Linux 5.8-rc4
[linux/fpc-iii.git] / kernel / bpf / hashtab.c
blobb4b288a3c3c915dea56febe4ba8b3867c5d95ec4
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 */
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/jhash.h>
8 #include <linux/filter.h>
9 #include <linux/rculist_nulls.h>
10 #include <linux/random.h>
11 #include <uapi/linux/btf.h>
12 #include "percpu_freelist.h"
13 #include "bpf_lru_list.h"
14 #include "map_in_map.h"
16 #define HTAB_CREATE_FLAG_MASK \
17 (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \
18 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
20 #define BATCH_OPS(_name) \
21 .map_lookup_batch = \
22 _name##_map_lookup_batch, \
23 .map_lookup_and_delete_batch = \
24 _name##_map_lookup_and_delete_batch, \
25 .map_update_batch = \
26 generic_map_update_batch, \
27 .map_delete_batch = \
28 generic_map_delete_batch
31 * The bucket lock has two protection scopes:
33 * 1) Serializing concurrent operations from BPF programs on differrent
34 * CPUs
36 * 2) Serializing concurrent operations from BPF programs and sys_bpf()
38 * BPF programs can execute in any context including perf, kprobes and
39 * tracing. As there are almost no limits where perf, kprobes and tracing
40 * can be invoked from the lock operations need to be protected against
41 * deadlocks. Deadlocks can be caused by recursion and by an invocation in
42 * the lock held section when functions which acquire this lock are invoked
43 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
44 * variable bpf_prog_active, which prevents BPF programs attached to perf
45 * events, kprobes and tracing to be invoked before the prior invocation
46 * from one of these contexts completed. sys_bpf() uses the same mechanism
47 * by pinning the task to the current CPU and incrementing the recursion
48 * protection accross the map operation.
50 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
51 * operations like memory allocations (even with GFP_ATOMIC) from atomic
52 * contexts. This is required because even with GFP_ATOMIC the memory
53 * allocator calls into code pathes which acquire locks with long held lock
54 * sections. To ensure the deterministic behaviour these locks are regular
55 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
56 * true atomic contexts on an RT kernel are the low level hardware
57 * handling, scheduling, low level interrupt handling, NMIs etc. None of
58 * these contexts should ever do memory allocations.
60 * As regular device interrupt handlers and soft interrupts are forced into
61 * thread context, the existing code which does
62 * spin_lock*(); alloc(GPF_ATOMIC); spin_unlock*();
63 * just works.
65 * In theory the BPF locks could be converted to regular spinlocks as well,
66 * but the bucket locks and percpu_freelist locks can be taken from
67 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
68 * atomic contexts even on RT. These mechanisms require preallocated maps,
69 * so there is no need to invoke memory allocations within the lock held
70 * sections.
72 * BPF maps which need dynamic allocation are only used from (forced)
73 * thread context on RT and can therefore use regular spinlocks which in
74 * turn allows to invoke memory allocations from the lock held section.
76 * On a non RT kernel this distinction is neither possible nor required.
77 * spinlock maps to raw_spinlock and the extra code is optimized out by the
78 * compiler.
80 struct bucket {
81 struct hlist_nulls_head head;
82 union {
83 raw_spinlock_t raw_lock;
84 spinlock_t lock;
88 struct bpf_htab {
89 struct bpf_map map;
90 struct bucket *buckets;
91 void *elems;
92 union {
93 struct pcpu_freelist freelist;
94 struct bpf_lru lru;
96 struct htab_elem *__percpu *extra_elems;
97 atomic_t count; /* number of elements in this hashtable */
98 u32 n_buckets; /* number of hash buckets */
99 u32 elem_size; /* size of each element in bytes */
100 u32 hashrnd;
103 /* each htab element is struct htab_elem + key + value */
104 struct htab_elem {
105 union {
106 struct hlist_nulls_node hash_node;
107 struct {
108 void *padding;
109 union {
110 struct bpf_htab *htab;
111 struct pcpu_freelist_node fnode;
112 struct htab_elem *batch_flink;
116 union {
117 struct rcu_head rcu;
118 struct bpf_lru_node lru_node;
120 u32 hash;
121 char key[] __aligned(8);
124 static inline bool htab_is_prealloc(const struct bpf_htab *htab)
126 return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
129 static inline bool htab_use_raw_lock(const struct bpf_htab *htab)
131 return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab));
134 static void htab_init_buckets(struct bpf_htab *htab)
136 unsigned i;
138 for (i = 0; i < htab->n_buckets; i++) {
139 INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
140 if (htab_use_raw_lock(htab))
141 raw_spin_lock_init(&htab->buckets[i].raw_lock);
142 else
143 spin_lock_init(&htab->buckets[i].lock);
147 static inline unsigned long htab_lock_bucket(const struct bpf_htab *htab,
148 struct bucket *b)
150 unsigned long flags;
152 if (htab_use_raw_lock(htab))
153 raw_spin_lock_irqsave(&b->raw_lock, flags);
154 else
155 spin_lock_irqsave(&b->lock, flags);
156 return flags;
159 static inline void htab_unlock_bucket(const struct bpf_htab *htab,
160 struct bucket *b,
161 unsigned long flags)
163 if (htab_use_raw_lock(htab))
164 raw_spin_unlock_irqrestore(&b->raw_lock, flags);
165 else
166 spin_unlock_irqrestore(&b->lock, flags);
169 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
171 static bool htab_is_lru(const struct bpf_htab *htab)
173 return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
174 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
177 static bool htab_is_percpu(const struct bpf_htab *htab)
179 return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
180 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
183 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
184 void __percpu *pptr)
186 *(void __percpu **)(l->key + key_size) = pptr;
189 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
191 return *(void __percpu **)(l->key + key_size);
194 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
196 return *(void **)(l->key + roundup(map->key_size, 8));
199 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
201 return (struct htab_elem *) (htab->elems + i * htab->elem_size);
204 static void htab_free_elems(struct bpf_htab *htab)
206 int i;
208 if (!htab_is_percpu(htab))
209 goto free_elems;
211 for (i = 0; i < htab->map.max_entries; i++) {
212 void __percpu *pptr;
214 pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
215 htab->map.key_size);
216 free_percpu(pptr);
217 cond_resched();
219 free_elems:
220 bpf_map_area_free(htab->elems);
223 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock
224 * (bucket_lock). If both locks need to be acquired together, the lock
225 * order is always lru_lock -> bucket_lock and this only happens in
226 * bpf_lru_list.c logic. For example, certain code path of
227 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
228 * will acquire lru_lock first followed by acquiring bucket_lock.
