2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
38 #include "xfs_icache.h"
41 #include <linux/dcache.h>
42 #include <linux/falloc.h>
43 #include <linux/pagevec.h>
44 #include <linux/backing-dev.h>
46 static const struct vm_operations_struct xfs_file_vm_ops
;
49 * Locking primitives for read and write IO paths to ensure we consistently use
50 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
57 if (type
& XFS_IOLOCK_EXCL
)
58 mutex_lock(&VFS_I(ip
)->i_mutex
);
67 xfs_iunlock(ip
, type
);
68 if (type
& XFS_IOLOCK_EXCL
)
69 mutex_unlock(&VFS_I(ip
)->i_mutex
);
77 xfs_ilock_demote(ip
, type
);
78 if (type
& XFS_IOLOCK_EXCL
)
79 mutex_unlock(&VFS_I(ip
)->i_mutex
);
83 * xfs_iozero clears the specified range supplied via the page cache (except in
84 * the DAX case). Writes through the page cache will allocate blocks over holes,
85 * though the callers usually map the holes first and avoid them. If a block is
86 * not completely zeroed, then it will be read from disk before being partially
89 * In the DAX case, we can just directly write to the underlying pages. This
90 * will not allocate blocks, but will avoid holes and unwritten extents and so
91 * not do unnecessary work.
95 struct xfs_inode
*ip
, /* inode */
96 loff_t pos
, /* offset in file */
97 size_t count
) /* size of data to zero */
100 struct address_space
*mapping
;
104 mapping
= VFS_I(ip
)->i_mapping
;
106 unsigned offset
, bytes
;
109 offset
= (pos
& (PAGE_CACHE_SIZE
-1)); /* Within page */
110 bytes
= PAGE_CACHE_SIZE
- offset
;
114 if (IS_DAX(VFS_I(ip
))) {
115 status
= dax_zero_page_range(VFS_I(ip
), pos
, bytes
,
116 xfs_get_blocks_direct
);
120 status
= pagecache_write_begin(NULL
, mapping
, pos
, bytes
,
121 AOP_FLAG_UNINTERRUPTIBLE
,
126 zero_user(page
, offset
, bytes
);
128 status
= pagecache_write_end(NULL
, mapping
, pos
, bytes
,
129 bytes
, page
, fsdata
);
130 WARN_ON(status
<= 0); /* can't return less than zero! */
141 xfs_update_prealloc_flags(
142 struct xfs_inode
*ip
,
143 enum xfs_prealloc_flags flags
)
145 struct xfs_trans
*tp
;
148 tp
= xfs_trans_alloc(ip
->i_mount
, XFS_TRANS_WRITEID
);
149 error
= xfs_trans_reserve(tp
, &M_RES(ip
->i_mount
)->tr_writeid
, 0, 0);
151 xfs_trans_cancel(tp
);
155 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
156 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
158 if (!(flags
& XFS_PREALLOC_INVISIBLE
)) {
159 ip
->i_d
.di_mode
&= ~S_ISUID
;
160 if (ip
->i_d
.di_mode
& S_IXGRP
)
161 ip
->i_d
.di_mode
&= ~S_ISGID
;
162 xfs_trans_ichgtime(tp
, ip
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
165 if (flags
& XFS_PREALLOC_SET
)
166 ip
->i_d
.di_flags
|= XFS_DIFLAG_PREALLOC
;
167 if (flags
& XFS_PREALLOC_CLEAR
)
168 ip
->i_d
.di_flags
&= ~XFS_DIFLAG_PREALLOC
;
170 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
171 if (flags
& XFS_PREALLOC_SYNC
)
172 xfs_trans_set_sync(tp
);
173 return xfs_trans_commit(tp
);
177 * Fsync operations on directories are much simpler than on regular files,
178 * as there is no file data to flush, and thus also no need for explicit
179 * cache flush operations, and there are no non-transaction metadata updates
180 * on directories either.
189 struct xfs_inode
*ip
= XFS_I(file
->f_mapping
->host
);
190 struct xfs_mount
*mp
= ip
->i_mount
;
193 trace_xfs_dir_fsync(ip
);
195 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
196 if (xfs_ipincount(ip
))
197 lsn
= ip
->i_itemp
->ili_last_lsn
;
198 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
202 return _xfs_log_force_lsn(mp
, lsn
, XFS_LOG_SYNC
, NULL
);
212 struct inode
*inode
= file
->f_mapping
->host
;
213 struct xfs_inode
*ip
= XFS_I(inode
);
214 struct xfs_mount
*mp
= ip
->i_mount
;
219 trace_xfs_file_fsync(ip
);
221 error
= filemap_write_and_wait_range(inode
->i_mapping
, start
, end
);
225 if (XFS_FORCED_SHUTDOWN(mp
))
228 xfs_iflags_clear(ip
, XFS_ITRUNCATED
);
230 if (mp
->m_flags
& XFS_MOUNT_BARRIER
) {
232 * If we have an RT and/or log subvolume we need to make sure
233 * to flush the write cache the device used for file data
234 * first. This is to ensure newly written file data make
235 * it to disk before logging the new inode size in case of
236 * an extending write.
238 if (XFS_IS_REALTIME_INODE(ip
))
239 xfs_blkdev_issue_flush(mp
->m_rtdev_targp
);
240 else if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
241 xfs_blkdev_issue_flush(mp
->m_ddev_targp
);
245 * All metadata updates are logged, which means that we just have
246 * to flush the log up to the latest LSN that touched the inode.
