Linux 3.18.139
[linux/fpc-iii.git] / drivers / usb / core / message.c
blobf8eb72d350ac48ead9899bde49535a9072cc33ce
1 /*
2 * message.c - synchronous message handling
3 */
5 #include <linux/pci.h> /* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/mm.h>
10 #include <linux/timer.h>
11 #include <linux/ctype.h>
12 #include <linux/nls.h>
13 #include <linux/device.h>
14 #include <linux/scatterlist.h>
15 #include <linux/usb/quirks.h>
16 #include <linux/usb/hcd.h> /* for usbcore internals */
17 #include <asm/byteorder.h>
19 #include "usb.h"
21 static void cancel_async_set_config(struct usb_device *udev);
23 struct api_context {
24 struct completion done;
25 int status;
28 static void usb_api_blocking_completion(struct urb *urb)
30 struct api_context *ctx = urb->context;
32 ctx->status = urb->status;
33 complete(&ctx->done);
38 * Starts urb and waits for completion or timeout. Note that this call
39 * is NOT interruptible. Many device driver i/o requests should be
40 * interruptible and therefore these drivers should implement their
41 * own interruptible routines.
43 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
45 struct api_context ctx;
46 unsigned long expire;
47 int retval;
49 init_completion(&ctx.done);
50 urb->context = &ctx;
51 urb->actual_length = 0;
52 retval = usb_submit_urb(urb, GFP_NOIO);
53 if (unlikely(retval))
54 goto out;
56 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
57 if (!wait_for_completion_timeout(&ctx.done, expire)) {
58 usb_kill_urb(urb);
59 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
61 dev_dbg(&urb->dev->dev,
62 "%s timed out on ep%d%s len=%u/%u\n",
63 current->comm,
64 usb_endpoint_num(&urb->ep->desc),
65 usb_urb_dir_in(urb) ? "in" : "out",
66 urb->actual_length,
67 urb->transfer_buffer_length);
68 } else
69 retval = ctx.status;
70 out:
71 if (actual_length)
72 *actual_length = urb->actual_length;
74 usb_free_urb(urb);
75 return retval;
78 /*-------------------------------------------------------------------*/
79 /* returns status (negative) or length (positive) */
80 static int usb_internal_control_msg(struct usb_device *usb_dev,
81 unsigned int pipe,
82 struct usb_ctrlrequest *cmd,
83 void *data, int len, int timeout)
85 struct urb *urb;
86 int retv;
87 int length;
89 urb = usb_alloc_urb(0, GFP_NOIO);
90 if (!urb)
91 return -ENOMEM;
93 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
94 len, usb_api_blocking_completion, NULL);
96 retv = usb_start_wait_urb(urb, timeout, &length);
97 if (retv < 0)
98 return retv;
99 else
100 return length;
104 * usb_control_msg - Builds a control urb, sends it off and waits for completion
105 * @dev: pointer to the usb device to send the message to
106 * @pipe: endpoint "pipe" to send the message to
107 * @request: USB message request value
108 * @requesttype: USB message request type value
109 * @value: USB message value
110 * @index: USB message index value
111 * @data: pointer to the data to send
112 * @size: length in bytes of the data to send
113 * @timeout: time in msecs to wait for the message to complete before timing
114 * out (if 0 the wait is forever)
116 * Context: !in_interrupt ()
118 * This function sends a simple control message to a specified endpoint and
119 * waits for the message to complete, or timeout.
121 * Don't use this function from within an interrupt context, like a bottom half
122 * handler. If you need an asynchronous message, or need to send a message
123 * from within interrupt context, use usb_submit_urb().
124 * If a thread in your driver uses this call, make sure your disconnect()
125 * method can wait for it to complete. Since you don't have a handle on the
126 * URB used, you can't cancel the request.
128 * Return: If successful, the number of bytes transferred. Otherwise, a negative
129 * error number.
131 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
132 __u8 requesttype, __u16 value, __u16 index, void *data,
133 __u16 size, int timeout)
135 struct usb_ctrlrequest *dr;
136 int ret;
138 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
139 if (!dr)
140 return -ENOMEM;
142 dr->bRequestType = requesttype;
143 dr->bRequest = request;
144 dr->wValue = cpu_to_le16(value);
145 dr->wIndex = cpu_to_le16(index);
146 dr->wLength = cpu_to_le16(size);
148 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
150 /* Linger a bit, prior to the next control message. */
151 if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
152 msleep(200);
154 kfree(dr);
156 return ret;
158 EXPORT_SYMBOL_GPL(usb_control_msg);
161 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
162 * @usb_dev: pointer to the usb device to send the message to
163 * @pipe: endpoint "pipe" to send the message to
164 * @data: pointer to the data to send
165 * @len: length in bytes of the data to send
166 * @actual_length: pointer to a location to put the actual length transferred
167 * in bytes
168 * @timeout: time in msecs to wait for the message to complete before
169 * timing out (if 0 the wait is forever)
171 * Context: !in_interrupt ()
173 * This function sends a simple interrupt message to a specified endpoint and
174 * waits for the message to complete, or timeout.
176 * Don't use this function from within an interrupt context, like a bottom half
177 * handler. If you need an asynchronous message, or need to send a message
178 * from within interrupt context, use usb_submit_urb() If a thread in your
179 * driver uses this call, make sure your disconnect() method can wait for it to
180 * complete. Since you don't have a handle on the URB used, you can't cancel
181 * the request.
183 * Return:
184 * If successful, 0. Otherwise a negative error number. The number of actual
185 * bytes transferred will be stored in the @actual_length parameter.
187 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
188 void *data, int len, int *actual_length, int timeout)
190 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
192 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
195 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
196 * @usb_dev: pointer to the usb device to send the message to
197 * @pipe: endpoint "pipe" to send the message to
198 * @data: pointer to the data to send
199 * @len: length in bytes of the data to send
200 * @actual_length: pointer to a location to put the actual length transferred
201 * in bytes
202 * @timeout: time in msecs to wait for the message to complete before
203 * timing out (if 0 the wait is forever)
205 * Context: !in_interrupt ()
207 * This function sends a simple bulk message to a specified endpoint
208 * and waits for the message to complete, or timeout.
210 * Don't use this function from within an interrupt context, like a bottom half
211 * handler. If you need an asynchronous message, or need to send a message
212 * from within interrupt context, use usb_submit_urb() If a thread in your
213 * driver uses this call, make sure your disconnect() method can wait for it to
214 * complete. Since you don't have a handle on the URB used, you can't cancel
215 * the request.
217 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
218 * users are forced to abuse this routine by using it to submit URBs for
219 * interrupt endpoints. We will take the liberty of creating an interrupt URB
220 * (with the default interval) if the target is an interrupt endpoint.
222 * Return:
223 * If successful, 0. Otherwise a negative error number. The number of actual
224 * bytes transferred will be stored in the @actual_length parameter.
227 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
228 void *data, int len, int *actual_length, int timeout)
230 struct urb *urb;
231 struct usb_host_endpoint *ep;
233 ep = usb_pipe_endpoint(usb_dev, pipe);
234 if (!ep || len < 0)
235 return -EINVAL;
237 urb = usb_alloc_urb(0, GFP_KERNEL);
238 if (!urb)
239 return -ENOMEM;
241 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
242 USB_ENDPOINT_XFER_INT) {
243 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
244 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
245 usb_api_blocking_completion, NULL,
246 ep->desc.bInterval);
247 } else
248 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
249 usb_api_blocking_completion, NULL);
251 return usb_start_wait_urb(urb, timeout, actual_length);
253 EXPORT_SYMBOL_GPL(usb_bulk_msg);
255 /*-------------------------------------------------------------------*/
257 static void sg_clean(struct usb_sg_request *io)
259 if (io->urbs) {
260 while (io->entries--)
261 usb_free_urb(io->urbs[io->entries]);
262 kfree(io->urbs);
263 io->urbs = NULL;
265 io->dev = NULL;
268 static void sg_complete(struct urb *urb)
270 struct usb_sg_request *io = urb->context;
271 int status = urb->status;
273 spin_lock(&io->lock);
275 /* In 2.5 we require hcds' endpoint queues not to progress after fault
276 * reports, until the completion callback (this!) returns. That lets
277 * device driver code (like this routine) unlink queued urbs first,
278 * if it needs to, since the HC won't work on them at all. So it's
279 * not possible for page N+1 to overwrite page N, and so on.
