dm ioctl: prevent stack leak in dm ioctl call
[linux/fpc-iii.git] / kernel / sched / cputime.c
blob7700a9cba335059d7234649bbbf35dd113307698
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include "sched.h"
8 #ifdef CONFIG_PARAVIRT
9 #include <asm/paravirt.h>
10 #endif
13 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
16 * There are no locks covering percpu hardirq/softirq time.
17 * They are only modified in vtime_account, on corresponding CPU
18 * with interrupts disabled. So, writes are safe.
19 * They are read and saved off onto struct rq in update_rq_clock().
20 * This may result in other CPU reading this CPU's irq time and can
21 * race with irq/vtime_account on this CPU. We would either get old
22 * or new value with a side effect of accounting a slice of irq time to wrong
23 * task when irq is in progress while we read rq->clock. That is a worthy
24 * compromise in place of having locks on each irq in account_system_time.
26 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
28 static int sched_clock_irqtime;
30 void enable_sched_clock_irqtime(void)
32 sched_clock_irqtime = 1;
35 void disable_sched_clock_irqtime(void)
37 sched_clock_irqtime = 0;
41 * Called before incrementing preempt_count on {soft,}irq_enter
42 * and before decrementing preempt_count on {soft,}irq_exit.
44 void irqtime_account_irq(struct task_struct *curr)
46 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
47 s64 delta;
48 int cpu;
50 if (!sched_clock_irqtime)
51 return;
53 cpu = smp_processor_id();
54 delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
55 irqtime->irq_start_time += delta;
57 u64_stats_update_begin(&irqtime->sync);
59 * We do not account for softirq time from ksoftirqd here.
60 * We want to continue accounting softirq time to ksoftirqd thread
61 * in that case, so as not to confuse scheduler with a special task
62 * that do not consume any time, but still wants to run.
64 if (hardirq_count())
65 irqtime->hardirq_time += delta;
66 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
67 irqtime->softirq_time += delta;
69 u64_stats_update_end(&irqtime->sync);
71 EXPORT_SYMBOL_GPL(irqtime_account_irq);
73 static cputime_t irqtime_account_update(u64 irqtime, int idx, cputime_t maxtime)
75 u64 *cpustat = kcpustat_this_cpu->cpustat;
76 cputime_t irq_cputime;
78 irq_cputime = nsecs_to_cputime64(irqtime) - cpustat[idx];
79 irq_cputime = min(irq_cputime, maxtime);
80 cpustat[idx] += irq_cputime;
82 return irq_cputime;
85 static cputime_t irqtime_account_hi_update(cputime_t maxtime)
87 return irqtime_account_update(__this_cpu_read(cpu_irqtime.hardirq_time),
88 CPUTIME_IRQ, maxtime);
91 static cputime_t irqtime_account_si_update(cputime_t maxtime)
93 return irqtime_account_update(__this_cpu_read(cpu_irqtime.softirq_time),
94 CPUTIME_SOFTIRQ, maxtime);
97 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
99 #define sched_clock_irqtime (0)
101 static cputime_t irqtime_account_hi_update(cputime_t dummy)
103 return 0;
106 static cputime_t irqtime_account_si_update(cputime_t dummy)
108 return 0;
111 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
113 static inline void task_group_account_field(struct task_struct *p, int index,
114 u64 tmp)
117 * Since all updates are sure to touch the root cgroup, we
118 * get ourselves ahead and touch it first. If the root cgroup
119 * is the only cgroup, then nothing else should be necessary.
122 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
124 cpuacct_account_field(p, index, tmp);
128 * Account user cpu time to a process.
129 * @p: the process that the cpu time gets accounted to
130 * @cputime: the cpu time spent in user space since the last update
132 void account_user_time(struct task_struct *p, cputime_t cputime)
134 int index;
136 /* Add user time to process. */
137 p->utime += cputime;
138 account_group_user_time(p, cputime);
140 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
142 /* Add user time to cpustat. */
143 task_group_account_field(p, index, (__force u64) cputime);
145 /* Account for user time used */
146 acct_account_cputime(p);
150 * Account guest cpu time to a process.