248 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
249 if (xfs_ipincount(ip
)) {
251 (ip
->i_itemp
->ili_fields
& ~XFS_ILOG_TIMESTAMP
))
252 lsn
= ip
->i_itemp
->ili_last_lsn
;
254 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
257 error
= _xfs_log_force_lsn(mp
, lsn
, XFS_LOG_SYNC
, &log_flushed
);
260 * If we only have a single device, and the log force about was
261 * a no-op we might have to flush the data device cache here.
262 * This can only happen for fdatasync/O_DSYNC if we were overwriting
263 * an already allocated file and thus do not have any metadata to
266 if ((mp
->m_flags
& XFS_MOUNT_BARRIER
) &&
267 mp
->m_logdev_targp
== mp
->m_ddev_targp
&&
268 !XFS_IS_REALTIME_INODE(ip
) &&
270 xfs_blkdev_issue_flush(mp
->m_ddev_targp
);
280 struct file
*file
= iocb
->ki_filp
;
281 struct inode
*inode
= file
->f_mapping
->host
;
282 struct xfs_inode
*ip
= XFS_I(inode
);
283 struct xfs_mount
*mp
= ip
->i_mount
;
284 size_t size
= iov_iter_count(to
);
288 loff_t pos
= iocb
->ki_pos
;
290 XFS_STATS_INC(xs_read_calls
);
292 if (unlikely(iocb
->ki_flags
& IOCB_DIRECT
))
293 ioflags
|= XFS_IO_ISDIRECT
;
294 if (file
->f_mode
& FMODE_NOCMTIME
)
295 ioflags
|= XFS_IO_INVIS
;
297 if ((ioflags
& XFS_IO_ISDIRECT
) && !IS_DAX(inode
)) {
298 xfs_buftarg_t
*target
=
299 XFS_IS_REALTIME_INODE(ip
) ?
300 mp
->m_rtdev_targp
: mp
->m_ddev_targp
;
301 /* DIO must be aligned to device logical sector size */
302 if ((pos
| size
) & target
->bt_logical_sectormask
) {
303 if (pos
== i_size_read(inode
))
309 n
= mp
->m_super
->s_maxbytes
- pos
;
310 if (n
<= 0 || size
== 0)
316 if (XFS_FORCED_SHUTDOWN(mp
))
320 * Locking is a bit tricky here. If we take an exclusive lock
321 * for direct IO, we effectively serialise all new concurrent
322 * read IO to this file and block it behind IO that is currently in
323 * progress because IO in progress holds the IO lock shared. We only
324 * need to hold the lock exclusive to blow away the page cache, so
325 * only take lock exclusively if the page cache needs invalidation.
326 * This allows the normal direct IO case of no page cache pages to
327 * proceeed concurrently without serialisation.
329 xfs_rw_ilock(ip
, XFS_IOLOCK_SHARED
);
330 if ((ioflags
& XFS_IO_ISDIRECT
) && inode
->i_mapping
->nrpages
) {
331 xfs_rw_iunlock(ip
, XFS_IOLOCK_SHARED
);
332 xfs_rw_ilock(ip
, XFS_IOLOCK_EXCL
);
334 if (inode
->i_mapping
->nrpages
) {
335 ret
= filemap_write_and_wait_range(
336 VFS_I(ip
)->i_mapping
,
337 pos
, pos
+ size
- 1);
339 xfs_rw_iunlock(ip
, XFS_IOLOCK_EXCL
);
344 * Invalidate whole pages. This can return an error if
345 * we fail to invalidate a page, but this should never
346 * happen on XFS. Warn if it does fail.
348 ret
= invalidate_inode_pages2_range(VFS_I(ip
)->i_mapping
,
349 pos
>> PAGE_CACHE_SHIFT
,
350 (pos
+ size
- 1) >> PAGE_CACHE_SHIFT
);
354 xfs_rw_ilock_demote(ip
, XFS_IOLOCK_EXCL
);
357 trace_xfs_file_read(ip
, size
, pos
, ioflags
);
359 ret
= generic_file_read_iter(iocb
, to
);
361 XFS_STATS_ADD(xs_read_bytes
, ret
);
363 xfs_rw_iunlock(ip
, XFS_IOLOCK_SHARED
);
368 xfs_file_splice_read(
371 struct pipe_inode_info
*pipe
,
375 struct xfs_inode
*ip
= XFS_I(infilp
->f_mapping
->host
);
379 XFS_STATS_INC(xs_read_calls
);
381 if (infilp
->f_mode
& FMODE_NOCMTIME
)
382 ioflags
|= XFS_IO_INVIS
;
384 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
387 xfs_rw_ilock(ip
, XFS_IOLOCK_SHARED
);
389 trace_xfs_file_splice_read(ip
, count
, *ppos
, ioflags
);
391 /* for dax, we need to avoid the page cache */
392 if (IS_DAX(VFS_I(ip
)))
393 ret
= default_file_splice_read(infilp
, ppos
, pipe
, count
, flags
);
395 ret
= generic_file_splice_read(infilp
, ppos
, pipe
, count
, flags
);
397 XFS_STATS_ADD(xs_read_bytes
, ret
);
399 xfs_rw_iunlock(ip
, XFS_IOLOCK_SHARED
);
404 * This routine is called to handle zeroing any space in the last block of the
405 * file that is beyond the EOF. We do this since the size is being increased
406 * without writing anything to that block and we don't want to read the
407 * garbage on the disk.
