4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
52 * dentry->d_sb->s_dentry_lru_lock protects:
53 * - the dcache lru lists and counters
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
65 * dentry->d_inode->i_lock
67 * dentry->d_sb->s_dentry_lru_lock
68 * dcache_hash_bucket lock
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
74 * dentry->d_parent->d_lock
77 * If no ancestor relationship:
78 * if (dentry1 < dentry2)
82 int sysctl_vfs_cache_pressure __read_mostly
= 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
85 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
87 EXPORT_SYMBOL(rename_lock
);
89 static struct kmem_cache
*dentry_cache __read_mostly
;
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
100 static unsigned int d_hash_mask __read_mostly
;
101 static unsigned int d_hash_shift __read_mostly
;
103 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
105 static inline struct hlist_bl_head
*d_hash(const struct dentry
*parent
,
108 hash
+= (unsigned long) parent
/ L1_CACHE_BYTES
;
109 return dentry_hashtable
+ hash_32(hash
, d_hash_shift
);
112 /* Statistics gathering. */
113 struct dentry_stat_t dentry_stat
= {
117 static DEFINE_PER_CPU(long, nr_dentry
);
118 static DEFINE_PER_CPU(long, nr_dentry_unused
);
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 * Here we resort to our own counters instead of using generic per-cpu counters
124 * for consistency with what the vfs inode code does. We are expected to harvest
125 * better code and performance by having our own specialized counters.
127 * Please note that the loop is done over all possible CPUs, not over all online
128 * CPUs. The reason for this is that we don't want to play games with CPUs going
129 * on and off. If one of them goes off, we will just keep their counters.
131 * glommer: See cffbc8a for details, and if you ever intend to change this,
132 * please update all vfs counters to match.
134 static long get_nr_dentry(void)
138 for_each_possible_cpu(i
)
139 sum
+= per_cpu(nr_dentry
, i
);
140 return sum
< 0 ? 0 : sum
;
143 static long get_nr_dentry_unused(void)
147 for_each_possible_cpu(i
)
148 sum
+= per_cpu(nr_dentry_unused
, i
);
149 return sum
< 0 ? 0 : sum
;
152 int proc_nr_dentry(struct ctl_table
*table
, int write
, void __user
*buffer
,
153 size_t *lenp
, loff_t
*ppos
)
155 dentry_stat
.nr_dentry
= get_nr_dentry();
156 dentry_stat
.nr_unused
= get_nr_dentry_unused();
157 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
162 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
163 * The strings are both count bytes long, and count is non-zero.
165 #ifdef CONFIG_DCACHE_WORD_ACCESS
167 #include <asm/word-at-a-time.h>
169 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
170 * aligned allocation for this particular component. We don't
171 * strictly need the load_unaligned_zeropad() safety, but it
172 * doesn't hurt either.
174 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
175 * need the careful unaligned handling.
177 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
179 unsigned long a
,b
,mask
;
182 a
= *(unsigned long *)cs
;
183 b
= load_unaligned_zeropad(ct
);
184 if (tcount
< sizeof(unsigned long))
186 if (unlikely(a
!= b
))
188 cs
+= sizeof(unsigned long);
189 ct
+= sizeof(unsigned long);
190 tcount
-= sizeof(unsigned long);
194 mask
= bytemask_from_count(tcount
);
195 return unlikely(!!((a
^ b
) & mask
));
200 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
214 static inline int dentry_cmp(const struct dentry
*dentry
, const unsigned char *ct
, unsigned tcount
)
216 const unsigned char *cs
;
218 * Be careful about RCU walk racing with rename:
219 * use ACCESS_ONCE to fetch the name pointer.
221 * NOTE! Even if a rename will mean that the length
222 * was not loaded atomically, we don't care. The
223 * RCU walk will check the sequence count eventually,
224 * and catch it. And we won't overrun the buffer,
225 * because we're reading the name pointer atomically,
226 * and a dentry name is guaranteed to be properly
227 * terminated with a NUL byte.
229 * End result: even if 'len' is wrong, we'll exit
230 * early because the data cannot match (there can
231 * be no NUL in the ct/tcount data)
233 cs
= ACCESS_ONCE(dentry
->d_name
.name
);
234 smp_read_barrier_depends();
235 return dentry_string_cmp(cs
, ct
, tcount
);
238 struct external_name
{
241 struct rcu_head head
;
243 unsigned char name
[];
246 static inline struct external_name
*external_name(struct dentry
*dentry
)
248 return container_of(dentry
->d_name
.name
, struct external_name
, name
[0]);
251 static void __d_free(struct rcu_head
*head
)
253 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
255 WARN_ON(!hlist_unhashed(&dentry
->d_alias
));
256 kmem_cache_free(dentry_cache
, dentry
);
259 static void __d_free_external(struct rcu_head
*head
)
261 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
262 WARN_ON(!hlist_unhashed(&dentry
->d_alias
));
263 kfree(external_name(dentry
));
264 kmem_cache_free(dentry_cache
, dentry
);
267 static inline int dname_external(const struct dentry
*dentry
)
269 return dentry
->d_name
.name
!= dentry
->d_iname
;
272 static void dentry_free(struct dentry
*dentry
)
274 if (unlikely(dname_external(dentry
))) {
275 struct external_name
*p
= external_name(dentry
);
276 if (likely(atomic_dec_and_test(&p
->u
.count
))) {
277 call_rcu(&dentry
->d_u
.d_rcu
, __d_free_external
);
281 /* if dentry was never visible to RCU, immediate free is OK */
282 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
283 __d_free(&dentry
->d_u
.d_rcu
);
285 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
289 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
290 * @dentry: the target dentry
291 * After this call, in-progress rcu-walk path lookup will fail. This
292 * should be called after unhashing, and after changing d_inode (if
293 * the dentry has not already been unhashed).
295 static inline void dentry_rcuwalk_barrier(struct dentry
*dentry
)
297 assert_spin_locked(&dentry
->d_lock
);
298 /* Go through a barrier */
299 write_seqcount_barrier(&dentry
->d_seq
);
303 * Release the dentry's inode, using the filesystem
304 * d_iput() operation if defined. Dentry has no refcount
307 static void dentry_iput(struct dentry
* dentry
)
308 __releases(dentry
->d_lock
)
309 __releases(dentry
->d_inode
->i_lock
)
311 struct inode
*inode
= dentry
->d_inode
;
313 dentry
->d_inode
= NULL
;
314 hlist_del_init(&dentry
->d_alias
);
315 spin_unlock(&dentry
->d_lock
);
316 spin_unlock(&inode
->i_lock
);
318 fsnotify_inoderemove(inode
);
319 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
320 dentry
->d_op
->d_iput(dentry
, inode
);
324 spin_unlock(&dentry
->d_lock
);
329 * Release the dentry's inode, using the filesystem
330 * d_iput() operation if defined. dentry remains in-use.
332 static void dentry_unlink_inode(struct dentry
* dentry
)
333 __releases(dentry
->d_lock
)
334 __releases(dentry
->d_inode
->i_lock
)
336 struct inode
*inode
= dentry
->d_inode
;
337 __d_clear_type(dentry
);
338 dentry
->d_inode
= NULL
;
339 hlist_del_init(&dentry
->d_alias
);
340 dentry_rcuwalk_barrier(dentry
);
341 spin_unlock(&dentry
->d_lock
);
342 spin_unlock(&inode
->i_lock
);
344 fsnotify_inoderemove(inode
);
345 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
346 dentry
->d_op
->d_iput(dentry
, inode
);
352 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
353 * is in use - which includes both the "real" per-superblock
354 * LRU list _and_ the DCACHE_SHRINK_LIST use.
356 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
357 * on the shrink list (ie not on the superblock LRU list).
359 * The per-cpu "nr_dentry_unused" counters are updated with
360 * the DCACHE_LRU_LIST bit.
362 * These helper functions make sure we always follow the
363 * rules. d_lock must be held by the caller.
365 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
366 static void d_lru_add(struct dentry
*dentry
)
368 D_FLAG_VERIFY(dentry
, 0);
369 dentry
->d_flags
|= DCACHE_LRU_LIST
;
370 this_cpu_inc(nr_dentry_unused
);
371 WARN_ON_ONCE(!list_lru_add(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
374 static void d_lru_del(struct dentry
*dentry
)
376 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
377 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
378 this_cpu_dec(nr_dentry_unused
);
379 WARN_ON_ONCE(!list_lru_del(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
382 static void d_shrink_del(struct dentry
*dentry
)
384 D_FLAG_VERIFY(dentry
, DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
385 list_del_init(&dentry
->d_lru
);
386 dentry
->d_flags
&= ~(DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
387 this_cpu_dec(nr_dentry_unused
);
390 static void d_shrink_add(struct dentry
*dentry
, struct list_head
*list
)
392 D_FLAG_VERIFY(dentry
, 0);
393 list_add(&dentry
->d_lru
, list
);
394 dentry
->d_flags
|= DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
;
395 this_cpu_inc(nr_dentry_unused
);
399 * These can only be called under the global LRU lock, ie during the
400 * callback for freeing the LRU list. "isolate" removes it from the
401 * LRU lists entirely, while shrink_move moves it to the indicated
404 static void d_lru_isolate(struct dentry
*dentry
)
406 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
407 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
408 this_cpu_dec(nr_dentry_unused
);
409 list_del_init(&dentry
->d_lru
);
412 static void d_lru_shrink_move(struct dentry
*dentry
, struct list_head
*list
)
414 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
415 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
416 list_move_tail(&dentry
->d_lru
, list
);
420 * dentry_lru_(add|del)_list) must be called with d_lock held.
422 static void dentry_lru_add(struct dentry
*dentry
)
424 if (unlikely(!(dentry
->d_flags
& DCACHE_LRU_LIST
)))
429 * d_drop - drop a dentry
430 * @dentry: dentry to drop
432 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
433 * be found through a VFS lookup any more. Note that this is different from
434 * deleting the dentry - d_delete will try to mark the dentry negative if
435 * possible, giving a successful _negative_ lookup, while d_drop will
436 * just make the cache lookup fail.
438 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
439 * reason (NFS timeouts or autofs deletes).
441 * __d_drop requires dentry->d_lock.
443 void __d_drop(struct dentry
*dentry
)
445 if (!d_unhashed(dentry
)) {
446 struct hlist_bl_head
*b
;
448 * Hashed dentries are normally on the dentry hashtable,
449 * with the exception of those newly allocated by
450 * d_obtain_alias, which are always IS_ROOT:
452 if (unlikely(IS_ROOT(dentry
)))
453 b
= &dentry
->d_sb
->s_anon
;
455 b
= d_hash(dentry
->d_parent
, dentry
->d_name
.hash
);
458 __hlist_bl_del(&dentry
->d_hash
);
459 dentry
->d_hash
.pprev
= NULL
;
461 dentry_rcuwalk_barrier(dentry
);
464 EXPORT_SYMBOL(__d_drop
);
466 void d_drop(struct dentry
*dentry
)
468 spin_lock(&dentry
->d_lock
);
470 spin_unlock(&dentry
->d_lock
);
472 EXPORT_SYMBOL(d_drop
);
474 static void __dentry_kill(struct dentry
*dentry
)
476 struct dentry
*parent
= NULL
;
477 bool can_free
= true;
478 if (!IS_ROOT(dentry
))
479 parent
= dentry
->d_parent
;
482 * The dentry is now unrecoverably dead to the world.
