("dumping first master node");
366 ubifs_dump_node(c, mst1);
368 if (mst2) {
369 ubifs_err("dumping second master node");
370 ubifs_dump_node(c, mst2);
372 vfree(buf2);
373 vfree(buf1);
374 return err;
378 * ubifs_write_rcvrd_mst_node - write the recovered master node.
379 * @c: UBIFS file-system description object
381 * This function writes the master node that was recovered during mounting in
382 * read-only mode and must now be written because we are remounting rw.
384 * This function returns %0 on success and a negative error code on failure.
386 int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
388 int err;
390 if (!c->rcvrd_mst_node)
391 return 0;
392 c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
393 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
394 err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
395 if (err)
396 return err;
397 kfree(c->rcvrd_mst_node);
398 c->rcvrd_mst_node = NULL;
399 return 0;
403 * is_last_write - determine if an offset was in the last write to a LEB.
404 * @c: UBIFS file-system description object
405 * @buf: buffer to check
406 * @offs: offset to check
408 * This function returns %1 if @offs was in the last write to the LEB whose data
409 * is in @buf, otherwise %0 is returned. The determination is made by checking
410 * for subsequent empty space starting from the next @c->max_write_size
411 * boundary.
413 static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
415 int empty_offs, check_len;
416 uint8_t *p;
419 * Round up to the next @c->max_write_size boundary i.e. @offs is in
420 * the last wbuf written. After that should be empty space.
422 empty_offs = ALIGN(offs + 1, c->max_write_size);
423 check_len = c->leb_size - empty_offs;
424 p = buf + empty_offs - offs;
425 return is_empty(p, check_len);
429 * clean_buf - clean the data from an LEB sitting in a buffer.
430 * @c: UBIFS file-system description object
431 * @buf: buffer to clean
432 * @lnum: LEB number to clean
433 * @offs: offset from which to clean
434 * @len: length of buffer
436 * This function pads up to the next min_io_size boundary (if there is one) and
437 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
438 * @c->min_io_size boundary.
440 static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
441 int *offs, int *len)
443 int empty_offs, pad_len;
445 lnum = lnum;
446 dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
448 ubifs_assert(!(*offs & 7));
449 empty_offs = ALIGN(*offs, c->min_io_size);
450 pad_len = empty_offs - *offs;
451 ubifs_pad(c, *buf, pad_len);
452 *offs += pad_len;
453 *buf += pad_len;
454 *len -= pad_len;
455 memset(*buf, 0xff, c->leb_size - empty_offs);
459 * no_more_nodes - determine if there are no more nodes in a buffer.
460 * @c: UBIFS file-system description object
461 * @buf: buffer to check
462 * @len: length of buffer
463 * @lnum: LEB number of the LEB from which @buf was read
464 * @offs: offset from which @buf was read
466 * This function ensures that the corrupted node at @offs is the last thing
467 * written to a LEB. This function returns %1 if more data is not found and
468 * %0 if more data is found.
470 static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
471 int lnum, int offs)
473 struct ubifs_ch *ch = buf;
474 int skip, dlen = le32_to_cpu(ch->len);
476 /* Check for empty space after the corrupt node's common header */
477 skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
478 if (is_empty(buf + skip, len - skip))
479 return 1;
481 * The area after the common header size is not empty, so the common
482 * header must be intact. Check it.
484 if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
485 dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
486 return 0;
488 /* Now we know the corrupt node's length we can skip over it */
489 skip = ALIGN(offs + dlen, c->max_write_size) - offs;
490 /* After which there should be empty space */
491 if (is_empty(buf + skip, len - skip))
492 return 1;
493 dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
494 return 0;
498 * fix_unclean_leb - fix an unclean LEB.