409 STATIC
int /* error (positive) */
411 struct xfs_inode
*ip
,
416 struct xfs_mount
*mp
= ip
->i_mount
;
417 xfs_fileoff_t last_fsb
= XFS_B_TO_FSBT(mp
, isize
);
418 int zero_offset
= XFS_B_FSB_OFFSET(mp
, isize
);
422 struct xfs_bmbt_irec imap
;
424 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
425 error
= xfs_bmapi_read(ip
, last_fsb
, 1, &imap
, &nimaps
, 0);
426 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
433 * If the block underlying isize is just a hole, then there
434 * is nothing to zero.
436 if (imap
.br_startblock
== HOLESTARTBLOCK
)
439 zero_len
= mp
->m_sb
.sb_blocksize
- zero_offset
;
440 if (isize
+ zero_len
> offset
)
441 zero_len
= offset
- isize
;
443 return xfs_iozero(ip
, isize
, zero_len
);
447 * Zero any on disk space between the current EOF and the new, larger EOF.
449 * This handles the normal case of zeroing the remainder of the last block in
450 * the file and the unusual case of zeroing blocks out beyond the size of the
451 * file. This second case only happens with fixed size extents and when the
452 * system crashes before the inode size was updated but after blocks were
455 * Expects the iolock to be held exclusive, and will take the ilock internally.
457 int /* error (positive) */
459 struct xfs_inode
*ip
,
460 xfs_off_t offset
, /* starting I/O offset */
461 xfs_fsize_t isize
, /* current inode size */
464 struct xfs_mount
*mp
= ip
->i_mount
;
465 xfs_fileoff_t start_zero_fsb
;
466 xfs_fileoff_t end_zero_fsb
;
467 xfs_fileoff_t zero_count_fsb
;
468 xfs_fileoff_t last_fsb
;
469 xfs_fileoff_t zero_off
;
470 xfs_fsize_t zero_len
;
473 struct xfs_bmbt_irec imap
;
475 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
476 ASSERT(offset
> isize
);
479 * First handle zeroing the block on which isize resides.
481 * We only zero a part of that block so it is handled specially.
483 if (XFS_B_FSB_OFFSET(mp
, isize
) != 0) {
484 error
= xfs_zero_last_block(ip
, offset
, isize
, did_zeroing
);
490 * Calculate the range between the new size and the old where blocks
491 * needing to be zeroed may exist.
493 * To get the block where the last byte in the file currently resides,
494 * we need to subtract one from the size and truncate back to a block
495 * boundary. We subtract 1 in case the size is exactly on a block
498 last_fsb
= isize
? XFS_B_TO_FSBT(mp
, isize
- 1) : (xfs_fileoff_t
)-1;
499 start_zero_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
500 end_zero_fsb
= XFS_B_TO_FSBT(mp
, offset
- 1);
501 ASSERT((xfs_sfiloff_t
)last_fsb
< (xfs_sfiloff_t
)start_zero_fsb
);
502 if (last_fsb
== end_zero_fsb
) {
504 * The size was only incremented on its last block.
505 * We took care of that above, so just return.
510 ASSERT(start_zero_fsb
<= end_zero_fsb
);
511 while (start_zero_fsb
<= end_zero_fsb
) {
513 zero_count_fsb
= end_zero_fsb
- start_zero_fsb
+ 1;
515 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
516 error
= xfs_bmapi_read(ip
, start_zero_fsb
, zero_count_fsb
,
518 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
524 if (imap
.br_state
== XFS_EXT_UNWRITTEN
||
525 imap
.br_startblock
== HOLESTARTBLOCK
) {
526 start_zero_fsb
= imap
.br_startoff
+ imap
.br_blockcount
;
527 ASSERT(start_zero_fsb
<= (end_zero_fsb
+ 1));
532 * There are blocks we need to zero.
534 zero_off
= XFS_FSB_TO_B(mp
, start_zero_fsb
);
535 zero_len
= XFS_FSB_TO_B(mp
, imap
.br_blockcount
);
537 if ((zero_off
+ zero_len
) > offset
)
538 zero_len
= offset
- zero_off
;
540 error
= xfs_iozero(ip
, zero_off
, zero_len
);
545 start_zero_fsb
= imap
.br_startoff
+ imap
.br_blockcount
;
546 ASSERT(start_zero_fsb
<= (end_zero_fsb
+ 1));
553 * Common pre-write limit and setup checks.
555 * Called with the iolocked held either shared and exclusive according to
556 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
557 * if called for a direct write beyond i_size.
560 xfs_file_aio_write_checks(
562 struct iov_iter
*from
,
565 struct file
*file
= iocb
->ki_filp
;
566 struct inode
*inode
= file
->f_mapping
->host
;
567 struct xfs_inode
*ip
= XFS_I(inode
);
569 size_t count
= iov_iter_count(from
);
572 error
= generic_write_checks(iocb
, from
);
576 error
= xfs_break_layouts(inode
, iolock
, true);
580 /* For changing security info in file_remove_privs() we need i_mutex */
581 if (*iolock
== XFS_IOLOCK_SHARED
&& !IS_NOSEC(inode
)) {
582 xfs_rw_iunlock(ip
, *iolock
);
583 *iolock
= XFS_IOLOCK_EXCL
;
584 xfs_rw_ilock(ip
, *iolock
);
588 * If the offset is beyond the size of the file, we need to zero any
589 * blocks that fall between the existing EOF and the start of this
590 * write. If zeroing is needed and we are currently holding the
591 * iolock shared, we need to update it to exclusive which implies
592 * having to redo all checks before.
