2 * Implementation of the security services.
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Updated: Hewlett-Packard <paul@paul-moore.com>
18 * Added support for NetLabel
19 * Added support for the policy capability bitmap
21 * Updated: Chad Sellers <csellers@tresys.com>
23 * Added validation of kernel classes and permissions
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 * Added support for bounds domain and audit messaged on masked permissions
29 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 * Added support for runtime switching of the policy type
33 * Copyright (C) 2008, 2009 NEC Corporation
34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38 * This program is free software; you can redistribute it and/or modify
39 * it under the terms of the GNU General Public License as published by
40 * the Free Software Foundation, version 2.
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
65 #include "conditional.h"
73 /* Policy capability names */
74 char *selinux_policycap_names
[__POLICYDB_CAPABILITY_MAX
] = {
75 "network_peer_controls",
77 "extended_socket_class",
78 "always_check_network",
82 int selinux_policycap_netpeer
;
83 int selinux_policycap_openperm
;
84 int selinux_policycap_extsockclass
;
85 int selinux_policycap_alwaysnetwork
;
86 int selinux_policycap_cgroupseclabel
;
88 static DEFINE_RWLOCK(policy_rwlock
);
90 static struct sidtab sidtab
;
91 struct policydb policydb
;
95 * The largest sequence number that has been used when
96 * providing an access decision to the access vector cache.
97 * The sequence number only changes when a policy change
100 static u32 latest_granting
;
102 /* Forward declaration. */
103 static int context_struct_to_string(struct context
*context
, char **scontext
,
106 static void context_struct_compute_av(struct context
*scontext
,
107 struct context
*tcontext
,
109 struct av_decision
*avd
,
110 struct extended_perms
*xperms
);
112 struct selinux_mapping
{
113 u16 value
; /* policy value */
115 u32 perms
[sizeof(u32
) * 8];
118 static struct selinux_mapping
*current_mapping
;
119 static u16 current_mapping_size
;
121 static int selinux_set_mapping(struct policydb
*pol
,
122 struct security_class_mapping
*map
,
123 struct selinux_mapping
**out_map_p
,
126 struct selinux_mapping
*out_map
= NULL
;
127 size_t size
= sizeof(struct selinux_mapping
);
130 bool print_unknown_handle
= false;
132 /* Find number of classes in the input mapping */
139 /* Allocate space for the class records, plus one for class zero */
140 out_map
= kcalloc(++i
, size
, GFP_ATOMIC
);
144 /* Store the raw class and permission values */
146 while (map
[j
].name
) {
147 struct security_class_mapping
*p_in
= map
+ (j
++);
148 struct selinux_mapping
*p_out
= out_map
+ j
;
150 /* An empty class string skips ahead */
151 if (!strcmp(p_in
->name
, "")) {
152 p_out
->num_perms
= 0;
156 p_out
->value
= string_to_security_class(pol
, p_in
->name
);
159 "SELinux: Class %s not defined in policy.\n",
161 if (pol
->reject_unknown
)
163 p_out
->num_perms
= 0;
164 print_unknown_handle
= true;
169 while (p_in
->perms
[k
]) {
170 /* An empty permission string skips ahead */
171 if (!*p_in
->perms
[k
]) {
175 p_out
->perms
[k
] = string_to_av_perm(pol
, p_out
->value
,
177 if (!p_out
->perms
[k
]) {
179 "SELinux: Permission %s in class %s not defined in policy.\n",
180 p_in
->perms
[k
], p_in
->name
);
181 if (pol
->reject_unknown
)
183 print_unknown_handle
= true;
188 p_out
->num_perms
= k
;
191 if (print_unknown_handle
)
192 printk(KERN_INFO
"SELinux: the above unknown classes and permissions will be %s\n",
193 pol
->allow_unknown
? "allowed" : "denied");
195 *out_map_p
= out_map
;
204 * Get real, policy values from mapped values
207 static u16
unmap_class(u16 tclass
)
209 if (tclass
< current_mapping_size
)
210 return current_mapping
[tclass
].value
;
216 * Get kernel value for class from its policy value
218 static u16
map_class(u16 pol_value
)
222 for (i
= 1; i
< current_mapping_size
; i
++) {
223 if (current_mapping
[i
].value
== pol_value
)
227 return SECCLASS_NULL
;
230 static void map_decision(u16 tclass
, struct av_decision
*avd
,
233 if (tclass
< current_mapping_size
) {
234 unsigned i
, n
= current_mapping
[tclass
].num_perms
;
237 for (i
= 0, result
= 0; i
< n
; i
++) {
238 if (avd
->allowed
& current_mapping
[tclass
].perms
[i
])
240 if (allow_unknown
&& !current_mapping
[tclass
].perms
[i
])
243 avd
->allowed
= result
;
245 for (i
= 0, result
= 0; i
< n
; i
++)
246 if (avd
->auditallow
& current_mapping
[tclass
].perms
[i
])
248 avd
->auditallow
= result
;
250 for (i
= 0, result
= 0; i
< n
; i
++) {
251 if (avd
->auditdeny
& current_mapping
[tclass
].perms
[i
])
253 if (!allow_unknown
&& !current_mapping
[tclass
].perms
[i
])
257 * In case the kernel has a bug and requests a permission
258 * between num_perms and the maximum permission number, we
259 * should audit that denial
261 for (; i
< (sizeof(u32
)*8); i
++)
263 avd
->auditdeny
= result
;
267 int security_mls_enabled(void)
269 return policydb
.mls_enabled
;
273 * Return the boolean value of a constraint expression
274 * when it is applied to the specified source and target
277 * xcontext is a special beast... It is used by the validatetrans rules
278 * only. For these rules, scontext is the context before the transition,
279 * tcontext is the context after the transition, and xcontext is the context
280 * of the process performing the transition. All other callers of
281 * constraint_expr_eval should pass in NULL for xcontext.
283 static int constraint_expr_eval(struct context
*scontext
,
284 struct context
*tcontext
,
285 struct context
*xcontext
,
286 struct constraint_expr
*cexpr
)
290 struct role_datum
*r1
, *r2
;
291 struct mls_level
*l1
, *l2
;
292 struct constraint_expr
*e
;
293 int s
[CEXPR_MAXDEPTH
];
296 for (e
= cexpr
; e
; e
= e
->next
) {
297 switch (e
->expr_type
) {
313 if (sp
== (CEXPR_MAXDEPTH
- 1))
317 val1
= scontext
->user
;
318 val2
= tcontext
->user
;
321 val1
= scontext
->type
;
322 val2
= tcontext
->type
;
325 val1
= scontext
->role
;
326 val2
= tcontext
->role
;
327 r1
= policydb
.role_val_to_struct
[val1
- 1];
328 r2
= policydb
.role_val_to_struct
[val2
- 1];
331 s
[++sp
] = ebitmap_get_bit(&r1
->dominates
,
335 s
[++sp
] = ebitmap_get_bit(&r2
->dominates
,
339 s
[++sp
] = (!ebitmap_get_bit(&r1
->dominates
,
341 !ebitmap_get_bit(&r2
->dominates
,
349 l1
= &(scontext
->range
.level
[0]);
350 l2
= &(tcontext
->range
.level
[0]);
353 l1
= &(scontext
->range
.level
[0]);
354 l2
= &(tcontext
->range
.level
[1]);
357 l1
= &(scontext
->range
.level
[1]);
358 l2
= &(tcontext
->range
.level
[0]);
361 l1
= &(scontext
->range
.level
[1]);
362 l2
= &(tcontext
->range
.level
[1]);
365 l1
= &(scontext
->range
.level
[0]);
366 l2
= &(scontext
->range
.level
[1]);
369 l1
= &(tcontext
->range
.level
[0]);
370 l2
= &(tcontext
->range
.level
[1]);
375 s
[++sp
] = mls_level_eq(l1
, l2
);
378 s
[++sp
] = !mls_level_eq(l1
, l2
);
381 s
[++sp
] = mls_level_dom(l1
, l2
);
384 s
[++sp
] = mls_level_dom(l2
, l1
);
387 s
[++sp
] = mls_level_incomp(l2
, l1
);
401 s
[++sp
] = (val1
== val2
);
404 s
[++sp
] = (val1
!= val2
);
412 if (sp
== (CEXPR_MAXDEPTH
-1))
415 if (e
->attr
& CEXPR_TARGET
)
417 else if (e
->attr
& CEXPR_XTARGET
) {
424 if (e
->attr
& CEXPR_USER
)
426 else if (e
->attr
& CEXPR_ROLE
)
428 else if (e
->attr
& CEXPR_TYPE
)
437 s
[++sp
] = ebitmap_get_bit(&e
->names
, val1
- 1);
440 s
[++sp
] = !ebitmap_get_bit(&e
->names
, val1
- 1);
458 * security_dump_masked_av - dumps masked permissions during
459 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
461 static int dump_masked_av_helper(void *k
, void *d
, void *args
)
463 struct perm_datum
*pdatum
= d
;
464 char **permission_names
= args
;
466 BUG_ON(pdatum
->value
< 1 || pdatum
->value
> 32);
468 permission_names
[pdatum
->value
- 1] = (char *)k
;
473 static void security_dump_masked_av(struct context
*scontext
,
474 struct context
*tcontext
,
479 struct common_datum
*common_dat
;
480 struct class_datum
*tclass_dat
;
481 struct audit_buffer
*ab
;
483 char *scontext_name
= NULL
;
484 char *tcontext_name
= NULL
;
485 char *permission_names
[32];
488 bool need_comma
= false;
493 tclass_name
= sym_name(&policydb
, SYM_CLASSES
, tclass
- 1);
494 tclass_dat
= policydb
.class_val_to_struct
[tclass
- 1];
495 common_dat
= tclass_dat
->comdatum
;
497 /* init permission_names */
499 hashtab_map(common_dat
->permissions
.table
,
500 dump_masked_av_helper
, permission_names
) < 0)
503 if (hashtab_map(tclass_dat
->permissions
.table
,
504 dump_masked_av_helper
, permission_names
) < 0)
507 /* get scontext/tcontext in text form */
508 if (context_struct_to_string(scontext
,
509 &scontext_name
, &length
) < 0)
512 if (context_struct_to_string(tcontext
,
513 &tcontext_name
, &length
) < 0)
516 /* audit a message */
517 ab
= audit_log_start(current
->audit_context
,
518 GFP_ATOMIC
, AUDIT_SELINUX_ERR
);
522 audit_log_format(ab
, "op=security_compute_av reason=%s "
523 "scontext=%s tcontext=%s tclass=%s perms=",
524 reason
, scontext_name
, tcontext_name
, tclass_name
);
526 for (index
= 0; index
< 32; index
++) {
527 u32 mask
= (1 << index
);
529 if ((mask
& permissions
) == 0)
532 audit_log_format(ab
, "%s%s",
533 need_comma
? "," : "",
534 permission_names
[index
]
535 ? permission_names
[index
] : "????");
540 /* release scontext/tcontext */
541 kfree(tcontext_name
);
542 kfree(scontext_name
);
548 * security_boundary_permission - drops violated permissions
549 * on boundary constraint.