484 lockref_mark_dead(&dentry
->d_lockref
);
487 * inform the fs via d_prune that this dentry is about to be
488 * unhashed and destroyed.
490 if (dentry
->d_flags
& DCACHE_OP_PRUNE
)
491 dentry
->d_op
->d_prune(dentry
);
493 if (dentry
->d_flags
& DCACHE_LRU_LIST
) {
494 if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
))
497 /* if it was on the hash then remove it */
499 list_del(&dentry
->d_u
.d_child
);
501 * Inform d_walk() that we are no longer attached to the
504 dentry
->d_flags
|= DCACHE_DENTRY_KILLED
;
506 spin_unlock(&parent
->d_lock
);
509 * dentry_iput drops the locks, at which point nobody (except
510 * transient RCU lookups) can reach this dentry.
512 BUG_ON((int)dentry
->d_lockref
.count
> 0);
513 this_cpu_dec(nr_dentry
);
514 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
515 dentry
->d_op
->d_release(dentry
);
517 spin_lock(&dentry
->d_lock
);
518 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
519 dentry
->d_flags
|= DCACHE_MAY_FREE
;
522 spin_unlock(&dentry
->d_lock
);
523 if (likely(can_free
))
528 * Finish off a dentry we've decided to kill.
529 * dentry->d_lock must be held, returns with it unlocked.
530 * If ref is non-zero, then decrement the refcount too.
531 * Returns dentry requiring refcount drop, or NULL if we're done.
533 static struct dentry
*dentry_kill(struct dentry
*dentry
)
534 __releases(dentry
->d_lock
)
536 struct inode
*inode
= dentry
->d_inode
;
537 struct dentry
*parent
= NULL
;
539 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
)))
542 if (!IS_ROOT(dentry
)) {
543 parent
= dentry
->d_parent
;
544 if (unlikely(!spin_trylock(&parent
->d_lock
))) {
546 spin_unlock(&inode
->i_lock
);
551 __dentry_kill(dentry
);
555 spin_unlock(&dentry
->d_lock
);
557 return dentry
; /* try again with same dentry */
560 static inline struct dentry
*lock_parent(struct dentry
*dentry
)
562 struct dentry
*parent
= dentry
->d_parent
;
565 if (unlikely((int)dentry
->d_lockref
.count
< 0))
567 if (likely(spin_trylock(&parent
->d_lock
)))
570 spin_unlock(&dentry
->d_lock
);
572 parent
= ACCESS_ONCE(dentry
->d_parent
);
573 spin_lock(&parent
->d_lock
);
575 * We can't blindly lock dentry until we are sure
576 * that we won't violate the locking order.
577 * Any changes of dentry->d_parent must have
578 * been done with parent->d_lock held, so
579 * spin_lock() above is enough of a barrier
580 * for checking if it's still our child.
582 if (unlikely(parent
!= dentry
->d_parent
)) {
583 spin_unlock(&parent
->d_lock
);
587 if (parent
!= dentry
)
588 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
597 * This is complicated by the fact that we do not want to put
598 * dentries that are no longer on any hash chain on the unused
599 * list: we'd much rather just get rid of them immediately.
601 * However, that implies that we have to traverse the dentry
602 * tree upwards to the parents which might _also_ now be
603 * scheduled for deletion (it may have been only waiting for
604 * its last child to go away).
606 * This tail recursion is done by hand as we don't want to depend
607 * on the compiler to always get this right (gcc generally doesn't).
608 * Real recursion would eat up our stack space.
612 * dput - release a dentry
613 * @dentry: dentry to release
615 * Release a dentry. This will drop the usage count and if appropriate
616 * call the dentry unlink method as well as removing it from the queues and
617 * releasing its resources. If the parent dentries were scheduled for release
618 * they too may now get deleted.
620 void dput(struct dentry
*dentry
)
622 if (unlikely(!dentry
))
626 if (lockref_put_or_lock(&dentry
->d_lockref
))
629 /* Unreachable? Get rid of it */
630 if (unlikely(d_unhashed(dentry
)))
633 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
)) {
634 if (dentry
->d_op
->d_delete(dentry
))
638 if (!(dentry
->d_flags
& DCACHE_REFERENCED
))
639 dentry
->d_flags
|= DCACHE_REFERENCED
;
640 dentry_lru_add(dentry
);
642 dentry
->d_lockref
.count
--;
643 spin_unlock(&dentry
->d_lock
);
647 dentry
= dentry_kill(dentry
);
654 /* This must be called with d_lock held */
655 static inline void __dget_dlock(struct dentry
*dentry
)
657 dentry
->d_lockref
.count
++;
660 static inline void __dget(struct dentry
*dentry
)
662 lockref_get(&dentry
->d_lockref
);
665 struct dentry
*dget_parent(struct dentry
*dentry
)
671 * Do optimistic parent lookup without any
675 ret
= ACCESS_ONCE(dentry
->d_parent
);
676 gotref
= lockref_get_not_zero(&ret
->d_lockref
);
678 if (likely(gotref
)) {
679 if (likely(ret
== ACCESS_ONCE(dentry
->d_parent
)))
686 * Don't need rcu_dereference because we re-check it was correct under
690 ret
= dentry
->d_parent
;
691 spin_lock(&ret
->d_lock
);
692 if (unlikely(ret
!= dentry
->d_parent
)) {
693 spin_unlock(&ret
->d_lock
);
698 BUG_ON(!ret
->d_lockref
.count
);
699 ret
->d_lockref
.count
++;
700 spin_unlock(&ret
->d_lock
);
703 EXPORT_SYMBOL(dget_parent
);
706 * d_find_alias - grab a hashed alias of inode
707 * @inode: inode in question
709 * If inode has a hashed alias, or is a directory and has any alias,
710 * acquire the reference to alias and return it. Otherwise return NULL.
711 * Notice that if inode is a directory there can be only one alias and
712 * it can be unhashed only if it has no children, or if it is the root
713 * of a filesystem, or if the directory was renamed and d_revalidate
714 * was the first vfs operation to notice.
716 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
717 * any other hashed alias over that one.
719 static struct dentry
*__d_find_alias(struct inode
*inode
)
721 struct dentry
*alias
, *discon_alias
;
725 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
726 spin_lock(&alias
->d_lock
);
727 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
728 if (IS_ROOT(alias
) &&
729 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
730 discon_alias
= alias
;
733 spin_unlock(&alias
->d_lock
);
737 spin_unlock(&alias
->d_lock
);
740 alias
= discon_alias
;
741 spin_lock(&alias
->d_lock
);
742 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
744 spin_unlock(&alias
->d_lock
);
747 spin_unlock(&alias
->d_lock
);
753 struct dentry
*d_find_alias(struct inode
*inode
)
755 struct dentry
*de
= NULL
;
757 if (!hlist_empty(&inode
->i_dentry
)) {
758 spin_lock(&inode
->i_lock
);
759 de
= __d_find_alias(inode
);
760 spin_unlock(&inode
->i_lock
);
764 EXPORT_SYMBOL(d_find_alias
);
767 * Try to kill dentries associated with this inode.
768 * WARNING: you must own a reference to inode.
770 void d_prune_aliases(struct inode
*inode
)
772 struct dentry
*dentry
;
774 spin_lock(&inode
->i_lock
);
775 hlist_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
776 spin_lock(&dentry
->d_lock
);
777 if (!dentry
->d_lockref
.count
) {
778 struct dentry
*parent
= lock_parent(dentry
);
779 if (likely(!dentry
->d_lockref
.count
)) {
780 __dentry_kill(dentry
);
785 spin_unlock(&parent
->d_lock
);
787 spin_unlock(&dentry
->d_lock
);
789 spin_unlock(&inode
->i_lock
);
791 EXPORT_SYMBOL(d_prune_aliases
);
793 static void shrink_dentry_list(struct list_head
*list
)
795 struct dentry
*dentry
, *parent
;
797 while (!list_empty(list
)) {
799 dentry
= list_entry(list
->prev
, struct dentry
, d_lru
);
800 spin_lock(&dentry
->d_lock
);
801 parent
= lock_parent(dentry
);
804 * The dispose list is isolated and dentries are not accounted
805 * to the LRU here, so we can simply remove it from the list
806 * here regardless of whether it is referenced or not.
808 d_shrink_del(dentry
);
811 * We found an inuse dentry which was not removed from
812 * the LRU because of laziness during lookup. Do not free it.
814 if ((int)dentry
->d_lockref
.count
> 0) {
815 spin_unlock(&dentry
->d_lock
);
817 spin_unlock(&parent
->d_lock
);
822 if (unlikely(dentry
->d_flags
& DCACHE_DENTRY_KILLED
)) {
823 bool can_free
= dentry
->d_flags
& DCACHE_MAY_FREE
;
824 spin_unlock(&dentry
->d_lock
);
826 spin_unlock(&parent
->d_lock
);
832 inode
= dentry
->d_inode
;
833 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
))) {
834 d_shrink_add(dentry
, list
);
835 spin_unlock(&dentry
->d_lock
);
837 spin_unlock(&parent
->d_lock
);
841 __dentry_kill(dentry
);
844 * We need to prune ancestors too. This is necessary to prevent
845 * quadratic behavior of shrink_dcache_parent(), but is also
846 * expected to be beneficial in reducing dentry cache
850 while (dentry
&& !lockref_put_or_lock(&dentry
->d_lockref
)) {
851 parent
= lock_parent(dentry
);
852 if (dentry
->d_lockref
.count
!= 1) {
853 dentry
->d_lockref
.count
--;
854 spin_unlock(&dentry
->d_lock
);
856 spin_unlock(&parent
->d_lock
);
859 inode
= dentry
->d_inode
; /* can't be NULL */
860 if (unlikely(!spin_trylock(&inode
->i_lock
))) {
861 spin_unlock(&dentry
->d_lock
);
863 spin_unlock(&parent
->d_lock
);
867 __dentry_kill(dentry
);
873 static enum lru_status
874 dentry_lru_isolate(struct list_head
*item
, spinlock_t
*lru_lock
, void *arg
)
876 struct list_head
*freeable
= arg
;
877 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
881 * we are inverting the lru lock/dentry->d_lock here,
882 * so use a trylock. If we fail to get the lock, just skip
885 if (!spin_trylock(&dentry
->d_lock
))
889 * Referenced dentries are still in use. If they have active
890 * counts, just remove them from the LRU. Otherwise give them
891 * another pass through the LRU.
