2 * hugetlbpage-backed filesystem. Based on ramfs.
4 * Nadia Yvette Chambers, 2002
6 * Copyright (C) 2002 Linus Torvalds.
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h> /* remove ASAP */
15 #include <linux/falloc.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
40 #include <linux/uaccess.h>
41 #include <linux/sched/mm.h>
43 static const struct super_operations hugetlbfs_ops
;
44 static const struct address_space_operations hugetlbfs_aops
;
45 const struct file_operations hugetlbfs_file_operations
;
46 static const struct inode_operations hugetlbfs_dir_inode_operations
;
47 static const struct inode_operations hugetlbfs_inode_operations
;
49 enum hugetlbfs_size_type
{ NO_SIZE
, SIZE_STD
, SIZE_PERCENT
};
51 struct hugetlbfs_fs_context
{
52 struct hstate
*hstate
;
53 unsigned long long max_size_opt
;
54 unsigned long long min_size_opt
;
58 enum hugetlbfs_size_type max_val_type
;
59 enum hugetlbfs_size_type min_val_type
;
65 int sysctl_hugetlb_shm_group
;
77 static const struct fs_parameter_spec hugetlb_fs_parameters
[] = {
78 fsparam_u32 ("gid", Opt_gid
),
79 fsparam_string("min_size", Opt_min_size
),
80 fsparam_u32 ("mode", Opt_mode
),
81 fsparam_string("nr_inodes", Opt_nr_inodes
),
82 fsparam_string("pagesize", Opt_pagesize
),
83 fsparam_string("size", Opt_size
),
84 fsparam_u32 ("uid", Opt_uid
),
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct
*vma
,
90 struct inode
*inode
, pgoff_t index
)
92 vma
->vm_policy
= mpol_shared_policy_lookup(&HUGETLBFS_I(inode
)->policy
,
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct
*vma
)
98 mpol_cond_put(vma
->vm_policy
);
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct
*vma
,
102 struct inode
*inode
, pgoff_t index
)
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct
*vma
)
111 static void huge_pagevec_release(struct pagevec
*pvec
)
115 for (i
= 0; i
< pagevec_count(pvec
); ++i
)
116 put_page(pvec
->pages
[i
]);
118 pagevec_reinit(pvec
);
122 * Mask used when checking the page offset value passed in via system
123 * calls. This value will be converted to a loff_t which is signed.
124 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125 * value. The extra bit (- 1 in the shift value) is to take the sign
128 #define PGOFF_LOFFT_MAX \
129 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
131 static int hugetlbfs_file_mmap(struct file
*file
, struct vm_area_struct
*vma
)
133 struct inode
*inode
= file_inode(file
);
136 struct hstate
*h
= hstate_file(file
);
139 * vma address alignment (but not the pgoff alignment) has
140 * already been checked by prepare_hugepage_range. If you add
141 * any error returns here, do so after setting VM_HUGETLB, so
142 * is_vm_hugetlb_page tests below unmap_region go the right
143 * way when do_mmap_pgoff unwinds (may be important on powerpc
146 vma
->vm_flags
|= VM_HUGETLB
| VM_DONTEXPAND
;
147 vma
->vm_ops
= &hugetlb_vm_ops
;
150 * page based offset in vm_pgoff could be sufficiently large to
151 * overflow a loff_t when converted to byte offset. This can
152 * only happen on architectures where sizeof(loff_t) ==
153 * sizeof(unsigned long). So, only check in those instances.
155 if (sizeof(unsigned long) == sizeof(loff_t
)) {
156 if (vma
->vm_pgoff
& PGOFF_LOFFT_MAX
)
160 /* must be huge page aligned */
161 if (vma
->vm_pgoff
& (~huge_page_mask(h
) >> PAGE_SHIFT
))
164 vma_len
= (loff_t
)(vma
->vm_end
- vma
->vm_start
);
165 len
= vma_len
+ ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
);
166 /* check for overflow */
174 if (hugetlb_reserve_pages(inode
,
175 vma
->vm_pgoff
>> huge_page_order(h
),
176 len
>> huge_page_shift(h
), vma
,
181 if (vma
->vm_flags
& VM_WRITE
&& inode
->i_size
< len
)
182 i_size_write(inode
, len
);
190 * Called under mmap_write_lock(mm).
193 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
195 hugetlb_get_unmapped_area_bottomup(struct file
*file
, unsigned long addr
,
196 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
198 struct hstate
*h
= hstate_file(file
);
199 struct vm_unmapped_area_info info
;
203 info
.low_limit
= current
->mm
->mmap_base
;
204 info
.high_limit
= TASK_SIZE
;
205 info
.align_mask
= PAGE_MASK
& ~huge_page_mask(h
);
206 info
.align_offset
= 0;
207 return vm_unmapped_area(&info
);
211 hugetlb_get_unmapped_area_topdown(struct file
*file
, unsigned long addr
,
212 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
214 struct hstate
*h
= hstate_file(file
);
215 struct vm_unmapped_area_info info
;
217 info
.flags
= VM_UNMAPPED_AREA_TOPDOWN
;
219 info
.low_limit
= max(PAGE_SIZE
, mmap_min_addr
);
220 info
.high_limit
= current
->mm
->mmap_base
;
221 info
.align_mask
= PAGE_MASK
& ~huge_page_mask(h
);
222 info
.align_offset
= 0;
223 addr
= vm_unmapped_area(&info
);
226 * A failed mmap() very likely causes application failure,
227 * so fall back to the bottom-up function here. This scenario
228 * can happen with large stack limits and large mmap()
231 if (unlikely(offset_in_page(addr
))) {
232 VM_BUG_ON(addr
!= -ENOMEM
);
234 info
.low_limit
= current
->mm
->mmap_base
;
235 info
.high_limit
= TASK_SIZE
;
236 addr
= vm_unmapped_area(&info
);
243 hugetlb_get_unmapped_area(struct file
*file
, unsigned long addr
,
244 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
246 struct mm_struct
*mm
= current
->mm
;
247 struct vm_area_struct
*vma
;
248 struct hstate
*h
= hstate_file(file
);
250 if (len
& ~huge_page_mask(h
))
255 if (flags
& MAP_FIXED
) {
256 if (prepare_hugepage_range(file
, addr
, len
))
262 addr
= ALIGN(addr
, huge_page_size(h
));
263 vma
= find_vma(mm
, addr
);
264 if (TASK_SIZE
- len
>= addr
&&
265 (!vma
|| addr
+ len
<= vm_start_gap(vma
)))
270 * Use mm->get_unmapped_area value as a hint to use topdown routine.