230 * In hashtab.c, to avoid deadlock, lock acquisition of
231 * bucket_lock followed by lru_lock is not allowed. In such cases,
232 * bucket_lock needs to be released first before acquiring lru_lock.
234 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
235 u32 hash)
237 struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
238 struct htab_elem *l;
240 if (node) {
241 l = container_of(node, struct htab_elem, lru_node);
242 memcpy(l->key, key, htab->map.key_size);
243 return l;
246 return NULL;
249 static int prealloc_init(struct bpf_htab *htab)
251 u32 num_entries = htab->map.max_entries;
252 int err = -ENOMEM, i;
254 if (!htab_is_percpu(htab) && !htab_is_lru(htab))
255 num_entries += num_possible_cpus();
257 htab->elems = bpf_map_area_alloc(htab->elem_size * num_entries,
258 htab->map.numa_node);
259 if (!htab->elems)
260 return -ENOMEM;
262 if (!htab_is_percpu(htab))
263 goto skip_percpu_elems;
265 for (i = 0; i < num_entries; i++) {
266 u32 size = round_up(htab->map.value_size, 8);
267 void __percpu *pptr;
269 pptr = __alloc_percpu_gfp(size, 8, GFP_USER | __GFP_NOWARN);
270 if (!pptr)
271 goto free_elems;
272 htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
273 pptr);
274 cond_resched();
277 skip_percpu_elems:
278 if (htab_is_lru(htab))
279 err = bpf_lru_init(&htab->lru,
280 htab->map.map_flags & BPF_F_NO_COMMON_LRU,
281 offsetof(struct htab_elem, hash) -
282 offsetof(struct htab_elem, lru_node),
283 htab_lru_map_delete_node,
284 htab);
285 else
286 err = pcpu_freelist_init(&htab->freelist);
288 if (err)
289 goto free_elems;
291 if (htab_is_lru(htab))
292 bpf_lru_populate(&htab->lru, htab->elems,
293 offsetof(struct htab_elem, lru_node),
294 htab->elem_size, num_entries);
295 else
296 pcpu_freelist_populate(&htab->freelist,
297 htab->elems + offsetof(struct htab_elem, fnode),
298 htab->elem_size, num_entries);
300 return 0;
302 free_elems:
303 htab_free_elems(htab);
304 return err;
307 static void prealloc_destroy(struct bpf_htab *htab)
309 htab_free_elems(htab);
311 if (htab_is_lru(htab))
312 bpf_lru_destroy(&htab->lru);
313 else
314 pcpu_freelist_destroy(&htab->freelist);
317 static int alloc_extra_elems(struct bpf_htab *htab)
319 struct htab_elem *__percpu *pptr, *l_new;
320 struct pcpu_freelist_node *l;
321 int cpu;
323 pptr = __alloc_percpu_gfp(sizeof(struct htab_elem *), 8,
324 GFP_USER | __GFP_NOWARN);
325 if (!pptr)
326 return -ENOMEM;
328 for_each_possible_cpu(cpu) {
329 l = pcpu_freelist_pop(&htab->freelist);
330 /* pop will succeed, since prealloc_init()
331 * preallocated extra num_possible_cpus elements
333 l_new = container_of(l, struct htab_elem, fnode);
334 *per_cpu_ptr(pptr, cpu) = l_new;
336 htab->extra_elems = pptr;
337 return 0;
340 /* Called from syscall */
341 static int htab_map_alloc_check(union bpf_attr *attr)
343 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
344 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
345 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
346 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
347 /* percpu_lru means each cpu has its own LRU list.
348 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
349 * the map's value itself is percpu. percpu_lru has
350 * nothing to do with the map's value.
352 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
353 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
354 bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
355 int numa_node = bpf_map_attr_numa_node(attr);
357 BUILD_BUG_ON(offsetof(struct htab_elem, htab) !=
358 offsetof(struct htab_elem, hash_node.pprev));
359 BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
360 offsetof(struct htab_elem, hash_node.pprev));
362 if (lru && !bpf_capable())
363 /* LRU implementation is much complicated than other
364 * maps. Hence, limit to CAP_BPF.
366 return -EPERM;
368 if (zero_seed && !capable(CAP_SYS_ADMIN))
369 /* Guard against local DoS, and discourage production use. */
370 return -EPERM;
372 if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
373 !bpf_map_flags_access_ok(attr->map_flags))
374 return -EINVAL;
376 if (!lru && percpu_lru)
377 return -EINVAL;
379 if (lru && !prealloc)
380 return -ENOTSUPP;
382 if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
383 return -EINVAL;
385 /* check sanity of attributes.
386 * value_size == 0 may be allowed in the future to use map as a set
388 if (attr->max_entries == 0 || attr->key_size == 0 ||
389 attr->value_size == 0)
390 return -EINVAL;
392 if (attr->key_size > MAX_BPF_STACK)
393 /* eBPF programs initialize keys on stack, so they cannot be
394 * larger than max stack size
396 return -E2BIG;
398 if (attr->value_size >= KMALLOC_MAX_SIZE -
399 MAX_BPF_STACK - sizeof(struct htab_elem))
400 /* if value_size is bigger, the user space won't be able to
401 * access the elements via bpf syscall. This check also makes
402 * sure that the elem_size doesn't overflow and it's
403 * kmalloc-able later in htab_map_update_elem()
405 return -E2BIG;
407 return 0;
410 static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
412 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
413 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
414 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
415 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
416 /* percpu_lru means each cpu has its own LRU list.
417 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
418 * the map's value itself is percpu. percpu_lru has
419 * nothing to do with the map's value.
421 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
422 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
423 struct bpf_htab *htab;
424 u64 cost;
425 int err;
427 htab = kzalloc(sizeof(*htab), GFP_USER);
428 if (!htab)
429 return ERR_PTR(-ENOMEM);
431 bpf_map_init_from_attr(&htab->map, attr);
433 if (percpu_lru) {
434 /* ensure each CPU's lru list has >=1 elements.
435 * since we are at it, make each lru list has the same
436 * number of elements.