893 if (dentry
->d_lockref
.count
) {
894 d_lru_isolate(dentry
);
895 spin_unlock(&dentry
->d_lock
);
899 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
900 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
901 spin_unlock(&dentry
->d_lock
);
904 * The list move itself will be made by the common LRU code. At
905 * this point, we've dropped the dentry->d_lock but keep the
906 * lru lock. This is safe to do, since every list movement is
907 * protected by the lru lock even if both locks are held.
909 * This is guaranteed by the fact that all LRU management
910 * functions are intermediated by the LRU API calls like
911 * list_lru_add and list_lru_del. List movement in this file
912 * only ever occur through this functions or through callbacks
913 * like this one, that are called from the LRU API.
915 * The only exceptions to this are functions like
916 * shrink_dentry_list, and code that first checks for the
917 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
918 * operating only with stack provided lists after they are
919 * properly isolated from the main list. It is thus, always a
925 d_lru_shrink_move(dentry
, freeable
);
926 spin_unlock(&dentry
->d_lock
);
932 * prune_dcache_sb - shrink the dcache
934 * @nr_to_scan : number of entries to try to free
935 * @nid: which node to scan for freeable entities
937 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
938 * done when we need more memory an called from the superblock shrinker
941 * This function may fail to free any resources if all the dentries are in
944 long prune_dcache_sb(struct super_block
*sb
, unsigned long nr_to_scan
,
950 freed
= list_lru_walk_node(&sb
->s_dentry_lru
, nid
, dentry_lru_isolate
,
951 &dispose
, &nr_to_scan
);
952 shrink_dentry_list(&dispose
);
956 static enum lru_status
dentry_lru_isolate_shrink(struct list_head
*item
,
957 spinlock_t
*lru_lock
, void *arg
)
959 struct list_head
*freeable
= arg
;
960 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
963 * we are inverting the lru lock/dentry->d_lock here,
964 * so use a trylock. If we fail to get the lock, just skip
967 if (!spin_trylock(&dentry
->d_lock
))
970 d_lru_shrink_move(dentry
, freeable
);
971 spin_unlock(&dentry
->d_lock
);
978 * shrink_dcache_sb - shrink dcache for a superblock
981 * Shrink the dcache for the specified super block. This is used to free
982 * the dcache before unmounting a file system.
984 void shrink_dcache_sb(struct super_block
*sb
)
991 freed
= list_lru_walk(&sb
->s_dentry_lru
,
992 dentry_lru_isolate_shrink
, &dispose
, UINT_MAX
);
994 this_cpu_sub(nr_dentry_unused
, freed
);
995 shrink_dentry_list(&dispose
);
998 EXPORT_SYMBOL(shrink_dcache_sb
);
1001 * enum d_walk_ret - action to talke during tree walk
1002 * @D_WALK_CONTINUE: contrinue walk
1003 * @D_WALK_QUIT: quit walk
1004 * @D_WALK_NORETRY: quit when retry is needed
1005 * @D_WALK_SKIP: skip this dentry and its children
1015 * d_walk - walk the dentry tree
1016 * @parent: start of walk
1017 * @data: data passed to @enter() and @finish()
1018 * @enter: callback when first entering the dentry
1019 * @finish: callback when successfully finished the walk
1021 * The @enter() and @finish() callbacks are called with d_lock held.
1023 static void d_walk(struct dentry
*parent
, void *data
,
1024 enum d_walk_ret (*enter
)(void *, struct dentry
*),
1025 void (*finish
)(void *))
1027 struct dentry
*this_parent
;
1028 struct list_head
*next
;
1030 enum d_walk_ret ret
;
1034 read_seqbegin_or_lock(&rename_lock
, &seq
);
1035 this_parent
= parent
;
1036 spin_lock(&this_parent
->d_lock
);
1038 ret
= enter(data
, this_parent
);
1040 case D_WALK_CONTINUE
:
1045 case D_WALK_NORETRY
:
1050 next
= this_parent
->d_subdirs
.next
;
1052 while (next
!= &this_parent
->d_subdirs
) {
1053 struct list_head
*tmp
= next
;
1054 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1057 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1059 ret
= enter(data
, dentry
);
1061 case D_WALK_CONTINUE
:
1064 spin_unlock(&dentry
->d_lock
);
1066 case D_WALK_NORETRY
:
1070 spin_unlock(&dentry
->d_lock
);
1074 if (!list_empty(&dentry
->d_subdirs
)) {
1075 spin_unlock(&this_parent
->d_lock
);
1076 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1077 this_parent
= dentry
;
1078 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1081 spin_unlock(&dentry
->d_lock
);
1084 * All done at this level ... ascend and resume the search.
1086 if (this_parent
!= parent
) {
1087 struct dentry
*child
= this_parent
;
1088 this_parent
= child
->d_parent
;
1091 spin_unlock(&child
->d_lock
);
1092 spin_lock(&this_parent
->d_lock
);
1095 * might go back up the wrong parent if we have had a rename
1098 if (this_parent
!= child
->d_parent
||
1099 (child
->d_flags
& DCACHE_DENTRY_KILLED
) ||
1100 need_seqretry(&rename_lock
, seq
)) {
1101 spin_unlock(&this_parent
->d_lock
);
1106 next
= child
->d_u
.d_child
.next
;
1109 if (need_seqretry(&rename_lock
, seq
)) {
1110 spin_unlock(&this_parent
->d_lock
);
1117 spin_unlock(&this_parent
->d_lock
);
1118 done_seqretry(&rename_lock
, seq
);
1129 * Search for at least 1 mount point in the dentry's subdirs.
1130 * We descend to the next level whenever the d_subdirs
1131 * list is non-empty and continue searching.
1134 static enum d_walk_ret
check_mount(void *data
, struct dentry
*dentry
)
1137 if (d_mountpoint(dentry
)) {
1141 return D_WALK_CONTINUE
;
1145 * have_submounts - check for mounts over a dentry
1146 * @parent: dentry to check.
1148 * Return true if the parent or its subdirectories contain
1151 int have_submounts(struct dentry
*parent
)
1155 d_walk(parent
, &ret
, check_mount
, NULL
);
1159 EXPORT_SYMBOL(have_submounts
);
1162 * Called by mount code to set a mountpoint and check if the mountpoint is
1163 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1164 * subtree can become unreachable).
1166 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1167 * this reason take rename_lock and d_lock on dentry and ancestors.
1169 int d_set_mounted(struct dentry
*dentry
)
1173 write_seqlock(&rename_lock
);
1174 for (p
= dentry
->d_parent
; !IS_ROOT(p
); p
= p
->d_parent
) {
1175 /* Need exclusion wrt. d_invalidate() */
1176 spin_lock(&p
->d_lock
);
1177 if (unlikely(d_unhashed(p
))) {
1178 spin_unlock(&p
->d_lock
);
1181 spin_unlock(&p
->d_lock
);
1183 spin_lock(&dentry
->d_lock
);
1184 if (!d_unlinked(dentry
)) {
1185 dentry
->d_flags
|= DCACHE_MOUNTED
;
1188 spin_unlock(&dentry
->d_lock
);
1190 write_sequnlock(&rename_lock
);
1195 * Search the dentry child list of the specified parent,
1196 * and move any unused dentries to the end of the unused
1197 * list for prune_dcache(). We descend to the next level
1198 * whenever the d_subdirs list is non-empty and continue
1201 * It returns zero iff there are no unused children,
1202 * otherwise it returns the number of children moved to
1203 * the end of the unused list. This may not be the total
1204 * number of unused children, because select_parent can
1205 * drop the lock and return early due to latency
1209 struct select_data
{
1210 struct dentry
*start
;
1211 struct list_head dispose
;
1215 static enum d_walk_ret
select_collect(void *_data
, struct dentry
*dentry
)
1217 struct select_data
*data
= _data
;
1218 enum d_walk_ret ret
= D_WALK_CONTINUE
;
1220 if (data
->start
== dentry
)
1223 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
1226 if (dentry
->d_flags
& DCACHE_LRU_LIST
)
1228 if (!dentry
->d_lockref
.count
) {
1229 d_shrink_add(dentry
, &data
->dispose
);
1234 * We can return to the caller if we have found some (this
1235 * ensures forward progress). We'll be coming back to find
1238 if (!list_empty(&data
->dispose
))
1239 ret
= need_resched() ? D_WALK_QUIT
: D_WALK_NORETRY
;
1245 * shrink_dcache_parent - prune dcache
1246 * @parent: parent of entries to prune
1248 * Prune the dcache to remove unused children of the parent dentry.
1250 void shrink_dcache_parent(struct dentry
*parent
)
1253 struct select_data data
;
1255 INIT_LIST_HEAD(&data
.dispose
);
1256 data
.start
= parent
;
1259 d_walk(parent
, &data
, select_collect
, NULL
);
1263 shrink_dentry_list(&data
.dispose
);
1267 EXPORT_SYMBOL(shrink_dcache_parent
);
1269 static enum d_walk_ret
umount_check(void *_data
, struct dentry
*dentry
)
1271 /* it has busy descendents; complain about those instead */
1272 if (!list_empty(&dentry
->d_subdirs
))
1273 return D_WALK_CONTINUE
;
1275 /* root with refcount 1 is fine */
1276 if (dentry
== _data
&& dentry
->d_lockref
.count
== 1)
1277 return D_WALK_CONTINUE
;
1279 printk(KERN_ERR
"BUG: Dentry %p{i=%lx,n=%pd} "
1280 " still in use (%d) [unmount of %s %s]\n",
1283 dentry
->d_inode
->i_ino
: 0UL,
1285 dentry
->d_lockref
.count
,
1286 dentry
->d_sb
->s_type
->name
,
1287 dentry
->d_sb
->s_id
);
1289 return D_WALK_CONTINUE
;
1292 static void do_one_tree(struct dentry
*dentry
)
1294 shrink_dcache_parent(dentry
);
1295 d_walk(dentry
, dentry
, umount_check
, NULL
);
1301 * destroy the dentries attached to a superblock on unmounting
1303 void shrink_dcache_for_umount(struct super_block
*sb
)
1305 struct dentry
*dentry
;
1307 WARN(down_read_trylock(&sb
->s_umount
), "s_umount should've been locked");
1309 dentry
= sb
->s_root
;
1311 do_one_tree(dentry
);
1313 while (!hlist_bl_empty(&sb
->s_anon
)) {
1314 dentry
= dget(hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
));
1315 do_one_tree(dentry
);
1319 struct detach_data
{
1320 struct select_data select
;
1321 struct dentry
*mountpoint
;
1323 static enum d_walk_ret
detach_and_collect(void *_data
, struct dentry
*dentry
)
1325 struct detach_data
*data
= _data
;
1327 if (d_mountpoint(dentry
)) {
1328 __dget_dlock(dentry
);
1329 data
->mountpoint
= dentry
;
1333 return select_collect(&data
->select
, dentry
);
1336 static void check_and_drop(void *_data
)
1338 struct detach_data
*data
= _data
;
1340 if (!data
->mountpoint
&& !data
->select
.found
)
1341 __d_drop(data
->select
.start
);
1345 * d_invalidate - detach submounts, prune dcache, and drop
1346 * @dentry: dentry to invalidate (aka detach, prune and drop)
1350 * The final d_drop is done as an atomic operation relative to
1351 * rename_lock ensuring there are no races with d_set_mounted. This
1352 * ensures there are no unhashed dentries on the path to a mountpoint.