499 * @c: UBIFS file-system description object
500 * @sleb: scanned LEB information
501 * @start: offset where scan started
503 static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
504 int start)
506 int lnum = sleb->lnum, endpt = start;
508 /* Get the end offset of the last node we are keeping */
509 if (!list_empty(&sleb->nodes)) {
510 struct ubifs_scan_node *snod;
512 snod = list_entry(sleb->nodes.prev,
513 struct ubifs_scan_node, list);
514 endpt = snod->offs + snod->len;
517 if (c->ro_mount && !c->remounting_rw) {
518 /* Add to recovery list */
519 struct ubifs_unclean_leb *ucleb;
521 dbg_rcvry("need to fix LEB %d start %d endpt %d",
522 lnum, start, sleb->endpt);
523 ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
524 if (!ucleb)
525 return -ENOMEM;
526 ucleb->lnum = lnum;
527 ucleb->endpt = endpt;
528 list_add_tail(&ucleb->list, &c->unclean_leb_list);
529 } else {
530 /* Write the fixed LEB back to flash */
531 int err;
533 dbg_rcvry("fixing LEB %d start %d endpt %d",
534 lnum, start, sleb->endpt);
535 if (endpt == 0) {
536 err = ubifs_leb_unmap(c, lnum);
537 if (err)
538 return err;
539 } else {
540 int len = ALIGN(endpt, c->min_io_size);
542 if (start) {
543 err = ubifs_leb_read(c, lnum, sleb->buf, 0,
544 start, 1);
545 if (err)
546 return err;
548 /* Pad to min_io_size */
549 if (len > endpt) {
550 int pad_len = len - ALIGN(endpt, 8);
552 if (pad_len > 0) {
553 void *buf = sleb->buf + len - pad_len;
555 ubifs_pad(c, buf, pad_len);
558 err = ubifs_leb_change(c, lnum, sleb->buf, len);
559 if (err)
560 return err;
563 return 0;
567 * drop_last_group - drop the last group of nodes.
568 * @sleb: scanned LEB information
569 * @offs: offset of dropped nodes is returned here
571 * This is a helper function for 'ubifs_recover_leb()' which drops the last
572 * group of nodes of the scanned LEB.
574 static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs)
576 while (!list_empty(&sleb->nodes)) {
577 struct ubifs_scan_node *snod;
578 struct ubifs_ch *ch;
580 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
581 list);
582 ch = snod->node;
583 if (ch->group_type != UBIFS_IN_NODE_GROUP)
584 break;
586 dbg_rcvry("dropping grouped node at %d:%d",
587 sleb->lnum, snod->offs);
588 *offs = snod->offs;
589 list_del(&snod->list);
590 kfree(snod);
591 sleb->nodes_cnt -= 1;
596 * drop_last_node - drop the last node.
597 * @sleb: scanned LEB information
598 * @offs: offset of dropped nodes is returned here
599 * @grouped: non-zero if whole group of nodes have to be dropped
601 * This is a helper function for 'ubifs_recover_leb()' which drops the last
602 * node of the scanned LEB.
604 static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs)
606 struct ubifs_scan_node *snod;
608 if (!list_empty(&sleb->nodes)) {
609 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
610 list);
612 dbg_rcvry("dropping last node at %d:%d",
613 sleb->lnum, snod->offs);
614 *offs = snod->offs;
615 list_del(&snod->list);
616 kfree(snod);
617 sleb->nodes_cnt -= 1;
622 * ubifs_recover_leb - scan and recover a LEB.
623 * @c: UBIFS file-system description object
624 * @lnum: LEB number
625 * @offs: offset
626 * @sbuf: LEB-sized buffer to use
627 * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not
628 * belong to any journal head)
630 * This function does a scan of a LEB, but caters for errors that might have
631 * been caused by the unclean unmount from which we are attempting to recover.
632 * Returns %0 in case of success, %-EUCLEAN if an unrecoverable corruption is
633 * found, and a negative error code in case of failure.
635 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
636 int offs, void *sbuf, int jhead)
638 int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit;
639 int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped;
640 struct ubifs_scan_leb *sleb;
641 void *buf = sbuf + offs;
643 dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped);
645 sleb = ubifs_start_scan(c, lnum, offs, sbuf);
646 if (IS_ERR(sleb))
647 return sleb;
649 ubifs_assert(len >= 8);
650 while (len >= 8) {
651 dbg_scan("look at LEB %d:%d (%d bytes left)",
652 lnum, offs, len);
654 cond_resched();
657 * Scan quietly until there is an error from which we cannot
658 * recover
660 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
661 if (ret == SCANNED_A_NODE) {
662 /* A valid node, and not a padding node */
663 struct ubifs_ch *ch = buf;
664 int node_len;
666 err = ubifs_add_snod(c, sleb, buf, offs);
667 if (err)
668 goto error;
669 node_len = ALIGN(le32_to_cpu(ch->len), 8);
670 offs += node_len;
671 buf += node_len;
672 len -= node_len;
673 } else if (ret > 0) {
674 /* Padding bytes or a valid padding node */
675 offs += ret;
676 buf += ret;
677 len -= ret;
678 } else if (ret == SCANNED_EMPTY_SPACE ||
679 ret == SCANNED_GARBAGE ||
680 ret == SCANNED_A_BAD_PAD_NODE ||
681 ret == SCANNED_A_CORRUPT_NODE) {
682 dbg_rcvry("found corruption (%d) at %d:%d",
683 ret, lnum, offs);
684 break;
685 } else {
686 ubifs_err("unexpected return value %d", ret);
687 err = -EINVAL;
688 goto error;
692 if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) {
693 if (!is_last_write(c, buf, offs))
694 goto corrupted_rescan;
695 } else if (ret == SCANNED_A_CORRUPT_NODE) {
696 if (!no_more_nodes(c, buf, len, lnum, offs))
697 goto corrupted_rescan;
698 } else if (!is_empty(buf, len)) {
699 if (!is_last_write(c, buf, offs)) {
700 int corruption = first_non_ff(buf, len);
703 * See header comment for this file for more
704 * explanations about the reasons we have this check.