271 * If architectures have special needs, they should define their own
272 * version of hugetlb_get_unmapped_area.
274 if (mm
->get_unmapped_area
== arch_get_unmapped_area_topdown
)
275 return hugetlb_get_unmapped_area_topdown(file
, addr
, len
,
277 return hugetlb_get_unmapped_area_bottomup(file
, addr
, len
,
283 hugetlbfs_read_actor(struct page
*page
, unsigned long offset
,
284 struct iov_iter
*to
, unsigned long size
)
289 /* Find which 4k chunk and offset with in that chunk */
290 i
= offset
>> PAGE_SHIFT
;
291 offset
= offset
& ~PAGE_MASK
;
295 chunksize
= PAGE_SIZE
;
298 if (chunksize
> size
)
300 n
= copy_page_to_iter(&page
[i
], offset
, chunksize
, to
);
312 * Support for read() - Find the page attached to f_mapping and copy out the
313 * data. Its *very* similar to do_generic_mapping_read(), we can't use that
314 * since it has PAGE_SIZE assumptions.
316 static ssize_t
hugetlbfs_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
318 struct file
*file
= iocb
->ki_filp
;
319 struct hstate
*h
= hstate_file(file
);
320 struct address_space
*mapping
= file
->f_mapping
;
321 struct inode
*inode
= mapping
->host
;
322 unsigned long index
= iocb
->ki_pos
>> huge_page_shift(h
);
323 unsigned long offset
= iocb
->ki_pos
& ~huge_page_mask(h
);
324 unsigned long end_index
;
328 while (iov_iter_count(to
)) {
332 /* nr is the maximum number of bytes to copy from this page */
333 nr
= huge_page_size(h
);
334 isize
= i_size_read(inode
);
337 end_index
= (isize
- 1) >> huge_page_shift(h
);
338 if (index
> end_index
)
340 if (index
== end_index
) {
341 nr
= ((isize
- 1) & ~huge_page_mask(h
)) + 1;
348 page
= find_lock_page(mapping
, index
);
349 if (unlikely(page
== NULL
)) {
351 * We have a HOLE, zero out the user-buffer for the
352 * length of the hole or request.
354 copied
= iov_iter_zero(nr
, to
);
359 * We have the page, copy it to user space buffer.
361 copied
= hugetlbfs_read_actor(page
, offset
, to
, nr
);
366 if (copied
!= nr
&& iov_iter_count(to
)) {
371 index
+= offset
>> huge_page_shift(h
);
372 offset
&= ~huge_page_mask(h
);
374 iocb
->ki_pos
= ((loff_t
)index
<< huge_page_shift(h
)) + offset
;
378 static int hugetlbfs_write_begin(struct file
*file
,
379 struct address_space
*mapping
,
380 loff_t pos
, unsigned len
, unsigned flags
,
381 struct page
**pagep
, void **fsdata
)
386 static int hugetlbfs_write_end(struct file
*file
, struct address_space
*mapping
,
387 loff_t pos
, unsigned len
, unsigned copied
,
388 struct page
*page
, void *fsdata
)
394 static void remove_huge_page(struct page
*page
)
396 ClearPageDirty(page
);
397 ClearPageUptodate(page
);
398 delete_from_page_cache(page
);
402 hugetlb_vmdelete_list(struct rb_root_cached
*root
, pgoff_t start
, pgoff_t end
)
404 struct vm_area_struct
*vma
;
407 * end == 0 indicates that the entire range after
408 * start should be unmapped.
410 vma_interval_tree_foreach(vma
, root
, start
, end
? end
: ULONG_MAX
) {
411 unsigned long v_offset
;
415 * Can the expression below overflow on 32-bit arches?
416 * No, because the interval tree returns us only those vmas
417 * which overlap the truncated area starting at pgoff,
418 * and no vma on a 32-bit arch can span beyond the 4GB.
420 if (vma
->vm_pgoff
< start
)
421 v_offset
= (start
- vma
->vm_pgoff
) << PAGE_SHIFT
;
428 v_end
= ((end
- vma
->vm_pgoff
) << PAGE_SHIFT
)
430 if (v_end
> vma
->vm_end
)
434 unmap_hugepage_range(vma
, vma
->vm_start
+ v_offset
, v_end
,
440 * remove_inode_hugepages handles two distinct cases: truncation and hole
441 * punch. There are subtle differences in operation for each case.
443 * truncation is indicated by end of range being LLONG_MAX
444 * In this case, we first scan the range and release found pages.