1354 void d_invalidate(struct dentry
*dentry
)
1357 * If it's already been dropped, return OK.
1359 spin_lock(&dentry
->d_lock
);
1360 if (d_unhashed(dentry
)) {
1361 spin_unlock(&dentry
->d_lock
);
1364 spin_unlock(&dentry
->d_lock
);
1366 /* Negative dentries can be dropped without further checks */
1367 if (!dentry
->d_inode
) {
1373 struct detach_data data
;
1375 data
.mountpoint
= NULL
;
1376 INIT_LIST_HEAD(&data
.select
.dispose
);
1377 data
.select
.start
= dentry
;
1378 data
.select
.found
= 0;
1380 d_walk(dentry
, &data
, detach_and_collect
, check_and_drop
);
1382 if (data
.select
.found
)
1383 shrink_dentry_list(&data
.select
.dispose
);
1385 if (data
.mountpoint
) {
1386 detach_mounts(data
.mountpoint
);
1387 dput(data
.mountpoint
);
1390 if (!data
.mountpoint
&& !data
.select
.found
)
1396 EXPORT_SYMBOL(d_invalidate
);
1399 * __d_alloc - allocate a dcache entry
1400 * @sb: filesystem it will belong to
1401 * @name: qstr of the name
1403 * Allocates a dentry. It returns %NULL if there is insufficient memory
1404 * available. On a success the dentry is returned. The name passed in is
1405 * copied and the copy passed in may be reused after this call.
1408 struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1410 struct dentry
*dentry
;
1413 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1418 * We guarantee that the inline name is always NUL-terminated.
1419 * This way the memcpy() done by the name switching in rename
1420 * will still always have a NUL at the end, even if we might
1421 * be overwriting an internal NUL character
1423 dentry
->d_iname
[DNAME_INLINE_LEN
-1] = 0;
1424 if (name
->len
> DNAME_INLINE_LEN
-1) {
1425 size_t size
= offsetof(struct external_name
, name
[1]);
1426 struct external_name
*p
= kmalloc(size
+ name
->len
, GFP_KERNEL
);
1428 kmem_cache_free(dentry_cache
, dentry
);
1431 atomic_set(&p
->u
.count
, 1);
1434 dname
= dentry
->d_iname
;
1437 dentry
->d_name
.len
= name
->len
;
1438 dentry
->d_name
.hash
= name
->hash
;
1439 memcpy(dname
, name
->name
, name
->len
);
1440 dname
[name
->len
] = 0;
1442 /* Make sure we always see the terminating NUL character */
1444 dentry
->d_name
.name
= dname
;
1446 dentry
->d_lockref
.count
= 1;
1447 dentry
->d_flags
= 0;
1448 spin_lock_init(&dentry
->d_lock
);
1449 seqcount_init(&dentry
->d_seq
);
1450 dentry
->d_inode
= NULL
;
1451 dentry
->d_parent
= dentry
;
1453 dentry
->d_op
= NULL
;
1454 dentry
->d_fsdata
= NULL
;
1455 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1456 INIT_LIST_HEAD(&dentry
->d_lru
);
1457 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1458 INIT_HLIST_NODE(&dentry
->d_alias
);
1459 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
1460 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1462 this_cpu_inc(nr_dentry
);
1468 * d_alloc - allocate a dcache entry
1469 * @parent: parent of entry to allocate
1470 * @name: qstr of the name
1472 * Allocates a dentry. It returns %NULL if there is insufficient memory
1473 * available. On a success the dentry is returned. The name passed in is
1474 * copied and the copy passed in may be reused after this call.
1476 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1478 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1482 spin_lock(&parent
->d_lock
);
1484 * don't need child lock because it is not subject
1485 * to concurrency here
1487 __dget_dlock(parent
);
1488 dentry
->d_parent
= parent
;
1489 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
1490 spin_unlock(&parent
->d_lock
);
1494 EXPORT_SYMBOL(d_alloc
);
1497 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1498 * @sb: the superblock
1499 * @name: qstr of the name
1501 * For a filesystem that just pins its dentries in memory and never
1502 * performs lookups at all, return an unhashed IS_ROOT dentry.
1504 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1506 return __d_alloc(sb
, name
);
1508 EXPORT_SYMBOL(d_alloc_pseudo
);
1510 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1515 q
.len
= strlen(name
);
1516 q
.hash
= full_name_hash(q
.name
, q
.len
);
1517 return d_alloc(parent
, &q
);
1519 EXPORT_SYMBOL(d_alloc_name
);
1521 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1523 WARN_ON_ONCE(dentry
->d_op
);
1524 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1526 DCACHE_OP_REVALIDATE
|
1527 DCACHE_OP_WEAK_REVALIDATE
|
1528 DCACHE_OP_DELETE
));
1533 dentry
->d_flags
|= DCACHE_OP_HASH
;
1535 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1536 if (op
->d_revalidate
)
1537 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1538 if (op
->d_weak_revalidate
)
1539 dentry
->d_flags
|= DCACHE_OP_WEAK_REVALIDATE
;
1541 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1543 dentry
->d_flags
|= DCACHE_OP_PRUNE
;
1546 EXPORT_SYMBOL(d_set_d_op
);
1548 static unsigned d_flags_for_inode(struct inode
*inode
)
1550 unsigned add_flags
= DCACHE_FILE_TYPE
;
1553 return DCACHE_MISS_TYPE
;
1555 if (S_ISDIR(inode
->i_mode
)) {
1556 add_flags
= DCACHE_DIRECTORY_TYPE
;
1557 if (unlikely(!(inode
->i_opflags
& IOP_LOOKUP
))) {
1558 if (unlikely(!inode
->i_op
->lookup
))
1559 add_flags
= DCACHE_AUTODIR_TYPE
;
1561 inode
->i_opflags
|= IOP_LOOKUP
;
1563 } else if (unlikely(!(inode
->i_opflags
& IOP_NOFOLLOW
))) {
1564 if (unlikely(inode
->i_op
->follow_link
))
1565 add_flags
= DCACHE_SYMLINK_TYPE
;
1567 inode
->i_opflags
|= IOP_NOFOLLOW
;
1570 if (unlikely(IS_AUTOMOUNT(inode
)))
1571 add_flags
|= DCACHE_NEED_AUTOMOUNT
;
1575 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1577 unsigned add_flags
= d_flags_for_inode(inode
);
1579 spin_lock(&dentry
->d_lock
);
1580 __d_set_type(dentry
, add_flags
);
1582 hlist_add_head(&dentry
->d_alias
, &inode
->i_dentry
);
1583 dentry
->d_inode
= inode
;
1584 dentry_rcuwalk_barrier(dentry
);
1585 spin_unlock(&dentry
->d_lock
);
1586 fsnotify_d_instantiate(dentry
, inode
);
1590 * d_instantiate - fill in inode information for a dentry
1591 * @entry: dentry to complete
1592 * @inode: inode to attach to this dentry
1594 * Fill in inode information in the entry.
1596 * This turns negative dentries into productive full members
1599 * NOTE! This assumes that the inode count has been incremented
1600 * (or otherwise set) by the caller to indicate that it is now
1601 * in use by the dcache.
1604 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1606 BUG_ON(!hlist_unhashed(&entry
->d_alias
));
1608 spin_lock(&inode
->i_lock
);
1609 __d_instantiate(entry
, inode
);
1611 spin_unlock(&inode
->i_lock
);
1612 security_d_instantiate(entry
, inode
);
1614 EXPORT_SYMBOL(d_instantiate
);
1617 * d_instantiate_unique - instantiate a non-aliased dentry
1618 * @entry: dentry to instantiate
1619 * @inode: inode to attach to this dentry
1621 * Fill in inode information in the entry. On success, it returns NULL.
1622 * If an unhashed alias of "entry" already exists, then we return the
1623 * aliased dentry instead and drop one reference to inode.
1625 * Note that in order to avoid conflicts with rename() etc, the caller
1626 * had better be holding the parent directory semaphore.
1628 * This also assumes that the inode count has been incremented
1629 * (or otherwise set) by the caller to indicate that it is now
1630 * in use by the dcache.
1632 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1633 struct inode
*inode
)
1635 struct dentry
*alias
;
1636 int len
= entry
->d_name
.len
;
1637 const char *name
= entry
->d_name
.name
;
1638 unsigned int hash
= entry
->d_name
.hash
;
1641 __d_instantiate(entry
, NULL
);
1645 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
1647 * Don't need alias->d_lock here, because aliases with
1648 * d_parent == entry->d_parent are not subject to name or
1649 * parent changes, because the parent inode i_mutex is held.
1651 if (alias
->d_name
.hash
!= hash
)
1653 if (alias
->d_parent
!= entry
->d_parent
)
1655 if (alias
->d_name
.len
!= len
)
1657 if (dentry_cmp(alias
, name
, len
))
1663 __d_instantiate(entry
, inode
);
1667 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1669 struct dentry
*result
;
1671 BUG_ON(!hlist_unhashed(&entry
->d_alias
));
1674 spin_lock(&inode
->i_lock
);
1675 result
= __d_instantiate_unique(entry
, inode
);
1677 spin_unlock(&inode
->i_lock
);
1680 security_d_instantiate(entry
, inode
);
1684 BUG_ON(!d_unhashed(result
));
1689 EXPORT_SYMBOL(d_instantiate_unique
);
1692 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1693 * @entry: dentry to complete
1694 * @inode: inode to attach to this dentry
1696 * Fill in inode information in the entry. If a directory alias is found, then
1697 * return an error (and drop inode). Together with d_materialise_unique() this
1698 * guarantees that a directory inode may never have more than one alias.
1700 int d_instantiate_no_diralias(struct dentry
*entry
, struct inode
*inode
)
1702 BUG_ON(!hlist_unhashed(&entry
->d_alias
));
1704 spin_lock(&inode
->i_lock
);
1705 if (S_ISDIR(inode
->i_mode
) && !hlist_empty(&inode
->i_dentry
)) {
1706 spin_unlock(&inode
->i_lock
);
1710 __d_instantiate(entry
, inode
);
1711 spin_unlock(&inode
->i_lock
);
1712 security_d_instantiate(entry
, inode
);
1716 EXPORT_SYMBOL(d_instantiate_no_diralias
);
1718 struct dentry
*d_make_root(struct inode
*root_inode
)
1720 struct dentry
*res
= NULL
;
1723 static const struct qstr name
= QSTR_INIT("/", 1);
1725 res
= __d_alloc(root_inode
->i_sb
, &name
);
1727 d_instantiate(res
, root_inode
);
1733 EXPORT_SYMBOL(d_make_root
);
1735 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1737 struct dentry
*alias
;
1739 if (hlist_empty(&inode
->i_dentry
))
1741 alias
= hlist_entry(inode
->i_dentry
.first
, struct dentry
, d_alias
);
1747 * d_find_any_alias - find any alias for a given inode
1748 * @inode: inode to find an alias for
1750 * If any aliases exist for the given inode, take and return a
1751 * reference for one of them. If no aliases exist, return %NULL.