551 static void type_attribute_bounds_av(struct context
*scontext
,
552 struct context
*tcontext
,
554 struct av_decision
*avd
)
556 struct context lo_scontext
;
557 struct context lo_tcontext
, *tcontextp
= tcontext
;
558 struct av_decision lo_avd
;
559 struct type_datum
*source
;
560 struct type_datum
*target
;
563 source
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
570 target
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
574 memset(&lo_avd
, 0, sizeof(lo_avd
));
576 memcpy(&lo_scontext
, scontext
, sizeof(lo_scontext
));
577 lo_scontext
.type
= source
->bounds
;
579 if (target
->bounds
) {
580 memcpy(&lo_tcontext
, tcontext
, sizeof(lo_tcontext
));
581 lo_tcontext
.type
= target
->bounds
;
582 tcontextp
= &lo_tcontext
;
585 context_struct_compute_av(&lo_scontext
,
591 masked
= ~lo_avd
.allowed
& avd
->allowed
;
594 return; /* no masked permission */
596 /* mask violated permissions */
597 avd
->allowed
&= ~masked
;
599 /* audit masked permissions */
600 security_dump_masked_av(scontext
, tcontext
,
601 tclass
, masked
, "bounds");
605 * flag which drivers have permissions
606 * only looking for ioctl based extended permssions
608 void services_compute_xperms_drivers(
609 struct extended_perms
*xperms
,
610 struct avtab_node
*node
)
614 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLDRIVER
) {
615 /* if one or more driver has all permissions allowed */
616 for (i
= 0; i
< ARRAY_SIZE(xperms
->drivers
.p
); i
++)
617 xperms
->drivers
.p
[i
] |= node
->datum
.u
.xperms
->perms
.p
[i
];
618 } else if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLFUNCTION
) {
619 /* if allowing permissions within a driver */
620 security_xperm_set(xperms
->drivers
.p
,
621 node
->datum
.u
.xperms
->driver
);
624 /* If no ioctl commands are allowed, ignore auditallow and auditdeny */
625 if (node
->key
.specified
& AVTAB_XPERMS_ALLOWED
)
630 * Compute access vectors and extended permissions based on a context
631 * structure pair for the permissions in a particular class.
633 static void context_struct_compute_av(struct context
*scontext
,
634 struct context
*tcontext
,
636 struct av_decision
*avd
,
637 struct extended_perms
*xperms
)
639 struct constraint_node
*constraint
;
640 struct role_allow
*ra
;
641 struct avtab_key avkey
;
642 struct avtab_node
*node
;
643 struct class_datum
*tclass_datum
;
644 struct ebitmap
*sattr
, *tattr
;
645 struct ebitmap_node
*snode
, *tnode
;
650 avd
->auditdeny
= 0xffffffff;
652 memset(&xperms
->drivers
, 0, sizeof(xperms
->drivers
));
656 if (unlikely(!tclass
|| tclass
> policydb
.p_classes
.nprim
)) {
657 if (printk_ratelimit())
658 printk(KERN_WARNING
"SELinux: Invalid class %hu\n", tclass
);
662 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
665 * If a specific type enforcement rule was defined for
666 * this permission check, then use it.
668 avkey
.target_class
= tclass
;
669 avkey
.specified
= AVTAB_AV
| AVTAB_XPERMS
;
670 sattr
= flex_array_get(policydb
.type_attr_map_array
, scontext
->type
- 1);
672 tattr
= flex_array_get(policydb
.type_attr_map_array
, tcontext
->type
- 1);
674 ebitmap_for_each_positive_bit(sattr
, snode
, i
) {
675 ebitmap_for_each_positive_bit(tattr
, tnode
, j
) {
676 avkey
.source_type
= i
+ 1;
677 avkey
.target_type
= j
+ 1;
678 for (node
= avtab_search_node(&policydb
.te_avtab
, &avkey
);
680 node
= avtab_search_node_next(node
, avkey
.specified
)) {
681 if (node
->key
.specified
== AVTAB_ALLOWED
)
682 avd
->allowed
|= node
->datum
.u
.data
;
683 else if (node
->key
.specified
== AVTAB_AUDITALLOW
)
684 avd
->auditallow
|= node
->datum
.u
.data
;
685 else if (node
->key
.specified
== AVTAB_AUDITDENY
)
686 avd
->auditdeny
&= node
->datum
.u
.data
;
687 else if (xperms
&& (node
->key
.specified
& AVTAB_XPERMS
))
688 services_compute_xperms_drivers(xperms
, node
);
691 /* Check conditional av table for additional permissions */
692 cond_compute_av(&policydb
.te_cond_avtab
, &avkey
,
699 * Remove any permissions prohibited by a constraint (this includes
702 constraint
= tclass_datum
->constraints
;
704 if ((constraint
->permissions
& (avd
->allowed
)) &&
705 !constraint_expr_eval(scontext
, tcontext
, NULL
,
707 avd
->allowed
&= ~(constraint
->permissions
);
709 constraint
= constraint
->next
;
713 * If checking process transition permission and the
714 * role is changing, then check the (current_role, new_role)
717 if (tclass
== policydb
.process_class
&&
718 (avd
->allowed
& policydb
.process_trans_perms
) &&
719 scontext
->role
!= tcontext
->role
) {
720 for (ra
= policydb
.role_allow
; ra
; ra
= ra
->next
) {
721 if (scontext
->role
== ra
->role
&&
722 tcontext
->role
== ra
->new_role
)
726 avd
->allowed
&= ~policydb
.process_trans_perms
;
730 * If the given source and target types have boundary
731 * constraint, lazy checks have to mask any violated
732 * permission and notice it to userspace via audit.
734 type_attribute_bounds_av(scontext
, tcontext
,
738 static int security_validtrans_handle_fail(struct context
*ocontext
,
739 struct context
*ncontext
,
740 struct context
*tcontext
,
743 char *o
= NULL
, *n
= NULL
, *t
= NULL
;
744 u32 olen
, nlen
, tlen
;
746 if (context_struct_to_string(ocontext
, &o
, &olen
))
748 if (context_struct_to_string(ncontext
, &n
, &nlen
))
750 if (context_struct_to_string(tcontext
, &t
, &tlen
))
752 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
753 "op=security_validate_transition seresult=denied"
754 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
755 o
, n
, t
, sym_name(&policydb
, SYM_CLASSES
, tclass
-1));
761 if (!selinux_enforcing
)
766 static int security_compute_validatetrans(u32 oldsid
, u32 newsid
, u32 tasksid
,
767 u16 orig_tclass
, bool user
)
769 struct context
*ocontext
;
770 struct context
*ncontext
;
771 struct context
*tcontext
;
772 struct class_datum
*tclass_datum
;
773 struct constraint_node
*constraint
;
780 read_lock(&policy_rwlock
);
783 tclass
= unmap_class(orig_tclass
);
785 tclass
= orig_tclass
;
787 if (!tclass
|| tclass
> policydb
.p_classes
.nprim
) {
791 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
793 ocontext
= sidtab_search(&sidtab
, oldsid
);
795 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
801 ncontext
= sidtab_search(&sidtab
, newsid
);
803 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
809 tcontext
= sidtab_search(&sidtab
, tasksid
);
811 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
817 constraint
= tclass_datum
->validatetrans
;
819 if (!constraint_expr_eval(ocontext
, ncontext
, tcontext
,
824 rc
= security_validtrans_handle_fail(ocontext
,
830 constraint
= constraint
->next
;
834 read_unlock(&policy_rwlock
);
838 int security_validate_transition_user(u32 oldsid
, u32 newsid
, u32 tasksid
,
841 return security_compute_validatetrans(oldsid
, newsid
, tasksid
,
845 int security_validate_transition(u32 oldsid
, u32 newsid
, u32 tasksid
,
848 return security_compute_validatetrans(oldsid
, newsid
, tasksid
,
853 * security_bounded_transition - check whether the given
854 * transition is directed to bounded, or not.
855 * It returns 0, if @newsid is bounded by @oldsid.
856 * Otherwise, it returns error code.