438 htab->map.max_entries = roundup(attr->max_entries,
439 num_possible_cpus());
440 if (htab->map.max_entries < attr->max_entries)
441 htab->map.max_entries = rounddown(attr->max_entries,
442 num_possible_cpus());
445 /* hash table size must be power of 2 */
446 htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
448 htab->elem_size = sizeof(struct htab_elem) +
449 round_up(htab->map.key_size, 8);
450 if (percpu)
451 htab->elem_size += sizeof(void *);
452 else
453 htab->elem_size += round_up(htab->map.value_size, 8);
455 err = -E2BIG;
456 /* prevent zero size kmalloc and check for u32 overflow */
457 if (htab->n_buckets == 0 ||
458 htab->n_buckets > U32_MAX / sizeof(struct bucket))
459 goto free_htab;
461 cost = (u64) htab->n_buckets * sizeof(struct bucket) +
462 (u64) htab->elem_size * htab->map.max_entries;
464 if (percpu)
465 cost += (u64) round_up(htab->map.value_size, 8) *
466 num_possible_cpus() * htab->map.max_entries;
467 else
468 cost += (u64) htab->elem_size * num_possible_cpus();
470 /* if map size is larger than memlock limit, reject it */
471 err = bpf_map_charge_init(&htab->map.memory, cost);
472 if (err)
473 goto free_htab;
475 err = -ENOMEM;
476 htab->buckets = bpf_map_area_alloc(htab->n_buckets *
477 sizeof(struct bucket),
478 htab->map.numa_node);
479 if (!htab->buckets)
480 goto free_charge;
482 if (htab->map.map_flags & BPF_F_ZERO_SEED)
483 htab->hashrnd = 0;
484 else
485 htab->hashrnd = get_random_int();
487 htab_init_buckets(htab);
489 if (prealloc) {
490 err = prealloc_init(htab);
491 if (err)
492 goto free_buckets;
494 if (!percpu && !lru) {
495 /* lru itself can remove the least used element, so
496 * there is no need for an extra elem during map_update.
498 err = alloc_extra_elems(htab);
499 if (err)
500 goto free_prealloc;
504 return &htab->map;
506 free_prealloc:
507 prealloc_destroy(htab);
508 free_buckets:
509 bpf_map_area_free(htab->buckets);
510 free_charge:
511 bpf_map_charge_finish(&htab->map.memory);
512 free_htab:
513 kfree(htab);
514 return ERR_PTR(err);
517 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
519 return jhash(key, key_len, hashrnd);
522 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
524 return &htab->buckets[hash & (htab->n_buckets - 1)];
527 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
529 return &__select_bucket(htab, hash)->head;
532 /* this lookup function can only be called with bucket lock taken */
533 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
534 void *key, u32 key_size)
536 struct hlist_nulls_node *n;
537 struct htab_elem *l;
539 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
540 if (l->hash == hash && !memcmp(&l->key, key, key_size))
541 return l;
543 return NULL;
546 /* can be called without bucket lock. it will repeat the loop in
547 * the unlikely event when elements moved from one bucket into another
548 * while link list is being walked
550 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
551 u32 hash, void *key,
552 u32 key_size, u32 n_buckets)
554 struct hlist_nulls_node *n;
555 struct htab_elem *l;
557 again:
558 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
559 if (l->hash == hash && !memcmp(&l->key, key, key_size))
560 return l;
562 if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
563 goto again;
565 return NULL;
568 /* Called from syscall or from eBPF program directly, so
569 * arguments have to match bpf_map_lookup_elem() exactly.
570 * The return value is adjusted by BPF instructions
571 * in htab_map_gen_lookup().
573 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
575 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
576 struct hlist_nulls_head *head;
577 struct htab_elem *l;
578 u32 hash, key_size;
580 /* Must be called with rcu_read_lock. */
581 WARN_ON_ONCE(!rcu_read_lock_held());
583 key_size = map->key_size;
585 hash = htab_map_hash(key, key_size, htab->hashrnd);
587 head = select_bucket(htab, hash);
589 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
591 return l;
594 static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
596 struct htab_elem *l = __htab_map_lookup_elem(map, key);
598 if (l)
599 return l->key + round_up(map->key_size, 8);
601 return NULL;
604 /* inline bpf_map_lookup_elem() call.
605 * Instead of:
606 * bpf_prog
607 * bpf_map_lookup_elem
608 * map->ops->map_lookup_elem
609 * htab_map_lookup_elem
610 * __htab_map_lookup_elem
611 * do:
612 * bpf_prog
613 * __htab_map_lookup_elem
615 static u32 htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
617 struct bpf_insn *insn = insn_buf;
618 const int ret = BPF_REG_0;
620 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
621 (void *(*)(struct bpf_map *map, void *key))NULL));
622 *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
623 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
624 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
625 offsetof(struct htab_elem, key) +
626 round_up(map->key_size, 8));
627 return insn - insn_buf;
630 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
631 void *key, const bool mark)
633 struct htab_elem *l = __htab_map_lookup_elem(map, key);
635 if (l) {
636 if (mark)
637 bpf_lru_node_set_ref(&l->lru_node);
638 return l->key + round_up(map->key_size, 8);
641 return NULL;
644 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
646 return __htab_lru_map_lookup_elem(map, key, true);
649 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
651 return __htab_lru_map_lookup_elem(map, key, false);
654 static u32 htab_lru_map_gen_lookup(struct bpf_map *map,
655 struct bpf_insn *insn_buf)
657 struct bpf_insn *insn = insn_buf;
658 const int ret = BPF_REG_0;
659 const int ref_reg = BPF_REG_1;
661 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
662 (void *(*)(struct bpf_map *map, void *key))NULL));
663 *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
664 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
665 *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
666 offsetof(struct htab_elem, lru_node) +
667 offsetof(struct bpf_lru_node, ref));
668 *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
669 *insn++ = BPF_ST_MEM(BPF_B, ret,
670 offsetof(struct htab_elem, lru_node) +
671 offsetof(struct bpf_lru_node, ref),
673 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
674 offsetof(struct htab_elem, key) +
675 round_up(map->key_size, 8));
676 return insn - insn_buf;
679 /* It is called from the bpf_lru_list when the LRU needs to delete
680 * older elements from the htab.