1753 struct dentry
*d_find_any_alias(struct inode
*inode
)
1757 spin_lock(&inode
->i_lock
);
1758 de
= __d_find_any_alias(inode
);
1759 spin_unlock(&inode
->i_lock
);
1762 EXPORT_SYMBOL(d_find_any_alias
);
1764 static struct dentry
*__d_obtain_alias(struct inode
*inode
, int disconnected
)
1766 static const struct qstr anonstring
= QSTR_INIT("/", 1);
1772 return ERR_PTR(-ESTALE
);
1774 return ERR_CAST(inode
);
1776 res
= d_find_any_alias(inode
);
1780 tmp
= __d_alloc(inode
->i_sb
, &anonstring
);
1782 res
= ERR_PTR(-ENOMEM
);
1786 spin_lock(&inode
->i_lock
);
1787 res
= __d_find_any_alias(inode
);
1789 spin_unlock(&inode
->i_lock
);
1794 /* attach a disconnected dentry */
1795 add_flags
= d_flags_for_inode(inode
);
1798 add_flags
|= DCACHE_DISCONNECTED
;
1800 spin_lock(&tmp
->d_lock
);
1801 tmp
->d_inode
= inode
;
1802 tmp
->d_flags
|= add_flags
;
1803 hlist_add_head(&tmp
->d_alias
, &inode
->i_dentry
);
1804 hlist_bl_lock(&tmp
->d_sb
->s_anon
);
1805 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
1806 hlist_bl_unlock(&tmp
->d_sb
->s_anon
);
1807 spin_unlock(&tmp
->d_lock
);
1808 spin_unlock(&inode
->i_lock
);
1809 security_d_instantiate(tmp
, inode
);
1814 if (res
&& !IS_ERR(res
))
1815 security_d_instantiate(res
, inode
);
1821 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1822 * @inode: inode to allocate the dentry for
1824 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1825 * similar open by handle operations. The returned dentry may be anonymous,
1826 * or may have a full name (if the inode was already in the cache).
1828 * When called on a directory inode, we must ensure that the inode only ever
1829 * has one dentry. If a dentry is found, that is returned instead of
1830 * allocating a new one.
1832 * On successful return, the reference to the inode has been transferred
1833 * to the dentry. In case of an error the reference on the inode is released.
1834 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1835 * be passed in and the error will be propagated to the return value,
1836 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1838 struct dentry
*d_obtain_alias(struct inode
*inode
)
1840 return __d_obtain_alias(inode
, 1);
1842 EXPORT_SYMBOL(d_obtain_alias
);
1845 * d_obtain_root - find or allocate a dentry for a given inode
1846 * @inode: inode to allocate the dentry for
1848 * Obtain an IS_ROOT dentry for the root of a filesystem.
1850 * We must ensure that directory inodes only ever have one dentry. If a
1851 * dentry is found, that is returned instead of allocating a new one.
1853 * On successful return, the reference to the inode has been transferred
1854 * to the dentry. In case of an error the reference on the inode is
1855 * released. A %NULL or IS_ERR inode may be passed in and will be the
1856 * error will be propagate to the return value, with a %NULL @inode
1857 * replaced by ERR_PTR(-ESTALE).
1859 struct dentry
*d_obtain_root(struct inode
*inode
)
1861 return __d_obtain_alias(inode
, 0);
1863 EXPORT_SYMBOL(d_obtain_root
);
1866 * d_add_ci - lookup or allocate new dentry with case-exact name
1867 * @inode: the inode case-insensitive lookup has found
1868 * @dentry: the negative dentry that was passed to the parent's lookup func
1869 * @name: the case-exact name to be associated with the returned dentry
1871 * This is to avoid filling the dcache with case-insensitive names to the
1872 * same inode, only the actual correct case is stored in the dcache for
1873 * case-insensitive filesystems.
1875 * For a case-insensitive lookup match and if the the case-exact dentry
1876 * already exists in in the dcache, use it and return it.
1878 * If no entry exists with the exact case name, allocate new dentry with
1879 * the exact case, and return the spliced entry.
1881 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
1884 struct dentry
*found
;
1888 * First check if a dentry matching the name already exists,
1889 * if not go ahead and create it now.
1891 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
1892 if (unlikely(IS_ERR(found
)))
1895 new = d_alloc(dentry
->d_parent
, name
);
1897 found
= ERR_PTR(-ENOMEM
);
1901 found
= d_splice_alias(inode
, new);
1910 * If a matching dentry exists, and it's not negative use it.
1912 * Decrement the reference count to balance the iget() done
1915 if (found
->d_inode
) {
1916 if (unlikely(found
->d_inode
!= inode
)) {
1917 /* This can't happen because bad inodes are unhashed. */
1918 BUG_ON(!is_bad_inode(inode
));
1919 BUG_ON(!is_bad_inode(found
->d_inode
));
1926 * Negative dentry: instantiate it unless the inode is a directory and
1927 * already has a dentry.
1929 new = d_splice_alias(inode
, found
);
1940 EXPORT_SYMBOL(d_add_ci
);
1943 * Do the slow-case of the dentry name compare.
1945 * Unlike the dentry_cmp() function, we need to atomically
1946 * load the name and length information, so that the
1947 * filesystem can rely on them, and can use the 'name' and
1948 * 'len' information without worrying about walking off the
1949 * end of memory etc.
1951 * Thus the read_seqcount_retry() and the "duplicate" info
1952 * in arguments (the low-level filesystem should not look
1953 * at the dentry inode or name contents directly, since
1954 * rename can change them while we're in RCU mode).
1956 enum slow_d_compare
{
1962 static noinline
enum slow_d_compare
slow_dentry_cmp(
1963 const struct dentry
*parent
,
1964 struct dentry
*dentry
,
1966 const struct qstr
*name
)
1968 int tlen
= dentry
->d_name
.len
;
1969 const char *tname
= dentry
->d_name
.name
;
1971 if (read_seqcount_retry(&dentry
->d_seq
, seq
)) {
1973 return D_COMP_SEQRETRY
;
1975 if (parent
->d_op
->d_compare(parent
, dentry
, tlen
, tname
, name
))
1976 return D_COMP_NOMATCH
;
1981 * __d_lookup_rcu - search for a dentry (racy, store-free)
1982 * @parent: parent dentry
1983 * @name: qstr of name we wish to find
1984 * @seqp: returns d_seq value at the point where the dentry was found
1985 * Returns: dentry, or NULL
1987 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1988 * resolution (store-free path walking) design described in
1989 * Documentation/filesystems/path-lookup.txt.
1991 * This is not to be used outside core vfs.
1993 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1994 * held, and rcu_read_lock held. The returned dentry must not be stored into
1995 * without taking d_lock and checking d_seq sequence count against @seq
1998 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2001 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2002 * the returned dentry, so long as its parent's seqlock is checked after the
2003 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2004 * is formed, giving integrity down the path walk.
2006 * NOTE! The caller *has* to check the resulting dentry against the sequence
2007 * number we've returned before using any of the resulting dentry state!
2009 struct dentry
*__d_lookup_rcu(const struct dentry
*parent
,
2010 const struct qstr
*name
,
2013 u64 hashlen
= name
->hash_len
;
2014 const unsigned char *str
= name
->name
;
2015 struct hlist_bl_head
*b
= d_hash(parent
, hashlen_hash(hashlen
));
2016 struct hlist_bl_node
*node
;
2017 struct dentry
*dentry
;
2020 * Note: There is significant duplication with __d_lookup_rcu which is
2021 * required to prevent single threaded performance regressions
2022 * especially on architectures where smp_rmb (in seqcounts) are costly.
2023 * Keep the two functions in sync.
2027 * The hash list is protected using RCU.
2029 * Carefully use d_seq when comparing a candidate dentry, to avoid
2030 * races with d_move().
2032 * It is possible that concurrent renames can mess up our list
2033 * walk here and result in missing our dentry, resulting in the
2034 * false-negative result. d_lookup() protects against concurrent
2035 * renames using rename_lock seqlock.
2037 * See Documentation/filesystems/path-lookup.txt for more details.
2039 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2044 * The dentry sequence count protects us from concurrent
2045 * renames, and thus protects parent and name fields.
2047 * The caller must perform a seqcount check in order
2048 * to do anything useful with the returned dentry.
2050 * NOTE! We do a "raw" seqcount_begin here. That means that
2051 * we don't wait for the sequence count to stabilize if it
2052 * is in the middle of a sequence change. If we do the slow
2053 * dentry compare, we will do seqretries until it is stable,
2054 * and if we end up with a successful lookup, we actually
2055 * want to exit RCU lookup anyway.
2057 seq
= raw_seqcount_begin(&dentry
->d_seq
);
2058 if (dentry
->d_parent
!= parent
)
2060 if (d_unhashed(dentry
))
2063 if (unlikely(parent
->d_flags
& DCACHE_OP_COMPARE
)) {
2064 if (dentry
->d_name
.hash
!= hashlen_hash(hashlen
))
2067 switch (slow_dentry_cmp(parent
, dentry
, seq
, name
)) {
2070 case D_COMP_NOMATCH
:
2077 if (dentry
->d_name
.hash_len
!= hashlen
)
2080 if (!dentry_cmp(dentry
, str
, hashlen_len(hashlen
)))
2087 * d_lookup - search for a dentry
2088 * @parent: parent dentry
2089 * @name: qstr of name we wish to find
2090 * Returns: dentry, or NULL
2092 * d_lookup searches the children of the parent dentry for the name in
2093 * question. If the dentry is found its reference count is incremented and the
2094 * dentry is returned. The caller must use dput to free the entry when it has
2095 * finished using it. %NULL is returned if the dentry does not exist.
2097 struct dentry
*d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2099 struct dentry
*dentry
;
2103 seq
= read_seqbegin(&rename_lock
);
2104 dentry
= __d_lookup(parent
, name
);
2107 } while (read_seqretry(&rename_lock
, seq
));
2110 EXPORT_SYMBOL(d_lookup
);
2113 * __d_lookup - search for a dentry (racy)
2114 * @parent: parent dentry
2115 * @name: qstr of name we wish to find
2116 * Returns: dentry, or NULL
2118 * __d_lookup is like d_lookup, however it may (rarely) return a
2119 * false-negative result due to unrelated rename activity.
2121 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2122 * however it must be used carefully, eg. with a following d_lookup in
2123 * the case of failure.
2125 * __d_lookup callers must be commented.