445 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
446 * maps and global counts. Page faults can not race with truncation
447 * in this routine. hugetlb_no_page() holds i_mmap_rwsem and prevents
448 * page faults in the truncated range by checking i_size. i_size is
449 * modified while holding i_mmap_rwsem.
450 * hole punch is indicated if end is not LLONG_MAX
451 * In the hole punch case we scan the range and release found pages.
452 * Only when releasing a page is the associated region/reserv map
453 * deleted. The region/reserv map for ranges without associated
454 * pages are not modified. Page faults can race with hole punch.
455 * This is indicated if we find a mapped page.
456 * Note: If the passed end of range value is beyond the end of file, but
457 * not LLONG_MAX this routine still performs a hole punch operation.
459 static void remove_inode_hugepages(struct inode
*inode
, loff_t lstart
,
462 struct hstate
*h
= hstate_inode(inode
);
463 struct address_space
*mapping
= &inode
->i_data
;
464 const pgoff_t start
= lstart
>> huge_page_shift(h
);
465 const pgoff_t end
= lend
>> huge_page_shift(h
);
466 struct vm_area_struct pseudo_vma
;
470 bool truncate_op
= (lend
== LLONG_MAX
);
472 vma_init(&pseudo_vma
, current
->mm
);
473 pseudo_vma
.vm_flags
= (VM_HUGETLB
| VM_MAYSHARE
| VM_SHARED
);
478 * When no more pages are found, we are done.
480 if (!pagevec_lookup_range(&pvec
, mapping
, &next
, end
- 1))
483 for (i
= 0; i
< pagevec_count(&pvec
); ++i
) {
484 struct page
*page
= pvec
.pages
[i
];
488 hash
= hugetlb_fault_mutex_hash(mapping
, index
);
491 * Only need to hold the fault mutex in the
492 * hole punch case. This prevents races with
493 * page faults. Races are not possible in the
494 * case of truncation.
496 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
500 * If page is mapped, it was faulted in after being
501 * unmapped in caller. Unmap (again) now after taking
502 * the fault mutex. The mutex will prevent faults
503 * until we finish removing the page.
505 * This race can only happen in the hole punch case.
506 * Getting here in a truncate operation is a bug.
508 if (unlikely(page_mapped(page
))) {
511 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
512 i_mmap_lock_write(mapping
);
513 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
514 hugetlb_vmdelete_list(&mapping
->i_mmap
,
515 index
* pages_per_huge_page(h
),
516 (index
+ 1) * pages_per_huge_page(h
));
517 i_mmap_unlock_write(mapping
);
522 * We must free the huge page and remove from page
523 * cache (remove_huge_page) BEFORE removing the
524 * region/reserve map (hugetlb_unreserve_pages). In
525 * rare out of memory conditions, removal of the
526 * region/reserve map could fail. Correspondingly,
527 * the subpool and global reserve usage count can need
530 VM_BUG_ON(PagePrivate(page
));
531 remove_huge_page(page
);
534 if (unlikely(hugetlb_unreserve_pages(inode
,
535 index
, index
+ 1, 1)))
536 hugetlb_fix_reserve_counts(inode
);
541 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
543 huge_pagevec_release(&pvec
);
548 (void)hugetlb_unreserve_pages(inode
, start
, LONG_MAX
, freed
);
551 static void hugetlbfs_evict_inode(struct inode
*inode
)
553 struct resv_map
*resv_map
;
555 remove_inode_hugepages(inode
, 0, LLONG_MAX
);
558 * Get the resv_map from the address space embedded in the inode.
559 * This is the address space which points to any resv_map allocated
560 * at inode creation time. If this is a device special inode,
561 * i_mapping may not point to the original address space.
563 resv_map
= (struct resv_map
*)(&inode
->i_data
)->private_data
;
564 /* Only regular and link inodes have associated reserve maps */
566 resv_map_release(&resv_map
->refs
);
570 static int hugetlb_vmtruncate(struct inode
*inode
, loff_t offset
)
573 struct address_space
*mapping
= inode
->i_mapping
;
574 struct hstate
*h
= hstate_inode(inode
);
576 BUG_ON(offset
& ~huge_page_mask(h
));
577 pgoff
= offset
>> PAGE_SHIFT
;
579 i_mmap_lock_write(mapping
);
580 i_size_write(inode
, offset
);
581 if (!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
))
582 hugetlb_vmdelete_list(&mapping
->i_mmap
, pgoff
, 0);
583 i_mmap_unlock_write(mapping
);
584 remove_inode_hugepages(inode
, offset
, LLONG_MAX
);
588 static long hugetlbfs_punch_hole(struct inode
*inode
, loff_t offset
, loff_t len
)
590 struct hstate
*h
= hstate_inode(inode
);
591 loff_t hpage_size
= huge_page_size(h
);
592 loff_t hole_start
, hole_end
;
595 * For hole punch round up the beginning offset of the hole and
596 * round down the end.