281 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
282 * complete before the HCD can get requests away from hardware,
283 * though never during cleanup after a hard fault.
285 if (io->status
286 && (io->status != -ECONNRESET
287 || status != -ECONNRESET)
288 && urb->actual_length) {
289 dev_err(io->dev->bus->controller,
290 "dev %s ep%d%s scatterlist error %d/%d\n",
291 io->dev->devpath,
292 usb_endpoint_num(&urb->ep->desc),
293 usb_urb_dir_in(urb) ? "in" : "out",
294 status, io->status);
295 /* BUG (); */
298 if (io->status == 0 && status && status != -ECONNRESET) {
299 int i, found, retval;
301 io->status = status;
303 /* the previous urbs, and this one, completed already.
304 * unlink pending urbs so they won't rx/tx bad data.
305 * careful: unlink can sometimes be synchronous...
307 spin_unlock(&io->lock);
308 for (i = 0, found = 0; i < io->entries; i++) {
309 if (!io->urbs[i] || !io->urbs[i]->dev)
310 continue;
311 if (found) {
312 retval = usb_unlink_urb(io->urbs[i]);
313 if (retval != -EINPROGRESS &&
314 retval != -ENODEV &&
315 retval != -EBUSY &&
316 retval != -EIDRM)
317 dev_err(&io->dev->dev,
318 "%s, unlink --> %d\n",
319 __func__, retval);
320 } else if (urb == io->urbs[i])
321 found = 1;
323 spin_lock(&io->lock);
326 /* on the last completion, signal usb_sg_wait() */
327 io->bytes += urb->actual_length;
328 io->count--;
329 if (!io->count)
330 complete(&io->complete);
332 spin_unlock(&io->lock);
337 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
338 * @io: request block being initialized. until usb_sg_wait() returns,
339 * treat this as a pointer to an opaque block of memory,
340 * @dev: the usb device that will send or receive the data
341 * @pipe: endpoint "pipe" used to transfer the data
342 * @period: polling rate for interrupt endpoints, in frames or
343 * (for high speed endpoints) microframes; ignored for bulk
344 * @sg: scatterlist entries
345 * @nents: how many entries in the scatterlist
346 * @length: how many bytes to send from the scatterlist, or zero to
347 * send every byte identified in the list.
348 * @mem_flags: SLAB_* flags affecting memory allocations in this call
350 * This initializes a scatter/gather request, allocating resources such as
351 * I/O mappings and urb memory (except maybe memory used by USB controller
352 * drivers).
354 * The request must be issued using usb_sg_wait(), which waits for the I/O to
355 * complete (or to be canceled) and then cleans up all resources allocated by
356 * usb_sg_init().
358 * The request may be canceled with usb_sg_cancel(), either before or after
359 * usb_sg_wait() is called.
361 * Return: Zero for success, else a negative errno value.
363 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
364 unsigned pipe, unsigned period, struct scatterlist *sg,
365 int nents, size_t length, gfp_t mem_flags)
367 int i;
368 int urb_flags;
369 int use_sg;
371 if (!io || !dev || !sg
372 || usb_pipecontrol(pipe)
373 || usb_pipeisoc(pipe)
374 || nents <= 0)
375 return -EINVAL;
377 spin_lock_init(&io->lock);
378 io->dev = dev;
379 io->pipe = pipe;
381 if (dev->bus->sg_tablesize > 0) {
382 use_sg = true;
383 io->entries = 1;
384 } else {
385 use_sg = false;
386 io->entries = nents;
389 /* initialize all the urbs we'll use */
390 io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags);
391 if (!io->urbs)
392 goto nomem;
394 urb_flags = URB_NO_INTERRUPT;
395 if (usb_pipein(pipe))
396 urb_flags |= URB_SHORT_NOT_OK;
398 for_each_sg(sg, sg, io->entries, i) {
399 struct urb *urb;
400 unsigned len;
402 urb = usb_alloc_urb(0, mem_flags);
403 if (!urb) {
404 io->entries = i;
405 goto nomem;
407 io->urbs[i] = urb;
409 urb->dev = NULL;
410 urb->pipe = pipe;
411 urb->interval = period;
412 urb->transfer_flags = urb_flags;
413 urb->complete = sg_complete;
414 urb->context = io;
415 urb->sg = sg;
417 if (use_sg) {
418 /* There is no single transfer buffer */
419 urb->transfer_buffer = NULL;
420 urb->num_sgs = nents;
422 /* A length of zero means transfer the whole sg list */
423 len = length;
424 if (len == 0) {
425 struct scatterlist *sg2;
426 int j;
428 for_each_sg(sg, sg2, nents, j)
429 len += sg2->length;
431 } else {
433 * Some systems can't use DMA; they use PIO instead.
434 * For their sakes, transfer_buffer is set whenever
435 * possible.
437 if (!PageHighMem(sg_page(sg)))
438 urb->transfer_buffer = sg_virt(sg);
439 else
440 urb->transfer_buffer = NULL;
442 len = sg->length;
443 if (length) {
444 len = min_t(size_t, len, length);
445 length -= len;
446 if (length == 0)
447 io->entries = i + 1;
450 urb->transfer_buffer_length = len;
452 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
454 /* transaction state */
455 io->count = io->entries;
456 io->status = 0;
457 io->bytes = 0;
458 init_completion(&io->complete);
459 return 0;
461 nomem:
462 sg_clean(io);
463 return -ENOMEM;
465 EXPORT_SYMBOL_GPL(usb_sg_init);
468 * usb_sg_wait - synchronously execute scatter/gather request
469 * @io: request block handle, as initialized with usb_sg_init().
470 * some fields become accessible when this call returns.
471 * Context: !in_interrupt ()
473 * This function blocks until the specified I/O operation completes. It
474 * leverages the grouping of the related I/O requests to get good transfer
475 * rates, by queueing the requests. At higher speeds, such queuing can
476 * significantly improve USB throughput.
478 * There are three kinds of completion for this function.
479 * (1) success, where io->status is zero. The number of io->bytes
480 * transferred is as requested.
481 * (2) error, where io->status is a negative errno value. The number
482 * of io->bytes transferred before the error is usually less
483 * than requested, and can be nonzero.
484 * (3) cancellation, a type of error with status -ECONNRESET that
485 * is initiated by usb_sg_cancel().
487 * When this function returns, all memory allocated through usb_sg_init() or
488 * this call will have been freed. The request block parameter may still be
489 * passed to usb_sg_cancel(), or it may be freed. It could also be
490 * reinitialized and then reused.
492 * Data Transfer Rates:
494 * Bulk transfers are valid for full or high speed endpoints.
495 * The best full speed data rate is 19 packets of 64 bytes each
496 * per frame, or 1216 bytes per millisecond.
497 * The best high speed data rate is 13 packets of 512 bytes each
498 * per microframe, or 52 KBytes per millisecond.
500 * The reason to use interrupt transfers through this API would most likely
501 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
502 * could be transferred. That capability is less useful for low or full
503 * speed interrupt endpoints, which allow at most one packet per millisecond,
504 * of at most 8 or 64 bytes (respectively).
506 * It is not necessary to call this function to reserve bandwidth for devices
507 * under an xHCI host controller, as the bandwidth is reserved when the
508 * configuration or interface alt setting is selected.