2127 struct dentry
*__d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2129 unsigned int len
= name
->len
;
2130 unsigned int hash
= name
->hash
;
2131 const unsigned char *str
= name
->name
;
2132 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
2133 struct hlist_bl_node
*node
;
2134 struct dentry
*found
= NULL
;
2135 struct dentry
*dentry
;
2138 * Note: There is significant duplication with __d_lookup_rcu which is
2139 * required to prevent single threaded performance regressions
2140 * especially on architectures where smp_rmb (in seqcounts) are costly.
2141 * Keep the two functions in sync.
2145 * The hash list is protected using RCU.
2147 * Take d_lock when comparing a candidate dentry, to avoid races
2150 * It is possible that concurrent renames can mess up our list
2151 * walk here and result in missing our dentry, resulting in the
2152 * false-negative result. d_lookup() protects against concurrent
2153 * renames using rename_lock seqlock.
2155 * See Documentation/filesystems/path-lookup.txt for more details.
2159 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2161 if (dentry
->d_name
.hash
!= hash
)
2164 spin_lock(&dentry
->d_lock
);
2165 if (dentry
->d_parent
!= parent
)
2167 if (d_unhashed(dentry
))
2171 * It is safe to compare names since d_move() cannot
2172 * change the qstr (protected by d_lock).
2174 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
2175 int tlen
= dentry
->d_name
.len
;
2176 const char *tname
= dentry
->d_name
.name
;
2177 if (parent
->d_op
->d_compare(parent
, dentry
, tlen
, tname
, name
))
2180 if (dentry
->d_name
.len
!= len
)
2182 if (dentry_cmp(dentry
, str
, len
))
2186 dentry
->d_lockref
.count
++;
2188 spin_unlock(&dentry
->d_lock
);
2191 spin_unlock(&dentry
->d_lock
);
2199 * d_hash_and_lookup - hash the qstr then search for a dentry
2200 * @dir: Directory to search in
2201 * @name: qstr of name we wish to find
2203 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2205 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
2208 * Check for a fs-specific hash function. Note that we must
2209 * calculate the standard hash first, as the d_op->d_hash()
2210 * routine may choose to leave the hash value unchanged.
2212 name
->hash
= full_name_hash(name
->name
, name
->len
);
2213 if (dir
->d_flags
& DCACHE_OP_HASH
) {
2214 int err
= dir
->d_op
->d_hash(dir
, name
);
2215 if (unlikely(err
< 0))
2216 return ERR_PTR(err
);
2218 return d_lookup(dir
, name
);
2220 EXPORT_SYMBOL(d_hash_and_lookup
);
2223 * d_validate - verify dentry provided from insecure source (deprecated)
2224 * @dentry: The dentry alleged to be valid child of @dparent
2225 * @dparent: The parent dentry (known to be valid)
2227 * An insecure source has sent us a dentry, here we verify it and dget() it.
2228 * This is used by ncpfs in its readdir implementation.
2229 * Zero is returned in the dentry is invalid.
2231 * This function is slow for big directories, and deprecated, do not use it.
2233 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
2235 struct dentry
*child
;
2237 spin_lock(&dparent
->d_lock
);
2238 list_for_each_entry(child
, &dparent
->d_subdirs
, d_u
.d_child
) {
2239 if (dentry
== child
) {
2240 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2241 __dget_dlock(dentry
);
2242 spin_unlock(&dentry
->d_lock
);
2243 spin_unlock(&dparent
->d_lock
);
2247 spin_unlock(&dparent
->d_lock
);
2251 EXPORT_SYMBOL(d_validate
);
2254 * When a file is deleted, we have two options:
2255 * - turn this dentry into a negative dentry
2256 * - unhash this dentry and free it.
2258 * Usually, we want to just turn this into
2259 * a negative dentry, but if anybody else is
2260 * currently using the dentry or the inode
2261 * we can't do that and we fall back on removing
2262 * it from the hash queues and waiting for
2263 * it to be deleted later when it has no users
2267 * d_delete - delete a dentry
2268 * @dentry: The dentry to delete
2270 * Turn the dentry into a negative dentry if possible, otherwise
2271 * remove it from the hash queues so it can be deleted later
2274 void d_delete(struct dentry
* dentry
)
2276 struct inode
*inode
;
2279 * Are we the only user?
2282 spin_lock(&dentry
->d_lock
);
2283 inode
= dentry
->d_inode
;
2284 isdir
= S_ISDIR(inode
->i_mode
);
2285 if (dentry
->d_lockref
.count
== 1) {
2286 if (!spin_trylock(&inode
->i_lock
)) {
2287 spin_unlock(&dentry
->d_lock
);
2291 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2292 dentry_unlink_inode(dentry
);
2293 fsnotify_nameremove(dentry
, isdir
);
2297 if (!d_unhashed(dentry
))
2300 spin_unlock(&dentry
->d_lock
);
2302 fsnotify_nameremove(dentry
, isdir
);
2304 EXPORT_SYMBOL(d_delete
);
2306 static void __d_rehash(struct dentry
* entry
, struct hlist_bl_head
*b
)
2308 BUG_ON(!d_unhashed(entry
));
2310 entry
->d_flags
|= DCACHE_RCUACCESS
;
2311 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2315 static void _d_rehash(struct dentry
* entry
)
2317 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
2321 * d_rehash - add an entry back to the hash
2322 * @entry: dentry to add to the hash
2324 * Adds a dentry to the hash according to its name.
2327 void d_rehash(struct dentry
* entry
)
2329 spin_lock(&entry
->d_lock
);
2331 spin_unlock(&entry
->d_lock
);
2333 EXPORT_SYMBOL(d_rehash
);
2336 * dentry_update_name_case - update case insensitive dentry with a new name
2337 * @dentry: dentry to be updated
2340 * Update a case insensitive dentry with new case of name.
2342 * dentry must have been returned by d_lookup with name @name. Old and new
2343 * name lengths must match (ie. no d_compare which allows mismatched name
2346 * Parent inode i_mutex must be held over d_lookup and into this call (to
2347 * keep renames and concurrent inserts, and readdir(2) away).
2349 void dentry_update_name_case(struct dentry
*dentry
, struct qstr
*name
)
2351 BUG_ON(!mutex_is_locked(&dentry
->d_parent
->d_inode
->i_mutex
));
2352 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2354 spin_lock(&dentry
->d_lock
);
2355 write_seqcount_begin(&dentry
->d_seq
);
2356 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2357 write_seqcount_end(&dentry
->d_seq
);
2358 spin_unlock(&dentry
->d_lock
);
2360 EXPORT_SYMBOL(dentry_update_name_case
);
2362 static void swap_names(struct dentry
*dentry
, struct dentry
*target
)
2364 if (unlikely(dname_external(target
))) {
2365 if (unlikely(dname_external(dentry
))) {
2367 * Both external: swap the pointers
2369 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2372 * dentry:internal, target:external. Steal target's
2373 * storage and make target internal.
2375 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2376 dentry
->d_name
.len
+ 1);
2377 dentry
->d_name
.name
= target
->d_name
.name
;
2378 target
->d_name
.name
= target
->d_iname
;
2381 if (unlikely(dname_external(dentry
))) {
2383 * dentry:external, target:internal. Give dentry's
2384 * storage to target and make dentry internal
2386 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2387 target
->d_name
.len
+ 1);
2388 target
->d_name
.name
= dentry
->d_name
.name
;
2389 dentry
->d_name
.name
= dentry
->d_iname
;
2392 * Both are internal.
2395 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN
, sizeof(long)));
2396 for (i
= 0; i
< DNAME_INLINE_LEN
/ sizeof(long); i
++) {
2397 swap(((long *) &dentry
->d_iname
)[i
],
2398 ((long *) &target
->d_iname
)[i
]);
2402 swap(dentry
->d_name
.hash_len
, target
->d_name
.hash_len
);
2405 static void copy_name(struct dentry
*dentry
, struct dentry
*target
)
2407 struct external_name
*old_name
= NULL
;
2408 if (unlikely(dname_external(dentry
)))
2409 old_name
= external_name(dentry
);
2410 if (unlikely(dname_external(target
))) {
2411 atomic_inc(&external_name(target
)->u
.count
);
2412 dentry
->d_name
= target
->d_name
;
2414 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2415 target
->d_name
.len
+ 1);
2416 dentry
->d_name
.name
= dentry
->d_iname
;
2417 dentry
->d_name
.hash_len
= target
->d_name
.hash_len
;
2419 if (old_name
&& likely(atomic_dec_and_test(&old_name
->u
.count
)))
2420 kfree_rcu(old_name
, u
.head
);
2423 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2426 * XXXX: do we really need to take target->d_lock?
2428 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2429 spin_lock(&target
->d_parent
->d_lock
);
2431 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2432 spin_lock(&dentry
->d_parent
->d_lock
);
2433 spin_lock_nested(&target
->d_parent
->d_lock
,
2434 DENTRY_D_LOCK_NESTED
);
2436 spin_lock(&target
->d_parent
->d_lock
);
2437 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2438 DENTRY_D_LOCK_NESTED
);
2441 if (target
< dentry
) {
2442 spin_lock_nested(&target
->d_lock
, 2);
2443 spin_lock_nested(&dentry
->d_lock
, 3);
2445 spin_lock_nested(&dentry
->d_lock
, 2);
2446 spin_lock_nested(&target
->d_lock
, 3);
2450 static void dentry_unlock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2452 if (target
->d_parent
!= dentry
->d_parent
)
2453 spin_unlock(&dentry
->d_parent
->d_lock
);
2454 if (target
->d_parent
!= target
)
2455 spin_unlock(&target
->d_parent
->d_lock
);
2456 spin_unlock(&target
->d_lock
);
2457 spin_unlock(&dentry
->d_lock
);
2461 * When switching names, the actual string doesn't strictly have to
2462 * be preserved in the target - because we're dropping the target
2463 * anyway. As such, we can just do a simple memcpy() to copy over
2464 * the new name before we switch, unless we are going to rehash
2465 * it. Note that if we *do* unhash the target, we are not allowed
2466 * to rehash it without giving it a new name/hash key - whether
2467 * we swap or overwrite the names here, resulting name won't match
2468 * the reality in filesystem; it's only there for d_path() purposes.
2469 * Note that all of this is happening under rename_lock, so the
2470 * any hash lookup seeing it in the middle of manipulations will
2471 * be discarded anyway. So we do not care what happens to the hash
2475 * __d_move - move a dentry
2476 * @dentry: entry to move
2477 * @target: new dentry
2478 * @exchange: exchange the two dentries
2480 * Update the dcache to reflect the move of a file name. Negative
2481 * dcache entries should not be moved in this way. Caller must hold
2482 * rename_lock, the i_mutex of the source and target directories,
2483 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2485 static void __d_move(struct dentry
*dentry
, struct dentry
*target
,
2488 if (!dentry
->d_inode
)
2489 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2491 BUG_ON(d_ancestor(dentry
, target
));
2492 BUG_ON(d_ancestor(target
, dentry
));
2494 dentry_lock_for_move(dentry
, target
);
2496 write_seqcount_begin(&dentry
->d_seq
);
2497 write_seqcount_begin_nested(&target
->d_seq
, DENTRY_D_LOCK_NESTED
);
2499 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2502 * Move the dentry to the target hash queue. Don't bother checking
2503 * for the same hash queue because of how unlikely it is.