151 * @p: the process that the cpu time gets accounted to
152 * @cputime: the cpu time spent in virtual machine since the last update
154 static void account_guest_time(struct task_struct *p, cputime_t cputime)
156 u64 *cpustat = kcpustat_this_cpu->cpustat;
158 /* Add guest time to process. */
159 p->utime += cputime;
160 account_group_user_time(p, cputime);
161 p->gtime += cputime;
163 /* Add guest time to cpustat. */
164 if (task_nice(p) > 0) {
165 cpustat[CPUTIME_NICE] += (__force u64) cputime;
166 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
167 } else {
168 cpustat[CPUTIME_USER] += (__force u64) cputime;
169 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
174 * Account system cpu time to a process and desired cpustat field
175 * @p: the process that the cpu time gets accounted to
176 * @cputime: the cpu time spent in kernel space since the last update
177 * @index: pointer to cpustat field that has to be updated
179 static inline
180 void __account_system_time(struct task_struct *p, cputime_t cputime, int index)
182 /* Add system time to process. */
183 p->stime += cputime;
184 account_group_system_time(p, cputime);
186 /* Add system time to cpustat. */
187 task_group_account_field(p, index, (__force u64) cputime);
189 /* Account for system time used */
190 acct_account_cputime(p);
194 * Account system cpu time to a process.
195 * @p: the process that the cpu time gets accounted to
196 * @hardirq_offset: the offset to subtract from hardirq_count()
197 * @cputime: the cpu time spent in kernel space since the last update
199 void account_system_time(struct task_struct *p, int hardirq_offset,
200 cputime_t cputime)
202 int index;
204 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
205 account_guest_time(p, cputime);
206 return;
209 if (hardirq_count() - hardirq_offset)
210 index = CPUTIME_IRQ;
211 else if (in_serving_softirq())
212 index = CPUTIME_SOFTIRQ;
213 else
214 index = CPUTIME_SYSTEM;
216 __account_system_time(p, cputime, index);
220 * Account for involuntary wait time.
221 * @cputime: the cpu time spent in involuntary wait
223 void account_steal_time(cputime_t cputime)
225 u64 *cpustat = kcpustat_this_cpu->cpustat;
227 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
231 * Account for idle time.
232 * @cputime: the cpu time spent in idle wait
234 void account_idle_time(cputime_t cputime)
236 u64 *cpustat = kcpustat_this_cpu->cpustat;
237 struct rq *rq = this_rq();
239 if (atomic_read(&rq->nr_iowait) > 0)
240 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
241 else
242 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
246 * When a guest is interrupted for a longer amount of time, missed clock
247 * ticks are not redelivered later. Due to that, this function may on
248 * occasion account more time than the calling functions think elapsed.
250 static __always_inline cputime_t steal_account_process_time(cputime_t maxtime)
252 #ifdef CONFIG_PARAVIRT
253 if (static_key_false(&paravirt_steal_enabled)) {
254 cputime_t steal_cputime;
255 u64 steal;
257 steal = paravirt_steal_clock(smp_processor_id());
258 steal -= this_rq()->prev_steal_time;
260 steal_cputime = min(nsecs_to_cputime(steal), maxtime);
261 account_steal_time(steal_cputime);
262 this_rq()->prev_steal_time += cputime_to_nsecs(steal_cputime);
264 return steal_cputime;
266 #endif
267 return 0;
271 * Account how much elapsed time was spent in steal, irq, or softirq time.
273 static inline cputime_t account_other_time(cputime_t max)
275 cputime_t accounted;
277 /* Shall be converted to a lockdep-enabled lightweight check */
278 WARN_ON_ONCE(!irqs_disabled());
280 accounted = steal_account_process_time(max);
282 if (accounted < max)
283 accounted += irqtime_account_hi_update(max - accounted);
285 if (accounted < max)
286 accounted += irqtime_account_si_update(max - accounted);
288 return accounted;
291 #ifdef CONFIG_64BIT
292 static inline u64 read_sum_exec_runtime(struct task_struct *t)
294 return t->se.sum_exec_runtime;
296 #else
297 static u64 read_sum_exec_runtime(struct task_struct *t)
299 u64 ns;
300 struct rq_flags rf;
301 struct rq *rq;
303 rq = task_rq_lock(t, &rf);
304 ns = t->se.sum_exec_runtime;
305 task_rq_unlock(rq, t, &rf);
307 return ns;
309 #endif
312 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
313 * tasks (sum on group iteration) belonging to @tsk's group.