858 * @oldsid : current security identifier
859 * @newsid : destinated security identifier
861 int security_bounded_transition(u32 old_sid
, u32 new_sid
)
863 struct context
*old_context
, *new_context
;
864 struct type_datum
*type
;
868 read_lock(&policy_rwlock
);
871 old_context
= sidtab_search(&sidtab
, old_sid
);
873 printk(KERN_ERR
"SELinux: %s: unrecognized SID %u\n",
879 new_context
= sidtab_search(&sidtab
, new_sid
);
881 printk(KERN_ERR
"SELinux: %s: unrecognized SID %u\n",
887 /* type/domain unchanged */
888 if (old_context
->type
== new_context
->type
)
891 index
= new_context
->type
;
893 type
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
897 /* not bounded anymore */
902 /* @newsid is bounded by @oldsid */
904 if (type
->bounds
== old_context
->type
)
907 index
= type
->bounds
;
911 char *old_name
= NULL
;
912 char *new_name
= NULL
;
915 if (!context_struct_to_string(old_context
,
916 &old_name
, &length
) &&
917 !context_struct_to_string(new_context
,
918 &new_name
, &length
)) {
919 audit_log(current
->audit_context
,
920 GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
921 "op=security_bounded_transition "
923 "oldcontext=%s newcontext=%s",
930 read_unlock(&policy_rwlock
);
935 static void avd_init(struct av_decision
*avd
)
939 avd
->auditdeny
= 0xffffffff;
940 avd
->seqno
= latest_granting
;
944 void services_compute_xperms_decision(struct extended_perms_decision
*xpermd
,
945 struct avtab_node
*node
)
949 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLFUNCTION
) {
950 if (xpermd
->driver
!= node
->datum
.u
.xperms
->driver
)
952 } else if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLDRIVER
) {
953 if (!security_xperm_test(node
->datum
.u
.xperms
->perms
.p
,
960 if (node
->key
.specified
== AVTAB_XPERMS_ALLOWED
) {
961 xpermd
->used
|= XPERMS_ALLOWED
;
962 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLDRIVER
) {
963 memset(xpermd
->allowed
->p
, 0xff,
964 sizeof(xpermd
->allowed
->p
));
966 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLFUNCTION
) {
967 for (i
= 0; i
< ARRAY_SIZE(xpermd
->allowed
->p
); i
++)
968 xpermd
->allowed
->p
[i
] |=
969 node
->datum
.u
.xperms
->perms
.p
[i
];
971 } else if (node
->key
.specified
== AVTAB_XPERMS_AUDITALLOW
) {
972 xpermd
->used
|= XPERMS_AUDITALLOW
;
973 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLDRIVER
) {
974 memset(xpermd
->auditallow
->p
, 0xff,
975 sizeof(xpermd
->auditallow
->p
));
977 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLFUNCTION
) {
978 for (i
= 0; i
< ARRAY_SIZE(xpermd
->auditallow
->p
); i
++)
979 xpermd
->auditallow
->p
[i
] |=
980 node
->datum
.u
.xperms
->perms
.p
[i
];
982 } else if (node
->key
.specified
== AVTAB_XPERMS_DONTAUDIT
) {
983 xpermd
->used
|= XPERMS_DONTAUDIT
;
984 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLDRIVER
) {
985 memset(xpermd
->dontaudit
->p
, 0xff,
986 sizeof(xpermd
->dontaudit
->p
));
988 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLFUNCTION
) {
989 for (i
= 0; i
< ARRAY_SIZE(xpermd
->dontaudit
->p
); i
++)
990 xpermd
->dontaudit
->p
[i
] |=
991 node
->datum
.u
.xperms
->perms
.p
[i
];
998 void security_compute_xperms_decision(u32 ssid
,
1002 struct extended_perms_decision
*xpermd
)
1005 struct context
*scontext
, *tcontext
;
1006 struct avtab_key avkey
;
1007 struct avtab_node
*node
;
1008 struct ebitmap
*sattr
, *tattr
;
1009 struct ebitmap_node
*snode
, *tnode
;
1012 xpermd
->driver
= driver
;
1014 memset(xpermd
->allowed
->p
, 0, sizeof(xpermd
->allowed
->p
));
1015 memset(xpermd
->auditallow
->p
, 0, sizeof(xpermd
->auditallow
->p
));
1016 memset(xpermd
->dontaudit
->p
, 0, sizeof(xpermd
->dontaudit
->p
));
1018 read_lock(&policy_rwlock
);
1019 if (!ss_initialized
)
1022 scontext
= sidtab_search(&sidtab
, ssid
);
1024 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1029 tcontext
= sidtab_search(&sidtab
, tsid
);
1031 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1036 tclass
= unmap_class(orig_tclass
);
1037 if (unlikely(orig_tclass
&& !tclass
)) {
1038 if (policydb
.allow_unknown
)
1044 if (unlikely(!tclass
|| tclass
> policydb
.p_classes
.nprim
)) {
1045 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass
);
1049 avkey
.target_class
= tclass
;
1050 avkey
.specified
= AVTAB_XPERMS
;
1051 sattr
= flex_array_get(policydb
.type_attr_map_array
,
1052 scontext
->type
- 1);
1054 tattr
= flex_array_get(policydb
.type_attr_map_array
,
1055 tcontext
->type
- 1);
1057 ebitmap_for_each_positive_bit(sattr
, snode
, i
) {
1058 ebitmap_for_each_positive_bit(tattr
, tnode
, j
) {
1059 avkey
.source_type
= i
+ 1;
1060 avkey
.target_type
= j
+ 1;
1061 for (node
= avtab_search_node(&policydb
.te_avtab
, &avkey
);
1063 node
= avtab_search_node_next(node
, avkey
.specified
))
1064 services_compute_xperms_decision(xpermd
, node
);
1066 cond_compute_xperms(&policydb
.te_cond_avtab
,
1071 read_unlock(&policy_rwlock
);
1074 memset(xpermd
->allowed
->p
, 0xff, sizeof(xpermd
->allowed
->p
));
1079 * security_compute_av - Compute access vector decisions.
1080 * @ssid: source security identifier
1081 * @tsid: target security identifier
1082 * @tclass: target security class
1083 * @avd: access vector decisions
1084 * @xperms: extended permissions
1086 * Compute a set of access vector decisions based on the
1087 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1089 void security_compute_av(u32 ssid
,
1092 struct av_decision
*avd
,
1093 struct extended_perms
*xperms
)
1096 struct context
*scontext
= NULL
, *tcontext
= NULL
;
1098 read_lock(&policy_rwlock
);
1101 if (!ss_initialized
)
1104 scontext
= sidtab_search(&sidtab
, ssid
);
1106 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1111 /* permissive domain? */
1112 if (ebitmap_get_bit(&policydb
.permissive_map
, scontext
->type
))
1113 avd
->flags
|= AVD_FLAGS_PERMISSIVE
;
1115 tcontext
= sidtab_search(&sidtab
, tsid
);
1117 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1122 tclass
= unmap_class(orig_tclass
);
1123 if (unlikely(orig_tclass
&& !tclass
)) {
1124 if (policydb
.allow_unknown
)
1128 context_struct_compute_av(scontext
, tcontext
, tclass
, avd
, xperms
);
1129 map_decision(orig_tclass
, avd
, policydb
.allow_unknown
);
1131 read_unlock(&policy_rwlock
);
1134 avd
->allowed
= 0xffffffff;
1138 void security_compute_av_user(u32 ssid
,
1141 struct av_decision
*avd
)
1143 struct context
*scontext
= NULL
, *tcontext
= NULL
;
1145 read_lock(&policy_rwlock
);
1147 if (!ss_initialized
)
1150 scontext
= sidtab_search(&sidtab
, ssid
);
1152 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1157 /* permissive domain? */
1158 if (ebitmap_get_bit(&policydb
.permissive_map
, scontext
->type
))
1159 avd
->flags
|= AVD_FLAGS_PERMISSIVE
;
1161 tcontext
= sidtab_search(&sidtab
, tsid
);
1163 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1168 if (unlikely(!tclass
)) {
1169 if (policydb
.allow_unknown
)
1174 context_struct_compute_av(scontext
, tcontext
, tclass
, avd
, NULL
);
1176 read_unlock(&policy_rwlock
);
1179 avd
->allowed
= 0xffffffff;
1184 * Write the security context string representation of
1185 * the context structure `context' into a dynamically
1186 * allocated string of the correct size. Set `*scontext'
1187 * to point to this string and set `*scontext_len' to
1188 * the length of the string.
1190 static int context_struct_to_string(struct context
*context
, char **scontext
, u32
*scontext_len
)
1199 *scontext_len
= context
->len
;
1201 *scontext
= kstrdup(context
->str
, GFP_ATOMIC
);
1208 /* Compute the size of the context. */
1209 *scontext_len
+= strlen(sym_name(&policydb
, SYM_USERS
, context
->user
- 1)) + 1;
1210 *scontext_len
+= strlen(sym_name(&policydb
, SYM_ROLES
, context
->role
- 1)) + 1;
1211 *scontext_len
+= strlen(sym_name(&policydb
, SYM_TYPES
, context
->type
- 1)) + 1;
1212 *scontext_len
+= mls_compute_context_len(context
);
1217 /* Allocate space for the context; caller must free this space. */
1218 scontextp
= kmalloc(*scontext_len
, GFP_ATOMIC
);
1221 *scontext
= scontextp
;
1224 * Copy the user name, role name and type name into the context.
1226 scontextp
+= sprintf(scontextp
, "%s:%s:%s",
1227 sym_name(&policydb
, SYM_USERS
, context
->user
- 1),
1228 sym_name(&policydb
, SYM_ROLES
, context
->role
- 1),
1229 sym_name(&policydb
, SYM_TYPES
, context
->type
- 1));
1231 mls_sid_to_context(context
, &scontextp
);
1238 #include "initial_sid_to_string.h"
1240 const char *security_get_initial_sid_context(u32 sid
)
1242 if (unlikely(sid
> SECINITSID_NUM
))
1244 return initial_sid_to_string
[sid
];
1247 static int security_sid_to_context_core(u32 sid
, char **scontext
,
1248 u32
*scontext_len
, int force
)
1250 struct context
*context
;
1257 if (!ss_initialized
) {
1258 if (sid
<= SECINITSID_NUM
) {
1261 *scontext_len
= strlen(initial_sid_to_string
[sid
]) + 1;
1264 scontextp
= kmemdup(initial_sid_to_string
[sid
],
1265 *scontext_len
, GFP_ATOMIC
);
1270 *scontext
= scontextp
;
1273 printk(KERN_ERR
"SELinux: %s: called before initial "
1274 "load_policy on unknown SID %d\n", __func__
, sid
);
1278 read_lock(&policy_rwlock
);
1280 context
= sidtab_search_force(&sidtab
, sid
);
1282 context
= sidtab_search(&sidtab
, sid
);
1284 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1289 rc
= context_struct_to_string(context
, scontext
, scontext_len
);
1291 read_unlock(&policy_rwlock
);
1298 * security_sid_to_context - Obtain a context for a given SID.
1299 * @sid: security identifier, SID
1300 * @scontext: security context
1301 * @scontext_len: length in bytes
1303 * Write the string representation of the context associated with @sid
1304 * into a dynamically allocated string of the correct size. Set @scontext
1305 * to point to this string and set @scontext_len to the length of the string.
1307 int security_sid_to_context(u32 sid
, char **scontext
, u32
*scontext_len
)
1309 return security_sid_to_context_core(sid
, scontext
, scontext_len
, 0);
1312 int security_sid_to_context_force(u32 sid
, char **scontext
, u32
*scontext_len
)
1314 return security_sid_to_context_core(sid
, scontext
, scontext_len
, 1);
1318 * Caveat: Mutates scontext.