594 * We need to serialise against EOF updates that occur in IO
595 * completions here. We want to make sure that nobody is changing the
596 * size while we do this check until we have placed an IO barrier (i.e.
597 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
598 * The spinlock effectively forms a memory barrier once we have the
599 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
600 * and hence be able to correctly determine if we need to run zeroing.
602 spin_lock(&ip
->i_flags_lock
);
603 if (iocb
->ki_pos
> i_size_read(inode
)) {
606 spin_unlock(&ip
->i_flags_lock
);
607 if (*iolock
== XFS_IOLOCK_SHARED
) {
608 xfs_rw_iunlock(ip
, *iolock
);
609 *iolock
= XFS_IOLOCK_EXCL
;
610 xfs_rw_ilock(ip
, *iolock
);
611 iov_iter_reexpand(from
, count
);
614 * We now have an IO submission barrier in place, but
615 * AIO can do EOF updates during IO completion and hence
616 * we now need to wait for all of them to drain. Non-AIO
617 * DIO will have drained before we are given the
618 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
621 inode_dio_wait(inode
);
624 error
= xfs_zero_eof(ip
, iocb
->ki_pos
, i_size_read(inode
), &zero
);
628 spin_unlock(&ip
->i_flags_lock
);
631 * Updating the timestamps will grab the ilock again from
632 * xfs_fs_dirty_inode, so we have to call it after dropping the
633 * lock above. Eventually we should look into a way to avoid
634 * the pointless lock roundtrip.
636 if (likely(!(file
->f_mode
& FMODE_NOCMTIME
))) {
637 error
= file_update_time(file
);
643 * If we're writing the file then make sure to clear the setuid and
644 * setgid bits if the process is not being run by root. This keeps
645 * people from modifying setuid and setgid binaries.
647 if (!IS_NOSEC(inode
))
648 return file_remove_privs(file
);
653 * xfs_file_dio_aio_write - handle direct IO writes
655 * Lock the inode appropriately to prepare for and issue a direct IO write.
656 * By separating it from the buffered write path we remove all the tricky to
657 * follow locking changes and looping.
659 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
660 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
661 * pages are flushed out.
663 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
664 * allowing them to be done in parallel with reads and other direct IO writes.
665 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
666 * needs to do sub-block zeroing and that requires serialisation against other
667 * direct IOs to the same block. In this case we need to serialise the
668 * submission of the unaligned IOs so that we don't get racing block zeroing in
669 * the dio layer. To avoid the problem with aio, we also need to wait for
670 * outstanding IOs to complete so that unwritten extent conversion is completed
671 * before we try to map the overlapping block. This is currently implemented by
672 * hitting it with a big hammer (i.e. inode_dio_wait()).
674 * Returns with locks held indicated by @iolock and errors indicated by
675 * negative return values.
678 xfs_file_dio_aio_write(
680 struct iov_iter
*from
)
682 struct file
*file
= iocb
->ki_filp
;
683 struct address_space
*mapping
= file
->f_mapping
;
684 struct inode
*inode
= mapping
->host
;
685 struct xfs_inode
*ip
= XFS_I(inode
);
686 struct xfs_mount
*mp
= ip
->i_mount
;
688 int unaligned_io
= 0;
690 size_t count
= iov_iter_count(from
);
691 loff_t pos
= iocb
->ki_pos
;
693 struct iov_iter data
;
694 struct xfs_buftarg
*target
= XFS_IS_REALTIME_INODE(ip
) ?
695 mp
->m_rtdev_targp
: mp
->m_ddev_targp
;
697 /* DIO must be aligned to device logical sector size */
698 if (!IS_DAX(inode
) && ((pos
| count
) & target
->bt_logical_sectormask
))
701 /* "unaligned" here means not aligned to a filesystem block */
702 if ((pos
& mp
->m_blockmask
) || ((pos
+ count
) & mp
->m_blockmask
))
706 * We don't need to take an exclusive lock unless there page cache needs
707 * to be invalidated or unaligned IO is being executed. We don't need to
708 * consider the EOF extension case here because
709 * xfs_file_aio_write_checks() will relock the inode as necessary for
710 * EOF zeroing cases and fill out the new inode size as appropriate.
712 if (unaligned_io
|| mapping
->nrpages
)
713 iolock
= XFS_IOLOCK_EXCL
;
715 iolock
= XFS_IOLOCK_SHARED
;
716 xfs_rw_ilock(ip
, iolock
);
719 * Recheck if there are cached pages that need invalidate after we got
720 * the iolock to protect against other threads adding new pages while
721 * we were waiting for the iolock.
723 if (mapping
->nrpages
&& iolock
== XFS_IOLOCK_SHARED
) {
724 xfs_rw_iunlock(ip
, iolock
);
725 iolock
= XFS_IOLOCK_EXCL
;
726 xfs_rw_ilock(ip
, iolock
);
729 ret
= xfs_file_aio_write_checks(iocb
, from
, &iolock
);
732 count
= iov_iter_count(from
);
734 end
= pos
+ count
- 1;
736 if (mapping
->nrpages
) {
737 ret
= filemap_write_and_wait_range(VFS_I(ip
)->i_mapping
,
742 * Invalidate whole pages. This can return an error if
743 * we fail to invalidate a page, but this should never
744 * happen on XFS. Warn if it does fail.