315 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
317 struct signal_struct *sig = tsk->signal;
318 cputime_t utime, stime;
319 struct task_struct *t;
320 unsigned int seq, nextseq;
321 unsigned long flags;
324 * Update current task runtime to account pending time since last
325 * scheduler action or thread_group_cputime() call. This thread group
326 * might have other running tasks on different CPUs, but updating
327 * their runtime can affect syscall performance, so we skip account
328 * those pending times and rely only on values updated on tick or
329 * other scheduler action.
331 if (same_thread_group(current, tsk))
332 (void) task_sched_runtime(current);
334 rcu_read_lock();
335 /* Attempt a lockless read on the first round. */
336 nextseq = 0;
337 do {
338 seq = nextseq;
339 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
340 times->utime = sig->utime;
341 times->stime = sig->stime;
342 times->sum_exec_runtime = sig->sum_sched_runtime;
344 for_each_thread(tsk, t) {
345 task_cputime(t, &utime, &stime);
346 times->utime += utime;
347 times->stime += stime;
348 times->sum_exec_runtime += read_sum_exec_runtime(t);
350 /* If lockless access failed, take the lock. */
351 nextseq = 1;
352 } while (need_seqretry(&sig->stats_lock, seq));
353 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
354 rcu_read_unlock();
357 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
359 * Account a tick to a process and cpustat
360 * @p: the process that the cpu time gets accounted to
361 * @user_tick: is the tick from userspace
362 * @rq: the pointer to rq
364 * Tick demultiplexing follows the order
365 * - pending hardirq update
366 * - pending softirq update
367 * - user_time
368 * - idle_time
369 * - system time
370 * - check for guest_time
371 * - else account as system_time
373 * Check for hardirq is done both for system and user time as there is
374 * no timer going off while we are on hardirq and hence we may never get an
375 * opportunity to update it solely in system time.
376 * p->stime and friends are only updated on system time and not on irq
377 * softirq as those do not count in task exec_runtime any more.
379 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
380 struct rq *rq, int ticks)
382 u64 cputime = (__force u64) cputime_one_jiffy * ticks;
383 cputime_t other;
386 * When returning from idle, many ticks can get accounted at
387 * once, including some ticks of steal, irq, and softirq time.
388 * Subtract those ticks from the amount of time accounted to
389 * idle, or potentially user or system time. Due to rounding,
390 * other time can exceed ticks occasionally.
392 other = account_other_time(ULONG_MAX);
393 if (other >= cputime)
394 return;
395 cputime -= other;
397 if (this_cpu_ksoftirqd() == p) {
399 * ksoftirqd time do not get accounted in cpu_softirq_time.
400 * So, we have to handle it separately here.
401 * Also, p->stime needs to be updated for ksoftirqd.
403 __account_system_time(p, cputime, CPUTIME_SOFTIRQ);
404 } else if (user_tick) {
405 account_user_time(p, cputime);
406 } else if (p == rq->idle) {
407 account_idle_time(cputime);
408 } else if (p->flags & PF_VCPU) { /* System time or guest time */
409 account_guest_time(p, cputime);
410 } else {
411 __account_system_time(p, cputime, CPUTIME_SYSTEM);
415 static void irqtime_account_idle_ticks(int ticks)
417 struct rq *rq = this_rq();
419 irqtime_account_process_tick(current, 0, rq, ticks);
421 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
422 static inline void irqtime_account_idle_ticks(int ticks) {}
423 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
424 struct rq *rq, int nr_ticks) {}
425 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
428 * Use precise platform statistics if available:
430 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
432 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
433 void vtime_common_task_switch(struct task_struct *prev)
435 if (is_idle_task(prev))
436 vtime_account_idle(prev);
437 else
438 vtime_account_system(prev);
440 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
441 vtime_account_user(prev);
442 #endif
443 arch_vtime_task_switch(prev);
445 #endif
447 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
450 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
452 * Archs that account the whole time spent in the idle task
453 * (outside irq) as idle time can rely on this and just implement
454 * vtime_account_system() and vtime_account_idle(). Archs that
455 * have other meaning of the idle time (s390 only includes the
456 * time spent by the CPU when it's in low power mode) must override
457 * vtime_account().