1320 static int string_to_context_struct(struct policydb
*pol
,
1321 struct sidtab
*sidtabp
,
1324 struct context
*ctx
,
1327 struct role_datum
*role
;
1328 struct type_datum
*typdatum
;
1329 struct user_datum
*usrdatum
;
1330 char *scontextp
, *p
, oldc
;
1335 /* Parse the security context. */
1338 scontextp
= (char *) scontext
;
1340 /* Extract the user. */
1342 while (*p
&& *p
!= ':')
1350 usrdatum
= hashtab_search(pol
->p_users
.table
, scontextp
);
1354 ctx
->user
= usrdatum
->value
;
1358 while (*p
&& *p
!= ':')
1366 role
= hashtab_search(pol
->p_roles
.table
, scontextp
);
1369 ctx
->role
= role
->value
;
1373 while (*p
&& *p
!= ':')
1378 typdatum
= hashtab_search(pol
->p_types
.table
, scontextp
);
1379 if (!typdatum
|| typdatum
->attribute
)
1382 ctx
->type
= typdatum
->value
;
1384 rc
= mls_context_to_sid(pol
, oldc
, &p
, ctx
, sidtabp
, def_sid
);
1389 if ((p
- scontext
) < scontext_len
)
1392 /* Check the validity of the new context. */
1393 if (!policydb_context_isvalid(pol
, ctx
))
1398 context_destroy(ctx
);
1402 static int security_context_to_sid_core(const char *scontext
, u32 scontext_len
,
1403 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
,
1406 char *scontext2
, *str
= NULL
;
1407 struct context context
;
1410 /* An empty security context is never valid. */
1414 if (!ss_initialized
) {
1417 for (i
= 1; i
< SECINITSID_NUM
; i
++) {
1418 if (!strcmp(initial_sid_to_string
[i
], scontext
)) {
1423 *sid
= SECINITSID_KERNEL
;
1428 /* Copy the string so that we can modify the copy as we parse it. */
1429 scontext2
= kmalloc(scontext_len
+ 1, gfp_flags
);
1432 memcpy(scontext2
, scontext
, scontext_len
);
1433 scontext2
[scontext_len
] = 0;
1436 /* Save another copy for storing in uninterpreted form */
1438 str
= kstrdup(scontext2
, gfp_flags
);
1443 read_lock(&policy_rwlock
);
1444 rc
= string_to_context_struct(&policydb
, &sidtab
, scontext2
,
1445 scontext_len
, &context
, def_sid
);
1446 if (rc
== -EINVAL
&& force
) {
1448 context
.len
= scontext_len
;
1452 rc
= sidtab_context_to_sid(&sidtab
, &context
, sid
);
1453 context_destroy(&context
);
1455 read_unlock(&policy_rwlock
);
1463 * security_context_to_sid - Obtain a SID for a given security context.
1464 * @scontext: security context
1465 * @scontext_len: length in bytes
1466 * @sid: security identifier, SID
1467 * @gfp: context for the allocation
1469 * Obtains a SID associated with the security context that
1470 * has the string representation specified by @scontext.
1471 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1472 * memory is available, or 0 on success.
1474 int security_context_to_sid(const char *scontext
, u32 scontext_len
, u32
*sid
,
1477 return security_context_to_sid_core(scontext
, scontext_len
,
1478 sid
, SECSID_NULL
, gfp
, 0);
1481 int security_context_str_to_sid(const char *scontext
, u32
*sid
, gfp_t gfp
)
1483 return security_context_to_sid(scontext
, strlen(scontext
), sid
, gfp
);
1487 * security_context_to_sid_default - Obtain a SID for a given security context,
1488 * falling back to specified default if needed.
1490 * @scontext: security context
1491 * @scontext_len: length in bytes
1492 * @sid: security identifier, SID
1493 * @def_sid: default SID to assign on error
1495 * Obtains a SID associated with the security context that
1496 * has the string representation specified by @scontext.
1497 * The default SID is passed to the MLS layer to be used to allow
1498 * kernel labeling of the MLS field if the MLS field is not present
1499 * (for upgrading to MLS without full relabel).
1500 * Implicitly forces adding of the context even if it cannot be mapped yet.
1501 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1502 * memory is available, or 0 on success.
1504 int security_context_to_sid_default(const char *scontext
, u32 scontext_len
,
1505 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
)
1507 return security_context_to_sid_core(scontext
, scontext_len
,
1508 sid
, def_sid
, gfp_flags
, 1);
1511 int security_context_to_sid_force(const char *scontext
, u32 scontext_len
,
1514 return security_context_to_sid_core(scontext
, scontext_len
,
1515 sid
, SECSID_NULL
, GFP_KERNEL
, 1);
1518 static int compute_sid_handle_invalid_context(
1519 struct context
*scontext
,
1520 struct context
*tcontext
,
1522 struct context
*newcontext
)
1524 char *s
= NULL
, *t
= NULL
, *n
= NULL
;
1525 u32 slen
, tlen
, nlen
;
1527 if (context_struct_to_string(scontext
, &s
, &slen
))
1529 if (context_struct_to_string(tcontext
, &t
, &tlen
))
1531 if (context_struct_to_string(newcontext
, &n
, &nlen
))
1533 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
1534 "op=security_compute_sid invalid_context=%s"
1538 n
, s
, t
, sym_name(&policydb
, SYM_CLASSES
, tclass
-1));
1543 if (!selinux_enforcing
)
1548 static void filename_compute_type(struct policydb
*p
, struct context
*newcontext
,
1549 u32 stype
, u32 ttype
, u16 tclass
,
1550 const char *objname
)
1552 struct filename_trans ft
;
1553 struct filename_trans_datum
*otype
;
1556 * Most filename trans rules are going to live in specific directories
1557 * like /dev or /var/run. This bitmap will quickly skip rule searches
1558 * if the ttype does not contain any rules.
1560 if (!ebitmap_get_bit(&p
->filename_trans_ttypes
, ttype
))
1568 otype
= hashtab_search(p
->filename_trans
, &ft
);
1570 newcontext
->type
= otype
->otype
;
1573 static int security_compute_sid(u32 ssid
,
1577 const char *objname
,
1581 struct class_datum
*cladatum
= NULL
;
1582 struct context
*scontext
= NULL
, *tcontext
= NULL
, newcontext
;
1583 struct role_trans
*roletr
= NULL
;
1584 struct avtab_key avkey
;
1585 struct avtab_datum
*avdatum
;
1586 struct avtab_node
*node
;
1591 if (!ss_initialized
) {
1592 switch (orig_tclass
) {
1593 case SECCLASS_PROCESS
: /* kernel value */
1603 context_init(&newcontext
);
1605 read_lock(&policy_rwlock
);
1608 tclass
= unmap_class(orig_tclass
);
1609 sock
= security_is_socket_class(orig_tclass
);
1611 tclass
= orig_tclass
;
1612 sock
= security_is_socket_class(map_class(tclass
));
1615 scontext
= sidtab_search(&sidtab
, ssid
);
1617 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1622 tcontext
= sidtab_search(&sidtab
, tsid
);
1624 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1630 if (tclass
&& tclass
<= policydb
.p_classes
.nprim
)
1631 cladatum
= policydb
.class_val_to_struct
[tclass
- 1];
1633 /* Set the user identity. */
1634 switch (specified
) {
1635 case AVTAB_TRANSITION
:
1637 if (cladatum
&& cladatum
->default_user
== DEFAULT_TARGET
) {
1638 newcontext
.user
= tcontext
->user
;
1640 /* notice this gets both DEFAULT_SOURCE and unset */
1641 /* Use the process user identity. */
1642 newcontext
.user
= scontext
->user
;
1646 /* Use the related object owner. */
1647 newcontext
.user
= tcontext
->user
;
1651 /* Set the role to default values. */
1652 if (cladatum
&& cladatum
->default_role
== DEFAULT_SOURCE
) {
1653 newcontext
.role
= scontext
->role
;
1654 } else if (cladatum
&& cladatum
->default_role
== DEFAULT_TARGET
) {
1655 newcontext
.role
= tcontext
->role
;
1657 if ((tclass
== policydb
.process_class
) || (sock
== true))
1658 newcontext
.role
= scontext
->role
;
1660 newcontext
.role
= OBJECT_R_VAL
;
1663 /* Set the type to default values. */
1664 if (cladatum
&& cladatum
->default_type
== DEFAULT_SOURCE
) {
1665 newcontext
.type
= scontext
->type
;
1666 } else if (cladatum
&& cladatum
->default_type
== DEFAULT_TARGET
) {
1667 newcontext
.type
= tcontext
->type
;
1669 if ((tclass
== policydb
.process_class
) || (sock
== true)) {
1670 /* Use the type of process. */
1671 newcontext
.type
= scontext
->type
;
1673 /* Use the type of the related object. */
1674 newcontext
.type
= tcontext
->type
;
1678 /* Look for a type transition/member/change rule. */
1679 avkey
.source_type
= scontext
->type
;
1680 avkey
.target_type
= tcontext
->type
;
1681 avkey
.target_class
= tclass
;
1682 avkey
.specified
= specified
;
1683 avdatum
= avtab_search(&policydb
.te_avtab
, &avkey
);
1685 /* If no permanent rule, also check for enabled conditional rules */
1687 node
= avtab_search_node(&policydb
.te_cond_avtab
, &avkey
);
1688 for (; node
; node
= avtab_search_node_next(node
, specified
)) {
1689 if (node
->key
.specified
& AVTAB_ENABLED
) {
1690 avdatum
= &node
->datum
;
1697 /* Use the type from the type transition/member/change rule. */
1698 newcontext
.type
= avdatum
->u
.data
;
1701 /* if we have a objname this is a file trans check so check those rules */
1703 filename_compute_type(&policydb
, &newcontext
, scontext
->type
,
1704 tcontext
->type
, tclass
, objname
);
1706 /* Check for class-specific changes. */
1707 if (specified
& AVTAB_TRANSITION
) {
1708 /* Look for a role transition rule. */
1709 for (roletr
= policydb
.role_tr
; roletr
; roletr
= roletr
->next
) {
1710 if ((roletr
->role
== scontext
->role
) &&
1711 (roletr
->type
== tcontext
->type
) &&
1712 (roletr
->tclass
== tclass
)) {
1713 /* Use the role transition rule. */
1714 newcontext
.role
= roletr
->new_role
;
1720 /* Set the MLS attributes.
1721 This is done last because it may allocate memory. */
1722 rc
= mls_compute_sid(scontext
, tcontext
, tclass
, specified
,
1727 /* Check the validity of the context. */
1728 if (!policydb_context_isvalid(&policydb
, &newcontext
)) {
1729 rc
= compute_sid_handle_invalid_context(scontext
,
1736 /* Obtain the sid for the context. */
1737 rc
= sidtab_context_to_sid(&sidtab
, &newcontext
, out_sid
);
1739 read_unlock(&policy_rwlock
);
1740 context_destroy(&newcontext
);
1746 * security_transition_sid - Compute the SID for a new subject/object.
1747 * @ssid: source security identifier
1748 * @tsid: target security identifier
1749 * @tclass: target security class
1750 * @out_sid: security identifier for new subject/object
1752 * Compute a SID to use for labeling a new subject or object in the
1753 * class @tclass based on a SID pair (@ssid, @tsid).
1754 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1755 * if insufficient memory is available, or %0 if the new SID was
1756 * computed successfully.
1758 int security_transition_sid(u32 ssid
, u32 tsid
, u16 tclass
,
1759 const struct qstr
*qstr
, u32
*out_sid
)
1761 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
,
1762 qstr
? qstr
->name
: NULL
, out_sid
, true);
1765 int security_transition_sid_user(u32 ssid
, u32 tsid
, u16 tclass
,
1766 const char *objname
, u32
*out_sid
)
1768 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
,
1769 objname
, out_sid
, false);
1773 * security_member_sid - Compute the SID for member selection.