706 ubifs_err("corrupt empty space LEB %d:%d, corruption starts at %d",
707 lnum, offs, corruption);
708 /* Make sure we dump interesting non-0xFF data */
709 offs += corruption;
710 buf += corruption;
711 goto corrupted;
715 min_io_unit = round_down(offs, c->min_io_size);
716 if (grouped)
718 * If nodes are grouped, always drop the incomplete group at
719 * the end.
721 drop_last_group(sleb, &offs);
723 if (jhead == GCHD) {
725 * If this LEB belongs to the GC head then while we are in the
726 * middle of the same min. I/O unit keep dropping nodes. So
727 * basically, what we want is to make sure that the last min.
728 * I/O unit where we saw the corruption is dropped completely
729 * with all the uncorrupted nodes which may possibly sit there.
731 * In other words, let's name the min. I/O unit where the
732 * corruption starts B, and the previous min. I/O unit A. The
733 * below code tries to deal with a situation when half of B
734 * contains valid nodes or the end of a valid node, and the
735 * second half of B contains corrupted data or garbage. This
736 * means that UBIFS had been writing to B just before the power
737 * cut happened. I do not know how realistic is this scenario
738 * that half of the min. I/O unit had been written successfully
739 * and the other half not, but this is possible in our 'failure
740 * mode emulation' infrastructure at least.
742 * So what is the problem, why we need to drop those nodes? Why
743 * can't we just clean-up the second half of B by putting a
744 * padding node there? We can, and this works fine with one
745 * exception which was reproduced with power cut emulation
746 * testing and happens extremely rarely.
748 * Imagine the file-system is full, we run GC which starts
749 * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is
750 * the current GC head LEB). The @c->gc_lnum is -1, which means
751 * that GC will retain LEB X and will try to continue. Imagine
752 * that LEB X is currently the dirtiest LEB, and the amount of
753 * used space in LEB Y is exactly the same as amount of free
754 * space in LEB X.
756 * And a power cut happens when nodes are moved from LEB X to
757 * LEB Y. We are here trying to recover LEB Y which is the GC
758 * head LEB. We find the min. I/O unit B as described above.
759 * Then we clean-up LEB Y by padding min. I/O unit. And later
760 * 'ubifs_rcvry_gc_commit()' function fails, because it cannot
761 * find a dirty LEB which could be GC'd into LEB Y! Even LEB X
762 * does not match because the amount of valid nodes there does
763 * not fit the free space in LEB Y any more! And this is
764 * because of the padding node which we added to LEB Y. The
765 * user-visible effect of this which I once observed and
766 * analysed is that we cannot mount the file-system with
767 * -ENOSPC error.
769 * So obviously, to make sure that situation does not happen we
770 * should free min. I/O unit B in LEB Y completely and the last
771 * used min. I/O unit in LEB Y should be A. This is basically
772 * what the below code tries to do.
774 while (offs > min_io_unit)
775 drop_last_node(sleb, &offs);
778 buf = sbuf + offs;
779 len = c->leb_size - offs;
781 clean_buf(c, &buf, lnum, &offs, &len);
782 ubifs_end_scan(c, sleb, lnum, offs);
784 err = fix_unclean_leb(c, sleb, start);
785 if (err)
786 goto error;
788 return sleb;
790 corrupted_rescan:
791 /* Re-scan the corrupted data with verbose messages */
792 ubifs_err("corruption %d", ret);
793 ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
794 corrupted:
795 ubifs_scanned_corruption(c, lnum, offs, buf);
796 err = -EUCLEAN;
797 error:
798 ubifs_err("LEB %d scanning failed", lnum);
799 ubifs_scan_destroy(sleb);
800 return ERR_PTR(err);
804 * get_cs_sqnum - get commit start sequence number.