682 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
684 struct bpf_htab *htab = (struct bpf_htab *)arg;
685 struct htab_elem *l = NULL, *tgt_l;
686 struct hlist_nulls_head *head;
687 struct hlist_nulls_node *n;
688 unsigned long flags;
689 struct bucket *b;
691 tgt_l = container_of(node, struct htab_elem, lru_node);
692 b = __select_bucket(htab, tgt_l->hash);
693 head = &b->head;
695 flags = htab_lock_bucket(htab, b);
697 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
698 if (l == tgt_l) {
699 hlist_nulls_del_rcu(&l->hash_node);
700 break;
703 htab_unlock_bucket(htab, b, flags);
705 return l == tgt_l;
708 /* Called from syscall */
709 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
711 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
712 struct hlist_nulls_head *head;
713 struct htab_elem *l, *next_l;
714 u32 hash, key_size;
715 int i = 0;
717 WARN_ON_ONCE(!rcu_read_lock_held());
719 key_size = map->key_size;
721 if (!key)
722 goto find_first_elem;
724 hash = htab_map_hash(key, key_size, htab->hashrnd);
726 head = select_bucket(htab, hash);
728 /* lookup the key */
729 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
731 if (!l)
732 goto find_first_elem;
734 /* key was found, get next key in the same bucket */
735 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
736 struct htab_elem, hash_node);
738 if (next_l) {
739 /* if next elem in this hash list is non-zero, just return it */
740 memcpy(next_key, next_l->key, key_size);
741 return 0;
744 /* no more elements in this hash list, go to the next bucket */
745 i = hash & (htab->n_buckets - 1);
746 i++;
748 find_first_elem:
749 /* iterate over buckets */
750 for (; i < htab->n_buckets; i++) {
751 head = select_bucket(htab, i);
753 /* pick first element in the bucket */
754 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
755 struct htab_elem, hash_node);
756 if (next_l) {
757 /* if it's not empty, just return it */
758 memcpy(next_key, next_l->key, key_size);
759 return 0;
763 /* iterated over all buckets and all elements */
764 return -ENOENT;
767 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
769 if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
770 free_percpu(htab_elem_get_ptr(l, htab->map.key_size));
771 kfree(l);
774 static void htab_elem_free_rcu(struct rcu_head *head)
776 struct htab_elem *l = container_of(head, struct htab_elem, rcu);
777 struct bpf_htab *htab = l->htab;
779 htab_elem_free(htab, l);
782 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
784 struct bpf_map *map = &htab->map;
786 if (map->ops->map_fd_put_ptr) {
787 void *ptr = fd_htab_map_get_ptr(map, l);
789 map->ops->map_fd_put_ptr(ptr);
792 if (htab_is_prealloc(htab)) {
793 __pcpu_freelist_push(&htab->freelist, &l->fnode);
794 } else {
795 atomic_dec(&htab->count);
796 l->htab = htab;
797 call_rcu(&l->rcu, htab_elem_free_rcu);
801 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
802 void *value, bool onallcpus)
804 if (!onallcpus) {
805 /* copy true value_size bytes */
806 memcpy(this_cpu_ptr(pptr), value, htab->map.value_size);
807 } else {
808 u32 size = round_up(htab->map.value_size, 8);
809 int off = 0, cpu;
811 for_each_possible_cpu(cpu) {
812 bpf_long_memcpy(per_cpu_ptr(pptr, cpu),
813 value + off, size);
814 off += size;
819 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
821 return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
822 BITS_PER_LONG == 64;
825 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
826 void *value, u32 key_size, u32 hash,
827 bool percpu, bool onallcpus,
828 struct htab_elem *old_elem)
830 u32 size = htab->map.value_size;
831 bool prealloc = htab_is_prealloc(htab);
832 struct htab_elem *l_new, **pl_new;
833 void __percpu *pptr;
835 if (prealloc) {
836 if (old_elem) {
837 /* if we're updating the existing element,
838 * use per-cpu extra elems to avoid freelist_pop/push
840 pl_new = this_cpu_ptr(htab->extra_elems);
841 l_new = *pl_new;
842 *pl_new = old_elem;
843 } else {
844 struct pcpu_freelist_node *l;
846 l = __pcpu_freelist_pop(&htab->freelist);
847 if (!l)
848 return ERR_PTR(-E2BIG);
849 l_new = container_of(l, struct htab_elem, fnode);
851 } else {
852 if (atomic_inc_return(&htab->count) > htab->map.max_entries)
853 if (!old_elem) {
854 /* when map is full and update() is replacing
855 * old element, it's ok to allocate, since
856 * old element will be freed immediately.
857 * Otherwise return an error
859 l_new = ERR_PTR(-E2BIG);
860 goto dec_count;
862 l_new = kmalloc_node(htab->elem_size, GFP_ATOMIC | __GFP_NOWARN,
863 htab->map.numa_node);
864 if (!l_new) {
865 l_new = ERR_PTR(-ENOMEM);
866 goto dec_count;
868 check_and_init_map_lock(&htab->map,
869 l_new->key + round_up(key_size, 8));
872 memcpy(l_new->key, key, key_size);
873 if (percpu) {
874 size = round_up(size, 8);
875 if (prealloc) {
876 pptr = htab_elem_get_ptr(l_new, key_size);
877 } else {
878 /* alloc_percpu zero-fills */
879 pptr = __alloc_percpu_gfp(size, 8,
880 GFP_ATOMIC | __GFP_NOWARN);
881 if (!pptr) {
882 kfree(l_new);
883 l_new = ERR_PTR(-ENOMEM);
884 goto dec_count;
888 pcpu_copy_value(htab, pptr, value, onallcpus);
890 if (!prealloc)
891 htab_elem_set_ptr(l_new, key_size, pptr);
892 } else if (fd_htab_map_needs_adjust(htab)) {
893 size = round_up(size, 8);
894 memcpy(l_new->key + round_up(key_size, 8), value, size);
895 } else {
896 copy_map_value(&htab->map,
897 l_new->key + round_up(key_size, 8),
898 value);
901 l_new->hash = hash;
902 return l_new;
903 dec_count:
904 atomic_dec(&htab->count);
905 return l_new;
908 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
909 u64 map_flags)
911 if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
912 /* elem already exists */
913 return -EEXIST;
915 if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
916 /* elem doesn't exist, cannot update it */
917 return -ENOENT;
919 return 0;
922 /* Called from syscall or from eBPF program */
923 static int htab_map_update_elem(struct bpf_map *map, void *key, void *value,
924 u64 map_flags)
926 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
927 struct htab_elem *l_new = NULL, *l_old;
928 struct hlist_nulls_head *head;
929 unsigned long flags;
930 struct bucket *b;
931 u32 key_size, hash;
932 int ret;
934 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
935 /* unknown flags */
936 return -EINVAL;
938 WARN_ON_ONCE(!rcu_read_lock_held());
940 key_size = map->key_size;
942 hash = htab_map_hash(key, key_size, htab->hashrnd);
944 b = __select_bucket(htab, hash);
945 head = &b->head;
947 if (unlikely(map_flags & BPF_F_LOCK)) {
948 if (unlikely(!map_value_has_spin_lock(map)))
949 return -EINVAL;
950 /* find an element without taking the bucket lock */
951 l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
952 htab->n_buckets);
953 ret = check_flags(htab, l_old, map_flags);
954 if (ret)
955 return ret;
956 if (l_old) {
957 /* grab the element lock and update value in place */
958 copy_map_value_locked(map,
959 l_old->key + round_up(key_size, 8),
960 value, false);
961 return 0;
963 /* fall through, grab the bucket lock and lookup again.
964 * 99.9% chance that the element won't be found,
965 * but second lookup under lock has to be done.
969 flags = htab_lock_bucket(htab, b);
971 l_old = lookup_elem_raw(head, hash, key, key_size);
973 ret = check_flags(htab, l_old, map_flags);
974 if (ret)
975 goto err;
977 if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
978 /* first lookup without the bucket lock didn't find the element,
979 * but second lookup with the bucket lock found it.
980 * This case is highly unlikely, but has to be dealt with:
981 * grab the element lock in addition to the bucket lock
982 * and update element in place
984 copy_map_value_locked(map,
985 l_old->key + round_up(key_size, 8),
986 value, false);
987 ret = 0;
988 goto err;
991 l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
992 l_old);
993 if (IS_ERR(l_new)) {
994 /* all pre-allocated elements are in use or memory exhausted */
995 ret = PTR_ERR(l_new);
996 goto err;
999 /* add new element to the head of the list, so that
1000 * concurrent search will find it before old elem
1002 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1003 if (l_old) {
1004 hlist_nulls_del_rcu(&l_old->hash_node);
1005 if (!htab_is_prealloc(htab))
1006 free_htab_elem(htab, l_old);
1008 ret = 0;
1009 err:
1010 htab_unlock_bucket(htab, b, flags);
1011 return ret;
1014 static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
1015 u64 map_flags)
1017 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1018 struct htab_elem *l_new, *l_old = NULL;
1019 struct hlist_nulls_head *head;
1020 unsigned long flags;
1021 struct bucket *b;
1022 u32 key_size, hash;
1023 int ret;
1025 if (unlikely(map_flags > BPF_EXIST))
1026 /* unknown flags */
1027 return -EINVAL;
1029 WARN_ON_ONCE(!rcu_read_lock_held());
1031 key_size = map->key_size;
1033 hash = htab_map_hash(key, key_size, htab->hashrnd);
1035 b = __select_bucket(htab, hash);
1036 head = &b->head;
1038 /* For LRU, we need to alloc before taking bucket's
1039 * spinlock because getting free nodes from LRU may need
1040 * to remove older elements from htab and this removal
1041 * operation will need a bucket lock.
1043 l_new = prealloc_lru_pop(htab, key, hash);
1044 if (!l_new)
1045 return -ENOMEM;
1046 memcpy(l_new->key + round_up(map->key_size, 8), value, map->value_size);
1048 flags = htab_lock_bucket(htab, b);
1050 l_old = lookup_elem_raw(head, hash, key, key_size);
1052 ret = check_flags(htab, l_old, map_flags);
1053 if (ret)
1054 goto err;
1056 /* add new element to the head of the list, so that
1057 * concurrent search will find it before old elem
1059 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1060 if (l_old) {
1061 bpf_lru_node_set_ref(&l_new->lru_node);
1062 hlist_nulls_del_rcu(&l_old->hash_node);
1064 ret = 0;
1066 err:
1067 htab_unlock_bucket(htab, b, flags);
1069 if (ret)
1070 bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1071 else if (l_old)
1072 bpf_lru_push_free(&htab->lru, &l_old->lru_node);
1074 return ret;
1077 static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1078 void *value, u64 map_flags,
1079 bool onallcpus)
1081 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1082 struct htab_elem *l_new = NULL, *l_old;
1083 struct hlist_nulls_head *head;
1084 unsigned long flags;
1085 struct bucket *b;
1086 u32 key_size, hash;
1087 int ret;
1089 if (unlikely(map_flags > BPF_EXIST))
1090 /* unknown flags */
1091 return -EINVAL;
1093 WARN_ON_ONCE(!rcu_read_lock_held());
1095 key_size = map->key_size;
1097 hash = htab_map_hash(key, key_size, htab->hashrnd);
1099 b = __select_bucket(htab, hash);
1100 head = &b->head;
1102 flags = htab_lock_bucket(htab, b);
1104 l_old = lookup_elem_raw(head, hash, key, key_size);
1106 ret = check_flags(htab, l_old, map_flags);
1107 if (ret)
1108 goto err;
1110 if (l_old) {
1111 /* per-cpu hash map can update value in-place */
1112 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1113 value, onallcpus);
1114 } else {
1115 l_new = alloc_htab_elem(htab, key, value, key_size,
1116 hash, true, onallcpus, NULL);
1117 if (IS_ERR(l_new)) {
1118 ret = PTR_ERR(l_new);
1119 goto err;
1121 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1123 ret = 0;
1124 err:
1125 htab_unlock_bucket(htab, b, flags);
1126 return ret;
1129 static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1130 void *value, u64 map_flags,
1131 bool onallcpus)
1133 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1134 struct htab_elem *l_new = NULL, *l_old;
1135 struct hlist_nulls_head *head;
1136 unsigned long flags;
1137 struct bucket *b;
1138 u32 key_size, hash;
1139 int ret;
1141 if (unlikely(map_flags > BPF_EXIST))
1142 /* unknown flags */
1143 return -EINVAL;
1145 WARN_ON_ONCE(!rcu_read_lock_held());
1147 key_size = map->key_size;
1149 hash = htab_map_hash(key, key_size, htab->hashrnd);
1151 b = __select_bucket(htab, hash);
1152 head = &b->head;
1154 /* For LRU, we need to alloc before taking bucket's
1155 * spinlock because LRU's elem alloc may need
1156 * to remove older elem from htab and this removal
1157 * operation will need a bucket lock.