1774 * @ssid: source security identifier
1775 * @tsid: target security identifier
1776 * @tclass: target security class
1777 * @out_sid: security identifier for selected member
1779 * Compute a SID to use when selecting a member of a polyinstantiated
1780 * object of class @tclass based on a SID pair (@ssid, @tsid).
1781 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1782 * if insufficient memory is available, or %0 if the SID was
1783 * computed successfully.
1785 int security_member_sid(u32 ssid
,
1790 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_MEMBER
, NULL
,
1795 * security_change_sid - Compute the SID for object relabeling.
1796 * @ssid: source security identifier
1797 * @tsid: target security identifier
1798 * @tclass: target security class
1799 * @out_sid: security identifier for selected member
1801 * Compute a SID to use for relabeling an object of class @tclass
1802 * based on a SID pair (@ssid, @tsid).
1803 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1804 * if insufficient memory is available, or %0 if the SID was
1805 * computed successfully.
1807 int security_change_sid(u32 ssid
,
1812 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_CHANGE
, NULL
,
1816 /* Clone the SID into the new SID table. */
1817 static int clone_sid(u32 sid
,
1818 struct context
*context
,
1821 struct sidtab
*s
= arg
;
1823 if (sid
> SECINITSID_NUM
)
1824 return sidtab_insert(s
, sid
, context
);
1829 static inline int convert_context_handle_invalid_context(struct context
*context
)
1834 if (selinux_enforcing
)
1837 if (!context_struct_to_string(context
, &s
, &len
)) {
1838 printk(KERN_WARNING
"SELinux: Context %s would be invalid if enforcing\n", s
);
1844 struct convert_context_args
{
1845 struct policydb
*oldp
;
1846 struct policydb
*newp
;
1850 * Convert the values in the security context
1851 * structure `c' from the values specified
1852 * in the policy `p->oldp' to the values specified
1853 * in the policy `p->newp'. Verify that the
1854 * context is valid under the new policy.
1856 static int convert_context(u32 key
,
1860 struct convert_context_args
*args
;
1861 struct context oldc
;
1862 struct ocontext
*oc
;
1863 struct mls_range
*range
;
1864 struct role_datum
*role
;
1865 struct type_datum
*typdatum
;
1866 struct user_datum
*usrdatum
;
1871 if (key
<= SECINITSID_NUM
)
1880 s
= kstrdup(c
->str
, GFP_KERNEL
);
1884 rc
= string_to_context_struct(args
->newp
, NULL
, s
,
1885 c
->len
, &ctx
, SECSID_NULL
);
1888 printk(KERN_INFO
"SELinux: Context %s became valid (mapped).\n",
1890 /* Replace string with mapped representation. */
1892 memcpy(c
, &ctx
, sizeof(*c
));
1894 } else if (rc
== -EINVAL
) {
1895 /* Retain string representation for later mapping. */
1899 /* Other error condition, e.g. ENOMEM. */
1900 printk(KERN_ERR
"SELinux: Unable to map context %s, rc = %d.\n",
1906 rc
= context_cpy(&oldc
, c
);
1910 /* Convert the user. */
1912 usrdatum
= hashtab_search(args
->newp
->p_users
.table
,
1913 sym_name(args
->oldp
, SYM_USERS
, c
->user
- 1));
1916 c
->user
= usrdatum
->value
;
1918 /* Convert the role. */
1920 role
= hashtab_search(args
->newp
->p_roles
.table
,
1921 sym_name(args
->oldp
, SYM_ROLES
, c
->role
- 1));
1924 c
->role
= role
->value
;
1926 /* Convert the type. */
1928 typdatum
= hashtab_search(args
->newp
->p_types
.table
,
1929 sym_name(args
->oldp
, SYM_TYPES
, c
->type
- 1));
1932 c
->type
= typdatum
->value
;
1934 /* Convert the MLS fields if dealing with MLS policies */
1935 if (args
->oldp
->mls_enabled
&& args
->newp
->mls_enabled
) {
1936 rc
= mls_convert_context(args
->oldp
, args
->newp
, c
);
1939 } else if (args
->oldp
->mls_enabled
&& !args
->newp
->mls_enabled
) {
1941 * Switching between MLS and non-MLS policy:
1942 * free any storage used by the MLS fields in the
1943 * context for all existing entries in the sidtab.
1945 mls_context_destroy(c
);
1946 } else if (!args
->oldp
->mls_enabled
&& args
->newp
->mls_enabled
) {
1948 * Switching between non-MLS and MLS policy:
1949 * ensure that the MLS fields of the context for all
1950 * existing entries in the sidtab are filled in with a
1951 * suitable default value, likely taken from one of the
1954 oc
= args
->newp
->ocontexts
[OCON_ISID
];
1955 while (oc
&& oc
->sid
[0] != SECINITSID_UNLABELED
)
1959 printk(KERN_ERR
"SELinux: unable to look up"
1960 " the initial SIDs list\n");
1963 range
= &oc
->context
[0].range
;
1964 rc
= mls_range_set(c
, range
);
1969 /* Check the validity of the new context. */
1970 if (!policydb_context_isvalid(args
->newp
, c
)) {
1971 rc
= convert_context_handle_invalid_context(&oldc
);
1976 context_destroy(&oldc
);
1982 /* Map old representation to string and save it. */
1983 rc
= context_struct_to_string(&oldc
, &s
, &len
);
1986 context_destroy(&oldc
);
1990 printk(KERN_INFO
"SELinux: Context %s became invalid (unmapped).\n",
1996 static void security_load_policycaps(void)
1999 struct ebitmap_node
*node
;
2001 selinux_policycap_netpeer
= ebitmap_get_bit(&policydb
.policycaps
,
2002 POLICYDB_CAPABILITY_NETPEER
);
2003 selinux_policycap_openperm
= ebitmap_get_bit(&policydb
.policycaps
,
2004 POLICYDB_CAPABILITY_OPENPERM
);
2005 selinux_policycap_extsockclass
= ebitmap_get_bit(&policydb
.policycaps
,
2006 POLICYDB_CAPABILITY_EXTSOCKCLASS
);
2007 selinux_policycap_alwaysnetwork
= ebitmap_get_bit(&policydb
.policycaps
,
2008 POLICYDB_CAPABILITY_ALWAYSNETWORK
);
2009 selinux_policycap_cgroupseclabel
=
2010 ebitmap_get_bit(&policydb
.policycaps
,
2011 POLICYDB_CAPABILITY_CGROUPSECLABEL
);
2013 for (i
= 0; i
< ARRAY_SIZE(selinux_policycap_names
); i
++)
2014 pr_info("SELinux: policy capability %s=%d\n",
2015 selinux_policycap_names
[i
],
2016 ebitmap_get_bit(&policydb
.policycaps
, i
));
2018 ebitmap_for_each_positive_bit(&policydb
.policycaps
, node
, i
) {
2019 if (i
>= ARRAY_SIZE(selinux_policycap_names
))
2020 pr_info("SELinux: unknown policy capability %u\n",
2025 static int security_preserve_bools(struct policydb
*p
);
2028 * security_load_policy - Load a security policy configuration.
2029 * @data: binary policy data
2030 * @len: length of data in bytes
2032 * Load a new set of security policy configuration data,
2033 * validate it and convert the SID table as necessary.
2034 * This function will flush the access vector cache after
2035 * loading the new policy.
2037 int security_load_policy(void *data
, size_t len
)
2039 struct policydb
*oldpolicydb
, *newpolicydb
;
2040 struct sidtab oldsidtab
, newsidtab
;
2041 struct selinux_mapping
*oldmap
, *map
= NULL
;
2042 struct convert_context_args args
;
2046 struct policy_file file
= { data
, len
}, *fp
= &file
;
2048 oldpolicydb
= kzalloc(2 * sizeof(*oldpolicydb
), GFP_KERNEL
);
2053 newpolicydb
= oldpolicydb
+ 1;
2055 if (!ss_initialized
) {
2057 ebitmap_cache_init();
2058 rc
= policydb_read(&policydb
, fp
);
2060 avtab_cache_destroy();
2061 ebitmap_cache_destroy();
2066 rc
= selinux_set_mapping(&policydb
, secclass_map
,
2068 ¤t_mapping_size
);
2070 policydb_destroy(&policydb
);
2071 avtab_cache_destroy();
2072 ebitmap_cache_destroy();
2076 rc
= policydb_load_isids(&policydb
, &sidtab
);
2078 policydb_destroy(&policydb
);
2079 avtab_cache_destroy();
2080 ebitmap_cache_destroy();
2084 security_load_policycaps();
2086 seqno
= ++latest_granting
;
2087 selinux_complete_init();
2088 avc_ss_reset(seqno
);
2089 selnl_notify_policyload(seqno
);
2090 selinux_status_update_policyload(seqno
);
2091 selinux_netlbl_cache_invalidate();
2092 selinux_xfrm_notify_policyload();
2097 sidtab_hash_eval(&sidtab
, "sids");
2100 rc
= policydb_read(newpolicydb
, fp
);
2104 newpolicydb
->len
= len
;
2105 /* If switching between different policy types, log MLS status */
2106 if (policydb
.mls_enabled
&& !newpolicydb
->mls_enabled
)
2107 printk(KERN_INFO
"SELinux: Disabling MLS support...\n");
2108 else if (!policydb
.mls_enabled
&& newpolicydb
->mls_enabled
)
2109 printk(KERN_INFO
"SELinux: Enabling MLS support...\n");
2111 rc
= policydb_load_isids(newpolicydb
, &newsidtab
);
2113 printk(KERN_ERR
"SELinux: unable to load the initial SIDs\n");
2114 policydb_destroy(newpolicydb
);
2118 rc
= selinux_set_mapping(newpolicydb
, secclass_map
, &map
, &map_size
);
2122 rc
= security_preserve_bools(newpolicydb
);
2124 printk(KERN_ERR
"SELinux: unable to preserve booleans\n");
2128 /* Clone the SID table. */
2129 sidtab_shutdown(&sidtab
);
2131 rc
= sidtab_map(&sidtab
, clone_sid
, &newsidtab
);
2136 * Convert the internal representations of contexts
2137 * in the new SID table.