805 * @c: UBIFS file-system description object
806 * @lnum: LEB number of commit start node
807 * @offs: offset of commit start node
808 * @cs_sqnum: commit start sequence number is returned here
810 * This function returns %0 on success and a negative error code on failure.
812 static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
813 unsigned long long *cs_sqnum)
815 struct ubifs_cs_node *cs_node = NULL;
816 int err, ret;
818 dbg_rcvry("at %d:%d", lnum, offs);
819 cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
820 if (!cs_node)
821 return -ENOMEM;
822 if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
823 goto out_err;
824 err = ubifs_leb_read(c, lnum, (void *)cs_node, offs,
825 UBIFS_CS_NODE_SZ, 0);
826 if (err && err != -EBADMSG)
827 goto out_free;
828 ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
829 if (ret != SCANNED_A_NODE) {
830 ubifs_err("Not a valid node");
831 goto out_err;
833 if (cs_node->ch.node_type != UBIFS_CS_NODE) {
834 ubifs_err("Node a CS node, type is %d", cs_node->ch.node_type);
835 goto out_err;
837 if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
838 ubifs_err("CS node cmt_no %llu != current cmt_no %llu",
839 (unsigned long long)le64_to_cpu(cs_node->cmt_no),
840 c->cmt_no);
841 goto out_err;
843 *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
844 dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
845 kfree(cs_node);
846 return 0;
848 out_err:
849 err = -EINVAL;
850 out_free:
851 ubifs_err("failed to get CS sqnum");
852 kfree(cs_node);
853 return err;
857 * ubifs_recover_log_leb - scan and recover a log LEB.
858 * @c: UBIFS file-system description object
859 * @lnum: LEB number
860 * @offs: offset
861 * @sbuf: LEB-sized buffer to use
863 * This function does a scan of a LEB, but caters for errors that might have
864 * been caused by unclean reboots from which we are attempting to recover
865 * (assume that only the last log LEB can be corrupted by an unclean reboot).
867 * This function returns %0 on success and a negative error code on failure.
869 struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
870 int offs, void *sbuf)
872 struct ubifs_scan_leb *sleb;
873 int next_lnum;
875 dbg_rcvry("LEB %d", lnum);
876 next_lnum = lnum + 1;
877 if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
878 next_lnum = UBIFS_LOG_LNUM;
879 if (next_lnum != c->ltail_lnum) {
881 * We can only recover at the end of the log, so check that the
882 * next log LEB is empty or out of date.
884 sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
885 if (IS_ERR(sleb))
886 return sleb;
887 if (sleb->nodes_cnt) {
888 struct ubifs_scan_node *snod;
889 unsigned long long cs_sqnum = c->cs_sqnum;
891 snod = list_entry(sleb->nodes.next,
892 struct ubifs_scan_node, list);
893 if (cs_sqnum == 0) {
894 int err;
896 err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
897 if (err) {
898 ubifs_scan_destroy(sleb);
899 return ERR_PTR(err);
902 if (snod->sqnum > cs_sqnum) {
903 ubifs_err("unrecoverable log corruption in LEB %d",
904 lnum);
905 ubifs_scan_destroy(sleb);
906 return ERR_PTR(-EUCLEAN);
909 ubifs_scan_destroy(sleb);
911 return ubifs_recover_leb(c, lnum, offs, sbuf, -1);
915 * recover_head - recover a head.
916 * @c: UBIFS file-system description object
917 * @lnum: LEB number of head to recover
918 * @offs: offset of head to recover
919 * @sbuf: LEB-sized buffer to use
921 * This function ensures that there is no data on the flash at a head location.
923 * This function returns %0 on success and a negative error code on failure.
925 static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf)
927 int len = c->max_write_size, err;
929 if (offs + len > c->leb_size)
930 len = c->leb_size - offs;
932 if (!len)
933 return 0;
935 /* Read at the head location and check it is empty flash */
936 err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1);
937 if (err || !is_empty(sbuf, len)) {
938 dbg_rcvry("cleaning head at %d:%d", lnum, offs);
939 if (offs == 0)
940 return ubifs_leb_unmap(c, lnum);
941 err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1);
942 if (err)
943 return err;
944 return ubifs_leb_change(c, lnum, sbuf, offs);
947 return 0;
951 * ubifs_recover_inl_heads - recover index and LPT heads.
952 * @c: UBIFS file-system description object
953 * @sbuf: LEB-sized buffer to use
955 * This function ensures that there is no data on the flash at the index and
956 * LPT head locations.