1159 if (map_flags != BPF_EXIST) {
1160 l_new = prealloc_lru_pop(htab, key, hash);
1161 if (!l_new)
1162 return -ENOMEM;
1165 flags = htab_lock_bucket(htab, b);
1167 l_old = lookup_elem_raw(head, hash, key, key_size);
1169 ret = check_flags(htab, l_old, map_flags);
1170 if (ret)
1171 goto err;
1173 if (l_old) {
1174 bpf_lru_node_set_ref(&l_old->lru_node);
1176 /* per-cpu hash map can update value in-place */
1177 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1178 value, onallcpus);
1179 } else {
1180 pcpu_copy_value(htab, htab_elem_get_ptr(l_new, key_size),
1181 value, onallcpus);
1182 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1183 l_new = NULL;
1185 ret = 0;
1186 err:
1187 htab_unlock_bucket(htab, b, flags);
1188 if (l_new)
1189 bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1190 return ret;
1193 static int htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1194 void *value, u64 map_flags)
1196 return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
1199 static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1200 void *value, u64 map_flags)
1202 return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
1203 false);
1206 /* Called from syscall or from eBPF program */
1207 static int htab_map_delete_elem(struct bpf_map *map, void *key)
1209 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1210 struct hlist_nulls_head *head;
1211 struct bucket *b;
1212 struct htab_elem *l;
1213 unsigned long flags;
1214 u32 hash, key_size;
1215 int ret = -ENOENT;
1217 WARN_ON_ONCE(!rcu_read_lock_held());
1219 key_size = map->key_size;
1221 hash = htab_map_hash(key, key_size, htab->hashrnd);
1222 b = __select_bucket(htab, hash);
1223 head = &b->head;
1225 flags = htab_lock_bucket(htab, b);
1227 l = lookup_elem_raw(head, hash, key, key_size);
1229 if (l) {
1230 hlist_nulls_del_rcu(&l->hash_node);
1231 free_htab_elem(htab, l);
1232 ret = 0;
1235 htab_unlock_bucket(htab, b, flags);
1236 return ret;
1239 static int htab_lru_map_delete_elem(struct bpf_map *map, void *key)
1241 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1242 struct hlist_nulls_head *head;
1243 struct bucket *b;
1244 struct htab_elem *l;
1245 unsigned long flags;
1246 u32 hash, key_size;
1247 int ret = -ENOENT;
1249 WARN_ON_ONCE(!rcu_read_lock_held());
1251 key_size = map->key_size;
1253 hash = htab_map_hash(key, key_size, htab->hashrnd);
1254 b = __select_bucket(htab, hash);
1255 head = &b->head;
1257 flags = htab_lock_bucket(htab, b);
1259 l = lookup_elem_raw(head, hash, key, key_size);
1261 if (l) {
1262 hlist_nulls_del_rcu(&l->hash_node);
1263 ret = 0;
1266 htab_unlock_bucket(htab, b, flags);
1267 if (l)
1268 bpf_lru_push_free(&htab->lru, &l->lru_node);
1269 return ret;
1272 static void delete_all_elements(struct bpf_htab *htab)
1274 int i;
1276 for (i = 0; i < htab->n_buckets; i++) {
1277 struct hlist_nulls_head *head = select_bucket(htab, i);
1278 struct hlist_nulls_node *n;
1279 struct htab_elem *l;
1281 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1282 hlist_nulls_del_rcu(&l->hash_node);
1283 htab_elem_free(htab, l);
1288 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
1289 static void htab_map_free(struct bpf_map *map)
1291 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1293 /* at this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
1294 * so the programs (can be more than one that used this map) were
1295 * disconnected from events. Wait for outstanding critical sections in
1296 * these programs to complete
1298 synchronize_rcu();
1300 /* some of free_htab_elem() callbacks for elements of this map may
1301 * not have executed. Wait for them.
1303 rcu_barrier();
1304 if (!htab_is_prealloc(htab))
1305 delete_all_elements(htab);
1306 else
1307 prealloc_destroy(htab);
1309 free_percpu(htab->extra_elems);
1310 bpf_map_area_free(htab->buckets);
1311 kfree(htab);
1314 static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
1315 struct seq_file *m)
1317 void *value;
1319 rcu_read_lock();
1321 value = htab_map_lookup_elem(map, key);
1322 if (!value) {
1323 rcu_read_unlock();
1324 return;
1327 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1328 seq_puts(m, ": ");
1329 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
1330 seq_puts(m, "\n");
1332 rcu_read_unlock();
1335 static int
1336 __htab_map_lookup_and_delete_batch(struct bpf_map *map,
1337 const union bpf_attr *attr,
1338 union bpf_attr __user *uattr,
1339 bool do_delete, bool is_lru_map,
1340 bool is_percpu)
1342 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1343 u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
1344 void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
1345 void __user *uvalues = u64_to_user_ptr(attr->batch.values);
1346 void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
1347 void *ubatch = u64_to_user_ptr(attr->batch.in_batch);
1348 u32 batch, max_count, size, bucket_size;
1349 struct htab_elem *node_to_free = NULL;
1350 u64 elem_map_flags, map_flags;
1351 struct hlist_nulls_head *head;
1352 struct hlist_nulls_node *n;
1353 unsigned long flags = 0;
1354 bool locked = false;
1355 struct htab_elem *l;
1356 struct bucket *b;
1357 int ret = 0;
1359 elem_map_flags = attr->batch.elem_flags;
1360 if ((elem_map_flags & ~BPF_F_LOCK) ||
1361 ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map)))
1362 return -EINVAL;
1364 map_flags = attr->batch.flags;
1365 if (map_flags)
1366 return -EINVAL;
1368 max_count = attr->batch.count;
1369 if (!max_count)
1370 return 0;
1372 if (put_user(0, &uattr->batch.count))
1373 return -EFAULT;
1375 batch = 0;
1376 if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
1377 return -EFAULT;
1379 if (batch >= htab->n_buckets)
1380 return -ENOENT;
1382 key_size = htab->map.key_size;
1383 roundup_key_size = round_up(htab->map.key_size, 8);
1384 value_size = htab->map.value_size;
1385 size = round_up(value_size, 8);
1386 if (is_percpu)
1387 value_size = size * num_possible_cpus();
1388 total = 0;
1389 /* while experimenting with hash tables with sizes ranging from 10 to
1390 * 1000, it was observed that a bucket can have upto 5 entries.
1392 bucket_size = 5;
1394 alloc:
1395 /* We cannot do copy_from_user or copy_to_user inside
1396 * the rcu_read_lock. Allocate enough space here.
1398 keys = kvmalloc(key_size * bucket_size, GFP_USER | __GFP_NOWARN);
1399 values = kvmalloc(value_size * bucket_size, GFP_USER | __GFP_NOWARN);
1400 if (!keys || !values) {
1401 ret = -ENOMEM;
1402 goto after_loop;
1405 again:
1406 bpf_disable_instrumentation();
1407 rcu_read_lock();
1408 again_nocopy:
1409 dst_key = keys;
1410 dst_val = values;
1411 b = &htab->buckets[batch];
1412 head = &b->head;
1413 /* do not grab the lock unless need it (bucket_cnt > 0). */
1414 if (locked)
1415 flags = htab_lock_bucket(htab, b);
1417 bucket_cnt = 0;
1418 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
1419 bucket_cnt++;
1421 if (bucket_cnt && !locked) {
1422 locked = true;
1423 goto again_nocopy;
1426 if (bucket_cnt > (max_count - total)) {
1427 if (total == 0)
1428 ret = -ENOSPC;
1429 /* Note that since bucket_cnt > 0 here, it is implicit
1430 * that the locked was grabbed, so release it.