2139 args
.oldp
= &policydb
;
2140 args
.newp
= newpolicydb
;
2141 rc
= sidtab_map(&newsidtab
, convert_context
, &args
);
2143 printk(KERN_ERR
"SELinux: unable to convert the internal"
2144 " representation of contexts in the new SID"
2149 /* Save the old policydb and SID table to free later. */
2150 memcpy(oldpolicydb
, &policydb
, sizeof(policydb
));
2151 sidtab_set(&oldsidtab
, &sidtab
);
2153 /* Install the new policydb and SID table. */
2154 write_lock_irq(&policy_rwlock
);
2155 memcpy(&policydb
, newpolicydb
, sizeof(policydb
));
2156 sidtab_set(&sidtab
, &newsidtab
);
2157 security_load_policycaps();
2158 oldmap
= current_mapping
;
2159 current_mapping
= map
;
2160 current_mapping_size
= map_size
;
2161 seqno
= ++latest_granting
;
2162 write_unlock_irq(&policy_rwlock
);
2164 /* Free the old policydb and SID table. */
2165 policydb_destroy(oldpolicydb
);
2166 sidtab_destroy(&oldsidtab
);
2169 avc_ss_reset(seqno
);
2170 selnl_notify_policyload(seqno
);
2171 selinux_status_update_policyload(seqno
);
2172 selinux_netlbl_cache_invalidate();
2173 selinux_xfrm_notify_policyload();
2180 sidtab_destroy(&newsidtab
);
2181 policydb_destroy(newpolicydb
);
2188 size_t security_policydb_len(void)
2192 read_lock(&policy_rwlock
);
2194 read_unlock(&policy_rwlock
);
2200 * security_port_sid - Obtain the SID for a port.
2201 * @protocol: protocol number
2202 * @port: port number
2203 * @out_sid: security identifier
2205 int security_port_sid(u8 protocol
, u16 port
, u32
*out_sid
)
2210 read_lock(&policy_rwlock
);
2212 c
= policydb
.ocontexts
[OCON_PORT
];
2214 if (c
->u
.port
.protocol
== protocol
&&
2215 c
->u
.port
.low_port
<= port
&&
2216 c
->u
.port
.high_port
>= port
)
2223 rc
= sidtab_context_to_sid(&sidtab
,
2229 *out_sid
= c
->sid
[0];
2231 *out_sid
= SECINITSID_PORT
;
2235 read_unlock(&policy_rwlock
);
2240 * security_pkey_sid - Obtain the SID for a pkey.
2241 * @subnet_prefix: Subnet Prefix
2242 * @pkey_num: pkey number
2243 * @out_sid: security identifier
2245 int security_ib_pkey_sid(u64 subnet_prefix
, u16 pkey_num
, u32
*out_sid
)
2250 read_lock(&policy_rwlock
);
2252 c
= policydb
.ocontexts
[OCON_IBPKEY
];
2254 if (c
->u
.ibpkey
.low_pkey
<= pkey_num
&&
2255 c
->u
.ibpkey
.high_pkey
>= pkey_num
&&
2256 c
->u
.ibpkey
.subnet_prefix
== subnet_prefix
)
2264 rc
= sidtab_context_to_sid(&sidtab
,
2270 *out_sid
= c
->sid
[0];
2272 *out_sid
= SECINITSID_UNLABELED
;
2275 read_unlock(&policy_rwlock
);
2280 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2281 * @dev_name: device name
2282 * @port: port number
2283 * @out_sid: security identifier
2285 int security_ib_endport_sid(const char *dev_name
, u8 port_num
, u32
*out_sid
)
2290 read_lock(&policy_rwlock
);
2292 c
= policydb
.ocontexts
[OCON_IBENDPORT
];
2294 if (c
->u
.ibendport
.port
== port_num
&&
2295 !strncmp(c
->u
.ibendport
.dev_name
,
2297 IB_DEVICE_NAME_MAX
))
2305 rc
= sidtab_context_to_sid(&sidtab
,
2311 *out_sid
= c
->sid
[0];
2313 *out_sid
= SECINITSID_UNLABELED
;
2316 read_unlock(&policy_rwlock
);
2321 * security_netif_sid - Obtain the SID for a network interface.
2322 * @name: interface name
2323 * @if_sid: interface SID
2325 int security_netif_sid(char *name
, u32
*if_sid
)
2330 read_lock(&policy_rwlock
);
2332 c
= policydb
.ocontexts
[OCON_NETIF
];
2334 if (strcmp(name
, c
->u
.name
) == 0)
2340 if (!c
->sid
[0] || !c
->sid
[1]) {
2341 rc
= sidtab_context_to_sid(&sidtab
,
2346 rc
= sidtab_context_to_sid(&sidtab
,
2352 *if_sid
= c
->sid
[0];
2354 *if_sid
= SECINITSID_NETIF
;
2357 read_unlock(&policy_rwlock
);
2361 static int match_ipv6_addrmask(u32
*input
, u32
*addr
, u32
*mask
)
2365 for (i
= 0; i
< 4; i
++)
2366 if (addr
[i
] != (input
[i
] & mask
[i
])) {
2375 * security_node_sid - Obtain the SID for a node (host).
2376 * @domain: communication domain aka address family
2378 * @addrlen: address length in bytes
2379 * @out_sid: security identifier
2381 int security_node_sid(u16 domain
,
2389 read_lock(&policy_rwlock
);
2396 if (addrlen
!= sizeof(u32
))
2399 addr
= *((u32
*)addrp
);
2401 c
= policydb
.ocontexts
[OCON_NODE
];
2403 if (c
->u
.node
.addr
== (addr
& c
->u
.node
.mask
))
2412 if (addrlen
!= sizeof(u64
) * 2)
2414 c
= policydb
.ocontexts
[OCON_NODE6
];
2416 if (match_ipv6_addrmask(addrp
, c
->u
.node6
.addr
,
2425 *out_sid
= SECINITSID_NODE
;
2431 rc
= sidtab_context_to_sid(&sidtab
,
2437 *out_sid
= c
->sid
[0];
2439 *out_sid
= SECINITSID_NODE
;
2444 read_unlock(&policy_rwlock
);
2451 * security_get_user_sids - Obtain reachable SIDs for a user.
2452 * @fromsid: starting SID
2453 * @username: username
2454 * @sids: array of reachable SIDs for user
2455 * @nel: number of elements in @sids
2457 * Generate the set of SIDs for legal security contexts
2458 * for a given user that can be reached by @fromsid.
2459 * Set *@sids to point to a dynamically allocated
2460 * array containing the set of SIDs. Set *@nel to the
2461 * number of elements in the array.
2464 int security_get_user_sids(u32 fromsid
,
2469 struct context
*fromcon
, usercon
;
2470 u32
*mysids
= NULL
, *mysids2
, sid
;
2471 u32 mynel
= 0, maxnel
= SIDS_NEL
;
2472 struct user_datum
*user
;
2473 struct role_datum
*role
;
2474 struct ebitmap_node
*rnode
, *tnode
;
2480 if (!ss_initialized
)
2483 read_lock(&policy_rwlock
);
2485 context_init(&usercon
);
2488 fromcon
= sidtab_search(&sidtab
, fromsid
);
2493 user
= hashtab_search(policydb
.p_users
.table
, username
);
2497 usercon
.user
= user
->value
;
2500 mysids
= kcalloc(maxnel
, sizeof(*mysids
), GFP_ATOMIC
);
2504 ebitmap_for_each_positive_bit(&user
->roles
, rnode
, i
) {
2505 role
= policydb
.role_val_to_struct
[i
];
2506 usercon
.role
= i
+ 1;
2507 ebitmap_for_each_positive_bit(&role
->types
, tnode
, j
) {
2508 usercon
.type
= j
+ 1;
2510 if (mls_setup_user_range(fromcon
, user
, &usercon
))
2513 rc
= sidtab_context_to_sid(&sidtab
, &usercon
, &sid
);
2516 if (mynel
< maxnel
) {
2517 mysids
[mynel
++] = sid
;
2521 mysids2
= kcalloc(maxnel
, sizeof(*mysids2
), GFP_ATOMIC
);
2524 memcpy(mysids2
, mysids
, mynel
* sizeof(*mysids2
));
2527 mysids
[mynel
++] = sid
;
2533 read_unlock(&policy_rwlock
);
2540 mysids2
= kcalloc(mynel
, sizeof(*mysids2
), GFP_KERNEL
);
2545 for (i
= 0, j
= 0; i
< mynel
; i
++) {
2546 struct av_decision dummy_avd
;
2547 rc
= avc_has_perm_noaudit(fromsid
, mysids
[i
],
2548 SECCLASS_PROCESS
, /* kernel value */
2549 PROCESS__TRANSITION
, AVC_STRICT
,
2552 mysids2
[j
++] = mysids
[i
];
2564 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2565 * @fstype: filesystem type
2566 * @path: path from root of mount
2567 * @sclass: file security class
2568 * @sid: SID for path
2570 * Obtain a SID to use for a file in a filesystem that
2571 * cannot support xattr or use a fixed labeling behavior like
2572 * transition SIDs or task SIDs.
2574 * The caller must acquire the policy_rwlock before calling this function.
2576 static inline int __security_genfs_sid(const char *fstype
,
2583 struct genfs
*genfs
;
2587 while (path
[0] == '/' && path
[1] == '/')
2590 sclass
= unmap_class(orig_sclass
);
2591 *sid
= SECINITSID_UNLABELED
;
2593 for (genfs
= policydb
.genfs
; genfs
; genfs
= genfs
->next
) {
2594 cmp
= strcmp(fstype
, genfs
->fstype
);
2603 for (c
= genfs
->head
; c
; c
= c
->next
) {
2604 len
= strlen(c
->u
.name
);
2605 if ((!c
->v
.sclass
|| sclass
== c
->v
.sclass
) &&
2606 (strncmp(c
->u
.name
, path
, len
) == 0))
2615 rc
= sidtab_context_to_sid(&sidtab
, &c
->context
[0], &c
->sid
[0]);
2627 * security_genfs_sid - Obtain a SID for a file in a filesystem
2628 * @fstype: filesystem type
2629 * @path: path from root of mount
2630 * @sclass: file security class
2631 * @sid: SID for path
2633 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2636 int security_genfs_sid(const char *fstype
,
2643 read_lock(&policy_rwlock
);
2644 retval
= __security_genfs_sid(fstype
, path
, orig_sclass
, sid
);
2645 read_unlock(&policy_rwlock
);
2650 * security_fs_use - Determine how to handle labeling for a filesystem.