958 * This deals with the recovery of a half-completed journal commit. UBIFS is
959 * careful never to overwrite the last version of the index or the LPT. Because
960 * the index and LPT are wandering trees, data from a half-completed commit will
961 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
962 * assumed to be empty and will be unmapped anyway before use, or in the index
963 * and LPT heads.
965 * This function returns %0 on success and a negative error code on failure.
967 int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf)
969 int err;
971 ubifs_assert(!c->ro_mount || c->remounting_rw);
973 dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
974 err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
975 if (err)
976 return err;
978 dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
979 err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
980 if (err)
981 return err;
983 return 0;
987 * clean_an_unclean_leb - read and write a LEB to remove corruption.
988 * @c: UBIFS file-system description object
989 * @ucleb: unclean LEB information
990 * @sbuf: LEB-sized buffer to use
992 * This function reads a LEB up to a point pre-determined by the mount recovery,
993 * checks the nodes, and writes the result back to the flash, thereby cleaning
994 * off any following corruption, or non-fatal ECC errors.
996 * This function returns %0 on success and a negative error code on failure.
998 static int clean_an_unclean_leb(struct ubifs_info *c,
999 struct ubifs_unclean_leb *ucleb, void *sbuf)
1001 int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
1002 void *buf = sbuf;
1004 dbg_rcvry("LEB %d len %d", lnum, len);
1006 if (len == 0) {
1007 /* Nothing to read, just unmap it */
1008 err = ubifs_leb_unmap(c, lnum);
1009 if (err)
1010 return err;
1011 return 0;
1014 err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
1015 if (err && err != -EBADMSG)
1016 return err;
1018 while (len >= 8) {
1019 int ret;
1021 cond_resched();
1023 /* Scan quietly until there is an error */
1024 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
1026 if (ret == SCANNED_A_NODE) {
1027 /* A valid node, and not a padding node */
1028 struct ubifs_ch *ch = buf;
1029 int node_len;
1031 node_len = ALIGN(le32_to_cpu(ch->len), 8);
1032 offs += node_len;
1033 buf += node_len;
1034 len -= node_len;
1035 continue;
1038 if (ret > 0) {
1039 /* Padding bytes or a valid padding node */
1040 offs += ret;
1041 buf += ret;
1042 len -= ret;
1043 continue;
1046 if (ret == SCANNED_EMPTY_SPACE) {
1047 ubifs_err("unexpected empty space at %d:%d",
1048 lnum, offs);
1049 return -EUCLEAN;
1052 if (quiet) {
1053 /* Redo the last scan but noisily */
1054 quiet = 0;
1055 continue;
1058 ubifs_scanned_corruption(c, lnum, offs, buf);
1059 return -EUCLEAN;
1062 /* Pad to min_io_size */
1063 len = ALIGN(ucleb->endpt, c->min_io_size);
1064 if (len > ucleb->endpt) {
1065 int pad_len = len - ALIGN(ucleb->endpt, 8);
1067 if (pad_len > 0) {
1068 buf = c->sbuf + len - pad_len;
1069 ubifs_pad(c, buf, pad_len);
1073 /* Write back the LEB atomically */
1074 err = ubifs_leb_change(c, lnum, sbuf, len);
1075 if (err)
1076 return err;
1078 dbg_rcvry("cleaned LEB %d", lnum);
1080 return 0;
1084 * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1085 * @c: UBIFS file-system description object
1086 * @sbuf: LEB-sized buffer to use
1088 * This function cleans a LEB identified during recovery that needs to be
1089 * written but was not because UBIFS was mounted read-only. This happens when
1090 * remounting to read-write mode.
1092 * This function returns %0 on success and a negative error code on failure.
1094 int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf)
1096 dbg_rcvry("recovery");
1097 while (!list_empty(&c->unclean_leb_list)) {
1098 struct ubifs_unclean_leb *ucleb;
1099 int err;
1101 ucleb = list_entry(c->unclean_leb_list.next,
1102 struct ubifs_unclean_leb, list);
1103 err = clean_an_unclean_leb(c, ucleb, sbuf);
1104 if (err)
1105 return err;
1106 list_del(&ucleb->list);
1107 kfree(ucleb);
1109 return 0;
1113 * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit.
1114 * @c: UBIFS file-system description object
1116 * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty
1117 * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns
1118 * zero in case of success and a negative error code in case of failure.