510 void usb_sg_wait(struct usb_sg_request *io)
512 int i;
513 int entries = io->entries;
515 /* queue the urbs. */
516 spin_lock_irq(&io->lock);
517 i = 0;
518 while (i < entries && !io->status) {
519 int retval;
521 io->urbs[i]->dev = io->dev;
522 retval = usb_submit_urb(io->urbs[i], GFP_ATOMIC);
524 /* after we submit, let completions or cancellations fire;
525 * we handshake using io->status.
527 spin_unlock_irq(&io->lock);
528 switch (retval) {
529 /* maybe we retrying will recover */
530 case -ENXIO: /* hc didn't queue this one */
531 case -EAGAIN:
532 case -ENOMEM:
533 retval = 0;
534 yield();
535 break;
537 /* no error? continue immediately.
539 * NOTE: to work better with UHCI (4K I/O buffer may
540 * need 3K of TDs) it may be good to limit how many
541 * URBs are queued at once; N milliseconds?
543 case 0:
544 ++i;
545 cpu_relax();
546 break;
548 /* fail any uncompleted urbs */
549 default:
550 io->urbs[i]->status = retval;
551 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
552 __func__, retval);
553 usb_sg_cancel(io);
555 spin_lock_irq(&io->lock);
556 if (retval && (io->status == 0 || io->status == -ECONNRESET))
557 io->status = retval;
559 io->count -= entries - i;
560 if (io->count == 0)
561 complete(&io->complete);
562 spin_unlock_irq(&io->lock);
564 /* OK, yes, this could be packaged as non-blocking.
565 * So could the submit loop above ... but it's easier to
566 * solve neither problem than to solve both!
568 wait_for_completion(&io->complete);
570 sg_clean(io);
572 EXPORT_SYMBOL_GPL(usb_sg_wait);
575 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
576 * @io: request block, initialized with usb_sg_init()
578 * This stops a request after it has been started by usb_sg_wait().
579 * It can also prevents one initialized by usb_sg_init() from starting,
580 * so that call just frees resources allocated to the request.
582 void usb_sg_cancel(struct usb_sg_request *io)
584 unsigned long flags;
586 spin_lock_irqsave(&io->lock, flags);
588 /* shut everything down, if it didn't already */
589 if (!io->status) {
590 int i;
592 io->status = -ECONNRESET;
593 spin_unlock(&io->lock);
594 for (i = 0; i < io->entries; i++) {
595 int retval;
597 if (!io->urbs[i]->dev)
598 continue;
599 retval = usb_unlink_urb(io->urbs[i]);
600 if (retval != -EINPROGRESS
601 && retval != -ENODEV
602 && retval != -EBUSY
603 && retval != -EIDRM)
604 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
605 __func__, retval);
607 spin_lock(&io->lock);
609 spin_unlock_irqrestore(&io->lock, flags);
611 EXPORT_SYMBOL_GPL(usb_sg_cancel);
613 /*-------------------------------------------------------------------*/
616 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
617 * @dev: the device whose descriptor is being retrieved
618 * @type: the descriptor type (USB_DT_*)
619 * @index: the number of the descriptor
620 * @buf: where to put the descriptor
621 * @size: how big is "buf"?
622 * Context: !in_interrupt ()
624 * Gets a USB descriptor. Convenience functions exist to simplify
625 * getting some types of descriptors. Use
626 * usb_get_string() or usb_string() for USB_DT_STRING.
627 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
628 * are part of the device structure.
629 * In addition to a number of USB-standard descriptors, some
630 * devices also use class-specific or vendor-specific descriptors.
632 * This call is synchronous, and may not be used in an interrupt context.
634 * Return: The number of bytes received on success, or else the status code
635 * returned by the underlying usb_control_msg() call.
637 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
638 unsigned char index, void *buf, int size)
640 int i;
641 int result;
643 memset(buf, 0, size); /* Make sure we parse really received data */
645 for (i = 0; i < 3; ++i) {
646 /* retry on length 0 or error; some devices are flakey */
647 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
648 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
649 (type << 8) + index, 0, buf, size,
650 USB_CTRL_GET_TIMEOUT);
651 if (result <= 0 && result != -ETIMEDOUT)
652 continue;
653 if (result > 1 && ((u8 *)buf)[1] != type) {
654 result = -ENODATA;
655 continue;
657 break;
659 return result;
661 EXPORT_SYMBOL_GPL(usb_get_descriptor);
664 * usb_get_string - gets a string descriptor
665 * @dev: the device whose string descriptor is being retrieved
666 * @langid: code for language chosen (from string descriptor zero)
667 * @index: the number of the descriptor
668 * @buf: where to put the string
669 * @size: how big is "buf"?
670 * Context: !in_interrupt ()
672 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
673 * in little-endian byte order).
674 * The usb_string() function will often be a convenient way to turn
675 * these strings into kernel-printable form.
677 * Strings may be referenced in device, configuration, interface, or other
678 * descriptors, and could also be used in vendor-specific ways.
680 * This call is synchronous, and may not be used in an interrupt context.
682 * Return: The number of bytes received on success, or else the status code
683 * returned by the underlying usb_control_msg() call.
685 static int usb_get_string(struct usb_device *dev, unsigned short langid,
686 unsigned char index, void *buf, int size)
688 int i;
689 int result;
691 for (i = 0; i < 3; ++i) {
692 /* retry on length 0 or stall; some devices are flakey */
693 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
694 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
695 (USB_DT_STRING << 8) + index, langid, buf, size,
696 USB_CTRL_GET_TIMEOUT);
697 if (result == 0 || result == -EPIPE)
698 continue;
699 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
700 result = -ENODATA;
701 continue;
703 break;
705 return result;
708 static void usb_try_string_workarounds(unsigned char *buf, int *length)
710 int newlength, oldlength = *length;
712 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
713 if (!isprint(buf[newlength]) || buf[newlength + 1])
714 break;
716 if (newlength > 2) {
717 buf[0] = newlength;
718 *length = newlength;
722 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
723 unsigned int index, unsigned char *buf)
725 int rc;
727 /* Try to read the string descriptor by asking for the maximum
728 * possible number of bytes */
729 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
730 rc = -EIO;
731 else
732 rc = usb_get_string(dev, langid, index, buf, 255);
734 /* If that failed try to read the descriptor length, then
735 * ask for just that many bytes */
736 if (rc < 2) {
737 rc = usb_get_string(dev, langid, index, buf, 2);
738 if (rc == 2)
739 rc = usb_get_string(dev, langid, index, buf, buf[0]);
742 if (rc >= 2) {
743 if (!buf[0] && !buf[1])
744 usb_try_string_workarounds(buf, &rc);
746 /* There might be extra junk at the end of the descriptor */
747 if (buf[0] < rc)
748 rc = buf[0];
750 rc = rc - (rc & 1); /* force a multiple of two */
753 if (rc < 2)
754 rc = (rc < 0 ? rc : -EINVAL);
756 return rc;
759 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
761 int err;
763 if (dev->have_langid)
764 return 0;
766 if (dev->string_langid < 0)
767 return -EPIPE;
769 err = usb_string_sub(dev, 0, 0, tbuf);
771 /* If the string was reported but is malformed, default to english
772 * (0x0409) */
773 if (err == -ENODATA || (err > 0 && err < 4)) {
774 dev->string_langid = 0x0409;
775 dev->have_langid = 1;
776 dev_err(&dev->dev,
777 "language id specifier not provided by device, defaulting to English\n");
778 return 0;
781 /* In case of all other errors, we assume the device is not able to
782 * deal with strings at all. Set string_langid to -1 in order to
783 * prevent any string to be retrieved from the device */
784 if (err < 0) {
785 dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
786 err);
787 dev->string_langid = -1;
788 return -EPIPE;
791 /* always use the first langid listed */
792 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
793 dev->have_langid = 1;
794 dev_dbg(&dev->dev, "default language 0x%04x\n",
795 dev->string_langid);
796 return 0;
800 * usb_string - returns UTF-8 version of a string descriptor
801 * @dev: the device whose string descriptor is being retrieved
802 * @index: the number of the descriptor
803 * @buf: where to put the string
804 * @size: how big is "buf"?