2506 __d_rehash(dentry
, d_hash(target
->d_parent
, target
->d_name
.hash
));
2509 * Unhash the target (d_delete() is not usable here). If exchanging
2510 * the two dentries, then rehash onto the other's hash queue.
2515 d_hash(dentry
->d_parent
, dentry
->d_name
.hash
));
2518 /* Switch the names.. */
2520 swap_names(dentry
, target
);
2522 copy_name(dentry
, target
);
2524 /* ... and switch them in the tree */
2525 if (IS_ROOT(dentry
)) {
2526 /* splicing a tree */
2527 dentry
->d_parent
= target
->d_parent
;
2528 target
->d_parent
= target
;
2529 list_del_init(&target
->d_u
.d_child
);
2530 list_move(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2532 /* swapping two dentries */
2533 swap(dentry
->d_parent
, target
->d_parent
);
2534 list_move(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
2535 list_move(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2537 fsnotify_d_move(target
);
2538 fsnotify_d_move(dentry
);
2541 write_seqcount_end(&target
->d_seq
);
2542 write_seqcount_end(&dentry
->d_seq
);
2544 dentry_unlock_for_move(dentry
, target
);
2548 * d_move - move a dentry
2549 * @dentry: entry to move
2550 * @target: new dentry
2552 * Update the dcache to reflect the move of a file name. Negative
2553 * dcache entries should not be moved in this way. See the locking
2554 * requirements for __d_move.
2556 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2558 write_seqlock(&rename_lock
);
2559 __d_move(dentry
, target
, false);
2560 write_sequnlock(&rename_lock
);
2562 EXPORT_SYMBOL(d_move
);
2565 * d_exchange - exchange two dentries
2566 * @dentry1: first dentry
2567 * @dentry2: second dentry
2569 void d_exchange(struct dentry
*dentry1
, struct dentry
*dentry2
)
2571 write_seqlock(&rename_lock
);
2573 WARN_ON(!dentry1
->d_inode
);
2574 WARN_ON(!dentry2
->d_inode
);
2575 WARN_ON(IS_ROOT(dentry1
));
2576 WARN_ON(IS_ROOT(dentry2
));
2578 __d_move(dentry1
, dentry2
, true);
2580 write_sequnlock(&rename_lock
);
2584 * d_ancestor - search for an ancestor
2585 * @p1: ancestor dentry
2588 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2589 * an ancestor of p2, else NULL.
2591 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2595 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2596 if (p
->d_parent
== p1
)
2603 * This helper attempts to cope with remotely renamed directories
2605 * It assumes that the caller is already holding
2606 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2608 * Note: If ever the locking in lock_rename() changes, then please
2609 * remember to update this too...
2611 static struct dentry
*__d_unalias(struct inode
*inode
,
2612 struct dentry
*dentry
, struct dentry
*alias
)
2614 struct mutex
*m1
= NULL
, *m2
= NULL
;
2615 struct dentry
*ret
= ERR_PTR(-EBUSY
);
2617 /* If alias and dentry share a parent, then no extra locks required */
2618 if (alias
->d_parent
== dentry
->d_parent
)
2621 /* See lock_rename() */
2622 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2624 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2625 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
2627 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
2629 __d_move(alias
, dentry
, false);
2632 spin_unlock(&inode
->i_lock
);
2641 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2642 * @inode: the inode which may have a disconnected dentry
2643 * @dentry: a negative dentry which we want to point to the inode.
2645 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2646 * place of the given dentry and return it, else simply d_add the inode
2647 * to the dentry and return NULL.
2649 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2650 * we should error out: directories can't have multiple aliases.
2652 * This is needed in the lookup routine of any filesystem that is exportable
2653 * (via knfsd) so that we can build dcache paths to directories effectively.
2655 * If a dentry was found and moved, then it is returned. Otherwise NULL
2656 * is returned. This matches the expected return value of ->lookup.
2658 * Cluster filesystems may call this function with a negative, hashed dentry.
2659 * In that case, we know that the inode will be a regular file, and also this
2660 * will only occur during atomic_open. So we need to check for the dentry
2661 * being already hashed only in the final case.
2663 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
2665 struct dentry
*new = NULL
;
2668 return ERR_CAST(inode
);
2670 if (inode
&& S_ISDIR(inode
->i_mode
)) {
2671 spin_lock(&inode
->i_lock
);
2672 new = __d_find_any_alias(inode
);
2674 if (!IS_ROOT(new)) {
2675 spin_unlock(&inode
->i_lock
);
2678 return ERR_PTR(-EIO
);
2680 if (d_ancestor(new, dentry
)) {
2681 spin_unlock(&inode
->i_lock
);
2684 return ERR_PTR(-EIO
);
2686 write_seqlock(&rename_lock
);
2687 __d_move(new, dentry
, false);
2688 write_sequnlock(&rename_lock
);
2689 spin_unlock(&inode
->i_lock
);
2690 security_d_instantiate(new, inode
);
2693 /* already taking inode->i_lock, so d_add() by hand */
2694 __d_instantiate(dentry
, inode
);
2695 spin_unlock(&inode
->i_lock
);
2696 security_d_instantiate(dentry
, inode
);
2700 d_instantiate(dentry
, inode
);
2701 if (d_unhashed(dentry
))
2706 EXPORT_SYMBOL(d_splice_alias
);
2709 * d_materialise_unique - introduce an inode into the tree
2710 * @dentry: candidate dentry
2711 * @inode: inode to bind to the dentry, to which aliases may be attached
2713 * Introduces an dentry into the tree, substituting an extant disconnected
2714 * root directory alias in its place if there is one. Caller must hold the
2715 * i_mutex of the parent directory.
2717 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
2719 struct dentry
*actual
;
2721 BUG_ON(!d_unhashed(dentry
));
2725 __d_instantiate(dentry
, NULL
);
2730 spin_lock(&inode
->i_lock
);
2732 if (S_ISDIR(inode
->i_mode
)) {
2733 struct dentry
*alias
;
2735 /* Does an aliased dentry already exist? */
2736 alias
= __d_find_alias(inode
);
2739 write_seqlock(&rename_lock
);
2741 if (d_ancestor(alias
, dentry
)) {
2742 /* Check for loops */
2743 actual
= ERR_PTR(-ELOOP
);
2744 spin_unlock(&inode
->i_lock
);
2745 } else if (IS_ROOT(alias
)) {
2746 /* Is this an anonymous mountpoint that we
2747 * could splice into our tree? */
2748 __d_move(alias
, dentry
, false);
2749 write_sequnlock(&rename_lock
);
2752 /* Nope, but we must(!) avoid directory
2753 * aliasing. This drops inode->i_lock */
2754 actual
= __d_unalias(inode
, dentry
, alias
);
2756 write_sequnlock(&rename_lock
);
2757 if (IS_ERR(actual
)) {
2758 if (PTR_ERR(actual
) == -ELOOP
)
2759 pr_warn_ratelimited(
2760 "VFS: Lookup of '%s' in %s %s"
2761 " would have caused loop\n",
2762 dentry
->d_name
.name
,
2763 inode
->i_sb
->s_type
->name
,
2771 /* Add a unique reference */
2772 actual
= __d_instantiate_unique(dentry
, inode
);
2778 spin_unlock(&inode
->i_lock
);
2780 if (actual
== dentry
) {
2781 security_d_instantiate(dentry
, inode
);
2788 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2790 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
2794 return -ENAMETOOLONG
;
2796 memcpy(*buffer
, str
, namelen
);
2801 * prepend_name - prepend a pathname in front of current buffer pointer
2802 * @buffer: buffer pointer
2803 * @buflen: allocated length of the buffer
2804 * @name: name string and length qstr structure
2806 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2807 * make sure that either the old or the new name pointer and length are
2808 * fetched. However, there may be mismatch between length and pointer.
2809 * The length cannot be trusted, we need to copy it byte-by-byte until
2810 * the length is reached or a null byte is found. It also prepends "/" at
2811 * the beginning of the name. The sequence number check at the caller will
2812 * retry it again when a d_move() does happen. So any garbage in the buffer
2813 * due to mismatched pointer and length will be discarded.
2815 * Data dependency barrier is needed to make sure that we see that terminating
2816 * NUL. Alpha strikes again, film at 11...
2818 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
2820 const char *dname
= ACCESS_ONCE(name
->name
);
2821 u32 dlen
= ACCESS_ONCE(name
->len
);
2824 smp_read_barrier_depends();
2826 *buflen
-= dlen
+ 1;
2828 return -ENAMETOOLONG
;
2829 p
= *buffer
-= dlen
+ 1;
2841 * prepend_path - Prepend path string to a buffer
2842 * @path: the dentry/vfsmount to report
2843 * @root: root vfsmnt/dentry
2844 * @buffer: pointer to the end of the buffer
2845 * @buflen: pointer to buffer length
2847 * The function will first try to write out the pathname without taking any
2848 * lock other than the RCU read lock to make sure that dentries won't go away.
2849 * It only checks the sequence number of the global rename_lock as any change
2850 * in the dentry's d_seq will be preceded by changes in the rename_lock
2851 * sequence number. If the sequence number had been changed, it will restart
2852 * the whole pathname back-tracing sequence again by taking the rename_lock.
2853 * In this case, there is no need to take the RCU read lock as the recursive
2854 * parent pointer references will keep the dentry chain alive as long as no
2855 * rename operation is performed.
2857 static int prepend_path(const struct path
*path
,
2858 const struct path
*root
,
2859 char **buffer
, int *buflen
)
2861 struct dentry
*dentry
;
2862 struct vfsmount
*vfsmnt
;
2865 unsigned seq
, m_seq
= 0;
2871 read_seqbegin_or_lock(&mount_lock
, &m_seq
);
2878 dentry
= path
->dentry
;
2880 mnt
= real_mount(vfsmnt
);
2881 read_seqbegin_or_lock(&rename_lock
, &seq
);
2882 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
2883 struct dentry
* parent
;
2885 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
2886 struct mount
*parent
= ACCESS_ONCE(mnt
->mnt_parent
);
2888 if (mnt
!= parent
) {
2889 dentry
= ACCESS_ONCE(mnt
->mnt_mountpoint
);
2895 * Filesystems needing to implement special "root names"
2896 * should do so with ->d_dname()
2898 if (IS_ROOT(dentry
) &&
2899 (dentry
->d_name
.len
!= 1 ||
2900 dentry
->d_name
.name
[0] != '/')) {
2901 WARN(1, "Root dentry has weird name <%.*s>\n",
2902 (int) dentry
->d_name
.len
,
2903 dentry
->d_name
.name
);
2906 error
= is_mounted(vfsmnt
) ? 1 : 2;
2909 parent
= dentry
->d_parent
;
2911 error
= prepend_name(&bptr
, &blen
, &dentry
->d_name
);
2919 if (need_seqretry(&rename_lock
, seq
)) {
2923 done_seqretry(&rename_lock
, seq
);
2927 if (need_seqretry(&mount_lock
, m_seq
)) {
2931 done_seqretry(&mount_lock
, m_seq
);
2933 if (error
>= 0 && bptr
== *buffer
) {
2935 error
= -ENAMETOOLONG
;
2945 * __d_path - return the path of a dentry
2946 * @path: the dentry/vfsmount to report
2947 * @root: root vfsmnt/dentry
2948 * @buf: buffer to return value in
2949 * @buflen: buffer length
2951 * Convert a dentry into an ASCII path name.