1120 static int grab_empty_leb(struct ubifs_info *c)
1122 int lnum, err;
1125 * Note, it is very important to first search for an empty LEB and then
1126 * run the commit, not vice-versa. The reason is that there might be
1127 * only one empty LEB at the moment, the one which has been the
1128 * @c->gc_lnum just before the power cut happened. During the regular
1129 * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no
1130 * one but GC can grab it. But at this moment this single empty LEB is
1131 * not marked as taken, so if we run commit - what happens? Right, the
1132 * commit will grab it and write the index there. Remember that the
1133 * index always expands as long as there is free space, and it only
1134 * starts consolidating when we run out of space.
1136 * IOW, if we run commit now, we might not be able to find a free LEB
1137 * after this.
1139 lnum = ubifs_find_free_leb_for_idx(c);
1140 if (lnum < 0) {
1141 ubifs_err("could not find an empty LEB");
1142 ubifs_dump_lprops(c);
1143 ubifs_dump_budg(c, &c->bi);
1144 return lnum;
1147 /* Reset the index flag */
1148 err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
1149 LPROPS_INDEX, 0);
1150 if (err)
1151 return err;
1153 c->gc_lnum = lnum;
1154 dbg_rcvry("found empty LEB %d, run commit", lnum);
1156 return ubifs_run_commit(c);
1160 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1161 * @c: UBIFS file-system description object
1163 * Out-of-place garbage collection requires always one empty LEB with which to
1164 * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1165 * written to the master node on unmounting. In the case of an unclean unmount
1166 * the value of gc_lnum recorded in the master node is out of date and cannot
1167 * be used. Instead, recovery must allocate an empty LEB for this purpose.
1168 * However, there may not be enough empty space, in which case it must be
1169 * possible to GC the dirtiest LEB into the GC head LEB.
1171 * This function also runs the commit which causes the TNC updates from
1172 * size-recovery and orphans to be written to the flash. That is important to
1173 * ensure correct replay order for subsequent mounts.
1175 * This function returns %0 on success and a negative error code on failure.
1177 int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1179 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
1180 struct ubifs_lprops lp;
1181 int err;
1183 dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs);
1185 c->gc_lnum = -1;
1186 if (wbuf->lnum == -1 || wbuf->offs == c->leb_size)
1187 return grab_empty_leb(c);
1189 err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
1190 if (err) {
1191 if (err != -ENOSPC)
1192 return err;
1194 dbg_rcvry("could not find a dirty LEB");
1195 return grab_empty_leb(c);
1198 ubifs_assert(!(lp.flags & LPROPS_INDEX));
1199 ubifs_assert(lp.free + lp.dirty >= wbuf->offs);
1202 * We run the commit before garbage collection otherwise subsequent
1203 * mounts will see the GC and orphan deletion in a different order.
1205 dbg_rcvry("committing");
1206 err = ubifs_run_commit(c);
1207 if (err)
1208 return err;
1210 dbg_rcvry("GC'ing LEB %d", lp.lnum);
1211 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1212 err = ubifs_garbage_collect_leb(c, &lp);
1213 if (err >= 0) {
1214 int err2 = ubifs_wbuf_sync_nolock(wbuf);
1216 if (err2)
1217 err = err2;
1219 mutex_unlock(&wbuf->io_mutex);
1220 if (err < 0) {
1221 ubifs_err("GC failed, error %d", err);
1222 if (err == -EAGAIN)
1223 err = -EINVAL;
1224 return err;
1227 ubifs_assert(err == LEB_RETAINED);
1228 if (err != LEB_RETAINED)
1229 return -EINVAL;
1231 err = ubifs_leb_unmap(c, c->gc_lnum);
1232 if (err)
1233 return err;
1235 dbg_rcvry("allocated LEB %d for GC", lp.lnum);
1236 return 0;
1240 * struct size_entry - inode size information for recovery.
1241 * @rb: link in the RB-tree of sizes
1242 * @inum: inode number
1243 * @i_size: size on inode
1244 * @d_size: maximum size based on data nodes
1245 * @exists: indicates whether the inode exists
1246 * @inode: inode if pinned in memory awaiting rw mode to fix it
1248 struct size_entry {
1249 struct rb_node rb;
1250 ino_t inum;
1251 loff_t i_size;
1252 loff_t d_size;
1253 int exists;
1254 struct inode *inode;
1258 * add_ino - add an entry to the size tree.