805 * Context: !in_interrupt ()
807 * This converts the UTF-16LE encoded strings returned by devices, from
808 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
809 * that are more usable in most kernel contexts. Note that this function
810 * chooses strings in the first language supported by the device.
812 * This call is synchronous, and may not be used in an interrupt context.
814 * Return: length of the string (>= 0) or usb_control_msg status (< 0).
816 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
818 unsigned char *tbuf;
819 int err;
821 if (dev->state == USB_STATE_SUSPENDED)
822 return -EHOSTUNREACH;
823 if (size <= 0 || !buf || !index)
824 return -EINVAL;
825 buf[0] = 0;
826 tbuf = kmalloc(256, GFP_NOIO);
827 if (!tbuf)
828 return -ENOMEM;
830 err = usb_get_langid(dev, tbuf);
831 if (err < 0)
832 goto errout;
834 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
835 if (err < 0)
836 goto errout;
838 size--; /* leave room for trailing NULL char in output buffer */
839 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
840 UTF16_LITTLE_ENDIAN, buf, size);
841 buf[err] = 0;
843 if (tbuf[1] != USB_DT_STRING)
844 dev_dbg(&dev->dev,
845 "wrong descriptor type %02x for string %d (\"%s\")\n",
846 tbuf[1], index, buf);
848 errout:
849 kfree(tbuf);
850 return err;
852 EXPORT_SYMBOL_GPL(usb_string);
854 /* one UTF-8-encoded 16-bit character has at most three bytes */
855 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
858 * usb_cache_string - read a string descriptor and cache it for later use
859 * @udev: the device whose string descriptor is being read
860 * @index: the descriptor index
862 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
863 * or %NULL if the index is 0 or the string could not be read.
865 char *usb_cache_string(struct usb_device *udev, int index)
867 char *buf;
868 char *smallbuf = NULL;
869 int len;
871 if (index <= 0)
872 return NULL;
874 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
875 if (buf) {
876 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
877 if (len > 0) {
878 smallbuf = kmalloc(++len, GFP_NOIO);
879 if (!smallbuf)
880 return buf;
881 memcpy(smallbuf, buf, len);
883 kfree(buf);
885 return smallbuf;
889 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
890 * @dev: the device whose device descriptor is being updated
891 * @size: how much of the descriptor to read
892 * Context: !in_interrupt ()
894 * Updates the copy of the device descriptor stored in the device structure,
895 * which dedicates space for this purpose.
897 * Not exported, only for use by the core. If drivers really want to read
898 * the device descriptor directly, they can call usb_get_descriptor() with
899 * type = USB_DT_DEVICE and index = 0.
901 * This call is synchronous, and may not be used in an interrupt context.
903 * Return: The number of bytes received on success, or else the status code
904 * returned by the underlying usb_control_msg() call.
906 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
908 struct usb_device_descriptor *desc;
909 int ret;
911 if (size > sizeof(*desc))
912 return -EINVAL;
913 desc = kmalloc(sizeof(*desc), GFP_NOIO);
914 if (!desc)
915 return -ENOMEM;
917 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
918 if (ret >= 0)
919 memcpy(&dev->descriptor, desc, size);
920 kfree(desc);
921 return ret;
925 * usb_get_status - issues a GET_STATUS call
926 * @dev: the device whose status is being checked
927 * @type: USB_RECIP_*; for device, interface, or endpoint
928 * @target: zero (for device), else interface or endpoint number
929 * @data: pointer to two bytes of bitmap data
930 * Context: !in_interrupt ()
932 * Returns device, interface, or endpoint status. Normally only of
933 * interest to see if the device is self powered, or has enabled the
934 * remote wakeup facility; or whether a bulk or interrupt endpoint
935 * is halted ("stalled").
937 * Bits in these status bitmaps are set using the SET_FEATURE request,
938 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
939 * function should be used to clear halt ("stall") status.
941 * This call is synchronous, and may not be used in an interrupt context.
943 * Returns 0 and the status value in *@data (in host byte order) on success,
944 * or else the status code from the underlying usb_control_msg() call.
946 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
948 int ret;
949 __le16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
951 if (!status)
952 return -ENOMEM;
954 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
955 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
956 sizeof(*status), USB_CTRL_GET_TIMEOUT);
958 if (ret == 2) {
959 *(u16 *) data = le16_to_cpu(*status);
960 ret = 0;
961 } else if (ret >= 0) {
962 ret = -EIO;
964 kfree(status);
965 return ret;
967 EXPORT_SYMBOL_GPL(usb_get_status);
970 * usb_clear_halt - tells device to clear endpoint halt/stall condition
971 * @dev: device whose endpoint is halted
972 * @pipe: endpoint "pipe" being cleared
973 * Context: !in_interrupt ()
975 * This is used to clear halt conditions for bulk and interrupt endpoints,
976 * as reported by URB completion status. Endpoints that are halted are
977 * sometimes referred to as being "stalled". Such endpoints are unable
978 * to transmit or receive data until the halt status is cleared. Any URBs
979 * queued for such an endpoint should normally be unlinked by the driver
980 * before clearing the halt condition, as described in sections 5.7.5
981 * and 5.8.5 of the USB 2.0 spec.
983 * Note that control and isochronous endpoints don't halt, although control
984 * endpoints report "protocol stall" (for unsupported requests) using the
985 * same status code used to report a true stall.
987 * This call is synchronous, and may not be used in an interrupt context.
989 * Return: Zero on success, or else the status code returned by the
990 * underlying usb_control_msg() call.
992 int usb_clear_halt(struct usb_device *dev, int pipe)
994 int result;
995 int endp = usb_pipeendpoint(pipe);
997 if (usb_pipein(pipe))
998 endp |= USB_DIR_IN;
1000 /* we don't care if it wasn't halted first. in fact some devices
1001 * (like some ibmcam model 1 units) seem to expect hosts to make
1002 * this request for iso endpoints, which can't halt!
1004 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1005 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1006 USB_ENDPOINT_HALT, endp, NULL, 0,
1007 USB_CTRL_SET_TIMEOUT);
1009 /* don't un-halt or force to DATA0 except on success */
1010 if (result < 0)
1011 return result;
1013 /* NOTE: seems like Microsoft and Apple don't bother verifying
1014 * the clear "took", so some devices could lock up if you check...
1015 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1017 * NOTE: make sure the logic here doesn't diverge much from
1018 * the copy in usb-storage, for as long as we need two copies.
1021 usb_reset_endpoint(dev, endp);
1023 return 0;
1025 EXPORT_SYMBOL_GPL(usb_clear_halt);
1027 static int create_intf_ep_devs(struct usb_interface *intf)
1029 struct usb_device *udev = interface_to_usbdev(intf);
1030 struct usb_host_interface *alt = intf->cur_altsetting;
1031 int i;
1033 if (intf->ep_devs_created || intf->unregistering)
1034 return 0;
1036 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1037 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1038 intf->ep_devs_created = 1;
1039 return 0;
1042 static void remove_intf_ep_devs(struct usb_interface *intf)
1044 struct usb_host_interface *alt = intf->cur_altsetting;
1045 int i;
1047 if (!intf->ep_devs_created)
1048 return;
1050 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1051 usb_remove_ep_devs(&alt->endpoint[i]);
1052 intf->ep_devs_created = 0;
1056 * usb_disable_endpoint -- Disable an endpoint by address
1057 * @dev: the device whose endpoint is being disabled
1058 * @epaddr: the endpoint's address. Endpoint number for output,
1059 * endpoint number + USB_DIR_IN for input
1060 * @reset_hardware: flag to erase any endpoint state stored in the
1061 * controller hardware
1063 * Disables the endpoint for URB submission and nukes all pending URBs.