746 ret
= invalidate_inode_pages2_range(VFS_I(ip
)->i_mapping
,
747 pos
>> PAGE_CACHE_SHIFT
,
748 end
>> PAGE_CACHE_SHIFT
);
754 * If we are doing unaligned IO, wait for all other IO to drain,
755 * otherwise demote the lock if we had to flush cached pages
758 inode_dio_wait(inode
);
759 else if (iolock
== XFS_IOLOCK_EXCL
) {
760 xfs_rw_ilock_demote(ip
, XFS_IOLOCK_EXCL
);
761 iolock
= XFS_IOLOCK_SHARED
;
764 trace_xfs_file_direct_write(ip
, count
, iocb
->ki_pos
, 0);
767 ret
= mapping
->a_ops
->direct_IO(iocb
, &data
, pos
);
769 /* see generic_file_direct_write() for why this is necessary */
770 if (mapping
->nrpages
) {
771 invalidate_inode_pages2_range(mapping
,
772 pos
>> PAGE_CACHE_SHIFT
,
773 end
>> PAGE_CACHE_SHIFT
);
778 iov_iter_advance(from
, ret
);
782 xfs_rw_iunlock(ip
, iolock
);
785 * No fallback to buffered IO on errors for XFS. DAX can result in
786 * partial writes, but direct IO will either complete fully or fail.
788 ASSERT(ret
< 0 || ret
== count
|| IS_DAX(VFS_I(ip
)));
793 xfs_file_buffered_aio_write(
795 struct iov_iter
*from
)
797 struct file
*file
= iocb
->ki_filp
;
798 struct address_space
*mapping
= file
->f_mapping
;
799 struct inode
*inode
= mapping
->host
;
800 struct xfs_inode
*ip
= XFS_I(inode
);
803 int iolock
= XFS_IOLOCK_EXCL
;
805 xfs_rw_ilock(ip
, iolock
);
807 ret
= xfs_file_aio_write_checks(iocb
, from
, &iolock
);
811 /* We can write back this queue in page reclaim */
812 current
->backing_dev_info
= inode_to_bdi(inode
);
815 trace_xfs_file_buffered_write(ip
, iov_iter_count(from
),
817 ret
= generic_perform_write(file
, from
, iocb
->ki_pos
);
818 if (likely(ret
>= 0))
822 * If we hit a space limit, try to free up some lingering preallocated
823 * space before returning an error. In the case of ENOSPC, first try to
824 * write back all dirty inodes to free up some of the excess reserved
825 * metadata space. This reduces the chances that the eofblocks scan
826 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
827 * also behaves as a filter to prevent too many eofblocks scans from
828 * running at the same time.
830 if (ret
== -EDQUOT
&& !enospc
) {
831 enospc
= xfs_inode_free_quota_eofblocks(ip
);
834 } else if (ret
== -ENOSPC
&& !enospc
) {
835 struct xfs_eofblocks eofb
= {0};
838 xfs_flush_inodes(ip
->i_mount
);
839 eofb
.eof_scan_owner
= ip
->i_ino
; /* for locking */
840 eofb
.eof_flags
= XFS_EOF_FLAGS_SYNC
;
841 xfs_icache_free_eofblocks(ip
->i_mount
, &eofb
);
845 current
->backing_dev_info
= NULL
;
847 xfs_rw_iunlock(ip
, iolock
);
854 struct iov_iter
*from
)
856 struct file
*file
= iocb
->ki_filp
;
857 struct address_space
*mapping
= file
->f_mapping
;
858 struct inode
*inode
= mapping
->host
;
859 struct xfs_inode
*ip
= XFS_I(inode
);
861 size_t ocount
= iov_iter_count(from
);
863 XFS_STATS_INC(xs_write_calls
);
868 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
871 if ((iocb
->ki_flags
& IOCB_DIRECT
) || IS_DAX(inode
))
872 ret
= xfs_file_dio_aio_write(iocb
, from
);
874 ret
= xfs_file_buffered_aio_write(iocb
, from
);
879 XFS_STATS_ADD(xs_write_bytes
, ret
);
881 /* Handle various SYNC-type writes */
882 err
= generic_write_sync(file
, iocb
->ki_pos
- ret
, ret
);
889 #define XFS_FALLOC_FL_SUPPORTED \
890 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
891 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
892 FALLOC_FL_INSERT_RANGE)
901 struct inode
*inode
= file_inode(file
);
902 struct xfs_inode
*ip
= XFS_I(inode
);
904 enum xfs_prealloc_flags flags
= 0;
905 uint iolock
= XFS_IOLOCK_EXCL
;
907 bool do_file_insert
= 0;
909 if (!S_ISREG(inode
->i_mode
))
911 if (mode
& ~XFS_FALLOC_FL_SUPPORTED
)
914 xfs_ilock(ip
, iolock
);
915 error
= xfs_break_layouts(inode
, &iolock
, false);
919 xfs_ilock(ip
, XFS_MMAPLOCK_EXCL
);
920 iolock
|= XFS_MMAPLOCK_EXCL
;
922 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
923 error
= xfs_free_file_space(ip
, offset
, len
);
926 } else if (mode
& FALLOC_FL_COLLAPSE_RANGE
) {
927 unsigned blksize_mask
= (1 << inode
->i_blkbits
) - 1;
929 if (offset
& blksize_mask
|| len
& blksize_mask
) {
935 * There is no need to overlap collapse range with EOF,