598 hole_start
= round_up(offset
, hpage_size
);
599 hole_end
= round_down(offset
+ len
, hpage_size
);
601 if (hole_end
> hole_start
) {
602 struct address_space
*mapping
= inode
->i_mapping
;
603 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
607 /* protected by i_mutex */
608 if (info
->seals
& (F_SEAL_WRITE
| F_SEAL_FUTURE_WRITE
)) {
613 i_mmap_lock_write(mapping
);
614 if (!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
))
615 hugetlb_vmdelete_list(&mapping
->i_mmap
,
616 hole_start
>> PAGE_SHIFT
,
617 hole_end
>> PAGE_SHIFT
);
618 i_mmap_unlock_write(mapping
);
619 remove_inode_hugepages(inode
, hole_start
, hole_end
);
626 static long hugetlbfs_fallocate(struct file
*file
, int mode
, loff_t offset
,
629 struct inode
*inode
= file_inode(file
);
630 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
631 struct address_space
*mapping
= inode
->i_mapping
;
632 struct hstate
*h
= hstate_inode(inode
);
633 struct vm_area_struct pseudo_vma
;
634 struct mm_struct
*mm
= current
->mm
;
635 loff_t hpage_size
= huge_page_size(h
);
636 unsigned long hpage_shift
= huge_page_shift(h
);
637 pgoff_t start
, index
, end
;
641 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
644 if (mode
& FALLOC_FL_PUNCH_HOLE
)
645 return hugetlbfs_punch_hole(inode
, offset
, len
);
648 * Default preallocate case.
649 * For this range, start is rounded down and end is rounded up
650 * as well as being converted to page offsets.
652 start
= offset
>> hpage_shift
;
653 end
= (offset
+ len
+ hpage_size
- 1) >> hpage_shift
;
657 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
658 error
= inode_newsize_ok(inode
, offset
+ len
);
662 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
668 * Initialize a pseudo vma as this is required by the huge page
669 * allocation routines. If NUMA is configured, use page index
670 * as input to create an allocation policy.
672 vma_init(&pseudo_vma
, mm
);
673 pseudo_vma
.vm_flags
= (VM_HUGETLB
| VM_MAYSHARE
| VM_SHARED
);
674 pseudo_vma
.vm_file
= file
;
676 for (index
= start
; index
< end
; index
++) {
678 * This is supposed to be the vaddr where the page is being
679 * faulted in, but we have no vaddr here.
683 int avoid_reserve
= 0;
688 * fallocate(2) manpage permits EINTR; we may have been
689 * interrupted because we are using up too much memory.
691 if (signal_pending(current
)) {
696 /* Set numa allocation policy based on index */
697 hugetlb_set_vma_policy(&pseudo_vma
, inode
, index
);
699 /* addr is the offset within the file (zero based) */
700 addr
= index
* hpage_size
;
703 * fault mutex taken here, protects against fault path
704 * and hole punch. inode_lock previously taken protects
705 * against truncation.
707 hash
= hugetlb_fault_mutex_hash(mapping
, index
);
708 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
710 /* See if already present in mapping to avoid alloc/free */
711 page
= find_get_page(mapping
, index
);
714 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
715 hugetlb_drop_vma_policy(&pseudo_vma
);
719 /* Allocate page and add to page cache */
720 page
= alloc_huge_page(&pseudo_vma
, addr
, avoid_reserve
);
721 hugetlb_drop_vma_policy(&pseudo_vma
);
723 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
724 error
= PTR_ERR(page
);
727 clear_huge_page(page
, addr
, pages_per_huge_page(h
));
728 __SetPageUptodate(page
);
729 error
= huge_add_to_page_cache(page
, mapping
, index
);
730 if (unlikely(error
)) {
732 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
736 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
739 * unlock_page because locked by add_to_page_cache()
740 * page_put due to reference from alloc_huge_page()
746 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
747 i_size_write(inode
, offset
+ len
);
748 inode
->i_ctime
= current_time(inode
);
754 static int hugetlbfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
756 struct inode
*inode
= d_inode(dentry
);
757 struct hstate
*h
= hstate_inode(inode
);
759 unsigned int ia_valid
= attr
->ia_valid
;
760 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
764 error
= setattr_prepare(dentry
, attr
);
768 if (ia_valid
& ATTR_SIZE
) {
769 loff_t oldsize
= inode
->i_size
;
770 loff_t newsize
= attr
->ia_size
;
772 if (newsize
& ~huge_page_mask(h
))
774 /* protected by i_mutex */
775 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
776 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
778 error
= hugetlb_vmtruncate(inode
, newsize
);
783 setattr_copy(inode
, attr
);
784 mark_inode_dirty(inode
);
788 static struct inode
*hugetlbfs_get_root(struct super_block
*sb
,
789 struct hugetlbfs_fs_context
*ctx
)
793 inode
= new_inode(sb
);
795 inode
->i_ino
= get_next_ino();
796 inode
->i_mode
= S_IFDIR
| ctx
->mode
;
797 inode
->i_uid
= ctx
->uid
;
798 inode
->i_gid
= ctx
->gid
;
799 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
800 inode
->i_op
= &hugetlbfs_dir_inode_operations
;
801 inode
->i_fop
= &simple_dir_operations
;
802 /* directory inodes start off with i_nlink == 2 (for "." entry) */
804 lockdep_annotate_inode_mutex_key(inode
);
810 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
811 * be taken from reclaim -- unlike regular filesystems. This needs an
812 * annotation because huge_pmd_share() does an allocation under hugetlb's
815 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key
;
817 static struct inode
*hugetlbfs_get_inode(struct super_block
*sb
,
819 umode_t mode
, dev_t dev
)
822 struct resv_map
*resv_map
= NULL
;
825 * Reserve maps are only needed for inodes that can have associated
828 if (S_ISREG(mode
) || S_ISLNK(mode
)) {
829 resv_map
= resv_map_alloc();
834 inode
= new_inode(sb
);
836 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
838 inode
->i_ino
= get_next_ino();
839 inode_init_owner(inode
, dir
, mode
);
840 lockdep_set_class(&inode
->i_mapping
->i_mmap_rwsem
,
841 &hugetlbfs_i_mmap_rwsem_key
);
842 inode
->i_mapping
->a_ops
= &hugetlbfs_aops
;
843 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
844 inode
->i_mapping
->private_data
= resv_map
;
845 info
->seals
= F_SEAL_SEAL
;
846 switch (mode
& S_IFMT
) {
848 init_special_inode(inode
, mode
, dev
);
851 inode
->i_op
= &hugetlbfs_inode_operations
;
852 inode
->i_fop
= &hugetlbfs_file_operations
;
855 inode
->i_op
= &hugetlbfs_dir_inode_operations
;
856 inode
->i_fop
= &simple_dir_operations
;
858 /* directory inodes start off with i_nlink == 2 (for "." entry) */
862 inode
->i_op
= &page_symlink_inode_operations
;
863 inode_nohighmem(inode
);
866 lockdep_annotate_inode_mutex_key(inode
);
869 kref_put(&resv_map
->refs
, resv_map_release
);
876 * File creation. Allocate an inode, and we're done..