1064 * If @reset_hardware is set then also deallocates hcd/hardware state
1065 * for the endpoint.
1067 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1068 bool reset_hardware)
1070 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1071 struct usb_host_endpoint *ep;
1073 if (!dev)
1074 return;
1076 if (usb_endpoint_out(epaddr)) {
1077 ep = dev->ep_out[epnum];
1078 if (reset_hardware)
1079 dev->ep_out[epnum] = NULL;
1080 } else {
1081 ep = dev->ep_in[epnum];
1082 if (reset_hardware)
1083 dev->ep_in[epnum] = NULL;
1085 if (ep) {
1086 ep->enabled = 0;
1087 usb_hcd_flush_endpoint(dev, ep);
1088 if (reset_hardware)
1089 usb_hcd_disable_endpoint(dev, ep);
1094 * usb_reset_endpoint - Reset an endpoint's state.
1095 * @dev: the device whose endpoint is to be reset
1096 * @epaddr: the endpoint's address. Endpoint number for output,
1097 * endpoint number + USB_DIR_IN for input
1099 * Resets any host-side endpoint state such as the toggle bit,
1100 * sequence number or current window.
1102 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1104 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1105 struct usb_host_endpoint *ep;
1107 if (usb_endpoint_out(epaddr))
1108 ep = dev->ep_out[epnum];
1109 else
1110 ep = dev->ep_in[epnum];
1111 if (ep)
1112 usb_hcd_reset_endpoint(dev, ep);
1114 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1118 * usb_disable_interface -- Disable all endpoints for an interface
1119 * @dev: the device whose interface is being disabled
1120 * @intf: pointer to the interface descriptor
1121 * @reset_hardware: flag to erase any endpoint state stored in the
1122 * controller hardware
1124 * Disables all the endpoints for the interface's current altsetting.
1126 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1127 bool reset_hardware)
1129 struct usb_host_interface *alt = intf->cur_altsetting;
1130 int i;
1132 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1133 usb_disable_endpoint(dev,
1134 alt->endpoint[i].desc.bEndpointAddress,
1135 reset_hardware);
1140 * usb_disable_device - Disable all the endpoints for a USB device
1141 * @dev: the device whose endpoints are being disabled
1142 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1144 * Disables all the device's endpoints, potentially including endpoint 0.
1145 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1146 * pending urbs) and usbcore state for the interfaces, so that usbcore
1147 * must usb_set_configuration() before any interfaces could be used.
1149 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1151 int i;
1152 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1154 /* getting rid of interfaces will disconnect
1155 * any drivers bound to them (a key side effect)
1157 if (dev->actconfig) {
1159 * FIXME: In order to avoid self-deadlock involving the
1160 * bandwidth_mutex, we have to mark all the interfaces
1161 * before unregistering any of them.
1163 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1164 dev->actconfig->interface[i]->unregistering = 1;
1166 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1167 struct usb_interface *interface;
1169 /* remove this interface if it has been registered */
1170 interface = dev->actconfig->interface[i];
1171 if (!device_is_registered(&interface->dev))
1172 continue;
1173 dev_dbg(&dev->dev, "unregistering interface %s\n",
1174 dev_name(&interface->dev));
1175 remove_intf_ep_devs(interface);
1176 device_del(&interface->dev);
1179 /* Now that the interfaces are unbound, nobody should
1180 * try to access them.
1182 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1183 put_device(&dev->actconfig->interface[i]->dev);
1184 dev->actconfig->interface[i] = NULL;
1187 if (dev->usb2_hw_lpm_enabled == 1)
1188 usb_set_usb2_hardware_lpm(dev, 0);
1189 usb_unlocked_disable_lpm(dev);
1190 usb_disable_ltm(dev);
1192 dev->actconfig = NULL;
1193 if (dev->state == USB_STATE_CONFIGURED)
1194 usb_set_device_state(dev, USB_STATE_ADDRESS);
1197 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1198 skip_ep0 ? "non-ep0" : "all");
1199 if (hcd->driver->check_bandwidth) {
1200 /* First pass: Cancel URBs, leave endpoint pointers intact. */
1201 for (i = skip_ep0; i < 16; ++i) {
1202 usb_disable_endpoint(dev, i, false);
1203 usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1205 /* Remove endpoints from the host controller internal state */
1206 mutex_lock(hcd->bandwidth_mutex);
1207 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1208 mutex_unlock(hcd->bandwidth_mutex);
1209 /* Second pass: remove endpoint pointers */
1211 for (i = skip_ep0; i < 16; ++i) {
1212 usb_disable_endpoint(dev, i, true);
1213 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1218 * usb_enable_endpoint - Enable an endpoint for USB communications
1219 * @dev: the device whose interface is being enabled
1220 * @ep: the endpoint
1221 * @reset_ep: flag to reset the endpoint state
1223 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1224 * For control endpoints, both the input and output sides are handled.
1226 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1227 bool reset_ep)
1229 int epnum = usb_endpoint_num(&ep->desc);
1230 int is_out = usb_endpoint_dir_out(&ep->desc);
1231 int is_control = usb_endpoint_xfer_control(&ep->desc);
1233 if (reset_ep)
1234 usb_hcd_reset_endpoint(dev, ep);
1235 if (is_out || is_control)
1236 dev->ep_out[epnum] = ep;
1237 if (!is_out || is_control)
1238 dev->ep_in[epnum] = ep;
1239 ep->enabled = 1;
1243 * usb_enable_interface - Enable all the endpoints for an interface
1244 * @dev: the device whose interface is being enabled
1245 * @intf: pointer to the interface descriptor
1246 * @reset_eps: flag to reset the endpoints' state
1248 * Enables all the endpoints for the interface's current altsetting.
1250 void usb_enable_interface(struct usb_device *dev,
1251 struct usb_interface *intf, bool reset_eps)
1253 struct usb_host_interface *alt = intf->cur_altsetting;
1254 int i;
1256 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1257 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1261 * usb_set_interface - Makes a particular alternate setting be current
1262 * @dev: the device whose interface is being updated
1263 * @interface: the interface being updated
1264 * @alternate: the setting being chosen.
1265 * Context: !in_interrupt ()
1267 * This is used to enable data transfers on interfaces that may not
1268 * be enabled by default. Not all devices support such configurability.
1269 * Only the driver bound to an interface may change its setting.
1271 * Within any given configuration, each interface may have several
1272 * alternative settings. These are often used to control levels of
1273 * bandwidth consumption. For example, the default setting for a high
1274 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1275 * while interrupt transfers of up to 3KBytes per microframe are legal.
1276 * Also, isochronous endpoints may never be part of an
1277 * interface's default setting. To access such bandwidth, alternate
1278 * interface settings must be made current.
1280 * Note that in the Linux USB subsystem, bandwidth associated with
1281 * an endpoint in a given alternate setting is not reserved until an URB
1282 * is submitted that needs that bandwidth. Some other operating systems
1283 * allocate bandwidth early, when a configuration is chosen.
1285 * xHCI reserves bandwidth and configures the alternate setting in
1286 * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting
1287 * may be disabled. Drivers cannot rely on any particular alternate
1288 * setting being in effect after a failure.
1290 * This call is synchronous, and may not be used in an interrupt context.
1291 * Also, drivers must not change altsettings while urbs are scheduled for
1292 * endpoints in that interface; all such urbs must first be completed
1293 * (perhaps forced by unlinking).
1295 * Return: Zero on success, or else the status code returned by the
1296 * underlying usb_control_msg() call.