936 * in which case it is effectively a truncate operation
938 if (offset
+ len
>= i_size_read(inode
)) {
943 new_size
= i_size_read(inode
) - len
;
945 error
= xfs_collapse_file_space(ip
, offset
, len
);
948 } else if (mode
& FALLOC_FL_INSERT_RANGE
) {
949 unsigned blksize_mask
= (1 << inode
->i_blkbits
) - 1;
951 new_size
= i_size_read(inode
) + len
;
952 if (offset
& blksize_mask
|| len
& blksize_mask
) {
957 /* check the new inode size does not wrap through zero */
958 if (new_size
> inode
->i_sb
->s_maxbytes
) {
963 /* Offset should be less than i_size */
964 if (offset
>= i_size_read(inode
)) {
970 flags
|= XFS_PREALLOC_SET
;
972 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
973 offset
+ len
> i_size_read(inode
)) {
974 new_size
= offset
+ len
;
975 error
= inode_newsize_ok(inode
, new_size
);
980 if (mode
& FALLOC_FL_ZERO_RANGE
)
981 error
= xfs_zero_file_space(ip
, offset
, len
);
983 error
= xfs_alloc_file_space(ip
, offset
, len
,
989 if (file
->f_flags
& O_DSYNC
)
990 flags
|= XFS_PREALLOC_SYNC
;
992 error
= xfs_update_prealloc_flags(ip
, flags
);
996 /* Change file size if needed */
1000 iattr
.ia_valid
= ATTR_SIZE
;
1001 iattr
.ia_size
= new_size
;
1002 error
= xfs_setattr_size(ip
, &iattr
);
1008 * Perform hole insertion now that the file size has been
1009 * updated so that if we crash during the operation we don't
1010 * leave shifted extents past EOF and hence losing access to
1011 * the data that is contained within them.
1014 error
= xfs_insert_file_space(ip
, offset
, len
);
1017 xfs_iunlock(ip
, iolock
);
1024 struct inode
*inode
,
1027 if (!(file
->f_flags
& O_LARGEFILE
) && i_size_read(inode
) > MAX_NON_LFS
)
1029 if (XFS_FORCED_SHUTDOWN(XFS_M(inode
->i_sb
)))
1036 struct inode
*inode
,
1039 struct xfs_inode
*ip
= XFS_I(inode
);
1043 error
= xfs_file_open(inode
, file
);
1048 * If there are any blocks, read-ahead block 0 as we're almost
1049 * certain to have the next operation be a read there.
1051 mode
= xfs_ilock_data_map_shared(ip
);
1052 if (ip
->i_d
.di_nextents
> 0)
1053 xfs_dir3_data_readahead(ip
, 0, -1);
1054 xfs_iunlock(ip
, mode
);
1060 struct inode
*inode
,
1063 return xfs_release(XFS_I(inode
));
1069 struct dir_context
*ctx
)
1071 struct inode
*inode
= file_inode(file
);
1072 xfs_inode_t
*ip
= XFS_I(inode
);
1076 * The Linux API doesn't pass down the total size of the buffer
1077 * we read into down to the filesystem. With the filldir concept
1078 * it's not needed for correct information, but the XFS dir2 leaf
1079 * code wants an estimate of the buffer size to calculate it's
1080 * readahead window and size the buffers used for mapping to
1083 * Try to give it an estimate that's good enough, maybe at some
1084 * point we can change the ->readdir prototype to include the
1085 * buffer size. For now we use the current glibc buffer size.
1087 bufsize
= (size_t)min_t(loff_t
, 32768, ip
->i_d
.di_size
);
1089 return xfs_readdir(ip
, ctx
, bufsize
);
1093 * This type is designed to indicate the type of offset we would like
1094 * to search from page cache for xfs_seek_hole_data().
1102 * Lookup the desired type of offset from the given page.
1104 * On success, return true and the offset argument will point to the
1105 * start of the region that was found. Otherwise this function will
1106 * return false and keep the offset argument unchanged.
1109 xfs_lookup_buffer_offset(
1114 loff_t lastoff
= page_offset(page
);
1116 struct buffer_head
*bh
, *head
;
1118 bh
= head
= page_buffers(page
);
1121 * Unwritten extents that have data in the page
1122 * cache covering them can be identified by the
1123 * BH_Unwritten state flag. Pages with multiple
1124 * buffers might have a mix of holes, data and
1125 * unwritten extents - any buffer with valid
1126 * data in it should have BH_Uptodate flag set
1129 if (buffer_unwritten(bh
) ||
1130 buffer_uptodate(bh
)) {
1131 if (type
== DATA_OFF
)
1134 if (type
== HOLE_OFF
)
1142 lastoff
+= bh
->b_size
;
1143 } while ((bh
= bh
->b_this_page
) != head
);
1149 * This routine is called to find out and return a data or hole offset
1150 * from the page cache for unwritten extents according to the desired
1151 * type for xfs_seek_hole_data().