459 #ifndef __ARCH_HAS_VTIME_ACCOUNT
460 void vtime_account_irq_enter(struct task_struct *tsk)
462 if (!in_interrupt() && is_idle_task(tsk))
463 vtime_account_idle(tsk);
464 else
465 vtime_account_system(tsk);
467 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
468 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
470 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
472 *ut = p->utime;
473 *st = p->stime;
475 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
477 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
479 struct task_cputime cputime;
481 thread_group_cputime(p, &cputime);
483 *ut = cputime.utime;
484 *st = cputime.stime;
486 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
488 * Account a single tick of cpu time.
489 * @p: the process that the cpu time gets accounted to
490 * @user_tick: indicates if the tick is a user or a system tick
492 void account_process_tick(struct task_struct *p, int user_tick)
494 cputime_t cputime, steal;
495 struct rq *rq = this_rq();
497 if (vtime_accounting_cpu_enabled())
498 return;
500 if (sched_clock_irqtime) {
501 irqtime_account_process_tick(p, user_tick, rq, 1);
502 return;
505 cputime = cputime_one_jiffy;
506 steal = steal_account_process_time(ULONG_MAX);
508 if (steal >= cputime)
509 return;
511 cputime -= steal;
513 if (user_tick)
514 account_user_time(p, cputime);
515 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
516 account_system_time(p, HARDIRQ_OFFSET, cputime);
517 else
518 account_idle_time(cputime);
522 * Account multiple ticks of idle time.
523 * @ticks: number of stolen ticks
525 void account_idle_ticks(unsigned long ticks)
527 cputime_t cputime, steal;
529 if (sched_clock_irqtime) {
530 irqtime_account_idle_ticks(ticks);
531 return;
534 cputime = jiffies_to_cputime(ticks);
535 steal = steal_account_process_time(ULONG_MAX);
537 if (steal >= cputime)
538 return;
540 cputime -= steal;
541 account_idle_time(cputime);
545 * Perform (stime * rtime) / total, but avoid multiplication overflow by
546 * loosing precision when the numbers are big.
548 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
550 u64 scaled;
552 for (;;) {
553 /* Make sure "rtime" is the bigger of stime/rtime */
554 if (stime > rtime)
555 swap(rtime, stime);
557 /* Make sure 'total' fits in 32 bits */
558 if (total >> 32)
559 goto drop_precision;
561 /* Does rtime (and thus stime) fit in 32 bits? */
562 if (!(rtime >> 32))
563 break;
565 /* Can we just balance rtime/stime rather than dropping bits? */
566 if (stime >> 31)
567 goto drop_precision;
569 /* We can grow stime and shrink rtime and try to make them both fit */
570 stime <<= 1;
571 rtime >>= 1;
572 continue;
574 drop_precision:
575 /* We drop from rtime, it has more bits than stime */
576 rtime >>= 1;
577 total >>= 1;
581 * Make sure gcc understands that this is a 32x32->64 multiply,
582 * followed by a 64/32->64 divide.
584 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
585 return (__force cputime_t) scaled;
589 * Adjust tick based cputime random precision against scheduler runtime
590 * accounting.
592 * Tick based cputime accounting depend on random scheduling timeslices of a
593 * task to be interrupted or not by the timer. Depending on these
594 * circumstances, the number of these interrupts may be over or
595 * under-optimistic, matching the real user and system cputime with a variable
596 * precision.
598 * Fix this by scaling these tick based values against the total runtime
599 * accounted by the CFS scheduler.
601 * This code provides the following guarantees:
603 * stime + utime == rtime
604 * stime_i+1 >= stime_i, utime_i+1 >= utime_i
606 * Assuming that rtime_i+1 >= rtime_i.