1298 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1300 struct usb_interface *iface;
1301 struct usb_host_interface *alt;
1302 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1303 int i, ret, manual = 0;
1304 unsigned int epaddr;
1305 unsigned int pipe;
1307 if (dev->state == USB_STATE_SUSPENDED)
1308 return -EHOSTUNREACH;
1310 iface = usb_ifnum_to_if(dev, interface);
1311 if (!iface) {
1312 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1313 interface);
1314 return -EINVAL;
1316 if (iface->unregistering)
1317 return -ENODEV;
1319 alt = usb_altnum_to_altsetting(iface, alternate);
1320 if (!alt) {
1321 dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1322 alternate);
1323 return -EINVAL;
1326 * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth,
1327 * including freeing dropped endpoint ring buffers.
1328 * Make sure the interface endpoints are flushed before that
1330 usb_disable_interface(dev, iface, false);
1332 /* Make sure we have enough bandwidth for this alternate interface.
1333 * Remove the current alt setting and add the new alt setting.
1335 mutex_lock(hcd->bandwidth_mutex);
1336 /* Disable LPM, and re-enable it once the new alt setting is installed,
1337 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1339 if (usb_disable_lpm(dev)) {
1340 dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__);
1341 mutex_unlock(hcd->bandwidth_mutex);
1342 return -ENOMEM;
1344 /* Changing alt-setting also frees any allocated streams */
1345 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1346 iface->cur_altsetting->endpoint[i].streams = 0;
1348 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1349 if (ret < 0) {
1350 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1351 alternate);
1352 usb_enable_lpm(dev);
1353 mutex_unlock(hcd->bandwidth_mutex);
1354 return ret;
1357 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1358 ret = -EPIPE;
1359 else
1360 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1361 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1362 alternate, interface, NULL, 0, 5000);
1364 /* 9.4.10 says devices don't need this and are free to STALL the
1365 * request if the interface only has one alternate setting.
1367 if (ret == -EPIPE && iface->num_altsetting == 1) {
1368 dev_dbg(&dev->dev,
1369 "manual set_interface for iface %d, alt %d\n",
1370 interface, alternate);
1371 manual = 1;
1372 } else if (ret < 0) {
1373 /* Re-instate the old alt setting */
1374 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1375 usb_enable_lpm(dev);
1376 mutex_unlock(hcd->bandwidth_mutex);
1377 return ret;
1379 mutex_unlock(hcd->bandwidth_mutex);
1381 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1382 * when they implement async or easily-killable versions of this or
1383 * other "should-be-internal" functions (like clear_halt).
1384 * should hcd+usbcore postprocess control requests?
1387 /* prevent submissions using previous endpoint settings */
1388 if (iface->cur_altsetting != alt) {
1389 remove_intf_ep_devs(iface);
1390 usb_remove_sysfs_intf_files(iface);
1392 usb_disable_interface(dev, iface, true);
1394 iface->cur_altsetting = alt;
1396 /* Now that the interface is installed, re-enable LPM. */
1397 usb_unlocked_enable_lpm(dev);
1399 /* If the interface only has one altsetting and the device didn't
1400 * accept the request, we attempt to carry out the equivalent action
1401 * by manually clearing the HALT feature for each endpoint in the
1402 * new altsetting.
1404 if (manual) {
1405 int i;
1407 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1408 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1409 pipe = __create_pipe(dev,
1410 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1411 (usb_endpoint_out(epaddr) ?
1412 USB_DIR_OUT : USB_DIR_IN);
1414 usb_clear_halt(dev, pipe);
1418 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1420 * Note:
1421 * Despite EP0 is always present in all interfaces/AS, the list of
1422 * endpoints from the descriptor does not contain EP0. Due to its
1423 * omnipresence one might expect EP0 being considered "affected" by
1424 * any SetInterface request and hence assume toggles need to be reset.
1425 * However, EP0 toggles are re-synced for every individual transfer
1426 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1427 * (Likewise, EP0 never "halts" on well designed devices.)
1429 usb_enable_interface(dev, iface, true);
1430 if (device_is_registered(&iface->dev)) {
1431 usb_create_sysfs_intf_files(iface);
1432 create_intf_ep_devs(iface);
1434 return 0;
1436 EXPORT_SYMBOL_GPL(usb_set_interface);
1439 * usb_reset_configuration - lightweight device reset
1440 * @dev: the device whose configuration is being reset
1442 * This issues a standard SET_CONFIGURATION request to the device using
1443 * the current configuration. The effect is to reset most USB-related
1444 * state in the device, including interface altsettings (reset to zero),
1445 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1446 * endpoints). Other usbcore state is unchanged, including bindings of
1447 * usb device drivers to interfaces.
1449 * Because this affects multiple interfaces, avoid using this with composite
1450 * (multi-interface) devices. Instead, the driver for each interface may
1451 * use usb_set_interface() on the interfaces it claims. Be careful though;
1452 * some devices don't support the SET_INTERFACE request, and others won't
1453 * reset all the interface state (notably endpoint state). Resetting the whole
1454 * configuration would affect other drivers' interfaces.
1456 * The caller must own the device lock.
1458 * Return: Zero on success, else a negative error code.
1460 int usb_reset_configuration(struct usb_device *dev)
1462 int i, retval;
1463 struct usb_host_config *config;
1464 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1466 if (dev->state == USB_STATE_SUSPENDED)
1467 return -EHOSTUNREACH;
1469 /* caller must have locked the device and must own
1470 * the usb bus readlock (so driver bindings are stable);
1471 * calls during probe() are fine
1474 for (i = 1; i < 16; ++i) {
1475 usb_disable_endpoint(dev, i, true);
1476 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1479 config = dev->actconfig;
1480 retval = 0;
1481 mutex_lock(hcd->bandwidth_mutex);
1482 /* Disable LPM, and re-enable it once the configuration is reset, so
1483 * that the xHCI driver can recalculate the U1/U2 timeouts.
1485 if (usb_disable_lpm(dev)) {
1486 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1487 mutex_unlock(hcd->bandwidth_mutex);
1488 return -ENOMEM;
1490 /* Make sure we have enough bandwidth for each alternate setting 0 */
1491 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1492 struct usb_interface *intf = config->interface[i];
1493 struct usb_host_interface *alt;
1495 alt = usb_altnum_to_altsetting(intf, 0);
1496 if (!alt)
1497 alt = &intf->altsetting[0];
1498 if (alt != intf->cur_altsetting)
1499 retval = usb_hcd_alloc_bandwidth(dev, NULL,
1500 intf->cur_altsetting, alt);
1501 if (retval < 0)
1502 break;
1504 /* If not, reinstate the old alternate settings */
1505 if (retval < 0) {
1506 reset_old_alts:
1507 for (i--; i >= 0; i--) {
1508 struct usb_interface *intf = config->interface[i];
1509 struct usb_host_interface *alt;
1511 alt = usb_altnum_to_altsetting(intf, 0);
1512 if (!alt)
1513 alt = &intf->altsetting[0];
1514 if (alt != intf->cur_altsetting)
1515 usb_hcd_alloc_bandwidth(dev, NULL,
1516 alt, intf->cur_altsetting);
1518 usb_enable_lpm(dev);
1519 mutex_unlock(hcd->bandwidth_mutex);
1520 return retval;
1522 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1523 USB_REQ_SET_CONFIGURATION, 0,
1524 config->desc.bConfigurationValue, 0,
1525 NULL, 0, USB_CTRL_SET_TIMEOUT);
1526 if (retval < 0)
1527 goto reset_old_alts;
1528 mutex_unlock(hcd->bandwidth_mutex);
1530 /* re-init hc/hcd interface/endpoint state */
1531 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1532 struct usb_interface *intf = config->interface[i];
1533 struct usb_host_interface *alt;
1535 alt = usb_altnum_to_altsetting(intf, 0);
1537 /* No altsetting 0? We'll assume the first altsetting.
1538 * We could use a GetInterface call, but if a device is
1539 * so non-compliant that it doesn't have altsetting 0
1540 * then I wouldn't trust its reply anyway.