1153 * The argument offset is used to tell where we start to search from the
1154 * page cache. Map is used to figure out the end points of the range to
1157 * Return true if the desired type of offset was found, and the argument
1158 * offset is filled with that address. Otherwise, return false and keep
1162 xfs_find_get_desired_pgoff(
1163 struct inode
*inode
,
1164 struct xfs_bmbt_irec
*map
,
1168 struct xfs_inode
*ip
= XFS_I(inode
);
1169 struct xfs_mount
*mp
= ip
->i_mount
;
1170 struct pagevec pvec
;
1174 loff_t startoff
= *offset
;
1175 loff_t lastoff
= startoff
;
1178 pagevec_init(&pvec
, 0);
1180 index
= startoff
>> PAGE_CACHE_SHIFT
;
1181 endoff
= XFS_FSB_TO_B(mp
, map
->br_startoff
+ map
->br_blockcount
);
1182 end
= endoff
>> PAGE_CACHE_SHIFT
;
1188 want
= min_t(pgoff_t
, end
- index
, PAGEVEC_SIZE
);
1189 nr_pages
= pagevec_lookup(&pvec
, inode
->i_mapping
, index
,
1192 * No page mapped into given range. If we are searching holes
1193 * and if this is the first time we got into the loop, it means
1194 * that the given offset is landed in a hole, return it.
1196 * If we have already stepped through some block buffers to find
1197 * holes but they all contains data. In this case, the last
1198 * offset is already updated and pointed to the end of the last
1199 * mapped page, if it does not reach the endpoint to search,
1200 * that means there should be a hole between them.
1202 if (nr_pages
== 0) {
1203 /* Data search found nothing */
1204 if (type
== DATA_OFF
)
1207 ASSERT(type
== HOLE_OFF
);
1208 if (lastoff
== startoff
|| lastoff
< endoff
) {
1216 * At lease we found one page. If this is the first time we
1217 * step into the loop, and if the first page index offset is
1218 * greater than the given search offset, a hole was found.
1220 if (type
== HOLE_OFF
&& lastoff
== startoff
&&
1221 lastoff
< page_offset(pvec
.pages
[0])) {
1226 for (i
= 0; i
< nr_pages
; i
++) {
1227 struct page
*page
= pvec
.pages
[i
];
1231 * At this point, the page may be truncated or
1232 * invalidated (changing page->mapping to NULL),
1233 * or even swizzled back from swapper_space to tmpfs
1234 * file mapping. However, page->index will not change
1235 * because we have a reference on the page.
1237 * Searching done if the page index is out of range.
1238 * If the current offset is not reaches the end of
1239 * the specified search range, there should be a hole
1242 if (page
->index
> end
) {
1243 if (type
== HOLE_OFF
&& lastoff
< endoff
) {
1252 * Page truncated or invalidated(page->mapping == NULL).
1253 * We can freely skip it and proceed to check the next
1256 if (unlikely(page
->mapping
!= inode
->i_mapping
)) {
1261 if (!page_has_buffers(page
)) {
1266 found
= xfs_lookup_buffer_offset(page
, &b_offset
, type
);
1269 * The found offset may be less than the start
1270 * point to search if this is the first time to
1273 *offset
= max_t(loff_t
, startoff
, b_offset
);
1279 * We either searching data but nothing was found, or
1280 * searching hole but found a data buffer. In either
1281 * case, probably the next page contains the desired
1282 * things, update the last offset to it so.
1284 lastoff
= page_offset(page
) + PAGE_SIZE
;
1289 * The number of returned pages less than our desired, search
1290 * done. In this case, nothing was found for searching data,
1291 * but we found a hole behind the last offset.
1293 if (nr_pages
< want
) {
1294 if (type
== HOLE_OFF
) {
1301 index
= pvec
.pages
[i
- 1]->index
+ 1;
1302 pagevec_release(&pvec
);
1303 } while (index
<= end
);
1306 pagevec_release(&pvec
);
1316 struct inode
*inode
= file
->f_mapping
->host
;
1317 struct xfs_inode
*ip
= XFS_I(inode
);
1318 struct xfs_mount
*mp
= ip
->i_mount
;
1319 loff_t
uninitialized_var(offset
);
1321 xfs_fileoff_t fsbno
;
1326 if (XFS_FORCED_SHUTDOWN(mp
))
1329 lock
= xfs_ilock_data_map_shared(ip
);
1331 isize
= i_size_read(inode
);
1332 if (start
>= isize
) {
1338 * Try to read extents from the first block indicated
1339 * by fsbno to the end block of the file.
1341 fsbno
= XFS_B_TO_FSBT(mp
, start
);
1342 end
= XFS_B_TO_FSB(mp
, isize
);
1345 struct xfs_bmbt_irec map
[2];
1349 error
= xfs_bmapi_read(ip
, fsbno
, end
- fsbno
, map
, &nmap
,
1354 /* No extents at given offset, must be beyond EOF */
1360 for (i
= 0; i
< nmap
; i
++) {
1361 offset
= max_t(loff_t
, start
,
1362 XFS_FSB_TO_B(mp
, map
[i
].br_startoff
));
1364 /* Landed in the hole we wanted? */
1365 if (whence
== SEEK_HOLE
&&
1366 map
[i
].br_startblock
== HOLESTARTBLOCK
)
1369 /* Landed in the data extent we wanted? */
1370 if (whence
== SEEK_DATA
&&
1371 (map
[i
].br_startblock
== DELAYSTARTBLOCK
||
1372 (map
[i
].br_state
== XFS_EXT_NORM
&&
1373 !isnullstartblock(map
[i
].br_startblock
))))
1377 * Landed in an unwritten extent, try to search
1378 * for hole or data from page cache.
1380 if (map
[i
].br_state
== XFS_EXT_UNWRITTEN
) {
1381 if (xfs_find_get_desired_pgoff(inode
, &map
[i
],
1382 whence
== SEEK_HOLE
? HOLE_OFF
: DATA_OFF
,
1389 * We only received one extent out of the two requested. This
1390 * means we've hit EOF and didn't find what we are looking for.