1432 htab_unlock_bucket(htab, b, flags);
1433 rcu_read_unlock();
1434 bpf_enable_instrumentation();
1435 goto after_loop;
1438 if (bucket_cnt > bucket_size) {
1439 bucket_size = bucket_cnt;
1440 /* Note that since bucket_cnt > 0 here, it is implicit
1441 * that the locked was grabbed, so release it.
1443 htab_unlock_bucket(htab, b, flags);
1444 rcu_read_unlock();
1445 bpf_enable_instrumentation();
1446 kvfree(keys);
1447 kvfree(values);
1448 goto alloc;
1451 /* Next block is only safe to run if you have grabbed the lock */
1452 if (!locked)
1453 goto next_batch;
1455 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1456 memcpy(dst_key, l->key, key_size);
1458 if (is_percpu) {
1459 int off = 0, cpu;
1460 void __percpu *pptr;
1462 pptr = htab_elem_get_ptr(l, map->key_size);
1463 for_each_possible_cpu(cpu) {
1464 bpf_long_memcpy(dst_val + off,
1465 per_cpu_ptr(pptr, cpu), size);
1466 off += size;
1468 } else {
1469 value = l->key + roundup_key_size;
1470 if (elem_map_flags & BPF_F_LOCK)
1471 copy_map_value_locked(map, dst_val, value,
1472 true);
1473 else
1474 copy_map_value(map, dst_val, value);
1475 check_and_init_map_lock(map, dst_val);
1477 if (do_delete) {
1478 hlist_nulls_del_rcu(&l->hash_node);
1480 /* bpf_lru_push_free() will acquire lru_lock, which
1481 * may cause deadlock. See comments in function
1482 * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1483 * after releasing the bucket lock.
1485 if (is_lru_map) {
1486 l->batch_flink = node_to_free;
1487 node_to_free = l;
1488 } else {
1489 free_htab_elem(htab, l);
1492 dst_key += key_size;
1493 dst_val += value_size;
1496 htab_unlock_bucket(htab, b, flags);
1497 locked = false;
1499 while (node_to_free) {
1500 l = node_to_free;
1501 node_to_free = node_to_free->batch_flink;
1502 bpf_lru_push_free(&htab->lru, &l->lru_node);
1505 next_batch:
1506 /* If we are not copying data, we can go to next bucket and avoid
1507 * unlocking the rcu.
1509 if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
1510 batch++;
1511 goto again_nocopy;
1514 rcu_read_unlock();
1515 bpf_enable_instrumentation();
1516 if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
1517 key_size * bucket_cnt) ||
1518 copy_to_user(uvalues + total * value_size, values,
1519 value_size * bucket_cnt))) {
1520 ret = -EFAULT;
1521 goto after_loop;
1524 total += bucket_cnt;
1525 batch++;
1526 if (batch >= htab->n_buckets) {
1527 ret = -ENOENT;
1528 goto after_loop;
1530 goto again;
1532 after_loop:
1533 if (ret == -EFAULT)
1534 goto out;
1536 /* copy # of entries and next batch */
1537 ubatch = u64_to_user_ptr(attr->batch.out_batch);
1538 if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
1539 put_user(total, &uattr->batch.count))
1540 ret = -EFAULT;
1542 out:
1543 kvfree(keys);
1544 kvfree(values);
1545 return ret;
1548 static int
1549 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1550 union bpf_attr __user *uattr)
1552 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1553 false, true);
1556 static int
1557 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1558 const union bpf_attr *attr,
1559 union bpf_attr __user *uattr)
1561 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1562 false, true);
1565 static int
1566 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1567 union bpf_attr __user *uattr)
1569 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1570 false, false);
1573 static int
1574 htab_map_lookup_and_delete_batch(struct bpf_map *map,
1575 const union bpf_attr *attr,
1576 union bpf_attr __user *uattr)
1578 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1579 false, false);
1582 static int
1583 htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
1584 const union bpf_attr *attr,
1585 union bpf_attr __user *uattr)
1587 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1588 true, true);
1591 static int
1592 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1593 const union bpf_attr *attr,
1594 union bpf_attr __user *uattr)
1596 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1597 true, true);
1600 static int
1601 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1602 union bpf_attr __user *uattr)
1604 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1605 true, false);
1608 static int
1609 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
1610 const union bpf_attr *attr,
1611 union bpf_attr __user *uattr)
1613 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1614 true, false);
1617 const struct bpf_map_ops htab_map_ops = {
1618 .map_alloc_check = htab_map_alloc_check,
1619 .map_alloc = htab_map_alloc,
1620 .map_free = htab_map_free,
1621 .map_get_next_key = htab_map_get_next_key,
1622 .map_lookup_elem = htab_map_lookup_elem,
1623 .map_update_elem = htab_map_update_elem,
1624 .map_delete_elem = htab_map_delete_elem,
1625 .map_gen_lookup = htab_map_gen_lookup,
1626 .map_seq_show_elem = htab_map_seq_show_elem,
1627 BATCH_OPS(htab),
1630 const struct bpf_map_ops htab_lru_map_ops = {
1631 .map_alloc_check = htab_map_alloc_check,
1632 .map_alloc = htab_map_alloc,
1633 .map_free = htab_map_free,
1634 .map_get_next_key = htab_map_get_next_key,
1635 .map_lookup_elem = htab_lru_map_lookup_elem,
1636 .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
1637 .map_update_elem = htab_lru_map_update_elem,
1638 .map_delete_elem = htab_lru_map_delete_elem,
1639 .map_gen_lookup = htab_lru_map_gen_lookup,
1640 .map_seq_show_elem = htab_map_seq_show_elem,
1641 BATCH_OPS(htab_lru),
1644 /* Called from eBPF program */
1645 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
1647 struct htab_elem *l = __htab_map_lookup_elem(map, key);
1649 if (l)
1650 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
1651 else
1652 return NULL;
1655 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
1657 struct htab_elem *l = __htab_map_lookup_elem(map, key);
1659 if (l) {
1660 bpf_lru_node_set_ref(&l->lru_node);
1661 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
1664 return NULL;
1667 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
1669 struct htab_elem *l;
1670 void __percpu *pptr;
1671 int ret = -ENOENT;
1672 int cpu, off = 0;
1673 u32 size;
1675 /* per_cpu areas are zero-filled and bpf programs can only
1676 * access 'value_size' of them, so copying rounded areas
1677 * will not leak any kernel data
1679 size = round_up(map->value_size, 8);
1680 rcu_read_lock();
1681 l = __htab_map_lookup_elem(map, key);
1682 if (!l)
1683 goto out;
1684 /* We do not mark LRU map element here in order to not mess up
1685 * eviction heuristics when user space does a map walk.