2651 * @sb: superblock in question
2653 int security_fs_use(struct super_block
*sb
)
2657 struct superblock_security_struct
*sbsec
= sb
->s_security
;
2658 const char *fstype
= sb
->s_type
->name
;
2660 read_lock(&policy_rwlock
);
2662 c
= policydb
.ocontexts
[OCON_FSUSE
];
2664 if (strcmp(fstype
, c
->u
.name
) == 0)
2670 sbsec
->behavior
= c
->v
.behavior
;
2672 rc
= sidtab_context_to_sid(&sidtab
, &c
->context
[0],
2677 sbsec
->sid
= c
->sid
[0];
2679 rc
= __security_genfs_sid(fstype
, "/", SECCLASS_DIR
,
2682 sbsec
->behavior
= SECURITY_FS_USE_NONE
;
2685 sbsec
->behavior
= SECURITY_FS_USE_GENFS
;
2690 read_unlock(&policy_rwlock
);
2694 int security_get_bools(int *len
, char ***names
, int **values
)
2698 read_lock(&policy_rwlock
);
2703 *len
= policydb
.p_bools
.nprim
;
2708 *names
= kcalloc(*len
, sizeof(char *), GFP_ATOMIC
);
2713 *values
= kcalloc(*len
, sizeof(int), GFP_ATOMIC
);
2717 for (i
= 0; i
< *len
; i
++) {
2718 (*values
)[i
] = policydb
.bool_val_to_struct
[i
]->state
;
2721 (*names
)[i
] = kstrdup(sym_name(&policydb
, SYM_BOOLS
, i
), GFP_ATOMIC
);
2727 read_unlock(&policy_rwlock
);
2731 for (i
= 0; i
< *len
; i
++)
2739 int security_set_bools(int len
, int *values
)
2742 int lenp
, seqno
= 0;
2743 struct cond_node
*cur
;
2745 write_lock_irq(&policy_rwlock
);
2748 lenp
= policydb
.p_bools
.nprim
;
2752 for (i
= 0; i
< len
; i
++) {
2753 if (!!values
[i
] != policydb
.bool_val_to_struct
[i
]->state
) {
2754 audit_log(current
->audit_context
, GFP_ATOMIC
,
2755 AUDIT_MAC_CONFIG_CHANGE
,
2756 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2757 sym_name(&policydb
, SYM_BOOLS
, i
),
2759 policydb
.bool_val_to_struct
[i
]->state
,
2760 from_kuid(&init_user_ns
, audit_get_loginuid(current
)),
2761 audit_get_sessionid(current
));
2764 policydb
.bool_val_to_struct
[i
]->state
= 1;
2766 policydb
.bool_val_to_struct
[i
]->state
= 0;
2769 for (cur
= policydb
.cond_list
; cur
; cur
= cur
->next
) {
2770 rc
= evaluate_cond_node(&policydb
, cur
);
2775 seqno
= ++latest_granting
;
2778 write_unlock_irq(&policy_rwlock
);
2780 avc_ss_reset(seqno
);
2781 selnl_notify_policyload(seqno
);
2782 selinux_status_update_policyload(seqno
);
2783 selinux_xfrm_notify_policyload();
2788 int security_get_bool_value(int index
)
2793 read_lock(&policy_rwlock
);
2796 len
= policydb
.p_bools
.nprim
;
2800 rc
= policydb
.bool_val_to_struct
[index
]->state
;
2802 read_unlock(&policy_rwlock
);
2806 static int security_preserve_bools(struct policydb
*p
)
2808 int rc
, nbools
= 0, *bvalues
= NULL
, i
;
2809 char **bnames
= NULL
;
2810 struct cond_bool_datum
*booldatum
;
2811 struct cond_node
*cur
;
2813 rc
= security_get_bools(&nbools
, &bnames
, &bvalues
);
2816 for (i
= 0; i
< nbools
; i
++) {
2817 booldatum
= hashtab_search(p
->p_bools
.table
, bnames
[i
]);
2819 booldatum
->state
= bvalues
[i
];
2821 for (cur
= p
->cond_list
; cur
; cur
= cur
->next
) {
2822 rc
= evaluate_cond_node(p
, cur
);
2829 for (i
= 0; i
< nbools
; i
++)
2838 * security_sid_mls_copy() - computes a new sid based on the given
2839 * sid and the mls portion of mls_sid.
2841 int security_sid_mls_copy(u32 sid
, u32 mls_sid
, u32
*new_sid
)
2843 struct context
*context1
;
2844 struct context
*context2
;
2845 struct context newcon
;
2851 if (!ss_initialized
|| !policydb
.mls_enabled
) {
2856 context_init(&newcon
);
2858 read_lock(&policy_rwlock
);
2861 context1
= sidtab_search(&sidtab
, sid
);
2863 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2869 context2
= sidtab_search(&sidtab
, mls_sid
);
2871 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2876 newcon
.user
= context1
->user
;
2877 newcon
.role
= context1
->role
;
2878 newcon
.type
= context1
->type
;
2879 rc
= mls_context_cpy(&newcon
, context2
);
2883 /* Check the validity of the new context. */
2884 if (!policydb_context_isvalid(&policydb
, &newcon
)) {
2885 rc
= convert_context_handle_invalid_context(&newcon
);
2887 if (!context_struct_to_string(&newcon
, &s
, &len
)) {
2888 audit_log(current
->audit_context
,
2889 GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2890 "op=security_sid_mls_copy "
2891 "invalid_context=%s", s
);
2898 rc
= sidtab_context_to_sid(&sidtab
, &newcon
, new_sid
);
2900 read_unlock(&policy_rwlock
);
2901 context_destroy(&newcon
);
2907 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2908 * @nlbl_sid: NetLabel SID
2909 * @nlbl_type: NetLabel labeling protocol type
2910 * @xfrm_sid: XFRM SID
2913 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2914 * resolved into a single SID it is returned via @peer_sid and the function
2915 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2916 * returns a negative value. A table summarizing the behavior is below:
2918 * | function return | @sid
2919 * ------------------------------+-----------------+-----------------
2920 * no peer labels | 0 | SECSID_NULL
2921 * single peer label | 0 | <peer_label>
2922 * multiple, consistent labels | 0 | <peer_label>
2923 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2926 int security_net_peersid_resolve(u32 nlbl_sid
, u32 nlbl_type
,
2931 struct context
*nlbl_ctx
;
2932 struct context
*xfrm_ctx
;
2934 *peer_sid
= SECSID_NULL
;
2936 /* handle the common (which also happens to be the set of easy) cases
2937 * right away, these two if statements catch everything involving a
2938 * single or absent peer SID/label */
2939 if (xfrm_sid
== SECSID_NULL
) {
2940 *peer_sid
= nlbl_sid
;
2943 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2944 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2946 if (nlbl_sid
== SECSID_NULL
|| nlbl_type
== NETLBL_NLTYPE_UNLABELED
) {
2947 *peer_sid
= xfrm_sid
;
2951 /* we don't need to check ss_initialized here since the only way both
2952 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2953 * security server was initialized and ss_initialized was true */
2954 if (!policydb
.mls_enabled
)
2957 read_lock(&policy_rwlock
);
2960 nlbl_ctx
= sidtab_search(&sidtab
, nlbl_sid
);
2962 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2963 __func__
, nlbl_sid
);
2967 xfrm_ctx
= sidtab_search(&sidtab
, xfrm_sid
);
2969 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2970 __func__
, xfrm_sid
);
2973 rc
= (mls_context_cmp(nlbl_ctx
, xfrm_ctx
) ? 0 : -EACCES
);
2977 /* at present NetLabel SIDs/labels really only carry MLS
2978 * information so if the MLS portion of the NetLabel SID
2979 * matches the MLS portion of the labeled XFRM SID/label
2980 * then pass along the XFRM SID as it is the most
2982 *peer_sid
= xfrm_sid
;
2984 read_unlock(&policy_rwlock
);
2988 static int get_classes_callback(void *k
, void *d
, void *args
)
2990 struct class_datum
*datum
= d
;
2991 char *name
= k
, **classes
= args
;
2992 int value
= datum
->value
- 1;
2994 classes
[value
] = kstrdup(name
, GFP_ATOMIC
);
2995 if (!classes
[value
])
3001 int security_get_classes(char ***classes
, int *nclasses
)
3005 read_lock(&policy_rwlock
);
3008 *nclasses
= policydb
.p_classes
.nprim
;
3009 *classes
= kcalloc(*nclasses
, sizeof(**classes
), GFP_ATOMIC
);
3013 rc
= hashtab_map(policydb
.p_classes
.table
, get_classes_callback
,
3017 for (i
= 0; i
< *nclasses
; i
++)
3018 kfree((*classes
)[i
]);
3023 read_unlock(&policy_rwlock
);
3027 static int get_permissions_callback(void *k
, void *d
, void *args
)
3029 struct perm_datum
*datum
= d
;
3030 char *name
= k
, **perms
= args
;
3031 int value
= datum
->value
- 1;
3033 perms
[value
] = kstrdup(name
, GFP_ATOMIC
);
3040 int security_get_permissions(char *class, char ***perms
, int *nperms
)
3043 struct class_datum
*match
;
3045 read_lock(&policy_rwlock
);
3048 match
= hashtab_search(policydb
.p_classes
.table
, class);
3050 printk(KERN_ERR
"SELinux: %s: unrecognized class %s\n",
3056 *nperms
= match
->permissions
.nprim
;
3057 *perms
= kcalloc(*nperms
, sizeof(**perms
), GFP_ATOMIC
);
3061 if (match
->comdatum
) {
3062 rc
= hashtab_map(match
->comdatum
->permissions
.table
,
3063 get_permissions_callback
, *perms
);
3068 rc
= hashtab_map(match
->permissions
.table
, get_permissions_callback
,
3074 read_unlock(&policy_rwlock
);
3078 read_unlock(&policy_rwlock
);
3079 for (i
= 0; i
< *nperms
; i
++)
3085 int security_get_reject_unknown(void)
3087 return policydb
.reject_unknown
;
3090 int security_get_allow_unknown(void)
3092 return policydb
.allow_unknown
;
3096 * security_policycap_supported - Check for a specific policy capability
3097 * @req_cap: capability
3100 * This function queries the currently loaded policy to see if it supports the
3101 * capability specified by @req_cap. Returns true (1) if the capability is
3102 * supported, false (0) if it isn't supported.