1394 * If we were looking for a hole, set offset to
1395 * the end of the file (i.e., there is an implicit
1396 * hole at the end of any file).
1398 if (whence
== SEEK_HOLE
) {
1403 * If we were looking for data, it's nowhere to be found
1405 ASSERT(whence
== SEEK_DATA
);
1413 * Nothing was found, proceed to the next round of search
1414 * if the next reading offset is not at or beyond EOF.
1416 fsbno
= map
[i
- 1].br_startoff
+ map
[i
- 1].br_blockcount
;
1417 start
= XFS_FSB_TO_B(mp
, fsbno
);
1418 if (start
>= isize
) {
1419 if (whence
== SEEK_HOLE
) {
1423 ASSERT(whence
== SEEK_DATA
);
1431 * If at this point we have found the hole we wanted, the returned
1432 * offset may be bigger than the file size as it may be aligned to
1433 * page boundary for unwritten extents. We need to deal with this
1434 * situation in particular.
1436 if (whence
== SEEK_HOLE
)
1437 offset
= min_t(loff_t
, offset
, isize
);
1438 offset
= vfs_setpos(file
, offset
, inode
->i_sb
->s_maxbytes
);
1441 xfs_iunlock(ip
, lock
);
1458 return generic_file_llseek(file
, offset
, whence
);
1461 return xfs_seek_hole_data(file
, offset
, whence
);
1468 * Locking for serialisation of IO during page faults. This results in a lock
1472 * sb_start_pagefault(vfs, freeze)
1473 * i_mmap_lock (XFS - truncate serialisation)
1475 * i_lock (XFS - extent map serialisation)
1479 * mmap()d file has taken write protection fault and is being made writable. We
1480 * can set the page state up correctly for a writable page, which means we can
1481 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1485 xfs_filemap_page_mkwrite(
1486 struct vm_area_struct
*vma
,
1487 struct vm_fault
*vmf
)
1489 struct inode
*inode
= file_inode(vma
->vm_file
);
1492 trace_xfs_filemap_page_mkwrite(XFS_I(inode
));
1494 sb_start_pagefault(inode
->i_sb
);
1495 file_update_time(vma
->vm_file
);
1496 xfs_ilock(XFS_I(inode
), XFS_MMAPLOCK_SHARED
);
1498 if (IS_DAX(inode
)) {
1499 ret
= __dax_mkwrite(vma
, vmf
, xfs_get_blocks_direct
,
1500 xfs_end_io_dax_write
);
1502 ret
= __block_page_mkwrite(vma
, vmf
, xfs_get_blocks
);
1503 ret
= block_page_mkwrite_return(ret
);
1506 xfs_iunlock(XFS_I(inode
), XFS_MMAPLOCK_SHARED
);
1507 sb_end_pagefault(inode
->i_sb
);
1514 struct vm_area_struct
*vma
,
1515 struct vm_fault
*vmf
)
1517 struct xfs_inode
*ip
= XFS_I(file_inode(vma
->vm_file
));
1520 trace_xfs_filemap_fault(ip
);
1522 /* DAX can shortcut the normal fault path on write faults! */
1523 if ((vmf
->flags
& FAULT_FLAG_WRITE
) && IS_DAX(VFS_I(ip
)))
1524 return xfs_filemap_page_mkwrite(vma
, vmf
);
1526 xfs_ilock(ip
, XFS_MMAPLOCK_SHARED
);
1527 ret
= filemap_fault(vma
, vmf
);
1528 xfs_iunlock(ip
, XFS_MMAPLOCK_SHARED
);
1533 static const struct vm_operations_struct xfs_file_vm_ops
= {
1534 .fault
= xfs_filemap_fault
,
1535 .map_pages
= filemap_map_pages
,
1536 .page_mkwrite
= xfs_filemap_page_mkwrite
,
1542 struct vm_area_struct
*vma
)
1544 file_accessed(filp
);
1545 vma
->vm_ops
= &xfs_file_vm_ops
;
1546 if (IS_DAX(file_inode(filp
)))
1547 vma
->vm_flags
|= VM_MIXEDMAP
;
1551 const struct file_operations xfs_file_operations
= {
1552 .llseek
= xfs_file_llseek
,
1553 .read_iter
= xfs_file_read_iter
,
1554 .write_iter
= xfs_file_write_iter
,
1555 .splice_read
= xfs_file_splice_read
,
1556 .splice_write
= iter_file_splice_write
,
1557 .unlocked_ioctl
= xfs_file_ioctl
,
1558 #ifdef CONFIG_COMPAT
1559 .compat_ioctl
= xfs_file_compat_ioctl
,
1561 .mmap
= xfs_file_mmap
,
1562 .open
= xfs_file_open
,
1563 .release
= xfs_file_release
,
1564 .fsync
= xfs_file_fsync
,
1565 .fallocate
= xfs_file_fallocate
,
1568 const struct file_operations xfs_dir_file_operations
= {
1569 .open
= xfs_dir_open
,
1570 .read
= generic_read_dir
,
1571 .iterate
= xfs_file_readdir
,
1572 .llseek
= generic_file_llseek
,
1573 .unlocked_ioctl
= xfs_file_ioctl
,
1574 #ifdef CONFIG_COMPAT
1575 .compat_ioctl
= xfs_file_compat_ioctl
,
1577 .fsync
= xfs_dir_fsync
,