1687 pptr = htab_elem_get_ptr(l, map->key_size);
1688 for_each_possible_cpu(cpu) {
1689 bpf_long_memcpy(value + off,
1690 per_cpu_ptr(pptr, cpu), size);
1691 off += size;
1693 ret = 0;
1694 out:
1695 rcu_read_unlock();
1696 return ret;
1699 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
1700 u64 map_flags)
1702 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1703 int ret;
1705 rcu_read_lock();
1706 if (htab_is_lru(htab))
1707 ret = __htab_lru_percpu_map_update_elem(map, key, value,
1708 map_flags, true);
1709 else
1710 ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
1711 true);
1712 rcu_read_unlock();
1714 return ret;
1717 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
1718 struct seq_file *m)
1720 struct htab_elem *l;
1721 void __percpu *pptr;
1722 int cpu;
1724 rcu_read_lock();
1726 l = __htab_map_lookup_elem(map, key);
1727 if (!l) {
1728 rcu_read_unlock();
1729 return;
1732 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1733 seq_puts(m, ": {\n");
1734 pptr = htab_elem_get_ptr(l, map->key_size);
1735 for_each_possible_cpu(cpu) {
1736 seq_printf(m, "\tcpu%d: ", cpu);
1737 btf_type_seq_show(map->btf, map->btf_value_type_id,
1738 per_cpu_ptr(pptr, cpu), m);
1739 seq_puts(m, "\n");
1741 seq_puts(m, "}\n");
1743 rcu_read_unlock();
1746 const struct bpf_map_ops htab_percpu_map_ops = {
1747 .map_alloc_check = htab_map_alloc_check,
1748 .map_alloc = htab_map_alloc,
1749 .map_free = htab_map_free,
1750 .map_get_next_key = htab_map_get_next_key,
1751 .map_lookup_elem = htab_percpu_map_lookup_elem,
1752 .map_update_elem = htab_percpu_map_update_elem,
1753 .map_delete_elem = htab_map_delete_elem,
1754 .map_seq_show_elem = htab_percpu_map_seq_show_elem,
1755 BATCH_OPS(htab_percpu),
1758 const struct bpf_map_ops htab_lru_percpu_map_ops = {
1759 .map_alloc_check = htab_map_alloc_check,
1760 .map_alloc = htab_map_alloc,
1761 .map_free = htab_map_free,
1762 .map_get_next_key = htab_map_get_next_key,
1763 .map_lookup_elem = htab_lru_percpu_map_lookup_elem,
1764 .map_update_elem = htab_lru_percpu_map_update_elem,
1765 .map_delete_elem = htab_lru_map_delete_elem,
1766 .map_seq_show_elem = htab_percpu_map_seq_show_elem,
1767 BATCH_OPS(htab_lru_percpu),
1770 static int fd_htab_map_alloc_check(union bpf_attr *attr)
1772 if (attr->value_size != sizeof(u32))
1773 return -EINVAL;
1774 return htab_map_alloc_check(attr);
1777 static void fd_htab_map_free(struct bpf_map *map)
1779 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1780 struct hlist_nulls_node *n;
1781 struct hlist_nulls_head *head;
1782 struct htab_elem *l;
1783 int i;
1785 for (i = 0; i < htab->n_buckets; i++) {
1786 head = select_bucket(htab, i);
1788 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1789 void *ptr = fd_htab_map_get_ptr(map, l);
1791 map->ops->map_fd_put_ptr(ptr);
1795 htab_map_free(map);
1798 /* only called from syscall */
1799 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
1801 void **ptr;
1802 int ret = 0;
1804 if (!map->ops->map_fd_sys_lookup_elem)
1805 return -ENOTSUPP;
1807 rcu_read_lock();
1808 ptr = htab_map_lookup_elem(map, key);
1809 if (ptr)
1810 *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
1811 else
1812 ret = -ENOENT;
1813 rcu_read_unlock();
1815 return ret;
1818 /* only called from syscall */
1819 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
1820 void *key, void *value, u64 map_flags)
1822 void *ptr;
1823 int ret;
1824 u32 ufd = *(u32 *)value;
1826 ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
1827 if (IS_ERR(ptr))
1828 return PTR_ERR(ptr);
1830 ret = htab_map_update_elem(map, key, &ptr, map_flags);
1831 if (ret)
1832 map->ops->map_fd_put_ptr(ptr);
1834 return ret;
1837 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
1839 struct bpf_map *map, *inner_map_meta;
1841 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
1842 if (IS_ERR(inner_map_meta))
1843 return inner_map_meta;
1845 map = htab_map_alloc(attr);
1846 if (IS_ERR(map)) {
1847 bpf_map_meta_free(inner_map_meta);
1848 return map;
1851 map->inner_map_meta = inner_map_meta;
1853 return map;
1856 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
1858 struct bpf_map **inner_map = htab_map_lookup_elem(map, key);
1860 if (!inner_map)
1861 return NULL;
1863 return READ_ONCE(*inner_map);
1866 static u32 htab_of_map_gen_lookup(struct bpf_map *map,
1867 struct bpf_insn *insn_buf)
1869 struct bpf_insn *insn = insn_buf;
1870 const int ret = BPF_REG_0;
1872 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
1873 (void *(*)(struct bpf_map *map, void *key))NULL));
1874 *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
1875 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
1876 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
1877 offsetof(struct htab_elem, key) +
1878 round_up(map->key_size, 8));
1879 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
1881 return insn - insn_buf;
1884 static void htab_of_map_free(struct bpf_map *map)
1886 bpf_map_meta_free(map->inner_map_meta);
1887 fd_htab_map_free(map);
1890 const struct bpf_map_ops htab_of_maps_map_ops = {
1891 .map_alloc_check = fd_htab_map_alloc_check,
1892 .map_alloc = htab_of_map_alloc,
1893 .map_free = htab_of_map_free,
1894 .map_get_next_key = htab_map_get_next_key,
1895 .map_lookup_elem = htab_of_map_lookup_elem,
1896 .map_delete_elem = htab_map_delete_elem,
1897 .map_fd_get_ptr = bpf_map_fd_get_ptr,
1898 .map_fd_put_ptr = bpf_map_fd_put_ptr,
1899 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
1900 .map_gen_lookup = htab_of_map_gen_lookup,
1901 .map_check_btf = map_check_no_btf,