1259 * @c: UBIFS file-system description object
1260 * @inum: inode number
1261 * @i_size: size on inode
1262 * @d_size: maximum size based on data nodes
1263 * @exists: indicates whether the inode exists
1265 static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
1266 loff_t d_size, int exists)
1268 struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
1269 struct size_entry *e;
1271 while (*p) {
1272 parent = *p;
1273 e = rb_entry(parent, struct size_entry, rb);
1274 if (inum < e->inum)
1275 p = &(*p)->rb_left;
1276 else
1277 p = &(*p)->rb_right;
1280 e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
1281 if (!e)
1282 return -ENOMEM;
1284 e->inum = inum;
1285 e->i_size = i_size;
1286 e->d_size = d_size;
1287 e->exists = exists;
1289 rb_link_node(&e->rb, parent, p);
1290 rb_insert_color(&e->rb, &c->size_tree);
1292 return 0;
1296 * find_ino - find an entry on the size tree.
1297 * @c: UBIFS file-system description object
1298 * @inum: inode number
1300 static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
1302 struct rb_node *p = c->size_tree.rb_node;
1303 struct size_entry *e;
1305 while (p) {
1306 e = rb_entry(p, struct size_entry, rb);
1307 if (inum < e->inum)
1308 p = p->rb_left;
1309 else if (inum > e->inum)
1310 p = p->rb_right;
1311 else
1312 return e;
1314 return NULL;
1318 * remove_ino - remove an entry from the size tree.
1319 * @c: UBIFS file-system description object
1320 * @inum: inode number
1322 static void remove_ino(struct ubifs_info *c, ino_t inum)
1324 struct size_entry *e = find_ino(c, inum);
1326 if (!e)
1327 return;
1328 rb_erase(&e->rb, &c->size_tree);
1329 kfree(e);
1333 * ubifs_destroy_size_tree - free resources related to the size tree.
1334 * @c: UBIFS file-system description object
1336 void ubifs_destroy_size_tree(struct ubifs_info *c)
1338 struct rb_node *this = c->size_tree.rb_node;
1339 struct size_entry *e;
1341 while (this) {
1342 if (this->rb_left) {
1343 this = this->rb_left;
1344 continue;
1345 } else if (this->rb_right) {
1346 this = this->rb_right;
1347 continue;
1349 e = rb_entry(this, struct size_entry, rb);
1350 if (e->inode)
1351 iput(e->inode);
1352 this = rb_parent(this);
1353 if (this) {
1354 if (this->rb_left == &e->rb)
1355 this->rb_left = NULL;
1356 else
1357 this->rb_right = NULL;
1359 kfree(e);
1361 c->size_tree = RB_ROOT;
1365 * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1366 * @c: UBIFS file-system description object
1367 * @key: node key
1368 * @deletion: node is for a deletion
1369 * @new_size: inode size
1371 * This function has two purposes:
1372 * 1) to ensure there are no data nodes that fall outside the inode size
1373 * 2) to ensure there are no data nodes for inodes that do not exist
1374 * To accomplish those purposes, a rb-tree is constructed containing an entry
1375 * for each inode number in the journal that has not been deleted, and recording
1376 * the size from the inode node, the maximum size of any data node (also altered
1377 * by truncations) and a flag indicating a inode number for which no inode node
1378 * was present in the journal.
1380 * Note that there is still the possibility that there are data nodes that have
1381 * been committed that are beyond the inode size, however the only way to find
1382 * them would be to scan the entire index. Alternatively, some provision could
1383 * be made to record the size of inodes at the start of commit, which would seem
1384 * very cumbersome for a scenario that is quite unlikely and the only negative
1385 * consequence of which is wasted space.
1387 * This functions returns %0 on success and a negative error code on failure.
1389 int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
1390 int deletion, loff_t new_size)
1392 ino_t inum = key_inum(c, key);
1393 struct size_entry *e;
1394 int err;
1396 switch (key_type(c, key)) {
1397 case UBIFS_INO_KEY:
1398 if (deletion)
1399 remove_ino(c, inum);
1400 else {
1401 e = find_ino(c, inum);
1402 if (e) {
1403 e->i_size = new_size;
1404 e->exists = 1;
1405 } else {
1406 err = add_ino(c, inum, new_size, 0, 1);
1407 if (err)
1408 return err;
1411 break;
1412 case UBIFS_DATA_KEY:
1413 e = find_ino(c, inum);
1414 if (e) {
1415 if (new_size > e->d_size)
1416 e->d_size = new_size;
1417 } else {
1418 err = add_ino(c, inum, 0, new_size, 0);
1419 if (err)
1420 return err;
1422 break;
1423 case UBIFS_TRUN_KEY:
1424 e = find_ino(c, inum);
1425 if (e)
1426 e->d_size = new_size;
1427 break;
1429 return 0;
1433 * fix_size_in_place - fix inode size in place on flash.