2953 * Returns a pointer into the buffer or an error code if the
2954 * path was too long.
2956 * "buflen" should be positive.
2958 * If the path is not reachable from the supplied root, return %NULL.
2960 char *__d_path(const struct path
*path
,
2961 const struct path
*root
,
2962 char *buf
, int buflen
)
2964 char *res
= buf
+ buflen
;
2967 prepend(&res
, &buflen
, "\0", 1);
2968 error
= prepend_path(path
, root
, &res
, &buflen
);
2971 return ERR_PTR(error
);
2977 char *d_absolute_path(const struct path
*path
,
2978 char *buf
, int buflen
)
2980 struct path root
= {};
2981 char *res
= buf
+ buflen
;
2984 prepend(&res
, &buflen
, "\0", 1);
2985 error
= prepend_path(path
, &root
, &res
, &buflen
);
2990 return ERR_PTR(error
);
2995 * same as __d_path but appends "(deleted)" for unlinked files.
2997 static int path_with_deleted(const struct path
*path
,
2998 const struct path
*root
,
2999 char **buf
, int *buflen
)
3001 prepend(buf
, buflen
, "\0", 1);
3002 if (d_unlinked(path
->dentry
)) {
3003 int error
= prepend(buf
, buflen
, " (deleted)", 10);
3008 return prepend_path(path
, root
, buf
, buflen
);
3011 static int prepend_unreachable(char **buffer
, int *buflen
)
3013 return prepend(buffer
, buflen
, "(unreachable)", 13);
3016 static void get_fs_root_rcu(struct fs_struct
*fs
, struct path
*root
)
3021 seq
= read_seqcount_begin(&fs
->seq
);
3023 } while (read_seqcount_retry(&fs
->seq
, seq
));
3027 * d_path - return the path of a dentry
3028 * @path: path to report
3029 * @buf: buffer to return value in
3030 * @buflen: buffer length
3032 * Convert a dentry into an ASCII path name. If the entry has been deleted
3033 * the string " (deleted)" is appended. Note that this is ambiguous.
3035 * Returns a pointer into the buffer or an error code if the path was
3036 * too long. Note: Callers should use the returned pointer, not the passed
3037 * in buffer, to use the name! The implementation often starts at an offset
3038 * into the buffer, and may leave 0 bytes at the start.
3040 * "buflen" should be positive.
3042 char *d_path(const struct path
*path
, char *buf
, int buflen
)
3044 char *res
= buf
+ buflen
;
3049 * We have various synthetic filesystems that never get mounted. On
3050 * these filesystems dentries are never used for lookup purposes, and
3051 * thus don't need to be hashed. They also don't need a name until a
3052 * user wants to identify the object in /proc/pid/fd/. The little hack
3053 * below allows us to generate a name for these objects on demand:
3055 * Some pseudo inodes are mountable. When they are mounted
3056 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3057 * and instead have d_path return the mounted path.
3059 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
&&
3060 (!IS_ROOT(path
->dentry
) || path
->dentry
!= path
->mnt
->mnt_root
))
3061 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
3064 get_fs_root_rcu(current
->fs
, &root
);
3065 error
= path_with_deleted(path
, &root
, &res
, &buflen
);
3069 res
= ERR_PTR(error
);
3072 EXPORT_SYMBOL(d_path
);
3075 * Helper function for dentry_operations.d_dname() members
3077 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
3078 const char *fmt
, ...)
3084 va_start(args
, fmt
);
3085 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
3088 if (sz
> sizeof(temp
) || sz
> buflen
)
3089 return ERR_PTR(-ENAMETOOLONG
);
3091 buffer
+= buflen
- sz
;
3092 return memcpy(buffer
, temp
, sz
);
3095 char *simple_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
3097 char *end
= buffer
+ buflen
;
3098 /* these dentries are never renamed, so d_lock is not needed */
3099 if (prepend(&end
, &buflen
, " (deleted)", 11) ||
3100 prepend(&end
, &buflen
, dentry
->d_name
.name
, dentry
->d_name
.len
) ||
3101 prepend(&end
, &buflen
, "/", 1))
3102 end
= ERR_PTR(-ENAMETOOLONG
);
3105 EXPORT_SYMBOL(simple_dname
);
3108 * Write full pathname from the root of the filesystem into the buffer.
3110 static char *__dentry_path(struct dentry
*d
, char *buf
, int buflen
)
3112 struct dentry
*dentry
;
3125 prepend(&end
, &len
, "\0", 1);
3129 read_seqbegin_or_lock(&rename_lock
, &seq
);
3130 while (!IS_ROOT(dentry
)) {
3131 struct dentry
*parent
= dentry
->d_parent
;
3134 error
= prepend_name(&end
, &len
, &dentry
->d_name
);
3143 if (need_seqretry(&rename_lock
, seq
)) {
3147 done_seqretry(&rename_lock
, seq
);
3152 return ERR_PTR(-ENAMETOOLONG
);
3155 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
3157 return __dentry_path(dentry
, buf
, buflen
);
3159 EXPORT_SYMBOL(dentry_path_raw
);
3161 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
3166 if (d_unlinked(dentry
)) {
3168 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
3172 retval
= __dentry_path(dentry
, buf
, buflen
);
3173 if (!IS_ERR(retval
) && p
)
3174 *p
= '/'; /* restore '/' overriden with '\0' */
3177 return ERR_PTR(-ENAMETOOLONG
);
3180 static void get_fs_root_and_pwd_rcu(struct fs_struct
*fs
, struct path
*root
,
3186 seq
= read_seqcount_begin(&fs
->seq
);
3189 } while (read_seqcount_retry(&fs
->seq
, seq
));
3193 * NOTE! The user-level library version returns a
3194 * character pointer. The kernel system call just
3195 * returns the length of the buffer filled (which
3196 * includes the ending '\0' character), or a negative
3197 * error value. So libc would do something like
3199 * char *getcwd(char * buf, size_t size)
3203 * retval = sys_getcwd(buf, size);
3210 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
3213 struct path pwd
, root
;
3214 char *page
= __getname();
3220 get_fs_root_and_pwd_rcu(current
->fs
, &root
, &pwd
);
3223 if (!d_unlinked(pwd
.dentry
)) {
3225 char *cwd
= page
+ PATH_MAX
;
3226 int buflen
= PATH_MAX
;
3228 prepend(&cwd
, &buflen
, "\0", 1);
3229 error
= prepend_path(&pwd
, &root
, &cwd
, &buflen
);
3235 /* Unreachable from current root */
3237 error
= prepend_unreachable(&cwd
, &buflen
);
3243 len
= PATH_MAX
+ page
- cwd
;
3246 if (copy_to_user(buf
, cwd
, len
))
3259 * Test whether new_dentry is a subdirectory of old_dentry.
3261 * Trivially implemented using the dcache structure
3265 * is_subdir - is new dentry a subdirectory of old_dentry
3266 * @new_dentry: new dentry
3267 * @old_dentry: old dentry
3269 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3270 * Returns 0 otherwise.
3271 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3274 int is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
3279 if (new_dentry
== old_dentry
)
3283 /* for restarting inner loop in case of seq retry */
3284 seq
= read_seqbegin(&rename_lock
);
3286 * Need rcu_readlock to protect against the d_parent trashing
3290 if (d_ancestor(old_dentry
, new_dentry
))
3295 } while (read_seqretry(&rename_lock
, seq
));
3300 static enum d_walk_ret
d_genocide_kill(void *data
, struct dentry
*dentry
)
3302 struct dentry
*root
= data
;
3303 if (dentry
!= root
) {
3304 if (d_unhashed(dentry
) || !dentry
->d_inode
)
3307 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
3308 dentry
->d_flags
|= DCACHE_GENOCIDE
;
3309 dentry
->d_lockref
.count
--;
3312 return D_WALK_CONTINUE
;
3315 void d_genocide(struct dentry
*parent
)
3317 d_walk(parent
, parent
, d_genocide_kill
, NULL
);
3320 void d_tmpfile(struct dentry
*dentry
, struct inode
*inode
)
3322 inode_dec_link_count(inode
);
3323 BUG_ON(dentry
->d_name
.name
!= dentry
->d_iname
||
3324 !hlist_unhashed(&dentry
->d_alias
) ||
3325 !d_unlinked(dentry
));
3326 spin_lock(&dentry
->d_parent
->d_lock
);
3327 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
3328 dentry
->d_name
.len
= sprintf(dentry
->d_iname
, "#%llu",
3329 (unsigned long long)inode
->i_ino
);
3330 spin_unlock(&dentry
->d_lock
);
3331 spin_unlock(&dentry
->d_parent
->d_lock
);
3332 d_instantiate(dentry
, inode
);
3334 EXPORT_SYMBOL(d_tmpfile
);
3336 static __initdata
unsigned long dhash_entries
;
3337 static int __init
set_dhash_entries(char *str
)
3341 dhash_entries
= simple_strtoul(str
, &str
, 0);
3344 __setup("dhash_entries=", set_dhash_entries
);
3346 static void __init
dcache_init_early(void)
3350 /* If hashes are distributed across NUMA nodes, defer
3351 * hash allocation until vmalloc space is available.
3357 alloc_large_system_hash("Dentry cache",
3358 sizeof(struct hlist_bl_head
),
3367 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3368 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3371 static void __init
dcache_init(void)
3376 * A constructor could be added for stable state like the lists,
3377 * but it is probably not worth it because of the cache nature
3380 dentry_cache
= KMEM_CACHE(dentry
,
3381 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
3383 /* Hash may have been set up in dcache_init_early */
3388 alloc_large_system_hash("Dentry cache",
3389 sizeof(struct hlist_bl_head
),
3398 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3399 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3402 /* SLAB cache for __getname() consumers */
3403 struct kmem_cache
*names_cachep __read_mostly
;
3404 EXPORT_SYMBOL(names_cachep
);
3406 EXPORT_SYMBOL(d_genocide
);
3408 void __init
vfs_caches_init_early(void)
3410 dcache_init_early();
3414 void __init
vfs_caches_init(unsigned long mempages
)
3416 unsigned long reserve
;
3418 /* Base hash sizes on available memory, with a reserve equal to
3419 150% of current kernel size */
3421 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
3422 mempages
-= reserve
;
3424 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3425 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3429 files_init(mempages
);