1542 if (!alt)
1543 alt = &intf->altsetting[0];
1545 if (alt != intf->cur_altsetting) {
1546 remove_intf_ep_devs(intf);
1547 usb_remove_sysfs_intf_files(intf);
1549 intf->cur_altsetting = alt;
1550 usb_enable_interface(dev, intf, true);
1551 if (device_is_registered(&intf->dev)) {
1552 usb_create_sysfs_intf_files(intf);
1553 create_intf_ep_devs(intf);
1556 /* Now that the interfaces are installed, re-enable LPM. */
1557 usb_unlocked_enable_lpm(dev);
1558 return 0;
1560 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1562 static void usb_release_interface(struct device *dev)
1564 struct usb_interface *intf = to_usb_interface(dev);
1565 struct usb_interface_cache *intfc =
1566 altsetting_to_usb_interface_cache(intf->altsetting);
1568 kref_put(&intfc->ref, usb_release_interface_cache);
1569 usb_put_dev(interface_to_usbdev(intf));
1570 kfree(intf);
1573 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1575 struct usb_device *usb_dev;
1576 struct usb_interface *intf;
1577 struct usb_host_interface *alt;
1579 intf = to_usb_interface(dev);
1580 usb_dev = interface_to_usbdev(intf);
1581 alt = intf->cur_altsetting;
1583 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1584 alt->desc.bInterfaceClass,
1585 alt->desc.bInterfaceSubClass,
1586 alt->desc.bInterfaceProtocol))
1587 return -ENOMEM;
1589 if (add_uevent_var(env,
1590 "MODALIAS=usb:"
1591 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1592 le16_to_cpu(usb_dev->descriptor.idVendor),
1593 le16_to_cpu(usb_dev->descriptor.idProduct),
1594 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1595 usb_dev->descriptor.bDeviceClass,
1596 usb_dev->descriptor.bDeviceSubClass,
1597 usb_dev->descriptor.bDeviceProtocol,
1598 alt->desc.bInterfaceClass,
1599 alt->desc.bInterfaceSubClass,
1600 alt->desc.bInterfaceProtocol,
1601 alt->desc.bInterfaceNumber))
1602 return -ENOMEM;
1604 return 0;
1607 struct device_type usb_if_device_type = {
1608 .name = "usb_interface",
1609 .release = usb_release_interface,
1610 .uevent = usb_if_uevent,
1613 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1614 struct usb_host_config *config,
1615 u8 inum)
1617 struct usb_interface_assoc_descriptor *retval = NULL;
1618 struct usb_interface_assoc_descriptor *intf_assoc;
1619 int first_intf;
1620 int last_intf;
1621 int i;
1623 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1624 intf_assoc = config->intf_assoc[i];
1625 if (intf_assoc->bInterfaceCount == 0)
1626 continue;
1628 first_intf = intf_assoc->bFirstInterface;
1629 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1630 if (inum >= first_intf && inum <= last_intf) {
1631 if (!retval)
1632 retval = intf_assoc;
1633 else
1634 dev_err(&dev->dev, "Interface #%d referenced"
1635 " by multiple IADs\n", inum);
1639 return retval;
1644 * Internal function to queue a device reset
1645 * See usb_queue_reset_device() for more details
1647 static void __usb_queue_reset_device(struct work_struct *ws)
1649 int rc;
1650 struct usb_interface *iface =
1651 container_of(ws, struct usb_interface, reset_ws);
1652 struct usb_device *udev = interface_to_usbdev(iface);
1654 rc = usb_lock_device_for_reset(udev, iface);
1655 if (rc >= 0) {
1656 usb_reset_device(udev);
1657 usb_unlock_device(udev);
1659 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */
1664 * usb_set_configuration - Makes a particular device setting be current
1665 * @dev: the device whose configuration is being updated
1666 * @configuration: the configuration being chosen.
1667 * Context: !in_interrupt(), caller owns the device lock
1669 * This is used to enable non-default device modes. Not all devices
1670 * use this kind of configurability; many devices only have one
1671 * configuration.
1673 * @configuration is the value of the configuration to be installed.
1674 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1675 * must be non-zero; a value of zero indicates that the device in
1676 * unconfigured. However some devices erroneously use 0 as one of their
1677 * configuration values. To help manage such devices, this routine will
1678 * accept @configuration = -1 as indicating the device should be put in
1679 * an unconfigured state.
1681 * USB device configurations may affect Linux interoperability,
1682 * power consumption and the functionality available. For example,
1683 * the default configuration is limited to using 100mA of bus power,
1684 * so that when certain device functionality requires more power,
1685 * and the device is bus powered, that functionality should be in some
1686 * non-default device configuration. Other device modes may also be
1687 * reflected as configuration options, such as whether two ISDN
1688 * channels are available independently; and choosing between open
1689 * standard device protocols (like CDC) or proprietary ones.
1691 * Note that a non-authorized device (dev->authorized == 0) will only
1692 * be put in unconfigured mode.
1694 * Note that USB has an additional level of device configurability,
1695 * associated with interfaces. That configurability is accessed using
1696 * usb_set_interface().
1698 * This call is synchronous. The calling context must be able to sleep,
1699 * must own the device lock, and must not hold the driver model's USB
1700 * bus mutex; usb interface driver probe() methods cannot use this routine.
1702 * Returns zero on success, or else the status code returned by the
1703 * underlying call that failed. On successful completion, each interface
1704 * in the original device configuration has been destroyed, and each one
1705 * in the new configuration has been probed by all relevant usb device
1706 * drivers currently known to the kernel.
1708 int usb_set_configuration(struct usb_device *dev, int configuration)
1710 int i, ret;
1711 struct usb_host_config *cp = NULL;
1712 struct usb_interface **new_interfaces = NULL;
1713 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1714 int n, nintf;
1716 if (dev->authorized == 0 || configuration == -1)
1717 configuration = 0;
1718 else {
1719 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1720 if (dev->config[i].desc.bConfigurationValue ==
1721 configuration) {
1722 cp = &dev->config[i];
1723 break;
1727 if ((!cp && configuration != 0))
1728 return -EINVAL;
1730 /* The USB spec says configuration 0 means unconfigured.
1731 * But if a device includes a configuration numbered 0,
1732 * we will accept it as a correctly configured state.
1733 * Use -1 if you really want to unconfigure the device.
1735 if (cp && configuration == 0)
1736 dev_warn(&dev->dev, "config 0 descriptor??\n");
1738 /* Allocate memory for new interfaces before doing anything else,
1739 * so that if we run out then nothing will have changed. */
1740 n = nintf = 0;
1741 if (cp) {
1742 nintf = cp->desc.bNumInterfaces;
1743 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1744 GFP_NOIO);
1745 if (!new_interfaces) {
1746 dev_err(&dev->dev, "Out of memory\n");
1747 return -ENOMEM;
1750 for (; n < nintf; ++n) {
1751 new_interfaces[n] = kzalloc(
1752 sizeof(struct usb_interface),
1753 GFP_NOIO);
1754 if (!new_interfaces[n]) {
1755 dev_err(&dev->dev, "Out of memory\n");
1756 ret = -ENOMEM;
1757 free_interfaces:
1758 while (--n >= 0)
1759 kfree(new_interfaces[n]);
1760 kfree(new_interfaces);
1761 return ret;
1765 i = dev->bus_mA - usb_get_max_power(dev, cp);
1766 if (i < 0)
1767 dev_warn(&dev->dev, "new config #%d exceeds power "
1768 "limit by %dmA\n",
1769 configuration, -i);
1772 /* Wake up the device so we can send it the Set-Config request */
1773 ret = usb_autoresume_device(dev);
1774 if (ret)
1775 goto free_interfaces;
1777 /* if it's already configured, clear out old state first.
1778 * getting rid of old interfaces means unbinding their drivers.