878 static int do_hugetlbfs_mknod(struct inode
*dir
,
879 struct dentry
*dentry
,
887 inode
= hugetlbfs_get_inode(dir
->i_sb
, dir
, mode
, dev
);
889 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
891 d_tmpfile(dentry
, inode
);
893 d_instantiate(dentry
, inode
);
894 dget(dentry
);/* Extra count - pin the dentry in core */
901 static int hugetlbfs_mknod(struct inode
*dir
,
902 struct dentry
*dentry
, umode_t mode
, dev_t dev
)
904 return do_hugetlbfs_mknod(dir
, dentry
, mode
, dev
, false);
907 static int hugetlbfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
909 int retval
= hugetlbfs_mknod(dir
, dentry
, mode
| S_IFDIR
, 0);
915 static int hugetlbfs_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, bool excl
)
917 return hugetlbfs_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
920 static int hugetlbfs_tmpfile(struct inode
*dir
,
921 struct dentry
*dentry
, umode_t mode
)
923 return do_hugetlbfs_mknod(dir
, dentry
, mode
| S_IFREG
, 0, true);
926 static int hugetlbfs_symlink(struct inode
*dir
,
927 struct dentry
*dentry
, const char *symname
)
932 inode
= hugetlbfs_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0);
934 int l
= strlen(symname
)+1;
935 error
= page_symlink(inode
, symname
, l
);
937 d_instantiate(dentry
, inode
);
942 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
948 * mark the head page dirty
950 static int hugetlbfs_set_page_dirty(struct page
*page
)
952 struct page
*head
= compound_head(page
);
958 static int hugetlbfs_migrate_page(struct address_space
*mapping
,
959 struct page
*newpage
, struct page
*page
,
960 enum migrate_mode mode
)
964 rc
= migrate_huge_page_move_mapping(mapping
, newpage
, page
);
965 if (rc
!= MIGRATEPAGE_SUCCESS
)
969 * page_private is subpool pointer in hugetlb pages. Transfer to
970 * new page. PagePrivate is not associated with page_private for
971 * hugetlb pages and can not be set here as only page_huge_active
972 * pages can be migrated.
974 if (page_private(page
)) {
975 set_page_private(newpage
, page_private(page
));
976 set_page_private(page
, 0);
979 if (mode
!= MIGRATE_SYNC_NO_COPY
)
980 migrate_page_copy(newpage
, page
);
982 migrate_page_states(newpage
, page
);
984 return MIGRATEPAGE_SUCCESS
;
987 static int hugetlbfs_error_remove_page(struct address_space
*mapping
,
990 struct inode
*inode
= mapping
->host
;
991 pgoff_t index
= page
->index
;
993 remove_huge_page(page
);
994 if (unlikely(hugetlb_unreserve_pages(inode
, index
, index
+ 1, 1)))
995 hugetlb_fix_reserve_counts(inode
);
1001 * Display the mount options in /proc/mounts.