3105 int security_policycap_supported(unsigned int req_cap
)
3109 read_lock(&policy_rwlock
);
3110 rc
= ebitmap_get_bit(&policydb
.policycaps
, req_cap
);
3111 read_unlock(&policy_rwlock
);
3116 struct selinux_audit_rule
{
3118 struct context au_ctxt
;
3121 void selinux_audit_rule_free(void *vrule
)
3123 struct selinux_audit_rule
*rule
= vrule
;
3126 context_destroy(&rule
->au_ctxt
);
3131 int selinux_audit_rule_init(u32 field
, u32 op
, char *rulestr
, void **vrule
)
3133 struct selinux_audit_rule
*tmprule
;
3134 struct role_datum
*roledatum
;
3135 struct type_datum
*typedatum
;
3136 struct user_datum
*userdatum
;
3137 struct selinux_audit_rule
**rule
= (struct selinux_audit_rule
**)vrule
;
3142 if (!ss_initialized
)
3146 case AUDIT_SUBJ_USER
:
3147 case AUDIT_SUBJ_ROLE
:
3148 case AUDIT_SUBJ_TYPE
:
3149 case AUDIT_OBJ_USER
:
3150 case AUDIT_OBJ_ROLE
:
3151 case AUDIT_OBJ_TYPE
:
3152 /* only 'equals' and 'not equals' fit user, role, and type */
3153 if (op
!= Audit_equal
&& op
!= Audit_not_equal
)
3156 case AUDIT_SUBJ_SEN
:
3157 case AUDIT_SUBJ_CLR
:
3158 case AUDIT_OBJ_LEV_LOW
:
3159 case AUDIT_OBJ_LEV_HIGH
:
3160 /* we do not allow a range, indicated by the presence of '-' */
3161 if (strchr(rulestr
, '-'))
3165 /* only the above fields are valid */
3169 tmprule
= kzalloc(sizeof(struct selinux_audit_rule
), GFP_KERNEL
);
3173 context_init(&tmprule
->au_ctxt
);
3175 read_lock(&policy_rwlock
);
3177 tmprule
->au_seqno
= latest_granting
;
3180 case AUDIT_SUBJ_USER
:
3181 case AUDIT_OBJ_USER
:
3183 userdatum
= hashtab_search(policydb
.p_users
.table
, rulestr
);
3186 tmprule
->au_ctxt
.user
= userdatum
->value
;
3188 case AUDIT_SUBJ_ROLE
:
3189 case AUDIT_OBJ_ROLE
:
3191 roledatum
= hashtab_search(policydb
.p_roles
.table
, rulestr
);
3194 tmprule
->au_ctxt
.role
= roledatum
->value
;
3196 case AUDIT_SUBJ_TYPE
:
3197 case AUDIT_OBJ_TYPE
:
3199 typedatum
= hashtab_search(policydb
.p_types
.table
, rulestr
);
3202 tmprule
->au_ctxt
.type
= typedatum
->value
;
3204 case AUDIT_SUBJ_SEN
:
3205 case AUDIT_SUBJ_CLR
:
3206 case AUDIT_OBJ_LEV_LOW
:
3207 case AUDIT_OBJ_LEV_HIGH
:
3208 rc
= mls_from_string(rulestr
, &tmprule
->au_ctxt
, GFP_ATOMIC
);
3215 read_unlock(&policy_rwlock
);
3218 selinux_audit_rule_free(tmprule
);
3227 /* Check to see if the rule contains any selinux fields */
3228 int selinux_audit_rule_known(struct audit_krule
*rule
)
3232 for (i
= 0; i
< rule
->field_count
; i
++) {
3233 struct audit_field
*f
= &rule
->fields
[i
];
3235 case AUDIT_SUBJ_USER
:
3236 case AUDIT_SUBJ_ROLE
:
3237 case AUDIT_SUBJ_TYPE
:
3238 case AUDIT_SUBJ_SEN
:
3239 case AUDIT_SUBJ_CLR
:
3240 case AUDIT_OBJ_USER
:
3241 case AUDIT_OBJ_ROLE
:
3242 case AUDIT_OBJ_TYPE
:
3243 case AUDIT_OBJ_LEV_LOW
:
3244 case AUDIT_OBJ_LEV_HIGH
:
3252 int selinux_audit_rule_match(u32 sid
, u32 field
, u32 op
, void *vrule
,
3253 struct audit_context
*actx
)
3255 struct context
*ctxt
;
3256 struct mls_level
*level
;
3257 struct selinux_audit_rule
*rule
= vrule
;
3260 if (unlikely(!rule
)) {
3261 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3265 read_lock(&policy_rwlock
);
3267 if (rule
->au_seqno
< latest_granting
) {
3272 ctxt
= sidtab_search(&sidtab
, sid
);
3273 if (unlikely(!ctxt
)) {
3274 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3280 /* a field/op pair that is not caught here will simply fall through
3283 case AUDIT_SUBJ_USER
:
3284 case AUDIT_OBJ_USER
:
3287 match
= (ctxt
->user
== rule
->au_ctxt
.user
);
3289 case Audit_not_equal
:
3290 match
= (ctxt
->user
!= rule
->au_ctxt
.user
);
3294 case AUDIT_SUBJ_ROLE
:
3295 case AUDIT_OBJ_ROLE
:
3298 match
= (ctxt
->role
== rule
->au_ctxt
.role
);
3300 case Audit_not_equal
:
3301 match
= (ctxt
->role
!= rule
->au_ctxt
.role
);
3305 case AUDIT_SUBJ_TYPE
:
3306 case AUDIT_OBJ_TYPE
:
3309 match
= (ctxt
->type
== rule
->au_ctxt
.type
);
3311 case Audit_not_equal
:
3312 match
= (ctxt
->type
!= rule
->au_ctxt
.type
);
3316 case AUDIT_SUBJ_SEN
:
3317 case AUDIT_SUBJ_CLR
:
3318 case AUDIT_OBJ_LEV_LOW
:
3319 case AUDIT_OBJ_LEV_HIGH
:
3320 level
= ((field
== AUDIT_SUBJ_SEN
||
3321 field
== AUDIT_OBJ_LEV_LOW
) ?
3322 &ctxt
->range
.level
[0] : &ctxt
->range
.level
[1]);
3325 match
= mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
3328 case Audit_not_equal
:
3329 match
= !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
3333 match
= (mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
3335 !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
3339 match
= mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
3343 match
= (mls_level_dom(level
,
3344 &rule
->au_ctxt
.range
.level
[0]) &&
3345 !mls_level_eq(level
,
3346 &rule
->au_ctxt
.range
.level
[0]));
3349 match
= mls_level_dom(level
,
3350 &rule
->au_ctxt
.range
.level
[0]);
3356 read_unlock(&policy_rwlock
);
3360 static int (*aurule_callback
)(void) = audit_update_lsm_rules
;
3362 static int aurule_avc_callback(u32 event
)
3366 if (event
== AVC_CALLBACK_RESET
&& aurule_callback
)
3367 err
= aurule_callback();
3371 static int __init
aurule_init(void)
3375 err
= avc_add_callback(aurule_avc_callback
, AVC_CALLBACK_RESET
);
3377 panic("avc_add_callback() failed, error %d\n", err
);
3381 __initcall(aurule_init
);
3383 #ifdef CONFIG_NETLABEL
3385 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3386 * @secattr: the NetLabel packet security attributes
3387 * @sid: the SELinux SID
3390 * Attempt to cache the context in @ctx, which was derived from the packet in
3391 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3392 * already been initialized.
3395 static void security_netlbl_cache_add(struct netlbl_lsm_secattr
*secattr
,
3400 sid_cache
= kmalloc(sizeof(*sid_cache
), GFP_ATOMIC
);
3401 if (sid_cache
== NULL
)
3403 secattr
->cache
= netlbl_secattr_cache_alloc(GFP_ATOMIC
);
3404 if (secattr
->cache
== NULL
) {
3410 secattr
->cache
->free
= kfree
;
3411 secattr
->cache
->data
= sid_cache
;
3412 secattr
->flags
|= NETLBL_SECATTR_CACHE
;
3416 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3417 * @secattr: the NetLabel packet security attributes
3418 * @sid: the SELinux SID
3421 * Convert the given NetLabel security attributes in @secattr into a
3422 * SELinux SID. If the @secattr field does not contain a full SELinux
3423 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3424 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3425 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3426 * conversion for future lookups. Returns zero on success, negative values on
3430 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr
*secattr
,
3434 struct context
*ctx
;
3435 struct context ctx_new
;
3437 if (!ss_initialized
) {
3442 read_lock(&policy_rwlock
);
3444 if (secattr
->flags
& NETLBL_SECATTR_CACHE
)
3445 *sid
= *(u32
*)secattr
->cache
->data
;
3446 else if (secattr
->flags
& NETLBL_SECATTR_SECID
)
3447 *sid
= secattr
->attr
.secid
;
3448 else if (secattr
->flags
& NETLBL_SECATTR_MLS_LVL
) {
3450 ctx
= sidtab_search(&sidtab
, SECINITSID_NETMSG
);
3454 context_init(&ctx_new
);
3455 ctx_new
.user
= ctx
->user
;
3456 ctx_new
.role
= ctx
->role
;
3457 ctx_new
.type
= ctx
->type
;
3458 mls_import_netlbl_lvl(&ctx_new
, secattr
);
3459 if (secattr
->flags
& NETLBL_SECATTR_MLS_CAT
) {
3460 rc
= mls_import_netlbl_cat(&ctx_new
, secattr
);
3465 if (!mls_context_isvalid(&policydb
, &ctx_new
))
3468 rc
= sidtab_context_to_sid(&sidtab
, &ctx_new
, sid
);
3472 security_netlbl_cache_add(secattr
, *sid
);
3474 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
3478 read_unlock(&policy_rwlock
);
3481 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
3483 read_unlock(&policy_rwlock
);
3488 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3489 * @sid: the SELinux SID
3490 * @secattr: the NetLabel packet security attributes
3493 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3494 * Returns zero on success, negative values on failure.
3497 int security_netlbl_sid_to_secattr(u32 sid
, struct netlbl_lsm_secattr
*secattr
)
3500 struct context
*ctx
;
3502 if (!ss_initialized
)
3505 read_lock(&policy_rwlock
);
3508 ctx
= sidtab_search(&sidtab
, sid
);
3513 secattr
->domain
= kstrdup(sym_name(&policydb
, SYM_TYPES
, ctx
->type
- 1),
3515 if (secattr
->domain
== NULL
)
3518 secattr
->attr
.secid
= sid
;
3519 secattr
->flags
|= NETLBL_SECATTR_DOMAIN_CPY
| NETLBL_SECATTR_SECID
;
3520 mls_export_netlbl_lvl(ctx
, secattr
);
3521 rc
= mls_export_netlbl_cat(ctx
, secattr
);
3523 read_unlock(&policy_rwlock
);
3526 #endif /* CONFIG_NETLABEL */
3529 * security_read_policy - read the policy.
3530 * @data: binary policy data
3531 * @len: length of data in bytes
3534 int security_read_policy(void **data
, size_t *len
)
3537 struct policy_file fp
;
3539 if (!ss_initialized
)
3542 *len
= security_policydb_len();
3544 *data
= vmalloc_user(*len
);
3551 read_lock(&policy_rwlock
);
3552 rc
= policydb_write(&policydb
, &fp
);
3553 read_unlock(&policy_rwlock
);
3558 *len
= (unsigned long)fp
.data
- (unsigned long)*data
;