1780 if (dev->state != USB_STATE_ADDRESS)
1781 usb_disable_device(dev, 1); /* Skip ep0 */
1783 /* Get rid of pending async Set-Config requests for this device */
1784 cancel_async_set_config(dev);
1786 /* Make sure we have bandwidth (and available HCD resources) for this
1787 * configuration. Remove endpoints from the schedule if we're dropping
1788 * this configuration to set configuration 0. After this point, the
1789 * host controller will not allow submissions to dropped endpoints. If
1790 * this call fails, the device state is unchanged.
1792 mutex_lock(hcd->bandwidth_mutex);
1793 /* Disable LPM, and re-enable it once the new configuration is
1794 * installed, so that the xHCI driver can recalculate the U1/U2
1795 * timeouts.
1797 if (dev->actconfig && usb_disable_lpm(dev)) {
1798 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1799 mutex_unlock(hcd->bandwidth_mutex);
1800 ret = -ENOMEM;
1801 goto free_interfaces;
1803 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1804 if (ret < 0) {
1805 if (dev->actconfig)
1806 usb_enable_lpm(dev);
1807 mutex_unlock(hcd->bandwidth_mutex);
1808 usb_autosuspend_device(dev);
1809 goto free_interfaces;
1813 * Initialize the new interface structures and the
1814 * hc/hcd/usbcore interface/endpoint state.
1816 for (i = 0; i < nintf; ++i) {
1817 struct usb_interface_cache *intfc;
1818 struct usb_interface *intf;
1819 struct usb_host_interface *alt;
1821 cp->interface[i] = intf = new_interfaces[i];
1822 intfc = cp->intf_cache[i];
1823 intf->altsetting = intfc->altsetting;
1824 intf->num_altsetting = intfc->num_altsetting;
1825 kref_get(&intfc->ref);
1827 alt = usb_altnum_to_altsetting(intf, 0);
1829 /* No altsetting 0? We'll assume the first altsetting.
1830 * We could use a GetInterface call, but if a device is
1831 * so non-compliant that it doesn't have altsetting 0
1832 * then I wouldn't trust its reply anyway.
1834 if (!alt)
1835 alt = &intf->altsetting[0];
1837 intf->intf_assoc =
1838 find_iad(dev, cp, alt->desc.bInterfaceNumber);
1839 intf->cur_altsetting = alt;
1840 usb_enable_interface(dev, intf, true);
1841 intf->dev.parent = &dev->dev;
1842 intf->dev.driver = NULL;
1843 intf->dev.bus = &usb_bus_type;
1844 intf->dev.type = &usb_if_device_type;
1845 intf->dev.groups = usb_interface_groups;
1846 intf->dev.dma_mask = dev->dev.dma_mask;
1847 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1848 intf->minor = -1;
1849 device_initialize(&intf->dev);
1850 pm_runtime_no_callbacks(&intf->dev);
1851 dev_set_name(&intf->dev, "%d-%s:%d.%d",
1852 dev->bus->busnum, dev->devpath,
1853 configuration, alt->desc.bInterfaceNumber);
1854 usb_get_dev(dev);
1856 kfree(new_interfaces);
1858 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1859 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1860 NULL, 0, USB_CTRL_SET_TIMEOUT);
1861 if (ret < 0 && cp) {
1863 * All the old state is gone, so what else can we do?
1864 * The device is probably useless now anyway.
1866 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1867 for (i = 0; i < nintf; ++i) {
1868 usb_disable_interface(dev, cp->interface[i], true);
1869 put_device(&cp->interface[i]->dev);
1870 cp->interface[i] = NULL;
1872 cp = NULL;
1875 dev->actconfig = cp;
1876 mutex_unlock(hcd->bandwidth_mutex);
1878 if (!cp) {
1879 usb_set_device_state(dev, USB_STATE_ADDRESS);
1881 /* Leave LPM disabled while the device is unconfigured. */
1882 usb_autosuspend_device(dev);
1883 return ret;
1885 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1887 if (cp->string == NULL &&
1888 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1889 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1891 /* Now that the interfaces are installed, re-enable LPM. */
1892 usb_unlocked_enable_lpm(dev);
1893 /* Enable LTM if it was turned off by usb_disable_device. */
1894 usb_enable_ltm(dev);
1896 /* Now that all the interfaces are set up, register them
1897 * to trigger binding of drivers to interfaces. probe()
1898 * routines may install different altsettings and may
1899 * claim() any interfaces not yet bound. Many class drivers
1900 * need that: CDC, audio, video, etc.
1902 for (i = 0; i < nintf; ++i) {
1903 struct usb_interface *intf = cp->interface[i];
1905 dev_dbg(&dev->dev,
1906 "adding %s (config #%d, interface %d)\n",
1907 dev_name(&intf->dev), configuration,
1908 intf->cur_altsetting->desc.bInterfaceNumber);
1909 device_enable_async_suspend(&intf->dev);
1910 ret = device_add(&intf->dev);
1911 if (ret != 0) {
1912 dev_err(&dev->dev, "device_add(%s) --> %d\n",
1913 dev_name(&intf->dev), ret);
1914 continue;
1916 create_intf_ep_devs(intf);
1919 usb_autosuspend_device(dev);
1920 return 0;
1922 EXPORT_SYMBOL_GPL(usb_set_configuration);
1924 static LIST_HEAD(set_config_list);
1925 static DEFINE_SPINLOCK(set_config_lock);
1927 struct set_config_request {
1928 struct usb_device *udev;
1929 int config;
1930 struct work_struct work;
1931 struct list_head node;
1934 /* Worker routine for usb_driver_set_configuration() */
1935 static void driver_set_config_work(struct work_struct *work)
1937 struct set_config_request *req =
1938 container_of(work, struct set_config_request, work);
1939 struct usb_device *udev = req->udev;
1941 usb_lock_device(udev);
1942 spin_lock(&set_config_lock);
1943 list_del(&req->node);
1944 spin_unlock(&set_config_lock);
1946 if (req->config >= -1) /* Is req still valid? */
1947 usb_set_configuration(udev, req->config);
1948 usb_unlock_device(udev);
1949 usb_put_dev(udev);
1950 kfree(req);
1953 /* Cancel pending Set-Config requests for a device whose configuration
1954 * was just changed
1956 static void cancel_async_set_config(struct usb_device *udev)
1958 struct set_config_request *req;
1960 spin_lock(&set_config_lock);
1961 list_for_each_entry(req, &set_config_list, node) {
1962 if (req->udev == udev)
1963 req->config = -999; /* Mark as cancelled */
1965 spin_unlock(&set_config_lock);
1969 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1970 * @udev: the device whose configuration is being updated
1971 * @config: the configuration being chosen.
1972 * Context: In process context, must be able to sleep
1974 * Device interface drivers are not allowed to change device configurations.
1975 * This is because changing configurations will destroy the interface the
1976 * driver is bound to and create new ones; it would be like a floppy-disk
1977 * driver telling the computer to replace the floppy-disk drive with a
1978 * tape drive!
1980 * Still, in certain specialized circumstances the need may arise. This
1981 * routine gets around the normal restrictions by using a work thread to
1982 * submit the change-config request.
1984 * Return: 0 if the request was successfully queued, error code otherwise.
1985 * The caller has no way to know whether the queued request will eventually
1986 * succeed.
1988 int usb_driver_set_configuration(struct usb_device *udev, int config)
1990 struct set_config_request *req;
1992 req = kmalloc(sizeof(*req), GFP_KERNEL);
1993 if (!req)
1994 return -ENOMEM;
1995 req->udev = udev;
1996 req->config = config;
1997 INIT_WORK(&req->work, driver_set_config_work);
1999 spin_lock(&set_config_lock);
2000 list_add(&req->node, &set_config_list);
2001 spin_unlock(&set_config_lock);
2003 usb_get_dev(udev);
2004 schedule_work(&req->work);
2005 return 0;
2007 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);