608 static void cputime_adjust(struct task_cputime *curr,
609 struct prev_cputime *prev,
610 cputime_t *ut, cputime_t *st)
612 cputime_t rtime, stime, utime;
613 unsigned long flags;
615 /* Serialize concurrent callers such that we can honour our guarantees */
616 raw_spin_lock_irqsave(&prev->lock, flags);
617 rtime = nsecs_to_cputime(curr->sum_exec_runtime);
620 * This is possible under two circumstances:
621 * - rtime isn't monotonic after all (a bug);
622 * - we got reordered by the lock.
624 * In both cases this acts as a filter such that the rest of the code
625 * can assume it is monotonic regardless of anything else.
627 if (prev->stime + prev->utime >= rtime)
628 goto out;
630 stime = curr->stime;
631 utime = curr->utime;
634 * If either stime or both stime and utime are 0, assume all runtime is
635 * userspace. Once a task gets some ticks, the monotonicy code at
636 * 'update' will ensure things converge to the observed ratio.
638 if (stime == 0) {
639 utime = rtime;
640 goto update;
643 if (utime == 0) {
644 stime = rtime;
645 goto update;
648 stime = scale_stime((__force u64)stime, (__force u64)rtime,
649 (__force u64)(stime + utime));
651 update:
653 * Make sure stime doesn't go backwards; this preserves monotonicity
654 * for utime because rtime is monotonic.
656 * utime_i+1 = rtime_i+1 - stime_i
657 * = rtime_i+1 - (rtime_i - utime_i)
658 * = (rtime_i+1 - rtime_i) + utime_i
659 * >= utime_i
661 if (stime < prev->stime)
662 stime = prev->stime;
663 utime = rtime - stime;
666 * Make sure utime doesn't go backwards; this still preserves
667 * monotonicity for stime, analogous argument to above.
669 if (utime < prev->utime) {
670 utime = prev->utime;
671 stime = rtime - utime;
674 prev->stime = stime;
675 prev->utime = utime;
676 out:
677 *ut = prev->utime;
678 *st = prev->stime;
679 raw_spin_unlock_irqrestore(&prev->lock, flags);
682 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
684 struct task_cputime cputime = {
685 .sum_exec_runtime = p->se.sum_exec_runtime,
688 task_cputime(p, &cputime.utime, &cputime.stime);
689 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
691 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
693 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
695 struct task_cputime cputime;
697 thread_group_cputime(p, &cputime);
698 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
700 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
702 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
703 static cputime_t vtime_delta(struct task_struct *tsk)
705 unsigned long now = READ_ONCE(jiffies);
707 if (time_before(now, (unsigned long)tsk->vtime_snap))
708 return 0;
710 return jiffies_to_cputime(now - tsk->vtime_snap);
713 static cputime_t get_vtime_delta(struct task_struct *tsk)
715 unsigned long now = READ_ONCE(jiffies);
716 cputime_t delta, other;
719 * Unlike tick based timing, vtime based timing never has lost
720 * ticks, and no need for steal time accounting to make up for
721 * lost ticks. Vtime accounts a rounded version of actual
722 * elapsed time. Limit account_other_time to prevent rounding
723 * errors from causing elapsed vtime to go negative.
725 delta = jiffies_to_cputime(now - tsk->vtime_snap);
726 other = account_other_time(delta);
727 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE);
728 tsk->vtime_snap = now;
730 return delta - other;
733 static void __vtime_account_system(struct task_struct *tsk)
735 cputime_t delta_cpu = get_vtime_delta(tsk);
737 account_system_time(tsk, irq_count(), delta_cpu);
740 void vtime_account_system(struct task_struct *tsk)
742 if (!vtime_delta(tsk))
743 return;
745 write_seqcount_begin(&tsk->vtime_seqcount);
746 __vtime_account_system(tsk);
747 write_seqcount_end(&tsk->vtime_seqcount);
750 void vtime_account_user(struct task_struct *tsk)
752 cputime_t delta_cpu;
754 write_seqcount_begin(&tsk->vtime_seqcount);
755 tsk->vtime_snap_whence = VTIME_SYS;
756 if (vtime_delta(tsk)) {
757 delta_cpu = get_vtime_delta(tsk);
758 account_user_time(tsk, delta_cpu);
760 write_seqcount_end(&tsk->vtime_seqcount);
763 void vtime_user_enter(struct task_struct *tsk)
765 write_seqcount_begin(&tsk->vtime_seqcount);
766 if (vtime_delta(tsk))
767 __vtime_account_system(tsk);
768 tsk->vtime_snap_whence = VTIME_USER;
769 write_seqcount_end(&tsk->vtime_seqcount);
772 void vtime_guest_enter(struct task_struct *tsk)
775 * The flags must be updated under the lock with
776 * the vtime_snap flush and update.