1003 static int hugetlbfs_show_options(struct seq_file
*m
, struct dentry
*root
)
1005 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(root
->d_sb
);
1006 struct hugepage_subpool
*spool
= sbinfo
->spool
;
1007 unsigned long hpage_size
= huge_page_size(sbinfo
->hstate
);
1008 unsigned hpage_shift
= huge_page_shift(sbinfo
->hstate
);
1011 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
1012 seq_printf(m
, ",uid=%u",
1013 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
1014 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
1015 seq_printf(m
, ",gid=%u",
1016 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
1017 if (sbinfo
->mode
!= 0755)
1018 seq_printf(m
, ",mode=%o", sbinfo
->mode
);
1019 if (sbinfo
->max_inodes
!= -1)
1020 seq_printf(m
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
1024 if (hpage_size
>= 1024) {
1028 seq_printf(m
, ",pagesize=%lu%c", hpage_size
, mod
);
1030 if (spool
->max_hpages
!= -1)
1031 seq_printf(m
, ",size=%llu",
1032 (unsigned long long)spool
->max_hpages
<< hpage_shift
);
1033 if (spool
->min_hpages
!= -1)
1034 seq_printf(m
, ",min_size=%llu",
1035 (unsigned long long)spool
->min_hpages
<< hpage_shift
);
1040 static int hugetlbfs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
1042 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(dentry
->d_sb
);
1043 struct hstate
*h
= hstate_inode(d_inode(dentry
));
1045 buf
->f_type
= HUGETLBFS_MAGIC
;
1046 buf
->f_bsize
= huge_page_size(h
);
1048 spin_lock(&sbinfo
->stat_lock
);
1049 /* If no limits set, just report 0 for max/free/used
1050 * blocks, like simple_statfs() */
1051 if (sbinfo
->spool
) {
1054 spin_lock(&sbinfo
->spool
->lock
);
1055 buf
->f_blocks
= sbinfo
->spool
->max_hpages
;
1056 free_pages
= sbinfo
->spool
->max_hpages
1057 - sbinfo
->spool
->used_hpages
;
1058 buf
->f_bavail
= buf
->f_bfree
= free_pages
;
1059 spin_unlock(&sbinfo
->spool
->lock
);
1060 buf
->f_files
= sbinfo
->max_inodes
;
1061 buf
->f_ffree
= sbinfo
->free_inodes
;
1063 spin_unlock(&sbinfo
->stat_lock
);
1065 buf
->f_namelen
= NAME_MAX
;
1069 static void hugetlbfs_put_super(struct super_block
*sb
)
1071 struct hugetlbfs_sb_info
*sbi
= HUGETLBFS_SB(sb
);
1074 sb
->s_fs_info
= NULL
;
1077 hugepage_put_subpool(sbi
->spool
);
1083 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info
*sbinfo
)
1085 if (sbinfo
->free_inodes
>= 0) {
1086 spin_lock(&sbinfo
->stat_lock
);
1087 if (unlikely(!sbinfo
->free_inodes
)) {
1088 spin_unlock(&sbinfo
->stat_lock
);
1091 sbinfo
->free_inodes
--;
1092 spin_unlock(&sbinfo
->stat_lock
);
1098 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info
*sbinfo
)
1100 if (sbinfo
->free_inodes
>= 0) {
1101 spin_lock(&sbinfo
->stat_lock
);
1102 sbinfo
->free_inodes
++;
1103 spin_unlock(&sbinfo
->stat_lock
);
1108 static struct kmem_cache
*hugetlbfs_inode_cachep
;
1110 static struct inode
*hugetlbfs_alloc_inode(struct super_block
*sb
)
1112 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(sb
);
1113 struct hugetlbfs_inode_info
*p
;
1115 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo
)))
1117 p
= kmem_cache_alloc(hugetlbfs_inode_cachep
, GFP_KERNEL
);
1119 hugetlbfs_inc_free_inodes(sbinfo
);
1124 * Any time after allocation, hugetlbfs_destroy_inode can be called
1125 * for the inode. mpol_free_shared_policy is unconditionally called
1126 * as part of hugetlbfs_destroy_inode. So, initialize policy here
1127 * in case of a quick call to destroy.
1129 * Note that the policy is initialized even if we are creating a
1130 * private inode. This simplifies hugetlbfs_destroy_inode.
1132 mpol_shared_policy_init(&p
->policy
, NULL
);
1134 return &p
->vfs_inode
;
1137 static void hugetlbfs_free_inode(struct inode
*inode
)
1139 kmem_cache_free(hugetlbfs_inode_cachep
, HUGETLBFS_I(inode
));
1142 static void hugetlbfs_destroy_inode(struct inode
*inode
)
1144 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode
->i_sb
));
1145 mpol_free_shared_policy(&HUGETLBFS_I(inode
)->policy
);
1148 static const struct address_space_operations hugetlbfs_aops
= {
1149 .write_begin
= hugetlbfs_write_begin
,
1150 .write_end
= hugetlbfs_write_end
,
1151 .set_page_dirty
= hugetlbfs_set_page_dirty
,
1152 .migratepage
= hugetlbfs_migrate_page
,
1153 .error_remove_page
= hugetlbfs_error_remove_page
,
1157 static void init_once(void *foo
)
1159 struct hugetlbfs_inode_info
*ei
= (struct hugetlbfs_inode_info
*)foo
;
1161 inode_init_once(&ei
->vfs_inode
);
1164 const struct file_operations hugetlbfs_file_operations
= {
1165 .read_iter
= hugetlbfs_read_iter
,
1166 .mmap
= hugetlbfs_file_mmap
,
1167 .fsync
= noop_fsync
,
1168 .get_unmapped_area
= hugetlb_get_unmapped_area
,
1169 .llseek
= default_llseek
,
1170 .fallocate
= hugetlbfs_fallocate
,
1173 static const struct inode_operations hugetlbfs_dir_inode_operations
= {
1174 .create
= hugetlbfs_create
,
1175 .lookup
= simple_lookup
,
1176 .link
= simple_link
,
1177 .unlink
= simple_unlink
,
1178 .symlink
= hugetlbfs_symlink
,
1179 .mkdir
= hugetlbfs_mkdir
,
1180 .rmdir
= simple_rmdir
,
1181 .mknod
= hugetlbfs_mknod
,
1182 .rename
= simple_rename
,
1183 .setattr
= hugetlbfs_setattr
,
1184 .tmpfile
= hugetlbfs_tmpfile
,
1187 static const struct inode_operations hugetlbfs_inode_operations
= {
1188 .setattr
= hugetlbfs_setattr
,
1191 static const struct super_operations hugetlbfs_ops
= {
1192 .alloc_inode
= hugetlbfs_alloc_inode
,
1193 .free_inode
= hugetlbfs_free_inode
,
1194 .destroy_inode
= hugetlbfs_destroy_inode
,
1195 .evict_inode
= hugetlbfs_evict_inode
,
1196 .statfs
= hugetlbfs_statfs
,
1197 .put_super
= hugetlbfs_put_super
,
1198 .show_options
= hugetlbfs_show_options
,
1202 * Convert size option passed from command line to number of huge pages
1203 * in the pool specified by hstate. Size option could be in bytes
1204 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1207 hugetlbfs_size_to_hpages(struct hstate
*h
, unsigned long long size_opt
,
1208 enum hugetlbfs_size_type val_type
)
1210 if (val_type
== NO_SIZE
)
1213 if (val_type
== SIZE_PERCENT
) {
1214 size_opt
<<= huge_page_shift(h
);
1215 size_opt
*= h
->max_huge_pages
;
1216 do_div(size_opt
, 100);
1219 size_opt
>>= huge_page_shift(h
);
1224 * Parse one mount parameter.
1226 static int hugetlbfs_parse_param(struct fs_context
*fc
, struct fs_parameter
*param
)
1228 struct hugetlbfs_fs_context
*ctx
= fc
->fs_private
;
1229 struct fs_parse_result result
;
1234 opt
= fs_parse(fc
, hugetlb_fs_parameters
, param
, &result
);
1240 ctx
->uid
= make_kuid(current_user_ns(), result
.uint_32
);
1241 if (!uid_valid(ctx
->uid
))
1246 ctx
->gid
= make_kgid(current_user_ns(), result
.uint_32
);
1247 if (!gid_valid(ctx
->gid
))
1252 ctx
->mode
= result
.uint_32
& 01777U;
1256 /* memparse() will accept a K/M/G without a digit */
1257 if (!isdigit(param
->string
[0]))
1259 ctx
->max_size_opt
= memparse(param
->string
, &rest
);
1260 ctx
->max_val_type
= SIZE_STD
;
1262 ctx
->max_val_type
= SIZE_PERCENT
;
1266 /* memparse() will accept a K/M/G without a digit */
1267 if (!isdigit(param
->string
[0]))
1269 ctx
->nr_inodes
= memparse(param
->string
, &rest
);
1273 ps
= memparse(param
->string
, &rest
);
1274 ctx
->hstate
= size_to_hstate(ps
);
1276 pr_err("Unsupported page size %lu MB\n", ps
>> 20);
1282 /* memparse() will accept a K/M/G without a digit */
1283 if (!isdigit(param
->string
[0]))
1285 ctx
->min_size_opt
= memparse(param
->string
, &rest
);
1286 ctx
->min_val_type
= SIZE_STD
;
1288 ctx
->min_val_type
= SIZE_PERCENT
;
1296 return invalfc(fc
, "Bad value '%s' for mount option '%s'\n",
1297 param
->string
, param
->key
);
1301 * Validate the parsed options.
1303 static int hugetlbfs_validate(struct fs_context
*fc
)
1305 struct hugetlbfs_fs_context
*ctx
= fc
->fs_private
;
1308 * Use huge page pool size (in hstate) to convert the size
1309 * options to number of huge pages. If NO_SIZE, -1 is returned.
1311 ctx
->max_hpages
= hugetlbfs_size_to_hpages(ctx
->hstate
,
1314 ctx
->min_hpages
= hugetlbfs_size_to_hpages(ctx
->hstate
,
1319 * If max_size was specified, then min_size must be smaller
1321 if (ctx
->max_val_type
> NO_SIZE
&&
1322 ctx
->min_hpages
> ctx
->max_hpages
) {
1323 pr_err("Minimum size can not be greater than maximum size\n");
1331 hugetlbfs_fill_super(struct super_block
*sb
, struct fs_context
*fc
)
1333 struct hugetlbfs_fs_context
*ctx
= fc
->fs_private
;
1334 struct hugetlbfs_sb_info
*sbinfo
;
1336 sbinfo
= kmalloc(sizeof(struct hugetlbfs_sb_info
), GFP_KERNEL
);
1339 sb
->s_fs_info
= sbinfo
;
1340 spin_lock_init(&sbinfo
->stat_lock
);
1341 sbinfo
->hstate
= ctx
->hstate
;
1342 sbinfo
->max_inodes
= ctx
->nr_inodes
;
1343 sbinfo
->free_inodes
= ctx
->nr_inodes
;
1344 sbinfo
->spool
= NULL
;
1345 sbinfo
->uid
= ctx
->uid
;
1346 sbinfo
->gid
= ctx
->gid
;
1347 sbinfo
->mode
= ctx
->mode
;
1350 * Allocate and initialize subpool if maximum or minimum size is
1351 * specified. Any needed reservations (for minimim size) are taken
1352 * taken when the subpool is created.
1354 if (ctx
->max_hpages
!= -1 || ctx
->min_hpages
!= -1) {
1355 sbinfo
->spool
= hugepage_new_subpool(ctx
->hstate
,
1361 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
1362 sb
->s_blocksize
= huge_page_size(ctx
->hstate
);
1363 sb
->s_blocksize_bits
= huge_page_shift(ctx
->hstate
);
1364 sb
->s_magic
= HUGETLBFS_MAGIC
;
1365 sb
->s_op
= &hugetlbfs_ops
;
1366 sb
->s_time_gran
= 1;
1367 sb
->s_root
= d_make_root(hugetlbfs_get_root(sb
, ctx
));
1372 kfree(sbinfo
->spool
);
1377 static int hugetlbfs_get_tree(struct fs_context
*fc
)
1379 int err
= hugetlbfs_validate(fc
);
1382 return get_tree_nodev(fc
, hugetlbfs_fill_super
);
1385 static void hugetlbfs_fs_context_free(struct fs_context
*fc
)
1387 kfree(fc
->fs_private
);
1390 static const struct fs_context_operations hugetlbfs_fs_context_ops
= {
1391 .free
= hugetlbfs_fs_context_free
,
1392 .parse_param
= hugetlbfs_parse_param
,
1393 .get_tree
= hugetlbfs_get_tree
,
1396 static int hugetlbfs_init_fs_context(struct fs_context
*fc
)
1398 struct hugetlbfs_fs_context
*ctx
;
1400 ctx
= kzalloc(sizeof(struct hugetlbfs_fs_context
), GFP_KERNEL
);
1404 ctx
->max_hpages
= -1; /* No limit on size by default */
1405 ctx
->nr_inodes
= -1; /* No limit on number of inodes by default */
1406 ctx
->uid
= current_fsuid();
1407 ctx
->gid
= current_fsgid();
1409 ctx
->hstate
= &default_hstate
;
1410 ctx
->min_hpages
= -1; /* No default minimum size */
1411 ctx
->max_val_type
= NO_SIZE
;
1412 ctx
->min_val_type
= NO_SIZE
;
1413 fc
->fs_private
= ctx
;
1414 fc
->ops
= &hugetlbfs_fs_context_ops
;
1418 static struct file_system_type hugetlbfs_fs_type
= {
1419 .name
= "hugetlbfs",
1420 .init_fs_context
= hugetlbfs_init_fs_context
,
1421 .parameters
= hugetlb_fs_parameters
,
1422 .kill_sb
= kill_litter_super
,
1425 static struct vfsmount
*hugetlbfs_vfsmount
[HUGE_MAX_HSTATE
];
1427 static int can_do_hugetlb_shm(void)
1430 shm_group
= make_kgid(&init_user_ns
, sysctl_hugetlb_shm_group
);
1431 return capable(CAP_IPC_LOCK
) || in_group_p(shm_group
);
1434 static int get_hstate_idx(int page_size_log
)
1436 struct hstate
*h
= hstate_sizelog(page_size_log
);
1444 * Note that size should be aligned to proper hugepage size in caller side,
1445 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1447 struct file
*hugetlb_file_setup(const char *name
, size_t size
,
1448 vm_flags_t acctflag
, struct user_struct
**user
,
1449 int creat_flags
, int page_size_log
)
1451 struct inode
*inode
;
1452 struct vfsmount
*mnt
;
1456 hstate_idx
= get_hstate_idx(page_size_log
);
1458 return ERR_PTR(-ENODEV
);
1461 mnt
= hugetlbfs_vfsmount
[hstate_idx
];
1463 return ERR_PTR(-ENOENT
);
1465 if (creat_flags
== HUGETLB_SHMFS_INODE
&& !can_do_hugetlb_shm()) {
1466 *user
= current_user();
1467 if (user_shm_lock(size
, *user
)) {
1469 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1470 current
->comm
, current
->pid
);
1471 task_unlock(current
);
1474 return ERR_PTR(-EPERM
);
1478 file
= ERR_PTR(-ENOSPC
);
1479 inode
= hugetlbfs_get_inode(mnt
->mnt_sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0);
1482 if (creat_flags
== HUGETLB_SHMFS_INODE
)
1483 inode
->i_flags
|= S_PRIVATE
;
1485 inode
->i_size
= size
;
1488 if (hugetlb_reserve_pages(inode
, 0,
1489 size
>> huge_page_shift(hstate_inode(inode
)), NULL
,
1491 file
= ERR_PTR(-ENOMEM
);
1493 file
= alloc_file_pseudo(inode
, mnt
, name
, O_RDWR
,
1494 &hugetlbfs_file_operations
);
1501 user_shm_unlock(size
, *user
);
1507 static struct vfsmount
*__init
mount_one_hugetlbfs(struct hstate
*h
)
1509 struct fs_context
*fc
;
1510 struct vfsmount
*mnt
;
1512 fc
= fs_context_for_mount(&hugetlbfs_fs_type
, SB_KERNMOUNT
);
1516 struct hugetlbfs_fs_context
*ctx
= fc
->fs_private
;
1522 pr_err("Cannot mount internal hugetlbfs for page size %uK",
1523 1U << (h
->order
+ PAGE_SHIFT
- 10));
1527 static int __init
init_hugetlbfs_fs(void)
1529 struct vfsmount
*mnt
;
1534 if (!hugepages_supported()) {
1535 pr_info("disabling because there are no supported hugepage sizes\n");
1540 hugetlbfs_inode_cachep
= kmem_cache_create("hugetlbfs_inode_cache",
1541 sizeof(struct hugetlbfs_inode_info
),
1542 0, SLAB_ACCOUNT
, init_once
);
1543 if (hugetlbfs_inode_cachep
== NULL
)
1546 error
= register_filesystem(&hugetlbfs_fs_type
);
1550 /* default hstate mount is required */
1551 mnt
= mount_one_hugetlbfs(&hstates
[default_hstate_idx
]);
1553 error
= PTR_ERR(mnt
);
1556 hugetlbfs_vfsmount
[default_hstate_idx
] = mnt
;
1558 /* other hstates are optional */
1560 for_each_hstate(h
) {
1561 if (i
== default_hstate_idx
) {
1566 mnt
= mount_one_hugetlbfs(h
);
1568 hugetlbfs_vfsmount
[i
] = NULL
;
1570 hugetlbfs_vfsmount
[i
] = mnt
;
1577 (void)unregister_filesystem(&hugetlbfs_fs_type
);
1579 kmem_cache_destroy(hugetlbfs_inode_cachep
);
1583 fs_initcall(init_hugetlbfs_fs
)