1434 * @c: UBIFS file-system description object
1435 * @e: inode size information for recovery
1437 static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
1439 struct ubifs_ino_node *ino = c->sbuf;
1440 unsigned char *p;
1441 union ubifs_key key;
1442 int err, lnum, offs, len;
1443 loff_t i_size;
1444 uint32_t crc;
1446 /* Locate the inode node LEB number and offset */
1447 ino_key_init(c, &key, e->inum);
1448 err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
1449 if (err)
1450 goto out;
1452 * If the size recorded on the inode node is greater than the size that
1453 * was calculated from nodes in the journal then don't change the inode.
1455 i_size = le64_to_cpu(ino->size);
1456 if (i_size >= e->d_size)
1457 return 0;
1458 /* Read the LEB */
1459 err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1);
1460 if (err)
1461 goto out;
1462 /* Change the size field and recalculate the CRC */
1463 ino = c->sbuf + offs;
1464 ino->size = cpu_to_le64(e->d_size);
1465 len = le32_to_cpu(ino->ch.len);
1466 crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
1467 ino->ch.crc = cpu_to_le32(crc);
1468 /* Work out where data in the LEB ends and free space begins */
1469 p = c->sbuf;
1470 len = c->leb_size - 1;
1471 while (p[len] == 0xff)
1472 len -= 1;
1473 len = ALIGN(len + 1, c->min_io_size);
1474 /* Atomically write the fixed LEB back again */
1475 err = ubifs_leb_change(c, lnum, c->sbuf, len);
1476 if (err)
1477 goto out;
1478 dbg_rcvry("inode %lu at %d:%d size %lld -> %lld",
1479 (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
1480 return 0;
1482 out:
1483 ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d",
1484 (unsigned long)e->inum, e->i_size, e->d_size, err);
1485 return err;
1489 * ubifs_recover_size - recover inode size.
1490 * @c: UBIFS file-system description object
1492 * This function attempts to fix inode size discrepancies identified by the
1493 * 'ubifs_recover_size_accum()' function.
1495 * This functions returns %0 on success and a negative error code on failure.
1497 int ubifs_recover_size(struct ubifs_info *c)
1499 struct rb_node *this = rb_first(&c->size_tree);
1501 while (this) {
1502 struct size_entry *e;
1503 int err;
1505 e = rb_entry(this, struct size_entry, rb);
1506 if (!e->exists) {
1507 union ubifs_key key;
1509 ino_key_init(c, &key, e->inum);
1510 err = ubifs_tnc_lookup(c, &key, c->sbuf);
1511 if (err && err != -ENOENT)
1512 return err;
1513 if (err == -ENOENT) {
1514 /* Remove data nodes that have no inode */
1515 dbg_rcvry("removing ino %lu",
1516 (unsigned long)e->inum);
1517 err = ubifs_tnc_remove_ino(c, e->inum);
1518 if (err)
1519 return err;
1520 } else {
1521 struct ubifs_ino_node *ino = c->sbuf;
1523 e->exists = 1;
1524 e->i_size = le64_to_cpu(ino->size);
1528 if (e->exists && e->i_size < e->d_size) {
1529 if (c->ro_mount) {
1530 /* Fix the inode size and pin it in memory */
1531 struct inode *inode;
1532 struct ubifs_inode *ui;
1534 ubifs_assert(!e->inode);
1536 inode = ubifs_iget(c->vfs_sb, e->inum);
1537 if (IS_ERR(inode))
1538 return PTR_ERR(inode);
1540 ui = ubifs_inode(inode);
1541 if (inode->i_size < e->d_size) {
1542 dbg_rcvry("ino %lu size %lld -> %lld",
1543 (unsigned long)e->inum,
1544 inode->i_size, e->d_size);
1545 inode->i_size = e->d_size;
1546 ui->ui_size = e->d_size;
1547 ui->synced_i_size = e->d_size;
1548 e->inode = inode;
1549 this = rb_next(this);
1550 continue;
1552 iput(inode);
1553 } else {
1554 /* Fix the size in place */
1555 err = fix_size_in_place(c, e);
1556 if (err)
1557 return err;
1558 if (e->inode)
1559 iput(e->inode);
1563 this = rb_next(this);
1564 rb_erase(&e->rb, &c->size_tree);
1565 kfree(e);
1568 return 0;