777 * That enforces a right ordering and update sequence
778 * synchronization against the reader (task_gtime())
779 * that can thus safely catch up with a tickless delta.
781 write_seqcount_begin(&tsk->vtime_seqcount);
782 if (vtime_delta(tsk))
783 __vtime_account_system(tsk);
784 current->flags |= PF_VCPU;
785 write_seqcount_end(&tsk->vtime_seqcount);
787 EXPORT_SYMBOL_GPL(vtime_guest_enter);
789 void vtime_guest_exit(struct task_struct *tsk)
791 write_seqcount_begin(&tsk->vtime_seqcount);
792 __vtime_account_system(tsk);
793 current->flags &= ~PF_VCPU;
794 write_seqcount_end(&tsk->vtime_seqcount);
796 EXPORT_SYMBOL_GPL(vtime_guest_exit);
798 void vtime_account_idle(struct task_struct *tsk)
800 cputime_t delta_cpu = get_vtime_delta(tsk);
802 account_idle_time(delta_cpu);
805 void arch_vtime_task_switch(struct task_struct *prev)
807 write_seqcount_begin(&prev->vtime_seqcount);
808 prev->vtime_snap_whence = VTIME_INACTIVE;
809 write_seqcount_end(&prev->vtime_seqcount);
811 write_seqcount_begin(&current->vtime_seqcount);
812 current->vtime_snap_whence = VTIME_SYS;
813 current->vtime_snap = jiffies;
814 write_seqcount_end(&current->vtime_seqcount);
817 void vtime_init_idle(struct task_struct *t, int cpu)
819 unsigned long flags;
821 local_irq_save(flags);
822 write_seqcount_begin(&t->vtime_seqcount);
823 t->vtime_snap_whence = VTIME_SYS;
824 t->vtime_snap = jiffies;
825 write_seqcount_end(&t->vtime_seqcount);
826 local_irq_restore(flags);
829 cputime_t task_gtime(struct task_struct *t)
831 unsigned int seq;
832 cputime_t gtime;
834 if (!vtime_accounting_enabled())
835 return t->gtime;
837 do {
838 seq = read_seqcount_begin(&t->vtime_seqcount);
840 gtime = t->gtime;
841 if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU)
842 gtime += vtime_delta(t);
844 } while (read_seqcount_retry(&t->vtime_seqcount, seq));
846 return gtime;
850 * Fetch cputime raw values from fields of task_struct and
851 * add up the pending nohz execution time since the last
852 * cputime snapshot.
854 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
856 cputime_t delta;
857 unsigned int seq;
859 if (!vtime_accounting_enabled()) {
860 *utime = t->utime;
861 *stime = t->stime;
862 return;
865 do {
866 seq = read_seqcount_begin(&t->vtime_seqcount);
868 *utime = t->utime;
869 *stime = t->stime;
871 /* Task is sleeping, nothing to add */
872 if (t->vtime_snap_whence == VTIME_INACTIVE || is_idle_task(t))
873 continue;
875 delta = vtime_delta(t);
878 * Task runs either in user or kernel space, add pending nohz time to
879 * the right place.
881 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU)
882 *utime += delta;
883 else if (t->vtime_snap_whence == VTIME_SYS)
884 *stime += delta;
885 } while (read_seqcount_retry(&t->vtime_seqcount, seq));
887 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */